高三数学选填题专项练习1
高考数学二轮复习选填题(一)课件
A.12
B.
2 2
C.
3 2
D.
3 3
答案 C
解析 设 P(x1,y1),则 A(-x1,-y1),Q(x1,-y1),P→D=34P→Q,则 Dx1,-y21,设 B(x2,y2),则aaxx212222++bbyy212222==11,,两式相减得(x1+x2)a(2 x1-x2)= -(y1+y2)b(2 y1-y2),kPB=xy11--xy22=-ba22·yx11++yx22,kAD=kAB,即4yx11=yx11+ +yx22, kPA=yx11=4(xy11++xy22),PA⊥PB,故 kPA·kPB=-1,即-4ab22=-1,a2=4b2, 又 a2=b2+c2,故 3a2=4c2,故 e= 23.故选 C.
=9×a1(11--qq3),解得 q3=8,则 q=2,又 S5=62,则有 S5=a1(11--qq5)
=31a1=62,解得 a1=2.故选 B.
7.已知点 P 在椭圆 τ:ax22+by22=1(a>b>0)上,点 P 在第一象限,点 P 关 于原点 O 的对称点为 A,点 P 关于 x 轴的对称点为 Q,设P→D=34P→Q,直线
解析 由函数的图象可得 A=2,周期 T=4×π3-1π2=π,所以 ω=2Tπ= 2ππ=2,当 x=1π2时,函数取得最大值,即 f1π2=2sin 2×1π2+φ=2,所以 2×1π2+φ=2kπ+π2(k∈Z),则 φ=2kπ+π3,又|φ|<π2,得 φ=π3,故函数 f(x)= 2sin 2x+π3.对于 A,f-π3=2sin -π3≠0,故 A 错误;对于 B,当 x=-152π 时,f-51π2=2sin -51π2×2+π3=2sin -π2=-2,即直线 x=-51π2是函数 f(x)
2024年新高考新结构数学选填压轴好题汇编(解析版)
2024年新高考新结构数学选填压轴好题汇编01一、单选题1.(2024·广东·高三统考阶段练习)在各棱长都为2的正四棱锥V -ABCD 中,侧棱VA 在平面VBC 上的射影长度为()A.263B.233C.3D.2【答案】B【解析】把正四棱锥V -ABCD 放入正四棱柱ABCD -A 1B 1C 1D 1中,则V 是上底面的中心,取A 1B 1的中点E ,C 1D 1的中点F ,连接EF ,BE ,CF ,过A 作AG ⊥BE ,垂足为G ,在正四棱柱ABCD -A 1B 1C 1D 1中,BC ⊥平面ABB 1A 1,AG ⊂平面ABB 1A 1,所以BC ⊥AG ,又BC ∩BE =B ,BC ,BE ⊂平面EFCB ,所以AG ⊥平面EFCB ,所以侧棱VA 在平面VBC 上的射影为VG ,由已知得,AA 1=2,EB =AA 21+AB 22=3,所以S △ABE =12×2×2=12×3⋅AG ,所以AG =223,所以VG =VA 2-AG 2=22-2232=233.故选:B .2.(2024·广东·高三校联考开学考试)已知a =14,b =3e -1,c =2ln2-ln3,则()A.a <b <cB.a <c <bC.c <a <bD.c <b <a【答案】B【解析】令f x =e x -x 0<x <1 、g x =ln x +1-x 0<x <1 ,则f x =e x -1>0,故f x 在0,1 上为增函数,故f x >f 0 =1,e x >x +1,其中0<x <1,故e 13>13+1,即3e -1>13,故b >13;而13-2ln2+ln3=13-ln 43=133-ln 6427 =13ln 27×e 364>13ln 27×364>0,故13>2ln2-ln3=c ,故b >c ;又g x =1-xx>0,故g x 在0,1 上为增函数,故g x <g 1 =0,ln x +1-x <0,其中0<x <1,故ln 34+1-34<0,即则14<-ln 34=ln 43,故a <c ;故b >c >a .故选:B .3.(2024·广东·高三校联考开学考试)已知函数f x =2sin 2ωx +3sin2ωx ω>0 在0,π 上恰有两个零点,则ω的取值范围是()A.23,1B.1,53C.23,1D.1,53【答案】B【解析】由题意可得f (x )=2sin 2ωx +3sin2ωx =3sin2ωx -cos2ωx +1=2sin 2ωx -π6 +1.令2sin 2ωx -π6 +1=0,解得sin 2ωx -π6 =-12,因为0<x <π,所以-π6<2ωx -π6<2ωπ-π6.因为f (x )在(0,π)上恰有两个零点,所以11π6<2ωπ-π6≤19π6,解得1<ω≤53.故选:B .4.(2024·广东湛江·统考一模)已知ab >0,a 2+ab +2b 2=1,则a 2+2b 2的最小值为()A.8-227B.223C.34D.7-228【答案】A【解析】因为ab >0,得:a 2+2b 2≥22a 2b 2=22ab (当且仅当a =2b 时成立),即得:ab ≤a 2+2b 222=24(a 2+2b 2),则1=a 2+ab +2b 2≤a 2+2b 2+24(a 2+2b 2)=4+24(a 2+2b 2),得:a 2+2b 2≥14+24=8-227,所以a 2+2b 2的最小值为8-227,故选:A .5.(2024·广东湛江·统考一模)在一次考试中有一道4个选项的双选题,其中B 和C 是正确选项,A 和D 是错误选项,甲、乙两名同学都完全不会这道题目,只能在4个选项中随机选取两个选项.设事件M =“甲、乙两人所选选项恰有一个相同”,事件N =“甲、乙两人所选选项完全不同”,事件X =“甲、乙两人所选选项完全相同”,事件Y =“甲、乙两人均未选择B 选项”,则()A.事件M 与事件N 相互独立B.事件X 与事件Y 相互独立C.事件M 与事件Y 相互独立D.事件N 与事件Y 相互独立【答案】C【解析】依题意甲、乙两人所选选项有如下情形:①有一个选项相同,②两个选项相同,③两个选项不相同,所以P M =C 14⋅C 13⋅C 12C 24⋅C 24=23,P N =C 24C 22C 24⋅C 24=16,P X =C 24C 24⋅C 24=16,P Y =C 23⋅C 23C 24⋅C 24=14,因为事件M 与事件N 互斥,所以P MN =0,又P M ⋅P N =19,所以事件M 与事件N 不相互独立,故A 错误;P XY =C 23C 24⋅C 24=112≠P X P Y =124,故B 错误;由P MY =C 13⋅C 12C 24⋅C 24=16=P M P Y ,则事件M 与事件Y 相互独立,故C 正确;因为事件N 与事件Y 互斥,所以P NY =0,又P Y ⋅P N =124,所以事件N 与事件Y 不相互独立,故D 错误.故选:C .6.(2024·广东梅州·统考一模)如图,正四棱柱ABCD -A 1B 1C 1D 1中,AA 1=2AB =2,点P 是面ABB 1A 1上的动点,若点P 到点D 1的距离是点P 到直线AB 的距离的2倍,则动点P 的轨迹是( )的一部分A.圆B.椭圆C.双曲线D.抛物线【答案】C【解析】由题意知,以D 为原点,DA ,DC ,DD 1所在直线分别为x ,y ,z 轴建立如图空间直角坐标系,则A (1,0,0),B (1,1,0),D 1(0,0,2),设P 1,m ,n (m ,n >0),所以PD 1=(-1,-m ,2-n ),因为P 到D 1的距离是P 到AB 的距离的2倍,所以PD 1=2n ,即-1 2+-m 2+2-n 2=4n 2,整理,得9n +23219-3m 219=1,所以点P 的轨迹为双曲线.故选:C7.(2024·广东深圳·统考一模)已知双曲线E :x 2a 2-y 2b2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,过点F 2的直线与双曲线E 的右支交于A ,B 两点,若AB =AF 1 ,且双曲线E 的离心率为2,则cos ∠BAF 1=()A.-378B.-34C.18D.-18【答案】D【解析】因为双曲线E 的离心率为2,所以c =2a ,因为AB =AF 1 ,所以BF 2 =AB -AF 2 =AF 1 -AF 2 =2a ,由双曲线的定义可得BF 1 -BF 2 =BF 1 -2a =2a ,所以BF 1 =4a =2BF 2 ,在△BF 1F 2中,由余弦定理得cos ∠BF 2F 1=BF 22+F 1F 2 2-BF 1 22BF 2 ⋅F 1F 2 =4a 2+8a 2-16a 22×2a ×22a=-24,在△AF 1F 2中,cos ∠F 1F 2A =-cos ∠F 1F 2B =24,设AF 2 =m ,则AF 1 =m +2a ,由AF 1 2=F 1F 2 2+AF 2 2-2F 1F 2 AF 2 cos ∠F 1F 2A 得(2a +m )2=(22a )2+m 2-2⋅22a ⋅m ⋅24,解得m =23a ,所以AF 1 =8a3,所以cos ∠BAF 1=AF 12+AB 2-BF 122AF 1 ⋅AB=64a 29+64a 29-16a 22×8a 3×8a 3=-18.故选:D8.(2024·广东深圳·统考一模)已知数列a n 满足a 1=a 2=1,a n +2=a n +2,n =2k -1-a n,n =2k(k ∈N ∗),若S n 为数列a n 的前n 项和,则S 50=()A.624B.625C.626D.650【答案】C【解析】数列a n 中,a 1=a 2=1,a n +2=a n +2,n =2k -1-a n ,n =2k(k ∈N ∗),当n =2k -1,k ∈N ∗时,a n +2-a n =2,即数列a n 的奇数项构成等差数列,其首项为1,公差为2,则a 1+a 3+a 5+⋯+a 49=25×1+25×242×2=625,当n =2k ,k ∈N ∗时,an +2a n=-1,即数列a n 的偶数项构成等比数列,其首项为1,公比为-1,则a 2+a 4+a 6+⋯+a 50=1×[1-(-1)25]1-(-1)=1,所以S 50=(a 1+a 3+a 5+⋯+a 49)+(a 2+a 4+a 6+⋯+a 50)=626.故选:C9.(2024·湖南长沙·长郡中学校考一模)已知实数a ,b 分别满足e a =1.02,ln b +1 =0.02,且c =151,则()A.a <b <cB.b <a <cC.b <c <aD.c <a <b【答案】D【解析】由e a =1.02,则a =ln1.02,令f x =ln x -2x -1x +1,x >1,则fx =1x -2x +1 -2x -1 x +1 2=x -1 2x x +12,则当x >1时,f x >0,故f x 在0,+∞ 上单调递增,故f 1.02 =ln1.02-21.02-1 1.02+1=ln1.02-2101>f 1 =0,即a =ln1.02>2101>2102=151=c ,即a >c ,由ln b +1 =0.02,则b =e 0.02-1,令g x=e x -ln 1+x -1,x >0,则g x =e x -1x +1,令h x =e x -1x +1,则当x >0时,h x =e x +1x +12>0恒成立,故g x 在0,+∞ 上单调递增,又g 0 =e 0-11=0,故g x >0恒成立,故g x 在0,+∞ 上单调递增,故g 0.02 =e 0.02-ln 1+0.02 -1>g 0 =0,即e 0.02-1>ln1.02,即b >a ,故c <a <b .故选:D .10.(2024·湖北黄冈·浠水县第一中学校考一模)已知椭圆C :x 2a 2+y 2b2=1a >b >0 的焦距为2c ,直线y =b a x+b2与椭圆C 交于点P ,Q,若PQ ≤7c ,则椭圆C 的离心率的取值范围为()A.32,1 B.0,22C.105,1 D.0,13【答案】C【解析】联立方程y =b a x +b 2x 2a2+y 2b2=1,消去y ,整理得8x 2+4ax -3a 2=0,则Δ=4a 2-4×8×-3a 2 =112a 2>0,设P ,Q 的横坐标分别为x 1,x 2,则x 1+x 2=-a 2,x 1⋅x 2=-3a 28,所以PQ =1+b a 2⋅x 1-x 2 =1+b a2⋅x 1+x 2 2-4x 1x 2=a 2+b 2a2⋅a 24+3a 22=72a 2+b 2,由PQ ≤7c ,得72a 2+b 2≤7c ,整理得a 2+b 2≤4c 2,即a 2+a 2-c 2≤4c 2,即c 2a2≥25,又0<e <1,则e =c a ≥105,故105≤e <1,所以椭圆C 的离心率的取值范围为105,1 .故选:C .11.(2024·湖北武汉·统考模拟预测)如图,在函数f x =sin ωx +φ 的部分图象中,若TA =AB ,则点A 的纵坐标为()A.2-22B.3-12C.3-2D.2-3【答案】B【解析】由题意ωx +φ=3π2,则x =3π2ω-φω,所以T 3π2ω-φω,0 ,设A x 1,y 1 ,B x 2,y 2 ,因为TA =AB,所以x2+3π2ω-φω2=x1y22=y1,解得x2=2x1-3π2ω+φωy2=2y1,所以2y1=y2=f x2=f2x1-3π2ω+φω=sin2ωx1-3π2+2φ=cos2ωx1+2φ=1-2sin2ωx1+φ=1-2y21,所以2y21+2y1-1=0,又由图可知y1>0,所以y1=3-1 2.故选:B.12.(2024·湖北武汉·统考模拟预测)在三棱锥P-ABC中,AB=22,PC=1,PA+PB=4,CA-CB=2,且PC⊥AB,则二面角P-AB-C的余弦值的最小值为()A.23B.34C.12D.105【答案】A【解析】因为PA+PB=4=2a,所以a=2,点P的轨迹方程为x24+y22=1(椭球),又因为CA-CB=2,所以点C的轨迹方程为x2-y2=1,(双曲线的一支)过点P作PH⊥AB,AB⊥PC,而PH∩PC=P,PF,PC⊂面PHC,所以AB⊥面PHC,设O为AB中点,则二面角P-AB-C为∠PHC,所以不妨设OH=2cosθ,θ∈0,π2,PH=2sinθ,CH=4cos2θ-1,所以cos∠PHC=2sin2θ+4cos2θ-1-122sinθ4cos2θ-1=2cos2θ22sinθ4cos2θ-1=22⋅1-sin2θsinθ3-4sin2θ,所以cos 2∠PHC =12⋅1-sin 2θ 2sin 2θ3-4sin 2θ,令1-sin 2θ=t ,0<t <1,所以cos 2∠PHC =12⋅1-sin 2θ 2sin 2θ3-4sin 2θ =12⋅t 21-t 4t -1 ≥12⋅t 21-t +4t -122=29,等号成立当且仅当t =25=1-sin 2θ,所以当且仅当sin θ=155,cos θ=105时,cos ∠PHC min =23.故选:A .13.(2024·山东日照·统考一模)已知函数f x =2sin x -2cos x ,则()A.f π4+x=f π4-x B.f x 不是周期函数C.f x 在区间0,π2上存在极值D.f x 在区间0,π 内有且只有一个零点【答案】D【解析】对于A ,sin π4+x =sin π2-π4+x =cos π4-x ,cos π4+x =cos π2-π4+x =sin π4-x,所以f π4+x =2sin π4+x -2cos π4+x =-2sin π4-x -2cos π4-x =-f π4-x ,故A 错误;对于B ,f 2π+x =2sin 2π+x-2cos 2π+x=2sin x -2cos x =f x ,所以f x 是以2π为周期的函数,故B 错误;对于C ,由复合函数单调性可知y =2sin x ,y =2cos x 在区间0,π2上分别单调递增、单调递减,所以f x 在区间0,π2上单调递增,所以不存在极值,故C 错误;对于D ,令f x =2sin x -2cos x =0,x ∈0,π ,得2sin x =2cos x ,所以sin x =cos x ,即该方程有唯一解(函数f x在0,π 内有唯一零点)x =π4,故D 正确.故选:D .14.(2024·山东日照·统考一模)过双曲线x 24-y 212=1的右支上一点P ,分别向⊙C 1:(x +4)2+y 2=3和⊙C 2:(x-4)2+y 2=1作切线,切点分别为M ,N ,则PM +PN ⋅NM的最小值为()A.28B.29C.30D.32【答案】C【解析】由双曲线方程x 24-y 212=1可知:a =2,b =23,c =a 2+b 2=4,可知双曲线方程的左、右焦点分别为F 1-4,0 ,F 24,0 ,圆C 1:x +4 2+y 2=3的圆心为C 1-4,0 (即F 1),半径为r 1=3;圆C 2:x -4 2+y 2=1的圆心为C 24,0 (即F 2),半径为r 2=1.连接PF 1,PF 2,F 1M ,F 2N ,则MF 1⊥PM ,NF 2⊥PN ,可得PM +PN ⋅NM =PM +PN ⋅PM -PN =PM 2-PN 2=PF 1 2-r 21 -PF 2 2-r 22 =PF 1 2-3 -PF 2 2-1 =PF 1 2-PF 2 2-2=PF 1 -PF 2 ⋅PF 1 +PF 2 -2=2a PF 1 +PF 2 -2≥2a ⋅2c -2=2×2×2×4-2=30,当且仅当P 为双曲线的右顶点时,取得等号,即PM +PN ⋅NM的最小值为30.故选:C .15.(2024·福建福州·统考模拟预测)已知函数f x 及其导函数f x 的定义域均为R ,记g x =f x .若g x -2 的图象关于点2,0 对称,且g 2x -g (-2x -1)=g (1-2x ),则下列结论一定成立的是()A.f x =f 2-xB.g x =g x +2C.2024n =1g (n )=0D.2024n =1f (n )=0【答案】C【解析】因为g x -2 的图象关于点2,0 对称,所以g x 的图象关于原点对称,即函数g x 为奇函数,则g 0 =0,又g 2x -g (-2x -1)=g (1-2x ),所以g 2x +g (2x +1)=-g (2x -1),所以g t -1 +g (t )+g (t +1)=0,所以g t +g t +1 +g t +2 =0,所以g t -1 =g t +2 ,所以g t =g t +3 ,即g x =g x +3 ,所以3是g x 的一个周期.因为2024n =1g (n )=2024n =0g (n )=20253×[g (0)+g (1)+g (2)]=0,故C 正确;取符合题意的函数f x =cos 2π3x ,则g (x )=f x =-2π3sin 2π3x所以g 0 =0,又g (0+2)=-2π3sin 4π3=3π3=g (0),故2不是g x 的一个周期,所以g x ≠g x +2 ,故B 不正确;因为f 1 =cos 2π3=-12不是函数f x 的最值,所以函数f x 的图象不关于直线x =1对称,所以f x ≠f 2-x ,故A 不正确;因为2024n =1f (n )=2024n =1cos2π3n =-1≠0,故D 不正确;故选:C .16.(2024·浙江湖州·湖州市第二中学校考模拟预测)已知直线BC 垂直单位圆O 所在的平面,且直线BC 交单位圆于点A ,AB =BC =1,P 为单位圆上除A 外的任意一点,l 为过点P 的单位圆O 的切线,则()A.有且仅有一点P 使二面角B -l -C 取得最小值B.有且仅有两点P 使二面角B -l -C 取得最小值C.有且仅有一点P 使二面角B -l -C 取得最大值D.有且仅有两点P 使二面角B -l -C 取得最大值【答案】D【解析】过A 作AM ⊥l 于M ,连接MB 、MC ,如图所示,因为直线BC 垂直单位圆O 所在的平面,直线l 在平面内,且直线BC 交单位圆于点A ,所以AC ⊥l ,AM ,AC ⊂平面AMC ,AM ∩AC =A ,所以l ⊥平面AMC ,MC ,MB ⊂平面AMC ,所以l ⊥MC ,l ⊥MB ,所以∠BMC 是二面角B -l -C 的平面角,设∠BMC =θ,∠AMC =α,∠AMB =β,AM =t ,则θ=α-β,由已知得t ∈0,2 ,AB =BC =1,tan α=2t ,tan β=1t ,tan θ=tan α-β =tan α-tan β1+tan α⋅tan β=2t -1t 1+2t ⋅1t =t t 2+2,令f t =t t 2+2,则ft =1⋅t 2+2 -t 2t t 2+2 2=2+t 2-t t 2+22,当t ∈0,2 时,f t >0,f t 单调递增,当t ∈2,2 时,f t <0,f t 单调递减,f 2 =13>f 0 =0所以t ∈0,2 ,当t =2时,f t 取最大值,没有最小值,即当t =2时tan θ取最大值,从而θ取最大值,由对称性知当t =2时,对应P 点有且仅有两个点,所以有且仅有两点P 使二面角B -l -C 取得最大值.故选:D .17.(2024·浙江湖州·湖州市第二中学校考模拟预测)设F 1,F 2分别为椭圆C :x 2a 2+y 2b2=1(a >b >0)的左,右焦点,以F 1为圆心且过F 2的圆与x 轴交于另一点P ,与y 轴交于点Q ,线段QF 2与C 交于点A .已知△APF 2与△QF 1F 2的面积之比为3:2,则该椭圆的离心率为()A.23B.13-3C.3-1D.3+14【答案】B【解析】由题意可得F 1-c ,0 、F 2c ,0 ,F 1F 2=2c ,则以F 1为圆心且过F 2的圆的方程为x +c 2+y 2=4c 2,令x =0,则y P =±3c ,由对称性,不妨取点Q 在x 轴上方,即P 0,3c ,则l QF 2:y -3c =3c -00-cx ,即y =-3x +3c ,有S △QF 1F 2=12×2c ×3c =3c 2,则S △APF 2=32×3c 2=332c 2,又S △APF 2=12y A ×4c =2cy A ,即有332c 2=2cy A ,即y A =334c ,代入l QF 2:y =-3x +3c ,有334c =-3x A +3c ,即x A =14c ,即A 14c ,334c在椭圆上,故14c2a 2+334c2b 2=1,化简得b 2c 2+27a 2c 2=16a 2b 2,由b 2=a 2-c 2,即有a 2-c 2 c 2+27a 2c 2=16a 2a 2-c 2 ,整理得c 4-44a 2c 2+16a 4=0,即e 4-44e 2+16=0,有e 2=44-442-4×162=22-613或e 2=44+442-4×162=22+613,由22+613>1,故舍去,即e 2=22-613,则e =22-613=13-3 2=13-3.故选:B .18.(2024·浙江湖州·湖州市第二中学校考模拟预测)设a =sin0.2,b =0.16,c =12ln 32,则()A.a >c >bB.b >a >cC.c >b >aD.c >a >b【答案】D【解析】设f x =sin x -x -x 2 ,x ∈0,0.2 ,f x =cos x -1+2x ,设g x =f x ,g x =-sin x +2>0,所以g x ≥g 0 =0,所以函数f x 在0,0.2 上单调递增,所以f 0.2 =sin0.2-0.2-0.22 =sin0.2-0.16>f 0 =0,即a >b .根据已知得c =12ln 32=12ln 1.20.8=12ln 1+0.21-0.2,可设h x =12ln 1+x -ln 1-x -sin x ,x ∈ 0,0.2 ,则h x =1211+x +11-x -cos x =11-x 2-cos x >0,所以函数h x 在0,0.2 上单调递增,所以h 0.2 >h 0 =0,即c >a .综上,c >a >b .故选:D .19.(2024·浙江湖州·湖州市第二中学校考模拟预测)对于无穷数列{a n },给出如下三个性质:①a 1<0;②对于任意正整数n ,s ,都有a n +a s <a n +s ;③对于任意正整数n ,存在正整数t ,使得a n +t >a n 定义:同时满足性质①和②的数列为“s 数列”,同时满足性质①和③的数列为“t 数列”,则下列说法正确的是()A.若{a n }为“s 数列”,则{a n }为“t 数列”B.若a n =-12n,则{a n }为“t 数列”C.若a n =2n -3,则{a n }为“s 数列” D.若等比数列{a n }为“t 数列”则{a n }为“s 数列”【答案】C【解析】设a n =-2n -3,此时满足a 1=-2-3=-5<0,也满足∀n ,s ∈N ∗,a n +s =-2(n +s )-3,a n +a s =-2n -3-2s -3=-2(n +s )-6,即∀n ,s ∈N ∗,a n +s >a n +a s ,{a n }为“s 数列”,因为a n +t =-2(n +t )-3=-2n -2t -3=a n -2t <a n ,所以A 错误;若a n =-12 n ,则a n =-12 -1=-12<0,满足①,a n +1=-12 n +1,令-12 n +1>-12n,若n 为奇数,此时-12 n <0,存在t ∈N ∗,且为奇数时,此时满足-12 n +t >0>-12 n,若n 为偶数,此时-12 n >0,则此时不存在t ∈N ∗,使得-12 n +t >-12n,所以B 错误;若a n =2n -3,则a n =2-3=-1<0,满足①,∀n ,s ∈N ∗,a n +s =2(n +s )-3,a n +a s =2n -3+2s -3=2(n +s )-6,因为2(n +s )-3>2(n +s )-6,所以∀n ,s ∈N ∗,a n +s >a n +a s ,满足②,所以C 正确;不妨设a n =(-2)n ,满足a 1=-2<0,且∀n ∈N ∗,a n =(-2)n ,当n 为奇数,取t =1,使得a n +1=(-2)n +1>a n ;当n 为偶数,取t =2,使得a n +2=(-2)n +2>a n ,所以a n 为“t 数列”,但此时不满足∀n ,s ∈N ∗,a n +s >a n +a s ,不妨取n =1,s =2,则a 1=-2,a 2=4,a 3=-8,而a 1+2=-8<-2+4=a 1+a 2,则a n 为“s 数列”,所以D 错误.故选:C .20.(2024·江苏·统考模拟预测)已知函数f x 的定义域为R ,对任意x ∈R ,有f x -f x >0,则“x <2”是“e x f x +1 >e 4f 2x -3 ”的()A.充分不必要条件B.必要不充分条件C.既不充分又不必要条件D.充要条件【答案】A【解析】因为fx -f x >0,则f x -f x e x>0,令g x =f xex ,则g x >0,所以g x 在R 上单调递增.e xf x +1 >e 4f 2x -3 ⇔f x +1 e x +1>f 2x -3e 2x -3⇔g x +1 >g 2x -3⇔x +1>2x -3⇔x <4,所以“x <2”是“e x f x +1 >e x f 2x -3 ”的充分不必要条件,故选:A .21.(2024·江苏·统考模拟预测)离心率为2的双曲线C :x 2a 2-y 2b2=1(a >0,b >0)与抛物线E :y 2=2px (p >0)有相同的焦点F ,过F 的直线与C 的右支相交于A ,B 两点.过E 上的一点M 作其准线l 的垂线,垂足为N ,若MN =3OF (O 为坐标原点),且△MNF 的面积为122,则△ABF 1(F 1为C 的左焦点)内切圆圆心的横坐标为()A.14B.24C.22D.12【答案】D【解析】MN =3OF =3⋅p 2,x M +p 2=3p 2,∴x M =p .y 2M =2p 2,y M =2p ,S △MNF =12⋅3p 2⋅2p =122,p =4,F 2,0 ,双曲线中c =2,e =ca =2,∴a =1,b 2=3,双曲线:x 2-y 23=1.设直线AB :x =ty +2,A x 1,y 1 ,B x 2,y 2 ,AF =m ,BF =n ,△ABF 1内切圆圆心为I ,所以m =x 1-22+y 21=x 21-4x 1+4+3x 2-3=2x 1-12=2x 1-1 =2x 1-1,同理n =2x 2-1,从而AB =m +n =2x 1+x 2 -2,由双曲线定义知AF 1 =m +2a =2x 1-1+2=2x 1+1,同理BF 1 =2x 2+1;接下来我们证明如下引理:三个不共线的点C x 3,y 3 ,D x 4,y 4 ,E x 5,y 5 构成的三角形的内心坐标为GDE x 3+CE x 4+CD x 5DE +CE +CD,DE y 3+CE y 4+CD y 5DE +CE +CD,先来证明G 是三角形CDE 的内心当且仅当DE GC +CE GD +CD GE =0,若DE GC +CE GD +CD GE =0,则DE GC +CE GC +CD +CD GC +CE =0,则CG =CE CD DE +CE +CD CD CD +CECE,而由平行四边形法则可知CD CD +CECE与∠DCE 的角平分线共线,所以CG 经过三角形CDE 的内心,同理DG 经过三角形CDE 的内心,EG 经过三角形CDE 的内心,所以点G 是三角形CDE 的内心,由于上述每一步都是等价变形,反正亦然,所以G 是三角形CDE 的内心当且仅当DE GC +CE GD +CD GE =0,不妨设三角形CDE 的内心G x ,y ,则由DE GC +CE GD +CD GE =0得DE x 3-x +CE x 4-x +CD x 5-x =0,所以解得x =DE x 3+CE x 4+CD x 5DE +CE +CD ,同理y =DE y 3+CE y 4+CD y 5DE +CE +CD,从而GDE x 3+CE x 4+CD x 5DE +CE +CD,DE y 3+CE y 4+CD y 5DE +CE +CD,引理得证;由上述引理,即由内心坐标公式有x I =2x 2+1 x 1+2x 1+1 x 2-22x 1+x 2 -22x 2+1+2x 2+1+2x 1+x 2 -2=4x 1x 2-3x 1+x 2 +44x 1+x 2,联立x 2-y 23=1与AB :x =ty +2,整理并化简得3t 2-1 y 2+12ty +9=0,Δ=144t 2+363t 2-1 =36t 2+1 >0,y 1+y 2=-12t 3t 2-1,y 1y 2=93t 2-1,所以x 1+x 2=t y 1+y 2 +4=t ⋅-12t 3t 2-1+4=-43t 2-1,x 1x 2=ty 1+2 ty 2+2 =t 2y 1y 2+2t y 1+y 2 +4=t 2⋅93t 2-1+2t ⋅-12t 3t 2-1+4=-3t 2-43t 2-1,所以x I =4x 1x 2-3x 1+x 2 +44x 1+x 2=-12t 2-163t 2-1+123t 2-1+4-163t 2-1=12,△ABF 1内切圆圆心在直线x =12上.故选:D .22.(2024·云南昆明·统考模拟预测)已知函数f x =x -1 e x +a 在区间-1,1 上单调递增,则a 的最小值为()A.e -1B.e -2C.eD.e 2【答案】A【解析】由题意得f x ≥0在-1,1 上恒成立,f x =e x +a +x -1 e x =xe x +a ,故xe x +a ≥0,即a ≥-xe x ,令g x =-xe x ,x ∈-1,1 ,则g x =-e x -xe x =-x +1 e x <0在x ∈-1,1 上恒成立,故g x =-xe x 在x ∈-1,1 上单调递减,故g x >g -1 =e -1,故a ≥e -1,故a 的最小值为e -1.故选:A23.(2024·湖南·高三校联考开学考试)已知函数f x =x -a exx +1的定义域为0,4 ,若f x 是单调函数,且f x 有零点,则a 的取值范围是()A.0,4B.0,3C.0,2D.0,e【答案】B【解析】因为f x 有零点,所以方程f x =0有解,即x -a =0在0,4 上有解,所以a ∈0,4 .又由f x =x -a exx +1可得:fx =x 2+1-a x +1x +12e x.因为f x 是单调函数,所以函数g x =x 2+1-a x +1≥0在0,4 上恒成立或g x =x 2+1-a x +1≤0在0,4 上恒成立.因为g 0 =1>0,所以g x =x 2+1-a x +1≤0在0,4 上不可能恒成立.