重庆市中考数学26题二次函数综合题专题练习一 .doc

合集下载

中考数学模拟题汇总《二次函数的综合》专项练习(附答案解析)

中考数学模拟题汇总《二次函数的综合》专项练习(附答案解析)

中考数学模拟题汇总《二次函数的综合》专项练习(附答案解析)一、综合题1.某商店销售一种销售成本为40元/件的商品,销售一段时间后发现,每天的销量y(件)与当天的销售单价x(元/件)满足一次函数关系,并且当x=20时,y=1000,当x=25时,y=950.(1)求出y与x的函数关系式;(2)求出商店销售该商品每天获得的最大利润;(3)如果该商店要使每天的销售利润不低于13750元,且每天的总成本不超过20000元,那么销售单价应控制在什么范围内?,0),在第一象限内与直线y=x 2.如(图1),已知经过原点的抛物线y=ax2+bx与x轴交于另一点A( 32交于点B(2,t)(1)求抛物线的解析式;(2)在直线OB下方的抛物线上有一点C,点C到直线OB的距离为√2,求点C的坐标;(3)如(图2),若点M在抛物线上,且∠MBO=∠ABO,在(2)的条件下,是否存在点P,使得△POC ∽△MOB?若存在,求出点P坐标;若不存在,请说明理由.3.如图,二次函数y=ax2-6ax+4a+3的图像与y轴交于点A,点B是x轴上一点,其坐标为(1,0),连接AB,tan∠ABO=2.(1)则点A的坐标为,a= ;(2)过点A作AB的垂线与该二次函数的图象交于另一点C,求点C的坐标;(3)连接BC,过点A作直线l交线段BC于点P,设点B、点C到l的距离分别为d1、d2,求d1+d2的最大值.4.如图正方形ABCD,点P,Q,R,S分别在AB,BC,CD,DA上,且BQ=2AP,CR=3AP,DS=4AP(1)若正方形边长为4,则当AP为何值时,四边形PQRS的面积为正方形面积的一半(2)若正方形边长为a(a为常数),则当AP为何值时,四边形PQRS的面积最小,并求出最小面积. 5.如图1,在Rt△ABC中,∠ABC=90°,∠C=30°,BC=12,D是BC的中点经过A,B,D的O交AC于E 点.(1)求AE的长.(2)当点P从点A匀速运动到点E时,点Q恰好从点C匀速运动点B.记AP=x,BQ=y.①求y关于x的表达式.②连结PQ,当△PQC的面积最大时,求x的值.(3)如图2,连结BE,BP,延长BP交⊙O于点F,连结FE.当EF与△BDE中的某一边相等时,求四边形BDEF 的面积.6.如图,抛物线y =﹣13x 2+13x +4交x 轴于A ,B 两点(点B 在A 的右边),与y 轴交于点C ,连接AC ,BC.点P 是第一象限内抛物线上的一个动点,点P 的横坐标为m ,过点P 作PM ⊥x 轴,垂足为点M ,PM 交BC 于点Q.(1)求A 、B 两点坐标;(2)过点P 作PN 上BC ,垂足为点N ,请用含m 的代数式表示线段PN 的长,并求出当m 为何值时PN 有最大值,最大值是多少?(3)试探究点P 在运动过程中,是否存在这样的点Q ,使得以A ,C ,Q 为顶点的三角形是等腰三角形.若存在,请求出此时点Q 的坐标,若不存在,请说明理由.7.如图,已知二次函数L 1:y=ax 2-2ax+a+3(a >0)和二次函数L 2:y=-a (x+1)2+1(a >0)图象的顶点分别为M ,N ,与y 轴分别交于点E ,F .(1)函数y=ax 2-2ax+a+3(a >0)的最小值为 ,当二次函数L 1,L 2的y 值同时随着x 的增大而减小时,x 的取值范围是(2)当EF=MN 时,求a 的值,并判断四边形ENFM 的形状(直接写出,不必证明).(3)若二次函数L 2的图象与x 轴的右交点为A (m ,0),当△AMN 为等腰三角形时,求方程-a (x+1)2+1=0的解.8.在平面直角坐标系中,抛物线y =−x 2+bx +c (b ,c 为常数)的图象与x 轴交于点A(1,0),B 两点,与y轴交于点C,当x=−3时,函数有最大值.2(1)抛物线的解析式;(2)点M在y轴上,使得∠MBC=15°,求点M的坐标;(3)若点P(x1,m)与点Q(x2,m)在抛物线上,且x1<x2,PQ=n,求证:x22−2x2=x12−4n+3.9.如图,已知抛物线y=x2﹣(m+3)x+9的顶点C在x轴正半轴上,一次函数y=x+3与抛物线交于A、B两点,与x、y轴交于D、E两点.(1)求m的值.(2)求A、B两点的坐标.(3)点P(a,b)(﹣3<a<1)是抛物线上一点,当△PAB的面积是△ABC面积的2倍时,求a,b的值.10.若y是x的函数,h为常数(ℎ>0),若对于该函数图象上的任意两点(x1,y1)、(x2,y2),当a≤x1≤b,a≤x2≤b(其中a、b为常数,a<b)时,总有|y1−y2|≤ℎ,就称此函数在a≤x≤b时为有界函数,其中满足条件的所有常数h的最小值,称为该函数在a≤x≤b时的界高.(1)函数:①y=2x,②y=1,③y=x2在−1≤x≤1时为有界函数的是:(填序号);x(2)若一次函数y=kx+2(k≠0),当a≤x≤b时为有界函数,且在此范围内的界高为b−a,请求出此一次函数解析式;(3)已知函数y=x2−2ax+5(a>1),当1≤x≤a+1时为有界函数,且此范围内的界高不大于4,求实数a的取值范围.11.已知函数y=(n+1)x m+mx+1−n(m,n为实数).(1)当m,n取何值时,函数是二次函数.(2)若它是一个二次函数,假设n>−1,那么:①它一定经过哪个点?请说明理由.②若取该函数上横坐标满足x=2k(k为整数)的所有点,组成新函数y1.当x≥12时,y1随x的增大而增大,且x=12时是函数最小值,求n满足的取值范围.12.如图1,已知在平面直角坐标系xOy中,抛物线y=-x2-2x+c(c>0)的图象与x轴交于A,B两点,与y 轴交于点C.抛物线的顶点为E,若点B的坐标是(1,0),点D是该抛物线在第二象限图象上的一个动点。

