2020中考数学年二轮复习讲义
2020年中考数学总复习初中数学全套基础知识复习讲义(精心整理)
范文2020年中考数学总复习初中数学全套基础知识复1/ 6习讲义(精心整理)2020 年中考数学总复习初中数学全套基础知识复习讲义(精心整理)第 1 课时实数的有关概念【知识梳理】 1. 实数的分类:整数(包括:正整数、0、负整数)和分数(包括:有限小数和无限环循小数)都是有理数. 有理数和无理数统称为实数. 2. 数轴:规定了原点、正方向和单位长度的直线叫数轴.实数和数轴上的点一一对应.3. 绝对值:在数轴上表示数a的点到原点的距离叫数a的绝对值,记作∣a∣,正数的绝对值是它本身;负数的绝对值是它的相反数;0的绝对值是0.4. 相反数:符号不同、绝对值相等的两个数,叫做互为相反数.a的相反数是-a,0的相反数是0.5. 有效数字:一个近似数,从左边笫一个不是0的数字起,到最末一个数字止,所有的数字,都叫做这个近似数的有效数字.6. 科学记数法:把一个数写成a×10n的形式(其中1≤a<10,n是整数),这种记数法叫做科学记数法. 如:407000=4.07×105,0.000043=4.3×10-5.7. 大小比较:正数大于 0,负数小于 0,两个负数,绝对值大的反而小.8. 数的乘方:求相同因数的积的运算叫乘方,乘方运算的结果叫幂.9. 平方根:一般地,如果一个数 x 的平方等于 a,即 x2=a 那么这个数x 就叫做 a 的平方根(也叫做二次方根).一个正数有两个平方根,它们互—◇◇ 1 ◇◇—为相反数;0 只有一个平方根,它是 0 本身;负数没有平方根. 10. 开平方:求一个数 a 的平方根的运算,叫做开平方. 11. 算术平方根:一般地,如果一个正数 x 的平方等于 a,即 x2=a,那么这个正数 x 就叫做 a 的算术平方根,0 的算术平方根是 0. 12. 立方根:一般地,如果一个数 x 的立方等于 a,即 x3=a,那么这个数 x 就叫做 a 的立方根(也叫做三次方根),正数的立方根是正数;负数的立方根是负数;0 的立方根是 0. 13. 开立方:求一个数 a 的立方根的运算叫做开立方.【思想方法】数形结合,分类讨论【例题精讲】例 1.下列运算正确的是() A. 3 3 B. (1)1 3 C. 9 3 3 例 2. 2 的相反数是() D. 3 27 3 A. 2 B. 2 C. 2 2 D. 2 2 例 3.2 的平方根是() A.4 B. 2 C. 2 D. 2 例 4.《广东省 2009 年重点建设项目计划(草案)》显示,港珠澳大桥工程估算总投资 726 亿元,用科学记数法表示正确的是()A. 7.261010 元 C. 0.7261011 元 B. 72.6109 元 D. 7.261011 元—◇◇ 2 ◇◇—3/ 6例 5.实数 a,b 在数轴上对应点的位置如图所示,则必有() b 1 0 a 1 0 例5图 A. a b 0 B. a b 0 C. ab 0 例 6.(改编题)有一个运算程序,可以使: D.a 0 b a ⊕ b = n ( n 为常数)时,得( a +1)⊕b = n +2, a ⊕(b +1)= n -3 现在已知1⊕1 = 4,那么2009⊕2009 = .【当堂检测】 1.计算1 2 3 的结果是() A. 1 6 B. 1 6 C. 1 8 2. 2 的倒数是() A. 1 2 B. 1 2 C. 2 3.下列各式中,正确的是() D. 1 8 D. 2 A. 2 15 3 B. 3 15 4 C. 4 15 5 D.14 15 16 4.已知实数 a 在数轴上的位置如图所示,则化简 |1 a | a2 的结果为() A.1 B. 1 C.1 2a a 1 0 1 D. 2a1 第 4 题图 5.2 的相反数是( A. 2 B. 2 ) C. 1 2 D. 12 —◇◇3 ◇◇—6.-5 的相反数是____,- 1 的绝对值是____, 42 =_____. 27.写出一个有理数和一个无理数,使它们都是小于-1 的数 .8.如果( 2) 1,则“ ”内应填的实数是() 3 A. 3 2 B. 2 3 C. 2 3 D. 3 2 第 2 课时实数的运算【知识梳理】 1.有理数加法法则:同号两数相加,取相同的符号,并把绝对值相加;异号两数相加,绝对值相等时和为 0;绝对值不等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值;一个数同 0 相加,仍得这个数. 2.有理数减法法则:减去一个数,等于加上这个数的相反数. 3.有理数乘法法则:两个有理数相乘,同号得正,异号得负,再把绝对值相乘;任何数与 0 相乘,积仍为 0. 4.有理数除法法则:两个有理数相除,同号得正,异号得负,并把绝对值相除; 0 除以任何非 0 的数都得 0;除以一个数等于乘以这个数的倒数. 5.有理数的混合运算法则:先算乘方,再算乘除,最后算加减;如果有括号,先算括号里面的. 6.有理数的运算律:加法交换律:a+b=b+a(a、b 为任意有理数) 加法结合律:(a+b)+c=a+(b+c)(a, b,c 为任意有理数) —◇◇ 4 ◇◇—5/ 6【思想方法】数形结合,分类讨论【例题精讲】例 1.某校认真落实苏州市教育局出台的“三项规定”,校园生活丰富多彩.星期二下午 4 点至 5 点,初二年级 240 名同学分别参加了美术、音乐和体育活动,其中参加体育活动人数是参加美术活动人数的 3 倍,参加音乐活动人数是参加美术活动人数的 2 倍,那么参加美术活动的同学其有____________名. 例 2.下表是 5 个城市的国际标准时间(单位:时)。
2020年九年级数学中考二轮培优复习:《一次函数》(解析版)
中考二轮培优复习:《一次函数》1.如图,在平面直角坐标系中,直线y=kx﹣3k与x轴交于A,与y轴交B.(1)求点A的坐标;(2)点D是第一象限内一点,连接AD,∠OAD=45°,连接BD,将线段BD绕着点D顺时针旋转90°得到线段DE,过点E作EC⊥y轴于点C,求线段OC的长;(3)在(2)的条件下,点C和点B关于x轴对称,过点C作CF∥DE交x轴干点F,点G在x轴负半轴上,OG=AF,BD交OA于点H,点M为BH的中点,连接OM并延长交AB 于点N,连接GN,若GN=ON,求点D的坐标.2.如图,直线y=ax+b交x轴于点A,交y轴于点B,且a,b满足a=+4,直线y=kx﹣4k过定点C,点D为直线y=kx﹣4k上一点,∠DAB=45°.(1)a=,b=,C坐标为;(2)如图1,k=﹣1时,求点D的坐标;(3)如图2,在(2)的条件下,点M是直线y=kx﹣4k上一点,连接AM,将AM绕A顺时针旋转90°得AQ,OQ最小值为.3.如图,在平面直角坐标系中,O是坐标原点,长方形OACB的顶点A、B分别在x轴与y 轴上,已知OA=6,OB=10.点D为y轴上一点,其坐标为(0,2),点P从点A出发以每秒2个单位的速度沿线段AC→CB的方向运动,当点P与点B重合时停止运动,运动时间为t秒.(1)当点P经过点C时,求直线DP的函数解析式;(2)当运动时间t为何值时,△OPD的面积为4;(3)点P在运动过程中,是否存在t的值,使△BDP为等腰三角形?若存在,请直接写出t的值;若不存在,请说明理由.4.如图,已知直线y=2x+2与y轴、x轴分别交于A、B两点,点C(﹣3,1),射线AC 交x轴的负半轴于点D.(1)求点D的坐标;(2)点P是坐标平面内不同于点C的一点,且以B、D、P为顶点的三角形与△BCD全等,请直接写出点P的坐标;(3)点M是线段BC上一点,直线AM交BD于点N,且△OMN的面积等于△OCD面积的一半,求点M的坐标.5.如图,在直角坐标系中,B(0,4),D(5,0),一次函数y=x+的图象过C(8,n),与x轴交于A点.(1)n=;A(,);(2)判断四边形ABCD的形状,并证明;(3)将△AOB绕点O顺时针旋转,旋转得△A1OB1,问:能否使以点O、A1、D、B1为顶点的四边形是平行四边形?若能,请直接写出A1的坐标;若不能,请说明理由.6.阅读下列材料,并按要求解答.【模型建立】如图①,等腰直角三角形ABC中,∠ACB=90°,CB=CA,直线ED经过点C,过A作AD⊥ED于点D,过B作BE⊥ED于点E.求证:△BEC≌△CDA.【模型应用】应用1:如图②,在四边形ABCD中,∠ADC=90°,AD=6,CD=8,BC=10,AB2=200.求线段BD的长.应用2:如图③,在平面直角坐标系中,纸片△OPQ为等腰直角三角形,QO=QP,P(4,m),点Q始终在直线OP的上方.(1)折叠纸片,使得点P与点O重合,折痕所在的直线l过点Q且与线段OP交于点M,当m=2时,求Q点的坐标和直线l与x轴的交点坐标;(2)若无论m取何值,点Q总在某条确定的直线上,请直接写出这条直线的解析式.7.在平面直角坐标系中,直线y=﹣x+6分别与y轴,x轴交于A,C两点,已知OB=3OC.(1)如图1,点E,点D分别为y轴正半轴和x轴负半轴上的点,△ODE∽△OBA且相似比为1:3,一个沿直线运动的点H从点E出发运动到AB上一点K,再沿射线AB方向运动6个单位到达点G,最后到达点D处,P是直线AC上的一个动点,当EK+KG+GD最小时,求使|GP﹣OP|最大时P点坐标.(2)如图2,直线m:x=﹣3与x轴交于点S,与线段AB交于点M,在直线m上取一点R,使得SR=9(点R在第二象限),连接BR.已知点N为线段BR上一动点,连接MN,将△BMN沿MN翻折到△B′MN若B落在直线BR的左侧,当△B′MN与△BMR重叠部分(如图中的△MNQ)为直角三角形时,将此Rt△MNQ绕点Q顺时针旋α(0°≤α<360°)得到Rt△M′N′Q,直线M′N′分别与直线BR、直线BM交于点T、H.当△BTH是以∠TBH 为底角的等腰三角形时,请直接写出BT的长.8.已知如图,直线AB交x轴于点A,交y轴于点B,AB=,tan∠BAO=3.(1)求:直线AB的解析式;(2)直线y=kx+b经过点B交x轴交于点C,且∠ABC=45°,AD⊥BC于点D.动点P 从点C出发,沿CB方向以每秒个单位长度的速度向终点B运动,运动时间为t,设△ADP的面积为S,求S与t的函数关系式,并直接写出自变量t的取值范围.(3)在(2)的条件下,点P在线段BD上,点F在线段AB上,∠APC=∠FPB,连接AP,过点F作FG⊥AP于点G,交AD于点H,若DP=DH,求点P的坐标.9.已知:如图,平面直角坐标系中,O为坐标原点,直线y=mx+10m交x轴于B,交y轴于A,△AOB的面积为50.(1)求m的值;(2)P为BA延长线上一点,C为x轴上一点,坐标为(6,0),连接PC,D为x轴上一点,连接PD,若PD=PC,P点横坐标为t,△PCD的面积为S,求S与t的函数关系式,并直接写出自变量t的取值范围;(3)在(2)的条件下,过C作CF⊥AB于F,当D在BO上时,过D作DG⊥CP于G,过F 作FE⊥DG于E,连接PE,当PE平分△PDG周长时,求E点坐标.10.如图,直线与x、y轴交于点A、B,过点B作x轴的平行线交直线y=x+b于点D,直线y=x+b交x、y轴于点E、K,且DK=.(1)如图1,求直线DE的解析式;(2)如图2,点P为AB廷长线上一点,把线段BP绕着点B顺时针旋转90°得到线段BF,若点F刚好落在直线DE上,求点P的坐标;(3)如图3,在(2)的条件下,点M为ED延长线上一点,连接PM和AM,AM交线段BD 于点N,若PM+MN=AN,求线段PM的长.11.在平面直角坐标系中,O为坐标原点,直线y=kx+b与x轴交于点B,与y轴交于点A,OA=4,OB=3.(1)求直线AB的解析式;(2)点C在OA上,点D在x轴正半轴上,连接AD、BC,且∠CBO=∠OAD,设点C的纵坐标为m,点D的横坐标为n,求n与m的函数关系式;(3)在(2)的条件下,点P在BC上,连接OP,过点B作BQ⊥OP于点H,交AD于点Q,交y轴于点F,连接PQ交y轴于点E,若n=m+1,∠BQP=2∠DBQ,求点P的坐标.12.如图,在平面直角坐标系中,O为坐标原点,直线y=﹣3x+6k与y轴的正半轴交于点A,与x轴的正半轴交于点B.(1)求tan∠ABO的值;(2)点C在x轴的负半轴上,CD⊥AB于点D,交y轴于点E,设线段AE的长为d,当DE =BD时,求d与k之间的函数关系式(不必写出自变量k的取值范围);(3)在(2)的条件下,连接AC,点P在x轴的负半轴上,连接PE,交线段AC于点F,点G在线段BD上,连接PG,交CD于点H,连接FH,若PF=EF,DG:GB=4:5,FH=,求k的值及点P的坐标.13.如图,在平面直角坐标系中,直线l 1:y =x +m 与直线l 2:y =kx +8交于点A (4m ,4),l 2与y 轴交于点B ,点F (a ,0)(0<a <4)在x 轴上,过点F 作DF ⊥x 轴于点F ,交l 2于点D ,交l 1于E .(1)求直线l 1、l 2的解析式和B 点坐标.(2)求△BEA 的面积S 与a 的关系式.并求出当△BEA 的面积为时,点F 坐标.①在y 轴上确定点M ,使得△BMA 的面积等于△BEA 面积,直接写出点M 的坐标. ②若直线y =kx ﹣k +7将△BEA 分成面积相等的两部分,求k 的值.③若P 是直线EF 上一点,点Q 是直线l 1上一点,使得当△PFA 沿着AP 折叠后与△QPA 重合,请直接写出点P 和点Q 的坐标.14.如图1,在三角形ABC中,把AB绕点A顺时针旋转90°得到AD,把AC绕点A逆时针旋转90°,得到AE,连接DE,过点A作BC的垂线,交BC于点F,交DE于点G.【特例尝试】如图2,当∠BAC=90°时,①求证:∠DAE=90°;②猜想BC与AG的数量关系并说明理由.【理想论证】在图1中,当△ABC为任意三角形时,②中BC与AG的数量关系还成立吗?请给予证明.【拓展应用】如图3,直线y=ax﹣a(a<0)与x轴,y轴分别交于A、B两点,分别以OB,AB为直角边在第二、一象限内作等腰Rt△BOC和等腰Rt△BAD,连接CD,交y轴于点E.试猜想EB的长是否为定值,若是,请求出这个值;若不是,请说明理由.15.已知,如图,在平面直角坐标系中,直线AB:交x轴于点A(﹣4,0),交y 轴于点B,点C(2,0).(1)如图1,求直线AB的解析式;(2)如图2,点D为第二象限内一点,且AD=DC,DC交直线AB于点E,设DE:EC=m,点D的纵坐标为d,求d与m的函数关系式(不要求写出自变量的取值范围);(3)如图3,在(2)的条件下,直线AD交y轴于点F,点P为线段AF上一点,G为y 轴负半轴上一点,PG=AB,且∠PGF+∠BAF=∠AFB,当m=1时,求点G的坐标.参考答案1.解:(1)∵直线y=kx﹣3k与x轴交于A,令y=0,则kx﹣3k=0,∴x=3,∴点A的坐标为(3,0);(2)如图1,由(1)知,A(3,0),∴OA=3,∵∠OAD=45°,∴直线AD与y轴相交于C',∴OC'=3,设直线AD的解析式为y=﹣x+3,设点D(a,﹣a+3),∴DQ=a,OQ=﹣a+3,由旋转知,BD=ED,∠BDE=90°,过点D作DQ⊥y轴于Q,过点E作EP⊥DQ交DQ的延长线于P,∴∠EDP+∠BDQ=90°,∴∠DBQ+∠BDQ=90°,∴∠EDP=∠DBQ,∴△DEP≌△BDQ(AAS),∴PE=DQ=a,∴EC⊥y轴,∴四边形EPQC是矩形,∴PE=CQ,∴OC=CQ+OQ=DQ+OQ=a+(﹣a)+3=3;(3)如图2,由(2)知,OC=3,∵点C和点B关于x轴对称,∴OB=3,∴B(0,﹣3),即直线AB的解析式为y=x﹣3,由(2)知,∠PDE=∠QBD,∵DP∥CE,∴∠CED=∠PDE,∴∠QBD=∠CED,∵DE∥CF,∴∠CED=∠FCT,∴∠QBD=∠FCT,∵CE∥x轴,∴∠FCT=∠OFC,∴∠QBD=∠OFC,过点N作NK⊥x轴于K,∴NK∥BO,∴∠BOM=∠ONK,∵点M是BH的中点,∴BM=OM,∴∠BOM=∠QBD,∴∠ONK=∠QBD=∠OFC,设点N(n,n﹣3),∴OK=n,NK=3﹣n,∵∠ONK=∠OFC,∠COF=∠OKN=90°,∴△ONK∽△CFO,∴,∴,∴OF=,∵AF=OG,∴AG=OF=,AK=NK=3﹣n,∴GK=AG﹣AK=﹣(3﹣n)=,∴,=,∴,∵∠OKN=∠NKG=90°,∴△ONK∽△NGK,∴,∵GN=ON,∴,∴n=,设点D(m,3﹣m),∴DQ=m,BQ=OB+OQ=3+(3﹣m)=6﹣m,∵∠QBD=∠KNO,∠BQD=∠NKO=90°,∴△BQD∽△NKO,∴,∴,∴m=2n=,∴D(,).2.解:(1)∵4﹣b≥0,b﹣4≥0,∴b=4,则a=4,对于直线y=kx﹣4k,当y=0时,x=4,∴点C的坐标为(4,0),故答案为:4;4;(4,0);(2)当D在线段BC上时,作BE⊥BA交AD的延长线于点E,作EF⊥y轴于F,则∠BEF+∠EBO=90°,∠ABO+∠EBO=90°,∴∠BEF=∠ABO,∵∠DAB=45°,∴BA=BE,在△AOB和△BFE中,,∴△AOB≌△BFE(AAS),∴BF=OA,EF=OB=4,对于直线y=4x+4,当y=0时,x=﹣1,∴OA=1,∴E(4,3)设直线AE解析式为y=mx+n,,解得,,则直线AE解析式为y=x+,,解得,,∴D(,);当D在CB延长线上时,同理可得D(,);(3)设M(m,﹣m+4),由(2)可得,△ANM≌△QHA,∴MN=AH=﹣m+4,AN=QH=m+1,∴Q(﹣m+3,﹣m﹣1)则OQ2=(﹣m+3)2+(﹣m﹣1)2=2(m﹣1)2+8,当m=1时,OQ最小为,故答案为:2.3.解:(1)∵OA=6,OB=10,四边形OACB为长方形,∴C(6,10).设直线DP解析式为y=kx+b,把(0,2),C(6,10)分别代入,得,解得.则直线DP解析式为y=x+2;(2)当点P在线段AC上时,OD=2,高为6,△OPD的面积为×2×6=6;当点P在线段BC上时,OD=2,高为6+10﹣2t=16﹣2t,×2×(16﹣2t)=4,解得t=6.故当运动时间t为6时,△OPD的面积为4;(3)存在,理由为:若△BDP为等腰三角形,分三种情况考虑:如图2,①当BD=BP1=OB﹣OD=10﹣2=8,在Rt△BCP1中,BP1=8,BC=6,根据勾股定理得:CP1==2,∴AP1=10﹣2,t的值为(10﹣2)÷2=5﹣;②当BP2=DP2时,此时P2(6,6),t的值为6÷2=3;③当DB=DP3=8时,在Rt△DEP3中,DE=6,根据勾股定理得:P3E==2,∴AP3=AE+EP3=2+2,为(2+2)÷2=+1.综上,满足题意的t的值为5﹣或3或+1.4.解:(1)∵y=2x+2,∴当y=0时,x=﹣1;当x=0时,y=2;∴A(0,2),B(﹣1,0),设直线AC解析式为y=kx+b,将A(0,2),C(﹣3,1)代入得,解得,∴直线AC的解析式为,当y=0时,,解得x=﹣6,∴点D的坐标为(﹣6,0);(2)①若△BPD≌△BCD,则BP=BC,∠PBD=∠CBD,点P与点C关于x轴对称,∴P(﹣3,﹣1),②当△DPB≌△BCD时,且点P在x轴上方,则DP=BC,∠DPB=∠CBD,∴P(﹣4,1),③当△DPB≌△BCD时,且点P在x轴下方,则DP=BC,∠DPB=∠CBD,∴P(﹣4,﹣1),∴PP(﹣3,﹣1),(﹣4,1),(﹣4,﹣1);(3)设BC的解析式为y=ax+c,则将B(﹣1,0),C(﹣3,1)代入得,解得.∴BC的解析式为,设M(m,),其中﹣3≤m≤﹣1,过点M作MG⊥OA于点G,如图所示则△AMG∽△ANO,∵MG=﹣m,AG=,∴,即,∴,∵, ∴, 解得或m =3(舍去), ∴.5.解:(1)当x =8时,n =×8+=4, ∴点C (8,4),当y =0时,0=x +,解得x =﹣3,∴点A 坐标为(﹣3,0),故答案为:4,(﹣3,0); (2)四边形ABCD 为平行四边形,理由如下:∵点B (0,4),点C (8,4), ∴BC =8,BC ∥x 轴,∴AD =5﹣(﹣3)=8,∵AD ∥BC ,AD =8=BC ,∴四边形ABCD 为平行四边形;(2)由题意可知;AB =A 1B 1=5,∠AOB =∠A 1OB 1=90°, ①△AOB 旋转后,若A 1B 1∥x 轴,连接B 1D ,成四边形OA 1B 1D ,如图1,∵A 1B 1=OD =5∴四边形OA 1B 1D 构成平行四边形, 此时,设A 1B 1与y 轴交于H ,则OH ==,A 1H ==,∴点A 1的坐标为(﹣,); ②△AOB 旋转后,若A 1B 1的中点E 在x 轴上,成四边形OA 1DB 1,如图2,∵∠A 1OB 1=90°∴OE =A 1B 1=,∴OE =ED =,∴四边形OA 1DB 1构成平行四边形 设作A 1N ⊥x 轴交于N ,∠A 1OB 1=∠OA 1D =90° 则AN ==,ON ==, ∴点A 1的坐标为(,); ③△AOB 旋转后,若A 1B 1∥x 轴,成四边形ODA 1B 1,如图3,又∵A 1B 1=OD =5∴四边形ODA 1B 1构成平行四边形 此时,设A 1B 1与y 轴交于M 则OM ==,A 1M ==, ∴点A 1的坐标为(,﹣),综上所述,满足条件A为(﹣,),(,),(,﹣).16.解:【模型建立】如图①,∵AD⊥ED,BE⊥ED,∠ACB=90°,∴∠ADC=∠BEC=90°,∴∠ACD+∠DAC=∠ACD+∠BCE=90°,∴∠DAC=∠BCE,∵AC=BC,∴△BEC≌△CDA(AAS);应用1:如图②,连接AC,过点B作BH⊥DC,垂足为H,∵∠ADC=90°,AD=6,CD=8,∴AC=10,∵BC=10,AB2=200,∴AC2+BC2=AB2,∴∠ACB=90°,∵∠ADC=∠BHC=∠ACB=90°,∴∠ACD=∠CBH,∵AC=BC=10,∴△ADC≌△CHB(AAS),∴CH=AD=6,BH=CD=8,∵BH⊥DC,∴BD===2;应用2:(1)如图③,过点P作PN⊥x轴于点N,过点Q作QK⊥y轴于点K,直线KQ和直线NP相交于点H,由题意易得△OKQ≌△QHP(AAS),若设H(4,x),那么KQ=PH=x﹣m=x﹣2,OK=QH=4﹣KQ=6﹣x,∵OK=x,则6﹣x=x,x=3,因此Q(1,3),过点P作PG⊥PQ交直线QM于点G,过点G作GL⊥PH交直线HP于点L,此时易得△QHP≌△PLQ(AAS),从而可求G(3,﹣1),∵Q(1,3),∴直线QG的函数表达式为y=﹣2x+5,该直线QG与x轴的交点坐标为(,0);(2)∵△OKQ≌△QHP,∴QK=PH,OK=HQ,设Q(x,y),∴KQ=x,OK=HQ=y,∴x+y=KQ+HQ=4,∴y=﹣x+4,∴无论m取何值,点Q总在某条确定的直线上,这条直线的解析式为y=﹣x+4,故答案为:y=﹣x+4.7.解:(1)直线y=﹣x+6…①,直线分别与y轴,x轴交于A,C两点,则点A、C的坐标分别为:(0,6)、(2,0);OB=3OC=6,则点B(﹣6,0);△ODE∽△OBA且相似比为1:3,则点D(﹣2,0)、(0,2);作点E关于AB的对称点E′(﹣2,8),将点E′沿AB方向向下平移6个单位得到点E″(﹣5,5),连接DE″交AB于点G,将点G沿BA向上平移6个单位得到点K,则点G、K为所求点,E″E′∥GK,且E′E″=KG,则四边形E″GKE′为平行四边形,∴E″G=E′K=EK,EK+KG+GD=E″G+6+GD=6+DE″为最小值,由点D、E″的坐标得,直线E″D的表达式为:y=﹣x(x+2)…②,联立①②并解得:x=﹣,故点G(﹣,);连接GO交直线AC于点P,则|GP﹣OP|最大,则直线OG的表达式为:y=﹣x…③,同理可得:直线AC的表达式为:y=﹣x+6…④,联立③④并解得:x=,故点P(,﹣);(2)∠RBS=60°,∠ABO=30°=∠BRS=∠NB′M,点B(﹣6,0)、点S(﹣3,0),点R(﹣3,9)、点M(﹣3,3);BS=3,MS=3;①当∠NQM=90°时,如图2,(Ⅰ)当α=0°时,BT=BN=MN=2NQ=2;(Ⅱ)当α=270°时,如图2所示,若Rt△MNQ绕点Q顺时针旋转270°得到Rt△M′N′Q,此时,点M′刚好落在BR上,即T与M′重合,△BHT为底角为30°的等腰三角形,BM=2MS=6,∠RBM=60°﹣∠MBS=30°,MQ=BM=3,NQ=QM tan30°=3×=,MQ=TQ=3,BT=BQ+TQ=+3=;②∠MNB′=90°,则B′,R,Q三点重合,由翻折知△MNB′≌△MNB,∴B′N=BN=BR=3,∵△BTH是以∠GTH为底角的等腰三角形,∴∠BHT=∠TBH=30°或∠BTH=∠TBH=30°,(Ⅰ)若∠BHT=∠TBH=30°,如图3,则M′N′∥BS∴N′落在线段BS上,BR=6,则BN=B′N=BR=BS=3=B′N′,N′S=RS﹣B′N′=9﹣3,RN′=QN′=QN=BN=3,∵N′T∥BC,则,即,解得:RT=6,则BT=RB﹣RT=6﹣6;(Ⅱ)∠BTH=∠TBH=30°,则点T在BR的延长线上,RG=6,则BT=BR+RT=12;故:BT=6﹣6或12或2或.8.