即函数g x =x 2+1-a x +1≥0在0,4 上恒成立,即x +1x+1-a ≥0在0,4 上恒成立.因为x +1x+1-a ≥3-a (当且仅当x =1时,等号成立),故须使3-a ≥0,解得a ≤3.综上,a 的取值范围是0,3 .故选:B .24.(2024·山东·高三山东省实验中学校考开学考试)双曲线M :x 2a 2-y 2b2=1(a >0,b >0)的左、右顶点分别为A ,B ,曲线M 上的一点C 关于x 轴的对称点为D ,若直线AC 的斜率为m ,直线BD 的斜率为n ,则当mn +9mn 取到最小值时,双曲线离心率为()A.3 B.4 C.3 D.2【答案】D【解析】设A (-a ,0),B (a ,0),C (x ,y ),D (x ,-y ),则m =k AC =y x +a ,n =k BD =-y x -a ,所以mn =-y 2x 2-a2,将曲线方程x 2-a 2a 2=y 2b 2代入得mn =-b 2a2,又由均值定理得mn +9mn =mn +9mn ≥2mn ×9mn =6,当且仅当mn =9mn ,即mn =b 2a 2=3时等号成立,所以离心率e =1+b 2a2=2,故选:D .二、多选题25.(2024·广东·高三统考阶段练习)若过点(a ,b )可作曲线f (x )=x 2ln x 的n 条切线(n ∈N ),则()A.若a ≤0,则n ≤2B.若0<a <e -32,且b =a 2ln a ,则n =2C.若n =3,则a 2ln a <b <2ae -32+12e -3D.过e -32,-6 ,仅可作y =f (x )的一条切线【答案】ABD【解析】设切点x 0,x 20ln x 0 ,则f x 0 =2x 0ln x 0+x 0,切线为y -x 20ln x 0=2x 0ln x 0+x 0 x -x 0 ,代入(a ,b )整理得2x 0ln x 0+x 0 a -x 20ln x 0-x 20-b =0,令g (x )=(2x ln x +x )a -x 2ln x -x 2-b ,g (x )=(2ln x +3)a -2x ln x -3x =(2ln x +3)⋅(a -x ),令g(x )=0得x 1=a ,x 2=e -32.当a ≤0时,x ∈0,e-32,g (x )>0,所以g (x )在0,e -32上单调递增,x ∈e -32,+∞ ,g(x )<0,所以在e -32,+∞ 上单调递减,g e-32=-2a ⋅e-32+12⋅e -3-b ,在0,+∞ 两侧均有可能为负,同时极大值可能为正,所以g (x )至多有2个零点,故A 正确;当a ∈0,e -32时,x ∈(0,a )和x ∈e -32,+∞ 时,g(x )<0,所以g (x )在(0,a ),e -32,+∞ 上单调递减,x ∈a ,e-32,g(x )>0,所以g (x )在a ,e -32上单调递增,g (a )=a 2ln a -b ,g e-32=-2ae-32+12⋅e -3-b ,当b =a 2ln a 时,g (a )=0,所以g e -32>0,结合图象,值域为-∞,-2ae -32+12⋅e -3-b,所以n =2,B 正确;若n =3,则g (a )<0<g e -32,即a 2ln a <b <-2ae -32+12e -3,同理当a >e -32时,g e -32 <0<g (a ),即-2ae -32+12e -3<b <a 2ln a ,C 错误;若a =e-32时,g (x )≤0,g (x )单调递减;结合图象,g (x )∈-∞,b ,则当-b >0时,g (x )有1个零点,即b <0,D 正确.故选:ABD .26.(2024·广东·高三校联考开学考试)如图,在长方体ABCD -A 1B 1C 1D 1中,AB =BC =2,AA 1=4,E 是棱BB 1上的一点,点F 在棱DD 1上,则下列结论正确的是()A.若A 1,C ,E ,F 四点共面,则BE =DFB.存在点E ,使得BD ⎳平面A 1CEC.若A 1,C ,E ,F 四点共面,则四棱锥C 1-A 1ECF 的体积为定值D.若E 为BB 1的中点,则三棱锥E -A 1CC 1的外接球的表面积是32π【答案】BCD【解析】对A ,由A 1,C ,E ,F 四点共面,得CF ⎳A 1E ,则DF =B 1E ,若E 不是棱BB 1的中点,则BE ≠DF ,故A 错误.对B ,当E 是棱BB 1的中点时,取A 1C 的中点G ,连接GE ,B 1D ,则G 为B 1D 的中点.因为E 为BB 1的中点,则GE ⎳BD .因为GE ⊂平面A 1CE ,BD ⊄平面A 1CE ,所以BD ⎳平面A 1CE ,则B 正确.根据长方体性质知BB 1⎳CC 1,且CC 1⊂平面A 1CC 1,BB 1⊄平面A 1CC 1,所以BB 1⎳平面A 1CC 1,同理可得DD 1⎳平面A 1CC 1,则点E ,F 到平面A 1CC 1的距离为定值,又因为△A 1CC 1的面积为定值,所以三棱锥E -A 1CC 1和三棱锥F -A 1CC 1的体积都为定值,则四棱锥C 1-A 1ECF 的体积为定值,故C 正确.取棱CC 1的中点O 1,由题中数据可得CE =C 1E =22,CC 1=4,则CE 2+C 1E 2=CC 12,所以△CC 1E 为等腰直角三角形,所以O 1是△CC 1E 外接圆的圆心,△CC 1E 外接圆的半径r =2.设三棱锥E -A 1CC 1的外按球的球心为O ,半径为R ,设OO 1=d ,则R 2=d 2+r 2=O 1B 21+A 1B 1-d 2=8+(2-d )2,即d 2+4=8+(2-d )2,解得d =2,则R 2=8,此时O 点位于DD 1中点,从而三棱锥E -A 1CC 1的外接球的表面积是4πR 2=32π,故D 正确.故选:BCD .27.(2024·广东·高三校联考开学考试)已知函数f x 的定义域为R ,且f x -1 +f x +1 =0,f 1-x =f x +5 ,若f 52=1,则()A.f x 是周期为4的周期函数B.f x 的图像关于直线x =1对称C.f x 是偶函数D.f 12 +2f 32 +3f 52 +⋯+30f 592=-31【答案】ABD【解析】对A ,因为f (x -1)+f (x +1)=0,所以f (x +1)+f (x +3)=0,所以f (x -1)=f (x +3),即f (x )=f (x +4),所以f (x )是周期为4的周期函数,则A 正确.对B ,因为f (1-x )=f (x +5),所以f (1-x )=f (x +1),所以f (x )的图象关于直线x =1对称,则B 正确.对C ,因为f 52 =1,所以f -32 =1.令x =32,得f 12 +f 52 =0,则f 12=-1.因为f (x )的图象关于直线x =1对称,所以f 32 =f 12 =-1,则f 32 ≠f -32,从而f (x )不是偶函数,则C 错误.对D ,由f (x )的对称性与周期性可得f 12 =f 32 =-1,f 52 =f 72=1,则f 12 +2f 32 +3f 52 +⋯+30f 592 =7(-1-2+3+4)-29-30=-31,故D 正确.故选:ABD .28.(2024·广东湛江·统考一模)在直三棱柱ABC -A 1B 1C 1中,AB ⊥BC ,AB =2BB 1=4,BC =3,M ,N 分别为BB 1和CC 1的中点,P 为棱B 1C 1上的一点,且PC ⊥PM ,则下列选项中正确的有()A.三棱柱ABC -A 1B 1C 1存在内切球B.直线MN 被三棱柱ABC -A 1B 1C 1的外接球截得的线段长为13C.点P 在棱B 1C 1上的位置唯一确定D.四面体ACMP 的外接球的表面积为26π【答案】ABD【解析】对于A ,取棱AA 1中点Q ,连接MQ ,NQ ,若三棱柱ABC -A 1B 1C 1存在内切球,则三棱柱ABC -A 1B 1C 1内切球球心即为△MNQ 的内切圆圆心,∵△MNQ 的内切圆半径即为△ABC 的内切圆半径,又AB ⊥BC ,AB =4,BC =3,∴AC =5,∴△ABC 的内切圆半径r =2S △ABCAB +BC +AC=2×12×4×34+3+5=1,即△MNQ 的内切圆半径为1,又平面ABC 、平面A 1B 1C 1到平面MNQ 的距离均为1,∴三棱柱ABC -A 1B 1C 1存在内切球,内切球半径为1,A 正确;对于B ,取AC 中点G ,NQ 中点O ,MN 中点H ,连接BG ,OG ,OH ,B 1C ,OB 1,∵AB ⊥BC ,∴G 为△ABC 的外接圆圆心,又OG ⎳AA 1⎳BB 1,BB 1⊥平面ABC ,∴O 为三棱柱ABC -A 1B 1C 1的外接球的球心;∵BB 1⊥平面ABC ,AB ⊂平面ABC ,∴BB 1⊥AB ,又AB ⊥BC ,BB 1∩BC =B ,BB 1,BC ⊂平面BCC 1B 1,∴AB ⊥平面BCC 1B 1,∵OH ⎳MQ ⎳AB ,∴OH ⊥平面BCC 1B 1,∴H 为四边形BCC 1B 1的外接圆圆心,∵四边形BCC 1B 1为矩形,∴直线MN 被三棱柱ABC -A 1B 1C 1截得的线段长即为矩形BCC 1B 1的外接圆直径,∵B 1C =BC 2+BB 21=9+4=13,∴直线MN 被三棱柱ABC -A 1B 1C 1截得的线段长为13,B 正确;对于C ,在平面中作出矩形BCC 1B 1,设C 1P =m 0≤m ≤3 ,则B 1P =3-m ,∴PC 2=4+m 2,MP 2=1+3-m 2,MC 2=32+12=10,又PC ⊥PM ,∴PC 2+PM 2=MC 2,即4+m 2+1+3-m 2=10,解得:m =1或m =2,∴P 为棱B1C 1的三等分点,不是唯一确定的,C 错误;对于D ,取MC 中点S ,∵PC ⊥PM ,∴S 为△PCM 的外接圆圆心,且BS =12MC =1232+12=102,则四面体ACMP 的外接球球心O 在过S 且垂直于平面PCM 的直线上,∵AB ⊥平面PCM ,∴O S ⊥平面PCM ,设O S =a ,四面体ACMP 的外接球半径为R ,∴R 2=102 2+a 2=102 2+4-a 2,解得:a =2,R 2=132,∴四面体ACMP 的外接球表面积为4πR 2=26π,D 正确.故选:ABD .29.(2024·广东梅州·统考一模)如图,从1开始出发,一次移动是指:从某一格开始只能移动到邻近的一格,并且总是向右或右上或右下移动,而一条移动路线由若干次移动构成,如从1移动到9,1→2→3→5→7→8→9就是一条移动路线.从1移动到数字n n =2,3,⋅⋅⋅,9 的不同路线条数记为r n ,从1移动到9的事件中,跳过数字n n =2,3,⋅⋅⋅,8 的概率记为p n ,则下列结论正确的是()A.r 6=8B.r n +1>r nC.p 5=934D.p 7>p 8【答案】ABD【解析】画出树状图,结合图形结合树状图可知:r 2=1,r 3=2,r 4=3,r 5=5,r 6=8,r 7=13,r 8=21,r 9=34,对于选项A :可知r 6=8,故A 正确;对于选项B :均有r n +1>r n ,故B 正确;对于选项C :因为r 9=34,过数字5的路线有5条,所以p 5=1-r 5r 9=2934,故C 错误;对于选项D :因为p 7=1-r 7r 9=2134,p 8=1-r 8r 9=1334,所以p 7>p 8,故D 正确;故选:ABD .30.(2024·广东梅州·统考一模)已知函数f x =e sin x -e cos x ,则下列说法正确的是()A.f x 的图象关于直线x =π4对称 B.f x 的图象关于点π4,0中心对称C.f x 是一个周期函数 D.f x 在区间0,π 内有且只有一个零点【答案】BCD【解析】AB 选项,f x 的定义域为R ,f π2-x =e sin π2-x -e cos π2-x =e cos x -e sin x =-f x ,所以f x 关于点π4,0 中心对称,A 选项错误,B 选项正确.C 选项,f x +2π =esin x +2π-ecos x +2π=e sin x -e cos x =f x ,所以f x 是周期函数,C 选项正确.D 选项,令f x =e sin x -e cos x =0得e sin x =e cos x ,所以sin x =cos x ,在区间0,π 上,解得x =π4,所以f x 在区间0,π 内有且只有一个零点,所以D 选项正确.故选:BCD31.(2024·广东深圳·统考一模)如图,八面体Ω的每一个面都是边长为4的正三角形,且顶点B ,C ,D ,E 在同一个平面内.若点M 在四边形BCDE 内(包含边界)运动,N 为AE 的中点,则()A.当M 为DE 的中点时,异面直线MN 与CF 所成角为π3B.当MN ∥平面ACD 时,点M 的轨迹长度为22C.当MA ⊥ME 时,点M 到BC 的距离可能为3D.存在一个体积为103的圆柱体可整体放入Ω内【答案】ACD 【解析】因为BCDE 为正方形,连接BD 与CE ,相交于点O ,连接OA ,则OD ,OE ,OA 两两垂直,故以OD ,OE ,OA 为正交基地,建立如图所示的空间直角坐标系,D (22,0,0),B (-22,0,0),E (0,22,0),C (0,-22,0),A (0,0,22),F (0,0,-22),N 为AE 的中点,则N (0,2,2).当M 为DE 的中点时,M (2,2,0),MN =-2,0,2 ,CF =0,22,-22 ,设异面直线MN 与CF 所成角为θ,cos θ=cos MN ,CF =MN ⋅CFMN CF=0+0-4 2×4=12,θ∈0,π2 ,故θ=π3,A 正确;设P 为DE 的中点,N 为AE 的中点,则PN ∥AD ,AD ⊂平面ACD ,PN ⊄平面ACD ,则PN ∥平面ACD ,又MN ∥平面ACD ,又MN ∩PN =N ,设Q ∈BC ,故平面MNP ∥平面ACD ,平面ACD ∩平面BCDE =CD ,平面MNP ∩平面BCDE =PQ ,则PQ ∥CD ,则Q 为BC 的中点,点M 在四边形BCDE 内(包含边界)运动,则M ∈PQ ,点M 的轨迹是过点O 与CD 平行的线段PQ ,长度为4,B 不正确;当MA ⊥ME 时,设M (x ,y ,0),MA =(-x ,-y ,22),ME =(-x ,22-y ,0),MA ⋅ME=x 2+y (y -22)=0,得x 2+y 2-22y =0,即x 2+(y -2)2=2,即点M 的轨迹以OE 中点K 为圆心,半径为2的圆在四边BCDE 内(包含边界)的一段弧(如下图),K 到BC 的距离为3,弧上的点到BC 的距离最小值为3-2,因为3-2<3,所以存在点M 到BC 的距离为3,C 正确;由于图形的对称性,我们可以先分析正四棱锥A -BCDE 内接最大圆柱的体积,设圆柱底面半径为r ,高为h ,P 为DE 的中点,Q 为BC 的中点, PQ =4,AO =22,根据△AGH 相似△AOP ,得GH OP =AG AO ,即r 2=22-h22,h =2(2-r ),则圆柱体积V =πr 2h =2πr 2(2-r ),设V (r )=2π(2r 2-r 3)(0<r <2),求导得V (r )=2π(4r -3r 2),令V (r )=0得,r =43或r =0,因为0<r <2,所以r =0舍去,即r =43,当0<r <43时,V (r )>0,当43<r <2时,V (r )<0,即r =43时V 有极大值也是最大值,V 有最大值32227,32227-53=962-13527=962×2-135227=18432-1822527>0,故32227>53所以存在一个体积为10π3的圆柱体可整体放入Ω内,D 正确.故选:ACD .32.(2024·湖南长沙·长郡中学校考一模)已知函数f x =A tan ωx +φ (ω>0,0<φ<π)的部分图象如图所示,则()A.ω⋅φ⋅A =π6B.f x 的图象过点11π6,233C.函数y =f x 的图象关于直线x =5π3对称D.若函数y =f x +λf x 在区间-5π6,π6 上不单调,则实数λ的取值范围是-1,1【答案】BCD【解析】A :设该函数的最小正周期为T ,则有T =πω=π6--5π6 ⇒ω=1,即f x =A tan x +φ ,由函数的图象可知:π6+φ=π2⇒φ=π3,即f x =A tan x +π3,由图象可知:f 0 =A tan π3=23⇒A =2,所以ω⋅φ⋅A =2π3,因此本选项不正确;B :f 11π6 =2tan 11π6+π3 =2tan 13π6=2tan π6=2×33=233,所以本选项正确;C :因为f 5π3-x =2tan 5π3-x +π3=2tan x ,f 5π3+x =2tan 5π3+x +π3=2tan x ,所以f 5π3-x =f 5π3+x ,所以函数y =f x 的图象关于直线x =5π3对称,因此本选项正确;D :y =f x +λf x =2tan x +π3 +2λtan x +π3当x ∈-π3,π6 时,y =f x +λf x =2tan x +π3 +2λtan x +π3 =2tan x +π3 +2λtan x +π3 =2+2λ tan x +π3 ,当x ∈-5π6,-π3,y =f x +λf x =2tan x +π3 +2λtan x +π3 =-2tan x +π3 +2λtan x +π3=-2+2λ tan x +π3,当函数y =f x +λf x 在区间-5π6,π6上不单调时,则有2+2λ -2+2λ ≤0⇒-1≤λ≤1,故选:BCD33.(2024·湖南长沙·长郡中学校考一模)小郡玩一种跳棋游戏,一个箱子中装有大小质地均相同的且标有1∼10的10个小球,每次随机抽取一个小球并放回,规定:若每次抽取号码小于或等于5的小球,则前进1步,若每次抽取号码大于5的小球,则前进2步.每次抽取小球互不影响,记小郡一共前进n 步的概率为p n ,则下列说法正确的是()A.p 2=14B.p n =12p n -1+12p n -2n ≥3 C.p n =1-12p n -1n ≥2 D.小华一共前进3步的概率最大【答案】BC【解析】根据题意,小郡前进1步的概率和前进2步的概率都是12,所以P 1=12,P 2=12×12+12=34,故选项A错误;当n≥3时,其前进几步是由两部分组成:先前进n-1步,再前进1步,其概率为12p n-1,或者先前进n-2步,再前进2步,其概率为12p n-2,所以p n=12p n-1+12p n-2n≥3,故选项B正确;因为p n=12p n-1+12p n-2n≥3,所以2p n+p n-1=2p n-1+p n-2n≥3,而2p2+p1=2×34+12=2,所以2p n+p n-1=2n≥2,即p n=1-12p n-1n≥2,故选项C正确;因为当n≥2时,p n=1-12p n-1,所以p n-23=-12p n-1-23,又p1-23=12-23=-16,所以数列p n-23是首项为-16,公比为-12的等比数列.所以P n-23=-16×-12n-1,所以P n=23-16×-12n-1.当n为奇数时,n-1为偶数,则P n=23-16×12n-1,此时数列p n 单调递增,所以P n<23;当n为偶数时,n-1为奇数,则P n=23+16×12n-1,此时数列p n 单调递减,所以P n≤P2=3 4;综上,当n=2时,概率最大,即小华一共前进2步的概率最大,故选项D错误.故选:BC34.(2024·湖北黄冈·浠水县第一中学校考一模)在三棱锥A-BCD中,AD=BC=4,AB=BD=DC=CA=6,M为BC的中点,N为BD上一点,球O为三棱锥A-BCD的外接球,则下列说法正确的是()A.球O的表面积为11πB.点A到平面BCD的距离为14C.若MN⊥AB,则DN=6NBD.过点M作球O的截面,则所得的截面中面积最小的圆的半径为2【答案】BCD【解析】由AD=BC=4,AB=BD=DC=CA=6,可将三棱锥A-BCD补形成如图所示的长方体,设BF=x,BE=y,AE=z,则x2+y2=16z2+y2=36x2+z2=36,解得x=22y=22z=27,即AE=27,EB=BF=22,所以球O的半径为272+222+2222=11,所以球O的表面积为44π,故A错误.由题得长方体为正四棱柱,AB=AC=BD=CD,M为BC的中点,故AM⊥BC,DM⊥BC,又AM∩DM=M,AM,DM⊂平面AMD,则BC⊥平面AMD,又BC⊂平面BCD,故平面BCD⊥平面AMD,平面BCD∩平面AMD=MD,过点A作MD的垂线,交MD于H,则AH⊥平面BCD,故AH为点A到平面BCD的距离.在△AMD中,AM=MD=42,AD=4,故cos ∠ADH =16+32-322×4×42=122,sin ∠ADH =722,则AH =4×722=14,故B 正确.以E 为原点,EB ,EC ,EA 所在直线分别为x ,y ,z 轴建立空间直角坐标系,则A 0,0,27 ,D 22,22,27 ,B 22,0,0 ,M 2,2,0 ,AB =22,0,-27 ,BD =0,22,27 .设BN =λBD=0,22λ,27λ ,所以MN =MB +BN=2,-2,0 +0,22λ,27λ =2,22λ-2,27λ ,因为MN ⊥AB ,所以MN ⋅AB=22×2-27×27λ=0,解得λ=17,所以DN =6NB ,故C 正确.当且仅当OM 与截面垂直时,截面面积最小,由A 解析知:最小的半径为11-7=2,故D 正确.故选:BCD35.(2024·湖北武汉·统考模拟预测)已知函数f x =a e x +1 ln 1+x 1-x-e x+1恰有三个零点,设其由小到大分别为x 1,x 2,x 3,则()A.实数a 的取值范围是0,1eB.x 1+x 2+x 3=0C.函数g x =f x +kf -x 可能有四个零点D.f ′x 3 f ′x 1=e x3【答案】BCD【解析】对于B ,f x =0⇔a ln 1+x 1-x +1-e x e x +1=0,设h x =a ln 1+x 1-x +1-e xe x +1,则它的定义域为-1,1 ,它关于原点对称,且h -x =a ln 1-x 1+x +1-e -x e -x +1=-a ln 1+x 1-x +1-e xe x +1=-h x ,所以h x 是奇函数,由题意h x =0有三个根x 1,x 2,x 3,则x 1+x 2+x 3=0,故B 正确;对于C ,由f x +kf -x =0⇒a e x +1 ln 1+x 1-x -e x +1+a e -x +1 ln 1-x 1+x -e -x +1 =0,所以a ln 1+x 1-x +1-e x e x +1+k a ln 1+x 1-x e x -1-e x e x1+e x=0,所以a ln 1+x 1-x +1-e x e x +1=k e x a ln 1+x 1-x +1-e x e x +1,即a ln 1+x 1-x +1-e x e x +1 1-k e x=0已经有3个实根x 1,x 2,x 3,当k >0时,令1-kex =0,则x =ln k ,只需保证ln k ≠x 1,x 2,x 3可使得方程有4个实根,故C 正确;由B 可知,x 1=-x 3,而f x 3 f x 1=e x 3⇔f x 3 =e x3f -x 3 ,又f x =ae x ln 1+x 1-x +a e x +1 21-x 2-e x ,e x 3f-x 3 =a ln 1-x 31+x 3+a e x 3+1 21-x 23-1,所以f x 3 =ae x 3ln 1+x 31-x 3+a e x 3+1 21-x 23-ex3。
高三数学选择填空题训练(1)
高三数学选择填空题训练(1)高三数学选择填空题训练(1)一.填空题1.已知定义域在[-1,1]上的函数y=f(_)的值域为[-2,0],则函数y=f(cos)的值域为A.[-1,1] B.[―3,―1]C.[-2,0] D.不能确定2.已知函数y=f(_)是一个以4为最小正周期的奇函数,则f(2)=A.0 B.-4 C.4 D.不能确定3.如果采用分层抽样法从个体数为N的总体中,抽取一个容量为n的样本,那么每个个体被抽到的概率等于( )A. B. C.D.4.首项系数为1的二次函数y=f(_)在_=1处的切线与_轴平行,则A.f(arcsin)_gt;f(arcsin)B.f(arcsin)=f(arcsin)C.f(arcsin)_gt;f(arcsin) D.f(arcsin)与f(arcsin)的大小不能确定5.关于_的不等式a_-b_gt;0的解集为(1,+∞),则关于_的不等式_gt;0的解集为A.(-1,2) B.(-∞,-1)∪(2,+∞) C.(1,2)D.(―∞,―2)∪(1,+∞)6.若O为⊿ABC的内心,且满足(-)__8226;(+-2)=0A.等腰三角形 B.正三角形 C.直角三角形D.以上都不对7.设有如下三个命题甲:m∩l=A, , m.lb;乙:直线m.l中至少有一条与平面b相交;丙:平面a与平面b相交.当甲成立时,乙是丙的条件.A.充分而不必要B.必要而不充分 C.充分必要 D.既不充分又不必要8.⊿ABC中,3sinA+4cosB=6,3cosA+4sinB=1,则∠C的大小为A.B.C.或 D.或9.等体积的球和正方体,它们的表面积的大小关系是A.S球_gt;S正方体 B.S球_lt;S正方体 C.S球=S正方体 D.S球=2S正方体10.若连结双曲线-=1与其共轭双曲线的四个顶点构成面积为S1的四边形,连结四个焦点构成面积为S2的四边形,则的最大值为A.4 B.2C. D.二.填空题11.函数的最小值是.12.某中学高一年级400人,高二年级320人,高三年级280人,若每人被抽取的概率为0.2,问该中学抽取一个容量为n的样本,则n=.13.若指数函数f(_)=a_ (_∈R)的部分对应值如下表:_-22f(_)0.69411.44则不等式(_-1)_lt;0的解集为.14.若两个向量与的夹角为q,则称向量〝_〞为〝向量积〞,其长度_=__8226;__8226;sinq.今已知=1,=5,__8226;=-4,则_= .15.已知点P(2,-3),Q(3,2),直线a_+y+2=0与线段PQ相交,则实数a的取值范围是: .16.若在所给的条件下,数列{an}的每一项的值都能唯一确定,则称该数列是〝确定的〞,在下列条件下,有哪些数列是〝确定的〞?请把对应的序号填在横线上.①{an}是等差数列,S1=a,S2=b(这里的Sn是{an}的前n项的和,a,b为实数,下同);②{an}是等差数列,S1=a,S10=b;③{an}是等比数列,S1=a,S2=b;④{an}是等比数列,S1=a,S3=b;⑤{an}满足a2n+2=a2n+a,a2n+1=a2n-1+b,(n∈N_), a1=cC A B A B ACABC11:-2;12 20013 (0,1)∪(1,2) 14.3 15.[-,]16.①②③。
高三数学:2024届新结构“8+3+3”选填限时训练1_10(解析版)
2024届高三二轮复习“8+3+3”小题强化训练(1)一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1对两个具有线性相关关系的变量x 和y 进行统计时,得到一组数据1,0.3 ,2,4.7 ,3,m ,4,8 ,通过这组数据求得回归直线方程为y=2.4x -2,则m 的值为()A.3B.5C.5.2D.6【答案】A【解析】易知x =1+2+3+44=52,y =13+m4,代入y =2.4x -2得13+m 4=2.4×52-2⇒m =3.故选:A2已知m ,n 表示两条不同直线,α表示平面,下列说法正确的是()A.若m ⎳α,n ⎳α,则m ⎳nB.若m ⊥α,n ⊂α,则m ⊥nC.若m ⊥α,m ⊥n ,则n ⎳αD.若m ⎳α,m ⊥n ,则n ⊥α【答案】B【解析】线面垂直,则有该直线和平面内所有的直线都垂直,故B 正确.故选:B3已知向量a ,b 满足a =3,b =23,且a ⊥a +b,则b 在a 方向上的投影向量为()A.3B.-3C.-3aD.-a【答案】D【解析】a ⊥a +b ,则a ⋅a +b =a 2+a ⋅b =9+a ⋅b =0,故a ⋅b=-9,b 在a 方向上的投影向量a ⋅b a 2⋅a =-99⋅a =-a.故选:D .4若n 为一组从小到大排列的数1,2,4,8,9,10的第六十百分位数,则二项式3x +12xn的展开式的常数项是()A.7B.8C.9D.10【答案】A【解析】因为n 为一组从小到大排列的数1,2,4,8,9,10的第六十百分位数,6×60%=3.6,所以n =8,二项式3x +12x8的通项公式为T r +1=C r 8⋅3x 8-r ⋅12x r =C r 8⋅12 r⋅x8-r 3-r,令8-r 3-r =0⇒r =2,所以常数项为C 28×12 2=8×72×14=7,故选:A5折扇是我国古老文化的延续,在我国已有四千年左右的历史,“扇”与“善”谐音,折扇也寓意“善良”“善行”.它常以字画的形式体现我国的传统文化,也是运筹帷幄、决胜千里、大智大勇的象征(如图1).图2是一个圆台的侧面展开图(扇形的一部分),若两个圆弧DE ,AC 所在圆的半径分别是3和6,且∠ABC =120°,则该圆台的体积为()A.5023π B.9π C.7π D.1423π【答案】D【解析】设圆台上下底面的半径分别为r 1,r 2,由题意可知13×2π×3=2πr 1,解得r 1=1,13×2π×6=2πr 2,解得:r 2=2,作出圆台的轴截面,如图所示:图中OD =r 1=1,O A =r 2=2,AD =6-3=3,过点D 向AP 作垂线,垂足为T ,则AT =r 2-r 1=1,所以圆台的高h =AD 2-AT 2=32-1=22,则上底面面积S 1=π×12=π,S 2=π×22=4π,由圆台的体积计算公式可得:V =13×(S 1+S 2+S 1⋅S 2)×h =13×7π×22=142π3,故选:D .6已知函数f x =x 2-bx +c (b >0,c >0)的两个零点分别为x 1,x 2,若x 1,x 2,-1三个数适当调整顺序后可为等差数列,也可为等比数列,则不等式x -bx -c≤0的解集为()A.1,52B.1,52C.-∞,1 ∪52,+∞D.-∞,1 ∪52,+∞ 【答案】A【解析】由函数f x =x 2-bx +c (b >0,c >0)的两个零点分别为x 1,x 2,即x 1,x 2是x 2-bx +c =0的两个实数根据,则x 1+x 2=b ,x 1x 2=c 因为b >0,c >0,可得x 1>0,x 2>0,又因为x 1,x 2,-1适当调整可以是等差数列和等比数列,不妨设x 1<x 2,可得x 1x 2=-1 2=1-1+x 2=2x 1 ,解得x 1=12,x 2=2,所以x 1+x 2=52,x 1x 2=1,所以b =52,c =1,则不等式x -b x -c ≤0,即为x -52x -1≤0,解得1<x ≤52,所以不等式的解集为1,52.故选:A .7已知双曲线C :x 2a 2-y 2b2=1a >0,b >0 的左、右焦点分别为F 1,F 2,M ,N 为双曲线一条渐近线上的两点,A 为双曲线的右顶点,若四边形MF 1NF 2为矩形,且∠MAN =2π3,则双曲线C 的离心率为()A.3B.7C.213D.13【答案】C【解析】如图,因为四边形MF 1NF 2为矩形,所以MN =F 1F 2 =2c (矩形的对角线相等),所以以MN 为直径的圆的方程为x 2+y 2=c 2.直线MN 为双曲线的一条渐近线,不妨设其方程为y =bax ,由y =b a x ,x 2+y 2=c 2,解得x =a y =b ,或x =-a ,y =-b , 所以N a ,b ,M -a ,-b 或N -a ,-b ,M a ,b .不妨设N a ,b ,M -a , -b ,又A a ,0 ,所以AM =a +a 2+b 2=4a 2+b 2,AN =a -a 2+b 2=b .在△AMN 中,∠MAN =2π3,由余弦定理得MN 2=AM 2+AN 2-2AM AN ⋅cos 2π3,即4c 2=4a 2+b 2+b 2+4a 2+b 2×b ,则2b =4a 2+b 2,所以4b 2=4a 2+b 2,则b 2=43a 2,所以e =1+b 2a2=213.故选:C .8已知a =ln 1.2e ,b =e 0.2,c =1.2e 0.2,则有()A.a <b <cB.a <c <bC.c <a <bD.c <b <a【答案】C【解析】令f x =e x -ln x +1 -1,x >0,则f x =e x -1x +1.