中考数学总复习《二次函数与一次函数的综合应用》练习题及答案

中考数学总复习《二次函数与一次函数的综合应用》练习题及答案

中考数学总复习《二次函数与一次函数的综合应用》练习题及答案班级:___________姓名:___________考号:_____________一、单选题1.已知函数y1=mx2+n,y2=mx+n(m>0),当p<x<q时,y1<y2,则()A.0<q−p<2B.0<q−p≤2C.0<q−p<1D.0<q−p≤12.一次函数y=bx+a(b≠0)与二次函数y=ax2+bx+c(a≠0)在同一平面直角坐标系中的图象可能是()A.B.C.D.3.函数y=mx+m和函数y=﹣mx2+2x+2(m是常数,且m≠0)的图象可能是()A.B.C.D.4.小飞研究二次函数y=-(x-m)2-m+1(m为常数)性质时如下结论:①这个函数图象的顶点始终在直线y=-x+1上;②存在一个m的值,使得函数图象的顶点与x轴的两个交点构成等腰直角三角形;③点A(x1,y1)与点B(x2,y2)在函数图象上,若x1<x2,x1+x2>2m,则y1<y2;④当-1<x<2时,y随x的增大而增大,则m的取值范围为m≥2其中错误结论的序号是()A.①B.②C.③D.④5.将二次函数y=x2﹣5x﹣6在x轴上方的图象沿x轴翻折到x轴下方,图象的其余部分不变,得到一个新图象,若直线y=2x+b与这个新图象有3个公共点,则b的值为()A.﹣734或﹣12B.﹣734或2C.﹣12或2D.﹣694或﹣126.如图,函数y1=|x2﹣m|的图象如图,坐标系中一次函数y2=x+b的图象记为y2,则以下说法中:①当m=1,且y1与y2恰好有三个交点时b有唯一值为1;②当m=4,且y1与y2只有两个交点时,b>174或﹣2<b<2;③当m=﹣b时,y1与y2一定有交点:④当m=b时,y1与y2至少有2个交点,且其中一个为(0,m).正确的有()A.1个B.2个C.3个D.4个7.直线y=ax﹣6与抛物线y=x2﹣4x+3只有一个交点,则a的值为()A.a=2B.a=10C.a=2或a=﹣10D.a=2或a=108.已知一次函数y1=2x−2,二次函数y2=x2,对于x的同一个值,这两个函数所对应的函数值分别为y1和y2,则下列表述正确的是()A.y1>y2B.y1<y2C.y1=y2D.y1,y2的大小关系不确定9.已知一次函数y1=kx+m(k≠0)和二次函数y2=ax2+bx+c(a≠0)部分自变量和对应的函数值如表:x…-10245…y1…01356…y2…0-1059…21A.-1<x<2B.4<x<5C.x<-1或x>5D.x<-1或x>410.对于每个x,函数y是y1=-x+6,y2=-2x2+4x+6这两个函数的较小值,则函数y的最大值是()A.3B.4C.5D.611.如图是王阿姨晚饭后步行的路程s(单位:m)与时间t(单位:min)的函数图象,其中曲线段AB是以B为顶点的抛物线一部分.下列说法不正确的是()A.25min~50min,王阿姨步行的路程为800mB.线段CD的函数解析式为s=32t+400(25≤t≤50)C.5min~20min,王阿姨步行速度由慢到快D.曲线段AB的函数解析式为s=-3(t-20)2+1200(5≤t≤20)12.如图,平面直角坐标系中,点M是直线y=2与x轴之间的一个动点,且点M是抛物线y= 12x2+bx+c的顶点,则抛物线y= 12x2+bx+c与直线y=1交点的个数是()A.0个或1个B.0个或2个C.1个或2个D.0个、1个或2个二、填空题13.抛物线y=2x2+x+a与直线y=−x+3没有交点,则a的取值范围是.14.如图,已知抛物线y1=−2x2+2,直线y2=2x+2,当x任取一值时,x对应的函数值分别为y1,y2,若y1≠y2,取y1,y2中的较小值记为M;若y1=y2,记M=y1=y2,例如:当x=1时,y1=0,y2=4,y1<y2,此时M=0,下列判断:①当x<0时,y1>y2;②当x<0时,x值越大,M值越小;③使得M大于2的x值不存在;④使得M=1的x值是−12或√22.其中正确的是.15.如图,已知直线y=﹣34x+3分别交x轴、y轴于点A、B,P是抛物线y=﹣12x2+2x+5的一个动点,其横坐标为a,过点P且平行于y轴的直线交直线y=﹣34x+3于点Q,则当PQ=BQ时,a的值是.16.已知一次函数y1=kx+m(k≠0)和二次函数y2=ax2+bx+c(a≠0)部分自变量和对应的函数值如表:x…﹣10245…y1…01356…y2…0﹣1059…21的取值范围是.17.如图,在平面直角坐标系中,O为坐标原点,点C为y轴正半轴上的一个动点,过点C的直线与二次函数y=x2的图象交于A、B两点,且CB=3AC,P为CB的中点,设点P的坐标为P(x,y)(x>0),写出y关于x的函数表达式为:.18.直线y=x+2与抛物线y=x2的交点坐标是.三、综合题19.随着互联网的普及,某手机厂商采用先网络预定,然后根据订单量生产手机的方式销售,2015年该厂商将推出一款新手机,根据相关统计数据预测,定价为2200元,日预订量为20000台,若定价每减少100元,则日预订量增加10000台.(1)设定价减少x元,预订量为y台,写出y与x的函数关系式;(2)若每台手机的成本是1200元,求所获的利润w(元)与x(元)的函数关系式,并说明当定价为多少时所获利润最大;(3)若手机加工成每天最多加工50000台,且每批手机会有5%的故障率,通过计算说明每天最多接受的预订量为多少?按最大量接受预订时,每台售价多少元?20.在平面直角坐标系xOy中,抛物线y=ax2+bx+2过B(﹣2,6),C(2,2)两点.(1)试求抛物线的解析式;(2)记抛物线顶点为D,求△BCD的面积;(3)若直线y=﹣12x向上平移b个单位所得的直线与抛物线段BDC(包括端点B、C)部分有两个交点,求b的取值范围.21.如图,已知抛物线 y =−12x 2+bx +c 经过A (2,0)、B (0,-6)两点,其对称轴与轴交于点C(1)求该抛物线和直线BC 的解析式;(2)设抛物线与直线BC 相交于点D ,连结AB 、AD ,求△ABD 的面积.22.某企业研发了一种新产品,已知这种产品的成本为30元/件,且年销售量 y (万件)与售价 x (元/件)的函数关系式为 y ={−2x +140,(40≤x <60)−x +80.(60≤x ≤70)(1)当售价为60元/件时,年销售量为 万件;(2)当售价为多少时,销售该产品的年利润最大?最大利润是多少? (3)若销售该产品的年利润不少于750万元,直接写出 x 的取值范围.23.抛物线y =ax 2与直线y =2x -3交于点A(1,b).(1)求a ,b 的值;(2)求抛物线y =ax 2与直线y =-2的两个交点B ,C 的坐标(B 点在C 点右侧); (3)求△OBC 的面积.24.如图,平面直角坐标系中,抛物线 y =ax 2+bx +c 经过 A(−1,0) , B(3,0) 两点,与 y 轴交于点 C(0,−3) ,点 D 是抛物线的顶点.(1)求抛物线的解析式;(2)设P(m,n)为对称轴上一点,若∠PCD为钝角,求n的取值范围.参考答案1.【答案】D 2.【答案】C 3.【答案】D 4.【答案】C 5.【答案】A 6.【答案】B 7.【答案】C 8.【答案】B 9.【答案】D 10.【答案】D 11.【答案】C 12.【答案】D 13.【答案】a >3.5 14.【答案】③④15.【答案】﹣1,4,4+2 √5 ,4﹣2 √5 16.【答案】x <﹣1或x >4 17.【答案】y =83x 218.【答案】(-1,1)和(2,4)19.【答案】(1)解:根据题意:y =20000+ x 100 ×10000=100x+20000(2)解:设所获的利润w (元) 则W =(2200﹣1200﹣x )(100x+20000) =﹣100(x ﹣400)2+36000000;所以当降价400元,即定价为2200﹣400=1800元时,所获利润最大 (3)解:根据题意每天最多接受50000(1﹣0.05)=47500台 此时47500=100x+20000 解得:x =275.所以最大量接受预订时,每台定价2200﹣275=1925元.20.【答案】(1)解:由题意 {4a −2b +2=64b +2b +2=2 解得 {a =12b =−1∴抛物线解析式为y= 12x 2﹣x+2.(2)解:∵y= 12 x 2﹣x+2= 12 (x ﹣1)2+ 32.∴顶点坐标(1,3 2)∵直线BC为y=﹣x+4,∴对称轴与BC的交点H(1,3)∴S△BDC=S△BDH+S△DHC= 12×32•3+ 12×32•1=3.(3)解:由{y=−12x+by=12x2−x+2消去y得到x2﹣x+4﹣2b=0当△=0时,直线与抛物线相切,1﹣4(4﹣2b)=0∴b= 15 8当直线y=﹣12x+b经过点C时,b=3当直线y=﹣12x+b经过点B时,b=5∵直线y=﹣12x向上平移b个单位所得的直线与抛物线段BDC(包括端点B、C)部分有两个交点∴158<b≤3.21.【答案】(1)解:将A(2,0)、B(0,-6)代入y=−12x2+bx+c中可得{−12×22+2b+c=0c=−6解得:b=4;c=-6∴该抛物线的解析式为y=−12x2+4x−6∴抛物线对称轴为x=−42×(−12)=4∴C(4,0)设直线BC的解析式为y=kx+b(k≠0)将B(0,-6),C(4,0)代入得解得:k=32,b=−6∴直线BC 的解析式为 y =32x −6(2)解:连立方程组可得 {y =32x −6y =−12x 2+4x −6解得 {x =5y =32∴D(5, 32)∴△ABD 的面积为 12×2×(23+6)=15222.【答案】(1)20(2)解:设销售该产品的年利润为 W 万元当 40≤x <60 时, W =(x −30)(−2x +140)=−2(x −50)2+800 . ∵-2<0 ∴当 x =50 时 当 60≤x ≤70 时 ∵−1<0 ∴当 x =60 时 ∵800>600 ∴当 x =50 时∴当售价为50元/件时,年销售利润最大,最大为800万元. (3)解: 45≤x ≤55 理由如下:由题意得(x −30)(−2x +140)≥750解得 45≤x ≤5523.【答案】(1)解:∵点 A(1,b) 在直线 y =2x −3 上∴b =−1∴点 A 坐标 (1,−1)把点 A(1,−1) 代入 y =ax 2 得到 a =−1∴a =b =−1.(2)解:由 {y =−x 2y =−2 解得 {x =√2y =−2 或 {x =−√2y =−2 ∴点 C 坐标 (−√2,−2), 点 B 坐标 (√2,−2). (3)解: S △BOC =12×2√2×2=2√2.24.【答案】(1)解:由已知,设 y =a(x +1)(x −3)把C(0,−3)代入,得−3a=−3∴y=(x+1)(x−3)即y=x2−2x−3.(2)解:由y=x2−2x−3,得y=(x−1)2−4∴顶点D(1,−4).过点D作DH⊥y轴于点H,连结BC交对称轴于点E,连结DC.∵B(3,0),C(0,−3)∴OB=OC=3∴∠BCO=∠DCH=45°∴∠DCE=90°设BC函数表达式为y=kx+b把B(3,0),C(0,−3)两点代入y=kx+b得{k=1b=−3即BC函数表达式为y=x−3∵点E在对称轴上∴点E横坐标为1,代入y=x−3得E(1,−2)由∠PCD为钝角,则点P在点E上方即n>−2.第11页共11页。

2020年重庆中考26题二次函数综合

2020年重庆中考26题二次函数综合

二次函数二次函数压轴题总结:(凡解析几何问题,均是以几何性质探路,代数书写竣工。

) 已知、 y=322--x x (以下几种分类的函数解析式就是这个)1、和最小,差最大 在对称轴上找一点P ,使得PB+PC 的和最小,求出P 点坐标 在对称轴上找一点P ,使得PB-PC 的差最大,求出P 点坐标解决方案:识别模型,A 、若为过河问题模型,根据“异侧和最小,同侧差最大,根据问题同侧异侧相互转化”;B 、若有绝对值符号或不隶属于过河问题,可将问题形式平方,构建函数,转化为求函数最值问题(若表达式中含有根式等形式,可考虑用换元法求最值)。

2、求面积最大 连接AC,在第四象限抛物线上找一点P ,使得ACP ∆面积最大,求出P 坐标解决方案:熟悉基本图形的面积公式【或根据拼图思想,采用割补法求面积(注意不重不漏)。