解:(1)∵tan∠BAO=3=,∴BO=3AO,∵AB2=AO2+BO2=40,∴AO=2,BO=6,∴点A(﹣2,0),点B(0,6)设直线AB解析式为:y=kx+6,∴0=﹣2k+6,∴k=3,∴直线AB解析式为:y=3x+6;(2)如图1,过点D作EF⊥AC,交AC于点F,过点B作BE⊥EF,垂足为E,∴四边形BEFO是矩形,∴BO=EF=6,OF=BE,∵∠ABC=45°,AD⊥BC,∴∠ABC=∠BAD=45°,∴AD=BD,∵∠ADB=90°=∠AFD,∴∠BDE+∠ADF=90°,∠ADF+∠DAF=90°,∴∠BDE=∠DAF,且BD=AD,∠E=∠AFD=90°,∴△BDE≌△DAF(AAS)∴DF=BE,DE=AF,∵EF=ED+DF=AO+OF+OF=2+2OF=6∴OF=2,∴点D坐标(2,2),设BC解析式为:y=ax+6,∴2=2a+6,∴a=﹣2,∴直线BC解析式为:y=﹣2x+6,∴当y=0时,x=3,∴点C(3,0),∴OC=3,∴BC===3,∵AB=,且∠ABC=45°,AD⊥BC,∴AD=BD=2,∴CD=,当0≤t<1时,S=×2×(﹣x)=5﹣5x,当1<t≤3时,S=×2×(x﹣)=5x﹣5;(3)如图2,过点B作BN⊥AB交AP延长线于N,过点N作MN⊥BC于M,∵AD=BD,DH=PD,∴AH=BP,∵BN⊥AB,∠ABC=45°,∴∠ABC=∠NBP=45°,且∠APC=∠BPN=∠BPF,BP=BP,∴△BPN≌△BPF(ASA)∴BN=BF,PN=PF,∵FH⊥AP,∴∠AGF=∠ABN=90°,∴∠FAG+∠AFG=90°,∠FAG+∠N=90°,∴∠AFG=∠N,且∠BAD=∠PBN=45°,AH=BP,∴△AHF≌△BPN(AAS)∴AF=BN,PN=FH,∴BF=AF,FH=FP,∴点F是AB中点,∴点F坐标(﹣1,3)∴BF==BN,∵∠NBM=45°,∴BM=MN=,∴MD=BD﹣BM=,∵MN⊥BC,AD⊥BC,∴AD∥MN,∴△MNP∽△DAP,∴∴,且MP+PD=∴PD=设点P(x,﹣2x+6),∴(x﹣2)2+(﹣2x+6﹣2)2=,∴x=,x=(不合题意舍去)∴点P(,)9.解:(1)由题意可得:A(0,10m),B(﹣10,0),=×10×|10m|=50,∴S△AOB∴m=1或﹣1(舍弃)∴m=1.(2)如图1中,∵PD=PC,P点横坐标为t,C(6,0),∴CD=2|6﹣t|,=×2|6﹣t|×|10+t|=|t2+4t﹣60|,∴S△PCD当t>6时,S=t2+4t﹣60,当﹣10<t<6时,S=﹣t2﹣4t+60.(3)如图2中,在边CD的下方作⊙K与CD相切于点E,与PD相切于点R,与PC相切于点Q,连接PK,CK,DK,EK,PK交CD于T,作FW⊥PK于W.∵DE=DR,GE=GQ,PR=PQ,∵PD+DE=PG+EG,∴PE平分△PDG的周长,∴当F,E,K共线时,PE平分△PDG的周长,∵DK平分∠RDG,PK平分∠DPG,∴∠DKP=∠DGP=45°,∵∠DTK=90°,∴∠KDT=∠DCK=45°,∴∠DKC=90°,∴DT=TC﹣TK=6﹣t,∵EF⊥DG,DG⊥PC,∴FK∥PQ,∴∠FKW=∠CPT,∵FW⊥PK,∴tan∠FKW=tan∠CPT,∴=,∵BC=16,△FBC是等腰直角三角形,∴F(﹣2,8),∵K(t,t﹣6),∴=,解得t=2,∴P(2,12),D(﹣2,0),K(2,﹣4),∴直线PQ的解析式为y=﹣3x+18,直线FK的解析式为y=﹣3x+2,∵DG⊥PQ,∴直线DG的解析式为y=x+,由解得,∴E(,).10.解:(1)如图1中,∵直线与x、y轴交于点A、B,∴B(0,3),A(﹣2,0),∵直线y=x+b交x、y轴于点E、K,∴K(0,b),E(﹣b,0),∴OE=OK=﹣b,∴∠OKE=45°,∵BD∥x轴,∴BD⊥BK,∴∠DBK=90°,∴BK=BD,∵DK=5,∴BD=DK=5,∴OE=OF=2,∴b=﹣2,∴直线DE的解析式为y=x﹣2.(2)如图2中,∵BF⊥AB,∴直线BF的解析式为y=﹣x+3,由解得,∴F(3,1),∵线段BF是由BP顺时针旋转90°得到,∴p(2,6).(3)如图3中,作AH⊥DB交DB的延长线于H,PT⊥BD于T,延长PM交BD的延长线于K.当MN=MK时,∠MNK=∠ANH=∠K,∵∠PTK=∠H=90°.AH=PT=3,∴△AHD≌△PTK(AAS),∴DH=TK,AN=PK,∴HT=DK=4,∵PM+MN=PM+MK=PK=AN,∴K(9,3),∵P(2,6),∴直线PK的解析式为y=﹣x+,由,解得,∴M(,),∴PM==.11.解:(1)∵OA=4,OB=3,∴点A(0,4),点B(﹣3,0),设直线AB解析式为:y=kx+4,∴0=﹣3k+4∴k=∴直线AB的解析式为:y=x+4;(2)∵点C的纵坐标为m,点D的横坐标为n,∴OC=m,OD=n,∵∠CBO=∠OAD,∠AOD=∠BOC=90°,∴△BOC∽△AOD,∴∴=∴n=m;(3)∵n=m+1,n=m;∴m=3,n=4,∴点C(0,3),点D(4,0),∴直线BC解析式为:y=x+3,直线AD解析式为:y=﹣x+4,如图,过点B作BH∥PQ,交y轴于点H,∵BH∥PQ,∠BQP=2∠DBQ,∴∠PQB=∠QBH=2∠DBQ,∴∠FBO=∠HBO,且BO=BO,∠BOF=∠BOH=90°,∴△BOH≌△BOF(ASA)∴OF=OH,设OF=OH=a,则点F(0,a),点H(0,﹣a),∴直线BQ解析式为:y=x+a,直线BH解析式为:y=﹣x﹣a,∴解得:∴点Q(,)∵PQ∥BH,∴直线PQ解析式为:y=﹣x+∵OP⊥BQ,∴直线OP解析式为:y=﹣x,∴解得∴点P(,),∵点P在直线PQ上,∴=﹣×+∴a=,∴点P(﹣,)12.解:(1)由已知A(0,6k),B(2k,0),∴tan∠ABO=;(2)∵CD⊥AB,∴∠DCB=∠BAO,∴DE=d,EO=6k﹣d,CO=3EO=18k﹣3d,∴BC=2k+18k﹣3d=20k﹣3d,∵DE=BD,∴(20﹣3d)=3×d,∴d=k;(3)由(2)可得:C(﹣8k,0),E(0,k),D(k,k),则直线AC的解析式为y=x+6k,直线CD的解析式为y=x+k,∵PF=EF,∴F是P与E的中点,∴F点纵坐标为k,设F(m,m+6k),∴m+6k=k,∴m=﹣k,∴F(﹣k,k),∴P(﹣k,0),∵BD=k,DG:GB=4:5,∴GB=k,∴G(k,k),∴PG的直线解析式为y=x+k,∴H(﹣k,k),∴FH=k=,∴k=,∴P(﹣14,0).13.解:(1)l1与y轴交于点B,则点B(0,m),将点A、B的坐标代入l1:y=x+m并解得:m=1,故点A、B的坐标分别为:(4,4)、(0,1),将点A坐标代入l2表达式并解得:k=﹣1,故直线l1:y=x+1与直线l2:y=﹣x+8;(2)设点F(a,0),则点D(a,a+1)、点E(a,﹣a+8),△BEA的面积=×DE×x A=×(﹣a+8﹣a﹣1)×4=,解得:a=1,故点F、D、E的坐标分别为:(1,0)、(1,)、(1,7);①设点M(0,t),△BMA的面积等于△BEA面积,则点M、E所在的直线与AB平行,当M在AB上方时,由E、M的坐标的直线EM的表达式为:y=x+t,将点E的坐标代入上式并解得:t=,故点M(0,);当M(M′)在AB下方时,则点M′、M关于点B对称,则点M′(0,﹣),故点M的坐标为:(0,)或(0,﹣);②直线y=kx﹣k+7=k(x﹣1)+7,当x=1时,y=7,即直线过点(1,7),即过点E,设直线交AB于点R,直线y=kx﹣k+7将△BEA分成面积相等的两部分,则点R是AB的中点,坐标为:(2,);将点R的坐标代入y=kx﹣k+7并解得:k=﹣;③如图2,AB=5,AF=5,故AB=AF,则当△PFA沿着AP折叠后与△QPA重合时,点Q与点B重合,即点Q(0,1),而OF=1,而PQ=PF,故PF=1,故点P(1,1).14.解:【特例尝试】(1)①∵∠BAC=∠BAD=∠CAE=90°∴∠DAE=360°﹣90°×3=90°②∵AB=AD,∠BAC=∠DAE,AC=AE,∴△ABC≌△ADE(SAS)∴∠ABC=∠ADE,∠ACB=∠AED,AB=DE∵GF⊥BC∴∠CAF+∠ACB=90°∵∠CAE=90°∴∠CAF+∠GAE=90°∴∠GAE=∠ACB=∠AED∴GE=GA同理可得,GD=GA∴;【理想论证】(2)过点D作DM⊥GF,交FG延长线于点M,过点E作EN⊥GF,交FG于点N.∵DM⊥GF∴∠M=90°,∠DAM+∠ADM=90°∵∠BAD=90°∴∠DAM+∠BAF=90°∴∠ADM=∠BAF,∵∠AFB=∠M,∠BAF=∠ADM,AB=AD,∴△ABF≌△DAM(AAS)∴BF=AM,AF=DM同理可得FC=AN,AF=EN∴DM=EN,∵∠ENG=∠M,∠EGN=∠DGM,EN=DM,∴△ENG≌△DMG(AAS)∴GN=GM∵BC=BF+FC=AM+AN=AG+GM+AN=AG+GN+AN=2AG∴【拓展应用】(3)直线y=ax﹣a(a<0)与x轴交于A点,则点A(,0),则AO=,由题(2)可知.15.解:(1)将点A(﹣4,0)代入,∴b=1,∴直线AB的解析式为,(2)∵AC=6,AD=DC,∴D的横坐标为﹣1,∵点D的纵坐标为d,∴D(﹣1,d),∴CD的直线解析式为y=﹣x+d,由,可得E(,),∵DE:EC=m,∴EC:CD=1:(m+1),可求EC=,DC=,∴d=m+;(3)∵m=1,∴d=,∴D(﹣1,),∴直线AD的解析式为y=x+3,∴F(0,3),∴tan∠AFB=,∴=,∴FH=PH,过点P作PH⊥y轴于点H,截取HM=HG,∴Rt△PHG≌Rt△PHM(HL),∴PG=PM=AB,∠PGH=∠PMH,∴∠AFB=∠PMF+∠MPF,∵∠PGF+∠BAF=∠AFB,∴∠MPF=∠FAB,构造△PKM≌△ABF(ASA),可得FB=MK=MF,∵OF=3,PB=1,∴FB=MK=MF=2,在Rt△PHM中,PM2=PH2+MH2,∵AB=,∴17=PH2+(2+PH)2,∴PH=,∴FH=,∴HG=HM=2+=,OH=3﹣=,∴OG=HG﹣OH=﹣=,∴G(0,).。
2020年江西省中考数学第二轮专题复习教案及练习:专题六 二次函数压轴题(含答案)
专题六二次函数压轴题类型一二次函数与图形变换如图①,已知直线l:y=-x+2与y轴交于点A,抛物线y=(x-1)2+m 也经过点A,其顶点为B,将该抛物线沿直线l平移,使顶点B落在直线l上的点D处,点D的横坐标为n(n>1).(1)求点B的坐标;(2)平移后的抛物线可以表示为__________________(用含n的式子表示);(3)若平移后的抛物线与原抛物线相交于点C,且点C的横坐标为a.①请写出a关于n的函数关系式;②如图②,连接AC、CD,若∠ACD=90°,求a的值.【分析】(1)点B是抛物线顶点,要求点B的坐标,只需求抛物线解析式即可,将点A代入即可得解;(2)确定平移后的抛物线解析式,可根据抛物线平移规律直接得解;(3)①由点C是两抛物线交点,可联立解方程来确定a与n的关系;②由∠ACD=90°,可过点C作y轴的垂线,构造三垂直模型利用相似来解.【自主解答】1.已知平面直角坐标系中两定点A (-1,0)、B (4,0),抛物线y =ax 2+bx -2(a ≠0)过点A ,B ,顶点为C ,点P (m ,n )(n <0)为抛物线上一点.(1)求抛物线的解析式和顶点C 的坐标;(2)当∠APB 为钝角时,求m 的取值范围;(3)若m >32,当∠APB 为直角时,将该抛物线向左或向右平移t (0<t <52)个单位长度,点C 、P 平移后对应的点分别记为C ′、P ′,是否存在t ,使得首尾依次连接A 、B 、P ′、C ′所构成的多边形的周长最短?若存在,求t 的值,并说明抛物线平移的方向;若不存在,请说明理由.2.(2019·陕西)在平面直角坐标系中,已知抛物线L :y =ax 2+(c -a )x +c 经过点A (-3,0)和点B (0,-6),L 关于原点O 对称的抛物线为L ′.(1)求抛物线L 的表达式;(2)点P 在抛物线L ′上,且位于第一象限,过点P 作PD ⊥y 轴,垂足为D ,若△POD 与△AOB 相似,求符合条件的点P 的坐标.3.已知二次函数y=ax2-2ax-2的图象(记为抛物线C1)的顶点为M,直线l:y =2x-a与x轴、y轴分别交于A,B.(1)对于抛物线C1,以下结论正确的是________.①对称轴是:直线x=1;②顶点坐标是(1,-a-2);③抛物线一定经过两个定点.(2)当a>0时,设△ABM的面积为S,求S与a的函数关系式.(3)将二次函数y=ax2-2ax-2的图象C1绕点P(t,-2)旋转180°得到二次函数的图象(记为抛物线C2),顶点为N.①当-2≤x≤1时,旋转前后的两个二次函数y的值都会随x的增大而减小,求t 的取值范围;②当a=1时,点Q是抛物线C1上的一点,点Q在抛物线C2上的对应点为Q′,试探究四边形QMQ′N能否为正方形?若能,求出t的值;若不能,请说明理由.类型二二次函数与几何图形综合如图,已知二次函数L 1:y=mx2+2mx-3m+1(m≥1)和二次函数L2:y=-m(x-3)2+4m-1(m≥1)图象的顶点分别为M,N,与x轴分别相交于A,B两点(点A在点B的左边)和C、D两点(点C在点D的左边).(1)函数y=mx2+2mx-3m+1(m≥1)的顶点坐标为________;当二次函数L1,L2的y值同时随x的增大而增大时,x的取值范围是________;(2)当AD=MN时,请直接写出四边形AMDN的形状;(3)抛物线L1,L2均会分别经过某些定点.①求所有定点的坐标;②若抛物线L1的位置固定不变,通过左右平移抛物线L2,使得这些定点组成的图形为菱形,则抛物线L2应平移的距离是多少?【分析】(1)将抛物线化为顶点式即可得到顶点坐标;由图象可得y随x的增大而增大的x的取值范围;(2)判断四边形AMDN的形状,可先证明四边形AMDN是平行四边形,再由AD =MN得到其为矩形;(3)①求抛物线经过的定点,可将抛物线化为关于m的代数式,令m的系数为0,代入求出对应的y值即可;②由所得图形为菱形,可先判定定点构成的图形是平行四边形,再根据菱形得到邻边相等,对角线互相垂直平分,从而利用勾股定理求解.【自主解答】1.(2019·海南)如图,已知抛物线y=ax2+bx+5经过A(-5,0),B(-4,-3)两点,与x轴的另一个交点为C,顶点为D,连接CD.(1)求该抛物线的表达式;(2)点P为该抛物线上一动点(与点B,C不重合),设点P的横坐标为t.①当点P在直线BC的下方运动时,求△PBC的面积的最大值;②该抛物线上是否存在点P,使得∠PBC=∠BCD?若存在,求出所有点P的坐标;若不存在,请说明理由.2.(2019·辽阳)如图,在平面直角坐标系中,Rt△ABC的边BC在x轴上,∠ABC=90°,以A为顶点的抛物线y=-x2+bx+c经过点C(3,0),交y轴于点E(0,3),动点P在对称轴上.(1)求抛物线的解析式;(2)若点P从A点出发,沿A→B方向以1个单位/秒的速度匀速运动到点B停止,设运动时间为t秒,过点P作PD⊥AB交AC于点D,过点D平行于y轴的直线l交抛物线于点Q,连接AQ,CQ,当t为何值时,△ACQ的面积最大,最大值是多少?(3)若点M是平面内任意一点,在x轴上方是否存在点P,使得以点P,M,E,C为顶点的四边形是菱形?若存在,请直接写出符合条件的M点坐标;若不存在,请说明理由.第2题图备用图类型三二次函数与规律探索(2019·江西)特例感知(1)如图①,对于抛物线y 1=-x 2-x +1,y 2=-x 2-2x +1,y 3=-x 2-3x +1,下列结论正确的序号是________.①抛物线y 1,y 2,y 3都经过点C (0,1);②抛物线y 2,y 3的对称轴由抛物线y 1的对称轴依次向左平移12个单位得到;③抛物线y 1,y 2,y 3与直线y =1的交点中,相邻两点之间的距离相等. 形成概念(2)把满足y n =-x 2-nx +1(n 为正整数)的抛物线称为“系列平移抛物线”. 知识应用在(2)中,如图②.①“系列平移抛物线”的顶点依次为P 1,P 2,P 3,…,P n ,用含n 的代数式表示顶点P n 的坐标,并写出该顶点纵坐标y 与横坐标x 之间的关系式;②“系列平移抛物线”存在“系列整数点(横、纵坐标均为整数的点)”:C 1,C 2,C 3,…,C n ,其横坐标分别为-k -1,-k -2,-k -3,…,-k -n (k 为正整数),判断相邻两点之间的距离是否都相等,若相等,直接写出相邻两点之间的距离;若不相等,说明理由.(3)在②中,直线y =1分别交“系列平移抛物线”于点A 1,A 2,A 3,…,A n ,连接C n A n ,C n -1A n -1,判断C n A n ,C n -1A n -1是否平行?并说明理由.图① 图②【分析】 (1)逐一判断3个结论的正确性即可;(2)①由抛物线y n 即可表示P n ,消去参数即可得到顶点P n 的横、纵坐标之间的关系式;②分别求出C n ,C n -1的横、纵坐标,利用两点距离公式求线段C n C n -1的长;(3)要判断C n A n 与C n -1A n -1是否平行,只需判断直线C n A n 与直线C n -1A n -1的解析式中自变量的系数是否相同即可.【自主解答】1.已知抛物线y =-x 2+2x +3和抛物线y n =n 3x 2-2n 3x -n (n 为正整数). (1)抛物线y =-x 2+2x +3与x 轴的交点坐标为____________,顶点坐标为________.(2)当n =1时,请解答下列问题:①直接写出y n 与x 轴的交点坐标__________,顶点坐标________.请写出抛物线y ,y n 的一条相同的图象性质________________;②当直线y =12x +m 与y ,y n 相交共有4个交点时,求m 的取值范围;(3)若直线y =k (k <0)与抛物线y =-x 2+2x +3,抛物线y n =n 3x 2-2n 3x -n (n 为正整数)共有4个交点,从左至右依次标记为点A ,点B ,点C ,点D ,当AB =BC =CD 时,求k ,n 之间满足的关系式.2.已知抛物线y n =-(x -a n )2+b n (n 为正整数,且0<a 1<a 2<…<a n )与x 轴的交点为A (0,0)和A n (c n ,0),c n =c n -1+2,当n =1时,第1条抛物线y 1=-(x -a 1)2+b 1与x 轴的交点为A (0,0)和A 1(2,0),其他依此类推.(1)求a 1,b 1的值及抛物线y 2的解析式.(2)抛物线y3的顶点B3的坐标为(______,______);依此类推,第n条抛物线y n 的顶点B n的坐标为(______,________);所有抛物线的顶点坐标满足的函数关系式是____________.(3)探究下列结论:①是否存在抛物线y n,使得△AA n B n为等腰直角三角形?若存在,请求出抛物线的表达式;若不存在,请说明理由.②若直线x=m(m>0)与抛物线y n分别交于C1,C2,…,C n,则线段C1C2,C2C3,…,C n-1C n的长有何规律?请用含有m的代数式表示.3.如图,抛物线y1=-x2+c与x轴交于A,B两点,且AB=2.(1)求抛物线y1的函数解析式,并直接写出y1的顶点坐标.(2)将y1先向右平移1个单位,再向上平移1个单位,记为第一次操作,得到抛物线y2.按同样的操作方式,经过第二次操作,可得到抛物线y3,经过第三次操作,可得到抛物线y4,…,经过第(n-1)次操作可得到抛物线y n.①y1的顶点是否在y2上?请说明理由.②若抛物线y n恰好经过点B(不含y1),求抛物线y n的解析式.③定义:当抛物线与x轴有两个交点时,定义:以这两个交点及抛物线顶点构成的三角形叫做该抛物线的“轴截三角形”.如△ABC是抛物线y1的“轴截三角形”.记抛物线y1,y2,y3,…,y n的“轴截三角形”的面积分别为S1,S2,S3,…,S n.当S n=125时,求n的值.4.小贤与小杰在探究某类二次函数问题时,经历了如下过程:求解体验(1)已知抛物线y=-x2+bx-3经过点(-1,0),则b=________,顶点坐标为______,该抛物线关于点(0,1)成中心对称的抛物线表达式是___________.抽象感悟我们定义,对于抛物线y=ax2+bx+c(a≠0),以y轴上的点M(0,m)为中心,作该抛物线关于点M对称的抛物线y′,则我们称抛物线y′为抛物线y的“衍生抛物线”,点M为“衍生中心”.(2)已知抛物线y=-x2-2x+5关于点(0,m)的衍生抛物线为y′,若这两条抛物线有交点,求m的取值范围.问题解决(3)已知抛物线y=ax2+2ax-b(a≠0).①若抛物线y的衍生抛物线为y′=bx2-2bx+a2(b≠0),两抛物线有两个交点,且恰好是它们的顶点,求a,b的值及衍生中心的坐标;②若抛物线y关于点(0,k+12)的衍生抛物线为y1,其顶点为A1;关于点(0,k +22)的衍生抛物线为y2,其顶点为A2;…;关于点(0,k+n2)(n为正整数)的衍生抛物线为y n,其顶点为A n;….求A n A n+1的长(用含n的式子表示).类型四二次函数与新定义如图,抛物线y=ax2+bx+c(a>0)的顶点为M,直线y=m与x轴平行,且与抛物线交于点A,B,若△AMB为等腰直角三角形,我们把抛物线上A,B 两点之间的部分与线段AB围成的图形称为该抛物线对应的准碟形,线段AB称为碟宽,顶点M 称为碟顶,点M 到线段AB 的距离称为碟高.(1)抛物线y =12x 2对应的碟宽为________;抛物线y =4x 2对应的碟宽为________;抛物线y =ax 2(a >0)对应的碟宽为________;抛物线y =a (x -2)2+3(a >0)对应的碟宽为________;(2)抛物线y =ax 2-4ax -53(a >0)对应的碟宽为6,且在x 轴上,求a 的值;(3)将抛物线y =a n x 2+b n x +c n (a n >0)对应的准碟形记为F n (n =1,2,3…),定义F 1,F 2,…,F n 为相似准碟形,相应的碟宽之比即为相似比.若F n 与F n -1的相似比为12,且F n 的碟顶是F n -1的碟宽的中点,现将(2)中求得的抛物线记为y 1,其对应的准碟形记为F 1.①求抛物线y 2的表达式;②若F 1的碟高为h 1,F 2的碟高为h 2,…,F n 的碟高为h n ,则h n =________,F n 的碟宽右端点横坐标为________;F 1,F 2,…,F n 的碟宽右端点是否在一条直线上?若是,直接写出该直线的表达式;若不是,请说明理由.【分析】 (1)根据定义易算出抛物线y =12x 2,抛物线y =4x 2的碟宽,且都利用端点(第一象限)横、纵坐标相等求解.推广至含字母的抛物线y =ax 2(a >0)可类似求解.而抛物线y =a (x -2)2+3(a >0)为顶点式,可看成由抛物线y =ax 2平移得到,则发现碟宽只和a 有关.(2)由(1)的结论,根据碟宽与a 的关系求解.(3)①由y 1,易推y 2.②由相似的性质得到h n 与h n -1,h n -1与h n -2,…h 2与h 1之间的关系,从而得到h n 即可;由等腰直角三角形性质得到F n 的碟宽与h n 之间的关系,即可得到F n 的碟宽右端点横坐标,先证明F n ,F n -1,F n -2的碟宽右端点在一条直线上,从而作出判断,再确定F 1,F 2的碟宽右端点所在直线即可求解.【自主解答】1.如图①,若抛物线L 1的顶点A 在抛物线L 2上,抛物线L 2的顶点B 在抛物线L 1上(点A 与点B 不重合),我们把这样的两条抛物线L 1、L 2称为“伴随抛物线”,可见一条抛物线的“伴随抛物线”可以有多条.(1)抛物线L1:y=-x2+4x-3与抛物线L2是“伴随抛物线”,且抛物线L2的顶点B的横坐标为4,求抛物线L2的表达式;(2)若抛物线y=a1(x-m)2+n的任意一条“伴随抛物线”的表达式为y=a2(x-h)2+k,请写出a1与a2的关系式,并说明理由;(3)在图②中,已知抛物线L1:y=mx2-2mx-3m(m>0)与y轴相交于点C,它的一条“伴随抛物线”为L2,抛物线L2与y轴相交于点D,若CD=4m,求抛物线L2的对称轴.2.