当x >0时,有e x >1,1x +1<1,所以1x +1<1,所以,f (x )>0在0,+∞ 上恒成立,所以,f (x )在0,+∞ 上单调递增,所以,f (x )>f (0)=1-1=0,所以,f (0.2)>0,即e 0.2-ln1.2-1>0,所以a <b令g x =e x -x +1 ,x >0,则g x =e x -1在x >0时恒大于零,故g x 为增函数,所以x +1ex <1,x >0,而a =ln 1.2e =1+ln1.2>1,所以c <a ,所以c <a <b ,故选:C二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9已知函数f x =sin 2x +3π4 +cos 2x +3π4,则()A.函数f x -π4 为偶函数 B.曲线y =f x 对称轴为x =k π,k ∈ZC.f x 在区间π3,π2单调递增D.f x 的最小值为-2【答案】AC【解析】f x =sin 2x +3π4 +cos 2x +3π4=sin2x cos 3π4+sin 3π4cos2x +cos2x cos 3π4-sin2x sin3π4=-22sin2x +22cos2x -22cos2x -22sin2x =-2sin2x ,即f x =-2sin2x ,对于A ,f x -π4 =-2sin 2x -π2=2cos2x ,易知为偶函数,所以A 正确;对于B ,f x =-2sin2x 对称轴为2x =π2+k π,k ∈Z ⇒x =π4+k π2,k ∈Z ,故B 错误;对于C ,x ∈π3,π2 ,2x ∈2π3,π ,y =sin2x 单调递减,则f x =-2sin2x 单调递增,故C 正确;对于D ,f x =-2sin2x ,则sin2x ∈-1,1 ,所以f x ∈-2,2 ,故D 错误;故选:AC10设z 为复数,则下列命题中正确的是()A.z 2=zz B.若z =(1-2i )2,则复平面内z对应的点位于第二象限C.z 2=z 2D.若z =1,则z +i 的最大值为2【答案】ABD【解析】对于A ,设z =a +bi ,故z =a -bi ,则z 2=a 2+b 2,zz =(a +bi )(a -bi )=a 2+b 2,故z 2=zz成立,故A 正确,对于B ,z =(1-2i )2=-4i -3,z =4i -3,显然复平面内z对应的点位于第二象限,故B 正确,对于C ,易知z 2=a 2+b 2,z 2=a 2+b 2+2abi ,当ab ≠0时,z 2≠z 2,故C 错误,对于D ,若z =1,则a 2+b 2=1,而z +i =a 2+(b +1)2=2b +2,易得当b =1时,z +i 最大,此时z +i =2,故D 正确.故选:ABD11已知菱形ABCD 的边长为2,∠ABC =π3.将△DAC 沿着对角线AC 折起至△D AC ,连结BD .设二面角D -AC -B 的大小为θ,则下列说法正确的是()A.若四面体D ABC 为正四面体,则θ=π3B.四面体D ABC 的体积最大值为1C.四面体D ABC 的表面积最大值为23+2D.当θ=2π3时,四面体D ABC 的外接球的半径为213【答案】BCD【解析】如图,取AC 中点O ,连接OB ,OD ,则OB =OD ,OB ⊥AC ,OD ⊥AC ,∠BOC 为二面角D AC -B 的平面角,即∠BOC =θ.若D ABC 是正四面体,则BD =BC ≠BO ,△OBD 不是正三角形,θ≠π3,A 错;四面体D ABC 的体积最大时,BO ⊥平面ACD ,此时B 到平面ACD 的距离最大为BO =3,而S △ACD=34×22=3,所以V =13×3×3=1,B 正确;S △ABC =S △DAC =3,易得△BAD ≅△BCD ,S △BAD=S △BCD=12×22sin ∠BCD =2sin ∠BCD ,未折叠时BD =BD =23,折叠到B ,D 重合时,BD =0,中间存在一个位置,使得BD =22,则BC 2+D C 2=BD 2,∠BCD =π2,此时S △BAD=S △BCD=2sin ∠BCD 取得最大值2,所以四面体D ABC 的表面积最大值为23+2 ,C 正确;当θ=2π3时,如图,设M ,N 分别是△ACD 和△BAC 的外心,在平面AOD 内作PM ⊥OD ,作PN ⊥OB ,PM ∩PN =P ,则P 是三棱锥外接球的球心,由上面证明过程知平面OBD 与平面ABC 、平面D AC 垂直,即P ,N ,O ,M 四点共面,θ=2π3,则∠PON =π3,ON =13×32×2=33,PN =ON tan π3=33×3=1,PB =PN 2+BN 2=12+233 2=213为球半径,D 正确.故选:BCD .三、填空题:本题共3小题,每小题5分,共15分.12设集合M =x log 2x <1 ,N =x 2x -1<0 ,则M ∩N =.【答案】x 0<x <12【解析】因为log 2x <1=log 22,所以0<x <2,即M =x log 2x <1 =x 0<x <2 ,因为2x -1<0,解得x <12,所以N =x 2x -1<0 =x x <12,所以,M ∩N =x 0<x <12 .故答案为:x 0<x <12 13已知正项等比数列a n 的前n 项和为S n ,且S 8-2S 4=6,则a 9+a 10+a 11+a 12的最小值为.【答案】24【解析】设正项等比数列a n 的公比为q ,则q >0,所以,S 8=a 1+a 2+a 3+a 4+a 5+a 6+a 7+a 8=a 1+a 2+a 3+a 4+q 4a 1+a 2+a 3+a 4 =S 41+q 4 ,则S 8-2S 4=S 4q 4-1 =6,则q 4>1,可得q >1,则S 4=6q 4-1,所以,a 9+a 10+a 11+a 12=q 8a 1+a 2+a 3+a 4 =S 4q 8=6q 8q 4-1=6q 4-1+1 2q 4-1=6q 4-1 2+1+2q 4-1 q 4+1=6q 4-1 +1q 4-1+2 ≥62q 4-1 ⋅1q 4-1+2 =24,当且仅当q 4-1=1q 4-1q >1 时,即当q =42时,等号成立,故a 9+a 10+a 11+a 12的最小值为24.故答案为:2414已知F 为拋物线C :y =14x 2的焦点,过点F 的直线l 与拋物线C 交于不同的两点A ,B ,拋物线在点A ,B 处的切线分别为l 1和l 2,若l 1和l 2交于点P ,则|PF |2+25AB的最小值为.【答案】10【解析】C :x 2=4y 的焦点为0,1 ,设直线AB 方程为y =kx +1,A x 1,y 1 ,B x 2,y 2 .联立直线与抛物线方程有x 2-4kx -4=0,则AB =y 1+y 2+2=k x 1+x 2 +4=4k 2+4.又y =14x 2求导可得y =12x ,故直线AP 方程为y -y 1=12x 1x -x 1 .又y 1=14x 21,故AP :y =12x 1x -14x 21,同理BP :y =12x 2x -14x 22.联立y =12x 1x -14x 21y =12x 2x -14x 22可得12x 1-x 2 x =14x 21-x 22 ,解得x =x 1+x 22,代入可得P x 1+x 22,x 1x 24 ,代入韦达定理可得P 2k ,-1 ,故PF =4k 2+4.故|PF |2+25AB=4k 2+4+254k 2+4≥24k 2+4 ×254k 2+4=10,当且仅当4k 2+4=254k 2+4,即k =±12时取等号.故答案为:102024届高三二轮复习“8+3+3”小题强化训练(2)一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1抛物线y =12x 2的焦点坐标为()A.18,0B.12,0 C.0,18D.0,12【答案】D 【解析】由y =12x 2可得抛物线标准方程为:x 2=2y ,∴其焦点坐标为0,12 .故选:D .2二项式3x 2-1x 47的展开式中常数项为()A.-7B.-21C.7D.21【答案】A 【解析】二项式3x 2-1x47的通项公式为Tr +1=C r 7⋅3x 27-r⋅-1x4r=Cr 7⋅-1 r⋅x14-14r 3,令14-14r 3=0⇒r =1,所以常数项为C 17⋅-1 =-7,故选:A3已知集合A =x log 2x ≤1 ,B =y y =2x ,x ≤2 ,则()A.A ∪B =BB.A ∪B =AC.A ∩B =BD.A ∪(C R B )=R【答案】A【解析】由log 2x ≤1,则log 2x ≤log 22,所以0<x ≤2,所以A =x log 2x ≤1 =x 0<x ≤2 ,又B =y y =2x ,x ≤2 =y 0<y ≤4 ,所以A ⊆B ,则A ∪B =B ,A ∩B =A .故选:A .4若古典概型的样本空间Ω=1,2,3,4 ,事件A =1,2 ,甲:事件B =Ω,乙:事件A ,B 相互独立,则甲是乙的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件【答案】A【解析】若B =Ω,A ∩B =1,2 ,则P A ∩B =24=12,而P A =24=12,P B =1,所以P A P B =P A ∩B ,所以事件A ,B 相互独立,反过来,当B =1,3 ,A ∩B =1 ,此时P A ∩B =14,P A =P B =12,满足P A P B =P A ∩B ,事件A ,B 相互独立,所以不一定B =Ω,所以甲是乙的充分不必要条件.故选:A5若函数f x =ln e x -1 -mx 为偶函数,则实数m =()A.1B.-1C.12D.-12【答案】C【解析】由函数f x =ln e x -1 -mx 为偶函数,可得f -1 =f 1 ,即ln e -1-1 +m =ln e -1 -m ,解之得m =12,则f x =ln e x -1 -12x (x ≠0),f -x =ln e -x -1 +12x =ln e x -1 -x +12x =ln e x -1 -12x =f x故f x =ln e x -1 -12x 为偶函数,符合题意.故选:C6已知函数y =f (x )的图象恰为椭圆C :x 2a 2+y 2b2=1(a >b >0)x 轴上方的部分,若f (s -t ),f (s ),f (s +t )成等比数列,则平面上点(s ,t )的轨迹是()A.线段(不包含端点) B.椭圆一部分C.双曲线一部分D.线段(不包含端点)和双曲线一部分【答案】A【解析】因为函数y =f (x )的图象恰为椭圆C :x 2a 2+y 2b2=1(a >b >0)x 轴上方的部分,所以y =f (x )=b ⋅1-x 2a2(-a <x <a ),因为f (s -t ),f (s ),f (s +t )成等比数列,所以有f 2(s )=f (s -t )⋅f (s +t ),且有-a <s <a ,-a <s -t <a ,-a <s +t <a 成立,即-a <s <a ,-a <t <a 成立,由f 2(s )=f (s -t )⋅f (s +t )⇒b ⋅1-s 2a 22=b ⋅1-(s -t )2a 2⋅b ⋅1-(s +t )2a 2,化简得:t 4=2a 2t 2+2s 2t 2⇒t 2(t 2-2a 2-2s 2)=0⇒t 2=0,或t 2-2a 2-2s 2=0,当t 2=0时,即t =0,因为-a <s <a ,所以平面上点(s ,t )的轨迹是线段(不包含端点);当t 2-2a 2-2s 2=0时,即t 2=2a 2+2s 2,因为-a <t <a ,所以t 2<a 2,而2a 2+2s 2>a 2,所以t 2=2a 2+2s 2不成立,故选:A7若tan α+π4=-2,则sin α1-sin2α cos α-sin α=()A.65B.35C.-35D.-65【答案】C【解析】因为tan α+π4 =tan α+tan π41-tan αtan π4=tan α+11-tan α=-2,解得tan α=3,所以,sin α1-sin2αcos α-sin α=sin αsin 2α+cos 2α-2sin αcos α cos α-sin α=sin αcos α-sin α 2cos α-sin α=sin αcos α-sin 2α=sin αcos α-sin 2αcos 2α+sin 2α=tan α-tan 2α1+tan 2α=3-91+9=-35.故选:C .8函数f x =2ln xx,x >0sin ωx +π6,-π≤x ≤0,若2f 2(x )-3f (x )+1=0恰有6个不同实数解,正实数ω的范围为()A.103,4B.103,4 C.2,103D.2,103【答案】D【解析】由题知,2f 2x -3f x +1=0的实数解可转化为f (x )=12或f (x )=1的实数解,即y =f (x )与y =1或y =12的交点,当x >0时,f x =2ln xx ⇒f (x )=21-ln x x 2所以x ∈0,e 时,f (x )>0,f x 单调递增,x ∈e ,+∞ 时,f (x )<0,f x 单调递减,如图所示:所以x =e 时f x 有最大值:12<f (x )max =2e<1所以x >0时,由图可知y =f (x )与y =1无交点,即方程f (x )=1无解,y =f (x )与y =12有两个不同交点,即方程f (x )=12有2解当x <0时,因为ω>0,-π≤x ≤0,所以-ωπ+π6≤ωx +π6≤π6,令t =ωx +π6,则t ∈-ωπ+π6,π6则有y =sin t 且t ∈-ωπ+π6,π6,如图所示:因为x >0时,已有两个交点,所以只需保证y =sin t 与y =12及与y =1有四个交点即可,所以只需-19π6<-ωπ+π6≤-11π6,解得2≤ω<103.故选:D二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9已知复数z 1,z 2是关于x 的方程x 2+bx +1=0(-2<b <2,b ∈R )的两根,则下列说法中正确的是()A.z 1=z 2B.z 1z 2∈R C.z 1 =z 2 =1D.若b =1,则z 31=z 32=1【答案】ACD【解析】Δ=b 2-4<0,∴x =-b ±4-b 2i 2,不妨设z 1=-b 2+4-b 22i ,z 2=-b2-4-b 22i ,z 1=z 2,A 正确;z 1 =z 2 =-b 22+4-b 222=1,C 正确;z 1z 2=1,∴z 1z 2=z 21z 1z 2=z 21=b 2-22-b 4-b 22i ,b ≠0时,z 1z 2∉R ,B 错;b =1时,z 1=-12+32i ,z 2=-12-32i ,计算得z 21=-12-32i =z 2=z 1 ,z 22=z 1=z 2 ,z 31=z 1z 2=1,同理z 32=1,D 正确.故选:ACD .10四棱锥P -ABCD 的底面为正方形,P A 与底面垂直,P A =2,AB =1,动点M 在线段PC 上,则()A.不存在点M ,使得AC ⊥BMB.MB +MD 的最小值为303C.四棱锥P -ABCD 的外接球表面积为5πD.点M 到直线AB 的距离的最小值为255【答案】BD【解析】对于A :连接BD ,且AC ∩BD =O ,如图所示,当M 在PC 中点时,因为点O 为AC 的中点,所以OM ⎳P A ,因为P A ⊥平面ABCD ,所以OM ⊥平面ABCD ,又因为AC ⊂平面ABCD ,所以OM ⊥AC ,因为ABCD 为正方形,所以AC ⊥BD .又因为BD ∩OM =O ,且BD ,OM ⊂平面BDM ,所以AC ⊥平面BDM ,因为BM ⊂平面BDM ,所以AC ⊥BM ,所以A 错误;对于B :将△PBC 和△PCD 所在的平面沿着PC 展开在一个平面上,如图所示,则MB +MD 的最小值为BD ,直角△PBC 斜边PC 上高为1×56,即306,直角△PCD 斜边PC 上高也为1×56,所以MB +MD 的最小值为303,所以B 正确;对于C :易知四棱锥P -ABCD 的外接球直径为PC ,半径R =12PC =1222+12+12=62,表面积S =4πR 2=6π,所以C 错误;对于D :点M 到直线AB 距离的最小值即为异面直线PC 与AB 的距离,因为AB ⎳CD ,且AB ⊄平面PCD ,CD ⊂平面PCD ,所以AB ⎳平面PCD ,所以直线AB 到平面PCD 的距离等于点A 到平面PCD 的距离,过点A 作AF ⊥PD ,因为P A ⊥平面ABCD ,所以P A ⊥CD ,又AD ⊥CD ,且P A ∩AD =A ,故CD ⊥平面P AD ,AF ⊂平面P AD ,所以AF ⊥CD ,因为PD ∩CD =D ,且PD ,CD ⊂平面PCD ,所以AF ⊥平面PCD ,所以点A 到平面PCD 的距离,即为AF 的长,如图所示,在Rt △P AD 中,P A =2,AD =1,可得PD =5,所以由等面积得AF =255,即直线AB 到平面PCD 的距离等于255,所以D 正确,故选:BCD .11今年是共建“一带一路”倡议提出十周年.某校进行“一带一路”知识了解情况的问卷调查,为调动学生参与的积极性,凡参与者均有机会获得奖品.设置3个不同颜色的抽奖箱,每个箱子中的小球大小相同质地均匀,其中红色箱子中放有红球3个,黄球2个,绿球2个;黄色箱子中放有红球4个,绿球2个;绿色箱子中放有红球3个,黄球2个,要求参与者先从红色箱子中随机抽取一个小球,将其放入与小球颜色相同的箱子中,再从放入小球的箱子中随机抽取一个小球,抽奖结束.若第二次抽取的是红色小球,则获得奖品,否则不能获得奖品,已知甲同学参与了问卷调查,则()A.在甲先抽取的是黄球的条件下,甲获得奖品的概率为47B.在甲先抽取的不是红球的条件下,甲没有获得奖品的概率为1314C.甲获得奖品的概率为2449D.若甲获得奖品,则甲先抽取绿球的机会最小【答案】ACD【解析】设A 红,A 黄,A 绿,分别表示先抽到的小球的颜色分别是红、黄、绿的事件,设B 红表示再抽到的小球的颜色是红的事件,在甲先抽取的是黄球的条件下,甲获得奖品的概率为:P B 红∣A 黄 =P B 红A 黄 P A 黄=27×4727=47,故A 正确;在甲先抽取的不是红球的条件下,甲没有获得奖品的概率为:P B 红 ∣A 红 =P A 红 B 红 P A 红 =P A 黄B 红 +P A 绿B 红 P A 红 =27×37+27×1247=1328,故B 错误;由题意可知,P A 红 =37,P A 黄 =27,P A 绿 =27,P B 红∣A 红 =37,P B 红∣A 黄 =47,P B 红∣A 绿 =12,由全概率公式可知,甲获得奖品的概率为:P =P A 红 P B 红∣A 红 +P A 黄 ⋅P B 红∣A 黄 +P A 绿 ⋅P B 红∣A 绿 =37×37+27×47+27×12=2449,故C 正确;因为甲获奖时红球取自哪个箱子的颜色与先抽取小球的颜色相同,则P A 红∣B 红 =P A 红 ⋅P B 红∣A 红 P B 红=37×37×4924=38,P A 黄∣B 红 =P A 黄 ⋅P B 红∣A 黄P B 红=27×47×4924=13,P A 绿∣B 红 =P A 绿 ⋅P B 红∣A 绿 P B 红 =27×12×4924=724,所以甲获得奖品时,甲先抽取绿球机会最小,故D 正确.故选:ACD .三、填空题:本题共3小题,每小题5分,共15分.12已知△ABC 的边BC 的中点为D ,点E 在△ABC 所在平面内,且CD =3CE -2CA ,若AC =xAB +yBE,则x +y =.【答案】11【解析】因为CD =3CE -2CA ,边BC 的中点为D ,所以12CB=3BE -BC +2AC ,因为12CB =3BE -3BC +2AC ,所以52BC =3BE +2AC ,所以52BC =52AC -AB =3BE +2AC ,所以5AC -5AB =6BE +4AC ,即5AB +6BE =AC ,因为AC =xAB +yBE ,所以x =5,y =6,故x +y =11.故答案为:1113已知圆锥母线长为2,则当圆锥的母线与底面所成的角的余弦值为时,圆锥的体积最大,最大值为.【答案】①.63②.16327π【解析】设圆锥的底面半径为r ,圆锥的母线与底面所成的角为θ,θ∈0,π2 ,易知cos θ=r 2.圆锥的体积为V =13πr 2⋅4-r 2=43πcos 2θ⋅2sin θ=8π3cos 2θ⋅sin θ=8π31-sin 2θ sin θ令x =sin θ,x ∈0,1 ,则y =1-sin 2θ sin θ=-x 3+x ,y =-3x 2+1当y >0时,x ∈0,33,当y<0时,x ∈33,1 ,即函数y =-x 3+x 在0,33 上单调递增,在33,1上单调递减,即V max =8π333-33 3 =163π27,此时cos θ=1-323 =62.故答案为:62;163π2714已知双曲线C :x 2-y 23=1的左、右焦点分别为F 1,F 2,右顶点为E ,过F 2的直线交双曲线C 的右支于A ,B 两点(其中点A 在第一象限内),设M ,N 分别为△AF 1F 2,△BF 1F 2的内心,则当F 1A ⊥AB 时,AF 1=;△ABF 1内切圆的半径为.【答案】①.7+1##1+7②.7-1##-1+7【解析】由双曲线方程知a =1,b =3,c =2,如下图所示:由F 1A ⊥AB ,则AF 1 2+AF 2 2=F 1F 2 2=16,故AF 1 -AF 2 2+2AF 1 AF 2 =16,而AF 1 -AF 2 =2a =2,所以AF 1 AF 2 =6,故AF 2 2+2AF 2 -6=0,解得AF 2 =7-1,所以AF 1 =7+1,若G 为△ABF 1内切圆圆心且F 1A ⊥AB 可知,以直角边切点和G ,A 为顶点的四边形为正方形,结合双曲线定义内切圆半径r =12AF 1 +AB -BF 1 =12AF 1 +AF 2 +BF 2 -BF 1所以r =1227+BF 2 -BF 1 =1227-2 =7-1;故答案为:7+1,7-1;2024届高三二轮复习“8+3+3”小题强化训练(3)一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1有一组按从小到大顺序排列数据:3,5,x ,8,9,10,若其极差与平均数相等,则这组数据的中位数为()A.7B.7.5C.8D.6.5【答案】B【解析】依题意可得极差为10-3=7,平均数为163+5+x +8+9+10 =1635+x ,所以1635+x =7,解得x =7,所以中位线为7+82=7.5.故选:B .2已知集合A =x x -1 >2 ,B =x log 4x <1 ,则A ∩B =()A.3,4B.-∞,-1 ∪3,4C.1,4D.-∞,4【答案】A【解析】由x -1 >2,得x <-1或x >3,所以A =x x <-1或x >3 ,由log 4x <1,得0<x <4,所以B =x 0<x <4 ,所以A ∩B =x 3<x <4 .故选:A .3已知向量a =(2,0),b =sin α,32,若向量b 在向量a 上的投影向量c =12,0 ,则|a +b |=()A.3B.7C.3D.7【答案】B【解析】由已知可得,b 在a 上的投影向量为a ⋅b |a |⋅a |a |=2sin α2×2(2,0)=(sin α,0),又b 在a 上的投影向量c =12,0 ,所以sin α=12,所以b =12,32,所以a +b =52,32 ,所以|a +b |=52 2+322=7.故选:B .4如图是两个底面半径都为1的圆锥底面重合在一起构成的几何体,上面圆锥的侧面积是下面圆锥侧面积的2倍,AP ⊥AQ ,则PQ =()A.74B.262C.52D.3【答案】C【解析】设两圆锥的高OP =x ,OQ =y ,则AP =x 2+1,AQ =y 2+1,由AP ⊥AQ ,有AP 2+AQ 2=PQ 2,可得x 2+1+y 2+1=x +y 2,可得xy =1,又由上下圆锥侧面积之比为2:1,即π×1×P A =2×π×1×QA ,可得P A =2QA ,则有x 2+1=2y 2+1,即x 2=4y 2+3,代入y =1x整理为x 4-3x 2-4=0,解得x =2(负值舍),可得y =12,OP =x +y =2+12=52.故选:C .5已知Q 为直线l :x +2y +1=0上的动点,点P 满足QP=1,-3 ,记P 的轨迹为E ,则()A.E 是一个半径为5的圆B.E 是一条与l 相交的直线C.E 上的点到l 的距离均为5D.E 是两条平行直线【答案】C【解析】设P x ,y ,由QP=1,-3 ,则Q x -1,y +3 ,由Q 在直线l :x +2y +1=0上,故x -1+2y +3 +1=0,化简得x +2y +6=0,即P 轨迹为E 为直线且与直线l 平行,E 上的点到l 的距离d =6-112+22=5,故A 、B 、D 错误,C 正确.故选:C .6已知x +1 x -1 5=a 0+a 1x +a 2x 2+a 3x 3+a 4x 4+a 5x 5+a 6x 6,则a 1+a 3的值为()A.-1B.1C.4D.-2【答案】C【解析】在x +1 x -1 5=a 0+a 1x +a 2x 2+a 3x 3+a 4x 4+a 5x 5+a 6x 6中,而x +1 x -1 5=x x -1 5+x -1 5,由二项式定理知x -1 5展开式的通项为T r +1=C r 5x 5-r (-1)r ,令5-r =2,解得r =3,令5-r =3,r =2,故a 3=C 35(-1)3+C 25(-1)2=0,同理令5-r =1,解得r =4,令5-r =0,解得r =5,故a 1=C 45(-1)4+C 55(-1)5=4,故a 1+a 3=4.故选:C7已知P 为抛物线x 2=4y 上一点,过P 作圆x 2+(y -3)2=1的两条切线,切点分别为A ,B ,则cos ∠APB 的最小值为()A.12B.23C.34D.78【答案】C【解析】如图所示:因为∠APB =2∠APC ,sin ∠APC =AC PC=1PC,设P t ,t 24,则PC 2=t 2+t 24-3 2=t 416-t 22+9=116t 2-4 2+8,当t 2=4时,PC 取得最小值22,此时∠APB 最大,cos ∠APB 最小,且cos ∠APB min =1-2sin 2∠APC =1-21222=34,故C 正确.故选:C8已知函数f x ,g x 的定义域为R ,g x 为g x 的导函数且f x +g x =3,f x -g 4-x =3,若g x 为偶函数,则下列结论一定成立的是()A.f -1 =f -3B.f 1 +f 3 =65C.g 2 =3D.f 4 =3【答案】D【解析】对于D ,∵g x 为偶函数,则g x =g -x ,两边求导可得g x =-g -x ,则g x 为奇函数,则g 0 =0,令x =4,则f 4 -g 0 =3,f 4 =3,D 对;对于C ,令x =2,可得f 2 +g 2 =3f 2 -g 2 =3 ,则f 2 =3g 2 =0 ,C 错;对于B ,∵f x +g x =3,可得f 2+x +g 2+x =3,f x -g 4-x =3可得f 2-x -g 2+x =3,两式相加可得f 2+x +f 2-x =6,令x =1,即可得f 1 +f 3 =6,B 错;又∵f x +g x =3,则f x -4 +g x -4 =f x -4 -g 4-x =3,f x -g 4-x =3,可得f x =f x -4 ,所以f x 是以4为周期的函数,所以根据以上性质不能推出f -1 =f -3 ,A 不一定成立.故选:D二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9下列结论正确的是()A.若a <b <0,则a 2>ab >b 2B.若x ∈R ,则x 2+2+1x 2+2的最小值为2C.若a +b =2,则a 2+b 2的最大值为2D.若x ∈(0,2),则1x +12-x ≥2【答案】AD【解析】因为a 2-ab =a (a -b )>0,所以a 2>ab ,因为ab -b 2=b (a -b )>0,所以ab >b 2,所以a 2>ab >b 2,故A 正确;因为x 2+2+1x 2+2≥2的等号成立条件x 2+2=1x 2+2不成立,所以B 错误;因为a 2+b 22≥a +b 2 2=1,所以a 2+b 2≥2,故C 错误;因为1x +12-x =12(x +2-x )1x +12-x =122+2-x x +x 2-x ≥12(2+2)=2,当且仅当1x =12-x,即x =1时,等号成立,所以D 正确.故选:AD10若函数f x =2sin 2x ⋅log 2sin x +2cos 2x ⋅log 2cos x ,则()A.f x 的最小正周期为πB.f x 的图像关于直线x =π4对称C.f x 的最小值为-1D.f x 的单调递减区间为2k π,π4+2k π ,k ∈Z【答案】BCD【解析】由sin x >0,cos x >0得f x 的定义域为2k π,π2+2k π ,k ∈Z .对于A :当x ∈0,π2时,x +π∈π,32π 不在定义域内,故f x +π =f x 不成立,易知f x 的最小正周期为2π,故选项A 错误;对于B :又f π2-x =2cos 2x ⋅log 2cos x +2sin 2x ⋅log 2sin x =f x ,所以f x 的图像关于直线x =π4对称,所以选项B 正确;对于C :因为f x =sin 2x ⋅log 2sin 2x +cos 2x ⋅log 2cos 2x ,设t =sin 2x ,所以函数转化为g t =t ⋅log 2t +1-t ⋅log 21-t ,t ∈0,1 ,g t =log 2t -log 21-t ,由g t >0得,12<t <1.g t <0得0<t <12.所以g t 在0,12 上单调递减,在12,1 上单调递增,故g (t )min =g 12=-1,即f (x )min =-1,故选项C 正确;对于D :因为g t 在0,12 上单调递减,在12,1 上单调递增,由t =sin 2x ,令0<sin 2x <12得0<sin x <22,又f x 的定义域为2k π,π2+2k π ,k ∈Z ,解得2k π<x <π4+2k π,k ∈Z ,因为t =sin 2x 在2k π,π4+2k π 上单调递增,所以f x 的单调递减区间为2k π,π4+2k π ,k ∈Z ,同理函数的递增区间为π4+2k π,π2+2k π ,k ∈Z ,所以选项D 正确.故选:BCD .11已知数列a n 的前n 项和为S n ,且2S n S n +1+S n +1=3,a 1=α0<α<1 ,则()A.当0<α<13-14时,a 2>a 1B.a 3>a 2C.数列S 2n -1 单调递增,S 2n 单调递减D.当α=34时,恒有nk =1S k -1 <54【答案】ACD【解析】由题意可得:S n +1=32S n +1,a 1=α,由S n +1=32S n +1可知:S n +1=1⇔S n =1,但S 1=α∈0,1 ,可知对任意的n ∈N *,都有S n ≠1,对于选项A :若0<α<13-14,则a 2-a 1=S 2-2a 1=32α+1-2α=3-2α-4α22α+1=4α+1+13 13-14-α2α+1>0,即a 2>a 1,故A 正确;对于选项B :a 3-a 2=S 3-2S 2+S 1=6α+32α+7-62α+1+α=α-1 4α2+32α+39 2α+1 2α+7<0,即a 3<a 2,故B 错误.