】,根据问题,灵活选择面积公式,务必使表达式简单,变量的最值好求,讲变量的最值问题转化为:”定值+变量的最值“3、讨论直角三角 连接AC,在对称轴上找一点P ,使得ACP ∆为直角三角形,求出P 坐标或者在抛物线上求点P ,使△ACP 是以AC 为直角边的直角三角形.解决方案:此类问题是分类讨论思想能力的考察,由于直角三角形的”直角边“”和“斜边”不确定而展开讨论。

在不忘三角形满足三边关系的条件下,勿忘“等腰直角三角形”。

4、讨论等腰三角 连接AC,在对称轴上找一点P ,使得ACP ∆为等腰三角形,求出P 坐标 解决方案:分析同上4,在能组成△的大前提下,根据谁作为腰,谁作为底边展开讨论。

5、讨论平行四边形 1、点E 在抛物线的对称轴上,点F 在抛物线上,且以B ,A ,F ,E 四点为顶点的四 边形为平行四边形,求点F 的坐标解决方案:从平行四边形的性质入手,已知三点求另外一点,分析其位置情况(分别以3点中任一已知两点的线段为平行四边形的边或其对角线来展开所有的情况的讨论)。

6、相似三角形 问抛物线上是否存在一动点D ,使得△ABD ∽△ABC 。

最新重庆中考数学第26题专题训练

最新重庆中考数学第26题专题训练

N MPCBA 1.如图,抛物线y=﹣x 2﹣2x+3 的图象与x 轴交于A 、B 两点(点A 在点B 的左边),与y 轴交于点C ,点D 为抛物线的顶点.(1)求A 、B 、C 的坐标;(2)点M 为线段AB 上一点(点M 不与点A 、B 重合),过点M 作x 轴的垂线,与直线AC 交于点E ,与抛物线交于点P ,过点P 作PQ ∥AB 交抛物线于点Q ,过点Q 作QN ⊥x 轴于点N .若点P 在点Q 左边,当矩形PQMN 的周长最大时,求△AEM 的面积;(3)在(2)的条件下,当矩形PMNQ 的周长最大时,连接DQ .过抛物线上一点F 作y轴的平行线,与直线AC 交于点G (点G 在点F 的上方).若FG=2DQ ,求点F 的坐标.2.如图,已知抛物线223y x x =-++与x 轴交于A 、B 两点(点A 在点B 的左边),与y 轴交于点C ,连接BC 。

(1)求A 、B 、C 三点的坐标;(2)若点P 为线段BC 上的一点(不与B 、C 重合),PM ∥y 轴,且PM 交抛物线于点M ,交x 轴于点N ,当△BCM 的面积最大时,求△BPN 的周长;(3)在(2)的条件下,当BCM 的面积最大时,在抛物线的对称轴上存在点Q ,使得△CNQ 为直角三角形,求点Q 的坐标。

3.如图,对称轴为直线x 1=-的抛物线()2y ax bx c a 0=++≠与x 轴相交于A 、B 两点,其中A 点的坐标为(-3,0)。

(1)求点B 的坐标;(2)已知a 1=,C 为抛物线与y 轴的交点。

①若点P 在抛物线上,且POC BOC S 4S ∆∆=,求点P 的坐标;②设点Q 是线段AC 上的动点,作QD ⊥x 轴交抛物线于点D ,求线段QD 长度的最大值。

4.如图,已知抛物线y=x 2+bx+c 的图象与x 轴的一个交点为B (5,0),另一个交点为A ,且与y 轴交于点C (0,5).(1)求直线BC与抛物线的解析式;(2)若点M是抛物线在x轴下方图象上的一动点,过点M作MN∥y轴交直线BC于点N,求MN的最大值;(3)在(2)的条件下,MN取得最大值时,若点P是抛物线在x轴下方图象上任意一点,以BC为边作平行四边形CBPQ,设平行四边形CBPQ的面积为S1,△ABN的面积为S2,且S1=6S2,求点P的坐标.5.如图1,在平面直角坐标系中,抛物线233334y x x=-++交x轴于A,B两点(点A在点B的左侧),交y轴于点W,顶点为C,抛物线的对称轴与x轴的交点为D。

