基本初等函数的导数公式
1.2.2基本初等函数的导数公式及导数的运算法则
如何求函数y=㏑(x+2)的导数呢?
若设u=x+2(x>-2),则y=ln u.从而y=㏑(x+2)
可以看我成们是无由法y=用ln 现u和有u=的x+方2(法x>-求2)经函过数“复合” 得y到=㏑的(.即x+y2可)的以导通过数中. 间变量u表示为自变量x
的函数.
如果把y与u的关系记作y=f(u), u与x的关 系记作u=g(x),复合过程可表示为
则有
y
x
yu
u
x
(ln u) (x 2)
1 1 u
1 x2
复合函数求导的步骤:
例4 求下列函数的导数:
(1) y (2x 3)2;
(2) y e ; 0.05x1
(3) y sin(x ) (其中,均为常数).
解:(1)函数y (2x 3)2可以看作函数y u2和u 2x 3的复合函数. 根据复合函数的求导法则有
2.导数的运算法则
1.[ f (x) g(x)] f (x) g(x)
2.[ f (x)g(x)] f (x)g(x) f (x)g(x)
3.[ f (x)] g(x)
f (x)g(x) f (x)g(x) [ g ( x)]2
求下列函数的导数:
(1) y 4x2 12x 9; (2) y (2x 3)2.
课堂小结
(1)复合函数的概念;
(2)复合函数的求导法则;
(3)复合函数求导的基本步骤: 分解——求导——回代.
课后作业
1. 课本第18页习题1.1A组:4、6
2.求下列函数的导数:
(1) y (x 2)3(3x 1)2;
基本初等函数的导数公式及导数的运算法则
上导乘下,下导乘上,差比下方
[ f ( x) g ( x)] f ( x) g ( x) f ( x) g ( x)
如果上式中f(x)=c,则公式变为:
[cg ( x)] cg ( x)
例2 根据基本初等函数的导数公式和导数
运算法则,求函数y=x3-2x+3的导数。
y (x 解:因为2x 3)
p(t ) p0 (1 5%)
t
解:根据基本初等函数导数公式表,有
(t ) 1.05t ln1.05 p
所以 p(10) 1.05 ln1.05 0.08(元 / 年)
10
因此,在第10个年头,这种商品的价格 约以0.08元/年的速度上涨.
导数的运算法则:(和差积商的导数)
导数的运算法则:(和差积商的导数)
[ f ( x) g ( x)]' f '( x) g '( x)
[ f ( x) g ( x)] f ( x) g ( x) f ( x) g ( x)
轮流求导之和
f ( x) f ( x) g ( x) f ( x) g ( x) ( g ( x) 0) g ( x) 2 g ( x)
是否有切线,如果有, 求出切线的方程.
试自己动手解答.
1 有,切y x 2
线的 方程 为
基本初等函数的导数公式
公式1.若f ( x) c, 则f '( x) 0; 公式2.若f ( x) x n , 则f '( x) nx n 1 ; 公式3.若f ( x) sin x, 则f '( x) cos x; 公式4.若f ( x) cos x, 则f '( x) sin x; 公式5.若f ( x) a x , 则f '( x) a x ln a ( a 0); 公式6.若f ( x) e x , 则f '( x) e x ; 1 公式7.若f ( x) log a x, 则f '( x) ( a 0, 且a 1); x ln a 1 公式8.若f ( x) ln x, 则f '( x) ; x
几个常用函数的导数与基本初等函数的导数公式
几个常用函数的导数与基本初等函数的导数公式常用函数的导数公式及基本初等函数的导数公式是微积分中非常重要的知识点。
在计算导数时,这些公式能帮助我们更加方便地得到结果。
下面是常用函数的导数公式及基本初等函数的导数公式:1.常数函数:若f(x)=C,其中C为常数,则f'(x)=0。
2.幂函数:若 f(x) = x^n,其中 n 为常数,则 f'(x) = nx^(n-1)。
3.指数函数:若 f(x) = a^x,其中 a 为常数且 a > 0,a ≠ 1,则 f'(x) =ln(a) * a^x。
4.对数函数:(1) 若 f(x) = ln(x),则 f'(x) = 1/x。
(2) 对数函数的基本性质:若 f(x) = ln(g(x)),则 f'(x) =g'(x)/g(x)。
5.三角函数:(1) 若 f(x) = sin(x),则 f'(x) = cos(x)。
(2) 若 f(x) = cos(x),则 f'(x) = -sin(x)。