对于选项C :因为S n +1-1=-2S n -1 2S n +1,S n +1+32=3S n +32 2S n +1,则S n +1-1S n +1+32=-23⋅S n -1S n +32,且S 1-1S 1+32=α-1α+32<0,可知S n -1S n+32是等比数列,则S n -1S n +32=α-1α+32⋅-23n -1,设A =α-1α+32<0,t =232n -2,可得S 2n =3-3At 3+2At =3253+2At -1 ,S 2n -1=1+32At 1-At =521-At-32,因为At =A 232n -2,可知A 23 2n -2 为递增数列,所以数列S 2n -1 单调递增,S 2n 单调递减,故C 正确;对于选项D :因为S n +1=32S n +1,S n +1-34=32S n +1-34=33-2S n 42S n +1,由S 1=α=34,可得S 2-34>0,即S 2>34,则S 2≤65,即34<S 2≤65;由34<S 2≤65,可得S 3-34>0,即S 3>34,则S 3<65,即34<S 3<65;以此类推,可得对任意的n ∈N *,都有S n ≥S 1=α=34,又因为S n +1-1S n -1=22S n +1,则S n +1-1 ≤22α+1S n -1 =45S n -1 ,所以∑nk =1S k -1 ≤541-45 n <54,故D 正确.故选:ACD .三、填空题:本题共3小题,每小题5分,共15分.12在(1+ax )n (其中n ∈N *,a ≠0)的展开式中,x 的系数为-10,各项系数之和为-1,则n =.【答案】5【解析】由题意得(1+ax )n 的展开式中x 的系数为aC 1n =-10,即an =-10,令x =1,得各项系数之和为(1+a )n =-1,则n 为奇数,且1+a =-1,即得a =-2,n =5,故答案为:513已知椭圆C :x 2a 2+y 2b2=1a >b >0 的左、右焦点分别F 1,F 2,椭圆的长轴长为22,短轴长为2,P 为直线x =2b 上的任意一点,则∠F 1PF 2的最大值为.【答案】π6【解析】由题意有a =2,b =1,c =1,设直线x =2与x 轴的交点为Q ,设PQ =t ,有tan ∠PF 1Q =PQ F 1Q=t3,tan ∠PF 2Q =PQ F 2Q=t ,可得tan ∠F 1PF 2=tan ∠PF 2Q -∠PF 1Q =t -t31+t23=2t t 2+3=2t +3t ≤2t 23t =33,当且仅当t =3时取等号,可得∠F 1PF 2的最大值为π6.故答案为:π614已知四棱锥P -ABCD 的底面为矩形,AB =23,BC =4,侧面P AB 为正三角形且垂直于底面ABCD ,M 为四棱锥P -ABCD 内切球表面上一点,则点M 到直线CD 距离的最小值为.【答案】10-1【解析】如图,设四棱锥的内切球的半径为r ,取AB 的中点为H ,CD 的中点为N ,连接PH ,PN ,HN ,球O为四棱锥P-ABCD的内切球,底面ABCD为矩形,侧面P AB为正三角形且垂直于底面ABCD,则平面PHN截四棱锥P-ABCD的内切球O所得的截面为大圆,此圆为△PHN的内切圆,半径为r,与HN,PH分别相切于点E,F,平面P AB⊥平面ABCD,交线为AB,PH⊂平面P AB,△P AB为正三角形,有PH⊥AB,∴PH⊥平面ABCD,HN⊂平面ABCD,∴PH⊥HN,AB=23,BC=4,则有PH=3,HN=4,PN=5,则△PHN中,S△PHN=12×3×4=12r3+4+5,解得r=1.所以,四棱锥P-ABCD内切球半径为1,连接ON.∵PH⊥平面ABCD,CD⊂平面ABCD,∴CD⊥PH,又CD⊥HN,PH,HN⊂平面PHN,PH∩HN=H,∴CD⊥平面PHN,∵ON⊂平面PHN,可得ON⊥CD,所以内切球表面上一点M到直线CD的距离的最小值即为线段ON的长减去球的半径,又ON=OE2+EN2=10.所以四棱锥P-ABCD内切球表面上的一点M到直线CD的距离的最小值为10-1.故答案为:10-12024届高三二轮复习“8+3+3”小题强化训练(4)一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1已知双曲线的标准方程为x 2k -4+y 2k -5=1,则该双曲线的焦距是()A.1B.3C.2D.4【答案】C【解析】由双曲线方程可知a 2=k -4,b 2=5-k ,所以c 2=k -4+5-k =1,c =1,2c =2.故选:C2在等比数列a n 中,a 1+a x =82,a 3a x -2=81,前x 项和S x =121,则此数列的项数x 等于()A.4B.5C.6D.7【答案】B【解析】由已知条件可得a 1+a x =82a 3a x -2=a 1a x =81,解得a 1=1a x =81 或a 1=81a x =1 .设等比数列a n 的公比为q .①当a 1=1,a x =81时,由S x =a 1-a x q 1-q =1-81q1-q=121,解得q =3,∵a x =a 1q x -1=3x -1=81,解得x =5;②当a 1=81,a x =1时,由S x =a 1-a x q 1-q =81-q 1-q =121,解得q =13,∵a x =a 1q x -1=81×13x -1=35-x =1,解得x =5.综上所述,x =5.故选:B .3对任意实数a ,b ,c ,在下列命题中,真命题是()A.“ac 2>bc 2”是“a >b ”的必要条件B.“ac 2=bc 2”是“a =b ”的必要条件C.“ac 2=bc 2”是“a =b ”的充分条件D.“ac 2≥bc 2”是“a ≥b ”的充分条件【答案】B【解析】对于A ,若c =0,则由a >b ⇏ac 2>bc 2,∴“ac 2>bc 2”不是“a >b ”的必要条件,A 错.对于B ,a =b ⇒ac 2=bc 2,∴“ac 2=bc 2”是“a =b ”的必要条件,B 对,对于C ,若c =0,则由ac 2=bc 2,推不出a =b ,“ac 2=bc 2”不是“a =b ”的充分条件对于D ,当c =0时,ac 2=bc 2,即ac 2≥bc 2成立,此时不一定有a ≥b 成立,故“ac 2≥bc 2”不是“a ≥b ”的充分条件,D 错误,故选:B .4已知m 、n 是两条不同直线,α、β、γ是三个不同平面,则下列命题中正确的是()A.若m ∥α,n ∥α,则m ∥nB.若α⊥β,β⊥γ,则α∥βC.若m ∥α,m ∥β,则α∥βD.若m ⊥α,n ⊥α,则m ∥n【答案】D【解析】A选项:令平面ABCD为平面α,A1B1为直线m,B1C1为直线n,有:m∥α,n∥α,但m∩n=B1,A错误;B选项:令平面ABCD为平面β,令平面B1BCC1为平面α,令平面A1ABB1为平面γ,有:α⊥β,β⊥γ,而α⊥β,B错误;C选项:令平面ABCD为平面α,令平面A1ABB1为平面β,C1D1为直线m,有:m∥α,m∥β,则α∥β,而α⊥β,C错误;D选项:垂直与同一平面的两直线一定平行,D正确.故选:D5将甲、乙等8名同学分配到3个体育场馆进行冬奥会志愿服务,每个场馆不能少于2人,则不同的安排方法有()A.2720B.3160C.3000D.2940【答案】D【解析】共有两种分配方式,一种是4:2:2,一种是3:3:2,故不同的安排方法有C48C24C222!+C38C35C222!A33=2940.故选:D6若抛物线y2=4x与椭圆E:x2a2+y2a2-1=1的交点在x轴上的射影恰好是E的焦点,则E的离心率为()A.2-12 B.3-12 C.2-1 D.3-1【答案】C【解析】不妨设椭圆与抛物线在第一象限的交点为A,椭圆E右焦点为F,则根据题意得AF⊥x轴,c2=a2-a2-1=1,则c=1,则F1,0,当x=1时,y2=4×1,则y A=2,则A1,2,代入椭圆方程得12a2+22a2-1=1,结合a2-1>0,不妨令a>0;解得a=2+1,则其离心率e=ca=12+1=2-1,故选:C.7已知等边△ABC 的边长为3,P 为△ABC 所在平面内的动点,且|P A |=1,则PB ⋅PC 的取值范围是()A.-32,92B.-12,112C.[1,4]D.[1,7]【答案】B【解析】如下图构建平面直角坐标系,且A -32,0 ,B 32,0 ,C 0,32,所以P (x ,y )在以A 为圆心,1为半径的圆上,即轨迹方程为x +322+y 2=1,而PB =32-x ,-y ,PC =-x ,32-y ,故PB ⋅PC =x 2-32x +y 2-32y =x -34 2+y -34 2-34,综上,只需求出定点34,34 与圆x +322+y 2=1上点距离平方范围即可,而圆心A 与34,34 的距离d =34+32 2+34 2=32,故定点34,34与圆上点的距离范围为12,52,所以PB ⋅PC ∈-12,112.故选:B 8设a 、b 、c ∈0,1 满足a =sin b ,b =cos c ,c =tan a ,则()A.a +c <2b ,ac <b 2B.a +c <2b ,ac >b 2C.a +c >2b ,ac <b 2D.a +c >2b ,ac >b 2【答案】A【解析】∵a 、b 、c ∈0,1 且a =sin b ,b =cos c ,c =tan a ,则c =tan a =tan sin b ,先比较a +c =sin b +tan sin b 与2b 的大小关系,构造函数f x =sin x +tan sin x -2x ,其中0<x <1,则0<sin x <1,所以,cos1<cos sin x <1,则f x =cos x +cos xcos 2sin x -2=cos x -2 cos 2sin x +cos x cos 2sin x,令g x =cos x -1-12x 2 ,其中x ∈0,1 ,则g x =x -sin x ,令p x =x -sin x ,其中0<x <1,所以,p x =1-cos x >0,所以,函数g x 在0,1 上单调递增,故g x >g 0 =0,所以,函数g x 在0,1 上单调递增,则g x =cos x -1-12x 2 >0,即cos x >1-12x 2,因为x ∈0,1 ,则0<sin x <sin1,所以,cos sin x >1-12sin 2x =1-121-cos 2x =121+cos 2x ,所以,cos 2sin x >141+cos 2x 2,因为cos x -2<0,所以,cos x -2 cos 2sin x +cos x <14cos x -2 1+cos 2x 2+cos x=14cos 5x -2cos 4x +2cos 3x -4cos 2x +5cos x -2 =14cos x -1 3cos 2x +cos x +2 <0,所以,对任意的x ∈0,1 ,f x =cos x -2 cos 2sin x +cos xcos 2sin x <0,故函数f x 在0,1 上单调递减,因为b ∈0,1 ,则f b =sin b +tan sin b -2b <f 0 =0,故a +c <2b ,由基本不等式可得0<2ac ≤a +c <2b (a ≠c ,故取不了等号),所以,ac <b 2,故选:A .二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9某大学生做社会实践调查,随机抽取6名市民对生活满意度进行评分,得到一组样本数据如下:88、89、90、90、91、92,则下列关于该样本数据的说法中正确的是()A.均值为90B.中位数为90C.方差为2D.第80百分位数为91【答案】ABD【解析】由题意可知,该组数据的均值为x =88+89+90+90+91+926=90,故A 正确;中位数为90+902=90,故B 正确;方差为s 2=1688-90 2+89-90 2+90-90 2×2+91-90 2+92-90 2 =53,故C 错误;因为6×80%=4.8,第80百分位数为91,故D 正确.故选:ABD .10设M ,N ,P 为函数f x =A sin ωx +φ 图象上三点,其中A >0,ω>0,ϕ <π2,已知M ,N 是函数f x 的图象与x 轴相邻的两个交点,P 是图象在M ,N 之间的最高点,若MP 2+2MN ⋅NP=0,△MNP 的面积是3,M 点的坐标是-12,0 ,则()A.A =2B.ω=π2C.φ=π4D.函数f x 在M ,N 间的图象上存在点Q ,使得QM ⋅QN <0【答案】BCD【解析】MP 2+2MN ⋅NP =MP 2-2NM ⋅NP =MP 2-2NM ⋅12NM =T 4 2+A 2 -T 22=A 2-3T 216=0,而S △MNP =AT 4=3,故A =3,T =4=2πω,ω=π2,A 错误、B 正确;-12⋅π2+φ=k π,φ=k π+π4(k ∈Z ),而ϕ <π2,故φ=π4,C 正确;显然,函数f x 的图象有一部分位于以MN 为直径的圆内,当Q 位于以MN 为直径的圆内时,QM⋅QN<0,D 正确,故选:BCD .11设a 为常数,f (0)=12,f (x +y )=f (x )f (a -y )+f (y )f (a -x ),则().A .f (a )=12B .f (x )=12成立C f (x +y )=2f (x )f (y )D .满足条件的f (x )不止一个【答案】ABC 【解析】f (0)=12,f (x +y )=f (x )f (a -y )+f (y )f (a -x )对A :对原式令x =y =0,则12=12f a +12f a =f a ,即f a =12,故A 正确;对B :对原式令y =0,则f x =f x f a +f 0 f a -x =12f x +12f a -x ,故f x =f a -x ,对原式令x =y ,则f 2x =f x f y +f y f x =2f x f y =2f 2x ≥0,故f x 非负;对原式令y =a -x ,则f a =f 2x +f 2a -x =2f 2x =12,解得f x =±12,又f x 非负,故可得f x =12,故B 正确;对C :由B 分析可得:f x +y =2f x f y ,故C 正确;对D :由B 分析可得:满足条件的f x 只有一个,故D 错误.故选:ABC .三、填空题:本题共3小题,每小题5分,共15分.12在复平面内,复数z =-12+32i 对应的向量为OA ,复数z +1对应的向量为OB ,那么向量AB 对应的复数是.。
2024年新高考数学选填压轴题汇编(一)(解析版)
2024年新高考数学选填压轴题汇编(一)一、多选题1(2023·广东深圳·高三红岭中学校考阶段练习)已知长方体的表面积为10,十二条棱长度之和为16,则该长方体()A.一定不是正方体B.外接球的表面积为6πC.长、宽、高的值均属于区间1,2D.体积的取值范围为5027,2【答案】ABD【解析】设长方体的长宽高分别为a ,b ,c ,则可得2ab +ac +bc =104a +b +c =16,即ab +ac +bc =5a +b +c =4 ,又因为a +b +c 2=a 2+b 2+c 2 +2ab +ac +bc =16,所以a 2+b 2+c 2=6,由不等式可得,a 2+b 2+c 2≥ab +ac +bc ,当且仅当a =b =c 时,等号成立,而a 2+b 2+c 2>ab +ac +bc ,取不到等号,所以得不到a =b =c ,即该长方体一定不是正方体,故A 正确;设长方体外接球的半径为R ,则2R =a 2+b 2+c 2=6,即R =62,则外接球的表面积为4π622=6π,故B 正确;由a +b +c =4可得,c =4-a +b ,代入ab +ac +bc =5可得,ab +4-a +b a +b =5,即ab =5-4-a +b a +b ,因为a ,b >0,由基本不等式可得ab ≤a +b24,即5-4-a +b a +b ≤a +b24,设a +b =t ,则t >0,则5-4-t t ≤t 24,化简可得3t 2-16t +20≤0,即3t -10 t -2 ≤0,所以2≤t ≤103,即2≤a +b ≤103,又因为a +b =4-c ,则23≤c ≤2,同理可得a ,b ∈23,2 ,故C 错误;设长方体的体积为V ,则V =abc =5-4-a +b a +b 4-a +b ,且a +b =t ,2≤t ≤103,即V =5-4-t t 4-t ,其中t ∈2,103,化简可得,V =4-t 5-4t +t 2 ,t ∈2,103,且V =-5-4t +t 2 +4-t -4+2t =-3t -7 t -3 ,t ∈2,103,令V =0,则t =73或3,当t ∈2,73时,V <0,即V 单调递减,当t ∈73,3时,V >0,即V 单调递增,当t ∈3,103时,V <0,即V 单调递减,所以,当t =73时,V 有极小值,且V 73 =4-73 5-4×73+499 =5027,当t =3时,V 有极大值,且V 3 =4-3 5-4×3+9 =2,又因为V 2 =4-2 5-4×2+4 =2,V 103 =4-103 5-4×103+1009 =5027,所以V ∈5027,2 ,故D 正确;故选:ABD2(2023·广东·高三校联考阶段练习)对于数列a n ,若存在正数M ,使得对一切正整数n ,都有a n ≤M ,则称数列a n 是有界的.若这样的正数M 不存在,则称数列a n 是无界的.记数列a n 的前n 项和为S n ,下列结论正确的是()A.若a n =1n,则数列a n 是无界的 B.若a n =12nsin n ,则数列S n 是有界的C.若a n =-1 n ,则数列S n 是有界的 D.若a n =2+1n2,则数列S n 是有界的【答案】BC【解析】对于A ,∵a n =1n=1n≤1恒成立,∴存在正数M =1,使得a n ≤M 恒成立,∴数列a n 是有界的,A 错误;对于B ,∵-1≤sin n ≤1,∴-12n≤a n =12n⋅sin n ≤12n,∴S n =a 1+a 2+⋯+a n <12+122+⋯+12n=121-12 n1-12=1-12n<1,S n =a 1+a 2+⋯+a n >-12+12 2+⋯+12 n=-1+12 n>-1,所以存在正数M =1,使得S n ≤M 恒成立,∴则数列S n 是有界的,B 正确;对于C ,因为a n =-1 n ,所以当n 为偶数时,S n =0;当n 为奇数时,S n =-1;∴S n ≤1,∴存在正数M =1,使得S n ≤M 恒成立,∴数列S n 是有界的,C 正确;对于D ,1n 2=44n 2<42n -1 2n +1=412n -1-12n +1 ,∴S n =2n +1+122+132+⋅⋅⋅1n2≤2n +41-13+13-15+⋅⋅⋅+12n -1-12n +1 =2n +41-12n +1 =2n +8n 2n +1=2n -22n +1+2 ;∵y =x -22x +1在0,+∞ 上单调递增,∴n -22n +1∈13,+∞,∴不存在正数M ,使得S n ≤M 恒成立,∴数列S n 是无界的,D 错误.故选:BC .3(2023·广东·高三校联考阶段练习)如图,正方体ABCD -A 1B 1C 1D 1中,E 为A 1B 1的中点,P 为棱BC 上的动点,则下列结论正确的是()A.存在点P ,使AC 1⊥平面D 1EPB.存在点P ,使PE =PD 1C.四面体EPC 1D 1的体积为定值D.二面角P -D 1E -C 1的余弦值取值范围是55,23【答案】BC【解析】(向量法)为简化运算,建立空间直角坐标系如图,设正方体棱长为2,CP =20≤a ≤2 ,则P a ,2,2 ,E 2,1,0 ,A 2,0,0 ,C 10,2,2 ,AC 1 =-2,2,-2 ,D 1E ⋅AC 1 =-2≠0,故AC 1与D 1E 不垂直,故A 错误.由PE =PD 1知a 2+22+22=a -2 2+12+22,a =14∈0,2 ,故B 正确.V E -PC 1D 1=V P -C 1D 1E =13⋅2⋅S △C 1D 1E =13⋅2⋅12⋅2⋅2=43,为定值.故C 正确.又D 1E =2,1,0 ,D 1P =a ,2,2 ,设平面D 1EP 的法向量n 1 =x ,y ,z ,由D 1E ⋅n 1=0D 1P ⋅n 1 =0,2x +y =0ax +2y +2z =0 ,令x =2则y =-4,z =4-a ,∴n 1=2,-4,4-a ,又平面D 1EC 1的法向量n 2=0,0,1 ,∴cos n 1 ,n 2 =4-a 22+-4 2+4-a 2=11+204-a2,又0≤a ≤2,∴4≤4-a 2≤16,∴cos n 1 ,n 2 ∈66,23.故D 错误.(几何法)记棱A 1D 1,D 1D ,DC ,CB ,BB 1中点分别为F ,G ,J ,I ,H ,易知AC 1⊥平面EFGJIH ,而EF ⊂平面EFGJIH则AC 1⊥EF ,若AC 1⊥平面D 1EP ,D 1E ⊂平面D 1EP ,则AC 1⊥D 1E ,由EF ∩D 1E =E ,EF ,D 1E ⊂平面D 1EF ,所以AC 1⊥平面D 1EF ,与已知矛盾,故AC 1不垂直于平面D 1EP .故A 错误.连接EB ,D 1C ,易知BC ⊥EB ,BC ⊥D 1C ,设正方体棱长为2,知EB =5,D 1C =22,记BP =m 0≤m ≤2 ,则EP =m 2+5,D 1P =2-m2+8,由m 2+5=2-m 2+8,得m =74∈0,2 .故B 正确.V E -PC 1D 1=V P -C 1D 1E =13⋅2⋅S △C 1D 1E =13⋅2⋅12⋅2⋅2=43,为定值.故C 正确.过点P 作PM ⊥B 1C 1于点M ,易知PM ⊥D 1E ,过点M 作MN ⊥D 1E 于点N ,知D 1E ⊥平面PMN ,所以PN ⊥D 1E ,则二面角P -D 1E -C 1的平面角为∠PNM ,现在△PNM 中求解cos ∠PNM .设正方体棱长为2,NM =x ,则NP =x 2+4,∴cos ∠PNM =NMNP=xx 2+4,只需求x 取值范围即可:记BP =m 0≤m ≤2 ,则B 1M =BP =m ,分析易知M 在C 1时x 取到最大值,此时x =C 1N 1,M 在B 1时x 取到最小值,此时x =B 1N 2,又C 1N 1C 1D 1=D 1A 1D 1E 即C 1N 1=2⋅25=455,B 1N 2D 1A 1=B 1E D 1E 即B 1N 2=2⋅15=255,所以255≤x ≤455即45≤x 2≤165,∴cos ∠PNM =x x 2+4=1-4x 2+4∈66,23 .故D 错误.故选:BC4(2023·广东·高三校联考阶段练习)已知f x =xe x ,g x =x ln x .若存在x 1∈R ,x 2∈0,+∞ ,使得f x 1 =g x 2 =t 成立,则下列结论中正确的是()A.当t >0时,x 1x 2=tB.当t >0时,e ln t ≤x 1x 2C.不存在t ,使得f x 1 =g x 2 成立D.f x >g x +mx 恒成立,则m ≤2【答案】AB【解析】选项A ,∵f x 1 =g x 2 =t ∴t =x 1e x 1=x 2ln x 2=ln x 2e ln x 2>0,则x 1>0,x 2>0,ln x 2>0,且t =f (x 1)=f (ln x 2)>0,由f x =xe x ,得f x =e x x +1 ,当x >0时,f x >0,则f x 在0,+∞ 上递增,所以当t >0时,f x =t 有唯一解,故x 1=ln x 2,∴x 1x 2=x 2ln x 2=t ,故A 正确;选项B ,由A 正确,得ln t x 1x 2=ln tt(t >0),设φt =ln t t ,则φ t =1-ln tt 2,令φ t =0,解得t =e易知φt 在0,e 上单调递增,在e ,+∞ 上单调递减,∴φt ≤φe =1e ,∴ln t x 1x 2≤1e ,∴e ln t ≤x 1x 2,故B 正确;选项C ,由f x =e x x +1 ,g x =ln x +1=0,得f -1 =g 1e=0,又验证知f -1 =g 1e =-1e ,故存在t =-1e ,使得f -1 =g 1e=0,C 错误;选项D ,由x >0,f x >g x +mx 恒成立,即e x -ln x >m 恒成立,令r x =e x -ln x ,则r x =e x -1x ,由r x 在0,+∞ 上递增,又r 12=e -2<0,r 1 =e -1>0,∴存在x 0∈12,1 ,使r x 0 =0,∴r x 在0,x 0 上递减,在x 0,+∞ 上递增(其中x 0满足e x 0=1x 0,即x 0=-ln x 0).∴r x ≥r x 0 =e x 0-ln x 0=1x 0+x 0>2,要使m <e x -ln x 恒成立,∴m <r (x 0),存在2<m <r (x 0)满足题意,故D 错误.故选:AB .5(2023·广东梅州·高三大埔县虎山中学校考开学考试)已知f x 是定义在R 上的偶函数,且对任意x ∈R ,有f 1+x =-f 1-x ,当x ∈0,1 时,f x =x 2+x -2,则()A.f x 是以4为周期的周期函数B.f 2021 +f 2022 =-2C.函数y =f x -log 2x +1 有3个零点D.当x ∈3,4 时,f x =x 2-9x +18【答案】ACD【解析】依题意,f x 为偶函数,且f 1+x =-f 1-x ⇒f x 关于1,0 对称,则f x +4 =f 1+x +3 =-f 1-x +3 =-f -2-x=-f -2+x =-f 2+x =-f 1+1+x =f 1-1+x =f -x =f x ,所以f x 是周期为4的周期函数,A 正确.因为f x 的周期为4,则f 2021 =f 1 =0,f 2022 =f 2 =-f 0 =2,所以f 2021 +f 2022 =2,B 错误;作函数y =log 2x +1 和y =f x 的图象如下图所示,由图可知,两个函数图象有3个交点,C 正确;当x ∈3,4 时,4-x ∈0,1 ,则f x =f -x =f 4-x =4-x 2+4-x -2=x 2-9x +18,D 正确.故选:ACD6(2023·广东梅州·高三大埔县虎山中学校考开学考试)如图,正方形ABCD 中,E 、F 分别是AB 、BC的中点将△ADE,ΔCDF,△BEF分别沿DE、DF、EF折起,使A、B、C重合于点P.则下列结论正确的是A.PD⊥EFB.平面PDE⊥平面PDFC.二面角P-EF-D的余弦值为13D.点P在平面DEF上的投影是ΔDEF的外心【答案】ABC【解析】对于A选项,作出图形,取EF中点H,连接PH,DH,又原图知ΔBEF和ΔDEF为等腰三角形,故PH⊥EF,DH⊥EF,所以EF⊥平面PDH,所以PD⊥EF,故A正确;根据折起前后,可知PE,PF,PD 三线两两垂直,于是可证平面PDE⊥平面PDF,故B正确;根据A选项可知∠PHD为二面角P-EF-D的平面角,设正方形边长为2,因此PE=PF=1,PH=22,DH=22-22=322,PD=DF2-PF2=2,由余弦定理得:cos∠PHD=PH2+HD2-PD22PH⋅HD =13,故C正确;由于PE=PF≠PD,故点P在平面DEF上的投影不是ΔDEF的外心,即D错误;故答案为ABC.7(2023·广东·高三校联考阶段练习)在正方体ABCD-A1B1C1D1中,E,F,G分别为BC,CC1,BB1的中点,则()A.直线D1D与EF所成的角为30°B.直线A1G与平面AEF平行C.若正方体棱长为1,三棱锥A1-AEF的体积是112D.点B 1和B 到平面AEF 的距离之比是3:1【答案】BCD【解析】对于选项A ,由图可知CC 1与DD 1显然平行,所以∠EFC =45°即为所求,故选项A 不正确;对于选项B ,取B 1C 1的中点M ,连接A 1M 、GM ,如图所示,易知A 1M ⎳AE ,且A 1M ⊄平面AEF ,AE ⊂平面AEF ,所以A 1M ⎳平面AEF .又易知GM ⎳EF ,GM ⊄平面AEF ,EF ⊂平面AEF ,所以GM ⎳平面AEF .又A 1M ∩GM =M ,A 1M 、GM ⊂面A 1MG ,所以平面A 1MG ⎳平面AEF .又A 1G ⊂平面A 1MG ,所以A 1G ⎳平面AEF ,故选项B 正确;对于选项C ,由选项B 知,A 1G ⎳平面AEF ,所以A 1和G 到平面AEF 的距离相等,所以V A 1-AEF =V G -AEF =V A -FEG =13×12×12×1×1=112.故选项C 正确;对于选项D ,平面AEF 过BC 的中点E ,即平面AEF 将线段BC 平分,所以C 与B 到平面AEF 的距离相等,连接B 1C 交EF 于点H ,如图所示,显然B 1H :HC =3:1,所以B 1与B 到平面AEF 的距离之比为3:1,故选项D 正确.故选:BCD .8(2023·广东·高三校联考阶段练习)已知数列a n 满足a 1=1,a 2=3,S n 是前n 项和,若n S n +1-S n -1=n +1 S n -S n -1 ,(n ∈N *且n ≥2),若不等式a n <n -2t 2-a +1 t +a 2-a +2 对于任意的n ∈N *,t ∈1,2 恒成立,则实数a 的值可能为()A.-4 B.0C.2D.5【答案】AD【解析】由n S n +1-S n -1=n +1 S n -S n -1 ,n ≥2,则na n +1-1=n +1 a n ,n ≥2,得a n +1-1n =n +1n a n ,n ≥2;a 2-11=2=21a 1,所以a n +1n +1-a n n =1n n +1=1n -1n +1,n ≥1,则a n n -a n -1n -1=1n -1-1n ,a n -1n -1-a n -2n -2=1n -2-1n -1,⋯,a 22-a 11=1-12,上述式子累加可得a n n -a 1=1-1n ,所以a n n =2-1n<2.所以-2t 2-a +1 t +a 2-a +2≥2对于任意的t ∈1,2 恒成立,整理得2t -a -1 t +a ≤0对于任意的t ∈1,2 恒成立.方法一:对选项A ,当a =-4时,不等式为2t +5 t -4 ≤0,其解集-52,4包含1,2 ,故选项A 正确;对选项B ,当a =0时,不等式为2t +1 t ≤0,其解集-12,0不包含1,2 ,故选项B 错误;对选项C ,当a =2时,不等式为2t -1 t +2 ≤0,其解集-2,12不包含1,2 ,故选项C 错误;对选项D ,当a =5时,不等式为2t -4 t +5 ≤0,其解集-5,2 包含1,2 ,故选项D 正确.方法二:令f t =2t -a -1 t +a ,若2t -a -1 t +a ≤0对于任意的t ∈1,2 恒成立,只需f 1 ≤0f 2 ≤0,即3-a 1+a ≤05-a 2+a ≤0 ,解得a ≥5或a ≤-2.故选:AD .9(2023·广东·高三统考阶段练习)已知函数f x =sin n x +cos n x x ∈N * ,则()A.对任意正奇数n ,f x 为奇函数B.对任意正整数n ,f x 的图像都关于直线x =π4对称C.当n =3时,f x 在0,π2上的最小值22D.当n =4时,f x 的单调递增区间是-π4+k π,k π k ∈Z 【答案】BC【解析】取n =1,则f x =sin x +cos x ,从而f 0 =1≠0,此时f x 不是奇函数,则A 错误;因为f π2-x =sin n π2-x +cos n π2-x =cos n x +sin n x =f x ,所以f x 的图象关于直线x =π4对称,则B 正确;当n =3时,f x =3sin 2x cos x -3cos 2x sin x =3sin x cos x sin x -cos x ,当x ∈0,π4时,fx <0;当x ∈π4,π2 时,f x >0.所以f x 在0,π4 上单调递减,在π4,π2 上单调递增,所以f x 的最小值为f π4 =22 3+22 3=22,故C 正确;当n =4时,f x =sin 4x +cos 4x =sin 2x +cos 2x 2-2sin 2x cos 2x =1-12sin 22x=1-1-cos4x 4=14cos4x +34,则f x 的递增区间为-π4+k π2,k π2k ∈Z ,则D 错误.故选:BC .10(2023·广东·高三统考阶段练习)若实数a ,b 满足2a +3a =3b +2b ,则下列关系式中可能成立的是()A.0<a<b<1B.b<a<0C.1<a<bD.a=b【答案】ABD【解析】设f(x)=2x+3x,g(x)=3x+2x,则f(x)=2x+3x,g(x)=3x+2x都为增函数,作出两函数的图象,两个函数图象有2个交点,分别为(0,1),(1,5),对于A,作直线y=m(1<m<5)分别与f(x),g(x)图象相交,交点横坐标为a,b,且0<a<b<1,此时f(a)=g(b)=m,即2a+3a=3b+2b能成立,故A正确;对于B,作直线y=n(n<0)分别与f(x),g(x)图象相交,交点横坐标为b,a,且b<a<0,此时f(a)=g(b) =n,即2a+3a=3b+2b能成立,故B正确;对于C,a=2,f(a)=f(2)=10,因为2=a<b,所以f(b)=3b+2b>32+4=13,所以此时2a+3a=3b+2b 不可能成立,故C不正确;对于D,a=b=0或a=b=1,2a+3a=3b+2b成立,所以D正确.