中考数学—二次函数的综合压轴题专题复习附答案

中考数学—二次函数的综合压轴题专题复习附答案

一、二次函数真题与模拟题分类汇编〔难题易错题〕1 .童装店销售某款童装,每件售价为60元,每星期可卖100件,为了促销该店决定降价销售, 经市场调查发现:每降价1元,每星期可多卖10件,该款童装每件本钱30元,设降价后该款童装每件售价工元,每星期的销售量为〕'件.⑴降价后,当某一星期的销售量是未降价前一星期销售量的3倍时,求这一星期中每件童装降价多少元?⑵当每件售价定为多少元时,一星期的销售利润最大,最大利润是多少?【答案】〔1〕这一星期中每件童装降价20元;〔2〕每件售价定为50元时,一星期的销售利润最大,最大利润4000元.【解析】【分析】〔1〕根据售量与售价x 〔元/件〕之间的关系列方程即可得到结论.〔2〕设每星期利润为W元,构建二次函数利用二次函数性质解决问题.【详解】解:〔1〕根据题意得,〔60-x〕 xl0+100=3xl00,解得:x=40,60 - 40 = 20 元,答:这一星期中每件童装降价20元:〔2〕设利润为w,根据题意得,w= 〔x- 30〕 [ 〔60-X〕xl0+100]= - 10x2+1000x - 21000=-10 〔x- 50〕 2+4000,答:每件售价定为50元时,一星期的销售利润最大,最大利润4000元.【点睛】此题考查二次函数的应用,一元二次不等式,解题的关键是构建二次函数解决最值问题, 利用图象法解一元二次不等式,属于中考常考题型.2 .阅读:我们约定,在平面直角坐标系中,经过某点且平行于坐标轴或平行于两坐标轴夹角平分线的直线,叫该点的“特征线〞.例如,点M 〔1, 3〕的特征线有:x=l, y=3,备用图问题与探究:如图,在平面直角坐标系中有正方形0A8C,点8在第一象限,A、C分别在x轴和y轴上,抛物线> =;*一〃?〕2+〃经过8、C两点,顶点.在正方形内部.〔1〕直接写出点.〔m, n〕所有的特征线:〔2〕假设点.有一条特征线是y=x+l,求此抛物线的解析式:〔3〕点P是48边上除点八外的任意一点,连接0P,将AOAP沿着0P折登,点4落在点々的位置,当点4在平行于坐标轴的.点的特征线上时,满足〔2〕中条件的抛物线向下平移多少距离,其顶点落在0P上?【答案】〔1〕 x=m, y=n, y=x+n - m, y= - x+m+n;〔2〕 y = - 〔x-2〕2 + 3 ;〔3〕抛物4线向下平移上二正或W距离,其顶点落在OP上. 3 12【解析】试题分析:〔1〕根据特征线直接求出点.的特征线:〔2〕由点.的一条特征线和正方形的性质求出点.的坐标,从而求出抛物线解析式;〔2〕分平行于x轴和y轴两种情况,由折卷的性质计算即可.试题解析:解:〔1〕・二点D 〔m,.〕,,••点.〔m, n〕的特征线是x=m, y=n, y=x+n - m,y= - x+m+n;〔2〕点.有一条特征线是y=x+l, .•.〃=m+l. •.•抛物线解析式为了 = !〔工一"?了+〃,.•.y = =〔x—〃?〕2+〃? + 1, ,四边形OA8C是正方形,且.点为正方4 4形的对称轴,.〔m, /?〕,「. 8 〔2m, 2m〕 ,y = —〔2m — m〕2 + n = 2m 9将c=m+l 带4入得到m=2, n=3;・・・.〔2, 3〕,・•・抛物线解析式为y = !〔x-2〕2+3.〔3〕①如图,当点A在平行于y轴的.点的特征线时:根据题意可得,D (2, 3),・ .0A=0A=4, 0M=2,N AOM=60°,「・N AOP=N AOP=30°,:MN笺空,抛物线需要向下平移的距离=3—李亨•②如图,当点4在平行于X轴的.点的特征线时,设A〔P,3 〕,那么OA=OA=4, OE=3,EA 二“2.32 =a,,AF=4-a,设P(4, c) (c>0),,在RS AFP 中,(4-V7)2+ (3-c) 2=c2, .•“」6T立,「.p (4, .16 —4" ) ,直线OP解析式为3 3y=匕Lx, :.N (2, l") •.抛物线需要向下平移的距离=3-3 38-2>/7 _1 + 2>/7-3-- -3综上所述:抛物线向下平移) - 2琳或1 + 2"距离,其顶点落在0P上. 3 3点睛:此题是二次函数综合题,主要考查了折叠的性质,正方形的性质,解答此题的关键是用正方形的性质求出点.的坐标.3.在直角坐标系中,我们不妨将横坐标,纵坐标均为整数的点称之为〃中国结〃.〔1〕求函数y=/x+2的图像上所有“中国结〞的坐标:〔2〕求函数y=±〔HO, k为常数〕的图像上有且只有两个“中国结〃,试求出常数k的值X与相应“中国结〞的坐标;〔3〕假设二次函数丫=〔公一3攵+2〕/+〔2攵2-4%+ 1〕%+公一% 〔k为常数〕的图像与x轴相交得到两个不同的"中国结",试问该函数的图像与x轴所围成的平而图形中〔含边界〕,一共包含有多少个“中国结〞?【答案】〔1〕〔0,2〕 : 〔2〕当k=l时,对应"中国结〞为〔1,1〕〔一1, -D ;当k=-l 时,对应"中国结"为〔1, 一1〕, 〔一1,1〕 ; 〔3〕 6个.【解析】试题分析:〔1〕由于X是整数,XHO时,JJx是一个无理数,所以XHO时,JJx+2不是整数,所以x=o, y=2,据此求出函数y=J^x+2的图象上所有“中国结〃的坐标即可.k〔2〕首先判断出当k=l时,函数/一〔k/0, k为常数〕的图象上有且只有两个〃中国xk结〃:〔1, 1〕、〔-1、-1〕:然后判断出当代1时,函数度一〔kHO, k为常数〕的图X象上最少有4个〃中国结〃,据此求出常数k的值与相应〃中国结〃的坐标即可.(3)首先令(k2-3k+2) x2+ (2k2-4k+l) x+k2 - k=0,那么[(k- 1) x+k][ (k-2) x+ (k-1)]=0,求出X】、X2的值是多少;然后根据X】、X2的值是整数,求出k的值是多少:最后根据横坐标,纵坐标均为整数的点称之为"中国结",判断出该函数的图象与x轴所用成的平面图形中(含边界),一共包含有多少个“中国结〞即可.试题解析:(l);x是整数,XHO时,、^x是一个无理数,xHO时,JJx+2不是整数,x=0> y=2,即函数y=Cx+2的图象上"中国结〞的坐标是(0, 2).(2)①当k=l时,函数度勺(k#0, k为常数)的图象上有且只有两个“中国结〃:x (1, 1)、(-1、-1):②当匕-1时,函数丫=&(HO, k为常数)的图象上有且只有两个“中国结〃:X(1, -1)、( -1, 1).③当修±1时,函数尸& (HO, k为常数)的图象上最少有4个〃中国结JX(I, k)、( - 1, - k)、(k, 1)、( - k, - 1),这与函数度土(kxo, k 为常数)的x图象上有且只有两个“中国结"矛盾,k综上可得,k=l时,函数y=— (k/0, k为常数)的图象上有且只有两个“中国结J (1, x 1)、( - 1、- 1);k=-l时,函数y=七(k/0, k为常数)的图象上有且只有两个“中国结J (1, -1)、x (-1、1).(3)令(k2-3k+2) x2+ (2k2-4k+l) x+k2 - k=0,那么[(k- 1) x+k][ (k-2) x+ (k- 1) ]=0, kx.= ---------.•・{ ik-\f x 2x) +1• k =——=-=——. x1 +1 x2 +1 整理,可得XlX2+2X2+l=0t/. xz (xi+2) = T,•••X】、X2都是整数,X)= 1 x, =—1{- 或{-玉+2 = _「^+2 = 1匹=T ②当{X、= —1k ,,/ ------- = -1 ,l — kk=k-l,无解;练上,可得.3K=—, XF-3, x2=l t2y= (k2- 3k+2) x2+ (2k2-4k+l) x+k2 - k3 3 3 3 3 3=[(-)2-3X-+21X2+[2X ( - ) 2-4x-+l]x+ (- ) 2--2 2 2 2 2 2①当x=-2时,1 13 1 1 3y= - - x2- — x+ — = " - x ( - 2) 2 - -x ( - 2) + —4 2 4 4 2 4_3~4②当X=-1时,=13③当x=0时,y=-,另外,该函数的图象与X轴所闱成的平面图形中x轴上的“中国结〞有3个: 〔-2, 0〕、〔 -1、0〕、〔0, 0〕.综上,可得假设二次函数y= 〔k2-3k+2〕 x2+ 〔2k2-4k+l〕 x+l?-k 〔k为常数〕的图象与x轴相交得到两个不同的"中国结〞,该函数的图象与x轴所围成的平面图形中〔含边界〕,一共包含有6个“中国结〞:〔-3, 0〕、〔-2, 0〕、〔 - 1, 0〕〔-1, 1〕、〔0, 0〕、〔1, 0〕.考点:反比例函数综合题4.如图,抛物线〕,= 公+ C的顶点为A〔4,3〕,与轴相交于点3〔0,—5〕,对称轴为直线/,点"是线段A8的中点.〔1〕求抛物线的表达式:〔2〕写出点M的坐标并求直线A3的表达式;〔3〕设动点尸,.