(2019·南昌二模)我们规定,以二次函数y=ax2+bx+c的二次项系数a的2倍为一次项系数,一次项系数b为常数项构造的一次函数y=2ax+b叫做二次函数y=ax2+bx+c的“子函数”,反过来,二次函数y=ax2+bx+c叫做一次函数y =2ax+b的“母函数”.(1)若一次函数y=2x-4是二次函数y=ax2+bx+c的“子函数”,且二次函数经过点(3,0),求此二次函数的解析式及顶点坐标;(2)若“子函数”y=x-6的“母函数”的最小值为1,求“母函数”的函数表达式;(3)已知二次函数y=-x2-4x+8的“子函数”图象直线l与x轴、y轴交于C、D 两点,点P在直线l上方的抛物线上,求△PCD的面积的最大值.3.(2019·南昌5月模拟)已知:抛物线C1:y=-(x+m)2+m2(m>0),抛物线C2:y=(x-n)2+n2(n>0),称抛物线C1,C2互为派对抛物线,例如抛物线C1:y=-(x+1)2+1与抛物线C2:y=(x-2)2+2是派对抛物线,已知派对抛物线C1,C2的顶点分别为A,B,抛物线C1的对称轴交抛物线C2于C,抛物线C2的对称轴交抛物线C 1与D .(1)已知抛物线:①y =-x 2-2x ,②y =(x -3)2+3,③y =(x -2)2+2,④y =x 2-x +12,则抛物线①②③④中互为派对抛物线的是________ (请在横线上填写抛物线的数字序号);(2)如图①,当m =1,n =2时,证明AC =BD ;(3)如图②,连接AB ,CD 交于点F ,延长BA 交x 轴的负半轴于点E ,记BD 交x 轴于G ,CD 交x 轴于点H ,∠BEO =∠BDC .①求证:四边形ACBD 是菱形;②若已知抛物线C 2:y =(x -2)2+4,请求出m 的值.图① 图②参考答案【例1】 解:(1)当x =0时,y =-x +2=2,∴A (0,2),把A (0,2)代入y =(x -1)2+m ,得1+m =2,∴m =1.∴B (1,1).(2)y =(x -n )2+2-n .(3)①∵点C 是两条抛物线的交点,∴点C 的纵坐标可以表示为(a -1)2+1或(a -n )2+2-n ,∴(a -1)2+1=(a -n )2+2-n ,即a 2-2a +1+1=a 2-2an +n 2+2-n , 2an -2a =n 2-n ,∵n >1,∴a =n 2-n 2n -2=n 2. ②如解图,过点C 作y 轴的垂线,垂足为E ,过点D 作DF ⊥CE 于点F .例1题解图∵∠ACD =90°,∴∠ACE =∠CDF .又∵∠AEC =∠DFC ,∴△ACE ∽△CDF ,∴AE EC =CF FD .又∵C (a ,a 2-2a +2),D (2a ,2-2a ),∴AE =a 2-2a ,DF =a 2,CE =CF =a ,∴a 2-2a a =a a 2,∴a 2-2a =1, 解得a =±2+1,∵n >1,∴a =n 2>12,∴a =2+1.跟踪训练1.解: (1)∵抛物线y =ax 2+bx -2(a ≠0)过点A ,B ,∴⎩⎪⎨⎪⎧a -b -2=0,16a +4b -2=0,解得⎩⎪⎨⎪⎧a =12,b =-32, ∴抛物线的解析式为y =12x 2-32x -2.∵y =12x 2-32x -2=12(x -32)2-258, ∴C (32,-258).(2)如解图①,以AB 为直径作⊙M ,则抛物线在圆内的部分,能使∠APB 为钝角,第1题解图①易得M (32,0),⊙M 的半径为52.设P ′是抛物线与y 轴的交点,∴OP ′=2,∵MP ′=OP′2+OM 2=52. ∵P 关于抛物线对称轴的对称点为点(3,-2),∴当-1<m <0或3<m <4时,∠APB 为钝角.(3)存在.抛物线向左或向右平移,∵AB 、P ′C ′是定值,∴要使首尾依次连接A 、B 、P ′、C ′所构成的多边形的周长第1题解图②最短,只要AC ′+BP ′最小.第一种情况:抛物线向右平移,AC ′+BP ′>AC +BP .第二种情况:向左平移,如解图②所示,由(2)可知P (3,-2), 又∵C (32,-258),∴C ′(32-t ,-258),P ′(3-t ,-2),将BP ′平移至AP ″,∵AB =5,∴P ″(-2-t ,-2),要使AC ′+BP ′最短,只要AC ′+AP ″最短即可,∵点C ′关于x 轴的对称点C ″的坐标为(32-t ,258),设直线P ″C ″的解析式为y =kx +b ,则⎩⎨⎧-2=(-2-t )k +b ,258=(32-t )k +b ,解得⎩⎪⎨⎪⎧k =4128,b =4128t +1314,∴直线P ″C ″的解析式为y =4128x +4128t +1314,当P ″、A 、C ″在同一条直线上时,周长最小,∴-4128+4128t +1314=0,∴t =1541. 故将抛物线向左平移1541个单位长度时,首尾依次连接A 、B 、P ′、C ′所构成的多边形的周长最短.2.解:(1)将点A (-3,0),B (0,-6)代入L 得⎩⎪⎨⎪⎧a (-3)2+(c -a )·(-3)+c =0,c =-6,解得⎩⎪⎨⎪⎧a =-1,c =-6,∴抛物线L 的表达式为y =-x 2-5x -6.(2)由题意,得∠PDO =90°,∠AOB =90°,由对称性可得L ′的表达式为y =x 2-5x +6.设点P 的坐标为(m ,m 2-5m +6),当△DPO ∽△OAB 时,DP DO =OA OB ,即m 2-5m +6=2m ,解得m 1=1,m 2=6,此时点P 的坐标为(1,2)或(6,12);当△DPO ∽△OBA 时,DP DO =OB OA ,即2m 2-10m +12=m ,解得m 3=4,m 4=32,此时点P 的坐标为(4,2)或(32,34).第2题解图3.解:(1)①②③(2)由抛物线的顶点公式求得:顶点M (1,-a -2).如解图①,当x =1时,y =2·1-a =2-a ,求得D (1,2-a );当y =0时,0=2x -a ,x =a 2,求得A (a 2,0),∴DM =2-a -(-a -2)= 4,∴S =S △BMD -S △AMD =12DM (OC -AC )=12DM ·AO =12·4·a 2=a .即S =a (a >0).(3)①当-2≤x ≤1时,C 1的y 的值会随x 的增大而减小,而C 1的对称轴为x =1, -2≤x ≤1在对称轴的左侧,C 1开口向上,∴a >0;同时C 2的开口向下,而当-2≤x ≤1时,y 的值会随x 的增大而减小,∴-2≤x ≤1要在C 2的对称轴右侧,令C 2的对称轴为x =m ,则m ≤2,而x =1和x =m 关于P (t ,-2)对称,∴P 到这两条对称轴的距离相等,∴1-t =t -m ,m =2t -1,∴2t -1≤-2,即t ≤-12.②当a =1时,M (1,-3),作PE ⊥CM 于E ,将Rt △PME 绕P 旋转90°,得到Rt △PQF ,则△MPQ 为等腰直角三角形,∵N ,Q ′分别是点M ,Q 的中心对称点,∴四边形MQNQ ′为正方形.第一种情况,当t ≤1时,求得PE =PF =1-t ,ME =QF =1,CE =2,∴Q (t +1,-t -1).把Q (t +1,-t -1)代入y =x 2-2x -2,得-t -1=(t +1)2-2(t +1)-2, t 2+t -2=0,解得:t 1=1,t 2=-2;第二种情况,当t >1时,求得PF =PE =t -1,ME =QF =1,CE =2, ∴Q (t -1,t -3),把Q (t -1,t -3)代入y =x 2-2x -2,得t -3=(t -1)2-2(t -1)-2,t 2-5t +4=0,解得t1=1 (舍去),t2=4综上t=-2或1或4.图①图②图③【例2】解:(1)(-1,-4m+1),-1<x<3(2)四边形AMDN是矩形.(3)①y=mx2+2mx-3m+1=m(x+3)(x-1)+1,∴当x=-3或1时,y=1,∴L1经过定点(-3,1)和(1,1).y=-m(x-3)2+4m-1=-m(x-5)(x-1)-1,∴当x=5或1时,y=-1,∴L2经过定点(5,-1)和(1,-1).②L1经过定点(-3,1)和(1,1),L2经过定点(5,-1)和(1,-1),设E(-3,1),F(1,1),G(5,-1),H(1,-1),则组成的四边形EFGH是平行四边形.如解图,另设平移距离为x,根据平移后的图形是菱形,由勾股定理得42=22+(4-x)2,解得x=4±23,故抛物线L2应平移的距离是4+23或4-2 3.例2题解图跟踪训练1.解:(1)将点A ,B 坐标代入抛物线表达式得⎩⎪⎨⎪⎧25a -25b +5=0,16a -4b +5=-3,解得⎩⎪⎨⎪⎧a =1,b =6, ∴抛物线的表达式为y =x 2+6x +5.(2)①令y =x 2+6x +5=0,得x 1=-1,x 2=-5,∴点C 的坐标为(-1,0). 由点B (-4,-3)得直线BC 的函数解析式为y =x +1,如解图①,过点P 作PG ∥y 轴交BC 于G ,第1题解图①设点P 的坐标为(t ,t 2+6t +5),则点G (t ,t +1),∴PG =(t +1)-(t 2+6t +5)=-t 2-5t -4,∴S △PBC =12PG ·|x C -x B |=32(-t 2-5t -4)=-32(t +52)2+278.∵-32<0,∴当t =-52时,△PBC 的面积最大,最大值为278.第1题解图②②设BP 交CD 于点H .当点P 在直线BC 下方时,∵∠PBC =∠BCD ,∴点H 在BC 的垂直平分线上,易得线段BC 的中点坐标为(-52,-32),过该点与直线BC 垂直的直线设为y =-x +m ,则-32=52+m ,解得m =-4,∴直线BC 的垂直平分线的函数解析式为y =-x -4.可得直线CD 的函数表达式为y =2x +2,联立得⎩⎪⎨⎪⎧y =-x -4,y =2x +2,解得⎩⎪⎨⎪⎧x =-2,y =-2,∴点H 的坐标为(-2,-2), 直线BH 的函数解析式为y =12x -1.联立得⎩⎨⎧y =x 2+6x +5,y =12x -1,解得⎩⎪⎨⎪⎧x =-32,y =-74,或⎩⎪⎨⎪⎧x =-4y =-3(舍去), ∴点P 的坐标为(-32,-74).当点P 在直线BC 上方时,∵∠PBC =∠BCD ,∴BP ∥CD ,∴直线BP 的表达式为y =2x +5,联立得⎩⎪⎨⎪⎧y =x 2+6x +5,y =2x +5,解得⎩⎪⎨⎪⎧x =-4,y =-3(舍去)或⎩⎪⎨⎪⎧x =0,y =5,∴点P 的坐标为(0,5).综上,所有点P 的坐标为(-32,-74),(0,5)2.解:(1)将C (3,0),E (0,3)代入y =-x 2+bx +c 得⎩⎪⎨⎪⎧-32+3b +c =0,c =3,解得⎩⎪⎨⎪⎧b =2,c =3,∴抛物线的解析式是y =-x 2+2x +3.(2)∵y =-x 2+2x +3=-(x -1)2+4,∴A (1,4).设直线AC 的解析式为y =mx +n ,将A ,C 代入得⎩⎪⎨⎪⎧m +n =4,3m +n =0,解得⎩⎪⎨⎪⎧m =-2,n =6,∴直线AC 的解析式为y =-2x +6.设P (1,4-t ),∵PD ⊥AB ,∴y D =4-t ,∴4-t =-2x +6,解得x =1+t2,∴点D 的坐标为(1+t2,4-t ).∵l ∥y 轴,∴x Q =1+t2,∴y Q =-(1+t2-1)2+4=4-14t 2,∴S △ACQ =S △ADQ +S △CDQ=12DQ ·BC=12(4-14t 2-4+t )×2=-14(t -2)2+1,∴当t =2时,S △ACQ 最大,最大值为1.(3)存在,综合条件的M 点坐标为(2,2),(-2,3+14),(4,17).【解法提示】设点P (1,t )(t >0),∵以P ,M ,E ,C 为顶点的四边形是菱形, ∴①当CE 为对角线时,PC =PE ,且PM 与CE 互相垂直平分,∴(1-0)2+(t -3)2=(3-1)2+t 2,解得t =1,即点P 的坐标为(1,1), 由菱形中心对称性质可知,点M 的坐标为(2,2);②CP =CE =32,即(3-1)2+t 2=32,解得t =14(负的已舍去), 即点P 的坐标为(1,14),此时点M 的坐标为(-2,3+14);③EP =CE =32,即(1-0)2+(t -3)2=32,解得t =3+17(负值已舍去),∴此时点P 的坐标为(1,3+17),则点M 的坐标为(4,17).【例3】 解:(1)当x =0时,y 1=y 2=y 3=1,∴①正确;y 1,y 2,y 3的对称轴分别是直线x 1=-12,x 2=-1,x 3=-32,∴②正确;y 1,y 2,y 3与直线y =1的交点(除点C 外)的横坐标分别为-1,-2,-3,∴距离为1,都相等,∴③正确.故答案为①②③.(2)①y n =-x 2-nx +1=-(x +n 2)2+n 2+44,∴顶点P n (-n 2,n 2+44).令顶点P n 的横坐标为x =-n 2,纵坐标y =n 2+44,∴y =n 2+44=(-n 2)2+1=x 2+1,即顶点P n 的纵坐标y 与横坐标x 满足关系式y =x 2+1. ②令C n (x n ,y n ),C n -1(x n -1,y n -1),x n -1=-k -(n -1)=-k -n +1,y n -1=-x n -12-(n -1)x n -1+1,x n =-k -n ,y n =-x n 2-nx n +1, ∵x n -1-x n =1,y n -1-y n =-x n -12-(n -1)x n -1+1+x n 2+nx n -1=(x n -x n -1)(x n +x n -1)+n (x n -x n -1)+x n -1=-(-k -n +1-k -n +n )-k -n +1=2k +n -1-k -n +1=k .∴C n -1C n =(x n -1-x n )2+(y n -1-y n )2=1+k 2. ∵C n -1C n =1+k 2与n 无关, ∴相邻两点之间的距离为定值,定值为1+k 2.(3)令y n =1得-x 2-nx +1=1,解得x 1=0,x 2=-n , ∴A n (-n ,1),由②知C n (x n ,-x n 2-nx n +1),设直线A n C n :y =k n x +b n ,则k n =1-(-x n 2-nx n +1)-n -x n =x n (x n +n )-n -(-k -n )=(-k -n )(-k -n +n )-n +k +n =k +n ,同理A n -1(-n +1,1),C n -1(x n -1,-x n -12-(n -1)x n -1+1), 设直线A n -1C n -1:y =k n -1x +b n -1,则k n -1=k +n -1,∴k n -1≠k n ,∴直线C n A n 与直线C n -1A n -1不平行.跟踪训练1.解:(1)(-1,0),(3,0);(1,4)(2)①(-1,0),(3,0);(1,-4n 3);对称轴为直线x =1[或与x 轴交点为(-1,0),(3,0)]②当直线y =12x +m 与y 相交只有1个交点时,由⎩⎨⎧y =12x +m ,y =-x 2+2x +3,整理得x 2-32x +m -3=0, ∴b 2-4ax =(32)2-4(m -3)=0,解得m =5716.当直线y =12x +m 与y n 相交只有1个交点时,由⎩⎪⎨⎪⎧y =12x +m ,y =13x 2-23x -1,整理得2x 2-7x -(6+6m )=0, ∴b 2-4ax =72-4×2×(-6-6m )=0,解得m =-9748,把点(-1,0)代入y =12x +m 得m =12,把(3,0)代入y =12x +m 得m =-32,如解图①,∴m 的取值范围是-9748<m <5716,且m ≠-32,m ≠12.(3)如解图②,由⎩⎪⎨⎪⎧y =k ,y =-x 2+2x +3得x 2-2x +k -3=0, ∴AD 2=(x 1-x 2)2=(x 1+x 2)2-4x 1x 2=16-4k ,由⎩⎨⎧y =k ,y =n 3x 2-2n 3x -n得nx 2-2nx -(3n +3k )=0, ∴BC 2=(x 3-x 4)2=(x 3+x 4)2-4x 3x 4=16+12k n , ∵AB =BC =CD ,∴AD 2=9BC 2,∴16-4k =9(16+12k n ), ∴32n +27k +nk =0.图① 图② 2.解: (1)当n =1时,第1条抛物线y 1=-(x -a 1)2+b 1与x 轴的交点为A (0,0),A 1(2,0),∴y 1=-x (x -2)=-(x -1)2+1,则a 1=1,b 1=1. 由c n =c n -1+2可知,c 2=c 1+2=2+2=4, ∴抛物线y 2与x 轴的交点为A (0,0),A 2(4,0), ∴y 2=-x (x -4)=-x 2+4x .(2)3,9,n ,n 2,y =x 2;(3)①存在,由(1)(2)得A n (2n ,0),B n (n ,n 2). 当△AA n B n 为等腰直角三角形时,n 2=n ,解得n 1=1,n 2=0(舍去).∴存在抛物线y n ,使得△AA n B n 为等腰直角三角形,此时抛物线为y 1=-(x -1)2+1.②∵y n =-x (x -2n )=-x 2+2nx ,当x =m (m >0)时,C n (m ,-m 2+2mn ),C n -1(m ,-m 2+2mn -2m ), ∴C n C n -1=-m 2+2mn -(-m 2+2mn -2m )=2m .∴C 1C 2=C 2C 3=…=C n -1C n =2m .3.解: (1)∵AB =2,抛物线y 1=-x 2+c 的对称轴为直线x =0, ∴点A ,B 的坐标分别为(-1,0),(1,0),将点A (-1,0)代入得c =1,则抛物线y 1的解析式为y 1=-x 2+1,顶点坐标为(0,1).(2)①由平移性质得,抛物线y 2的顶点坐标为(1,2),则抛物线y 2的函数解析式为y 2=-(x -1)2+2,当x =0时,y 2=1,则y 1的顶点(0,1)在抛物线y 2上.②由题意,得抛物线y 3=-(x -2)2+3,y 4=-(x -3)2+4,y n =-(x -n +1)2+n ,将点B (1,0)代入y n ,得-(1-n +1)2+n =0,解得n =4或n =1(舍去).∴抛物线y n 的解析式为y 4=-(x -3)2+4.③令y n =-(x -n +1)2+n =0,解得x 1=n -1-n ,x 2=n -1+n ,则S n =12[(n -1+n)-(n -1-n)]·n =n·n =125,∵53=125,∴n =5,即n =25.4.解:(1)-4;(-2,1);y =(x -2)2+1(2)y =-x 2-2x +5即y =-(x +1)2+6,∴顶点为(-1,6).∵点(-1,6)关于点(0,m )的对称点为(1,2m -6),∴衍生抛物线为y =(x -1)2+2m -6,则-(x +1)2+6=(x -1)2+2m -6,化简得x 2=-m +5,∵两抛物线有交点,∴-m +5≥0,∴m ≤5.(3)①y =ax 2+2ax -b =a (x +1)2-a -b ,顶点为(-1,-a -b ).y ′=bx 2-2bx +a 2=b (x -1)2-b +a 2,顶点为(1,-b +a 2).∵两抛物线交点恰好是顶点,∴⎩⎪⎨⎪⎧-b +a 2=a·(1+1)2-a -b ,-a -b =b·(-1-1)2-b +a 2,解得⎩⎪⎨⎪⎧a =0,b =0(舍去)或⎩⎪⎨⎪⎧a =3,b =-3,∴顶点分别为(-1,0)和(1,12).∵(-1,0),(1,12)关于衍生中心对称,∴衍生中心为它们的中点,∵-1+12=0,0+122=6,∴衍生中心为(0,6).②由①可知衍生中心为抛物线y =a (x +1)2-a -b 的顶点与A 1,A 2,A 3,…,A 4的中点,∴A n (1,2k +2n 2+a +b ),A n +1(1,2k +2(n +1)2+a +b ),∴A n A n +1=2k +2(n +1)2+a +b -(2k +2n 2+a +b )=4n +2.【例4】 解:(1)4;12;2a ;2a .例4题解图①【解法提示】 ∵a >0,∴y =ax 2的图象大致如解图①,其顶点为原点O ,记AB 为其碟宽,AB 与y 轴的交点为C ,连接OA ,OB .∵△OAB 为等腰直角三角形,AB ∥x 轴, ∴OC ⊥AB , ∴∠AOC =∠BOC =12∠AOB =12×90°=45°,∴△ACO 与△BCO 亦为等腰直角三角形,∴AC =OC =BC ,∴x A =-y A ,x B =y B ,代入y =ax 2,∴A (-1a ,1a ),B (1a ,1a ),C (0,1a ),∴AB =2a ,OC =1a ,即抛物线y =ax 2对应的碟宽为2a .①抛物线y =12x 2对应的a =12,得碟宽2a 为4;②抛物线y =4x 2对应的a =4,得碟宽2a 为12;③抛物线y =ax 2(a >0)对应的碟宽为2a ; ④抛物线y =a (x -2)2+3(a >0)可看成抛物线y =ax 2向右平移2个单位长度,再向上平移3个单位长度后得到的,∵平移不改变形状、大小、开口方向,∴抛物线y =a (x -2)2+3(a >0)的准碟形与抛物线y =ax 2的准碟形全等. ∵抛物线y =ax 2(a >0)对应的碟宽为2a ,∴抛物线y =a (x -2)2+3(a >0)对应的碟宽为2a .(2)∵y =ax 2-4ax -53=a (x -2)2-(4a +53),∴同(1),其碟宽为2a .∵抛物线y =ax 2-4ax -53的碟宽为6,∴2a =6,解得a =13.(3)①∵F 1的碟宽∶F 2的碟宽=2∶1,∴2a 1=4a 2.∵a 1=13,∴a 2=23.∵y 1=13(x -2)2-3的碟宽AB 在x 轴上(A 在B 左边),∴A (-1,0),B (5,0),∴F 2的碟顶坐标为(2,0),∴y 2=23(x -2)2.②∵F n 的准碟形为等腰直角三角形,∴F n 的碟宽为2h n .∵2h n ∶2h n -1=1∶2,∴h n =12h n -1=(12)2h n -2=(12)3h n -3=…=(12)n -1h 1.∵h 1=3,∴h n =32n -1. ∵h n ∥h n -1,且都过F n -1的碟宽中点,∴h 1,h 2,h 3,…,h n -1,h n 都在一条直线上,∵h 1在直线x =2上,∴h 1,h 2,h 3,…,h n -1,h n 都在直线x =2上,∴F n 的碟宽右端点横坐标为2+32n -1. F 1,F 2,…,F n 的碟宽右端点在一条直线上,直线为y =-x +5.【解法提示】 考虑F n -2,F n -1,F n 情形,如解图②,例4题解图②F n -2,F n -1,F n 的碟宽分别为AB ,DE ,GH ;C ,F ,I 分别为其碟宽的中点,都在直线x =2上,连接右端点,BE ,EH .∵AB ∥x 轴,DE ∥x 轴,GH ∥x 轴,∴AB ∥DE ∥GH ,∴GH 平行且等于FE ,DE 平行且等于CB ,∴四边形GFEH ,四边形DCBE 都为平行四边形,∴HE ∥GF ,EB ∥DC .∵∠GFI =12∠GFH =12∠DCE =∠DCF ,∴GF ∥DC ,∴HE ∥EB ,∵HE ,EB 都过E 点,∴HE ,EB 在一条直线上,∴F n -2,F n -1,F n 的碟宽的右端点在一条直线上,∴F 1,F 2,…,F n 的碟宽的右端点在一条直线上.∵F 1:y 1=13(x -2)2-3对应的准碟形右端点坐标为(5,0),F 2:y 2=23(x -2)2对应的准碟形右端点坐标为(2+32,32),∴可得过以上两点的直线为y =-x +5,∴F 1,F 2,…,F n 的碟宽的右端点在直线y =-x +5上.跟踪训练1.解: (1)由y =-x 2+4x -3可得A 的坐标为(2,1),将x =4代入y =-x 2+4x -3,得y =-3,∴B 的坐标为(4,-3),设抛物线L 2的解析式为y =a (x -4)2-3.将A (2,1)代入,得1=a (2-4)2-3,解得a =1,∴抛物线L 2的表达式为y =(x -4)2-3;(2)a 1=-a 2,理由如下:∵抛物线L 1的顶点A 在抛物线L 2上,抛物线L 2的顶点B 在抛物线L 1上,∴可列方程组⎩⎪⎨⎪⎧n =a 2(m -h )2+k k =a 1(h -m )2+n , 整理,得(a 1+a 2)(m -h )2=0,∵伴随抛物线的顶点不重合,∴m ≠h ,∴a 1=-a 2.