故选:ABD.11(2023·广东·高三统考阶段练习)已知正方体ABCD -A 1B 1C 1D 1的棱长为4,M 为DD 1的中点,N 为ABCD 所在平面上一动点,N 1为A 1B 1C 1D 1所在平面上一动点,且NN 1⊥平面ABCD ,则下列命题正确的是()A.若MN 与平面ABCD 所成的角为π4,则点N 的轨迹为圆B.若三棱柱NAD -N 1A 1D 1的表面积为定值,则点N 的轨迹为椭圆C.若点N 到直线BB 1与直线DC 的距离相等,则点N 的轨迹为抛物线D.若D 1N 与AB 所成的角为π3,则点N 的轨迹为双曲线【答案】ACD【解析】A :连接DN ,因为MD ⊥平面ABCD ,所以∠MND 是MN 与平面ABCD 所成的角,即∠MND =π4,因为M 为DD 1的中点,所以MD =12DD 1=2,在直角三角形MND 中,tan ∠MND =MD DN ⇒1=2DN⇒DN =2,因此点N 的轨迹为以D 为圆心半径为2的圆,所以本选项命题是真命题;B :过N 做EN ⊥AD ,设三棱柱NAD -N 1A 1D 1的表面积为S ,所以S =2×12×4⋅NE +(AD +DN +AN )⋅4=4(4+DN +AN +NE )=定值,显然有N 到A 、D 、直线AD 的距离之和为定值,这与椭圆的定义不符合,故本选项命题是假命题;C :连接BN ,因为BB 1⊥平面ABCD ,BN ⊂平面ABCD ,所以BB 1⊥BN ,即点N 到直线BB 1与NB 相等,所以点N 的轨迹为点N 到点B 与直线DC 的距离相等的轨迹,即抛物线,所以本选项命题是真命题;D :以D 为空间坐标系的原点,DA 、DC 、DD 1所在的直线分别为x 、y 、z ,D (0,0,0)、A (4,0,0)、B (4,4,0)、N (x ,y ,0)、D 1(0,0,4),则有AB =(0,4,0)、D 1N =(x ,y ,-4),因为D 1N 与AB 所成的角为π3,所以cos π3=AB ⋅D 1N AB ⋅D 1N ⇒12=4y 4⋅x 2+y 2+16⇒3y 2-x 2=16,所以点N 的轨迹为双曲线,故本选项命题是真命题,故选:ACD12(2023·广东江门·高三台山市第一中学校考阶段练习)已知函数f (x )=e x -1+e 1-x +x 2-2x ,若不等式f (2-ax )<f x 2+3 对任意x ∈R 恒成立,则实数a 的取值可能是()A.-4B.-12C.2D.32【答案】BC【解析】由函数f (x )=e x -1+e 1-x +x 2-2x ,令t =x -1,则x =t +1,可得g (t )=e t +e -t +t 2-1,可得g (-t )=e -t +e t +(-t )2-1=e t +e -t +t 2-1=g (t ),所以g t 为偶函数,即函数f x 的图象关于x =1对称,又由g (t )=e t -e -t +2t ,令φ(t )=g (t )=e t -e -t +2t ,可得φ (t )=e t +e -t +2>0,所以φ(t )为单调递增函数,且φ(0)=0,当t >0时,g (t )>0,g t 单调递增,即x >1时,f x 单调递增;当t <0时,g (t )<0,g t 单调递减,即x <1时,f x 单调递减,由不等式f (2-ax )<f x 2+3 ,可得2-ax -1 <x 2+3-1 ,即1-ax <x 2+2所以不等式1-ax <x 2+2恒成立,即-x 2-2<ax -1<x 2+2恒成立,所以x 2+ax +1>0x 2-ax +3>0 的解集为R ,所以a 2-4<0且(-a )2-12<0,解得-2<a <2,结合选项,可得BC 适合.故选:BC .13(2023·广东·高三河源市河源中学校联考阶段练习)已知三次函数f x =x 3+bx 2+cx +d 有三个不同的零点x 1,x 2,x 3x 1<x 2<x 3 ,若函数g x =f x -1也有三个不同的零点t 1,t 2,t 3t 1<t 2<t 3 ,则下列等式或不等式一定成立的有()A.b 2<3cB.t 3>x 3C.x 1+x 2+x 3=t 1+t 2+t 3D.x 1x 2x 3-t 1t 2t 3=1【答案】BC【解析】f x =3x 2+2bx +c ,因为原函数有三个不同的零点,则f x =0有两个不同的实根,即3x 2+2bx +c =0,则Δ=4b 2-12c >0,即b 2>3c ,所以A 错误;因为三次函数f x =x 3+bx 2+cx +d 有三个不同的零点x 1,x 2,x 3x 1<x 2<x 3 ,所以x 3+bx 2+cx +d =x -x 1 x -x 2 x -x 3 =x 3-x 1+x 2+x 3 x 2+x 1x 2+x 2x 3+x 1x 3 x -x 1x 2x 3=0,所以x 1+x 2+x 3=-b ,x 1x 2x 3=-d ,同理t 1+t 2+t 3=-b ,t 1t 2t 3=1-d ,所以x 1+x 2+x 3=t 1+t 2+t 3,x 1x 2x 3-t 1t 2t 3=-1,故C 正确,D 错误;由f x 的图象与直线y =1的交点可知t 3>x 3,B 正确.故选:BC .14(2023·广东·高三河源市河源中学校联考阶段练习)已知直线l 过抛物线E :y 2=4x 的焦点F ,与抛物线相交于A x 1,y 1 、B x 2,y 2 两点,分别过A ,B 作抛物线的准线l 1的垂线,垂足分别为A 1,B 1,以线段A 1B 1为直径作圆M ,O 为坐标原点,下列正确的判断有()A.x 1+x 2≥2B.△AOB 为钝角三角形C.点F 在圆M 外部D.直线A 1F 平分∠OFA【答案】ABD 【解析】如图所示:对选项A ,由抛物线的焦半径公式可知AB =x 1+x 2+2≥2p =4,所以x 1+x 2≥2,故A 正确;对于选项B ,OA ⋅OB =x 1x 2+y 1y 2=y 1y 2216+y 1y 2,令直线l 的方程为x =my +1,代入y 2=4x 得y 2-4my -4=0,所以y 1y 2=-4,所以OA ⋅OB=-3<0,所以△AOB 是钝角三角形,故B 正确;对选项C ,D ,由AA 1 =AF 可知∠AA 1F =∠AFA 1,又AA 1∥OF ,所以∠AA 1F =∠OFA 1=∠AFA 1,所以直线FA 1平分角∠AFO ,同理可得FB 平分角∠BFO ,所以A 1F ⊥B 1F ,即∠A 1FB 1=90°,所以圆M 经过点F ,故C 错误,D 正确.故选:ABD15(2023·广东·高三河源市河源中学校联考阶段练习)已知圆O :x 2+y 2=4和圆C :(x -3)2+(y -3)2=4,P ,Q 分别是圆O ,圆C 上的动点,则下列说法错误的是()A.圆O 与圆C 相交B.PQ 的取值范围是32-4,32+4C.x -y =2是圆O 与圆C 的一条公切线D.过点Q 作圆O 的两条切线,切点分别为M ,N ,则存在点Q ,使得∠MQN =90°【答案】AC【解析】对于A 选项,由题意可得,圆O 的圆心为O 0,0 ,半径r 1=2,圆C 的圆心C 3,3 ,半径r 2=2,因为两圆圆心距OC =32>2+2=r 1+r 2,所以两圆外离,故A 错误;对于B 选项,PQ 的最大值等于OC +r 1+r 2=32+4,最小值为OC -r 1-r 2=32-4,故B 正确;对于C 选项,显然直线x -y =2与直线OC 平行,因为两圆的半径相等,则外公切线与圆心连线平行,由直线OC :y =x ,设外公切线为y =x +t ,则两平行线间的距离为2,即t2=2,故y =x ±22,故C 错误;对于D 选项,易知当∠MQN =90°时,四边形OMQN 为正方形,故当QO =22时,∠MQN =90°,故D 正确.故选:AC .16(2023·广东佛山·高三校考阶段练习)已知函数f x =3sin ωx +cos ωx (0<ω<3)满足f x +π2 =-f x ,其图象向右平移s s ∈N * 个单位后得到函数y =g x 的图象,且y =g x 在-π6,π6上单调递减,则()A.ω=1 B.函数f x 的图象关于5π12,0 对称C.s 可以等于5D.s 的最小值为2【答案】BCD【解析】对于A ,因为f x +π2 =-f x ,f x =3sin ωx +cos ωx =2sin ωx +π6,所以2sin ωx +π2ω+π6 =-2sin ωx +π6 ,π2ω=2k +1 π,k ∈Z ,则ω=4k +2,k ∈Z ,又0<ω<3,故ω=2,故A 错误;对于B ,由选项A 得f x =2sin 2x +π6,所以f 5π12=2sin 5π6+π6 =2sinπ=0,故5π12,0 是f x 的一个对称中心,故B 正确;对于C ,f x 的图象向右平移s s ∈N * 个单位后得到函数g x =2sin 2x -s +π6的图象,则g x =2sin 2x +π6-2s ,因为g x 在-π6,π6上单调递减,所以2×-π6 +π6-2s ≥2k π+π22×π6+π6-2s ≤2k π+3π2k ∈Z ,解得-k π-π2≤s ≤-k π-π3k ∈Z ,当k =-2时,3π2≤s ≤5π3,因为s ∈N *,所以s =5,故C 正确;对于D ,因为s ∈N *,所以-k π-π3>0,则k <-13,又k ∈Z ,故k ≤-1,当k =-1时,π2≤s ≤2π3,可知s min =2,故D 正确.故选:BCD .17(2023·广东佛山·高三校考阶段练习)已知函数f x 的定义域为0,+∞ ,其导函数为f x ,且f x +f x =x ln x ,f 1e =-1e,则()A.f 1e⋅e 1e-1>f 1B.f e ⋅e e -1>f 1C.f x 在0,+∞ 上是增函数D.f x 存在最小值【答案】ABC【解析】设F x =e x -1f x ,则F x =e x -1f x +f x =e x -1x ln x ,当x >1时,F x >0,当0<x <1时,F x <0,F x =e x -1f x 在1,+∞ 上单调递增,在0,1 上单调递减,A 选项,因为1e <1,所以F 1e >F 1 ,即e 1e-1f 1e>f 1 ,A 正确;B 选项,因为e >1,所以F e >F 1 ,即e e -1f e >f 1 ,B 正确;C 选项,f x =F x e x -1,则fx =F x -F x e x -1,令g x =F x -F x ,则g x =e x -1x ln x -e x -1x ln x =e x -11+ln x ,当x >1e 时,g x >0,当0<x <1e时,g x <0,故g x =F x -F x 在0,1e 上单调递减,在1e ,+∞ 单调递增,又g 1e =F 1e -F 1e =e 1e -1⋅1e ln 1e -e 1e -1f 1e =-e 1e -1⋅1e +e 1e-1⋅1e =0,故g x =F x -F x ≥0恒成立,所以fx =F x -F x ex -1≥0在0,+∞ 上恒成立,故f x 在0,+∞ 上是增函数,C 正确;D 选项,由C 选项可知,函数f x 在0,+∞ 上单调递增,故无最小值.故选:ABC18(2023·广东惠州·高三统考阶段练习)已知定义域为R 的函数f x 满足f -x -2 =-f x +2 ,f x 在0,+∞ 解析式为f x =3x 2-2x +1,0<x ≤1log 13x 2-718 ,x >1 ,则下列说法正确的是()A.函数f x 在-13,13上单调递减B.若函数f x 在0,p 内f x <1恒成立,则p ∈0,23C.对任意实数k ,y =f x 的图象与直线y =kx 最多有6个交点D.方程f x =m m >0 有4个解,分别为x 1,x 2,x 3,x 4,则x 1+x 2+x 3+x 4>-143【答案】BD【解析】因为定义域为R 的函数f x 满足f -x -2 =-f x +2 ,即f -x -2 +f x +2 =0,所以函数为奇函数,因为f x 在0,+∞ 解析式为f x =3x 2-2x +1,0<x ≤1log 13x 2-718,x >1 ,故作出函数的图象,如图所示.选项A :由图可知,当x ∈-13,0 时,函数单调递减,当x ∈0,13时,函数单调递减,但当x ∈-13,13,并不是随着x 增加而减少,故选项A 错误;选项B :因为函数f x 在0,p 内f x <1恒成立,所以由图象可知,0<p <1由3x 2-2x +1=1解得,x 1=0,x 2=23,所以0<p ≤23,故选项B 正确;选项C :取k =74时,如图所示,1°当x ∈0,1 时,联立方程组y =74x y =3x 2-2x +1 ,化简得3x 2-154x +1=0,设函数h (x )=3x 2-154x +1,因为Δ>0h (0)=1>0h (1)=14>0且对称轴为x =58∈0,1 ,所以方程3x 2-154x +1=0在0,1 上有两个不相等的实数根,2°设m (x )=74x -log 13x 2-718 ,x ∈1,+∞ ,因为函数m (x )=74x -log 13x 2-718 在x ∈1,+∞ 上单调递增,且m (1)=74-2<0,m (2)=72-log 131118 >0,所以m (x )=74x -log 13x 2-718 在x ∈1,+∞ 在只有一个零点,所以直线y =74x 与函数y =f (x )图象在x ∈1,+∞ 有1个交点,所以当x ∈0,+∞ 时,直线y =74x 与函数y =f (x )图象有3个交点,因为函数y =74x 与函数y =f (x )均为奇函数,所以当x ∈-∞,0 时,直线y =74x 与函数y =f (x )图象有3个交点,又当x =0时,直线y =74x 与函数y =f (x )图象有1个交点,所以此时直线y =74x 与函数y =f (x )图象有7个交点,故选项C 错误;选项D :当m >0时,则根据图象可得f (x )=m 的4个解所在大致范围为x 1<0,0<x 2<13,13<x 3<1,x 4>1,因为f (x )=m 有4个解,所以23<m <1,所以23<log 13x 42-718 <1,解得139<x 4<21323+79,所以6<9x 4-7<181323,由二次函数的对称性可知,3x 2-2x +1=m 的解x 2、x 3满足x 2+x 3=23,因为函数y =f (x )为奇函数,且当x >1时解析式为y =log 13x 2-718,所以当x <-1时解析式为y =-log 13-x 2-718,所以log 13x 42-718=-log 13-x 12-718 ,所以有-x 12-718 x 42-718 =1,即x 1=-369x 4-7-79,所以x 1+x 4=x 4+-369x 4-7-79=9x 4-79-369x 4-7,设9x 4-7=t ,6<t <181323,又因为函数y =t 9-36t 在6,1813 23单调递增,所以x 1+x 4=t 9-36t >69-366=23-6=-163,所以x 1+x 2+x 3+x 4>-163+23=-143,所以选项D 正确,故选:BD .19(2023·广东揭阳·高三校考阶段练习)若定义在-1,1 上的函数f x 满足f x +f y =f x +y 1+xy,且当x >0时,f x <0,则下列结论正确的是( ).A.若x 1,x 2∈-1,1 ,x 2>x 1 ,则f x 1 +f x 2 >0B.若f 12 =-12,则f 4041 =-2C.若f 2-x +g x =4,则g x 的图像关于点2,4 对称D.若α∈0,π4,则f sin2α >2f sin α 【答案】BC【解析】令y =-x ,则f x +f -x =f 0 =0,∴f x 为奇函数,把y 用-y 代替,得到f x -f y =f x -y1-xy,设-1<y <x <1,1-x 1+y >0,∴0<x -y1-xy<1.又∵当x >0时,f x <0,∴f x <f y ,∴f x 在-1,1 上单调递减.∵x 1,x 2∈-1,1 ,x 2>x 1 ,当x >0时,f x <0,则当x 1>0时,则x 2>x 1>0,f x 1 +f x 2 <0,当x 1<0时,则x 2>-x 1>0,f x 1 +f x 2 =f x 2 -f -x 1 <0.综上,f x 1 +f x 2 <0,∴A 错误.令x =y =12,得2f 12 =f 45 ,∴f 45 =-1,令x =y =45,得2f 45 =f 4041 ,∴f 4041 =-2,∴B 正确.由f 2-x +g x =4,得f 2-x =4-g x ,得f x =4-g 2-x ,又∵f -x =4-g 2+x ,f x 为奇函数,∴f x +f -x =0,则g 2-x +g 2+x =8,则g x 的图像关于点2,4 对称,∴C 正确.f sin2α =f 2sin α⋅cos α =f2tan α1+tan 2α=2f tan α ,假设f sin2α >2f sin α ,可得f tan α >f sin α ,即tan α<sin α,当α∈0,π4时,不成立得出矛盾假设不成立,∴D 错误.故选:BC .20(2023·广东东莞·高三校联考阶段练习)已知函数f x =3sin2ωx +cos2ωx ω>0 的零点构成一个公差为π2的等差数列,把f x 的图象沿x 轴向右平移π3个单位得到函数g x 的图象,则()A.g x 在π4,π2上单调递增 B.π4,0 是g x 的一个对称中心C.g x 是奇函数 D.g x 在区间π6,2π3上的值域为0,2 【答案】AB【解析】因为f x =3sin2ωx +cos2ωx ω>0 ,所以f x =232sin2ωx +12cos2ωx =2sin 2ωx +π6 ,因为函数f x =3sin2ωx +cos2ωx ω>0 的零点依次构成一个公差为π2的等差数列,∴12⋅2π2ω=π2,∴ω=1,所以f (x )=2sin 2x +π6 ,把函数f (x )的图象沿x 轴向右平移π3个单位,得到g (x )=2sin 2x -π3 +π6 =2sin 2x -π2 =-2cos2x ,即g (x )=-2cos2x ,所以g (x )为偶函数,故C 错误;对于A :当x ∈π4,π2 时2x ∈π2,π ,因为y =cos x 在π2,π 上单调递减,所以g x 在π4,π2上单调递增,故A正确;对于B:gπ4=-2cos2×π4=-2cosπ2=0,故π4,0是g x 的一个对称中心,故B正确;对于D:因为x∈π6,2π3,所以2x∈π3,4π3,所以cos2x∈-1,12,所以g x ∈-1,2,故D错误;故选:AB21(2023·广东东莞·高三校联考阶段练习)对于函数f(x)=xln x,下列说法正确的是()A.f(x)在(1,e)上单调递增,在(e,+∞)上单调递减B.若方程f(|x|)=k有4个不等的实根,则k>eC.当0<x1<x2<1时,x1ln x2<x2ln x1D.设g(x)=x2+a,若对∀x1∈R,∃x2∈(1,+∞),使得g(x1)=f(x2)成立,则a≥e 【答案】BD【解析】函数f(x)=xln x的定义域为(0,1)∪(1,+∞),f(x)=ln x-1(ln x)2,当0<x<1或1<x<e时,f (x)<0,当x>e时,f (x)>0,f(x)在(0,1),(1,e)上都单调递减,在(e,+∞)上单调递增,A不正确;当x∈(1,+∞)时,f(x)的图象在x轴上方,且在x=e时,f(x)min=e,f(x)在(0,1)上的图象在x轴下方,显然f(|x|)是偶函数,在方程f(|x|)=k中,k<0或k=e时,方程有两个不等实根,0≤k<e时,方程无实根,k>e时,方程有4个不等的实根,B正确;因0<x1<x2<1,则有f(x2)<f(x1)<0,即x2ln x2<x1ln x1<0,于是得x2ln x1<x1ln x2,C不正确;当x∈R时,g(x)的值域为[a,+∞),当x∈(1,+∞)时,f(x)的值域为[e,+∞),因对∀x1∈R,∃x2∈(1,+∞),使得g(x1)=f(x2)成立,从而得[a,+∞)⊆[e,+∞),即得a≥e,D正确.故选:BD二、单选题22(2023·广东深圳·高三红岭中学校考阶段练习)过直线y=x上的一点作圆(x-5)2+(y-1)2=2的两条切线l1,l2,当直线l1,l2关于y=x对称时,它们之间的夹角为()A.30°B.45°C.60°D.90°【答案】C【解析】圆(x-5)2+(y-1)2=2的圆心(5,1),过(5,1)与y=x垂直的直线方程为x+y-6=0,它与y=x的交点N(3,3),N到(5,1)距离是22,圆的半径为2,两条切线l1,l2,它们之间的夹角为2×30°=60°.故选C.23(2023·广东·高三校联考阶段练习)如图,在边长为2的正方形ABCD中,E,F分别是AB,BC的中点,将△AED,△BEF,△DCF分别沿DE,EF,DF折起,使得A,B,C三点重合于点A ,若三棱锥A -EFD的所有顶点均在球O的球面上,则球O的表面积为()A.2πB.3πC.6πD.8π【答案】C【解析】根据题意可得A D ⊥A E ,A D ⊥A F ,A E ⊥A F ,且A E =1,A F =1,A D =2,所以三棱锥D -A EF 可补成一个长方体,则三棱锥D -A EF 的外接球即为长方体的外接球,如图所示,设长方体的外接球的半径为R ,可得2R =12+12+22=6,所以R =62,所以外接球的表面积为S =4πR 2=4π⋅622=6π,故选:C24(2023·广东·高三校联考阶段练习)已知f x =2sin ωx +π3+a -1 sin ωx (a >0,ω>0)在0,π 上存在唯一实数x 0使f x 0 =-3,又φx =f x -23,且有φx max =0,则实数ω的取值范围是()A.1<ω≤53B.1≤ω<53C.56<ω<32D.56<ω≤32【答案】A【解析】由题意可得f x =sin ωx +3cos ωx +a -1 sin ωx ,=a sin ωx +3cos ωx =a 2+3sin ωx +φ ,其中φ满足tan φ=3a,又φx max =0,即f x max =23,所以a 2+3=23,又a >0,解得a =3,所以f x =23sin ωx +π6,又0<x <π,所以π6<ωx +π6<ωπ+π6,因为f x 在上存在唯一实数x 0使f x 0 =-3,即sin ωx 0+π6 =-12,所以7π6<ωx +π6≤11π6,解得1<ω≤53,故选:A 25(2023·广东梅州·高三大埔县虎山中学校考开学考试)在△ABC 中,角B ,C 的边长分别为b ,c ,点O 为△ABC 的外心,若b 2+c 2=2b ,则BC ⋅AO的取值范围是()A.-14,0 B.0,2C.-14,+∞ D.-14,2【答案】D【解析】取BC 的中点D ,则OD ⊥BC ,所以BC ·AO =BC ·AD +DO =BC ·AD +BC ·DO =BC ·AD=AC -AB ⋅12AC +AB =12AC 2-AB 2=12b 2-c 2 =12b 2-2b -b 2 =b 2-b =b -122-14.因为c 2=2b -b 2>0,则b b -2 <0,即0<b <2.所以-14≤BC ⋅AO <2,故选:D .26(2023·广东·高三校联考阶段练习)已知等腰直角△ABC 中,∠C 为直角,边AC =6,P ,Q 分别为AC ,AB 上的动点(P 与C 不重合),将△APQ 沿PQ 折起,使点A 到达点A 的位置,且平面A PQ ⊥平面BCPQ .若点A ,B ,C ,P ,Q 均在球O 的球面上,则球O 体积的最小值为()A.8π3B.4π3C.82π3D.42π3【答案】C【解析】显然P 不与A 重合,由点A ,B ,C ,P ,Q 均在球D 的球面上,得B ,C ,P ,Q 共圆,则∠C +∠PQB =π,又△ABC 为等腰直角三角形,AB 为斜边,即有PQ ⊥AB ,将△APQ 翻折后,PQ ⊥A Q ,PQ ⊥BQ ,又平面A PQ ⊥平面BCPQ ,平面A PQ ∩平面BCPQ =PQ ,A Q ⊂平面A PQ ,BQ ⊂平面BCPQ ,于是A Q ⊥平面BCPQ ,BQ ⊥平面A PQ ,显然A P ,BP 的中点D ,E 分别为△A PQ ,四边形BCPQ 外接圆圆心,则DO ⊥平面A PQ ,EO ⊥平面BCPQ ,因此DO ⎳BQ ,EO ⎳A Q ,取PQ 的中点F ,连接DF ,EF ,则有EF ⎳BQ ⎳DO ,DF ⎳A Q ⎳EO ,四边形EFDO 为矩形,设A Q =x 且0<x <23,DO =EF =12BQ =23-x 2,A P =2x ,设球O 的半径R ,有R 2=DO 2+A P 2 2=34x 2-3x +3=34x -2332+2,当x =233时,R 3min=22,所以球O 体积的最小值为4πR 33=82π3.故选:C .27(2023·广东·高三校联考阶段练习)已知正项等比数列a n 的前n 项和为S n ,且满足a n S n =22n -1-2n -1,设b n =log 2S n +1 ,将数列b n 中的整数项组成新的数列c n ,则c 2023=()A.4048B.2023C.2022D.4046【答案】B【解析】令数列a n 的公比为q ,∵a n >0,∴a 1>0,q >0,因为a n S n =22n -1-2n -1,所以当n =1时,a 21=21-20=1,即a 1=1或a 1=-1(舍去),当n =2时,a 2S 2=23-21=6,即q 1+q =6,解得q =2或q =-3(舍去),所以a n =2n -1,S n =1×1-2n 1-2=2n -1,即b n =log 2S n +1 =n ,因为数列b n 中的整数项组成新的数列c n ,所以n =k 2,k ∈N *,此时b k 2=k 2=k ,即c n =n ,∴c 2023=2023.故选:B28(2023·广东·高三统考阶段练习)已知AB ⊥AC ,|AB |=t ,|AC |=1t.若点P 是△ABC 所在平面内一点,且AP =AB |AB |+2AC|AC |,则PB ⋅PC 的最大值为()A.13 B.5-22C.5-26D.10+22【答案】B【解析】以A 为坐标原点,建立如图所示的直角坐标系,设P (x ,y )则B (t ,0),C 0,1t (t >0),可得AB AB=(1,0),2AC |AC |=(0,2),所以AP =(1,2),即P (1,2),故PB =(t -1,-2),PC =-1,1t-2 ,所以PB ⋅PC =1-t +4-2t =5-t +2t ≤5-22,当且仅当t =2t即t =2时等号成立.故选:B .29(2023·广东·高三统考阶段练习)已知-π2<α-β<π2,sin α+2cos β=1,cos α-2sin β=2,则sin β+π3=A.33B.63C.36D.66【答案】A【解析】由sin α+2cos β=1,cos α-2sin β=2,将两个等式两边平方相加,得5+4sin α-β =3,sin α-β =-12,∵-π2<α-β<π2,∴α-β=-π6,即α=β-π6,代入sin α+2cos β=1,得3sin β+π3 =1,即sin β+π3 =33.故选A30(2023·广东江门·高三台山市第一中学校考阶段练习)设函数f (x )=log 2(1-x ),-1≤x <k ,x 3-3x +1,k ≤x ≤3 的值域为A ,若A ⊆[-1,1],则f (x )的零点个数最多是()A.1B.2C.3D.4【答案】C【解析】令g (x )=log 2(1-x ),则g (x )=log 2(1-x )在(-∞,1)上单调递减;令h (x )=x 3-3x +1,则h (x )=3x 2-3.由h (x )>0,得x >1或x <-1;由h (x )<0,得-1<x <1,所以h (x )在(-∞,-1)和(1,+∞)上单调递增,在(-1,1)上单调递减,于是,h (x )的极大值为h (-1)=3,极小值为h (1)=-1.在同一坐标系中作出函数g (x )和h (x )的图象,如下图:显然f (-1)=g (-1)=1;由g (x )=-1,得x =12;由f (x )的解析式,得-1<k ≤1.(1)若-1<k <0,当k ≤x <0时,f (x )>f (0)=1,不符合题意;(2)若12<k ≤1,当12<x <k 时,f (x )<f 12=-1,不符合题意;(3)若0≤k ≤12,①当-1≤x <k 时,-1<f (x )≤1;②当k ≤x ≤3时,f (1)≤f (x )≤max {f (k ),f (3)}≤1,即-1≤f (x )≤1.由①②,0≤k ≤12时符合题意.此时,结合图象可知,当k =0时,f (x )在[-1,k )上没有零点,在[k ,3]上有2个零点;当0<k ≤12时,f (x )在[-1,k )上有1个零点,在[k ,3]上有1个或2个零点,综上,f (x )最多有3个零点.故选:C .31(2023·广东江门·高三台山市第一中学校考阶段练习)设a =511,b =ln 2111,c =sin 511,则()A.c <a <bB.c <b <aC.a <b <cD.b <c <a【答案】A 【解析】当x ∈0,π2 时,记f x =x -sin x ,则f x =1-cos x ≥0,故f (x )在x ∈0,π2单调递增,故f (x )>f 0 =0,因此得当x ∈0,π2 时,x >sin x ,故511>sin 511,即a >c ;b -a =ln 2111-511=ln 1+2×511 -511,设g (x )=ln (1+2x )-x 0<x <12 ,则b -a =g 511,因为g (x )=21+2x -1=1-2x1+2x,当0<x <12时,g (x )>0.所以g (x )在0,12 上单调递增,所以g 511>g (0)=0,即b >a ,所以b >a>c .故选:A32(2023·广东·高三河源市河源中学校联考阶段练习)设椭圆x 2a 2+y 2b2=1(a >b >0)的左、右焦点分别为F 1、F 2,P 是椭圆上一点,PF 1 =λPF 2 ,12≤λ≤2 ,∠F 1PF 2=π2,则椭圆离心率的取值范围为()A.0,22B.22,53C.23,53D.53,1 【答案】B【解析】设F 1(-c ,0),F 2(c ,0),运用椭圆的定义和勾股定理,求得e 2=λ2+1(λ+1)2,令m =λ+1,可得λ=m -1,即有λ2+1(λ+1)2=21m -12 2+12,运用二次函数的最值的求法,解不等式可得所求范围.设F 1(-c ,0),F 2(c ,0),由椭圆的定义可得,|PF 1|+|PF 2|=2a ,可设|PF 2|=t ,可得|PF 1|=λt ,即有(λ+1)t =2a ,①由∠F 1PF 2=π2,可得|PF 1|2+|PF 2|2=4c 2,即为(λ2+1)t 2=4c 2,②由②÷①2,可得e 2=λ2+1(λ+1)2,令m =λ+1,可得λ=m -1,即有λ2+1(λ+1)2=m 2-2m +2m 2=21m -12 2+12,由12≤λ≤2,可得32≤m ≤3,即13≤1m ≤23,则当m =2时,取得最小值12;当m =32或3时,取得最大值59,即有12≤e 2≤59,解得:22≤e ≤53,所以椭圆离心率的取值范围为22,53.故选:B .33(2023·广东·高三河源市河源中学校联考阶段练习)设a =ln1.1,b =e 0.1-1,c =tan0.1,则()A.a <b <cB.c <a <bC.a <c <bD.b <a <c【答案】C【解析】令f x =e x -x +1 ,所以f x =e x -1,当x >0时f x >0,当x <0时f x <0,即函数f x 在-∞,0 上单调递减,在0,+∞ 上单调递增,所以f x min =f 0 =0,即e x ≥x +1,当且仅当x =0时取等号,令x =0.1,可得b =e 0.1-1>0.1,令h (x )=tan x -x ,x ∈0,π2 ,则在x ∈0,π2 时,h (x )=1cos 2x -1>0,∴h (x )=tan x -x 在x ∈0,π2 上单调递增,∴h (x )>h (0)=0,∴x ∈0,π2时,tan x >x .∴c =tan0.1>0.1,令g x =ln x -x +1,则g x =1x -1=1-xx,所以当0<x <1时g x >0,当x >1时g x <0,即函数g x 在0,1 上单调递增,在1,+∞ 上单调递减,所以g x max =g 1 =0,即ln x ≤x -1,当且仅当x =1时取等号,所以当x =1.1,可得a =ln1.1<1.1-1=0.1,所以a 最小,设t x =e x -1-tan x x ∈0,0.1 ,则t (x )=e x -1cos 2x>0,∴t (x )在0,0.1 上单调递增,∴t (0)<t (0.1),∴t (0.1)=e 0.1-1-tan0.1>e 0-1-tan0=0,∴b =e 0.1-1>tan0.1=c ,综上可得b >c >a ;故选:C34(2023·广东佛山·高三校考阶段练习)符号x 表示不超过实数x 的最大整数,如 2.3 =2,-1.9 =-2.已知数列a n 满足a 1=1,a 2=5,a n +2+4a n =5a n +1.若b n =log 2a n +1 ,S n 为数列8100b n b n +1的前n 项和,则S 2025 =()A.2023B.2024C.2025D.2026【答案】B【解析】因为a n +2+4a n =5a n +1,则a n +2-a n +1=4a n +1-a n ,且a 2-a 1=4,所以,数列a n +1-a n 是首项为4,公比也为4的等比数列,所以,a n +1-a n =4×4n -1=4n ,①由a n +2+4a n =5a n +1可得a n +2-4a n +1=a n +1-4a n ,且a 2-4a 1=1,所以,数列a n +1-4a n 为常数列,且a n +1-4a n =1,②由①②可得a n =4n -13,因为4n +1-13-4n=4⋅4n -1-3⋅4n 3=4n -13>0,4n +1-13-2⋅4n =4⋅4n -1-6⋅4n 3=-2⋅4n +13<0,则4n <a n +1=4n +1-13<2⋅4n ,。