分别在抛物线和对称轴I上,当以A,P,Q,例为顶点的四边形是平行四边形时,求.,.两点的坐标.【答案】〔1〕y = --x2+4x-5t〔2〕 A/〔2,-1〕, y = 2x-5:〔3〕点夕、.的坐 2标分别为〔6,1〕或〔2,1〕、〔4,—3〕或〔4』〕.【解析】【分析】〔1〕函数表达式为:〕,= a〔x = 4『+3,将点3坐标代入上式,即可求解:〔2〕 A〔4,3〕、B〔0-5〕,那么点加〔2,-1〕,设直线A8的表达式为:y = ^-5,将点4坐标代入上式,即可求解;〔3〕分当AM是平行四边形的一条边、AM是平行四边形的对角线两种情况,分别求解即可. 【详解】解:〔1〕函数表达式为:y = a〔x = 4〕2+3,将点4坐标代入上式并解得:.=2故抛物线的表达式为:y = -l x2+4x-5:乙(2) 4(4,3)、B(0,-5),那么点M(2,-1),设直线A8的表达式为:y = /oc-5,将点A坐标代入上式得:3 =必一5,解得:k = 2,故直线A8的表达式为:y = 2x-5:( i \(3)设点.(4,s)、点P m,——nr +4/H —5 ,①当AM是平行四边形的一条边时,点A向左平移2个单位、向下平移4个单位得到M,同样点P;"?,-:〃,+4机一5)向左平移2个单位、向下平移4个单位得到0(4,s),即:团一2 = 4, —nr +4m-5-4 = s , 2解得:m = 6 ♦ s = —3,故点P、.的坐标分别为(6,1)、(4,-3):②当AM是平行四边形的对角线时,由中点定理得:4+2 = 〃z+4, 3-1 = --//r +4w-5 + 5,2解得:〞1 = 2, 5 = 1 >故点尸、.的坐标分别为(2/)、(4,1);故点尸、.的坐标分别为(6,1), (4,一3)或(2,1)、(分-3), (2,1)或(4,1).【点睛】此题考查的是二次函数综合运用,涉及到一次函数、平行四边形性质、图象的面积计算等,其中(3),要主要分类求解,防止遗漏.5.如图,某足球运发动站在点0处练习射门,将足球从离地面0.5m的A处正对球门踢出 (点A在y轴上),足球的飞行高度y(单位:m)与飞行时间t(单位:s)之间满足函数关系y= at2 + 5t+c,足球飞行0.8s时,离地面的高度为3.5m.⑴足球飞行的时间是多少时,足球离地而最高?最大高度是多少?⑵假设足球飞行的水平距离x(单位:m)与飞行时间t(单位:s)之间具有函数关系x = 10t,己知球门的高度为2.44m,如果该运发动正对球门射门时,离球门的水平距离为28m,他能否将球直接射入球门?8【答案】(1)足球飞行的时间是一s时,足球离地而最高,最大高度是4.5m: (2)能.5【解析】(2)把 x=28 代入 x=10t 得 t=2.8,251・•・当 t=2.8 时,y=-a2・8?+5乂2・8令2・25 V2/4, •L . 乙^ 他能将球直接射入球门. 考点:二次函数的应用.6.如图,在平面直角坐标系中,抛物线y=ax?+2x+c 与x 轴交于A ( - 1, 0) B (3, 0)两 点,与y 轴交于点C,点D 是该抛物线的顶点.(1)求抛物线的解析式和直线AC 的解析式;(2)请在y 轴上找一点M,使△BDM 的周长最小,求出点M 的坐标;(3)试探究:在抛物线上是否存在点P,使以点A, P, C 为顶点,AC 为直角边的三角形 是直角三角形?假设存在,请求出符合条件的点P 的坐标:假设不存在,请说明理由.试题分析:(1)由题意得:函数y=atz+5t+c 的图象经过(0, 0.5) (0.8, 35),于是得0. 5二.到 n,求得抛物线的解析式为:3. 5=0.8 4+5X0. 8+c 、 y=-衰2+514,当t=|时,y 破大=4.5;1(2)把x=28代入x=10t 得t=2.8,当t=2.8时,y=- 竿2.82+5、2.8哈2・25V2.44,于是得 16 2到他能将球直接射入球门.解:(1)由题意得:函数y=a&5t+c 的图象经过(0, 0.5) (0.8, 3.5),"0. 5二c• «, 、3. 5=0. 8 &2+5 X 0. g+c '3=解得:_ 251612・•・抛物线的解析式为:y=・•,y【答案】(1)抛物线解析式为y=-x2+2x+3;直线AC 的解析式为丫=3x+3; (2)点M 的 坐标为(0, 3):7 20 1013〔3〕符合条件的点P 的坐标为〔或,2〕或〔“,-"〕, 3 93 9【解析】分析:〔1〕设交点式y=a 〔x+1〕 〔x-3〕,展开得到-2a=2,然后求出a 即可得到抛物线解 析式:再确定C 〔0, 3 〕,然后利用待定系数法求直线AC 的解析式:〔2〕利用二次函数的性质确定D 的坐标为〔1, 4〕,作B 点关于y 轴的对称点W,连接DB 咬y 轴于M,如图1,那么B ,〔-3, 0〕,利用两点之间线段最短可判断此时MB+MD 的值最小,那么此时△ BDM 的周长最小,然后求出直线DB ,的解析式即可得到点M 的坐标:〔3〕过点C 作AC 的垂线交抛物线于另一点P,如图2,利用两直线垂直一次项系数互为负倒数设直线PC 的解析式为y=-lx +b,把C 点坐标代入求出b 得到直线PC 的解析式为再解方程组, 1得此时P 点坐标;当过点A 作AC 的垂线交抛物y=--x + 3 I 3线于另一点P 时,利用同样的方法可求出此时P 点坐标. 详解:〔1〕设抛物线解析式为y=a 〔x+1〕〔x-3〕, KP y=ax 2 - 2ax - 3a,,2a=2,解得 a=- 1,・•・抛物线解析式为y= - X 2+2X +3: 当 x=0 时,y= - x 2+2x+3=3,那么 C (0, 3), 设直线AC 的解析式为y=px+q.q = 0把 A ( - 1, 0) , C (0, 3)代入得〈q = 3直线AC 的解析式为y=3x+3;〔2〕 •/ y= - X 2+2X +3= - 〔x- 1〕 2+4, •1•顶点D 的坐标为〔1, 4〕,作B 点关于y 轴的对称点B",连接DB ,交y 轴于M,如图1,那么夕〔-3, 0〕,MB=MB',/. MB+MD=MB /+MD=DB /,此时 MB+MD 的值最小, 而BD 的值不变,・•,此时△ BDM 的周长最小,y=-x 2 +2x + 31 y=- -x+3, 3易得直线DB ,的解析式为y=x+3, 当 x=0 时,y=x+3=3> ・ ・•点M 的坐标为〔0, 3〕;〔3〕存在.过点C 作AC 的垂线交抛物线于另一点P,如图2,把C 〔0, 3 〕代入得b=3,・ ,・直线PC 的解析式为y=- -x+3,过点A 作AC 的垂线交抛物线于另一点P,直线PC 的解析式可设为y=-点+b, 把A ( -1, 0)代入得1+b=0,解得b=- L 3 3・ •・直线PC 的解析式为y=- :x- 1点睛:此题考查了二次函数的综合题:熟练掌握二次函数图象上点的坐标特征和二次函数 的性质;会利用待定系数法求函数解析式,理解两直线垂直时一次项系数的关系,通过解 方程组求把两函数的交点坐标;理解坐标与图形性质,会运用两点之间线段最短解决最短 路径问题:会运用分类讨论的思想解决数学问题.直线PC 的解析式可设为y=- —x+b,3解方程组?y=-x 2+2x + 31 ,解得?y=——x + 33x = 0)=3或,7x =一3 7 20 ,那么此时P 点坐标为〔一,—〕:2.39y =解方程组?y=-x 2+2x + 31 1 y=——x ——33x = -ly = 010x =—3 13那么此时P 点坐标为〔—, 3综上所述,符合条件的点p 的坐标为〔N, 310 T-?>•直线AC 的解析式为y=3x+3.7.如图,直线A8与抛物线C :),=⑪2+21+.相交于人(—1,0)和点8(2,3)两点.⑴求抛物线.的函数表达式;⑵假设点M 是位于直线A3上方抛物线上的一动点,以M4、/W8为相邻两边作平行四边形 M4N8,当平行四边形M4N8的而积最大时,求此时四边形M4N8的而积S 及点M 的 坐标: ⑶在抛物线C 的对称轴上是否存在定点尸,使抛物线.上任意一点夕到点尸的距离等于到 直线y ="的距离,假设存在,求出定点厂的坐标:假设不存在,请说明理由.41 27 【答案】〔1〕 y =—厂 + 2x + 3 :〔2〕当 〃 =—,S ZMANB = 2S △ ABM =—,此时2 415 \ :⑶存在.当/A — 时,无论%取任何实数,均有= 理由见解析. \ 4 )【解析】【分析】 (1)利用待定系数法,将A, B 的坐标代入y=ax2+2x+c 即可求得二次函数的解析式; (2)过点M 作MH_Lx 轴于H,交直线AB 于K,求出直线AB 的解析式,设点M (a,- a?+2a+3),那么K (a, a+1),利用函数思想求出MK 的最大值,再求出△ AMB 面积的最大 值,可推出此时平行四边形MANB 的面积S 及点M 的坐标:17(3)如图2,分别过点B, C 作直线y=—的垂线,垂足为N. H,设抛物线对称轴上存在 4点F,使抛物线C 上任意一点P 到点F 的距离等于到直线y=—的距离,其中F (1, a), 4 连接BF, CF,那么可根据BF=BN, CF=CN 两组等量关系列出关于a 的方程组,解方程组即 可.