(3) 若 f(x) = tan(x),则 f'(x) = sec^2(x)。
(4) 若 f(x) = cot(x),则 f'(x) = -cosec^2(x)。
(5) 若 f(x) = sec(x),则 f'(x) = sec(x) * tan(x)。
(6) 若 f(x) = cosec(x),则 f'(x) = -cosec(x) * cot(x)。
6.反三角函数:包括反正弦函数(arcsin(x)或sin^(-1)(x))、反余弦函数(arccos(x)或cos^(-1)(x))和反正切函数(arctan(x)或tan^(-1)(x))等。
根据反函数的导数公式,可以得到它们的导数公式:(1) 若 f(x) = arcsin(x),则f'(x) = 1/√(1-x^2)。
基本初等函数导数公式大全
基本初等函数导数公式大全1.常数函数:若f(x)=C,其中C是一个常数,则f'(x)=0。
2.幂函数:若f(x) = x^n,其中n是一个实数,则f'(x) = nx^(n-1)。
3.指数函数:若f(x) = a^x,其中a是一个正实数且a≠1,则f'(x) = a^xlna。
4.对数函数:a) 若f(x) = ln,x,则f'(x) = 1/x。
b) 若f(x) = log_a ,x,则f'(x) = 1/(xln(a))。
5.正弦函数和余弦函数:a) 若f(x) = sin(x),则f'(x) = cos(x)。
b) 若f(x) = cos(x),则f'(x) = -sin(x)。
6.正切函数和余切函数:a) 若f(x) = tan(x),则f'(x) = sec^2(x)。
b) 若f(x) = cot(x),则f'(x) = -csc^2(x)。
7.反三角函数:a) 若f(x) = arcsin(x),则f'(x) = 1/√(1-x^2)。
b) 若f(x) = arccos(x),则f'(x) = -1/√(1-x^2)。
c) 若f(x) = arctan(x),则f'(x) = 1/(1+x^2)。
d) 若f(x) = arccot(x),则f'(x) = -1/(1+x^2)。
8.双曲函数:a) 若f(x) = sinh(x),则f'(x) = cosh(x)。
b) 若f(x) = cosh(x),则f'(x) = sinh(x)。
c) 若f(x) = tanh(x),则f'(x) = sech^2(x)。
d) 若f(x) = coth(x),则f'(x) = -csch^2(x)。
9.反双曲函数:a) 若f(x) = arcsinh(x),则f'(x) = 1/√(x^2+1)。
基本初等函数导数公式
基本初等函数导数公式基本初等函数导数公式还有同学记得吗?不记得的话,快来小编这里瞧瞧。
下面是由小编为大家整理的“基本初等函数导数公式”,仅供参考,欢迎大家阅读。
基本初等函数导数公式C'=0、(x^n)'=nx^(n-1)、(a^x)'=a^x*lna、(e^x)'=e^x、(loga(x))'=1/(xlna)、(lnx)'=1/x、(sinx)'=cosx、(cosx)'=-sinx。
初等函数是由基本初等函数经过有限次的四则运算和复合运算所得到的函数。
基本初等函数和初等函数在其定义区间内均为连续函数。
不是初等函数的函数,称为非初等函数,如狄利克雷函数和黎曼函数。
拓展阅读:高一数学必修一知识点总结高一数学集合有关概念集合的含义集合的中元素的三个特性:元素的确定性如:世界上最高的山元素的互异性如:由HAPPY的字母组成的集合{H,A,P,Y}元素的无序性: 如:{a,b,c}和{a,c,b}是表示同一个集合集合的表示:{ … } 如:{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋}用拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5}集合的表示方法:列举法与描述法。
注意:常用数集及其记法:非负整数集(即自然数集) 记作:N正整数集 N*或 N+ 整数集Z 有理数集Q 实数集R列举法:{a,b,c……}描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合的方法。
{x(R| x-3>2} ,{x| x-3>2}语言描述法:例:{不是直角三角形的三角形}Venn图:集合的分类:有限集含有有限个元素的集合无限集含有无限个元素的集合空集不含任何元素的集合例:{x|x2=-5}高一数学集合间的基本关系1.“包含”关系—子集注意:有两种可能(1)A是B的一部分,;(2)A与B是同一集合。