高三数学选择题专题训练(17套)含答案
(每个专题时间:35分钟,满分:60分)1.函数y =的定义域是( )A .[1,)+∞B .23(,)+∞ C .23[,1] D .23(,1]2.函数221()1x f x x -=+, 则(2)1()2f f = ( ) A .1 B .-1 C .35D .35-3.圆222430x y x y +-++=的圆心到直线1x y -=的距离为( )A .2 BC .1 D4.不等式221x x +>+的解集是( ) A .(1,0)(1,)-+∞ B .(,1)(0,1)-∞- C .(1,0)(0,1)- D .(,1)(1,)-∞-+∞5.sin163sin 223sin 253sin313+=( )A .12-B .12C. D6.若向量a 与b 的夹角为60,||4,(2).(3)72b a b a b =+-=-,则向量a 的模为( ) A .2 B .4 C .6 D .127.已知p 是r 的充分不必要条件,s 是r 的必要条件,q 是s 的必要条件。
那么p 是q 成立的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件 8.不同直线,m n 和不同平面,αβ,给出下列命题 ( )①////m m αββα⎫⇒⎬⊂⎭ ② //////m n n m ββ⎫⇒⎬⎭ ③ ,m m n n αβ⊂⎫⇒⎬⊂⎭异面 ④ //m m αββα⊥⎫⇒⊥⎬⎭其中假命题有:( ) A .0个 B .1个C .2个D .3个9. 若{}n a 是等差数列,首项120032004200320040,0,.0a a a a a >+><,则使前n 项和0n S > 成立的最大自然数n 是 ( ) A .4005 B .4006 C .4007 D .400810.已知双曲线22221,(0,0)x y a b a b-=>>的左,右焦点分别为12,F F ,点P 在双曲线的右支上,且12||4||PF PF =,则此双曲线的离心率e 的最大值为 ( )A .43B .53C .2D .7311.已知盒中装有3只螺口与7只卡口灯炮,这些灯炮的外形与功率都相同且灯口向下放着,现需要一只卡口灯炮使用,电工师傅每次从中任取一只并不放回,则他直到第3次才取得卡口灯炮的概率为 ( )A .2140B .1740C .310D .712012. 如图,棱长为5的正方体无论从哪一个面看,都有两个直通的边长为1的正方形孔,则这个有孔正方体的表面积(含孔内各面)是A .258B .234C .222D .2101.设集合U={1,2,3,4,5},A={1,3,5},B={2,3,5},则()U C A B 等于( )A .{1,2,4}B .{4}C .{3,5}D .∅2.︒+︒15cot 15tan 的值是( )A .2B .2+3C .4D .334 3.命题p :若a 、b ∈R ,则|a |+|b|>1是|a +b|>1的充要条件;命题q :函数y=2|1|--x 的定义域是(-∞,-1]∪[3,+∞).则( )A .“p 或q ”为假B .“p 且q ”为真C .p 真q 假D .p 假q 真4.已知F 1、F 2是椭圆的两个焦点,过F 1且与椭圆长轴垂直的直线交椭圆于A 、B 两点,若△ABF 2是正三角形,则这个椭圆的离心率为( )A .32 B .33 C .22 D .235.设S n 是等差数列{}n a 的前n 项和,若==5935,95S Sa a 则( ) A .1B .-1C .2D .216.已知m 、n 是不重合的直线,α、β是不重合的平面,有下列命题:其中真命题的个数是( ) ①若m ⊂α,n ∥α,则m ∥n ; ②若m ∥α,m ∥β,则α∥β; ③若α∩β=n ,m ∥n ,则m ∥α且m ∥β; ④若m ⊥α,m ⊥β,则α∥β.A .0B .1C .2D .37.已知函数y=log 2x 的反函数是y=f —1(x ),则函数y= f —1(1-x )的图象是( )8.已知a 、b 是非零向量且满足(a -2b) ⊥a ,(b -2a ) ⊥b ,则a 与b 的夹角是( )A .6π B .3π C .32π D .65π 9.已知8)(xa x -展开式中常数项为1120,其中实数a 是常数,则展开式中各项系数的和是( )A .28B .38C .1或38D .1或2810.如图,A 、B 、C 是表面积为48π的球面上三点,AB=2,BC=4,∠ABC=60º,O 为球心,则直线OA 与截面ABC 所成的角是( ) A .arcsin 63 B .arccos 63C .arcsin 33 D .arccos 3311.定义在R 上的偶函数f(x)满足f(x)=f(x +2),当x ∈[3,4] 时,f(x)= x -2,则 ( ) A .f (sin21)<f (cos 21) B .f (sin 3π)>f (cos 3π) C .f (sin1)<f (cos1) D .f (sin 23)>f (cos 23) 12.如图,B 地在A 地的正东方向4 km 处,C 地在B 地的北偏东30°方向2 km 处,河流的沿岸PQ (曲线)上任意一点到A 的距离比到B 的距离远2km ,现要在曲线PQ 上任意选一处M 建一座码头,向B 、C 两地转运货物,经测算,从M 到B 、C 两地修建公路的费用都是a 万元/km 、那么修建这两条公路的总费用最低是( )A .(7+1)a 万元B .(27-2) a 万元C .27a 万元D .(7-1) a 万元专题训练(三)1.已知平面向量a =(3,1),b =(x ,–3),且a b ⊥,则x= ( ) A .-3 B .-1 C .1 D .3 2.已知{}{}2||1|3,|6,A x x B x xx =+>=+≤则A B =( )A .[)(]3,21,2-- B .(]()3,21,--+∞C . (][)3,21,2--D .(](],31,2-∞-3.设函数2322,(2)()42(2)x x f x x x a x +⎧->⎪=--⎨⎪≤⎩在x=2处连续,则a= ( )A .12-B .14- C .14 D .134.已知等比数列{n a }的前n 项和12-=n n S ,则++2221a a …2n a +等于( )A .2)12(-nB .)12(31-nC .14-nD .)14(31-n5.函数f(x)22sin sin 44f x x x ππ=+--()()()是( ) A .周期为π的偶函数 B .周期为π的奇函数 C . 周期为2π的偶函数 D ..周期为2π的奇函数6.一台X 型号自动机床在一小时内不需要工人照看的概率为0.8000,有四台这中型号的自动机床各自独立工作,则在一小时内至多2台机床需要工人照看的概率是( )A .0.1536B . 0.1808C . 0.5632D . 0.97287.在棱长为1的正方体上,分别用过共顶点的三条棱中点的平面截该正方体,则截去8个三棱锥后,剩下的凸多面体的体积是( )A .23 B . 76 C . 45 D . 568.若双曲线2220)x y kk -=>(的焦点到它相对应的准线的距离是2,则k= ( ) A . 6 B . 8C . 1D . 49.当04x π<<时,函数22cos ()cos sin sin xf x x x x =-的最小值是( ) A . 4 B . 12 C .2 D . 1410.变量x 、y 满足下列条件:212,2936,2324,0,0.x y x y x y x y +≥⎧⎪+≥⎪⎨+=⎪⎪≥≥⎩ 则使z=3x+2y 的值最小的(x ,y )是 ( )A . ( 4.5 ,3 )B . ( 3,6 )C . ( 9, 2 )D . ( 6, 4 )11.若tan 4f x x π=+()(),则( ) A . 1f -()>f (0)>f (1) B . f (0)>f(1)>f (-1) C . 1f ()>f (0)>f (-1) D . f (0)>f(-1)>f (1) 12.如右下图,定圆半径为 ( b ,c ), 则直线ax+by+c=0 与直线 x –y+1=0的交点在( )A . 第四象限B . 第三象限C .第二象限D . 第一象限1.设集合P={1A .{1,2} B . {3,4} C . {1} D . {-2,-1,0,1,2}2.函数y=2cos 2x+1(x ∈R )的最小正周期为 ( )A .2πB .πC .π2D .π43.从4名男生和3名女生中选出4人参加某个座谈会,若这4人中必须既有男生又有女生,则不同的选法共有( )A .140种B .120种C .35种D .34种4.一平面截一球得到直径是6cm 的圆面,球心到这个平面的距离是4cm ,则该球的体积是( )A .33π100cmB . 33π208cmC . 33π500cmD . 33π3416cm 5.若双曲线18222=-by x 的一条准线与抛物线x y 82=的准线重合,则双曲线的离心率为 ( )A .2B .22C . 4D .246.某校为了了解学生的课外阅读情况,随机调查了50名学生,得到他们在某一天各自课外阅读所用时间的数据,结果用右侧的条形图表示. 根据条形图可得这50名学生这一天平均每人的课外阅读时间为 ( )A .0.6小时B .0.9小时C .1.0小时D .1.5小时 7.4)2(x x +的展开式中x 3的系数是( ) A .6 B .12 C .24 D .488.若函数)1,0)((log ≠>+=a a b x y a 的图象过两 点(-1,0)和(0,1),则( )A .a =2,b=2B .a = 2 ,b=2C .a =2,b=1D .a = 2 ,b= 29.将一颗质地均匀的骰子(它是一种各面上分 别标有点数1,2,3,4,5,6的正方体玩具)先后抛掷3次,至少出现一次6点向上的概率是( )A .5216B .25216C .31216D .9121610.函数13)(3+-=x x x f 在闭区间[-3,0]上的最大值、最小值分别是( )A .1,-1B .1,-17C .3,-17 D.9,-1911.设k>1,f(x)=k(x-1)(x ∈R ) . 在平面直角坐标系xOy 中,函数y=f(x)的图象与x 轴交于A 点,它的反函数y=f -1(x)的图象与y 轴交于B 点,并且这两个函数的图象交于P 点. 已知四边形OAPB 的面积是3,则k 等于 ( )A .3B .32C .43D .6512.设函数)(1)(R x xxx f ∈+-=,区间M=[a ,b](a<b),集合N={M x x f y y ∈=),(},则使M=N 成立的实数对(a ,b)有 ( )A .0个B .1个C .2个D .无数多个人数(人)时间(小时)专题训练(五)1.若θθθ则角且,02sin ,0cos <>的终边所在象限是( )A .第一象限B .第二象限C .第三象限D .第四象限2.对于10<<a ,给出下列四个不等式,其中成立的是( )① )11(log )1(log a a a a +<+ ②)11(log )1(log aa a a +>+ ③aa a a 111++<④aaaa 111++>A .①与③B .①与④C .②与③D .②与④3.已知α、β是不同的两个平面,直线βα⊂⊂b a 直线,,命题b a p 与:无公共点;命题βα//:q . 则q p 是的( )A .充分而不必要的条件B .必要而不充分的条件C .充要条件D .既不充分也不必要的条件 4.圆064422=++-+y x y x 截直线x -y -5=0所得弦长等于( ) A .6 B .225 C .1 D .5 5.甲、乙两人独立地解同一问题,甲解决这个问题的概率是p 1,乙解决这个问题的概率是p 2,那么恰好有1人解决这个问题的概率是( )A .21p pB .)1()1(1221p p p p -+-C .211p p -D .)1)(1(121p p --- 6.已知点)0,2(-A 、)0,3(B ,动点2),(x y x P =⋅满足,则点P 的轨迹是( ) A .圆 B .椭圆 C .双曲线 D .抛物线 7.已知函数1)2sin()(--=ππx x f ,则下列命题正确的是( )A .)(x f 是周期为1的奇函数B .)(x f 是周期为2的偶函数C .)(x f 是周期为1的非奇非偶函数D .)(x f 是周期为2的非奇非偶函数 8.已知随机变量ξ的概率分布如下:则==)10(ξP ( )A .932 B .103 C .93 D .103 9.已知点)0,2(1-F 、)0,2(2F ,动点P 满足2||||12=-PF PF . 当点P 的纵坐标是21时,点P 到坐标原点的距离是( )A .26 B .23 C .3D .210.设A 、B 、C 、D 是球面上的四个点,且在同一平面内,AB=BC=CD=DA=3,球心到该平面的距离是球半径的一半,则球的体积是( )A .π68B .π664C .π224D .π27211.若函数)sin()(ϕω+=x x f 的图象(部分)如图所示,则ϕω和的取值是( )A .3,1πϕω==B .3,1πϕω-==C .6,21πϕω==D .6,21πϕω-== 12.有两排座位,前排11个座位,后排12个座位,现安排2人就座,规定前排中间的3个座位不能坐, 并且这2人不.左右相邻,那么不同排法的种数是( )A .234B .346C .350D .3631.设集合U A .{2} B .{2,3} C .{3} D . {1,3} 2.已知函数=-=+-=)(,21)(,11lg )(a f a f x x x f 则若( ) A .21 B .-21 C .2 D .-23.已知a +b 均为单位向量,它们的夹角为60°,那么|a +3b |=( ) A .7 B .10C .13D .44.函数)1(11>+-=x x y 的反函数是 ( )A .)1(222<+-=x x x yB .)1(222≥+-=x x x y C .)1(22<-=x x x y D .)1(22≥-=x x x y5.73)12(xx -的展开式中常数项是( )A .14B .-14C .42D .-426.设)2,0(πα∈若,53sin =α则)4cos(2πα+=( ) A .57B .51C .27 D .47.椭圆1422=+y x 的两个焦点为F 1、F 2,过F 1作垂直于x 轴的直线与椭圆相交,一个交点为P ,则||2PF =( ) A .23B .3C .27 D .48.设抛物线x y 82=的准线与x 轴交于点Q ,若过点Q 的直线l 与抛物线有公共点,则直线l 的斜率的取值范围是( )A .]21,21[-B .[-2,2]C .[-1,1]D .[-4,4]9.为了得到函数)62sin(π-=x y 的图象,可以将函数x y 2cos =的图象( )A .向右平移6π个单位长度 B .向右平移3π个单位长度 C .向左平移6π个单位长度D .向左平移3π个单位长度10.已知正四面体ABCD 的表面积为S ,其四个面的中心分别为E 、F 、G 、H ,设四面体EFGH 的表面积为T ,则ST等于( )A .91 B .94 C .41 D .31 11.从1,2,……,9这九个数中,随机抽取3个不同的数,则这3个数的和为偶数的概率是( )A .95 B .94 C .2111 D .2110 12.已知ca bc ab a c c b b a ++=+=+=+则,2,2,1222222的最小值为( )A .3-21B .21-3C .-21-3D .21+31.已知集合}032|{|,4|{22<--=<=x x x N x x M ,则集合N M ⋂=( ) A .{2|-<x x } B .{3|>x x } C .{21|<<-x x } D . {32|<<x x }2.函数)5(51-≠+=x x y 的反函数是( ) A .)0(51≠-=x x y B .)(5R x x y ∈+=C .)0(51≠+=x xy D .)(5R x x y ∈-=3.曲线1323+-=x x y 在点(1,-1)处的切线方程为( ) A .43-=x y B .23+-=x y C .34+-=x y D .54-=x y4.已知圆C 与圆1)1(22=+-y x 关于直线x y -=对称,则圆C 的方程为( )A .1)1(22=++y xB .122=+y xC .1)1(22=++y xD .1)1(22=-+y x5.已知函数)2tan(ϕ+=x y 的图象过点)0,12(π,则ϕ可以是( )A .6π-B .6π C .12π-D .12π 6.正四棱锥的侧棱长与底面边长都是1,则侧棱与底面所成的角为( ) A .75° B .60° C .45° D .30° 7.函数xe y -=的图象( ) A .与xe y =的图象 关于y 轴对称B .与xe y =的图象关于坐标原点对称C .与x e y -=的图象关于y 轴对称D .与xe y -=的图象关于坐标原点对称 8.已知点A (1,2)、B (3,1),则线段AB 的垂直平分线的方程是( ) A .524=+y x B .524=-y x C .52=+y x D .52=-y x 9.已知向量a 、b 满足:|a |=1,|b |=2,|a -b |=2,则|a +b |=( ) A .1B .2C .5D .610.已知球O 的半径为1,A 、B 、C 三点都在球面上,且每两点间的球面距离均为2π,则球心O 到平面ABC 的距离为( )A .31 B .33 C .32 D .36 11.函数x x y 24cos sin +=的最小正周期为( )A .4π B .2π C .π D .2π12.在由数字1,2,3,4,5组成的所有没有重复数字的5位数中,大于23145且小于43521的数共有( ) A .56个 B .57个 C .58个 D .60个专题训练(八)1、设集合22,1,,M x y xy x R y R =+=∈∈,2,0,,N x y xy x R y R =-=∈∈,则集合MN 中元素的个数为( )A .1B .2C .3D .42、函数sin 2xy =的最小正周期是( ) A .2πB .πC .2πD .4π3、记函数13xy -=+的反函数为()y g x =,则(10)g =( ) A . 2 B . 2-C . 3D . 1- 4、等比数列{}n a 中,29,a = 5243a =,则{}n a 的前4项和为( )A . 81B . 120C .168D . 1925、圆2240x y x +-=在点(P 处的切线方程是( )A . 20x +-=B . 40x +-=C . 40x -+=D . 20x +=6、61x ⎫⎪⎭展开式中的常数项为( )A . 15B . 15-C . 20D . 20-7、若△ABC 的内角满足sin A +cos A >0,tan A -sin A <0,则角A 的取值范围是( )A .(0,4π) B .(4π,2π) C .(2π,43π) D .(43π,) 8、设双曲线的焦点在x 轴上,两条渐近线为12y x =±,则双曲线的离心率e =( )A . 5B .C .D . 549、不等式113x <+<的解集为( )A . ()0,2B . ()()2,02,4- C . ()4,0- D . ()()4,20,2--10、正三棱锥的底面边长为2,侧面均为直角三角形,则此三棱锥的体积为( )A .B .C . 3D .11、在ABC 中,3,4AB BC AC ===,则边AC 上的高为( )A .B .C . 32D .12、4名教师分配到3所中学任教,每所中学至少1名教师,则不同的分配方案共有( )A . 12 种B . 24 种C 36 种D . 48 种1.设集合U={1U A .{5} B .{0,3} C .{0,2,3,5} D . {0,1,3,4,5}2.函数)(2R x e y x∈=的反函数为( ) A .)0(ln 2>=x x y B .)0)(2ln(>=x x y C .)0(ln 21>=x x y D .)0(2ln 21>=x x y 3.正三棱柱侧面的一条对角线长为2,且与底面成45°角,则此三棱柱的体积为( ) A .26 B . 6C .66 D .36 4. 函数)1()1(2-+=x x y 在1=x 处的导数等于( ) A .1 B .2 C .3 D .45.为了得到函数xy )31(3⨯=的图象,可以把函数xy )31(=的图象( )A .向左平移3个单位长度B .向右平移3个单位长度C .向左平移1个单位长度D .向右平移1个单位长度6.等差数列}{n a 中,78,24201918321=++-=++a a a a a a ,则此数列前20项和等于 A .160 B .180 C .200 D .2207.已知函数kx y x y ==与41log 的图象有公共点A ,且点A 的横坐标为2,则k ( )A .41-B .41 C .21-D .21 8.已知圆C 的半径为2,圆心在x 轴的正半轴上,直线0443=++y x 与圆C 相切,则圆C 的方程为( )A .03222=--+x y xB .0422=++x y xC .03222=-++x y x D .0422=-+x y x9.从5位男教师和4位女教师中选出3位教师,派到3个班担任班主任(每班1位班主任),要求这3位班主任中男、女教师都要有,则不同的选派方案共有( )A .210种B .420种C .630种D .840种10.函数))(6cos()3sin(2R x x x y ∈+--=ππ的最小值等于( ) A .-3 B .-2 C .-1 D .-511.已知球的表面积为20π,球面上有A 、B 、C 三点.如果AB=AC=BC=23,则球心到平面ABC 的距离为( )A .1B .2C .3D .212.△ABC 中,a 、b 、c 分别为∠A 、∠B 、∠C 的对边.如果a 、b 、c 成等差数列,∠B=30°,△ABC 的面积为23,那么b =( ) A .231+ B .31+ C .232+ D .32+1.设集合A .PQ P = B .P Q 包含Q C .P Q Q = D . P Q 真包含于P2. 不等式21≥-xx 的解集为( ) A . )0,1[- B . ),1[+∞- C .]1,(--∞ D .),0(]1,(+∞--∞ 3.对任意实数,,a b c 在下列命题中,真命题是( )A .""ac bc >是""a b >的必要条件B .""ac bc =是""a b =的必要条件C .""ac bc >是""a b >的充分条件D .""ac bc =是""a b =的充分条件 4.若平面向量b 与向量)2,1(-=的夹角是o 180,且53||=,则=b ( ) A . )6,3(- B . )6,3(- C . )3,6(- D . )3,6(-5.设P 是双曲线19222=-y ax 上一点,双曲线的一条渐近线方程为023=-y x ,1F 、2F 分别是双曲线的左、右焦点。
高三数学 选择题填空题训练(含解析)
高三数学 选择题填空题训练(含解析)一、选择题(本大题包括12小题,每小题5分,共60分,每小题给出的四个选项中,只有一项....是符合题目要求的,请将正确选项填涂在答题卡上).1. 设集合{2,04,},{2,}n A x x n n B x x n n ==<<∈==∈Z Z ,则AB 为A. {1,2,4,8,16}B. {1,2,4,8}C. {2,4,8}D. {2,4}2. 关于复数2(1)1i z i+=-,下列说法中正确的是A. 在复平面内复数z 对应的点在第一象限B. 复数z 的共轭复数1z i =-C. 若复数1z z b =+()b ∈R 为纯虚数,则1b =D. 设,a b 为复数z 的实部和虚部,则点(,)a b 在以原点为圆心,半径为1的圆上3. 下列函数一定是偶函数的是A. cos(sin )y x =B. sin cos y x x =C. ln(sin )y x =D. sin xy e=4. 已知等比数列}{n a 的前n 项和为n S ,且满足8417S S =,则公比q = A.12 B. 12± C. 2 D. 2± 5. 执行如图所示程序框图,输出的x 值为A. 11B. 13C. 15D. 46.二项式5的展开式中常数项为A. 5B. 10C.20-D. 407. 设函数()|sin(2)|3f x x π=+,则下列关于函数()f x 的说法中正确的是A. ()f x 是偶函数B. ()f x 最小正周期为πC. ()f x 图象关于点(,0)6π-对称 D. ()f x 在区间7[,]312ππ上是增函数 8. 某几何体的三视图如图所示,则这个几何体的体积为 A. 4B.203C. 263D. 89. 如图,平面内有三个向量,,OA OB OC ,其中OA 与OB 的夹角为120︒,OA 与OC 的夹角为30︒,且3||2,||,||232OA OB OC ===(,)OC OA OB λμλμ=+∈R ,则A. 4,2λμ==B. 83,32λμ==C. 42,3λμ==D. 34,23λμ==10. 若数列{}n a 满足规律:123212......n n a a a a a -><><><,则称数列{}n a 为余弦数列,现将1,2,3,4,5排列成一个余弦数列的排法种数为 A. 12B. 14C. 16D. 1811. 已知双曲线12222=-by a x (0,0)a b >>以及双曲线22221y x a b -=(0,0)a b >>的渐近线将第一象限三等分,则双曲线12222=-by a x的离心率为A. 2C. 212. 已知空间4个球,它们的半径分别为2, 2, 3, 3,每个球都与其他三个球外切,另有一个小球与这4个球都外切,则这个小球的半径为A.711B.611 C. 511 D. 411第Ⅱ卷(非选择题,共90分)本卷包括必考题和选考题两部分,第13题-21题为必考题,每个试题考生都必须作答,第22题-24题为选考题,考生根据要求作答.二、填空题(本大题包括4小题,每小题5分,共20分,把正确答案填在答题卡中的横线上).13. 设,x y 满足约束条件00+2y y x x y a ⎧⎪⎨⎪-⎩≥≤≤,若目标函数3x y +的最大值为6,则a=______.14. 函数y =(1,1)-处的切线与x 轴所围成区域的面积为________. 15. 给出下列5种说法:①在频率分布直方图中,众数左边和右边的直方图的面积相等;②标准差越小, 样本数据的波动也越小;③回归分析就是研究两个相关事件的独立性;④在回归分 析中,预报变量是由解释变量和随机误差共同确定的;⑤相关指数2R 是用来刻画回 归效果的,2R 的值越大,说明残差平方和越小,回归模型的拟合效果越好.其中说法正确的是____________(请将正确说法的序号写在横线上).16. 函数()f x ()x ∈R 满足(1)1f =,1()2f x '<,则不等式221()22x f x <+的解集为______.一、选择题(本大题包括12小题,每小题5分,共60分,每小题给出的四个选项中,只有一项....是符合侧视图AB C O题目要求的,请将正确选项填涂在答题卡上).1. 不等式组36020x y x y -+⎧⎨-+<⎩≥表示的平面区域是2. 已知复数z a bi =+(,0)a b R ab ∈≠且,且(12)z i -为实数,则a b= A. 3B. 2C.12D.133. 已知3cos 5α=,则2cos 2sin αα+的值为 A. 925 B. 1825C. 2325D. 34254. 执行如图所示的程序框图,若输出的5k =,则输入的整数p 的最大值为A. 7B. 15C. 31D. 635. 已知,,a b c 是平面向量,下列命题中真命题的个数是① ()()⋅⋅⋅⋅a b c =a b c② ||||||⋅= a b a b ③ 22||()+=+a b a b ④ ⋅⋅⇒=a b =b c a cA. 1B. 2C. 3D. 46. 已知函数()sin cosf x x a x =+的图像关于直线53x π=对称,则实数a 的值为A. B. 3- D.27. 一个棱长都为a 的直三棱柱的六个顶点全部在同一个球面上,则该球的表面积为A. 273a πB. 22a πC. 2114a πD. 243a π8. 已知数列{}n a 满足10a =,11n n a a +=+,则13a =A. 143B. 156C. 168D. 1959. 在Excel 中产生[0,1]区间上均匀随机数的函数为“rand ( )”,在用计算机模拟估计函数x y sin =的图像、直线2π=x 和x 轴在区间[0,]2π上部分围成的图形面积时,随机点11(,)a b 与该区域内的点),(b a 的坐标变换公式为A. 11,2a ab b π=+= B. 112(0.5),2(0.5)a a b b =-=-C. [0,],[0,1]2a b π∈∈D. 11,2a a b b π==10. 已知抛物线28y x =的焦点为F ,直线(2)y k x =-与此抛物线相交于,P Q 两点,则11||||FP FQ += A. 12B. 1C. 2D. 411. 如图所示是一个几何体的三视图,则该几何体的体积为A. 162π+B. 82π+C. 16π+D. 8π+12. 已知两条直线1l y a =:和21821l y a =+: (其中0a >),1l 与函数4log y x =的图像从左至右相交于点A ,B ,2l 与函数4log y x =的图像从左至右相交于点C ,D .记线段AC 和BD 在x 轴上的投影长度分别为,m n .当a 变化时,nm的最小值为 A. 4B. 16C. 112D. 102第Ⅱ卷(非选择题,共90分)本卷包括必考题和选考题两部分,第13题-21题为必考题,每个试题考生都必须作答,第22题-24题为选考题,考生根据要求作答.二、填空题(本大题包括4小题,每小题5分,共20分,把正确答案填在答题卡中的横线上). 13.1)x dx =⎰____________.14. 用1,2,3,4这四个数字组成无重复数字的四位数,其中恰有一个偶数字夹在两个奇数字之间的四位数的个数为_____________.15. 