【详解】(1)由题意把点(-1, 0)、(2, 3)代入 y=ax2+2x+c, .- 2 + c = 0得, ,4a + 4 + c = 3 解得 a=-l, c=3,,此抛物线c 函数表达式为:y=*2+2x+3:〔2〕如图1,过点M 作MHLx 轴于H,交直线AB 于K,MH4 〕>>将点〔・1, 0〕、〔2, 3〕代入y=kx+b中, 一k+b=0得,2y 解得,k=l, b=l,/.Y AB=X+1,设点M (a, -a2+2a+3),那么K (a, a+1), 贝lj MK=-a2+2a+3- (a+1)=-(a- - ) 2+—, 2 41 9根据二次函数的性质可知,当合二彳时,MK有最大长度丁, 2 4S A AMB以大=S A AMK+S A BMK=—MK*AH+ —MK> (x B-x H)2 2=—MK e (XB-XA)21 9=x — x32 4_27-—,8以MA、MB为相邻的两边作平行四边形MANB,当平行四边形MANB的面积最大时,27 27 1 15s 餐大=2S A AMB 4U=2X —=—,M (-, —).(3)存在点F,•/ y=-x2+2x+3=-(x-1) 2+4,「・对称轴为直线x=l.当y=0 时,xi=-l, X2=3,,抛物线与点x轴正半轴交于点C (3, 0),17如图2,分别过点B, C作直线y:一的垂线,垂足为N, H, 4抛物线对称轴上存在点F,使抛物线C上任意一点P到点F的距离等于到直线y=—的距4离,设 F (1, a ),连接BF, CF,IT1 17 5 17那么BF=BN二一-3二一,CF=CH=—, 4 4 4(5、(2-1)2+3—3)2 =由题意可列:(3 — 1)2+/=阴【点睛】此题考查了待定系数法求解析式,还考查了用函数思想求极值等,解题关键是能够判断出当平行四边形MANB的面积最大时,aABM的面积最大,且此时线段MK的长度也最大.8.如图,己知二次函数%=a' + "过(-2, 4) , ( - 4. 4)两点.〔1〕求二次函数力的解析式:〔2〕将为沿x轴翻折,再向右平移2个单位,得到抛物线及,直线y=m 〔m>0〕交及于M、N 两点,求线段MN的长度〔用含m的代数式表示〕:〔3〕在〔2〕的条件下,力、及交于A、B两点,如果直线y=m与力、刃的图象形成的封闭曲线交于C、D两点〔C在左侧〕,直线y=-m与力、刃的图象形成的封闭曲线交于E、F两点〔E在左侧〕,求证:四边形CEFD是平行四边形.1yi =_/2_3%【答案】〔1〕2【解析】〔2〕 5 +范〔3〕证实见解析.试题分析:〔1〕根据待定系数法即可解决问题.〔2〕先求出抛物线yz的顶点坐标,再求出其解析式,利用方程组以及根与系数关系即可求出MN.〔3〕用类似〔2〕的方法,分别求出CD、EF即可解决问题.试题解析:⑴・•・二次函数月=°/ + "过〔-2, 4〕 , 〔-4, 4〕两点,4a - 2b = 416a -4b = 4解得:1a=~2=_1 2_ -「.二次函数力的解析式为一寸3X2-3% -# + 3)2 +9,二顶点坐标〔-3, >〕 , ,「将力沿x釉翻折,再向右平移2个单位,得到抛物线〞,9.・・抛物线y2的顶点坐标〔-1, -、〕,•,・抛物线均为1 9y=#+i)2_] 消去y整理得到/ + 2x_8_2m = 0,设打,也是它的两个根,那么"21A〔q+ x2〕-似/2=、阳而千J5:〔3〕由y = my =一/2-3欠,消去y整理得到x +6%+2m = 0,设两个根为打,0那么y =-m1 9______ y =—〔x --CD」"I一亚15〔修+ OF - 4町2«36 -所,由2 2,消去丫得到x2 + 2x-8 + 2m = 0,设两个根为勺,%2,那么EF」X1 - "zlK,dl + 工2〕2 - 4XI%2=«36 - 8m, ... EF=CD, EFII CD,四边形CEFD 是平行四考点:二次函数综合题.9 .抛物避= a/ + M + c,假设a, b, c满足b=a+c,那么称抛物线,=.壮+必+ c为“恒定〞抛物线. 〔1〕求证:"恒定"抛物线'=°/ +丘+,必过*轴上的一个定点人;〔2〕"恒定〃抛物线y = -于的顶点为P,与X轴另一个交点为B,是否存在以Q为顶点,与X轴另一个交点为C的“恒定〞抛物线,使得以PA, CQ为边的四边形是平行四边形?假设存在,求出抛物线解析式:假设不存在,请说明理由.【答案】〔1〕证实见试题解析:〔2〕 y = \/^2 + 4v-^x + 3-V3 那么=- v取2 + y3.【解析】试题分析:〔1〕由"恒定〞抛物线的定义,即可得出抛物线恒过定点〔-1, 0〕:〔2〕求出抛物线F = W"一小的顶点坐标和B的坐标,由题意得出PAII CQ, PA=CQ:存在两种情况:①作QMXAC于M,那么QM=0P=\3,证实RtA QM〔^ RtA POA. MC=OA=1,得出点Q的坐标,设抛物线的解析式为,=矶" + 2〕2-\/3,把点A坐标代入求出a的值即可:②顶点Q在y轴上,此时点C与点B重合:证实△0QS4 0PA,得出OQ=OP=\B,得出点Q坐标,设抛物线的解析式为' =以2+«3,把点C坐标代入求出a的值即可.试题解析:〔1〕由“恒定〃抛物线,二仙2 +%+ 4得:b=a+c,即a-b+c=0,二•抛物线y = ax2 + bx + c t当x=-l时,y=0, 恒定〞抛物线,=必+八+〔;必过乂轴上的一个定点 A 〔 - 1, 0〕:〔2〕存在:理由如下::“恒定"抛物线卜"*丫一道,当尸0时,\8/-、6=0,解得:x=±l, V A ( - 1, 0) , /. B (1, 0):.・x=O 时,y=一\'3,顶点P 的坐标为(0, 一\3),以PA, CQ为边的平行四边形,PA、CQ是对边,「.PAII CQ, PA=CQ, .,.存在两种情况:①如图1所示:作QM_LAC 于M,那么QM=0P=y3, Z QMC=90°=Z POA,在RtA QMC 和RtA POA 中,: CQ=PA, QM=OP,J RtA QMC合RtA POA (HL) , /. MC=OA=1, OM=2, 丁点 A 和点C 是抛物线上的对称点,AM=MC=1, .,.点Q的坐标为(-2, 一\3),设以Q为顶点,与x轴另一个交点为C的“恒定〞抛物线的解析式为y = a(% + 2)2-«3,把点A(-l, 0)代入得:aS% .•.抛物线的解析式为:丫 = \乃(% + 2)273,即,=\访2 + 4、%+3日②如图2所示:顶点Q在y轴上,此时点C与点B重合,.•.点C坐标为(1, 0),CQII PA, /. Z OQC=Z OPA,在^ OQC 和4 OPA 中,: Z OQC=Z OPA, Z COQ=Z AOP,CQ=PA,OQC2△ OPA (AAS) ,「・0Q=0P=、3,「•点Q 坐标为(0, \§),设以Q为顶点,与X轴另一个交点为C的“恒定〞抛物线的解析式为y = a%2 + g3,把点C(l, 0)代入得:a=-W, .•.抛物线的解析式为:?=一臼2 + 口;综上所述:存在以Q为顶点,与x轴另一个交点为C的“恒定〞抛物线,使得以PA, CQ为边的四边形是平行四边形,抛物线的解析式为:«3/ + 4\,做+3\3,或y =-%即 + 0考点:1.二次函数综合题:2.压轴题:3.新定义:4.存在型:5.分类讨论.3 910 .二次函数y=—-x2+bx+c的图象经过A (0, 3) , B ( - 4,--)两点.(1)求b, c的值.3(2)二次函数y= -「xZ+bx+c的图象与x轴是否有公共点,求公共点的坐标:假设没有,请16说明情况.【答案】⑴j 8 : 〔2〕公共点的坐标是〔-2, 0〕或〔8, 0〕. c = 3【解析】【分析】〔1〕把点A、B的坐标分别代入函数解析式求得b、c的值;〔2〕利用根的判别式进行判断该函数图象是否与x轴有交点,由题意得到方程-3 o—X2+-X+3=0,通过解该方程求得x的值即为抛物线与x轴交点横坐标.16 89 3【详解】(1)把 A (0, 3) , B ( - 4,--)分别代入y=- - x2+bx+c,2 16c = 3得4 39------ x l6-4〃 + c =——16 26 = ?解得彳8 ;[c = 33 9〔2〕由〔1〕可得,该抛物线解析式为:y=- -x2+-x+3, 1 o 83 225-4x ( - -- ) x3= >0»16 6483所以二次函数y=- - x2+bx+c的图象与x轴有公共点, 163 9.「- -x2+-x+3=0 的解为:x产・2, X2=8,16 8公共点的坐标是〔-2, 0〕或〔8, 0〕.【点睛】此题考查了抛物线与x轴的交点,二次函数图象上点的坐标特征.注意抛物线解析式与一元二次方程间的转化关系.。