(3)抛物线L 1:y =mx 2-2mx -3m 的顶点坐标为(1,-4m ),设抛物线L 2的顶点的横坐标为h ,则其纵坐标为mh 2-2mh -3m ,∴抛物线L 2的表达式为y =-m (x -h )2+mh 2-2mh -3m ,化简得,y =-mx 2+2mhx -2mh -3m ,所以点D 的坐标为(0,-2mh -3m ),又点C 的坐标为(0,-3m ),可得|(-2mh -3m )-(-3m )|=4m ,解得h =±2,∴抛物线L 2的对称轴为直线x =±2.2.解:(1)由题意得:a =1,b =-4,故抛物线的表达式为:y =x 2-4x +c ,将点(3,0)代入得:c =3,故抛物线的表达式为:y =x 2-4x +3=(x -2)2-1,故抛物线的顶点坐标为(2,-1);(2)设“子函数”y =x -6的“母函数”为:y =12x 2-6x +c ,则y =12(x 2-12x )+c =12(x -6)2-18+c ,故-18+c =1,解得c =19,故“母函数”的表达式为:y =12x 2-6x +19;第2题解图(3)设点P (m ,-m 2-4m +8),由题意,得直线l 的表达式为:y =-2x -4,故点C 、D 的坐标分别为(-2,0)、(0,-4),如解图,过点P 作PQ ∥y 轴交直线CD 于Q ,则Q (m ,-2m -4), ∴PQ =(-m 2-4m +8)-(-2m -4)=-m 2-2m +12,∴S △PCD =12·PQ |x D -x C |=12`(-m 2-2m +12)·2=-(m +1)2+13,∵点P 在CD 上方的抛物线上且-1<0,∴当m =-1时△PCD 的面积最大,最大值为13.3.(1)解:①y =-x 2-2x =-(x +1)2+12,②y =(x -3)2+3=(x -3)2+(3)2,③y=(x -2)2+(2)2,④y =x 2-x +12=(x -12)2+(12)2,所以①与③互为派对抛物线;①与④互为派对抛物线;故答案为①与③;①与④;(2)证明:当m =1,n =2时,抛物线C 1:y =-(x +1)2+1,抛物线C 2:y =(x -2)2+4,∴A(-1,1),B(2,4),∵AC∥BD∥y轴,∴点C的横坐标为-1,点D的横坐标为2,当x=-1时,y=(x-2)2+4=13,则C(-1,13);当x=2时,y=-(x+1)2+1=-8,则D(2,-8),∴AC=13-1=12,BD=4-(-8)=12,∴AC=BD;(3)①证明:抛物线C1:y=-(x+m)2+m2(m>0),则A(-m,m2);抛物线C2:y=(x-n)2+n2(n>0),则B(n,n2);当x=-m时,y=(-m-n)2+n2=m2+2mn+2n2,则C(-m,m2+2mn+2n2);当x=n时,y=-(n+m)2+m2=-2mn-n2,则D(n,-2mn-n2);∴AC=m2+2mn+2n2-m2=2mn+2n2,BD=n2-(-2mn-n2)=2mn+2n2,∴AC=BD,∴四边形ACBD为平行四边形.∵∠BEO=∠BDC,而∠EHF=∠DHG,∴∠EFH=∠DGH=90°,∴AB⊥CD,∴四边形ACBD是菱形;②∵抛物线C2:y=(x-2)2+4,则B(2,4),∴n=2,∴AC=BD=2mn+2n2=4m+8,而A(-m,m2),∴C(-m,m2+4m+8),∴BC2=(-m-2)2+(m2+4m+8-4)2=(m+2)2+(m+2)4.∵四边形ACBD是菱形,∴BC=BD,∴(m+2)2+(m+2)4=(4m+8)2,即(m+2)4=15(m+2)2,∵m>0,∴(m+2)2=15,∴m+2=15,∴m=15-2.。
中考数学第二轮复习资料—专题复习(共50页,大量对应练习)
中考数学第二轮复习资料—专题复习(一)、初中阶段主要的数学思想1.数形结合的思想把问题中的数量关系与形象直观的几何图形有机的结合起来,并充分利用这种结合寻找解题的思路,使问题得到解决的思想方法,在分析问题的过程中,注意把数和形结合起来考察,根据问题的具体情形,把图形性质的问题转化为数量关系的问题,或者把数量关系的问题转化为图形性质的问题,使复杂问题简单化,抽象问题具体化,化难为易,获取简便易行的方法。
涉及实数与数轴上点的对应关系,公式、定理的几何背景问题,函数与方程的对应关系等。
一:【要点梳理】1.数形结合思想方法是初中数学中一种重要的思想方法.数是形的抽象概括,形是数的直观表现,用数形结合的思想解题可分两类:一是利用几何图形的直观表示数的问题,它常借用数轴、函数图象等;二是运用数量关系来研究几何图形问题,常需要建立方程(组)或建立函数关系式等2.热点内容(1).利用数轴解不等式(组)(2).研究函数图象隐含的信息,判断函数解析式的系数之间的关系,确定函数解析式和解决与函数性质有关的问题.(3).研究与几何图形有关的数据,判断几何图形的形状、位置等问题.(4).运用几何图形的性质、图形的面积等关系,进行有关计算或构件方程(组),求得有关结论等问题.二:【例题与练习】1.选择:(1)某村办工厂今年前5个月生产某种产品的总量c(件)关于时间t(月)的图象如图所示,则该厂对这种产品来说()A.1月至3月每月生产总量逐月增加,4、5两月生产总量逐月减少B.1月至3月每月生产总量逐月增加,4、5两月生产总量与3月持平C.1月至3月每月生产总量逐月增加,4、5两月均停止生产D.1月至3月每月生产总量不变,4、5两月均停止生产(2)某人从A 地向B 地打长途电话6分钟,按通话时间收费,3分钟以内收费2.4元每加 1分钟加收 1元,则表示电话费y (元)与通话时间(分)之间的关系的图象如图所示,正确的是( )(3)丽水到杭州的班车首法时间为早上6时,末班车为傍晚18时,每隔2小时有一班车发出,且丽水到杭州需要4个小时.图中相遇的次数最多为( )A.4次B.5次C.6次.D.7次 2.填空:(1)已知关于X 的不等式2x-a>-3的解集如图所示,则a 的值等于 (2)如果不等式组8 4x-1x mx ⎧+⎪⎨⎪⎩的解集为x>3,则m 的取值范围是3.考虑2xy =的图象,当x=-2时,y= ;当x<-2时,y 的取值范围是 。
2020中考数学复习讲义
目录第一单元数与式第1课有理数-------------------------------01第2课实数--------------------------------06第3课整式-----------------------------------10第4课分式-----------------------------------15第5课二次根式--------------------------------18第二单元方程与不等式第6课一次方程(组)--------------------------22第7课分式方程---------------------------------27第8课一元一次不等式(组)---------------------31第9课一元二次方程-----------------------------36第三单元三角形第10课图形初步---------------------------------41第11课三角形与多边形-----------------------------------------49第12课全等三角形-----------------------------------------------56第13课特殊三角形-----------------------------------------------63第14课相似三角形------------------------------------------------70第15课解直角三角形---------------------------------------------76第四单元四边形第16课平行四边形-----------------------------------------------83第17课特殊的平行四边形--------------------------------------89第五单元函数第18课函数基础知识-----------------------------------------------96第19课一次函数-----------------------------------------------------109第20课反比例函数--------------------------------------------------111第21课二次函数-----------------------------------------------------119第六单元圆第22课圆的基本性质-----------------------------------------------126第23课圆的证明------------------------------------------------------135第24课圆的计算-------------------------------------------------------142第七单元图形变化第25课图形变换--------------------------------------------------------149第26课视图与投影-----------------------------------------------------156第27课尺规作图---------------------------------------------------------164第八单元统计与概念第28课统计---------------------------------------------------------------171第29课概率---------------------------------------------------------------178微专题1实数的运算-------------------------------------------------------186微专题2整式的运算-------------------------------------------------------187微专题3分式的运算-------------------------------------------------------188微专题4方程与方程组-----------------------------------------------------189微专题5分式方程----------------------------------------------------------190微微专题6不等式与不等式组-----------------------------------------191微微专题7求函数解析式----------------------------------------------192微微专题8方程(组)与不等式应用------------------------------193微微专题9一元二次方程应用--------------------------------------195微微专题10分式方程应用--------------------------------------------196微微专题11函数应用--------------------------------------------------197微微专题12解直角三角形的应用-----------------------------------199微微专题13统计--------------------------------------------------------201微微专题14概率---------------------------------------------------------204微微专题15三角形----------------------------------------------------205微微专题16平行四边形---------------------------------------------206微微专题17特殊平行四边-------------------------------------------207微微专题18圆的证明-------------------------------------------------208微微专题19图形的折叠----------------------------------------------209微微专题21规律探究与猜想----------------------------------211微微专题22阅读理解题----------------------------------------215微微专题23选择填空压轴题----------------------------------218第2课时与几何有关的压轴题----------------------------222微微专题24代数综合题------------------------------------------225微微专题25几何综合题------------------------------------------229微微专题26代数与几何综合题(1)---------------------------232微微专题27代数与几何综合题(2)--------------------------234第一单元数与式第1课有理数有理数是中考命题的重要内容之一,是初中数学基础知识,在中考中点有一定比例,它通常以选择、填空、计算的形式出现,这部分试题难度不大,主要考查学生对概念的理解及基础知识的运用能力。
2020中考数学复习讲义(239页)
目录第一单元数与式第1课有理数-------------------------------01第2课实数--------------------------------06第3课整式-----------------------------------10第4课分式-----------------------------------15第5课二次根式--------------------------------18第二单元方程与不等式第6课一次方程(组)--------------------------22第7课分式方程---------------------------------27第8课一元一次不等式(组)---------------------31第9课一元二次方程-----------------------------36第三单元三角形第10课图形初步---------------------------------41第11课三角形与多边形-----------------------------------------49第12课全等三角形-----------------------------------------------56第13课特殊三角形-----------------------------------------------63第14课相似三角形------------------------------------------------70第15课解直角三角形---------------------------------------------76第四单元四边形第16课平行四边形-----------------------------------------------83第17课特殊的平行四边形--------------------------------------89第五单元函数第18课函数基础知识-----------------------------------------------96第19课一次函数-----------------------------------------------------109第20课反比例函数--------------------------------------------------111第21课二次函数-----------------------------------------------------119第六单元圆第22课圆的基本性质-----------------------------------------------126第23课圆的证明------------------------------------------------------135第24课圆的计算-------------------------------------------------------142第七单元图形变化第25课图形变换--------------------------------------------------------149第26课视图与投影-----------------------------------------------------156第27课尺规作图---------------------------------------------------------164第八单元统计与概念第28课统计---------------------------------------------------------------171第29课概率---------------------------------------------------------------178微专题1实数的运算-------------------------------------------------------186微专题2整式的运算-------------------------------------------------------187微专题3分式的运算-------------------------------------------------------188微专题4方程与方程组-----------------------------------------------------189微专题5分式方程----------------------------------------------------------190微微专题6不等式与不等式组-----------------------------------------191微微专题7求函数解析式----------------------------------------------192微微专题8方程(组)与不等式应用------------------------------193微微专题9一元二次方程应用--------------------------------------195微微专题10分式方程应用--------------------------------------------196微微专题11函数应用--------------------------------------------------197微微专题12解直角三角形的应用-----------------------------------199微微专题13统计--------------------------------------------------------201微微专题14概率---------------------------------------------------------204微微专题15三角形----------------------------------------------------205微微专题16平行四边形---------------------------------------------206微微专题17特殊平行四边-------------------------------------------207微微专题18圆的证明-------------------------------------------------208微微专题19图形的折叠----------------------------------------------209微微专题21规律探究与猜想----------------------------------211微微专题22阅读理解题----------------------------------------215微微专题23选择填空压轴题----------------------------------218第2课时与几何有关的压轴题----------------------------222微微专题24代数综合题------------------------------------------225微微专题25几何综合题------------------------------------------229微微专题26代数与几何综合题(1)---------------------------232微微专题27代数与几何综合题(2)--------------------------234第一单元数与式第1课有理数有理数是中考命题的重要内容之一,是初中数学基础知识,在中考中点有一定比例,它通常以选择、填空、计算的形式出现,这部分试题难度不大,主要考查学生对概念的理解及基础知识的运用能力。
2020年中考数学第二轮复习 第10讲 一元一次不等式(组) 强基训练+真题(后含答案)
2020年中考数学第二轮复习 第十讲 一元一次不等式(组)【强基知识】一、不等式的基本概念:1、不等式:用 连接起来的式子叫做不等式2、不等式的解:使不等式成立的 值,叫做不等式的解3、不等式的解集:一个含有未知数的不等的解的 叫做不等式的解集 注意:1、常用的不等号有 等2、不等式的解与解集是不同的两个概念,不等式的解是单独的未知数的值, 而解集是一个范围的未知数的值组成的集合,一般由无数个解组成3、不等式的解集一般可以在数轴上表示出来。
注意“>”“<”在数轴上表示 为 ,而“≥”“≤”在数轴上表示为 二、不等式的基本性质:基本性质1、不等式两边都加上(或减去)同一个 或同一个 不等号的方向 ,即:若a <b,则a+c b+c(或a -c b -c)基本性质2:不等式两边都乘以(或除以)同一个 不等号的方向 ,即:若a <b ,c>0则a c b c (或acb c )基本性质3、不等式两边都乘以(或除以)同一个 不等号的方向 ,即:若a <b ,c <0则a c b c (或acb c )注意:运用不等式的基本性质解题时要主要与等式基本性质的区别与联系,特别强调:在不等式两边都乘以或除以一个负数时,不等号的方向要 三、一元一次不等式及其解法:1、定义:只含有一个未知数,并且未知数的次数是 且系数 的不等式叫一元一次不等式,其一般形式为 或 。
2、一元一次不 等 式 的 解 法 步 骤 和 一 元一次方程的解法相同,即包含 、 、 、 、 等五个步骤 注意:在最后一步系数化为1时,切记不等号的方向是否要改变 四、一元一次不等式组及其解法:1、定义:把几个含有相同未知数的 合起来,就组成了一个一元一次不等式组2、解集:几个不等式解集的 叫做由它们所组成的不等式组的解集3、解法步骤:先求出不等式组中各个不等式的 再求出他们的 部分,就得到不等式组的解集4、一元一次不等式组解集的四种情况(a <b )解集是、⎩⎨⎧>>bx a x 1 口诀:大大取大; 解集是、⎩⎨⎧<<bx a x 2 口诀:小小取小;解集是、⎩⎨⎧<>bx a x 3 口诀:小大大小,取中间; 解集是、⎩⎨⎧><bx a x 4 口诀:大大小小,无解了(无解或空集)。
【优选】2020届数学中考复习讲解课件:专题复习(二) 规律与猜想
20
14.(2019·玉林)如图,在矩形 ABCD 中,AB=8,BC=4,一发光电 子开始置于 AB 边的点 P 处,并设定此时为发光电子第一次与矩形的边碰 撞,将发光电子沿着 PR 方向发射,碰撞到矩形的边时均反射,每次反射的 反射角和入射角都等于 45°.若发光电子与矩形的边碰撞次数经过 2 019 次 后,则它与 AB 边的碰撞次数是 673 .