双曲线22221(0,0)x y a b a b-=>>的左、右焦点分别为1F 和2F ,左、右顶点分别为1A 和2A ,过焦点2F 与x 轴垂直的直线和双曲线的一个交点为P ,若1PA 是12F F 和12A F 的等比中项,则该双曲线的离心率为 .16. 设集合224{(,)|(3)(4)}5A x y x y =-+-=,2216{(,)|(3)(4)}5B x y x y =-+-=, {(,)|2|3||4|}C x y x y λ=-+-=,若()A B C ≠∅,则实数λ的取值范围是____________.简答与提示:【试题解析】C 由题可知{2,4,8}A =,{}B =偶数,因此 {2,4,8}A B =, 故选C.1. . 【试题解析】C 由题可知2(1)2111i iz i i i+===-+--,若z b +()b ∈R 为纯虚数, 则1b =,故选C.2. 【试题解析】A 由偶函数定义可知,函数cos(sin )y x =中,x 的定义域关于原点 对称且cos(sin())cos(sin )x x-=,故选A.3. 【试题解析】D 由题可知1q ≠,则818484414(1)11117(1)11a q S q qq a q S qq---===+=---,得 416q =,因此2q =±,故选D.4. 【试题解析】B 由程序框图可知:02x =,13x =,25x =,36x =,47x =,59x =,610x =,711x =,813x =而后输出x 值为13,故选B. 5. 【试题解析】D 由题可知,展开式中的常数项为2325(40C =,故选D.6. 【试题解析】D 由三角函数的性质可知:()|sin(2)|3f x x π=+的单调区间232k x k ππππ≤+≤+,则26212k k x ππππ-≤≤+()k ∈Z ,当1k =时, 7[,]312x ππ∈,故选D.7.【试题解析】B 由三视图可知,该几何体可分为一个三棱锥和一个四棱锥,则12111202242223323V V V =+=⨯⨯⨯+⨯⨯⨯⨯=,故选B. 8. 【命题意图】 【试题解析】C 设与,OA OB 同方向的单位向量分别为,ab ,依题意有42OCa b =+,又2OA a =,32OB b =,则423OC OA OB =+,所以42,3λμ==. 故选C.9. 【命题意图】 【试题解析】C ①将3,4,5排在中间和两侧,再用1,2插两缝共323212A A =种;②将2,4,5排列,则结果必为21435;将2,5,4排列,则结果必为21534;将4,5,2排列,则结果必为43512; 将5,4,2排列,则结果必为53412. 故选C. 10. 【命题意图】 【试题解析】A由题可知,双曲线渐近线的倾角为30︒或60︒,则bk ==或.则2c e a ====或3,故选A. 11. 【命题意图】本小题通过具体的立体几何考查学生的空间想象能力与运算求解能力,着重考查几何体中点线面的关系问题,是一道较难的试题. 【试题解析】B 由题意可知,12,A A 为半径为2的球的 球心,12,B B 为半径为3的球的球心,则124A A =, 126B B =,取12A A 的中点C ,12B B 的中点D ,则 DC =r ,则OC ==,解得611r =.故选B.二、填空题(本大题包括4小题,每小题5分,共20分) 13. 214.1315. ②④⑤16. (,1)(1,)x ∈-∞-+∞简答与提示:12. 【命题意图】本小题通过线性规划问题考查学生的运算求解能力,是一道基本题.【试题解析】由题意可知,3z x y =+取最大值6时,直线 36y x =-+过点(2,0),则点(2,0)必在线性规划区域内,且 可以使一条斜率为3-的直线经过该点时取最大值,因此点 (2,0)为区域最右侧的点,故直线0+2x y a -=必经过点(2,0), 因此2a =.13. 【命题意图】本小题通过积分问题考查学生的运算求解能力,着重考查积分在曲边图形面积求取上的应用,是一道中档难度试题.【试题解析】由y ='y =112x y =-'=-,即切线方程为11(1)2y x -=-+, 即为1122y x =-+,将y =2x y =-,将1122y x =-+改写成12x y =- 因此1232100111[(12)()]()|11333S y y dy y y y =---=-+=-+=⎰. 14. 【命题意】本小题通过统计学基本定义问题考查学生的统计学的思想,是一道中档难度的综合试题. 【试题解析】由统计学的相关定义可知,②④⑤的说法正确.15. 【命题意图】本小题以导数与函数图像的基本关系为载体,考查数形结合的数学思想,是一道较难综合试题.O2B 1B 2A 1CD【试题解析】利用换元法,将2x 换元成t ,则原式化为1()22t f t <+, 当1t =时,()1f t =,且1122t +=,又由1()2f t '<, 可知当1t >时,1()22t f t <+;当1t <时,1()22t f t >+. 故1()22t f t <+的解集为1t >,即21x >,因此(,1)(1,)x ∈-∞-+∞.一、选择题(本大题包括12小题,每小题5分,共60分)1.B 2 .C 3. A 4. B 5.A 6.B 7.A 8.C 9.D 10.A 11.B 12.C 简答与提示:1. 【命题意图】.【试题解析】B 360x y -+≥表示直线360x y -+=以及该直线下方的区域,20x y -+<表示直线20x y -+=的上方区域,故选B.2. 【命题意图】.【试题解析】C 由(12)z i ⋅-为实数,且0z ≠,所以可知(12)z k i =+,0k ≠,则122a kb k ==,故选C. 3. 【命题意图】.【试题解析】A 由3cos 5α=,得22229cos 2sin 2cos 11cos cos 25ααααα+=-+-==,故选A.4. 【命题意图】.【试题解析】B 由程序框图可知:①0S =,1k =;②1S =,2k =;③3S =,3k =;④7S =,4k =;⑤15S =,5k =. 第⑤步后k 输出,此时15S P =≥,则P 的最大值为15,故选B.5. 【命题意图】本小题主要考查平面向量的定义与基本性质,特别是对平面向量运算律的全面考查,另外本题也对考生的分析判断能力进行考查.【试题解析】A 由平面向量的基础知识可知①②④均不正确,只有③正确, 故选A.6. 【命题意图】【试题解析】B 由函数()sin cos f x x a x =+的图像关于直线53x π=对称,可知5()3f π=a =. 故选B.7. 【命题意图】【试题解析】A 如图:设1O 、2O 为棱柱两底面的中心,球心O 为12O O 的中点. 又直三棱柱的棱长为a ,可知112OO a =,13AO a =,所以2222211712a R OA OO AO ==+=,因此该直三棱柱外接球的表面积为2227744123a S R a πππ==⨯=,故选A.8. 【命题意图】【试题解析】C由11n n a a +=+,可知211111)n n a a ++=++=,1=,故数列是公差为1的等差数列,1213=,则13168a =. 故选C. 9. 【命题意图】【试题解析】D. 由于[0,]2a π∈, [0,1]b ∈,而1[0,1]a ∈,1[0,1]b ∈,所以坐标变换公式为12a a π=,1b b =. 故选D.10. 【命题意图】求.【试题解析】A设11(,)P x y ,22(,)Q x y ,由题意可知,1||2PF x =+,2||2QF x =+,则1212121241111||||222()4x x FP FQ x x x x x x +++=+=+++++, 联立直线与抛物线方程消去y 得,2222(48)40k x k x k -++=,可知124x x =,故121212121244111||||2()42()82x x x x FP FQ x x x x x x +++++===+++++. 故选A. 11. 【命题意图】【试题解析】B 由图可知该几何体是由两个相同的半圆柱与一个长方体拼接而成,因此21241282V ππ=⨯⨯+⨯⨯=+. 故选B.12. 【命题意图】【试题解析】C 设(,),(,),(,),(,)A A B B C C D D A x y B x y C x y D x y ,则4a A x -=,4aB x =,18214a C x -+=,18214a D x +=,则182118214444aa aa n m+--+-=-,分子与分母同乘以18214a a ++ 可得18362212142a a a a n m++++==,又363622*********a a a a +=++-≥=++,当且仅当216a +=,即52a =时,“=”成立,所以n m的最小值为112. 故选C.二、填空题(本大题包括4小题,每小题5分,共20分)13.7614. 816. [4]5简答与提示:13. 【命题意图】【试题解析】113122221217()()32326x x dx x x +=+=+=⎰. 14. 【命题意图】【试题解析】2122228A C A ⋅⋅=种.15. 【命题意图】【试题解析】由题意可知211212||||||PA F F A F =⨯,即222()()2()b a c c a c a++=+, 经化简可得22a b =,则c e a ====16. 【命题意图】本小题主要考查曲线与方程的实际应用问题,对学生数形结合与分类讨论思想的应用作出较高要求.【试题解析】由题可知,集合A 表示圆224(3)(4)5x y -+-=上点的集合,集合B表示圆2216(3)(4)5x y -+-=上点的集合,集合C 表示曲线O A DO 1O 22|3||4|-+-=上点的集合,此三集合所表示的曲线的中心都在(3,4)处,集合A、B表示x yλ圆,集合C则表示菱形,可以将圆与菱形的中心同时平移至原点,如图所示,可求得λ的取值范围是4].。
高中数学选填题一
选填题一一、选择题(每小题5分,共50分) 1. 已知i 是虚数单位,则=+6)11(i( )A. 8B. i 8C. i 8-D. -8 2. 将函数)32sin()(π+=x x f 的图像向左平移12π个单位,得到)(x g 的图像,则)(x g 的解析式为 ( )A. x x g 2cos )(=B. x x g 2cos )(-=C. x x g 2sin )(=D. )1252sin()(π+=x x g 3. 在正项等比数列}{n a 中,3lg lg lg 963=++a a a ,则111a a 的值是 ( )A. 10000B. 1000C. 100D. 10 4.设x 、y 、z 是空间的不同直线或不同平面,下列条件中能保证“若x ⊥z ,且y ⊥z ,则x ∥y ”为真命题的是 ( )A. x 为直线,y 、z 为平面B. x 、y 、z 为平面C. x 、y 为直线,z 为平面D. x 、y 、z 为直线 5.设}11|{≥∈=xR x P ,}0)1ln(|{≤-∈=x R x Q ,则“P x ∈”是“Q x ∈”的 ( ) A. 必要不充分条件 B. 充分不必要条件 C. 必要条件 D. 既不充分也不必要条件 6.已知直线l 的参数方程为:⎩⎨⎧+==t y t x 434(t 为参数),圆C 的极坐标方程为θρsin 22=,那么,直线l 与圆C 的位置关系是 ( )A. 直线l 平分圆CB. 相离C. 相切D. 相交7.已知点F 1、F 2是双曲线)0,0(12222>>=-b a by a x 的左右焦点,点P 是双曲线上的一点,且021=⋅PF PF ,则21F PF ∆面积为 ( )A. abB. 12ab C. b 2 D. a 28.对于三次函数)0()(23≠+++=a d cx bx ax x f ,给出定义:设)(x f '是函数)(x f y =的导数,)(x f ''是函数)(x f '的导数,若方程)(x f ''=0有实数解x 0,则称点(x 0,f (x 0))为函数)(x f y =的“拐点”。
高考数学选择填空题精编1(教师版)
2013届高三(15)班选填题训练3一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.有三个命题:①垂直于同一个平面的两条直线平行;②过平面α的一条斜线l 有且仅有一个平面与α垂直;③异面直线a 、b 不垂直,那么过a 的任一个平面与b 都不垂直。
其中正确命题的个数为( )A .0B .1C .2D .31.解析:直接法 利用立几中有关垂直的判定与性质定理对上述三个命题作出判断,易得都是正确的,故选D 。
2.某人射击一次击中目标的概率为0.6,经过3次射击,此人至少有2次击中目标的概率为( )12527.12536.12554.12581.D C B A 2.解析:直接法 某人每次射中的概率为0.6,3次射击至少射中两次属独立重复实验。
12527)106(104)106(333223=⨯+⨯⨯C C 故选A 。
3.一个等差数列的前n 项和为48,前2n 项和为60,则它的前3n 项和为( )A .-24B .84C .72D .363.解析(特殊值)结论中不含n ,故本题结论的正确性与n 取值无关,可对n 取特殊值,如n=1,此时a 1=48,a 2=S 2-S 1=12,a 3=a 1+2d= -24,所以前3n 项和为36,故选D 。
4.如果奇函数f(x) 是[3,7]上是增函数且最小值为5,那么f(x)在区间[-7,-3]上是( )A.增函数且最小值为-5B.减函数且最小值是-5C.增函数且最大值为-5D.减函数且最大值是-54.解析:构造特殊函数f(x)=35x ,虽然满足题设条件,并易知f(x)在区间[-7,-3]上是增函数,且最大值为f(-3)=-5,故选C 。
5.已知等差数列{}n a 满足121010a a a ++⋅⋅⋅+=,则有( )A 、11010a a +>B 、21020a a +<C 、3990a a +=D 、5151a =5.解析:特殊数列法 取满足题意的特殊数列0n a =,则3990a a +=,故选C 。
高考数学选择填空小题训练56套(含答案)
高三数学小题训练(3)
2
3 12 ,cosβ= ,则 cos(α-β)=__________。 5 13 个单位长度,再把所得图象上所有点的横坐标缩短到原 3
4.把函数 y sin x ( x R) 的图象上所有的点向左平行移动
D.(-5,-10)
2.已知四边形 ABCD 的三个顶点 A(0, 2) , B (1, 2) , C (3, 1) ,且 BC 2 AD ,则顶点 D 的坐标为( A. 2,
)
7 2
B. 2,
1 2
C. (3, 2)
D. (1, 3)
第 1 页 共 32 页
来的
1 倍(纵坐标不变) ,得到的图象所表示的函数是( 2 ,x R 3 ,x R 3
B. y sin
)
A. y sin 2 x
x ,x R 2 6 ,x R 3
5 . 已 知 函 数 f(x)=Asin(x+ )(A>0,0< < ),x R 的 最 大 值 是 1 , 其 图 像 经 过 点 M ___________________;
3 ) ,则 cos 2 _________。 2 5 2. f ( x ) cos(x ) 最小正周期为 ,其中 0 ,则 6 5
,则 a b 3 4.已知平面向量 a (2, 4) , b (1, 2) ,若 c a (a b ) b ,则 c b 2 且 a 与 b 的夹角为 3.若向量 a , b 满足 a 1,
高三数学选填练习题
高三数学选填练习题题目一:解题思路:首先,我们要明确选填题是指在多个选项中选择一个或多个答案作为解答的题目。
在高三数学中,选填题主要涉及函数、数列、求导等内容。
解答这类题目需要对相关知识点有深入的理解和掌握,并能够在短时间内准确作答。
下面我将针对数学选填练习题提供一些解题思路和答案示例,希望能帮助你更好地应对这类题目。
1. 函数选填题题目:已知函数f(x) = |2x - 1|,则f(3) + f(-1)的值等于()A. 4B. 6C. 8D. 10解析:根据函数f(x) = |2x - 1|的定义,我们可以得到f(3) = |2*3 - 1| = 5,f(-1) = |2*(-1) - 1| = 3。
将结果相加得到f(3) + f(-1) = 5 + 3 = 8,因此选项C为正确答案。
2. 数列选填题题目:已知等差数列{an},若a1 = 1,d = 3,an = 34,则n的值为()A. 12B. 11C. 10D. 9解析:根据等差数列的通项公式an = a1 + (n-1)d,代入已知条件得到34 = 1 + (n-1)*3,化简得到3n - 2 = 34,解得n = 12,因此选项A为正确答案。
3. 求导选填题题目:已知函数y = x^3 + 4x^2 - 3x + 2,求y'(-1)的值为()A. 6B. 8C. -4D. -6解析:通过对函数y = x^3 + 4x^2 - 3x + 2求导,可以得到y' = 3x^2+ 8x - 3。
将x = -1代入得到y'(-1) = 3*(-1)^2 + 8*(-1) - 3 = 6 - 8 - 3 = -5,因此选项C为正确答案。
这是三个例子,希望能帮助你理解高三数学选填练习题的解题思路。
在解答这类题目时,建议你理清题意,运用所学知识并进行必要的计算,以得到正确的答案。
不同类型的选填题可能存在不同的解题思路,所以需要多做类似的题目以提升解题能力。
高三数学填空题专项训练(含答案解析)
1.(5分)已知函数y=f(x),x∈D,若存在常数C,对∀x 1∈D,∃唯一的x2∈D,使得,则称常数C是函数f(x)在D上的“翔宇一品数”.若已知函数,则f(x)在[1,3]上的“翔宇一品数”是.2.(5分)如右图,某地一天从6时到14时的温度变化曲线近似满足函数y=Asin(ωx+φ)+B,(0≤φ<2π),则温度变化曲线的函数解析式为.3.(5分)已知球O的半径为4,圆M与圆N为该球的两个小圆,AB为圆M与圆N的公共弦,AB=4,若OM=ON=3,则两圆圆心的距离MN=.4.(5分)如图,A,B,C是直线l上三点,P是直线l外一点,已知AB=BC=a,∠APB=90°,∠BPC=45°,记∠PBA=θ,则=.(用a表示)5.(5分)已知函数f(x)=|x﹣1|+|2x﹣1|+|3x﹣1|+…+|100x﹣1|,则当x=时,f(x)取得最小值.6.设定义在R上的函数f(x)=若关于x的方程f2(x)+bf(x)+c=0有3个不同的实数解x1,x2,x3,则x1+x2+x3= .7.设△ABC的BC边上的高AD=BC,a,b,c分别表示角A,B,C对应的三边,则+的取值范围是.8.给出下列命题,其中正确的命题是(填序号).①若平面α上的直线m与平面β上的直线n为异面直线,直线l是α与β的交线,那么l至多与m,n中的一条相交;②若直线m与n异面,直线n与l异面,则直线m与l异面;③一定存在平面γ同时与异面直线m,n都平行.9.在△ABC中,AH为BC边上的高,=,则过点C,以A,H为焦点的双曲线的离心率为.10.若不等式a+≥在x∈(,2)上恒成立,则实数a的取值范围为.11.如图放置的等腰直角三角形ABC薄片(∠ACB=90°,AC=2)沿x轴滚动,设顶点A(x,y)的轨迹方程是y=f (x),则f(x)在其相邻两个零点间的图象与x轴所围区域的面积为.12.(5分)已知一个数列的各项是1或2,首项为1,且在第k个1和第k+1个1之间有2k﹣1个2,即1,2,1,2,2,1,2,2,2,2,1,2,2,2,2,2,2,2,2,1,…则该数列前2010项的和s2010=.13.(5分)已知f(x)=2x可以表示成一个奇函数g(x)与一个偶函数h(x)之和,若关于x的不等式ag(x)+h (2x)≥0对于x∈[1,2]恒成立,则实数a的最小值是.14.(5分)已知数列{a n}满足:a1=1,a2=x(x∈N*),a n+2=|a n+1﹣a n|,若前2010项中恰好含有666项为0,则x的值为.答案1.解答:解:由已知中翔宇一品数的定义可得C即为函数y=f(x),x∈D最大值与最小值的几何平均数又∵函数为减函数故其最大值M=,最小值m=故C==故答案为2.解答:解:图中从6时到14时的图象是函数y=Asin(ωx+∅)+B的半个周期的图象,∴•=14﹣6⇒ω=.又由图可得A==10,B==20.∴y=10sin(x+∅)+20.将x=6,y=10代入上式,得sin(π+∅)=﹣1.∴π+∅=π⇒∅=π.故所求曲线的解析式为y=10sin(x+π)+20,x∈[6,14].故答案为y=10sin(x+π)+20,3.解答:解法一:∵ON=3,球半径为4,∴小圆N的半径为,∵小圆N中弦长AB=4,作NE垂直于AB,∴NE=,同理可得,在直角三角形ONE中,∵NE=,ON=3,∴,∴,∴MN=3.故填:3.4.解答:解:=asinθ,=acosθ,=,且=a2+a2cos2θ+2a2cos2θ=a2+3a2cos2θ,∴2a2sin2θ=a2+3a2cos2θ,解得sin2θ=,则==,故答案为:.5.解答:解:f(x)=|x﹣1|+|2x﹣1|+|3x﹣1|+…+|100x﹣1|=|x﹣1|+2|x﹣|+3|x﹣|+…+100|x﹣|=|x﹣1|+|x﹣|+|x﹣|+|x﹣|+|x﹣|+|x﹣|+…+|x﹣|共有(1+100)×100×=5050项又|x﹣a|+|x﹣b|≥|a﹣b|(注:|x﹣a|为x到a的距离…|x﹣a|+|x﹣b|即为x到a的距离加上x到b的距离,当x在a,b之间时,|x﹣a|+|x﹣b|最小且值为a到b的距离)所以f(x)的5050项前后对应每两项相加,使用公式|x﹣a|+|x﹣b|≥|a﹣b|f(x)≥(1﹣)+(﹣)+…+…当x在每一对a,b之间时,等号成立由于70×(1+70)×=248571×(71+1)×=2556所以f(x)最中间的两项(第2525,2526项)是|x﹣|所以f(x)≥(1﹣)+(﹣)+…+(﹣)当x=时等号成立则当x=时f(x)取得最小值6.解答:解:易知f(x)的图象关于直线x=1对称对于方程f2(x)+bf(x)+c=0,是一个关于f(x)的一元二次方程,若此一元二次方程仅有一根,则必有f(x)=1,此时x1,x2,x3三个数中有一个是1,另两个关于x=1对称,此时有x1+x2+x3=3若关于f(x)的一元二次方程f2(x)+bf(x)+c=0有两个根,则必有f(x)=1与f(x)=m≠1此时f(x)=1的根为1,f(x)=m≠1有两根,且此两根关于x=1对称,此时有x1+x2+x3=3综上知x1+x2+x3=3故答案为3.7.解答:解:∵BC边上的高AD=BC=a,∴S△ABC==,∴sinA=,又cosA==,∴+=2cosA+sinA=(cosA+sinA)=sin(α+A)≤,(其中si nα=,cosα=)又+≥2,∴+∈[2,].故答案为:[2,]8.解答:解:①是错误的,因为l可以与m,n都相交;②是错误的,因为m与l可以异面、相交或平行;③是正确的,因为只要将两异面直线平移成相交直线,两相交直线确定一个平面,此平面就是所求的平面.故答案为:③9.解答:解:如图所示,由=,得tanC==.由题可知AH⊥BC,以A,H为焦点的双曲线的离心率e=.∵△AHC为直角三角形,且tanC==,∴可设AH=4a,CH=3a,则AC=5a,所以离心率e===2.故答案为 210解答:解:不等式即为a≥+,在x∈(,2)上恒成立.而函数f(x)=+=的图象如图所示,所以f(x)在(,2)上的最大值为1,所以a≥1.故答案为:a≥111.解答:解:作出点A的轨迹中相邻两个零点间的图象,如图所示.其轨迹为两段圆弧,一段是以C为圆心,CA为半径的四分之一圆弧;一段是以B为圆心,BA为半径,圆心角为的圆弧.其与x轴围成的图形的面积为×22×+×2×2+××=2+4π.故答案为:2+4π.12.解答:解:由题意可得,当k=11时,有11个1,有1+2+…+210=211﹣1=2047个2 该数列中前2010项中共有11个1,有共有1999个2S2010=11+1999×2=4009故答案为:400913.解答:解:f(x)=2x可以表示成一个奇函数g(x)与一个偶函数h(x)之和∴g(x)+h(x)=2x①,g(﹣x)+h(﹣x)=﹣g(x)+h(x)=2﹣x②①②联立可得,h(x)=,g(x)=ag(x)+h(2x)≥0对于x∈[1,2]恒成立a对于x∈[1,2]恒成立对于x∈[1,2]恒成立t=2x﹣2﹣x,x∈[1,2],t∈则t在t∈单调递增,t=时,则t=a故答案为:14.解答:解:当x=1时,数列数列{a n}的各项为1,1,0,1,1,0,1,1,0,1,1,0…所以在前2010项中恰好含有=670项为0;当x=2时,数列数列{a n}的各项为1,2,1,1,0,1,1,0,1,1,0…所以在前2010项中恰好含有=669项为0,即有669项为0;当x=3时,数列数列{a n}的各项为1,3,2,1,1,0,1,1,0,1,1,0…所以在前2010项中恰好含有=669项为0;当x=4时,数列数列{a n}的各项为1,4,3,1,2,1,1,0,1,1,0,…所以在前2010项中恰好含有=668项为0;即有668项为0;当x=5时,数列数列{a n}的各项为1,5,4,1,3,2,1,1,0,1,1,0…所以在前2010项中恰好含有=668项为0;…由上面可以得到当x=6或x=7时,在前2010项中恰好含有667项为0;当x=8或x=9时,在前2010项中恰好含有666项为0;故答案为8或9.。
高三数学填空题专项训练(含答案解析)
1.已知F是椭圆C的一个焦点,B是短轴的一个端点,线段BF的延长线交C于点D,且,则C的离心率为_____.2.已知数列{a n}是公差不为0的等差数列,{b n}是等比数列,其中a1=3,b1=1,a2=b2,3a5=b3,若存在常数u,v对任意正整数n 都有a n=3log u b n+v,则u+v=_________.3.已知△ABC中,设a,b,c,分别为∠A,∠B,∠C的对边长,AB边上的高与AB边的长相等,则的最大值为_________.4.将一个长宽分别是a,b(0<b<a)的铁皮的四角切去相同的正方形,然后折成一个无盖的长方体的盒子,若这个长方体的外接球的体积存在最小值,则的取值范围是_________.5.已知实数a,b分别满足a3﹣3a2+5a=1,b3﹣3b2+5b=5,则a+b的值为_________.6.若动直线ax+by=1过点A(b,a),以坐标原点O为圆心,OA为半径作圆,则其中最小圆的面积为_________.7.已知函数f(x)=ax﹣x4,x∈[,1],A、B是其图象上不同的两点.若直线AB的斜率k总满足≤k≤4,则实数a的值是_________.8.在平行四边形ABCD中,∠A=,边AB、AD的长分别为2、1,若M、N分别是边BC、CD上的点,且满足=,则的取值范围是_________.9.椭圆为定值,且的左焦点为F,直线x=m与椭圆相交于点A、B,△F AB的周长的最大值是12,则该椭圆的离心率是_________.10.(5分)已知等差数列{a n}和{b n}的前n项和分别为S n,T n,且=对任意n∈N*恒成立,则的值为_________.11.(5分)已知A={x|1≤x≤2},B={x|x2+2x+a≥0},A、B的交集不是空集,则实数a的取值范围是_________.12.(5分)定义在R上的函数f(x)的图象过点M(﹣6,2)和N(2,﹣6),且对任意正实数k,有f(x+k)<f(x)成立,则当不等式|f(x﹣t)+2|<4的解集为(﹣4,4)时,实数t的值为_________.13.(5分)(2014•南京模拟)平面四边形ABCD中,AB=,AD=DC=CB=1,△ABD和△BCD的面积分别为S,T,则S2+T2的最大值是_________.14.(5分)在直角坐标系xOy中,点P(x P,y P)和点Q(x Q,y Q)满足按此规则由点P得到点Q,称为直角坐标平面的一个“点变换”.此变换下,若=m,∠POQ=θ,其中O为坐标原点,则y=msin(x+θ)的图象在y轴右边第一个最高点的坐标为_________.答案解析1.解答:解:如图,,作DD1⊥y轴于点D1,则由,得,所以,,即,由椭圆的第二定义得又由|BF|=2|FD|,得,a2=3c2,解得e==,故答案为:.2.解答:解:设{a n}的公差为d,,{b n}的公比为q,∵a1=3,b1=1,a2=b2,3a5=b3,∴a2=3+d=q=b2,3a5=3(3+4d)=q2=b3,解方程得q=3,或q=9,当q=3时,d=0,不符合题意,故舍去;当q=9时,d=6.a n=3+(n﹣1)×6=6n﹣3,b n=q n﹣1=9n﹣1.∵a n=3log u b n+v=+v,∴6n﹣3﹣v=,当n=1时,3﹣v=log u1=0,∴v=3.当n=2时,12﹣3﹣3=,u6=93,u=3,∴u+v=6.故答案为:6.3.解答:解:△ABC中,∵AB边上的高与AB边的长相等,即S△ABC=c2,又S△ABC=absinC,∴c2=absinC,∴在△ABC中,由余弦定理得:++===+2cosC.=2sinC+2cosC=2sin(C+)≤2,当C=时取到等号.∴所求关系式的最大值为2.故答案为:2.4.解答:解:设减去的正方形边长为x,其外接球直径的平方R2=(a﹣2x)2+(b﹣2x)2+x2求导得(R2)'=18x﹣4(a+b)=0∴x=(a+b)因为b<a,∴x∈(0,),所以0<(a+b)<,∴1<<.故答案为:(1,).5.解答:解:由于已知的两个等式结构相似,因此可考虑构造函数.将已知等式变形为(a﹣1)3+2(a﹣1)=﹣2,(b﹣1)3+2(b﹣1)=2,构造函数f(x)=x3+2x,∵f(﹣x)=﹣f(x),∴f(x)是奇函数∵f′(x)=3x2+2>0∴f(x)单调递增∴f(x)是一个单调递增的奇函数,因为f(a﹣1)=﹣2,f(b﹣1)=2所以f(a﹣1)=﹣f(b﹣1)=f(1﹣b),从而有a﹣1=1﹣b,a+b=2故答案为26.解答:解:直线ax+by=1过点A(b,a)∴2ab=1∴ab=OA2=a2+b2>=2ab=1∴S min=πOA2=π故答案为:π7.解答:解:∵f(x)=ax﹣x4,∴f′(x)=a﹣4x3,x∈[,1],由题意得≤a﹣4x3≤4,即4x3+≤a≤4x3+4在x∈[,1]上恒成立,求得≤a≤,则实数a的值是.故答案为:8.解答:解:建立如图所示的直角坐标系,则B(2,0),A(0,0),D(),设==λ,λ∈[0,1],M(2+),N(),所以=(2+)•()=﹣λ2﹣2λ+5,因为λ∈[0,1],二次函数的对称轴为:λ=﹣1,所以λ∈[0,1]时,﹣λ2﹣2λ+5∈[2,5].故答案为:[2,5].9.解答:解:设椭圆的右焦点E.如图:由椭圆的定义得:△F AB的周长为:AB+AF+BF=AB+(2a﹣AE)+(2a﹣BE)=4a+AB﹣AE﹣BE;∵AE+BE≥AB;∴AB﹣AE﹣BE≤0,当AB过点E时取等号;∴△F AB的周长:AB+AF+BF=4a+AB﹣AE﹣BE≤4a;∴△F AB的周长的最大值是4a=12⇒a=3;∴e===.故答案:.10.解答:解:设等差数列{a n}和{b n}的公差分别为d1和d2,则由题意可得==,即a1=b1.再由=,可得=,化简得2a1=2d2﹣3d1①.再由=,可得=,化简得2a1=3d2﹣5d1②.由①②解得d2=2d1,d1=2a1.故====,故答案为.11.解答:解:若A,B的交集是空集时,即x2+2x+a<0在A={x|1≤x≤2}恒成立令f(x)=x2+2x+a因为对称轴为x=﹣1所以f(x)在A上递增所以f(2)<0即可所以a<﹣8所以A、B的交集不是空集时,实数a的取值范围是a≥﹣8 故答案为a≥﹣812.解答:解:∵对任意正实数k,有f(x+k)<f(x)成立,∴函数f(x)在R上单调递减,∵f(﹣6)=2,f(2)=﹣6,|f(x﹣t)+2|<4,∴﹣6<f(x﹣t)<2,即f(2)<f(x﹣t)<f(﹣6),∴﹣6<x﹣t<2,即t﹣6<x<2+t,∵不等式|f(x﹣t)+2|<4的解集为(﹣4,4)∴t=2.故答案为2.13.解答:解:由题意,∵∴∴S2+T2====∴时,S2+T2的最大值是故答案为:14.解答:解:依题意,()2==m2∵∴=m2∴=m2∴m2=2,即m=∵∠POQ=θ,∴cosθ=====∵θ=∴函数y=msin(x+θ)即为y=sin(x+)∴此函数在y轴右边第一个最高点的坐标为(,)故答案为(,)。
高三数学选择填空专项训练(1)