反之: 集合A不包含于集合B,或集合B不包含集合A,记作AB或BA2.“相等”关系:A=B (5≥5,且5≤5,则5=5)实例:设 A={x|x2-1=0} B={-1,1} “元素相同则两集合相等”即:① 任何一个集合是它本身的子集。
导数公式及导数的运算法则
导数公式及导数的运算法则一、导数公式1.基本导数公式:(1) 常数函数的导数为0,即d/dx(c) = 0,其中c为常数。
(2) 幂函数的导数为其指数与常数的乘积,即d/dx(x^n) = n*x^(n-1),其中n为实数。
(3) 自然对数函数的导数为1/x,即d/dx(ln(x)) = 1/x。
(4) 正弦函数的导数为余弦函数,即d/dx(sin(x)) = cos(x)。
(5) 余弦函数的导数为负的正弦函数,即d/dx(cos(x)) = -sin(x)。
2.基本初等函数的导数公式:(1) 常数乘以函数的导数等于函数的导数乘以这个常数,即d/dx(c*f(x)) = c*f'(x),其中f(x)为可导函数,c为常数。
(2) 函数相加(减)的导数等于函数导数的相加(减),即d/dx(f(x)±g(x)) = f'(x)±g'(x),其中f(x)和g(x)为可导函数。
(3) 乘积法则:两个函数相乘的导数等于第一个函数的导数乘以第二个函数,再加上第一个函数乘以第二个函数的导数,即d/dx(f(x)*g(x)) = f'(x)*g(x) + f(x)*g'(x)。
(4) 商法则:函数的导数等于分子的导数乘以分母减去分子乘以分母的导数再除以分母的平方,即d/dx(f(x)/g(x)) = (f'(x)*g(x) -f(x)*g'(x))/[g(x)]^23.复合函数的导数:(1) 基本链式法则:若y=f(u)和u=g(x)都是可导函数,则y=f(g(x))也是可导函数,且它的导数等于f'(u)*g'(x),即dy/dx = dy/du *du/dx = f'(u) * g'(x)。
1.反函数的导数:若函数y=f(x)在区间I上具有连续的导数f'(x),且在区间I上f'(x)≠0,则它的反函数x=g(y)在对应的区间J上也有连续的导数,且g'(y)=1/f'(x)。
基本初等函数的导数公式推导过程
基本初等函数的导数公式推导过程初等函数包括常数函数、幂函数、指数函数、对数函数、三角函数和反三角函数等。
下面我们将推导这些函数的导数公式。
1.常数函数的导数:设f(x)=c,其中c为常数,则f'(x)=0。
因为常数函数是一条平行于x轴的直线,斜率为0。
2.幂函数的导数:设f(x) = x^n,其中n为正整数,则f'(x) = nx^(n-1)。
为了推导导数公式,我们可以使用导数的定义:f'(x) = lim[h→0] [(f(x+h)-f(x))/h]。
对于幂函数,我们可以利用二项式定理展开f(x+h):f(x+h) =(x+h)^n = x^n + nx^(n-1)h + ... + h^n,并且只有第二项包含h。
因此,(f(x+h)-f(x))/h = (nx^(n-1)h + ... + h^n) / h = nx^(n-1) + ... + h^(n-1)。
当h趋近于0时,除了第一项nx^(n-1)其余所有的项都会变为0,所以f'(x) = nx^(n-1)。
3.指数函数的导数:设f(x) = a^x,其中a为大于0且不等于1的常数,则f'(x) = a^x * ln(a)。
要推导指数函数的导数公式,可以采用自然对数的定义:ln(x) =∫[1,x] (1/t) dt。
首先将指数函数写为幂函数的形式:f(x) = exp(x*ln(a)),其中exp(x)表示e的x次方。
然后使用复合函数的求导法则,即f'(x) =(d/exp(x*ln(a)))/(dx*ln(x))。
再对(exp(x*ln(a)))的导数应用链式法则,得到f'(x) = ln(a) * a^(x*ln(a)) = a^x * ln(a)。
4.对数函数的导数:设f(x) = log_a(x),其中a为大于0且不等于1的常数,则f'(x) = 1 / (x * ln(a))。
基本初等函数的导数公式及导数的运算法则
公式3.若f (x) sin x,则f '(x) cos x;
公式4.若f (x) cos x,则f '(x) sin x;
公式5.若f (x) ax ,则f '(x) ax ln a(a 0);
公式6.若f (x) ex ,则f '(x) ex;
公式7.若f
(2)求 y=1x+x22+x33的导数.