2021年九年级数学中考复习专题:二次函数综合(考察动点坐标、长度、面积等)(一)

2021年九年级数学中考复习专题:二次函数综合(考察动点坐标、长度、面积等)(一)

2021年九年级数学中考复习专题:二次函数综合(考察动点坐标、长度、面积等)(一)1.如图,抛物线y=x2+bx+c过点A(3,0),B(1,0),交y轴于点C,点P是该抛物线上一动点,点P从C点沿抛物线向A点运动(点P不与A重合),过点P作PD∥y轴交直线AC于点D.(1)求抛物线的解析式;(2)求点P在运动的过程中线段PD长度的最大值;(3)△APD能否构成直角三角形?若能,请直接写出所有符合条件的点P坐标;若不能,请说明理由.2.如图1,抛物线y=﹣x2+bx+c与x轴交于A、B两点,与y轴交于点C,已知点B坐标为(3,0),点C坐标为(0,3).(1)求抛物线的表达式;(2)点P为直线BC上方抛物线上的一个动点,当△PBC的面积最大时,求点P的坐标;(3)如图2,点M为该抛物线的顶点,直线MD⊥x轴于点D,在直线MD上是否存在点N,使点N到直线MC的距离等于点N到点A的距离?若存在,求出点N的坐标;若不存在,请说明理由.3.如图,抛物线y=ax2+bx+2交x轴于点A(﹣3,0)和点B(1,0),交y轴于点C.已知点D的坐标为(﹣1,0),点P为第二象限内抛物线上的一个动点,连接AP、PC、CD.(1)求这个抛物线的表达式.(2)当四边形ADCP面积等于4时,求点P的坐标.(3)①点M在平面内,当△CDM是以CM为斜边的等腰直角三角形时,直接写出满足条件的所有点M的坐标;②在①的条件下,点N在抛物线对称轴上,当∠MNC=45°时,直接写出满足条件的所有点N的坐标.4.如图,抛物线y=x2+bx+c与x轴交于A,B两点,点A,B分别位于原点的左、右两侧,BO=3AO=3,过点B的直线与y轴正半轴和抛物线的交点分别为C,D,BC=CD.(1)求b,c的值;(2)求直线BD的函数解析式;(3)点P在抛物线的对称轴上且在x轴下方,点Q在射线BA上.当△ABD与△BPQ相似时,请直接写出所有满足条件的点Q的坐标.5.如图,抛物线y=﹣x2+bx+c与x轴相交于A,B两点(点A位于点B的左侧),与y轴相交于点C,M是抛物线的顶点,直线x=1是抛物线的对称轴,且点C的坐标为(0,3).(1)求抛物线的解析式;(2)已知P为线段MB上一个动点,过点P作PD⊥x轴于点D.若PD=m,△PCD的面积为S.①求S与m之间的函数关系式,并写出自变量m的取值范围;②当S取得最值时,求点P的坐标.(3)在(2)的条件下,在线段MB上是否存在点P,使△PCD为等腰三角形?如果存在,请求出点P的坐标;如果不存在,请说明理由.6.如图,抛物线y=ax2+bx+c与x轴交于A(1,0)、B(3,0)两点,与y轴交于点C(0,3),抛物线的对称轴与直线BC交于点D.(1)求抛物线的表达式;(2)在抛物线的对称轴上找一点M,使|BM﹣CM|的值最大,求出点M的坐标;(3)点E为直线BC上一动点,过点E作y轴的平行线EF,与抛物线交于点F问是否存在点E,使得以D、E、F为顶点的三角形与△BCO相似?若存在,直接写出点E的坐标.7.如图1,抛物线y=x2+bx+c交x轴于A,B两点,其中点A的坐标为(1,0),与y轴交于点C(0,﹣3).(1)求抛物线的函数解析式;(2)点D为y轴上一点,如果直线BD与直线BC的夹角为15°,求线段CD的长度;(3)如图2,连接AC,点P在抛物线上,且满足∠PAB=2∠ACO,求点P的坐标.8.已知二次函数图象过点A(﹣2,0),B(4,0),C(0,4).(1)求二次函数的解析式.(2)如图,当点P为AC的中点时,在线段PB上是否存在点M,使得∠BMC=90°?若存在,求出点M的坐标;若不存在,请说明理由.(3)点K在抛物线上,点D为AB的中点,直线KD与直线BC的夹角为锐角θ,且tanθ=,求点K的坐标.9.如图,在平面直角坐标系中,抛物线y=x2+bx+c与y轴交于点A(0,2),与x轴交于B(﹣3,0)、C两点(点B在点C的左侧),抛物线的顶点为D.(1)求抛物线的表达式;(2)用配方法求点D的坐标;(3)点P是线段OB上的动点.①过点P作x轴的垂线交抛物线于点E,若PE=PC,求点E的坐标;②在①的条件下,点F是坐标轴上的点,且点F到EA和ED的距离相等,请直接写出线段EF的长;③若点Q是射线OA上的动点,且始终满足OQ=OP,连接AP,DQ,请直接写出AP+DQ的最小值.10.如图1,已知:抛物线y=a(x+1)(x﹣3)交x轴于A,C两点,交y轴于点B,且OB =2CO.(1)求二次函数解析式;(2)在二次函数图象(如图2)位于x轴上方部分有两个动点M、N,且点N在点M的左侧,过M、N作x轴的垂线交x轴于点G、H两点,当四边形MNHG为矩形时,求该矩形周长的最大值;(3)抛物线对称轴上是否存在点P,使得△ABP为直角三角形?若存在,请直接写出点P 的坐标;若不存在,请说明理由.参考答案1.解:(1)∵抛物线y=x2+bx+c过点A(3,0),B(1,0),∴,解得,∴抛物线解析式为y=x2﹣4x+3;(2)令x=0,则y=3,∴点C(0,3),则直线AC的解析式为y=﹣x+3,设点P(x,x2﹣4x+3),∵PD∥y轴,∴点D(x,﹣x+3),∴PD=(﹣x+3)﹣(x2﹣4x+3)=﹣x2+3x=﹣(x﹣)2+,∵a=﹣1<0,∴当x=时,线段PD的长度有最大值;(3)①∠APD是直角时,点P与点B重合,此时,点P(1,0),②∵y=x2﹣4x+3=(x﹣2)2﹣1,∴抛物线的顶点坐标为(2,﹣1),∵A(3,0),∴点P为在抛物线顶点时,∠PAD=45°+45°=90°,此时,点P(2,﹣1),综上所述,点P(1,0)或(2,﹣1)时,△APD能构成直角三角形.2.解:(1)∵点B(3,0),点C(0,3)在抛物线y=﹣x2+bx+c图象上,∴,解得:,∴抛物线解析式为:y=﹣x2+2x+3;(2)∵点B(3,0),点C(0,3),∴直线BC解析式为:y=﹣x+3,如图,过点P作PH⊥x轴于H,交BC于点G,设点P(m,﹣m2+2m+3),则点G(m,﹣m+3),∴PG=(﹣m2+2m+3)﹣(﹣m+3)=﹣m2+3m,=×PG×OB=×3×(﹣m2+3m)=﹣(m﹣)2+,∵S△PBC有最大值,∴当m=时,S△PBC∴点P(,);(3)存在N满足条件,理由如下:∵抛物线y=﹣x2+2x+3与x轴交于A、B两点,∴点A(﹣1,0),∵y=﹣x2+2x+3=﹣(x﹣1)2+4,∴顶点M为(1,4),∵点M为(1,4),点C(0,3),∴直线MC的解析式为:y=x+3,如图,设直线MC与x轴交于点E,过点N作NQ⊥MC于Q,∴DE=4=MD,∴∠NMQ=45°,∵NQ⊥MC,∴∠NMQ=∠MNQ=45°,∴MQ=NQ,∴MQ=NQ=MN,设点N(1,n),∵点N到直线MC的距离等于点N到点A的距离,∴NQ=AN,∴NQ2=AN2,∴(MN)2=AN2,∴(|4﹣n|)2=4+n2,∴n2+8n﹣8=0,∴n=﹣4±2,∴存在点N满足要求,点N坐标为(1,﹣4+2)或(1,﹣4﹣2).3.解:(1)∵抛物线y=ax2+bx+2交x轴于点A(﹣3,0)和点B(1,0),∴抛物线的表达式为:y=a(x+3)(x﹣1)=a(x2+2x﹣3)=ax2+2ax﹣3a,即﹣3a=2,解得:a=﹣,故抛物线的表达式为:y=﹣x2﹣x+2;(2)连接OP,设点P(x,﹣x2﹣x+2),∵抛物线y=﹣x2﹣x+2交y轴于点C,∵S =S 四边形ADCP =S △APO +S △CPO ﹣S △ODC =×AO ×y P +×OC ×|x P |﹣×CO ×OD =4,∴×3×(﹣x 2﹣x +2)+×2×(﹣x )﹣×1×2=4,∴x 1=﹣1,x 2=﹣2, ∴点P (﹣1,)或(﹣2,2);(3)①如图2,若点M 在CD 左侧,连接AM ,∵∠MDC =90°,∴∠MDA +∠CDO =90°,且∠CDO +∠DCO =90°, ∴∠MDA =∠DCO ,且AD =CO =2,MD =CD , ∴△MAD ≌△DOC (SAS )∴AM =DO ,∠MAD =∠DOC =90°, ∴点M 坐标(﹣3,1),若点M 在CD 右侧,同理可求点M '(1,﹣1); ②如图3,∵抛物线的表达式为:y =﹣x 2﹣x +2=﹣(x +1)2+;∴对称轴为:直线x =﹣1,∴点D在对称轴上,∵MD=CD=M'D,∠MDC=∠M'DC=90°,∴点D是MM'的中点,∵∠MCD=∠M'CD=45°,∴∠MCM'=90°,∴点M,点C,点M'在以MM'为直径的圆上,当点N在以MM'为直径的圆上时,∠M'NC=∠M'MC=45°,符合题意,∵点C(0,2),点D(﹣1,0)∴DC=,∴DN=DN'=,且点N在抛物线对称轴上,∴点N(﹣1,),点N'(﹣1,﹣)延长M'C交对称轴与N'',∵点M'(1,﹣1),点C(0,2),∴直线M'C解析式为:y=﹣3x+2,∴当x=﹣1时,y=5,∴点N''的坐标(﹣1,5),∵点N''的坐标(﹣1,5),点M'(1,﹣1),点C(0,2),∴N''C==M'C,且∠MCM'=90°,∴MM'=MN'',∴∠MM'C=∠MN''C=45°∴点N''(﹣1,5)符合题意,综上所述:点N的坐标为:(﹣1,)或(﹣1,﹣)或(﹣1,5).4.解:(1)∵BO=3AO=3,∴点B(3,0),点A(﹣1,0),∴抛物线解析式为:y=(x+1)(x﹣3)=x2﹣x﹣,∴b=﹣,c=﹣;(2)如图1,过点D作DE⊥AB于E,∴CO∥DE,∴,∵BC=CD,BO=3,∴=,∴OE=,∴点D横坐标为﹣,∴点D坐标为(﹣,+1),设直线BD的函数解析式为:y=kx+b,由题意可得:,解得:,∴直线BD的函数解析式为y=﹣x+;(3)∵点B(3,0),点A(﹣1,0),点D(﹣,+1),∴AB=4,AD=2,BD=2+2,对称轴为直线x=1,∵直线BD:y=﹣x+与y轴交于点C,∴点C(0,),∴OC=,∵tan∠CBO==,∴∠CBO=30°,如图2,过点A作AK⊥BD于K,∴AK=AB=2,∴DK===2,∴DK=AK,∴∠ADB=45°,如图,设对称轴与x轴的交点为N,即点N(1,0),若∠CBO=∠PBO=30°,∴BN=PN=2,BP=2PN,∴PN=,BP=,当△BAD∽△BPQ,∴,∴BQ==2+,∴点Q(1﹣,0);当△BAD∽△BQP,∴,∴BQ==4﹣,∴点Q(﹣1+,0);若∠PBO=∠ADB=45°,∴BN=PN=2,BP=BN=2,当△DAB∽△BPQ,∴,∴,∴BQ=2+2∴点Q(1﹣2,0);当△BAD∽△PQB,∴,∴BQ==2﹣2,∴点Q(5﹣2,0);综上所述:满足条件的点Q的坐标为(1﹣,0)或(﹣1+,0)或(1﹣2,0)或(5﹣2,0).5.