高三数学选择填空专项训练(1)高三数学选择填空专项训练(1)一.选择题:(本大题共12小题,每小题4分,共60分,在每小题给出的四个选项中,只有一项是符合要求的,请将你认为正确的答案填在后面的表格中)1.已知的值为( D )A.-3B. C.D.32.若e,e,且,则四边形ABCD是( C)A.平行四边形B.菱形 C.等腰梯形D.非等腰梯形3.已知直线l⊥平面,直线平面,以下四个命题:①;②;③;④.其中真命题是( C )A.①② B.③④C.①③D.②④4.二次函数满足,又,若在有最大值3,最小值1,则的取值范围是( D )A.B. C. D.5.一张报纸,其厚度为,面积为,现将此报纸对折(即沿对边中点的连线折叠)7次这时报纸的厚度和面积分别为( C )AB. C. D.6.已知AB=4,M是AB的中点,点P在平面内运动且保持PA+PB=6,则PM的最大值和最小值分别是( A )A.3和 B.5和C.3和D.4和7.(理)已知复数,则复数在复平面内对应的点位于( C )A.第一象限 B.第二象限C.第三象限D.第四象限(文)曲线在P点处的切线平行直线,则P点坐标为( D)A.(1,0) B.(2,8)C.(2,8)和(-1,4) D.(1,0)和(-1,-4)8.(理)已知不等式_-2≤的解集为{_|_≤-1或0<_≤3},则实数a等于(D)A.-3 B.-1 C.1 D.3(文)已知方程有一个根大于1,而另一个根小于1,则实数的取值范围是(C)A.(-∞,1)∪(9,+∞)B.(1,9) C.(-∞,1) D.[1,+∞)9.已知双曲线的中心在原点,两个焦点为F1 (-,0)和F2 (,0),P在双曲线上,满足=0且△F1PF2的面积为1,则此双曲线的方程是( C )=1=A.B.C.D.10.(理)下面说法正确的是( C )A.离散型随机变量_ 的期望E_ 反映了_ 取值的概率的平均值B.离散型随机变量_ 的方差D_ 反映了_ 取值的平均水平C.离散型随机变量_ 的期望E_ 反映了_ 取值的平均水平D.离散型随机变量_ 的方差D_ 反映了_ 取值的概率的平均值(文)要完成下列2项调查:①从某社区125户高收入家庭,280户中等收入家庭,95户低收入家庭中选出100户调查社会购买力的某项指标;②从某中学高一年级的12名体育特长生中选出3人调查学习负担情况.应采用的抽样方法是( B )A.①用随机抽样法②用系统抽样法B.①用分层抽样法②用随机抽样法C.①用系统抽样法②用分层抽样法D.①.②都用分层抽样法11.地球半径为R,A.B两地均在北纬45°圈上,两地的球面距离为,则A.B两地的经度之差的绝对值为( B )A. B.C.D.12. 由等式定义,则等于( D )A.(1,2,3,4) B.(0,3,4,0) C.(-1,0,2,-2) D.(0,-3,4,-1).123456789101112二.填充题:(本大题共4小题,每小题4分,共16分,请把答案填在题中横线上) 13.等差数列{an}中,若a1+a4+a7=15,a3+a6+a9=3,则S9= 27_shy;_shy;_shy;___.14.已知圆_2+y2+m_-=0与抛物线y=_2的准线相切,则m=.15.b糖水中有a克糖(b_gt;a_gt;0),若再加入m克糖(m_gt;0),则糖水更甜了,试根据这个事实写出一个不等式16.(理)关于函数 (a是常数且a≠0),给出下列命题:①它是一个奇函数;②它在每一点都连续;③它在每一点都可导;④它是一个增函数;⑤它有反函数.其中不正确的命题序号是①④.(文)已知函数f (_)=|_2-2a_+b|(_∈R).给出下列命题:①f (_)必是偶函数;②当f (0)=f (2)时,f (_)的图象关于直线_=1对称; ③若a2-b≤0,则f (_) 在区间[a,+∞)上是增函数;④f (_)有最大值|a2-b|.其中正确命题的序号是③.班级____________姓名______________=2=。
(完整版)高三数学选择、填空题专项训练(共40套)[附答案]
三基小题训练一一、选择题(本大题共12小题,每小题5分,共60分.)1.函数y =2x +1的图象是 ( )2.△ABC 中,cos A =135,sin B =53,则cos C 的值为 ( ) A.6556 B.-6556 C.-6516 D. 6516 3.过点(1,3)作直线l ,若l 经过点(a ,0)和(0,b ),且a ,b ∈N *,则可作出的l 的条数为( )A.1B.2C.3D.多于34. 函数f (x )=log a x (a >0且a ≠1)对任意正实数x ,y 都有 ( )A.f (x ·y )=f (x )·f (y )B.f (x ·y )=f (x )+f (y )C.f (x +y )=f (x )·f (y )D.f (x +y )=f (x )+f (y )5.已知二面角α—l —β的大小为60°,b 和c 是两条异面直线,则在下列四个条件中,能使b 和c 所成的角为60°的是( )A.b ∥α,c ∥βB.b ∥α,c ⊥βC.b ⊥α,c ⊥βD.b ⊥α,c ∥β6.一个等差数列共n 项,其和为90,这个数列的前10项的和为25,后10项的和为75,则项数n 为 ( )A.14B.16C.18D.207.某城市的街道如图,某人要从A 地前往B 地,则路程最短的走法有 ( )A.8种B.10种C.12种D.32种8.若a ,b 是异面直线,a ⊂α,b ⊂β,α∩β=l ,则下列命题中是真命题的为( )A.l 与a 、b 分别相交B.l 与a 、b 都不相交C.l 至多与a 、b 中的一条相交D.l 至少与a 、b 中的一条相交9.设F 1,F 2是双曲线42x -y 2=1的两个焦点,点P 在双曲线上,且1PF ·2PF =0,则|1PF |·|2PF |的值等于( ) A.2 B.22 C.4 D.810.f (x )=(1+2x )m +(1+3x )n (m ,n ∈N *)的展开式中x 的系数为13,则x 2的系数为( )A.31B.40C.31或40D.71或8011.从装有4粒大小、形状相同,颜色不同的玻璃球的瓶中,随意一次倒出若干粒玻璃球(至少一粒),则倒出奇数粒玻璃球的概率比倒出偶数粒玻璃球的概率( )A.小B.大C.相等D.大小不能确定12.如右图,A 、B 、C 、D 是某煤矿的四个采煤点,l 是公路,图中所标线段为道路,ABQP 、BCRQ 、CDSR 近似于正方形.已知A 、B 、C 、D 四个采煤点每天的采煤量之比约为5∶1∶2∶3,运煤的费用与运煤的路程、所运煤的重量都成正比.现要从P 、Q 、R 、S 中选出一处设立一个运煤中转站,使四个采煤点的煤运到中转站的费用最少,则地点应选在( )A.P 点B.Q 点C.R 点D.S 点13.抛物线y 2=2x 上到直线x -y +3=0距离最短的点的坐标为_________.14.一个长方体共一顶点的三个面的面积分别是2,3,6,这个长方体对角线的长是_________.15.设定义在R 上的偶函数f (x )满足f (x +1)+f (x )=1,且当x ∈[1,2]时,f (x )=2-x ,则f (8.5)=_________.16.某校要从甲、乙两名优秀短跑选手中选一名选手参加全市中学生田径百米比赛,该校预先对这两名选手测试了8次,测试成绩如下:第1次 第2次 第3次 第4次 第5次 第6次 第7次 第8次 甲成绩(秒)12.1 12.2 13 12.5 13.1 12.5 12.4 12.2 乙成绩(秒) 12 12.4 12.8 13 12.2 12.8 12.3 12.5三基小题训练二1.如图,点O 是正六边形ABCDEF 的中心,则以图中点A 、B 、C 、D 、E 、F 、O 中的任意一点为始点,与始点不同的另一点为终点的所有向量中,除向量OA 外,与向量 OA 共线的向量共有( )A .2个B . 3个C .6个D . 7个2.已知曲线C :y 2=2px 上一点P 的横坐标为4,P 到焦点的距离为5,则曲线C 的焦点到准线的距离为 ( ) A . 21B . 1C . 2D . 43.若(3a 2 -312a ) n 展开式中含有常数项,则正整数n 的最小值是 ( )A .4B .5C . 6D . 84. 从5名演员中选3人参加表演,其中甲在乙前表演的概率为 ( )A . 203B . 103C . 201D . 1015.抛物线y 2=a(x+1)的准线方程是x=-3,则这条抛物线的焦点坐标是( )A.(3,0)B.(2,0)C.(1,0)D.(-1,0)6.已知向量m=(a ,b ),向量n⊥m,且|n|=|m|,则n的坐标可以为( )A.(a ,-b )B.(-a ,b )C.(b ,-a )D.(-b ,-a )7. 如果S ={x |x =2n +1,n ∈Z },T ={x |x =4n ±1,n ∈Z },那么A.S TB.T SC.S=TD.S ≠TEF DO C B A8.有6个座位连成一排,现有3人就坐,则恰有两个空座位相邻的不同坐法有 ( )A .36种B .48种C .72种D .96种9.已知直线l 、m ,平面α、β,且l ⊥α,m ⊂β.给出四个命题:(1)若α∥β,则l ⊥m ;(2)若l ⊥m ,则α∥β;(3)若α⊥β,则l ∥m ;(4)若l ∥m ,则α⊥β,其中正确的命题个数是( )A.4B.1C.3D.210.已知函数f(x)=log 2(x 2-ax +3a)在区间[2,+∞)上递增,则实数a 的取值范围是( )A.(-∞,4)B.(-4,4]C.(-∞,-4)∪[2,+∞)D.[-4,2)11.4只笔与5本书的价格之和小于22元,而6只笔与3本书的价格之和大于24元,则2只笔与3本书的价格比较( )A .2只笔贵B .3本书贵C .二者相同D .无法确定12.若α是锐角,sin(α-6π)=31,则cos α的值等于 A.6162- B. 6162+ C. 4132+ D. 3132- 13.在等差数列{a n }中,a 1=251,第10项开始比1大,则公差d 的取值范围是___________. 14.已知正三棱柱ABC —A 1B 1C 1,底面边长与侧棱长的比为2∶1,则直线AB 1与CA 1所成的角为 。
高三数学选择填空强化训练(1)含答案
高三数学选择填空强化训练(1)1.若定义在R 上的函数()x f 满足()(),2x f x f =+且[]1,1-∈x 时,(),12x x f -=函数(),0,10,00,lg ⎪⎪⎩⎪⎪⎨⎧<-=>=x xx x x x g 则函数()()()x g x f x h -=在区间[]5,5-内的零点的个数是_____A .5B .7C .8D .10 2.设ABC ∆的内角CB A ,,所对的边分别为,,,c b a 若(),cos cos 3C a A c b =-,2=∆ABC S 则__________=⋅AC BA3.已知函数)56(log )(221+-=x x x f 在),(+∞a 上是减函数,则a 的取值范围是 A .)5,(-∞ B .),3(+∞ C .[)+∞,3 D .[)+∞,5 4.若方程(4)x x m ⋅-=有3个解,则m 的取值范围是_________.5.已知直线166(1)()22m x n y ++++=与圆22(3)(6)5x y -+-=相切,若对任意的,m n R +∈均有不等式2m n k +≥成立,那么正整数k 的最大值是______ A .3 B .5 C .7 D .96.已知直线41y kx k =-+与曲线21(1)|1|2x y --=--恰有一个公共点,则实数k 的取值范围是 . 7.如图为函数()⎪⎭⎫⎝⎛-=24tan ππx x f 的部分图象,点A 为函数()x f 在y 轴右侧的第一个零点,点B 在函数()x f 图象上,它的纵坐标为1,直线AB 的倾斜角等于_____8.阅读下列一段材料,然后解答问题:对于任意实数x ,符号[]x 表示 “不超过x 的最大整数”,在数轴上,当x 是整数,[x ]就是x ,当x 不是整数时,[]x 是点x 左侧的第一个整数点,这个函数叫做“取整函数”,也叫高斯函数.求2222222111[log ][log ][log ][log 1][log 2][log 3][log 4]432++++++的值为 .A .0B .2-C .1-D .19.设集合{}k S S S M ,,,,6,5,4,3,2,121 =都是M 的含有两个元素的子集,且满足对任意的{}{}{}()k j i j i b a S b a S j j j i i i ,,2,1,,,,, ∈≠==都有⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧≠⎭⎬⎫⎩⎨⎧j j j j i i i i a b b a a b b a ,min ,min ,其中{}y x ,m in 表示两个数y x ,的较小者,则k 的最大值是 . A .10 B .11 C .12 D .13 10.已知定义在[2,2]-上的函数)(x f y =和)(x g y =,其图象如下图所示:给出下列四个命题:①方程0)]([=x g f 有且仅有6个根 ②方程0)]([=x f g 有且仅有3个根 ③方程0)]([=x f f 有且仅有5个根 ④方程0)]([=x g g 有且仅有4个根 其中正确的命题是 .(将所有正确的命题序号填在横线上).11.小明在做一道数学题目时发现:若复数111sin cos ααi z +=,222sin cos ααi z +=,333sin cos ααi z +=(其中R ∈321,,ααα),则()()212121sin cos αααα+++=⋅i z z ,()()323232sin cos αααα+++=⋅i z z ,根据上面的结论,可以提出猜想:=⋅⋅321z z z _______12.若函数,)(x e ex In x f -=,则∑==⎪⎭⎫⎝⎛201412015k ke f _______13.若数列{}n a 满足:存在正整数T ,对于任意正整数n 都有n T n a a =+成立,则称数列{}n a 为周期数列,周期为T .已知数列{}n a 满足()01>=m m a ,⎪⎩⎪⎨⎧≤<>-=+10,11,11n nn n n a a a a a 则下列结论中错误..的是_______ A .54=m ,则35=a B .若32a =,则m 可以取3个不同的值C .若2=m ,则数列{}n a 是周期为3的数列 D .Q m ∈∃且2≥m ,数列{}n a 是周期数列14.称()d =,为两个向量,→a →b 间距离,若,→a →b 满足①1b =→②≠→a →b ③ 对任意实数t ,恒有()()d t d ,,≥,则_______A .(+→a →b )⊥(-→a →b ) B .→b ⊥(-→a →b ) C .→a ⊥→b D .→a ⊥(-→a →b )15.若关于y x ,的不等式组 ⎪⎩⎪⎨⎧≥+-≥≥010y kx x y x 表示的平面区域是一个锐角三角形,则k 的取值范围是_______16.已知变量y x ,满足约束条件⎪⎩⎪⎨⎧≥≤+≥+044x y x y x ,目标函数y mx z +=仅在点)1,0(处取得最小值,则m 的取值范围是_______A .()4,∞-B .()+∞,4C .()1,∞-D .()+∞,1 17.已知abc x x x x f -+-=96)(23,c b a <<,且0)()()(===c f b f a f .现给出如下结论:①()01)0(>f f ;②()01)0(<f f ;③()03)0(>f f ;④()03)0(<f f . 其中正确结论的序号是_______A .①③B .①④C .②③D .②④18.已知2F 、1F 是双曲线12222=-by a x ()0,0>>b a 的左右焦点,2F 关于渐近线的对称点恰好落在以1F 为圆心,1OF 为半径的圆上,则双曲线的离心率为_______ A .3 B .3 C .2 D .219.设抛物线C 的方程x y 42=,O 为坐标原点,P 为抛物线的准线与其对称轴的交点,过焦点F 且垂直于X 轴的直线交抛物线于N M ,两点,若直线PM 与ON 相交于点Q ,则=∠MQN cos _______A .55 B .55- C .1010 D .1010-20.定义域为R 的函数()f x 满足(2)2()f x f x +=,当[0,2)x ∈时,23||2,[0,1),()1(),[1,2),2x x x x f x x -⎧-∈⎪=⎨-∈⎪⎩若当[4,2)x ∈--时,函数21()42t f x t ≥-+恒成立,则实数t 的取值范围为_____A .23t ≤≤B .13t ≤≤C .14t ≤≤D .24t ≤≤21.设1>a ,若仅有一个常数c 使得对于任意的[]a a x 2,∈,都有[]2,a a y ∈满足方程c y x a a =+log log ,这时,a 的取值的集合为_______22.数列{}n a 满足11=a ,12141+=+n n a a ,记数列{}2n a 前n 项的和为n S ,若3012t S S n n ≤-+对任意的*∈N n 恒成立,则正整数t 的最小值为_______ A .10 B .9 C .8 D .723.设函数()x x x f 22-=,若()()()()011≤+≤+++y f x f y f x f ,则点()y x P ,所形成的区域的面积为( ) A .2334+π B .2334-π C .2332+π D .2332-π 24.设P 是双曲线1422=-y x 上除顶点外的任意一点,1F 、2F 分别是双曲线的左、右焦点,21F PF ∆的内切圆与边21F F 相切于点M ,则=⋅21MF F _______A .5B .4C .2D .125.已知偶函数)(x f y =满足条件)1()1(-=+x f x f ,且当[]0,1-∈x 时,()943+=xx f ,则=)5(log 31f ( )A .1-B .5029 C .45101 D .1 26.已知数列{}n a 满足:为正整数)m m a (1=,⎪⎩⎪⎨⎧+为奇数时)(当为偶数时)当n n n na a a a 13(2,若16=a ,则m的所有可能值为_______A .2或4或8B .4或5或8C .4或5或32D .4或5或1627.已知()x x f 2log =,正实数n m ,满足n m <,且)()(n f m f =,若()x f 在区间[]22,nm 上的最大值为2,则=+n m _______28.在平面直角坐标系xOy 中,过定点()1,1Q 的直线l 与曲线1:-=x xy C 交于点N M ,,则=⋅-⋅_______A .2B .22C .4D .24 29.函数()x x x x f sin 3+--=,当⎪⎭⎫⎝⎛∈2,0πθ时,恒有()()022sin 2cos 2>--++m f m f θθ成立,则实数m 的取值范围_______A .⎪⎭⎫ ⎝⎛∞-21,B .⎥⎦⎤ ⎝⎛∞-21,C .⎪⎭⎫ ⎝⎛+∞-,21D .⎪⎭⎫⎢⎣⎡+∞-,2130.正方体1111D C B A ABCD -的8个顶点中任取4个连接构成的三棱锥中,满足任意一条棱都不与其表面垂直的三棱锥的个数_______A .22B .24C .26D .28高三数学选择填空强化训练(1)参考答案1. C2.1-3. D4.)0,4(-5. A6.⎪⎭⎫⎢⎣⎡⎭⎬⎫⎩⎨⎧+⎭⎬⎫⎩⎨⎧--⎥⎦⎤ ⎝⎛--1,2143343321,1 7.1 8.C 9.11 10.①③④11.)sin()cos(321321αααααα+++++i 12.2014 13.D14.B 15.)0,1(- 16.D 17.C 18.C 19.D 20.B 21.{}42,a a22.B23.D 24.B 25.D 26.C 27.2528.C 29.D 30.C。
高考数学选择填空题精编1(学生版)
2013届高三(15)班选填题训练3一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.有三个命题:①垂直于同一个平面的两条直线平行;②过平面α的一条斜线l 有且仅有一个平面与α垂直;③异面直线a 、b 不垂直,那么过a 的任一个平面与b 都不垂直。
其中正确命题的个数为( )A .0B .1C .2D .32.某人射击一次击中目标的概率为0.6,经过3次射击,此人至少有2次击中目标的概率为( )12527.12536.12554.12581.D C B A 3.一个等差数列的前n 项和为48,前2n 项和为60,则它的前3n 项和为( )A .-24B .84C .72D .364.如果奇函数f(x) 是[3,7]上是增函数且最小值为5,那么f(x)在区间[-7,-3]上是( )A.增函数且最小值为-5B.减函数且最小值是-5C.增函数且最大值为-5D.减函数且最大值是-55.已知等差数列{}n a 满足121010a a a ++⋅⋅⋅+=,则有( )A 、11010a a +>B 、21020a a +<C 、3990a a +=D 、5151a =6.过)0(2>=a ax y 的焦点F 作直线交抛物线与Q 、P 两点,若PF 与FQ 的长分别是q 、p ,则=+qp 11 ( ) A 、a 2 B 、a 21 C 、a 4 D 、 a4 7.如果实数x,y 满足等式(x -2)2+y 2=3,那么xy 的最大值是( ) A .21 B .33 C .23 D .3 8.双曲线b 2x 2-a 2y 2=a 2b 2 (a>b>0)的渐近线夹角为α,离心率为e,则cos2α等于( ) A .e B .e 2 C .e 1 D .21e 9.计算机常用的十六进制是逢16进1的计数制,采用数字0—9和字母A —F 共16个计数符号,A.6EB.72C.5FD.BO10.农民收入由工资性收入和其它收入两部分构成。
高三数学选择填空题强化训练1
高三数学选择填空题强化练习〔1〕班级 姓名 座号13 ;14 ;15 ;16 .一、选择题(本大题共12小题,每题5分,共60分.在每题给出的四个选项中,只有一项为哪一项符合题目要求的)1.要使函数y=x2-2ax+1在[1,2]上存在反函数,那么a 的取值范围是 A .a≤1 B .a≥2 C .a≤1或a≥2 D .1≤a≤22.α-β=3π且cosα-cosβ=31,那么cos〔α+β〕等于A .31B .32C .97D .983.先作与函数y=lgx-21的图象关于原点对称的图象,再将所得图象向右平移2个单位得图象C1,又y=f〔x〕的图象C 2与C 1关于y=x 对称,那么y=f〔x〕的解析式是A.y=10xB.y=10x-2C.y=lgxD.y=lg〔x-2〕4.两个复数z1=a1+b1i,z2=a2+b2i〔a1、a2、b1、b2都是实数且z1≠0,z2≠0〕,对应的向量21OZ OZ 和在同一直线上的充要条件是 A.12211-=⋅a b a b B.02121=+b b a a C.2121b b a a = D.1221b a b a = 5.x,y∈R+,且111=+yx ,那么x+4y的取值范围是 A.[8,+∞] B.[9,+∞] C.〔0,1〕∪[9,+∞] D.[1,9)6.函数y=sin〔kπx〕+2cos〔kπx〕的最小正周期T =1,那么实数k 的值可以等于A.πB.2πC.1D.27.数列{an}为等差数列,前n 项和为S n,数列{bn}为等差数列,前n 项和为T n,且==∞→∞→nn n n n n T Sb a lim ,32lim则,A.-32 B. 32 C.-94 D. 948.直线⎪⎩⎪⎨⎧+=-=ty t x 4322〔t为参数〕的倾角是A.arctg〔-21〕 B.arctg〔-2〕C.π-arctg21D.π-arctg29.椭圆的短轴上的两个三等分点与两个焦点构成一个正方形,那么椭圆的离心率e 为A.1010 B.1717 C.13132 D.3737 10.长方体ABCD —A 1B 1C 1D 1中,E 、F 分别为C 1B1,D1B1的中点,且AB=BC,AA1=2AB,那么CE 与BF 所成角的余弦值是 A.1010 B. 10103 C. 3434 D. 34345 11.双曲线的渐近线方程为y=±2〔x-1〕,一焦点坐标为〔1+25,0〕,那么该双曲线的方程是A .116)1(422=--y x B.1164)1(22=--y x C.1416)1(22=--y x D.116)1(422=--y x 12.假设一个圆锥有三条母线两两成60°角,那么此圆锥侧面展开图所成扇形的圆心角为A.πB.π332 C.π362 D.π3 二、填空题(本大题共4小题,每题4分,共16分.把答案填在题中横线上)13.(1-3a+2b)5展开式中不含b 的项系数之和是 .14.f (x )=|log3x|当0<a<2时,有f〔a〕>f〔2〕,那么a 的取值范围是 .15.直线l 过点A (0,-1),且点B (-2,1)到l 距离是点C (1,2)到l 的距离的两倍,那么直线l 的方程是 .16.在三棱锥S —ABC 中,下面能使顶点S 在底面内的射影是底面三角形外心的条件 是: (你认为正确的都填上.)(1)侧棱与底面所成的角相等; (2)侧面与底面所成的角相等; (3)侧棱两两互相垂直;(4)侧棱满足SA2+SB2+SC2=SA·SB+SB ·SC +SC·SA.答案1、C .2、C .3、A .4、D .5、B .6、D .7、B .8、D .9、A . 10、D .11、B . 12、B .13、-32 . 14、0<a<1/2 . 15、y = x - 1 或x=0 . 16、(1) (4) .。
高三数学选填题专项训练1
高三数学选填题专项训练(36)一、选择题(本大题共12小题,每小题5分,共60分) 1 .设集合1{|0}2x A x x+=≥-,{1,0,1,2}B A B =-I ,则=( ) 错误!未找到引用源。
A .}{1,0,1- B. }{2,1,0 C. }{2,1,0,1- D.}{2,1 2. 设复数zii 421+=-(i 是虚数单位),则z =( ) A .i 31+- B .i 31-- C .i 31+ D .i 31-3. 已知数列{}n a 满足12(2)n n a a n --=≥,且134,,a a a 成等比数列,则数列{}n a 的通项公式为( )A. 2n a n =B. 210n a n =+C. 210n a n =-D. 24n a n =+ 4.如图是一边长为8的正方形苗圃图案,中间黑色大圆与正方 形的内切圆共圆心,圆与圆之间是相切的,且中间黑色大圆的半径是黑色小圆半径的2倍,若在正方形图案上随机取一点,则该点取自白色区域的概率为 ( ) A.64πB.32πC.16π D. 8π 5.已知1sin 34πα⎛⎫-= ⎪⎝⎭,则cos 23πα⎛⎫+= ⎪⎝⎭( ) A .58 B .78- C .58- D .786. 已知函数22()log f x x x =+,则不等式0)1()1(<--f x f 的解集为( )A .)2,0(B .)2,1(-C .)2,1()1,0(YD .(1,1)(1,3)-U7.设向量a r ,b r 满足1,2==b a ρρ,且)(b a b ρρρ+⊥,则向量b r 在向量2a b +r r方向上的投影为( )A .1B .1- C. 21-D .21 8. 已知某三棱锥的三视图如图所示,则该三棱锥的所有面中,面积最大的那个面的面积为( ) A.2B.23C.26D.6正视图侧视图俯视图2119. 我国古代名著《九章算术》用“更相减损术”求两个正整数的最大公约数是一个伟大创举.这个伟大创举与我国古老的算法—“辗转相除法”实质一样。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
选填题专项练习(1)
一、选填题(本大题共10小题,每小题5分典50分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
)
1、 设0为坐标原点,M ()2,1,点N (),x y 满足433525,1x y x y x -≤-⎧⎪+≤⎨⎪≥⎩
则OM ON ⋅的最大
值为
A 、9
B 、2
C 、12
D 、14
2、若非零向量,a b 满足a b b -=,则 A 、22b a b >- B 、22b a b <- C 、22a a b >- D 、22a a b <-
3、在ABC 中,G 是ABC 的重心,且30aGA bGB cGC ++
=,其中,,a b c 分别是,,A B C ∠∠∠的对边,则A ∠=
A 、300
B 、600
C 、1200
D 、1500 4、已知t 〉0
,关于x
的方程x +
A 、0个或2个
B 、0个或2个或4个
C 、0个或2个或3个或4个
D 、0个或1个或2个或3个或4个
5、对于函数()1lg 1x f x x +=-,有三个数满足1,1,1a b c <<<,且1,1a b f ab +⎛⎫= ⎪+⎝⎭,21b c f bc -⎛⎫= ⎪-⎝⎭,那么1a c f ac +⎛⎫ ⎪+⎝⎭
的值是 A 1- B 2lg C 10 D 3
6、给出下列命题,①方程x=sinx 的实根有3个;②y=sin 4x-cos 4x 的最小正周期为π;③ABC 中,若0OA OB OC ++=,则0为 ABC 垂心;④如果()()2log a
g x ax =-在定义域内单调递增,设()x
f x a =(a >0,a ≠1),则不等式()1
x f -<0的解集为(-1,1)。
其中正确命题的个数有 A 、0个 B 、1个 C 、2个 D 、3个
7、已知等比数列{}n a 中,11a =,公比q ,该数列各项的和S ,n S 表示该数列的
前n 项和,且()lim n n S aS q →∞
-=,则实数a 的取值范围是
A 、3,34⎡⎫⎪⎢⎣⎭
B 、3,34⎛⎫ ⎪⎝⎭
C 、()3,11,34⎡⎫⎪⎢⎣⎭
D 、(]3,11,34⎡⎫⎪⎢⎣⎭
8、已知函数()f x 在R 上可导,且满足()()()(),4f x f x f x f x -=+=,则()'2008f =
A 、-2008
B 、0
C 、2008
D 、12008
9.已知)sin(2)(ϕω+=x x f 的图象如下左图所示,则)(x f 的表达式为
( )
A .)423sin(2)(π+=x x f
B .)4523sin(2)(π+=x x f
C .)9234sin(2)(π+=x x f
D .)182534sin(2)(π+=x x f
10.如上右图所示,C 是半圆弧)0(122≥=+y y x 上一点,连接AC 并延长至D ,使|CD|=|CB |,
则当C 点在半圆弧上从B 点移动至A 点时,D 点所经过的路程为 ( ) A .22π B .223π C .π2 D .2π2
二、填空题(本大题共5小题,每小题5分,共25分,把答案填写在答卷上。
)
11.抛物线22
1x y =的焦点坐标是 . 12.某种品牌的洗衣机在洗涤衣物时每清洗一次可清除掉衣物上此次清洗之前污渍的80%,
若要使衣物上残留污渍不超过原有污渍的1%,则至少要清洗 次.
13、给出下列命题:
① 在ABC 中,若0,AB CA ⋅>则A ∠为锐角;
② 函数()1y f x =+与函数()1y f x =-的图象关于直线1x =对称;
③ 若()(),2,3,5a b λ==--,且a 与b 的夹角为钝角,则λ的取值范围是
10,3⎛⎫-+∞ ⎪⎝⎭
; ④ 函数()y f x =的图象与直线x a =至多有一个交点;
其中正确命题的序号是-----------------------。
14、定义一种运算“*”,它对正整数N 满足以下运算:⑴2*1001=1;⑵
()()221001321001n n +*=*⎡⎤⎣⎦,则2008*1001的值是---------------------------。
15、设()f x 是定义在R 上的奇函数,在(),0-∞上有()()'2220xf x f x +<且
()20f -=,则不等式()2xf x 〈0的解集为--------------------------。
答案:1、C ,2、A ,3、A ,4、C ,5、A ,6、B ,7、C ,8、B ,9、B ,10、C 。
略解:045,11BD AD BD AD
K K ADB K K -∠=∴=+()()(),,1,0,1,0D x y A B -得()2212x y +-=的半圆。
11.)21
,0( 12.3, 13、④,14、31003,15、()()1,00,1-,。