[解析] (1)①y′=(x2sinx)′=(x2)′sinx+x2(sinx)′ =2xsinx+x2cosx. ②y′=[x2(x2-1)]′=(x2)′(x2-1)+x2(x2-1)′ =2x(x2-1)+x2·2x=4x3-2x. (2)y′=1x+x22+x33′=1x+2x-2+3x-3′ =-x12-4x-3-9x-4=-x12-x43-x94.
法则1:两个函数的和(差)的导数,等于这两
个函数的导数的和(差),即:
[f(x) ±g(x)] ′= f'(x) ± g'(x);
应用1: 求下列函数的导数
(1)y=yx'3+s3inxx2 cos x
(2)y=x3-2x+3.
y ' 3x2 2
法则2:两个函数的积的导数,等于第一个函
练一练:
(1)下列各式正确的是( C )
A.(sin )' cos(为常数)
B(. cos x)' sin x C.(sin x)' cos x D.( x5 )' 1 x6
5
(2)下列各式正确的是( D )
A.(log
x a
)'
1 x
B.(log
高等数学常用导数公式大全
高等数学常用导数公式大全在高等数学中,导数是描述函数变化率的重要概念之一。
导数的应用十分广泛,特别是在求解极值、曲线切线以及函数图像的特征等方面具有重要作用。
本文将总结高等数学中常用的导数公式,供同学们参考使用。
常见函数的导数公式基本初等函数的导数公式1.常数函数:f(f)=f,导数为f′(f)=0。
2.幂函数:f(f)=f f,导数为f′(f)=ff f−1。
3.指数函数:f(f)=f f,导数为 $f'(x) = a^x \\ln a$。
4.对数函数:$f(x) = \\log_a x$,导数为 $f'(x) =\\frac{1}{x \\ln a}$。
5.三角函数:$f(x) = \\sin x$,导数为 $f'(x) = \\cosx$;$f(x) = \\cos x$,导数为 $f'(x) = -\\sin x$。
6.反三角函数:$f(x) = \\arcsin x$,导数为 $f'(x) =\\frac{1}{\\sqrt{1-x^2}}$;$f(x) = \\arccos x$,导数为$f'(x) = -\\frac{1}{\\sqrt{1-x^2}}$。
复合函数的导数公式1.链式法则:若f=f(f),f=f(f),则f=f(f(f))的导数为 $\\frac{dy}{dx} = \\frac{dy}{du} \\cdot \\frac{du}{dx}$。
高阶导数公式1.二阶导数:若f=f(f)的一阶导数为f′,则f″表示f′的导数,即 $y'' = \\frac{d}{dx} (f'(x))$。
隐函数求导公式1.隐函数求导:对于方程f(f,f)=0,当不能解出f对f的显式表达时,可利用隐函数求导公式,即$\\frac{dy}{dx} = - \\frac{F_x}{F_y}$。
常用函数导数总结在高等数学中,经常会遇到一些复杂函数的导数计算,下面给出一些常用函数的导数总结:1.反函数的导数计算:若f=f(f)的反函数为f=f−1(f),则f−1(f)的导数为 $\\frac{dx}{dy} =\\frac{1}{\\frac{dy}{dx}}$。
几个常见函数的导数公式和基本初等函数的导数公式
几个常见函数的导数公式和基本初等函数的导数公式函数的导数是用来描述函数在一点上的变化率。
对于常见函数的导数公式和基本初等函数的导数公式,以下是一些常见的公式和规则。
常见函数的导数公式:1.常数函数:导数为0。
即对于函数f(x)=C,其中C是常数,导数f'(x)=0。
2.幂函数:对于函数f(x)=x^n,其中n是一个实数,导数f'(x)=n*x^(n-1)。
3. 指数函数:对于函数 f(x) = a^x,其中 a 是一个正实数且a ≠ 1,导数 f'(x) = a^x * ln(a)。
4. 对数函数:对于函数 f(x) = log_a(x),其中 a 是一个正实数且a ≠ 1,导数 f'(x) = 1 / (x * ln(a))。