12
按照以上规律,解决下列问题:
(1)写出第 6 个等式: 121=61+616 (2)写出你猜想的第 n 个等式:
; 2n2-1=n1+n(2n1-1)
(用含
n
的等
式表示),并证明. 证明:∵n1+n(2n1-1)=n(22nn--11)+n(2n1-1)=n2(n2-n1-+11)=
2n2-1,
22
(2019·鄂州)如图,在平面直角坐标系中,点 A1,A2,A3,…,
An 在
x
轴上,点
B1,B2,B3,…,Bn 在直线
y=
3 3x
上.若
A1(1,0),且
△ A1B1A2,△ A2B2A3,…,△ AnBnAn+1 都是等边三角形,从左到右的小三
角形(阴影部分)的面积分别记为 S1,S2,S3,…,Sn,则 Sn 可表示为( D ) A.22n 3
A.(
22,-
2 2)
B.(1,0)
C.(-
22,-
2 2)
D.(0,-1)
26
17.(2019·广元)如图,过点
A0(0,1)作
y
轴的垂线交直线
l:y=
3 3x
于
点 A1,过点 A1 作直线 l 的垂线,交 y 轴于点 A2,过点 A2 作 y 轴的垂线交
中考数学二轮复习讲义
中考数学二轮复习讲义一、引言在中考数学的复习过程中,二轮复习是一个关键的阶段。
它旨在巩固和深化学生对基础知识的理解,提高解题能力,以便更好地应对中考。
本文将为同学们提供一份详细的中考数学二轮复习讲义,帮助大家系统地进行复习。
二、复习目标1、巩固基础知识,确保对知识点掌握扎实。
2、深化理解,提升解题能力。
3、查漏补缺,针对薄弱环节进行强化。
4、适应中考题型,熟悉解题技巧。
三、复习内容1、代数部分:复习整式、分式、方程、不等式、函数等知识,掌握基本概念、性质和解题方法。
2、几何部分:复习三角形、四边形、圆等基本图形,掌握基本性质和定理,提高空间思维能力。
3、概率与统计:掌握统计图表、概率初步知识,能够解决实际问题。
四、复习方法1、制定合理的复习计划,根据自己的实际情况安排时间。
2、重视基础知识,打牢基础后再进行深化拓展。
3、学会总结归纳,将知识点串联起来形成知识网络。
4、多做真题,熟悉中考题型和解题技巧。
5、及时查漏补缺,针对薄弱环节加强练习。
6、保持积极心态,相信自己能够取得进步。
五、结语中考数学二轮复习讲义是帮助同学们在复习过程中更好地掌握知识、提高解题能力的重要工具。
希望同学们能够按照讲义的要求,积极进行复习,不断深化对数学知识的理解,提高自己的数学能力。
相信在中考中,大家一定能够取得优异的成绩!中考数学一轮总复习讲义一、引言在中考复习阶段,数学作为核心学科,一直是考生们的重点。
为了帮助同学们更好地进行数学复习,本文将详细介绍中考数学一轮总复习的策略和要点,希望对大家有所帮助。
二、复习策略1、知识梳理:要全面梳理初中数学的知识点,形成系统化的知识网络。
这包括对基础概念的理解,公式、定理的掌握以及解题方法的熟练应用。
2、查漏补缺:在知识梳理的过程中,要着重找出自己的薄弱环节,进行针对性的强化训练。
对于容易混淆的概念、定理,要重点辨析,明确其内涵和外延。
3、解题训练:数学是一门应用性很强的学科,解题训练是复习过程中不可或缺的部分。
2020中考数学二轮复习完整讲义(共12个专题)
专题一 不等式组与分式方程的解的运用(2019·南岸区校级模拟)若整数a 使得关于x 的方程2-3x -2=a2-x的解为非负数,且使得关于y的不等式组⎩⎪⎨⎪⎧y -a 5≤03y -22+1>y -22至少有三个整数解,则符合条件的整数a 的个数为( )【分析】表示出不等式组的解集,由不等式组至少有三个整数解确定出a 的值,再由分式方程的解为非负数以及分式有意义的条件求出满足题意整数a 的值,进而可得结论. 【自主解答】1.(2019·渝中区二模)若数a 使关于x 的不等式组⎩⎪⎨⎪⎧x -22≤-12x +27x +4>-a 有且只有4个整数解,且使关于y 的分式方程2y -1+a1-y =3的解为正数,则符合条件的所有整数a 的和为( )D .62.(2019·渝中区一模)如果关于x 的分式方程ax x -2-2=x2-x 有整数解,且关于x 的不等式组⎩⎪⎨⎪⎧a -2x ≤1-x 4x +12>x +3的解集为x>52,那么符合条件的所有整数a 的和为( ) A .4B .6C .2D .13.(2019·江北区一模)若数a 使关于x 的不等式组⎩⎪⎨⎪⎧x -52+1≤x +135x -2a>2x +a 至少有3个整数解,且使关于y 的分式方程a -3y -1-21-y =2有非负整数解,则满足条件的所有整数a 的和是( ) A .14B .15C .23D .244.(2019·九龙坡区校级模拟)如果关于x 的分式方程ax +1-3=1-xx +1有负数解,且关于y 的不等式组⎩⎪⎨⎪⎧2(a -y )≤-y -43y +42<y +1无解,则符合条件的所有整数a 的和为( ) A .-2B .0C .1D .35.(2019·南岸区模拟)若整数k 使关于x 的不等式组⎩⎪⎨⎪⎧3x +k ≤0x 3-x -12≤1只有4个整数解,且使关于y 的分式方程k y -1+1=y +ky +1的解为正数,则符合条件的所有整数k 的积为( ) A .2B .0C .-3D .-6参考答案【例1】 不等式组整理得:⎩⎪⎨⎪⎧y≤a,y>-1,由不等式组至少有三个整数解,得-1<y≤a,且a≥2,则整数a =2,3,4,5,6,…,分式方程2-3x -2=a 2-x ,去分母得:2(x -2)-3=-a ,解得:x =7-a2,∵方程的解是非负数,∴7-a 2≥0,且7-a 2≠2,解得a≤7,且a≠3.∴符合条件的整数a 的值有2,4,5,6,7,共5个.故选B. 跟踪训练1.A 【解析】解不等式x -22≤-12x +2,得x≤3,解不等式7x +4>-a ,得x>-4-a 7,∵不等式组有且只有4个整数解,∴在-4-a7<x≤3的范围内只有4个整数解,∴整数解为x =0,1,2,3,∴-1≤-4-a 7<0,解得-4<a≤3,由2y -1+a 1-y =3,得y =5-a3,∵分式方程有解且解为正数,∴⎩⎪⎨⎪⎧5-a3≠15-a3>0,解得:a<5且a≠2.∴所有满足条件的整数a 的值有:-3,-2,-1,0,1,3,∴符合条件的所有整数a 的和为-2.故选A.2.C 【解析】分式方程去分母得:ax -2x +4=-x ,整理得:x =41-a,由分式方程有整数解,得1-a =±1或±2或±4,解得:a =0,-1,2,3,-3,5,又∵41-a ≠2,∴a≠-1,不等式组整理得:⎩⎪⎨⎪⎧x≥a-1x>52,由不等式组的解集为x>52,得a -1≤52,即a≤72,则整数a 的值为0,2,3,-3,之和为2,故选C.3.A 【解析】解不等式x -52+1≤x +13,得x≤11,解不等式5x -2a >2x +a ,得x >a ,∵不等式组至少有3个整数解,∴a<9;分式方程两边乘以y -1,得:a -3+2=2(y -1),解得:y =a +12,∵分式方程有非负整数解,∴a 取-1,1,3,5,7,9,11,…,∵a<9,且y≠1,∴a 只能取-1,3,5,7,则所有整数a 的和为-1+3+5+7=14,故选A. 4.A 【解析】由关于y的不等式组⎩⎪⎨⎪⎧2(a -y )≤-y -43y +42<y +1,可整理得⎩⎪⎨⎪⎧y≥2a+4y<-2,∵该不等式组无解,∴2a+4≥-2,即a≥-3,由a x +1-3=1-x x +1得x =a -42,∵方程有负数解,∴a-4<0且a -42≠-1,∴a<4且a≠2,∴-3≤a<4,且a≠2,∴a=-3、-2、-1、0、1、3,则符合条件的所有整数a 的和为-2.故选A. 5.A【解析】解不等式组⎩⎪⎨⎪⎧3x +k≤0x 3-x -12≤1得:-3≤x≤-k3,∵不等式组只有4个整数解,∴0≤-k3<1,解得:-3<k≤0,解分式方程k y -1+1=y +k y +1得:y =-2k +1,∵分式方程的解为正数,∴-2k +1>0且-2k +1≠1,解得:k <12且k≠0,综上,k 的取值范围为-3<k <0,则符合条件的所有整数k 有-2,-1,积为-2×(-1)=2,故选A.专题二 图形变换的相关计算类型一 图形折叠的相关计算(2019·重庆B卷)如图,在△ABC中,∠ABC=45°,AB=3,AD⊥BC于点D,BE⊥AC于点E,AE=1.连接DE,将△AED沿直线AE翻折至△ABC所在的平面内,得到△AEF,连接DF.过点D作DG⊥DE交BE于点G,则四边形DFEG的周长为( )A.8 B.4 2 C.22+4 D.32+2【分析】要求四边形DFEG的周长,可分别计算DG、DF、EF、GE的长,通过证明△DBG≌△DAE得到BG,在Rt△ABE中可求BE,从而得到GE,再证明△DEG是等腰直角三角形得到DG,DE,进而求出EF,DF,即可得解.【自主解答】忽略折叠前后的对应关系在利用折叠的性质解决问题时,易出错的是忽略折叠(翻折)前后两图形的关系,从而不能利用对应角相等,对应线段相等的性质解题.1.(2020·原创)如图1,点E是矩形ABCD中AD边上任意一点,连接BE,把△ABE沿BE折叠,如图2所示,然后再过点A作AF⊥CD于点F,如图3所示,当AB=8,BC=10,且∠BEA=60°,则图3中AF的长为( )A .23+2B .8-4 3C .23+1D .10-4 32.如图,在Rt △ABC 中,AB =9,BC =6,∠B =90°,将△ABC 折叠,使A 点与BC 的中点D 重合,折痕为MN ,则线段BN 的长为( )A.53B.52C .4D .53.(2019·辽阳)如图,直线EF 是矩形ABCD 的对称轴,点P 在CD 边上,将△BCP 沿BP 折叠,点C 恰好落在线段AP 与EF 的交点Q 处,BC =43,则线段AB 的长是( )A.8 B.8 2 C.8 3 D.10类型二图形平移的相关计算如图,△ABC和△DBC是两个具有公共边的全等的等腰三角形,AB=AC=3 cm,BC=2 cm,将△DBC 沿射线BC平移一定的距离得到△D1B1C1,连接AC1,BD1,如果四边形ABD1C1是矩形,则平移的距离为( )A.2 cm B.5 cm C.7 cm D.9 cm【分析】要求平移的距离,可结合平移性质得到CC1即为平移的距离,结合四边形ABD1C1是矩形从而得到∠BAC1=90°,而AB=AC=3 cm,BC=2 cm,可过点A作AE⊥BC于E,从而得到BE,再证明△ABE∽△C1BA即可利用对应边成比例求平移距离.【自主解答】1.(2018·株洲改编)如图,已知△OAB是等腰直角三角形,∠OAB=90°,OB=22,将该三角形向右平移22个单位得到Rt△O′A′B′,则线段OA在平移过程中扫过部分的图形面积为( )A.4 B.4 2 C.2 D.2 2 2.(2019·孝感改编)如图,正方形ABCD中,点E,F分别在边CD,AD上,BE与CF交于点G.BC=4,DE=AF=1.将△BCG沿射线BE方向平移,使得点G与点E重合,得到△EB′C′,连接FB′,则此时FB′的长为( )A.2185B.2285C.109 D.2109类型三图形旋转的相关计算(2020·原创)如图,在等边△ABC内有一点D,AD=5,BD=6,将△ABD绕点A逆时针旋转,使得AB与AC重合,点D旋转至点E的位置,连接DE,则DE的长为________.【分析】由旋转性质得∠DAE=∠BAC=60°,AD=AE,从而得到△ADE是等边三角形,即可得解.【自主解答】1.(2020·原创)如图,在矩形ABCD 中,点E 是边AD 上一点,过点E 作EF ⊥BC ,垂足为点F ,将△BEF 绕着点E 逆时针旋转,使点B 落在边BC 上的点N 处,点F 落在边DC 上的点M 处.若点M 恰好是边CD 的中点,那么ADAB的值是( )A.233B.433C.534D.536参考答案【例1】∵AD⊥BC于点D,DG⊥DE,∴∠BDG+∠GDA=∠ADE+∠GDA,∴∠BDG=∠ADE.∵∠ABC=45°,∴AD=BD.∵AD⊥BC于点D,BE⊥AC于点E,∴A,E,D,B四点共圆,∴∠DBG=∠DAE,∴△DBG≌△DAE,∴BG=AE=1,DG=DE,∴△GDE为等腰直角三角形.∵AB=3,AE=1,∴BE=AB2-AE2=22,∴GE=BE-BG=22-1,∴GD=DE=2-22.由翻折性质可知DE=EF=2-22.由A,B,D,E四点共圆可知∠BED=∠BAD=45°,∵BE⊥AC,∴∠DEC=45°,由翻折性质可知,∠FEC=45°,∴DE⊥EF,又∵DE=EF,∴DF=2DE=22-1,∴四边形GDFE的周长为GD+DF+EF+GE=32+2.故选D.跟踪训练1.D 2.C 3.A【例2】设平移的距离为x cm,由平移性质得BC1=BC+CC1=(2+x) cm,过点A作AE⊥BC于E,∵AB=AC,∴BE=CE=1,∵四边形ABD1C1是矩形,∴∠BAC1=90°,∴∠BAE+∠EAC1=90°,∵∠ABE+∠BAE =90°,∴∠BAE =∠AC 1E ,∵∠AEB =∠C 1AB =90°,∴△ABE∽△C 1BA ,∴AB BE =C 1B AB ,即31=2+x3,解得x =7 cm.故选C.跟踪训练1.A 【解析】 如解图,设AA′交OB 于E ,∵在△ABO 中,AB =AO ,∠OAB=90°,△A′O′B′是由△AOB 向右平移22个单位得到的,∴OO′=22,AA′⊥OB.∵OB=22,∴OE=2,∴四边形AOO′A′的面积为OO′·OE=22·2=4.2.A 【解析】∵四边形ABCD 是正方形,∴AD=CD =BC ,∠D=∠BCD=90°.∵DE=AF ,∴DF=CE ,∴△CDF≌△BCE,∴∠DCF=∠CBE ,∴∠DCF +∠CEB =∠CBE +∠BEC =90°,∴∠FGB′=90°.∵CE=3,BC =4,∴BE=5.∵CG⊥BE,∴GE=95,CG =125,∴BG=BE -GE =165.∵将△BGC 沿BE 方向平移得到△EB′C′,∴BB′=EG =95,∴B′G=75.∵GF=CF -CG =135,∴B′F=FG 2+B′G 2=2185. 【例3】∵△ABC 是等边三角形,∴∠BAC =60°,∵△ABD 绕点A 旋转得到△ACE,AB 与AC 重合,∴AE=AD ,∠DAE=∠BAC=60°,∴△ADE 是等边三角形,∴DE=AD =5.故答案为5. 跟踪训练1.D 【解析】 ∵将△BEF 绕着点E 逆时针旋转得到△EMN, ∴BE=EN ,EM =EF ,MN =BF. ∵EF⊥BC, ∴BF =FN, ∴BF =FN =NM.∵EF⊥BC, ∴四边形EFCD 是矩形, ∴EF=CD, ∵点M 恰好是边DC 的中点,∴DM=12CD =12EM ,∴∠DEM=30°,∴∠DME=60°,∵∠NME=90°,∴∠CMN=30°,设CN =x ,∴MN=2x ,CM =3x ,∴BC=5x ,∴AD AB =BC CD =5x 23x =536.专题三 实际问题中函数图象的分析(2019·南岸区校级模拟)小亮和小明在同一直线跑道AB上跑步.小亮从AB之间的C地出发,到达终点B地停止运动,小明从起点A地与小亮同时出发,到达B地休息20秒后立即以原速度的1.5倍返回C地并停止运动,在返途经过某地时小明的体力下降,并将速度降至3米/秒跑回终点C地,结果两人同时到达各自的终点.在跑步过程中,小亮和小明均保持匀速,两人距C地的路程和记为y(米),小亮跑步的时间记为x(秒),y与x的函数关系如图所示,则小明在返途中体力下降并将速度降至3米/秒时,他距C地还有________米.【分析】如解图,可按五个阶段分析.第一阶段:小亮从C点出发,小明从A点出发,AC=100米,经过25秒两人第一次相遇;第二阶段:两人同时从D点出发,经过100-25=75秒,小明到达B点,小亮到达E点;第三阶段,小明在B点等待20秒,小亮前进20秒,两人距离点C的距离和为480米;第四阶段,小明从点B出发前往点C,小亮继续前往点B,当小明到达F处时,速度降至3米/秒;第五阶段:小明按3米/秒速度继续跑到点C处,且小明到达点C时,小亮到达点B.【自主解答】1.(2019·渝中区二模)甲、乙两车分别从A,B两地同时相向匀速行驶,当乙车到达A地后,继续保持原速向远离B的方向行驶,而甲车到达B地后立即掉头,并保持原速与乙车同向行驶,经过15小时后两车同时到达距A地300千米的C地(中途休息时间忽略不计).设两车行驶的时间为x(小时),两车之间的距离为y(千米),y 与x之间的函数关系如图所示,则当甲车到达B地时,乙车距A地________千米.2.(2019·南岸区校级模拟)甲、乙两人分别从各自家出发乘坐出租车前往智博会,由于堵车,两人同时选择就近下车,已知甲在乙前面200米的A地下车,然后分别以各自的速度匀速走向会场,3分钟后,乙发现有物品遗落在出租车上,于是立即以不变的速度返回寻找,找到出租车时,出租车恰好向会场方向行驶了100米,乙拿到物品后立即以原速返回继续走向会场,同时甲以之前速度的一半走向会场,又经过10分钟,乙在B地追上甲,两人随后一起以甲放慢后的速度行走1分钟到达会场,甲、乙两人相距的路程y(米)与甲行走的时间x(分)之间的关系如图所示(乙拿物品的时间忽略不计),则A地距离智博会会场的距离为________米 .3.(2019·綦江区一模)在一条笔直的公路上有A、B两地,甲、乙两人同时出发,甲骑自行车从A地到B地,中途出现故障后停车修理,修好车后以原速继续行驶到B地;乙骑电动车从B地到A地,到达A地后立即按原路原速返回,结果两人同时到达B地.如图是甲、乙两人与A地的距离y(km)与行驶时间x(h)之间的函数图象.当甲距离B地还有5 km时,此时乙距B地还有________ km.4.(2019·江北区一模)小明和小亮分别从A、B两地同时相向而行,并以各自的速度匀速行驶,途中会经过奶茶店C,小明先到达奶茶店C,并在C地休息了一小时,然后按原速度前往B地,小亮从B地直达A地,结果还是小明先到达目的地,如图是小明和小亮两人之间的距离y(千米)与小亮出发时间x(时)的函数的图象,请问当小明到达B地时,小亮距离A地________ 千米.5.(2019·九龙坡区校级模拟)甲乙沿着同一路线以各自的速度匀速从A地到B地,甲出发1分钟后乙随即出发,甲、乙到达B地后均立即按原路原速返回A地,甲、乙之间的距离y(米)与甲出发的时间x(分)之间的部分图象如图所示.当甲返回到A地时,乙距离B地________米.6.(2016·重庆B卷)为增强学生体质,某中学在体育课中加强了学生的长跑训练.在一次女子800米耐力测试中,小静和小茜在校园内200米的环形跑道上同时起跑,同时到达终点.所跑路程s(米)与所用的时间t(秒)之间的函数图象如图所示,则她们第一次相遇的时间是起跑后第________ 秒.7.(2018·辽阳改编)小林和爸爸到太子河公园运动,两人同时从家出发,沿相同路线前行.途中爸爸有事返回,小林继续前行5分钟后也原路返回,两人恰好同时到家.小林和爸爸在整个运动过程中离家的路程y1(米),y2(米)与运动时间x(分)之间的函数关系如图所示.则小林返回时与爸爸之间的距离为________ 米.8.(2018·咸宁改编)甲、乙两人在笔直的湖边公路上同起点、同终点、同方向匀速步行2 400米,先到终点的人原地休息.已知甲先出发4分钟,在整个步行过程中,甲、乙两人之间的距离y(米)与甲出发的时间t(分)之间的关系如图所示.则乙到达终点时,甲距离终点还有________米.9.(2018·济南)A,B两地相距20 km,甲、乙两人沿同一条路线从A地到B地,甲先出发,匀速行驶,甲出发1小时后,乙再出发,乙以2 km/h的速度匀速行驶1小时后,提高速度并继续匀速行驶,结果比甲提前到达.甲、乙两人离开A地的距离y(km)与时间t(h)的关系如图所示,则甲出发________小时后和乙相遇.参考答案【例1】 由图象可知,x =0时,y =100,即开始时小亮在C 地小明在A 地,两人相距100米,∴AC=100,当x =25时,y 最小,即小明到达C 地,∴小明开始速度为:100÷25=4(米/秒),返回速度为4×1.5=6(米/秒),当x =100时,小明到达B 地,∴AB=4×100=400(米),∴BC=AB -AC =300(米),当y =480最大时,小明休息完20秒,即x =120,此时,小亮离C 地距离为480-300=180(米),∴小亮速度为:180÷120=32(米/秒),∴两人跑完全程所用时间为:300÷32=200(秒),∴小明返回C 地所用时间为:200-120=80(秒),设小明返回时在a 秒时速度下降到3米/秒,列方程得:6a +3(80-a)=300,解得:a =20.此时离C 地距离为:3×(80-20)=180(米).故答案为180.跟踪训练1.100 【解析】由图象可得:当x =0时,y =300,∴AB=300千米,∴甲车的速度=300÷5=60千米/小时,又∵300÷3=100千米/小时,∴乙车的速度=100-60=40千米/小时.由图象可知当x =5时,甲车到达B 地,此时乙车行驶的路程为5×40=200(千米),∴乙车距离A 地100千米,故答案为100.2.945 【解析】∵乙向智博会会场走了3分钟,又返回走了2分钟,∴实际向智博会会场走了1分钟,离下车点为100米,∴乙的速度为100米/分.∵第5分钟拿到物品后向智博会会场又走了10分钟,∴又走了100×10=1 000米.设甲速度为x 米/分,依题意得,100+1 000=200+5x +12x·10解得x =90.∴A 地离智博会会场的距离为100+1 000+90÷2-200=945米.故答案为945米.3.7.5 【解析】甲的速度为:30÷[2-(1.25-0.75)]=20 km/h ,乙的速度为:30 km/h ,当甲距离B 地还有5 km 时,甲还要行驶520=14小时到达B 地,此时乙距B 地:14×30=7.5(km).故答案为7.5. 4.90 【解析】设小明的速度为a km/h ,小亮的速度为b km/h ,⎩⎪⎨⎪⎧2.5a +2b =3.5a (3.5-2)b +(3.5-2.5)a =210,解得⎩⎪⎨⎪⎧a =120b =60,当小明到达B 地时,小亮距离A 地的距离是:120×(3.5-1)-60×3.5=90(千米),故答案为90.5.70 【解析】由题意可得,甲的速度为60÷1=60米/分,则乙的速度为:100÷(7-6)-60=40米/分,设A 、B 两地距离为s 米,2s =60×7+40×(7-1),解得s =330,甲返回A 地用时为:330×2÷60=11(分),则乙11分钟行驶的路程为40×(11-1)=400(米),400-330=70(米),即当甲返回到A 地时,乙距离B 地70米,故答案为70.6.120 7.1 500 8.360 9.165专题四 不定方程的应用(2019·南岸区校级模拟)某商店为促进销售,将A、B、C三种糖果以甲、乙两种方式进行搭配销售,两种方式均配成本价为5元的包装袋,甲方式每袋含A糖果1千克,B糖果1千克,C糖果3千克,乙方式每袋含A糖果3千克,B 糖果1千克,C糖果1千克,已知每千克C糖果比每千克A糖果成本价高2.5元,甲种方式(含包装袋)每袋成本为55元,现甲、乙两种方式分别在成本价(含包装袋)基础上提价20%和35%进行销售,两种方式销售完毕后利润率达到30%,则甲、乙两种方式的销量之比为________.【分析】根据题目中的已知条件,求出一袋甲糖果成本比一袋乙糖果成本多的价钱,进而得出一袋乙糖果的成本,再设甲、乙两种方式各自的销量分别为x袋和y袋,根据“现甲、乙两种方式分别在成本价(含包装袋)基础上提价20%和35%进行销售,两种方式销售完毕后利润率达到30%”,列出二元一次方程,进而求得结果.【自主解答】1.(2019·南岸区校级模拟)某公司生产一种饮料是由A,B两种原料液按一定比例配成,其中A原料液的原成本价为10元/千克,B原料液的原成本价为5元/千克,按原售价销售可以获得50%的利润率,由于物价上涨,现在A原料液每千克上涨20%,B原料液每千克上涨40%,配制后的饮料成本增加了13,公司为了拓展市场,打算再投入现在成本的25%做广告宣传,如果要保证该种饮料的利润率不变,则这种饮料现在的售价应比原来的售价高________元/千克.2.(2019·綦江区一模)我校第二课堂开展后受到了学生的追捧,学期结束后对部分学生做了一次“我最喜爱的第二课堂”问卷调查(每名学生都填了调查表,且只选了一个项目),统计后趣味数学、演讲与口才、信息技术、手工制作榜上有名.其中选信息技术的人数比选手工制作的少8人;选趣味数学的人数不仅比选手工制作的人数多,且为整数倍;选趣味数学与选手工制作的人数之和是选演讲与口才与选信息技术的人数之和的5倍;选趣味数学与选演讲与口才的人数之和比选信息技术与选手工制作的人数之和多24人.则参加调查问卷的学生有________人.3.某服装店老板经营销售A、B两种款式的服装,其中每件A种款式的利润率为50%,每件B种款式的利润率为20%,当售出的A种款式的件数比B种款式的件数少70%时,这个老板得到的总利润率是25%.则当售出的A种款式的件数比B种款式的件数多50%时,这个老板得到的总利润率是________.(利润率=利润÷成本) 4.(2019·江北区一模)某厂家以A、B两种原料,利用不同的工艺手法生产出了甲、乙两种袋装产品,其中,甲产品每袋含1.5千克A 原料、1.5千克B原料;乙产品每袋含2千克A原料、1千克B原料.甲、乙两种产品每袋的成本价分别为袋中两种原料的成本价之和.若甲产品每袋售价72元,则利润率为20%.某节庆日,厂家准备生产若干袋甲产品和乙产品,甲产品和乙产品的数量和不超过100袋,会计在核算成本的时候把A原料和B原料的单价看反了,后面发现如果不看反,那么实际成本比核算时的成本少500元,那么厂家在生产甲、乙两种产品时实际成本最多为________元.5.(2019·九龙坡区模拟)一批货物准备运往某地,有甲、乙、丙三辆卡车可雇用.已知甲、乙、丙三辆车每次运货量不变,且甲、乙两车单独运完这批货物分别用2a,a次;甲、丙两车合运相同次数,运完这批货物,甲车共运180吨;乙、丙两车合运相同次数,运完这批货物,乙车共运270吨.现甲、乙、丙合运相同次数把这批货物运完,货主应付甲车主的运费为________ 元.(按每吨运费20元计算)6.(2019·重庆B卷)某磨具厂共有六个生产车间,第一、二、三、四车间每天生产相同数量的产品,第五、六车间每天生产的产品数量分别是第一车间每天生产的产品数量的34和83,甲、乙两组检验员进驻该厂进行产品检验.在同时开始检验产品时,每个车间原有成品一样多,检验期间各车间继续生产.甲组用了6天时间将第一、二、三车间所有成品同时检验完;乙组先用2天将第四、五车间的所有成品同时检验完后,再用了4天检验完第六车间的所有成品(所有成品指原有的和检验期间生产的成品).如果每个检验员的检验速度一样,则甲、乙两组检验员的人数之比是________.7.(2020·原创)南岸区今年修建和完善了不少道路,其中一段道路两侧的绿化任务计划由甲、乙、丙、丁四人完成.道路两侧的植树数量相同,如果乙、丙、丁同时开始植树,丁在道路左侧,乙和丙在道路右侧,2小时后,甲加入,在道路左侧与丁一起植树,这样恰好能保证道路两侧植树任务同时完成.已知甲、乙、丙、丁每小时能完成的植树数量分别为6,7,8,10棵.实际在植树时,四人一起开始植树,甲和丁在道路左侧,乙和丙在道路右侧,为了保证右侧提前5小时完成植树任务,甲中途转到右侧与乙和丙一起按要求完成了任务,左侧剩下的任务由丁独自完成.则本次植树任务中,丁一共植树________ 棵.8.(2019·南开中学模拟)“众人拾柴火焰高,众人植树树成林”.为发扬中华民族爱植树的好传统,我校21班50名同学和28名社区志愿者共同组织了义务植树活动.50名同学分成了甲、乙两组,28名社区志愿者分成了丙、丁两组,甲、丙两组到A植树点植树,乙、丁两组到B植树点植树.植树结束后统计得知:甲组人均植树量比乙组多2棵,丙、丁两组人均植树量相同,且是乙组人均植树量的2.5倍,A,B两个植树点的人均植树量相同,且比甲组人均植树量高25%.已知人均植树量均为整数,则21班同学共植树________ 棵.9.含有同种果蔬但浓度不同的A,B两种饮料,A种饮料重40千克,B种饮料重60千克,现从这两种饮料中各倒出一部分,且倒出的部分的重量相同,再将每种饮料所倒出部分与另一种饮料剩余的部分混合.已知混合后,两种饮料所含果蔬浓度相同,则两种饮料一共被倒出了________千克.参考答案【例1】∵两种方式均配成本价为5元的包装袋,甲方式每袋含A糖果1千克,B糖果1千克,C糖果3千克,乙方式每袋含A糖果3千克,B糖果1千克,C糖果1千克,已知每千克C糖果比每千克A糖果成本价高 2.5元,∴一袋甲糖果成本比一袋乙糖果成本多:2.5×2=5(元),∵甲种方式(含包装袋)每袋成本为55元,∴乙种方式(含包装袋)每袋成本为50元,设甲、乙两种方式各自的销量分别为x 袋和y 袋,根据题意得,55×0.2x+50×0.35y=0.3(55x +50y),整理得,5.5x =2.5y ,∴x∶y=5∶11.故答案为5∶11. 跟踪训练1.6 【解析】设配制比例为1∶x,由题意得:10(1+20%)+5(1+40%)x =(10+5x)(1+13),解得x =4,则原来每千克成本为:10×1+5×41+4=6(元),原来每千克售价为:6×(1+50%)=9(元),现在每千克成本为:6×(1+13)(1+25%)=10(元),现在每千克售价为:10×(1+50%)=15(元),则现在售价与原售价之差为:15-9=6(元).故答案为6.2.48 【解析】设选信息技术的人数有x 人,选演讲与口才的有y 人,则选手工制作的有(x +8)人,趣味数学的人数有a(x +8)人,根据题意得:⎩⎪⎨⎪⎧(a +1)(x +8)=5(x +y )①a (x +8)+y -x -(x +8)=24②, ②可变形为:(a -1)(x +8)=24+x -y③,①+③,得2a(x +8)=24+6x +4y ,即a =12+3x +2y x +8; ①-③,得x +3y =20.∵x,y 都是正整数,∴⎩⎪⎨⎪⎧x =17y =1或⎩⎪⎨⎪⎧x =14y =2或⎩⎪⎨⎪⎧x =11y =3或⎩⎪⎨⎪⎧x =8y =4或⎩⎪⎨⎪⎧x =5y =5或⎩⎪⎨⎪⎧x =2y =6,当⎩⎪⎨⎪⎧x =17y =1或⎩⎪⎨⎪⎧x =14y =2或⎩⎪⎨⎪⎧x =11y =3或⎩⎪⎨⎪⎧x =8y =4或⎩⎪⎨⎪⎧x =5y =5时, a =12+3x +2y x +8都不是整数,不合题意. 当⎩⎪⎨⎪⎧x =2y =6时,a =12+3x +2y x +8=12+6+1210=3; ∴选信息技术的人数有2人,选演讲与口才的有6人,选手工制作的有10人,选趣味数学的人数有30人,由于每名学生填了调查表,且只选了一个项目,所以参加调查问卷的学生有2+6+10+30=48(人);故答案为48.3.35% 【解析】设A 种款式进价为a 元,则售出价为1.5a 元;B 种款式的进价为b 元,则售出价为1.2b 元;当售出B 种款式x 件,售出A 种款式0.3x 件时,根据题意得,0.5a×0.3x+0.2bx a×0.3x+bx=25%,解得:a =23b ,当售出的A 种款式的件数比B 种款式的件数多50%时,设售出B 种款式的件数为y 件,则售出A 种款式的件数为1.5y 件,由题意得,0.5a×1.5y+0.2by 1.5ay +by =0.75a +0.2b 1.5a +b =0.75×23b +0.2b 1.5×23b +b =35%,故答案为35%.4.5 750 【解析】∵甲产品每袋售价72元,利润率为20%,∴设甲产品的成本价格为b 元,则72-b b=20%,∴b=60,∴甲产品的成本价格为60元,∴1.5 kg A 原料与1.5 kg B 原料的成本和为60元,∴A 原料与B 原料的成本和为40元,设A 原料成本价格x 元,B 原料成本价格为(40-x)元,生产甲产品m 袋,乙产品n 袋,根据题意得:60m +(2x +40-x)n +500=60m +n(80-2x +x),∴xn=20n -250,设生产甲、乙产品的实际成本为W 元,则有W =60m +40n +xn ,∴W=60m +40n +20n -250=60(m +n)-250,∵m+n≤100,∴W≤5 750,∴生产甲乙产品的实际成本最多为5 750元,故答案为5 750.5.2 160 【解析】设甲一次运x 吨,乙一次运y 吨,丙一次运z 吨,⎩⎪⎨⎪⎧2ax =ay ,(x +z )×180x =2ax ,(y +z )×270y=ay ,解得y =z =2x ,∴这批货物一共有:(x +z)×180x=540,∴甲、乙、丙合运相同次数把这批货物运完,货主应付甲车主的运费为:540×15×20=2 160(元),故答案为2 160. 6.18∶19 【解析】设第一、二、三、四车间每天生产相同数量的产品为x 个,每个车间原有成品m 个.甲组检验员a 人,乙组检验员b 人,每个检验员的检验速度为c 个/天,则第五、六车间每天生产的产品数量分别是34x 和83x ,由题意得⎩⎪⎨⎪⎧6(x +x +x )+3m =6ac2(x +34x )+2m =2bc (2+4)×83x +m =4bc ,∴9x=2ac ,192x =2bc ,∴a∶b=18∶19. 7.150 【解析】设每侧植树m 棵,当乙、丙同时植树2小时后,共植树2×(7+8)=30棵,丁植树2×10=20棵,此时甲加入后,刚好同时完成任务,则m -2010+6=m -307+8,解得m =180.实际植树时,四人一起植树,设植树一段时间为t 小时,根据题意可得180-(6+10)t 10=180-(7+8)t 7+8+6+5,解得t =5,甲植树所用时间为5+180+15×521=10小时,丁植树时间为15小时,共植树150棵.8.360 【解析】根据题意,设甲组有a(a 为正整数)名同学,则乙组有(50-a)名同学,丙组有b(b 为正整数)名志愿者,则丁组有(28-b)名志愿者,乙组人均植树棵数为m(m 为正整数)棵,则甲组人均植树棵数为(m +2)棵,丙、丁组人均植树棵数均为2.5m 棵,A ,B 两个植树点的人均植树棵数均为54(m +2)棵,根据总的植树棵树相同可列方程:(m +2)a +(50-a)m +(b +28-b)×2.5m=54(m +2)(50+28),整理得22.5m +2a =195,∵人均植树量均为整数,∴2.5m 为整数,∴m 为偶数,又a 为整数,且a≤50,∴当m =2时a =75,不合题意;当m =4时a =52.5不合题意;当m =6时,a =30,此时满足题意,则21班同学共植树30×8+20×6=360棵;当m =8时,a =7.5不合题意,当m >10时,a 为负值,不合题意,综上可知,21班同学共植树360棵.9.48 【解析】设A 种饮料浓度为a ,B 种饮料浓度为b ,倒出的相同重量为x 千克.则A 种饮料剩下(40-x)千克,含果蔬(40-x)a 千克;B 种饮料剩下(60-x)千克,含果蔬(60-x)b 千克.A 种饮料倒出部分含果蔬xa 千克,B 种饮料倒出部分含果蔬xb 千克,根据题意,相互倒入混合后浓度相同,∴(40-x)a+xb40=(60-x)b+xa60,整理得120(a-b)=5x(a-b),∵A,B饮料浓度不同,∴a≠b,∴5x=120,解得x=24,则两种饮料一共被倒出了48千克.专题五含百分率问题的实际应用类型一与一次方程结合(2019·重庆A卷)某文明小区有50平方米和80平方米两种户型的住宅,50平方米住宅套数是80平方米住宅套数的2倍,物管公司每月底按每平方米2元收取当月物管费,该小区全部住宅都入住且每户均按时全额缴纳物管费.(1)该小区每月可收取物管费90 000元,问该小区共有多少套80平方米的住宅?(2)为建设“资源节约型社会”,该小区物管公司5月初推出活动一:“垃圾分类送礼物”,50平方米和80平方米的住户分别有40%和20%参加了此次活动,为提高大家的积极性,6月份准备把活动一升级为活动二:“垃圾分类抵扣物管费”,同时终止活动一,经调查与测算,参加活动一的住户会全部参加活动二,参加活动二的住户会大幅增加,这样6月份参加活动的50平方米的总户数在5月份参加活动的同户型户数的基础上将增加2a%,每户物管费将会减少310a%;6月份参加活动的80平方米的总户数在5月份参加活动的同户型户数的基础上将增加6a%,每户物管费将会减少14a%,这样,参加活动的这部分住户6月份总共缴纳的物管费比他们按原方式共缴纳的物管。
2020年中考数学第二轮复习 第17讲 三角形与全等三角形 强基训练+真题 (后含答案)
2020年中考数学第二轮复习教案第十七讲三角形与全等三角形【强基知识】【中考真题考点例析】考点一:三角形三边关系例1(温州)下列各组数可能是一个三角形的边长的是()A.1,2,4B.4,5,9C.4,6,8D.5,5,11强基训练1-1(长沙)如果一个三角形的两边长分别为2和4,则第三边长可能是()A.2B.4C.6D.8强基训练1-2(2019浙江台州)下列长度的三条线段,能组成三角形的是()A.3,4,8 B.5,6,10 C.5,5,11 D.5,6,11考点二:三角形内角、外角的应用例2(2019青岛中考)如图,BD 是①ABC 的角平分线,AE① BD ,垂足为F .若①ABC=35°,① C=50°,则①CDE 的度数为()A. 35°B. 40°C. 45°D. 50°强基训练2-1 (2019年威海)把一块含有45°角的直角三角板与两条长边平行的直尺如图放置(直角顶点在直尺的一条长边上),若①1=23°,则①2=°强基训练2-2(2019年枣庄)将一副直角三角板按如图所示的位置放置,使含30°角的三角板的一条直角边和含45°角的三角板的一条直角边放在同一条直线上,则①α的度数是( ①. A. 45°B. 60°C. 75°D. 85°强基训练2-3 (2019浙江衢州)“三等分角“大约是在公元前五世纪由古希腊人提出来的.借助如图所示的“三等分角仪“能三等分任一角.这个三等分角仪由两根有槽的棒OA 、OB 组成,两根棒在O 点相连并可绕O 转动.C 点固定,OC =CD =DE ,点D 、E 可在槽中滑动,若①BDE =75°,则①CDE 的度数是( ) A .60° B .65° C .75° D .80°强基训练2-4 (2019浙江杭州)在ABC △中,若一个内角等于另外两个角的差,则( )A. 必有一个角等于30°B. 必有一个角等于45︒C. 必有一个角等于60︒D. 必有一个角等于90︒强基训练2-5(2019浙江绍兴)如图,墙上钉着三根木条,,a b c ,量得170∠=︒,2100∠=︒,那么木条,a b 所在直线所夹的锐角是( )ECOAA. 5︒B. 10︒C. 30°D. 70︒考点三:三角形全等的判定和性质例3 (2019年山东滨州)如图,在①OAB和①OCD中,OA=OB,OC=OD,OA>OC ,①AOB=①COD=40°,连接AC,BD交于点M,连接OM,下列结论:①AC=BD;①①AMB=40°;①OM平分①BOC;①MO平分①BMC.其中正确的个数为()A.4 B.3 C.2 D.1强基训练3-1(天门)如图,已知①ABC①①ADE,AB与ED交于点M,BC与ED,AD分别交于点F,N.请写出图中两对全等三角形(①ABC①①ADE除外),并选择其中的一对加以证明.强基训练3-2(宜宾)如图:已知D、E分别在AB、AC上,AB=AC,①B=①C,求证:BE=CD.强基训练3-3(2019浙江温州)如图,在①ABC中,AD是BC边上的中线,E是AB边上一点,过点C作CF①AB交ED的延长线于点F.(1)求证:①BDE①①CDF;(2)当AD①BC,AE=1,CF=2时,求AC的长.考点四:全等三角形开放性问题例4(云南)如图,点B在AE上,点D在AC上,AB=AD.请你添加一个MCDB适当的条件,使①ABC①①ADE (只能添加一个). (1)你添加的条件是 .(2)添加条件后,请说明①ABC①①ADE 的理由.强基训练4-1 (昭通)如图,AF=DC ,BC①EF ,只需补充一个条件 ,就得①ABC①①DEF . 强基训练4-2(2019浙江台州)如图是用8块A 型瓷砖(白色四边形)和8块B 型瓷砖(黑色三角形)不重叠、无空隙拼接而成的一个正方形图案,图案中A 型瓷砖的总面积与B 型瓷砖的总面积之比为( ) A .2①1B .3①2C .3①1D .2①2强基训练4-3 (2019浙江台州)我们知道,各个角都相等,各条边都相等的多边形叫做正多边形,对一个各条边都相等的凸多边形(边数大于3),可以由若干条对角线相等判定它是正多边形.例如,各条边都相等的凸四边形,若两条对角线相等,则这个四边形是正方形. (1)已知凸五边形ABCDE 的各条边都相等.①如图1,若AC =AD =BE =BD =CE ,求证:五边形ABCDE 是正五边形; ①如图2,若AC =BE =CE ,请判断五边形ABCDE 是不是正五边形,并说明理由; (2)判断下列命题的真假.(在括号内填写“真”或“假”)如图3,已知凸六边形ABCDEF 的各条边都相等①若AC =CE =EA ,则六边形ABCDEF 是正六边形;( ) ①若AD =BE =CF ,则六边形ABCDEF 是正六边形.( )HGx FEDCBAy NM P DEADEADEFAB C第十七讲 三角形与全等三角形 参考答案【中考真题考点例析】考点一:三角形三边关系例1 答案:C 强基训练1-1 答案:B 强基训练1-2答案:B考点二:三角形内角、外角的应用例2 答案:C 强基训练2-1 答案:68 强基训练2-2 答案:C 强基训练2-3 答案:D 强基训练2-4 答案:D 强基训练2-5答案:B考点三:三角形全等的判定和性质例3 答案:B 强基训练3-1 答案:①AEM①①ACN ,①BMF①①DNF ,①ABN①①ADM . 选择①AEM①①ACN , 证明:①①ADE①①ABC ,①AE=AC ,①E=①C ,①EAD=①CAB , ①①EAM=①CAN ,①在①AEM 和①ACN 中, ①E =①C AE =AC①EAM =①CAN①①AEM①①ACN (ASA ). 强基训练3-2 答案:证明:在①ABE 和①ACD 中,⎪⎩⎪⎨⎧)公共角A(=∠A ∠)已知AC(= AB )已知C(=∠B ∠ ①①ABE①①ACD (ASA ),①BE=CD (全等三角形的对应边相等). 强基训练3-3答案:解:(1)①CF AB ∥,①B FCD BED F ∠=∠∠=∠,. ①AD 是BC 边上的中线,①BD CD =, ①①BDE①①CDF. (2)①①BDE①①CDF , ①2BE CF ==,①123AB AE BE =+=+=. ①AD BC BD CD ⊥=,, ①3AC AB ==.考点四:全等三角形开放性问题例4 答案: 解:(1)①AB=AD ,①A=①A ,①若利用“AAS”,可以添加①C=①E ,若利用“ASA”,可以添加①ABC=①ADE ,或①EBC=①CDE , 若利用“SAS”,可以添加AC=AE ,或BE=DC ,综上所述,可以添加的条件为①C=①E (或①ABC=①ADE 或①EBC=①CDE 或AC=AE 或BE=DC );故答案为:①C=①E ; (2)选①C=①E 为条件. 理由如下:①在①ABC 和①ADE 中,⎪⎩⎪⎨⎧AD =AB E =∠C ∠A =∠A ∠ ①①ABC①①ADE (AAS ).强基训练4-1 答案:BC=EF , 解析:①AF=DC , ①AF+FC=CD+FC , 即AC=DF , ①BC①EF ,①①EFC=①BCF ,①在①ABC 和①DEF 中,⎪⎩⎪⎨⎧DF =AC BCF =∠EFC ∠BC =EF ①①ABC①①DEF (SAS ). 故答案为:BC=EF .强基训练4-2 答案:A 强基训练4-3答案:证明:(1)① ①AB =BC =CD =DE =EA ,AC =AD =BE =BD =CE ①①ABC ①①BCD ①①CDE ①①DEA ①①EAB ①①ABC =①BCD =①CDE =①DEA =①EAD①五边形ABCDE 是正五边形 ①五边形ABCDE 是正五边形 理由如下:如图,设①1=α,记AC 与EB 的交点为O ①AB =BC =CD =DE =DA ,AC =EC =EB ①①ABC ①①CDE ①①EAB①①ABC =①D =①EAB ,①1=①2=①3=①4=①5=①6=α ①OA =OB ,OC =OE ①EB =EC ,①①EBC =①3+①3=2α①①ABC =①BCD =①CDE =①DEA =①EAB =3α ①五边形ABCDE 是正五边形(2)①假;①假【聚焦中考真题】一、选择题 1.