5. 三角函数:常见的三角函数包括正弦函数(sin(x))、余弦函数(cos(x))、正切函数(tan(x)),它们的导数分别为 sin'(x) =cos(x)、cos'(x) = -sin(x)、tan'(x) = sec^2(x),其中 sec(x) = 1 / cos(x)。
基本初等函数的导数公式:1.常见的常数导数公式:即常数函数的导数为0,如f(x)=5的导数为0。
2.单项式函数导数公式:对于f(x)=a*x^n,其中a是常数且n是正整数,导数f'(x)=a*n*x^(n-1)。
3.指数函数导数公式:对于f(x)=e^x,导数f'(x)=e^x,其中e是自然对数的底数。
4. 对数函数导数公式:对于 f(x) = ln(x),导数 f'(x) = 1 / x。
5. 反三角函数导数公式:包括反正弦函数(arcsin(x))、反余弦函数(arccos(x))、反正切函数(arctan(x))等。
其导数分别为:arcsin'(x) = 1 / sqrt(1-x^2)、arccos'(x) = -1 / sqrt(1-x^2)、arctan'(x) = 1 / (1+x^2)。
基本初等函数的导数
基本初等函数的导数
把所有基本初等函数(常用的6种)的导数说清楚
高等数学中,初等函数是指一般性数学函数,它们的构造过程就和多项式的构造过程是一样的,常用的初等函数有常数函数,幂函数,指数函数,对数函数,三角函数和反三角函数等等。
关于这些函数的一个很重要的概念就是它们的导数。
这些基本初等函数的导数依次如下:
1. 常数函数的导数是 0。
即 f' (x) = 0。
2. 幂函数的导数记作 y'= a*x^(a-1) 。
3. 指数函数的导数记作 y' = a^x*ln(a) 。
4. 对数函数的导数记作 y' = 1/x 。
5. 三角函数的导数分别是:sin(x)' = cos(x),cos(x)' = -sin(x),tan(x)' = 1/cos^2(x) 。
6. 反三角函数的导数分别是:arcsin(x)' =1/√(1-x^2),arccos(x)' = -1/√(1-x^2),arctan(x)' = 1/(1+x^2) 。
以上就是基本初等函数的导数,熟悉了这些导数的求法对数学的学习有很大的帮助,希望大家能够把这些导数记熟,提高自己的数学水平。
基本初等函数的导数公式及导数的运算法则1
即(x0-1)2·(2x0+1)=0,∴x0=1 或 x0=-12, 切点坐标为(1,2)或-12,-58, 切点为(1,2)时切线斜率为 k1=3+1=4, 切线方程为:y-2=4(x-1)即 4x-y-2=0, 切点为(-12,-58)时切线斜率为 k2=74, 切线方程为:y-2=74(x-1)即 7x-4y+1=0.
2.含根号的函数求导一般先化为分数指 数幂,再求导.
(1)求下列函数的导数. ①y=x2sinx ②y=x2(x2-1)
(2)求 y=1x+x22+x33的导数.
[解析] (1)①y′=(x2sinx)′=(x2)′sinx+x2(sinx)′ =2xsinx+x2cosx. ②y′=[x2(x2-1)]′=(x2)′(x2-1)+x2(x2-1)′ =2x(x2-1)+x2·2x=4x3-2x. (2)y′=1x+x22+x33′=1x+2x-2+3x-3′ =-x12-4x-3-9x-4=-x12-x43-x94.
基本初等函数的导数公式及 导数的运算法则
我们今后可以直接使用的基本初等函数的导数公式
公式1.若f (x) c,则f '(x) 0;
公式2.若f (x) xn ,则f '(x) nxn1;
公式3.若f (x) sin x, 则f '(x) cos x;
公式4.若f (x) cos x,则f '(x) sin x;
[例3] 已知抛物线y=ax2+bx+c通过点(1,1), 且在点(2,-1)处与直线y=x-3相切,求a、b、 c的值.