(湘西州)如图,一副分别含有30°和45°角的两个直角三角板,拼成如下图形,其中①C=90°,①B=45°,①E=30°,则①BFD 的度数是( ) A .15° B .25° C .30° D .10°2.(鄂州)一副三角板有两个直角三角形,如图叠放在一起,则①α的度数是( ) A .165° B .120° C .150° D .135° 3.(泉州)在①ABC 中,①A=20°,①B=60°,则①ABC 的形状是( ) A .等边三角形 B .锐角三角形 C .直角三角形 D .钝角三角形 4.(宜昌)下列每组数分别表示三根木棒的长度,将它们首尾连接后,能摆成三角形的一组是( ) A .1,2,6 B .2,2,4 C .1,2,3 D .2,3,4 5.(衡阳)如图,①1=100°,①C=70°,则①A 的大小是( ) A .10° B .20° C .30° D .80°87654321OCDE A6.(河北)如图1,M是铁丝AD的中点,将该铁丝首尾相接折成①ABC,且①B=30°,①C=100°,如图2.则下列说法正确的是()A.点M在AB上B.点M在BC的中点处C.点M在BC上,且距点B较近,距点C较远D.点M在BC上,且距点C较近,距点B较远7.(铁岭)如图,在①ABC和①DEC中,已知AB=DE,还需添加两个条件才能使①ABC①①DEC,不能添加的一组条件是()A.BC=EC,①B=①E B.BC=EC,AC=DCC.BC=DC,①A=①D D.①B=①E,①A=①D8.(台州)已知①A1B1C1①A2B2C2的周长相等,现有两个判断:①若A1B1=A2B2,A1C1=A2C2,则①A1B1C1①①A2B2C2;①若①A1=①A2,①B1=①B2,则①A1B1C1①①A2B2C2,对于上述的两个判断,下列说法正确的是()A.①正确,①错误B.①错误,①正确C.①,①都错误D.①,①都正确9.(邵阳)如图所示,点E是矩形ABCD的边AD延长线上的一点,且AD=DE,连结BE 交CD于点O,连结AO,下列结论不正确的是()A.①AOB①①BOC B.①BOC①①EOD C.①AOD①①EOD D.①AOD①①BOC10.(河北)一个正方形和两个等边三角形的位置如图所示,若①3=50°,则①1+①2=()A.90°B.100°C.130°D.180°11.(陕西)如图,在四边形ABCD中,AB=AD,CB=CD,若连接AC、BD相交于点O,则图中全等三角形共有()A.1对B.2对C.3对D.4对二、填空题12.(威海)将一副直角三角板如图摆放,点C在EF上,AC经过点D.已知①A=①EDF=90°,AB=AC.①E=30°,①BCE=40°,则①CDF= .13.(黔东南州)在①ABC中,三个内角①A、①B、①C满足①B-①A=①C-①B,则①B= 度.14.(柳州)如图,①ABC①①DEF,请根据图中提供的信息,写出x= .15.(巴中)如图,已知点B、C、F、E在同一直线上,①1=①2,BC=EF,要使①ABC①①DEF,还需添加一个条件,这个条件可以是.(只需写出一个)16.(郴州)如图,点D、E分别在线段AB,AC上,AE=AD,不添加新的线段和字母,要使①ABE①①ACD,需添加的一个条件是(只写一个条件即可).17.(达州)如图,在①ABC中,①A=m°,①ABC和①ACD的平分线交于点A1,得①A1;①A1BC 和①A1CD的平分线交于点A2,得①A2;…①A2012BC和①A2012CD的平分线交于点A2013,则①A2013= 度.三、解答题18.(聊城)如图,四边形ABCD中,①A=①BCD=90°,BC=CD,CE①AD,垂足为E,求证:AE=CE.19.(菏泽)如图,在①ABC中,AB=CB,①ABC=90°,D为AB延长线上一点,点E在BC边上,且BE=BD,连结AE、DE、DC.(1)求证:①ABE①①CBD;(2)若①CAE=30°,求①BDC的度数.20.(临沂)如图,在①ABC中,AD是BC边上的中线,E是AD的中点,过点A作BC的平行线交BE的延长线于点F,连接CF.(1)求证:AF=DC;(2)若AB①AC,试判断四边形ADCF的形状,并证明你的结论.21.(东营)(1)如图(1),已知:在①ABC中,①BAC=90°,AB=AC,直线m经过点A,BD①直线m,CE①直线m,垂足分别为点D、E.证明:DE=BD+CE.(2)如图(2),将(1)中的条件改为:在①ABC中,AB=AC,D、A、E三点都在直线m 上,并且有①BDA=①AEC=①BAC=α,其中α为任意锐角或钝角.请问结论DE=BD+CE是否成立?如成立,请你给出证明;若不成立,请说明理由.(3)拓展与应用:如图(3),D、E是D、A、E三点所在直线m上的两动点(D、A、E 三点互不重合),点F为①BAC平分线上的一点,且①ABF和①ACF均为等边三角形,连接BD、CE,若①BDA=①AEC=①BAC,试判断①DEF的形状.22.(烟台)已知,点P是直角三角形ABC斜边AB上一动点(不与A,B重合),分别过A,B向直线CP作垂线,垂足分别为E,F,Q为斜边AB的中点.(1)如图1,当点P与点Q重合时,AE与BF的位置关系是,QE与QF的数量关系式;(2)如图2,当点P在线段AB上不与点Q重合时,试判断QE与QF的数量关系,并给予证明;(3)如图3,当点P在线段BA(或AB)的延长线上时,此时(2)中的结论是否成立?请画出图形并给予证明.23.(玉林)如图,AB=AE,①1=①2,①C=①D.求证:①ABC①①AED.24.(湛江)如图,点B、F、C、E在一条直线上,FB=CE,AB①ED,AC①FD,求证:AC=DF.25.(荆州)如图,①ABC与①CDE均是等腰直角三角形,①ACB=①DCE=90°,D在AB上,连结BE.请找出一对全等三角形,并说明理由.26.(十堰)如图,点D,E在①ABC的边BC上,AB=AC,BD=CE.求证:AD=AE.27.(佛山)课本指出:公认的真命题称为公理,除了公理外,其他的真命题(如推论、定理等)的正确性都需要通过推理的方法证实.(1)叙述三角形全等的判定方法中的推论AAS;(2)证明推论AAS.要求:叙述推论用文字表达;用图形中的符号表达已知、求证,并证明,证明对各步骤要注明依据.28.(内江)已知,如图,①ABC和①ECD都是等腰直角三角形,①ACD=①DCE=90°,D 为AB边上一点.求证:BD=AE.29.(舟山)如图,①ABC与①DCB中,AC与BD交于点E,且①A=①D,AB=DC.(1)求证:①ABE①DCE ;(2)当①AEB=50°,求①EBC 的度数?30.(荆门)如图1,在①ABC 中,AB=AC ,点D 是BC 的中点,点E 在AD 上.(1)求证:BE=CE ;(2)如图2,若BE 的延长线交AC 于点F ,且BF①AC ,垂足为F ,①BAC=45°,原题设其它条件不变.求证:①AEF①①BCF .31.(随州)如图,点F 、B 、E 、C 在同一直线上,并且BF=CE ,①ABC=①DEF .能否由上面的已知条件证明①ABC①①DEF ?如果能,请给出证明;如果不能,请从下列三个条件中选择一个合适的条件,添加到已知条件中,使①ABC①①DEF ,并给出证明.提供的三个条件是:①AB=DE ;①AC=DF ;①AC①DF .第十七讲 三角形与全等三角形 参考答案【聚焦中考真题】一、选择题1-5 AADDC 6-10 CCDAB 11 C二、填空题12答案:25°13答案:6014答案:2015答案:CA=FD16答案:∠B=∠C17答案:20152m解:①A1B 平分①ABC ,A1C 平分①ACD ,①①A1=21①A ,①A2=21①A1=221①A ,…①①A2 015=201521①A=20152m。
2020人教版 初中数学中考二轮复习讲练---代数综合题(含解析)
代数综合题知识梳理教学重、难点作业完成情况典题探究例1 已知抛物线c bx ax y ++=2与y 轴交于点A (0,3),与x 轴分别交于B (1,0)、C (5,0)两点.(1)求此抛物线的解析式;(2)若点D 为线段OA 的一个三等分点, 求直线DC 的解析式;(3)若一个动点P 自OA 的中点M 出发,先到达x 轴上的某点(设为点E ),再到达抛物线的对称轴上某点(设为点F ),最后运动到点A ,求使点P 运动的总路径最短的点E 、点F 的坐标,并求出这个最短总路径的长.例2 在平面直角坐标系xOy 中,抛物线223y mx mx n =++经过(35)(02)P A ,,,两点. (1)求此抛物线的解析式;(2)设抛物线的顶点为B ,将直线AB 沿y 轴向下平移两个单位得到直线,直线与抛物线的对称轴交于C 点,求直线的解析式;(3)在(2)的条件下,求到直线OB OC BC ,,距离相等的点的坐标.例3在平面直角坐标系xOy 中,抛物线2y x bx c =++与x 轴交于A 、B 两点(点A 在点B的左侧..),与y 轴交于点C ,点B 的坐标为(3,0),将直线y kx =沿y 轴向上平移 3个单位长度后恰好经过B 、C 两点. (1) 求直线BC 及抛物线的解析式;(2)设抛物线的顶点为D ,点P 在抛物线的对称轴上,且∠APD =∠ACB ,求点P的坐标;(3)连结CD ,求∠OCA 与∠OCD 两角和的度数.例4在平面直角坐标系xOy 中,抛物线23454122+-++--=m m x m x m y 与x 轴的交点分别为原点O 和点A ,点B(2,n)在这条抛物线上.(1) 求点B 的坐标;(2) 点P 在线段OA 上,从O 点出发向点运动,过P 点作x 轴的垂线,与直线OB 交于点E 。
延长PE 到点D 。
使得ED=PE. 以PD 为斜边在PD 右侧作等腰直角三角形PCD(当P 点运动时,C 点、D 点也随之运动)当等腰直角三角形PCD 的顶点C 落在此抛物线上时,求OP 的长;若P 点从O 点出发向A 点作匀速运动,速度为每秒1个单位,同时线段OA 上另一点Q从A点出发向O点作匀速运动,速度为每秒2个单位(当Q点到达O点时停止运动,P点也同时停止运动)。
2020年中考数学二轮复习压轴专题:反比例函数(解析版)
2020年中考数学二轮复习压轴专题:《反比例函数》1.如图,在平面直角坐标系中,矩形ABCO的顶点A,C分别在x轴和y轴的正半轴上,顶点B的坐标为(4,2),AC的垂直平分线分别交BC,OA于点D,E,过点D的反比例函数的图象交AB于点F.(1)求反比例函数的表示式;(2)判断DF与AC的位置关系,并说明理由;(3)连接OD,在反比例函数图象上存在点G,使∠ODG=90°,直接写出点G的坐标.解:(1)连接AD,∵DE垂直平分AC,∴AD=CD,∵B(4,2),∴AB=2,BC=4.设AD=CD=x,则BD=4﹣x,∵四边形OABC矩形,∴BC∥OA,∠B=90°.在Rt△ABD中,AD2=BD2+AB2.即x2=(4﹣x)2+22.解得.∴点.将点的坐标代入中,解得:.∴所求反比例函数表达式为;(2)DF∥AC.将x=4代入得,,∴点.∵B(4,2),A(4,0),C(0,2),,∴AB=2,,BC=4,.∴,.∴.∵∠B=∠B,∴△BDF∽△BCA,∴∠BDF=∠BCA.∴DF∥AC;(3)存在,∵,∴OC=2,CD=,如图,∵G点在反比例函数图象上,∴设G(m,),过G作GH⊥BC于H,∴GH=﹣2,DH=﹣m,∵∠ODG=90°,∴∠GDH+∠CDO=90°,∵∠CDO+∠COD=90°,∴∠GDH=∠COD,∴△DHG∽△OCD,∴=,∴=,解得:m=,m=(不合题意舍去),∴.2.如图,正六边形ABCDEF的对称中心P在反比例函数y=(k>0,x>0)的图象上边CD在x轴上,点B在y轴上,已知CD=4.(1)点A是否在该反比例函数的图象上?请说明理由.(2)若该反比例函数图象与DE交于点Q,求点Q的横坐标;(3)平移正六边形ABCDEF,使其一边的两个端点恰好都落在该反比例函数的图象上,试描述平移过程.解:(1)过点P作x轴垂线PG,连接BP,CP,∵P是正六边形ABCDEF的对称中心,CD=4,∴BP=CP=4,G是CD的中点,∴PG=2,∴P(4,2),∵P在反比例函数y=上,∴k=8,∴y=,连接AC交PB于G,则AC⊥PB,由正六边形的性质得A(2,4),∴点A在反比例函数图象上;(2)过Q作QM⊥x轴于M,∵六边形ABCDEF为正六边形,∴∠EDM=60°,设DM=b,则QM=b,∴Q(b+6, b),∵该反比例函数图象与DE交于点Q,∴b(b+6)=8,解得:b=﹣3+,b=﹣3﹣(不合题意舍去),∴点Q的横坐标为3+;(3)连接AP,A(2,4),B(0,2),C(2,0),D(6,0),E(8,),F(6,4),设正六边形向左平移m个单位,向上平移n个单位,则平移后点的坐标分别为∴A(2﹣m,4+n),B(﹣m,2+n),C(2﹣m,n),D(6﹣m,n),E(8﹣m,2+n),F(6﹣m,4+n),①将正六边形向左平移4个单位后,E(4,2),F(2,4);则点E与F都在反比例函数图象上;②将正六边形向右平移2个单位,再向上平移2个单位后,C(4,2),B(2,4)则点B与C都在反比例函数图象上;3.如图,在直角坐标系中,点B的坐标为(2,1),过点B分别作x 轴、y轴的垂线,垂足分别是C,A,反比例函数y=(x>0)的图象交AB,BC分别于点E,F.(1)求直线EF的解析式;(2)求四边形BEOF的面积;(3)若点P在y轴上,且△POE是等腰三角形,请直接写出点P 的坐标.解:(1)∵点B的坐标为(2,1),过点B分别作x轴、y轴的垂线,垂足分别是C,A,∴点A,点E纵坐标为1,点C,点F的横坐标为2,∵点E,点F在反比例函数y=(x>0)的图象上,∴点E(1,1),点F(2,),设直线EF的解析式的解析式为:y=kx+b,∴∴∴直线EF的解析式的解析式为:y=﹣x+;(2)∵四边形BEOF的面积=S四边形ABCO﹣S△AOE﹣S△OCF,∴四边形BEOF的面积=2﹣﹣=1;(3)∵点E(1,1),∴OE=,若OE=OP=,则点P(0,)或(0,﹣),若OE=EP,且AE⊥AO,∴OA=AP=1,∴点P(0,2)若OP=PE,∴点P在OE的垂直平分线上,即点P(0,1),综上所述:当点P(0,)或(0,﹣)或(0,2)或(0,1)时,△POE是等腰三角形.4.如图,A、D、B、C分别为反比例函数y=与y=(x>0,0<n <x)图象上的点,且AC∥x轴,BD∥y轴,AC与BD相交于点P,连接AD、BC.(1)若点A坐标A(1,2),点B坐标B(2,5),请直接写出点C、点D、点P的坐标;(2)连接AB、CD,若四边形ABCD是菱形,且点P的坐标为(3,2),请直接写出m、n之间的数量关系式;(3)若A、B为动点,△APD与△CPB是否相似?为什么?解:(1)∵点A坐标A(1,2)反比例函数y=上的点,点B坐标B(2,5)反比例函数y=上的点,∴m=1×2=2,n=2×5=10,∵AC∥x轴,BD∥y轴,∴点C的纵坐标为2,点D的横坐标为2,点P坐标(2,2)∴点C(5,2),点D(2,1);(2)∵点P的坐标为(3,2),∴点A,点C纵坐标为2,点B,点D的横坐标为3,∵四边形ABCD是菱形,∴AP=PC,BP=PD,设点A(x,2),则点C(6﹣x,2),∴m=2x,点D(,3),n=12﹣2x,点B(,3),∵BP=PD,∴2﹣=﹣2,∴m+n=12;(3)△APD∽△CPB,理由如下:设点P的坐标为(a,b),则点A的坐标为(,b)、点D的坐标为(a,),点B的坐标为(a,)、点C的坐标为(,b),∴PA=a﹣=,PC=,PD=b﹣=,PB=,∴,,即,且∠APD=∠CPB,∴△APD∽△CPB.5.如图,已知一次函数y=x﹣3与反比例函数y=的图象相交于点A(4,n),与x轴相交于点B.(1)求n的值和k的值以及点B的坐标;(2)观察反比例函数y=的图象,当y≥﹣3时,请直接写出自变量x的取值范围;(3)以AB为边作菱形ABCD,使点C在x轴正半轴上,点D在第一象限,求点D的坐标;(4)在y轴上是否存在点P,使PA+PB的值最小?若存在,请求出点P的坐标;若不存在,请说明理由.解:(1)把点A(4,n)代入一次函数y=x﹣3,可得n=×4﹣3=3;把点A(4,3)代入反比例函数y=,可得3=,解得k=12.∵一次函数y=x﹣3与x轴相交于点B,∴x﹣3=0,解得x=2,∴点B的坐标为(2,0),(2)当y=﹣3时,﹣3=,解得x=﹣4.故当y≥﹣3时,自变量x的取值范围是x≤﹣4或x>0.(2)如图,过点A作AE⊥x轴,垂足为E,过点D作DF⊥x轴,垂足为F,∵A(4,3),B(2,0),∴OE=4,AE=3,OB=2,∴BE=OE﹣OB=4﹣2=2,在Rt△ABE中,AB===,∵四边形ABCD是菱形,∴AB=CD=B C=,AB∥CD,∴∠ABE=∠DCF,∵AE⊥x轴,DF⊥x轴,∴∠AEB=∠DFC=90°,在△ABE与△DCF中,,∴△ABE≌△DCF(AAS),∴CF=BE=2,DF=AE=3,∴OF=OB+BC+CF=2++2=4+,∴点D的坐标为(4+,3).(4)存在,如图2,作点B(2,0)关于y轴的对称点Q的坐标为(﹣2,0),∴直线AQ的关系式为y=x+1,∴直线AQ与y轴的交点为P(0,1).6.定义:如图1,点P为∠AOB平分线上一点,∠MPN的两边分别与射线OA,OB交于M,N两点,若∠MPN绕点P旋转时始终满足OM•ON=OP2,则称∠MPN是∠AOB的“相关角”.(1)如图1,已知∠AOB=60°,点P为∠AOB平分线上一点,∠MPN的两边分别与射线OA,OB交于M,N两点,且∠MPN=150°.求证:∠MPN是∠AOB的“相关角”;(2)如图2,已知∠AOB=α(0°<α<90°),OP=3,若∠MPN 是∠AOB的“相关角”,连结MN,用含α的式子分别表示∠MPN的度数和△MON的面积;(3)如图3,C是函数y=(x>0)图象上的一个动点,过点C 的直线CD分别交x轴和y轴于点A,B两点,且满足BC=3CA,∠AOB的“相关角”为∠APB,请直接写出OP的长及相应点P的坐标.(1)证明:∵∠AOB=60°,P为∠AOB的平分线上一点,∴∠AOP=∠BOP=∠AOB=30°,∵∠MOP+∠OMP+∠MPO=180°,∴∠OMP+∠MPO=150°,∵∠MPN=150°,∴∠MPO+∠OPN=150°,∴∠OMP=∠OPN,∴△MOP∽△PON,∴,∴OP2=OM•ON,∴∠MPN是∠AOB的“相关角”;(2)解:∵∠MPN是∠AOB的“相关角”,∴OM•ON=OP2,∴,∵P为∠AOB的平分线上一点,∴∠MOP=∠NOP=α,∴△MOP∽△PON,∴∠OMP=∠OPN,∴∠MPN=∠OPN+∠OPM=∠OMP+∠OPM=180°﹣α,即∠MPN=180°﹣α;过点M作MH⊥OB于H,如图2,则S△MON=ON•MH=ON•OM sinα=OP2•sinα,∵OP=3,∴S△MON=sinα;(3)设点C(a,b),则ab=4,过点C作CH⊥OA于H;分两种情况:①当点B在y轴正半轴上时;Ⅰ、当点A在x轴的负半轴上,如图3所示:BC=3CA不可能,Ⅱ、当点A在x轴的正半轴上时,如图4所示:∵BC=3CA,∴=,∵CH∥OB,∴△ACH∽△ABO,∴=,∴∴OB=4b,OA=a,∴OA•OB=a•4b=ab=,∵∠APB是∠AOB的“相关角”,∴OP2=OA•OB,∴OP===,∵∠AOB=90°,OP平分∠AOB,∴点P的坐标为:(,);②当点B在y轴的负半轴上时,如图5所示:∵BC=3CA,∴AB=2CA,∴=,∵CH∥OB,∴△ACH∽△ABO,∴=,∴=∴OB=2b,OA=a,∴OA•OB=a•2b=ab=,∵∠APB是∠AOB的“相关角”,∴OP2=OA•OB,∴OP===,∵∠AOB=90°,OP平分∠AOB,∴点P的坐标为:(,﹣);综上所述:点P的坐标为:(,)或(,﹣).7.如图1,已知点A(a,0),B(0,b),且a、b满足+(a+b+3)2=0,平等四边形ABCD的边AD与y轴交于点E,且E为AD中点,双曲线y=经过C、D两点.(1)a=﹣1 ,b=﹣2 ;(2)求D点的坐标;(3)点P在双曲线y=上,点Q在y轴上,若以点A、B、P、Q 为顶点的四边形是平行四边形,试求满足要求的所有点Q的坐标;(4)以线段AB为对角线作正方形AFBH(如图3),点T是边AF上一动点,M是HT的中点,MN⊥HT,交AB于N,当T在AF上运动时,的值是否发生改变?若改变,求出其变化范围;若不改变,请求出其值,并给出你的证明.解:(1)∵+(a+b+3)2=0,且≥0,(a+b+3)2≥0,∴,解得:.故答案是:﹣1;﹣2;(2)∴A(﹣1,0),B(0,﹣2),∵E为AD中点,∴x D=1,设D(1,t),又∵四边形ABCD是平行四边形,∴C(2,t﹣2).∴t=2t﹣4.∴t=4.∴D(1,4);(3)∵D(1,4)在双曲线y=上,∴k=xy=1×4=4.∴反比例函数的解析式为y=,∵点P在双曲线y=上,点Q在y轴上,∴设Q(0,y),P(x,),①当AB为边时:如图1所示:若ABPQ为平行四边形,则=0,解得x=1,此时P1(1,4),Q1(0,6);如图2所示:若ABQP为平行四边形,则=,解得x=﹣1,此时P2(﹣1,﹣4),Q2(0,﹣6);②如图3所示:当AB为对角线时:AP=BQ,且AP∥BQ;∴=,解得x=﹣1,∴P3(﹣1,﹣4),Q3(0,2);综上所述,Q1(0,6);Q2(0,﹣6);Q3(0,2);(4)如图4,连接NH、NT、NF,∵MN是线段HT的垂直平分线,∴NT=NH,∵四边形AFBH是正方形,∴∠ABF=∠ABH,在△BFN与△BHN中,,∴△BFN≌△BHN(SAS),∴NF=NH=NT,∴∠NTF=∠NFT=∠AHN,四边形ATNH中,∠ATN+∠NTF=180°,而∠NTF=∠NFT=∠AHN,所以,∠ATN+∠AHN=180°,所以,四边形ATNH内角和为360°,所以∠TN H=360°﹣180°﹣90°=90°.∴MN=HT,∴=.即的定值为.8.已知:一次函数y=mx+10(m<0)的图象与反比例函数y=(k >0)的图象相交于A、B两点(A在B的右侧).(1)当A(8,2)时,求这个一次函数和反比例函数的解析式,以及B点的坐标;(2)在(1)的条件下,平面内存在点P,使得以A、B、O、P为顶点的四边形为平行四边形,请直接写出所有符合条件的点P的坐标;(3)当m=﹣2时,设A(a,﹣2a+10),B(b,﹣2b+10)时,直线OA与此反比例函数图象的另一支交于另一点C,连接BC交y轴于点D.若,求△ABC的面积.解:(1)把A(8,2)代入y=,得k=8×2=16.∴反比例函数的解析式为y=,把A(8,2)代入y=mx+10,得到m=﹣1,∴一次函数的解析式为y=﹣x+10,解方程组,得或,∴点B的坐标为(2,8)(2)如图1,设P的坐标为(x,y),∵四边形AP1BO是平行四边形,∴AB、OP1互相平分,∵A(8,2),B(2,8),O(0,0),∴=,=,∴x=10,y=10,∴P1(10,10),同理求得,P2(﹣6,6),P3(6,﹣6);(3)过点B作BS⊥y轴于S,过点C作CT⊥y轴于T,连接OB,如图2,则有BS∥CT,∴△CTD∽△BSD,∴=,∵=,∴==,∵A(a,﹣2a+10),B(b,﹣2b+10),∴C(﹣a,2a﹣10),CT=a,BS=b,∴=,即b=a.∵A(a,﹣2a+10),B(b,﹣2b+10)都在反比例函数y=的图象上,∴a(﹣2a+10)=b(﹣2b+10),∴a(﹣2a+10)=a(﹣2×a+10).∵a≠0,∴﹣2a+10=(﹣2×a+10),解得:a=3.∴A(3,4),B(2,6),C(﹣3,﹣4).设直线BC的解析式为y=px+q,则有,解得:,∴直线BC的解析式为y=2x+2.当x=0时,y=2,则点D(0,2),OD=2,∴S△COB=S△ODC+S△ODB=OD•CT+OD•BS=×2×3+×2×2=5.∵OA=OC,∴S△AOB=S△COB,∴S△ABC=2S△COB=10.9.如图,已知直线y=ax+b与双曲线y=(x>0)交于A(x1,y1),B(x2,y2)两点,点A与点B不重合,直线AB与x轴交于点P(x0,0),与y轴交于点C(1)若A、B两点坐标分别为(1,4),(4,y2),求点P的坐标;(2)若b=y1+1,x0=6,且y1=2y2,求A,B两点的坐标;(3)若将(1)中的点A,B绕原点O顺时针旋转90°,A点对应的点为A′,B点的对应点为B′点,连接AB′,A′B′,动点M 从A点出发沿线段AB′以每秒1个单位长度的速度向终点B′运动;动点N同时从B′点出发沿线段B′A′以每秒1个单位长度的速度向终点A′运动,当其中一个点停止运动时另一个点也随之停止运动.设运动的时间为t秒,试探究:是否存在使△MNB′为等腰直角三角形的t值,若存在,求出t的值;若不存在,说明理由.解:(1)∵直线y=ax+b与双曲线y=(x>0)交于A(1,4)∴k=1×4=4,∴y=,∵B(4,y2)在反比例函数的图象上,∴y2==1,∴B(4,1),∵直线y=ax+b经过A、B两点,∴,解得,∴直线为y=﹣x+5,令y=0,则x=5,∴P(5,0);(2)如图,作AD⊥y轴于D,AE⊥x轴于E,BF⊥x轴于F,BG⊥y 轴于G,AE、BG交于H,则AD∥BG∥x轴,AE∥BF∥y轴,∴=,==,∵b=y1+1,y1=2y2,∴=,==,∴B(, y1),∵A,B两点都是反比例函数图象上的点,∴x1•y1=•y1,解得x1=2,代入=,解得y1=2,∴A(2,2),B(4,1);(3)存在,如图2,∵A、B两点坐标分别为(1,4),(4,1),将B绕原点O顺时针旋转90°,∴B′(1,﹣4),∴AB′=8,由题意得:AM=BN=t,∴B′M=8﹣t,∵△MNB′为等腰直角三角形,∴①当∠B′N1M1=90°,即B′M1=B′N1,∴8﹣t=t,解得:t=8﹣8;②当∠B′M2N2=90°,即B′N2=B′M2,∴t=(8﹣t),解得:t=16﹣8;综上所述,t的值为8﹣8或16﹣8.10.平面直角坐标系中,A(,0)、B(,3).(1)如图1,C点在y轴上,AC⊥AB,请直接写出C点的坐标.(2)如图2,以AB为边作矩形ABDE,D、E在第一象限内,且D、E两点均在双曲线的图象上,求k的值.(3)将(2)中求得的线段DE在(2)中的双曲线(x>0)的图象上滑动(D点始终在E点左边),作DM⊥y轴于M,EN⊥x轴于N.若MN=,请直接写出DM•EN的值.解:(1)过B作BD⊥x轴于D,∵A(,0)、B(,3),∴BD=3,AD=2,OA=,∵AC⊥AB,∴∠ADB=∠BAC=∠AOC=90°,∴∠BAD+∠ABD=∠BAD+∠CAO=90°,∴∠ABD=∠CAO,∴△ABD∽△CAO,∴,∴,∴OC=,∴C(0,);(2)∵四边形ABDE是矩形,∵A(,0)、B(,3),设E(m,n),则D(m﹣2,n+3),∵D、E均在双曲线上∴mn=(m﹣2)(n+3),过点B作BF⊥x轴于F,过点E作EG⊥x轴于G,由(1)证得△ABF∽△EAG,∴,∴,得2m+1=3n,联立,解得,∴k=mn=12;(3)∵DE=AB=,∵MN=,∴延长MD,NE交于G,则四边形MONG是矩形,设M(0,m)、N(n,0)∴D(,m)、E(n,)、G(n,m),∴直线MN的解析式为y=﹣x+m;直线DE的解析式为:y=﹣x+m+,∴MN∥DE,∴,∴,得mn=4∴DM•EN=.11.综合与探究:如图所示,在平面直角坐标系中,直线y=x+2与反比例函数y=(k>0)的图象交于A(a,3),B(﹣3,b)两点,过点A作AC ⊥x轴于点C,过点B作BD⊥x轴于点D.(1)求a,b的值及反比例函数的函数表达式;(2)若点P在线段AB上,且S△ACP=S△BDP,请求出此时点P的坐标;(3)小颖在探索中发现:在x轴正半轴上存在点M,使得△MAB是以∠A为顶角的等腰三角形.请你直接写出点M的坐标.解:(1)∵直线y=x+2与反比例函数y=(k>0)的图象交于A (a,3),B(﹣3,b)两点,∴a+2=3,﹣3+2=b,∴a=1,b=﹣1.∴A(1,3),B(﹣3,﹣1),∵点A(1,3)在反比例函数y=上,∴k=1×3=3,∴反比例函数的函数表达式为y=,(2)设点P(x P,y P),∵A(1,3),∴C(1,0).∴AC=3.∵B(﹣3,﹣1),∴D(﹣3,0),∴BD=1,∴AC(1﹣x P)=DB(x P+3),解得:x P=0,∴y P=2,∴点P的坐标为(0,2);(3)∵△MAB是以∠A为顶角的等腰三角形,∴AB=AM,∵AB==4,∵AC⊥x轴,∴CM===,∴OM=1+,∴M(1+,0).12.如图1,在矩形中,OA=4,OC=3,分别以OC,OA所在的直线为x轴、y轴,建立如图所示的平面直角坐标系,连接OB,反比例函数y=(x>0)的图象经过线段OB的中点D,并与矩形的两边交于点E和点F,直线l:y=ax+b经过点E和点F.(1)连接OE、OF,求△OEF的面积;(2)如图2,将线段OB绕点O顺时针旋转﹣定角度,使得点B的对应点H好落在x轴的正半轴上,连接BH,作OM⊥BH,点N为线段OM上的一个动点,求的最小值.解:(1)在矩形ABCO中,∵OA=BC=4,OC=AB=3,∴B(3,4),∵OD=DB,∴D(,2),∵y=经过D(,2),∴k=3,∴反比例函数的解析式为y=,∴y=4时,x=,∴E(,4),当x=3时,y=1,∴F(3,1),∴S△OEF=S矩形ABCO﹣S△AOE﹣S△OCF﹣S△EFB=3×4﹣×4×﹣×3×1﹣×(3﹣)(4﹣1)=12﹣﹣﹣=;(2)作NJ⊥BO于J,HK⊥BO于K,如图2所示:OB===5,由旋转的性质得:OB=OH=5,∴CH=OH﹣OC=5﹣3=2,∴BH═==2,∴sin∠CBH═==,∵OM⊥BH,∴∠OMH=∠BCH=90°,∵∠MOH+∠OHM=90°,∠CBH+∠CHB=90°,∴∠MOH=∠CBH,∵OB=OH,OM⊥BH,∴∠MOB=∠MOH=∠CBH,∴sin∠NOJ=,∴NJ=ON•sin∠NOJ=ON,∴NH+ON=NH+NJ,根据垂线段最短可知,当J,N,H三点共线,且与HK重合时,HN+ON 的值最小,最小值为HK的长,∵OB=OH, BC•OH=HK•OB,∴HK=BC=4,∴HN+ON是最小值为4.13.已知一次函数y=kx﹣(2k+1)的图象与x轴和y轴分别交于A、B两点,与反比例函数y=﹣的图象分别交于C、D两点.(1)如图1,当k=1,点P在线段AB上(不与点A、B重合)时,过点P作x轴和y轴的垂线,垂足为M、N.当矩形OMPN的面积为2时,求出点P的位置;(2)如图2,当k=1时,在x轴上是否存在点E,使得以A、B、E为顶点的三角形与△BOC相似?若存在,求出点E的坐标;若不存在,说明理由;(3)若某个等腰三角形的一条边长为5,另两条边长恰好是两个函数图象的交点横坐标,求k的值.解:(1)当k=1,则一次函数解析式为:y=x﹣3,反比例函数解析式为:y=﹣,∵点P在线段AB上∴设点P(a,a﹣3),a>0,a﹣3<0,∴PN=a,PM=3﹣a,∵矩形OMPN的面积为2,∴a×(3﹣a)=2,∴a=1或2,∴点P(1,﹣2)或(2,﹣1)(2)∵一次函数y=x﹣3与x轴和y轴分别交于A、B两点,∴点A(3,0),点B(0,﹣3)∴OA=3=OB,∴∠OAB=∠OBA=45°,AB=3,∵x﹣3=﹣∴x=1或2,∴点C(1,﹣2),点D(2,﹣1)∴BC==,设点E(x,0),∵以A、B、E为顶点的三角形与△BOC相似,且∠CBO=∠BAE=45°,∴,或,∴,或=,∴x=1,或x=﹣6,∴点E(1,0)或(﹣6,0)(3)∵﹣=kx﹣(2k+1),∴x=1,x=,∴两个函数图象的交点横坐标分别为1,,∵某个等腰三角形的一条边长为5,另两条边长恰好是两个函数图象的交点横坐标,∴1=,或5=∴k=14.如图,已知直线y=kx+b与反比例函数y=(x>0)的图象交于A(1,4)、B(4,1)两点,与x轴交于C点.(1)求一次函数与反比例函数的解析式;(2)根据图象直接回答:在第一象限内,当x取何值时,一次函数值大于反比例函数值?(3)点P是y=(x>0)图象上的一个动点,作PQ⊥x轴于Q点,连接PC,当S△CPQ=S△CAO时,求点P的坐标.解:(1)把A(1,4)代入y=(x>0),得m=1×4=4,∴反比例函数为y=;把A(1,4)和B(4,1)代入y=kx+b得,解得:,∴一次函数为y=﹣x+5.(2)根据图象得:当1<x<4时,一次函数值大于反比例函数值;(3)设P(m,),由一次函数y=﹣x+5可知C(5,0),∴S△CAO==10,∵S△CPQ=S△CAO,∴S△CPQ=5,∴|5﹣m|•=5,解得m=或m=﹣(舍去),∴P(,).15.综合与探究如图1,平面直角坐标系中,直线l:y=2x+4分别与x轴、y轴交于点A,B.双曲线y=(x>0)与直线l交于点E(n,6).(1)求k的值;(2)在图1中以线段AB为边作矩形ABCD,使顶点C在第一象限、顶点D在y轴负半轴上.线段CD交x轴于点G.直接写出点A,D,G的坐标;(3)如图2,在(2)题的条件下,已知点P是双曲线y=(x>0)上的一个动点,过点P作x轴的平行线分别交线段AB,CD于点M,N.请从下列A,B两组题中任选一组题作答.我选择①组题.A.①当四边形AGNM的面积为5时,求点P的坐标;②在①的条件下,连接PB,PD.坐标平面内是否存在点Q(不与点P重合),使以B,D,Q为顶点的三角形与△PBD全等?若存在,直接写出点Q的坐标;若不存在,说明理由.B.①当四边形AGNM成为菱形时,求点P的坐标;②在①的条件下,连接PB,PD.坐标平面内是否存在点Q(不与点P重合),使以B,D,Q为顶点的三角形与△PBD全等?若存在,直接写出点Q的坐标;若不存在,说明理由.解:(1)由已知可得A(﹣2,0),B(0,4),E(1,6),∴k=6;(2)∵AB⊥BC,∴BC的解析式为y=﹣x+4,联立,∴C(2,3),∵CD=AB=2,∴D(0,﹣1),∴CD的解析式为y=2x﹣1,∴G(,0);(3)A①设P(m,),∵MN∥x轴,∴M(﹣2,),N(+,),∴MN=,∵四边形AGNM的面积为5,∴×=5,∴m=3,∴P(3,2);②Q(3,1)、Q(﹣3,1)、Q(﹣3,2)时B,D,Q为顶点的三角形与△PBD全等.B①∵四边形AGNM成为菱形,MN=AM,∴=∴m=,∴P(,);②Q(﹣,)、Q(,3﹣)、Q(﹣,3﹣)时B,D,Q为顶点的三角形与△PBD全等.。
2020中考数学大二轮专题复习全辑(课件)题型二 圆的证明与计算
课件目录
首页
末页
(1)解:如答图①,连接 BC,AC,AD. ∵CD⊥AB,AB 是⊙O 的直径,
∴A︵C=A︵D,CE=DE=12CD=3,
∴∠ACD=∠ABC,且∠AEC=∠CEB, ∴△ACE∽△CBE,
第 1 题答图①
课件目录
首页
末页
∴ACEE=CBEE, 即13=B3E, ∴BE=9, ∴AB=AE+BE=10, ∴⊙O 的半径为 5.
课件目录
首页
末页
(2)解:∵AB 为⊙O 的直径, ∴BC⊥AD. ∵AB⊥BD, ∴△ABC∽△BDC, ∴BACC=CBDC, 即 BC2=AC·CD.
课件目录
首页
末页
∵AC=3CD, ∴BC2=13AC2, ∴tan∠A=BACC= 33, ∴∠A=30°.
课件目录
首页
末页
类型之二 与相似三角形有关
课件目录
首页
末页
(1)证明:∵AB 是⊙O 的直径,
∴∠ACD=∠ACB=90°. ∵AD 是⊙O 的切线, ∴∠BAD=90°, ∴∠ACD=∠DAB=90°. ∵∠D=∠D, ∴△DAC∽△DBA.
课件目录
首页
末页
(2)证明:∵EA,EC 是⊙O 的切线, ∴AE=CE(切线长定理), ∴∠DAC=∠ECA. ∵∠ACD=90°, ∴∠ACE+∠DCE=90°,∠DAC+∠D=90°, ∴∠D=∠DCE, ∴DE=CE, ∴AD=AE+DE=CE+CE=2CE, ∴CE=12AD.
课件目录
首页
末页
∴四边形 ABQP 是平行四边形. ∵AB=AP,∴▱ABQP 是菱形, ∴PQ=AB, ∴CPQQ=ABBC=tan∠ACB=tan 60°= 3.
2020中考数学二轮复习课件:专题八 几何综合探究题
2.
填空:①线段DE与AC的位置关系是
;
②设△BDC的面积为S1,△AEC的面积为S2,则S1与S2的数量关系
是
.
21
123456
解题知识解读
题型分类突破
素养训练提高
(2)当△DEC绕点C旋转到图3所示的位置时,小智猜想(1)中S1与S2的 数量关系仍然成立,并尝试作DM⊥BC,AN⊥CE,垂足分别为M,N,请
∵△ABC,△DEF都为等腰直角三角形,D是BC中 点,∴AD=BD,DF=DE,∠ADB+∠ADF=∠FDE+∠ADF,即
∠BDF=∠ADE,
∴△ADE≌△BDF, ∴AE=BF,
19
解题知识解读
题型分类突破
素养训练提高
123456
(3)当BC=2,在(2)的条件下,当α°=90°时,AE值最大,如图所示:
∠ACN=∠DCM,
∵在△ACN和△DCM 中,∠ACN=∠DCM,∠CMD=∠N,AC=DC,∴△ACN≌△DCM(AAS ),∴AN=DM,∴△BDC的面积和△AEC的面积相等(等底等高的三
角形的面积相等),即S1=S2.
23
123456
解题知识解读
题型分类突破
素养训练提高
∵BD∠=AB∠C12=A6B0C°=,F310D°∥,∠BFE2,D∴B∠=9F02°F,∴1D∠=∠F1ADBFC2==∠60A°,B∵CB=F610=°,DF1,∠F1 ∴△DF1F2是等边三角形,∴DF1=DF2,
BF,AE的数量关系,并说明理由.
(3)若BC=2,在(2)的条件下,当α°=
°时,AE值最大?并求此时
点A到EF三等分点的距离(画出示意图,并写出求算过程).
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
与 轴的交点坐标为 , .
一次函数 与
一元一次方程
令 的值为 ,解关于 的一元一次方程
,解得
,
4
即直线
过点
.
直线
,直线
,
求两直线的交点,即联立
,解关于 、 的二元一次方程组,
一次函数
求得的 、 即为交点的横、纵坐标.
与
二元一次方程组
令 的值大于 (或小于 ),解关于 的一元一次不等式
(或
),
即相当于一次函数
是等腰直角三角形.
当
时 直线与 轴夹角为 ,
是 直角三角形.
当
时 直线与 轴夹角为 ,
是 直角三角形.
PDF Logo Remover Demo : Purchase from / to remove the watermark
2
( )一次函数平移
一次函数与反比例函数
一、一次函数
1. 一次函数基础知识
( )一次函数定义
一般地,形如
( , 是常数,
( )一次函数图象与性质
)的函数,叫做一次函数.
一次函数
, 符号
图象
象限 图象特征 函数变化规律 Nhomakorabea一定经过第一、第三象限 图象从左向右上升
随 的增大而增大
( )一次函数与坐标轴的交点
一次函数
图象
与坐标轴交点 与 轴交点
气温
若每向上攀登 ,所在位置的气温下降幅度基本一致,则向上攀登的高度为
在位置的气温约为
.
时,登山对所
4 若直线 A.
与直线 B.
的交点坐标为 ,则 C.
的值为( ). D.
5 一次函数
,当
时,
,则 的值是
.
6 过点
的一条直线与 轴, 轴分别相交于点 , ,且与直线
上,横、纵坐标都是整数的点的坐标是
.
2020二轮复习讲义
第 01 讲·一次函数与反比例函数..................................................................... 001 第 02 讲·圆.................................................................................................... ....032 第 03 讲·选填压轴............................................................................................ 056 第 04 讲·现场学习............................................................................................ 085 第 05 讲·代数综合(一).................................................................................113 第 06 讲·代数综合(二)................................................................................ 129 第 07 讲·几何综合(一)................................................................................ 142 第 08 讲·几何综合(二)................................................................................ 164 第 09 讲·新定义(一).................................................................................... 184 第 10 讲·新定义(二).................................................................................... 209 第 11 讲·新定义(三).................................................................................... 228
上下平移 左右平移
向上平移 个单位 向下平移 个单位 向左平移 个单位 向右平移 个单位
平移口诀:“左加右减,上加下减;左右平移在括号,上下平移在末稍”. ( )两直线平行、垂直、旋转
两直线平行 相等.
,当 确定,是一系列平行
的直线,将其上下平移.
两直线平行
两直线垂直
两直线垂直
.
两直线旋转
,当 确定,是过定点 旋转的直线.
平行.则在线段
6
7 如图,直线 为 上一动点,
与 轴、 轴分别交于点 和点 ,点 、 分别为线段 、 的中点,点 值最小时点 的坐标为( ).
A.
B.
C.
的函数值大于 (或小于 ),函数图象位于 轴
上方(或下方).
如图,当
时,
;当
时,
.
一次函数 与
不等式
直线 如图,当
与直线
时,
;当
交点
.
时,
.
5
1 若一次函数 A.
的函数值 随 的增大而增大,则( ).
B.
C.
D.
2 若函数
的图象如图所示,则关于 的不等式
的解集为( ).
A.
B.
C.
D.
3 某登山队从大本营出发,在向上攀登的过程中,测得所在位置的气温 与向上攀登的高度 的 几组对应值如下表: 向上攀登的高度
()
与 轴交点
一定经过第二、第四象限 图象从左向右下降 随 的增大而减小
与坐标轴围成的面积
( )待定系数求一次函数解析式
一次函数
经过
、
,求一次函数解析式.
1
分别将
、
,代入一次函数
,
,
两式相减得,
将
代入
, ,可求出 .
由此可知, 表示的一次函数的倾斜度,它的值为直线与 夹角的正切值.
当
时 直线与 轴夹角为 ,
3
的绝对值越大,直线越陡, 的绝对值越小,直线越缓. 在 轴右侧,沿着逆时针的方向, 值逐渐增大.
【注意】 ① 当 确定,一次函数 ② 当 确定,一次函数 ③ 一次函数
是平行于
的直线,
是绕定点 旋转的直线.
是绕定点
旋转的直线.
2. 一次函数与方程不等式
令 的值为 ,解关于 的一元一次方程
,解得
,
即直线