[分析] 题中涉及三个未知量,已知中有三个独 立条件,因此,要通过解方程组来确定a、b、c 的值.
[解析] 因为y=ax2+bx+c过点(1,1),
基本初等函数的导数公式及导数的运算法则
y'x表示y对x的导数
即 y对 x的导数 y对 u 等 的于 导u数 对 x的 与导数. 的
由此,y可 ln 3 得 x2对 x的导数 yln 等 u对 u的 于
导数 u3 与 x2对 x的导数 ,即 的乘积
y'xyu ' u'xln u'3x2' 1 u33x3 2.
1321,
所以,纯净度为 98%时,费用的瞬时变化率
是1321元/吨.
函数 fx 在某点处的导数的大小表示函数
在此点附近变化的快慢 .由上述 计算可知,
c' 98 25c' 90.它表示纯净度为98%左
右时净 化费用的变化率 ,大约是纯 净 度 为
90% 左右时净化费用变化率的 25 倍 .这说
当p0 5时,pt 5 1.05t.这时,求p关于t的导 数可以看成求函数ft 5与 gt 1.05t 乘积
的导数.下面的" 导数运算法则"可以帮助我们解 决两个函数加、减、乘、除的求导问题.
导数运算法则
1 . f x g x ' f 'x g 'x ;
2 . f x g x ' f ' x g x f x g ' x ;
3 . g fx x 'f'x g x g x f2 x g 'x g x 0 .
例2 根据基本初等函数的导数公式 和导数运算法则,求函数 y x3 2x 3的导数.
1 ;
x ln a
8.
若 fx ln x,则 f ' x
基本初等函数的导数公式及导数的运算法则
基本初等函数的导数公式及导数的运算法则一、知识点归纳:1、几个常用函数的导数公式的解释:(1)函数()y f x c ==的导数0y '=表示函数y c =图像上每一点处的切线的斜率都为0.若y c =表示路程关于时间的函数,则0y '=可以解释为某物体的瞬时速度始终为0,即物体一直处于静止状态.(2)函数()y f x x ==的导数1y '=表示函数y x =图像上每一点处的切线的斜率都为1.若y x =表示路程关于时间的函数,则1y '=可以解释为某物体做瞬时速度为1的匀速运动.(3)函数2()y f x x ==的导数2y x '=表示函数2y x =图像上点(,)x y 处的切线的斜率都为2x ,说明随着x 的变化,切线的斜率也在变化.另一方面,从导数作为函数在一点的瞬时变化率来看,表明:当0x <时,随着x 的增加,函数2y x =减少得越来越慢;当0x >时,随着x 的增加,函数2y x =增加得越来越快.若2y x =表示路程关于时间的函数,则2y x '=可以解释为某物体做变速运动,它在时刻x 的瞬时速度为2x .2、常见函数的导数公式:(1) '____C =(C 为常数);(2)()'________n x =, n ∈N +;(3)(sin )'_______x =; (4)(cos )'_______x =; (5)()'________x e =; (6)()'_________x a =;(7)(ln )'______x =; (8) (log )'a x =3、可导函数的四则运算法则法则1 '[()()]____________.u x v x ±=(口诀:和与差的导数等于导数的和与差).法则2 [()()]____________u x v x '=. (口诀:前导后不导,后导前不导,中间是正号) 法则3 ()[]_______________(()0)()u x v x v x '=≠(口诀:分母平方要记牢,上导下不导,下导上不导,中间是负号)4、复合函数:(1)定义:一般地,对于两个函数y =f (u )和()u g x =,如果通过变量u,y 可以表示成x 的函数,那么这个函数为函数 和 的复合函数,记作(2)复合函数的求导法则复合函数(())y f gx =的导数和函数y =f (u ),()u g x =的导数间的关系式为 ,即y 对x 的导数等于 的乘积。
基本初等函数的导数公式推算
基本初等函数的导数公式推算
基本初等函数指的是一元函数的各种基本形式,包括常数函数、幂函数、指数函数、对数函数和三角函数等。
它们可以用来表达几乎所有的函数。
1. 常数函数的导数为0:
常数函数f(x)=c(c为常数),因此f'(x)=0;
2. 幂函数的导数为多项式乘以指数函数:
幂函数f(x)=x^n(n为常数),因此f'(x)=nx^{n-1};
3. 指数函数的导数为指数函数的常数倍:
指数函数f(x)=a^x(a为常数),因此
f'(x)=ln(a)a^x;
4. 对数函数的导数为常数的倒数:
对数函数f(x)=ln(x),因此f'(x)=1/x;
5. 三角函数的导数为另一个三角函数的乘积:
正弦函数f(x)=sin x,因此f'(x)=cos x;
余弦函数f(x)=cos x,因此f'(x)=-sin x;
正切函数f(x)=tan x,因此f'(x)=sec^2 x。
基本初等函数的导数公式的推导过程
基本初等函数的导数公式的推导过程一、幂函数的导数公式:考虑函数y=x^n,其中n是实数。
为了求导数,我们可以使用极限的定义,即求函数在其中一点x0处的导数。
首先,我们将函数写成y=x*x*...*x(n个x相乘)的形式。
然后,我们计算x处的斜率,即函数在x0处两个极接近的点之间的变化率。
这个斜率可以通过求极限得到。
因此,对于y=x^n,我们可以使用极限计算导数:dy/dx = lim(h→0) [ (x0 + h)^n - x0^n ] / h利用二项式定理展开,并除以h,我们得到dy/dx = lim(h→0) [ C(n, 0) * (x0)^(n-0) * h^0 + C(n, 1) * (x0)^(n-1) * h^1 + C(n, 2) * (x0)^(n-2) * h^2 + ... + C(n, n) * (x0)^(n-n) * h^n ] / h化简上式,我们可以得到:dy/dx = n * x0^(n-1)所以,幂函数 y = x^n 在任意一点 x0 的导数为 dy/dx = n *x^(n-1)。
二、指数函数的导数公式:考虑函数y=a^x,其中a是一个正实数且a≠1、为了求导数,我们可以使用极限的定义,即求函数在其中一点x0处的导数。
首先,我们将函数写成 y = e^(x * ln(a)) 的形式。
然后,我们计算 x 处的斜率,即函数在 x0 处两个极接近的点之间的变化率。
这个斜率可以通过求极限得到。
因此,对于y=a^x,我们可以使用极限计算导数:dy/dx = lim(h→0) [ a^(x0 + h) - a^x0 ] / h利用指数的性质a^(b+c)=a^b*a^c,并除以h,我们得到dy/dx = lim(h→0) [ a^x0 * a^h - a^x0 ] / h化简上式,我们可以得到:dy/dx = a^x0 * lim(h→0) [ (a^h - 1) / h ]当 h 趋近于 0 时,我们可以使用极限公式 lim(h→0) [ (a^h - 1) / h ] = ln(a)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(4)y sinx log2 x
(5)
y 1xx2
例4 假设某国家在20年期间的平均通货膨胀率为5%,
物价p(单位:元)与时间t(单位:年)有如下函数关
系
p(t)p0(15%t)
其中p0为t = 0时的物价。假定某种商品的p0=1,那么 在第10个年头,这种商品的价格上涨的速度大约是 多少(精确到0.01)?
( A )0 ,[ 3 ] ( B )3 [ ,) ( C )0 ,[) (,3 ] ( D )0 ,[] [ 3 ,)
44
224 2 4
例6:用求导的方法求和:
(1)P n(x)12x3x2 nn x1(x1); (2)Sn1223x (n1)nn x2(x1).
对(1)由求导公式 (xn)nxn1,可联想到它是另一个和式 x+x2+x3+…+xn的导数.
Thanks
End T
H
A
N
K
S
解:根据(t)1.05t ln1.05
p '( 1) 0 1 .01l5 0 1 n .0 5 0 .0(元 8 /年 )
因此,在第10个年头,这种商品的价格约以0.08元/年的 速度上涨。
例5. 点P在曲线y=x3-x+2/3上移动时,过点P的曲线
的切线的倾斜角的取值范围是( D )
基本初等函数的导数公式
3、商的导数
法则3:两个函数的积的导数,等于第一个函数的导数 乘第二个函数,减去第一个函数乘第二个函数的导数 , 再除以第二个函数的平方.即:
g f((xx))f(x)g(xg)( x)f2(x)g(x)(g(x)0)
例3 求下列函数的导数
(1)ytanx (2)yxtanx(3)y sinx 1cosx