解:(1)∵直线x=1是抛物线的对称轴,且点C的坐标为(0,3),∴c=3,﹣=1,∴b=2,∴抛物线的解析式为:y=﹣x2+2x+3;(2)①∵y=﹣x2+2x+3=﹣(x﹣1)2+4,∴点M(1,4),∵抛物线的解析式为:y=﹣x2+2x+3与x轴相交于A,B两点(点A位于点B的左侧),∴0=﹣x2+2x+3∴x1=3,x2=﹣1,∴点A(﹣1,0),点B(3,0),∵点M(1,4),点B(3,0)∴直线BM解析式为y=﹣2x+6,∵点P在直线BM上,且PD⊥x轴于点D,PD=m,∴点P(3﹣,m),∴S△PCD=×PD×OD=m×(3﹣)=﹣m2+m,∵点P在线段BM上,且点M(1,4),点B(3,0),∴0<m≤4∴S与m之间的函数关系式为S=﹣m2+m(0<m≤4)②∵S=﹣m2+m=﹣(m﹣3)2+,∴当m=3时,S有最大值为,∴点P(,3)∵0<m≤4时,S没有最小值,综上所述:当m=3时,S有最大值为,此时点P(,3);(3)存在,若PC=PD=m时,∵PD=m,点P(3﹣,m),点C(0,3),∴(3﹣﹣0)2+(m﹣3)2=m2,∴m1=18+6(舍去),m2=18﹣6,∴点P(﹣6+3,18﹣6);若DC=PD=m时,∴(3﹣﹣0)2+(﹣3)2=m2,∴m3=﹣2﹣2(舍去),m4=﹣2+2,∴点P(4﹣,﹣2+2);若DC=PC时,∴(3﹣﹣0)2+(m﹣3)2=(3﹣﹣0)2+(﹣3)2,∴m5=0(舍去),m6=6(舍去)综上所述:当点P的坐标为:(﹣6+3,18﹣6)或(4﹣,﹣2+2)时,使△PCD为等腰三角形.6.解:(1)∵抛物线y=ax2+bx+c经过点A(1,0)、B(3,0)、C(0,3),∴,解得,∴抛物线的表达式为y=x2﹣4x+3;(2)∵抛物线对称轴是线段AB的垂直平分线,∴AM=BM,由三角形的三边关系,|BM﹣CM|=|AM﹣CM|<AC,∴点A、C、M三点共线时,|BM﹣CM|最大,设直线AC的解析式为y=mx+n,则,解得,∴直线AC的解析式为y=﹣3x+3,又∵抛物线对称轴为直线x=﹣=2,∴x=2时,y=﹣3×2+3=﹣3,故,点M的坐标为(2,﹣3);(3))∵OB=OC=3,OB⊥OC,∴△BOC是等腰直角三角形,∵EF∥y轴,直线BC的解析式为y=﹣x+3,∴△DEF只要是直角三角形即可与△BOC相似,∵D(2,1),A(1,0),B(3,0),∴点D垂直平分AB且到点AB的距离等于AB,∴△ABD是等腰直角三角形,∴∠ADB =90°,如图,①点F 是直角顶点时,点F 的纵坐标与点D 的纵坐标相同,是1,∴x 2﹣4x +3=1,整理得x 2﹣4x +2=0,解得x =2±, 当x =2﹣时,y =﹣(2﹣)+3=1+, 当x =2+时,y =﹣(2+)+3=1﹣, ∴点E 1(2﹣,1+)E 2(2+,1﹣), ②点D 是直角顶点时,易求直线AD 的解析式为y =x ﹣1,联立,解得,,当x =1时,y =﹣1+3=2,当x =4时,y =﹣4+3=﹣1,∴点E 3(1,2),E 4(4,﹣1),综上所述,存在点E 1(2﹣,1+)或E 2(2+,1﹣)或E 3(1,2)或E 4(4,﹣1),使以D 、E 、F 为顶点的三角形与△BCO 相似.7.解:(1)∵抛物线y =x 2+bx +c 交x 轴于点A (1,0),与y 轴交于点C (0,﹣3),∴,解得:,∴抛物线解析式为:y=x2+2x﹣3;(2)∵抛物线y=x2+2x﹣3与x轴于A,B两点,∴点B(﹣3,0),∵点B(﹣3,0),点C(0,﹣3),∴OB=OC=3,∴∠OBC=∠OCB=45°,如图1,当点D在点C上方时,∵∠DBC=15°,∴∠OBD=30°,∴tan∠DBO==,∴OD=×3=,∴CD=3﹣;若点D在点C下方时,∵∠DBC=15°,∴∠OBD=60°,∴tan∠DBO==,∴OD=3,∴DC=3﹣3,综上所述:线段CD的长度为3﹣或3﹣3;(3)如图2,在BO上截取OE=OA,连接CE,过点E作EF⊥AC,∵点A(1,0),点C(0,﹣3),∴OA=1,OC=3,∴AC===,∵OE=OA,∠COE=∠COA=90°,OC=OC,∴△OCE≌△OCA(SAS),∴∠ACO=∠ECO,CE=AC=,∴∠ECA=2∠ACO,∵∠PAB=2∠ACO,∴∠PAB=∠ECA,=AE×OC=AC×EF,∵S△AEC∴EF==,∴CF===,∴tan∠ECA==,如图2,当点P在AB的下方时,设AP与y轴交于点N,∵∠PAB=∠ECA,∴tan∠ECA=tan∠PAB==,∴ON=,∴点N(0,﹣),又∵点A(1,0),∴直线AP解析式为:y=x﹣,联立方程组得:,解得:或,∴点P坐标为:(﹣,﹣),当点P在AB的上方时,同理可求直线AP解析式为:y=﹣x+,联立方程组得:,解得:或,∴点P坐标为:(﹣,),综上所述:点P的坐标为(﹣,),(﹣,﹣).8.解:(1)∵二次函数图象过点B(4,0),点A(﹣2,0),∴设二次函数的解析式为y=a(x+2)(x﹣4),∵二次函数图象过点C(0,4),∴4=a(0+2)(0﹣4),∴a=﹣,∴二次函数的解析式为y=﹣(x+2)(x﹣4)=﹣x2+x+4;(2)存在,理由如下:如图1,取BC中点Q,连接MQ,∵点A(﹣2,0),B(4,0),C(0,4),点P是AC中点,点Q是BC中点,∴P(﹣1,2),点Q(2,2),BC==4,设直线BP解析式为:y=kx+b,由题意可得:,解得:∴直线BP的解析式为:y=﹣x+,∵∠BMC=90°∴点M在以BC为直径的圆上,∴设点M(c,﹣c+),∵点Q是Rt△BCM的中点,∴MQ=BC=2,∴MQ2=8,∴(c﹣2)2+(﹣c+﹣2)2=8,∴c=4或﹣,当c=4时,点B,点M重合,即c=4,不合题意舍去,∴c=﹣,则点M坐标(﹣,),故线段PB上存在点M(﹣,),使得∠BMC=90°;(3)如图2,过点D作DE⊥BC于点E,设直线DK与BC交于点N,∵点A(﹣2,0),B(4,0),C(0,4),点D是AB中点,∴点D(1,0),OB=OC=4,AB=6,BD=3,∴∠OBC=45°,∵DE⊥BC,∴∠EDB=∠EBD=45°,∴DE=BE==,∵点B(4,0),C(0,4),∴直线BC解析式为:y=﹣x+4,设点E(n,﹣n+4),∴﹣n+4=,∴n=,∴点E(,),在Rt△DNE中,NE===,①若DK与射线EC交于点N(m,4﹣m),∵NE=BN﹣BE,∴=(4﹣m)﹣,∴m=,∴点N(,),∴直线DK解析式为:y=4x﹣4,联立方程组可得:,解得:或,∴点K坐标为(2,4)或(﹣8,﹣36);②若DK与射线EB交于N(m,4﹣m),∵NE=BE﹣BN,∴=﹣(4﹣m),∴m=,∴点N(,),∴直线DK解析式为:y=x﹣,联立方程组可得:,解得:或,∴点K坐标为(,)或(,),综上所述:点K的坐标为(2,4)或(﹣8,﹣36)或(,)或(,).9.解:(1)∵抛物线y=x2+bx+c与y轴交于点A(0,2),与x轴交于B(﹣3,0),∴∴∴抛物线解析式为:y=x2﹣x+2;(2)∵y=x2﹣x+2=﹣(x+1)2+,∴顶点D坐标(﹣1,);(3)①∵抛物线y=x2﹣x+2与x轴交于B(﹣3,0)、C两点,∴点C(1,0)设点E(m,m2﹣m+2),则点P(m,0),∵PE=PC,∴m2﹣m+2=1﹣m,∴m=1(舍去),m=﹣,∴点E(﹣,)②如图,连接AE交对称轴于点N,连接DE,作EH⊥DN于H,交y轴于点F,∵点A(0,2),点E(﹣,),∴直线AE解析式为y=﹣x+2,∴点N坐标(﹣1,)∴DH==,HN==,∴DH=NH,且EH⊥DN,∴∠DEH=∠NEH,∴点F到AE,DE的距离相等,∴DN∥y轴,EH⊥DN,∴EH⊥y轴,∴EF=;③在x轴正半轴取点H,使OH=OA=2,∵OH=OA,∠AOP=∠QOH=90°,OP=OQ,∴△AOP≌△HOQ(SAS)∴AP=QH,∴AP+DQ=DQ+QH≥DH,∴点Q在DH上时,DQ+AP有最小值,最小值为DH的长,∴AP+DQ的最小值==.10.解:(1)对于抛物线y=a(x+1)(x﹣3),令y=0,得到a(x+1)(x﹣3)=0,解得x=﹣1或3,∴C(﹣1,0),A(3,0),∴OC=1,∵OB=2OC=2,∴B(0,2),把B(0,2)代入y=a(x+1)(x﹣3)中得:2=﹣3a,a=﹣∴二次函数解析式为=;(2)设点M的坐标为(m,),则点N的坐标为(2﹣m,),MN=m﹣2+m=2m﹣2,GM=矩形MNHG的周长C=2MN+2GM=2(2m﹣2)+2()==∴当时,C有最大值,最大值为;(3)∵A(3,0),B(0,2),∴OA=3,OB=2,由对称得:抛物线的对称轴是:x=1,∴AE=3﹣1=2,设抛物线的对称轴与x轴相交于点E,当△ABP为直角三角形时,存在以下三种情况:①如图1,当∠BAP=90°时,点P在AB的下方,∵∠PAE+∠BAO=∠BAO+∠ABO=90°,∴∠PAE=∠ABO,∵∠AOB=∠AEP,∴△ABO∽△PAE,∴,即,∴PE=3,∴P(1,﹣3);②如图2,当∠PBA=90°时,点P在AB的上方,过P作PF⊥y轴于F,同理得:△PFB∽△BOA,∴,即,∴BF=,∴OF=2+=,∴P(1,);③如图3,以AB为直径作圆与对称轴交于P1、P2,则∠AP1B=∠AP2B=90°,设P1(1,y),∵AB2=22+32=13,由勾股定理得:AB2=P1B2+P1A2,∴12+(y﹣2)2+(3﹣1)2+y2=13,解得:y=1±,∴P(1,1+)或(1,1﹣),综上所述,点P的坐标为(1,﹣3)或(1,)或(1,1+)或(1,1﹣)。

重庆中考二次函数的综合题22-40题

重庆中考二次函数的综合题22-40题

二次函数的综合题22、如图,抛物线y=21x 2+bx+c 与直线y=kx+m 交于A (4,2)B (0,-1). ⑴ 求抛物线与直线的解析式;⑵ 设点C 为抛物线的顶点,求△ABC 的面积;⑶ 若点D 是直线l 下方抛物线上的一个动点,点D 的横坐标为m ,求△ABD 的最大面积及求此时点D 的坐标.23、已知抛物线y=-x 2+bx+c 过点A (4,0)、B (1,3),顶点为C. ⑴ 求该抛物线的解析式,并写出该抛物线的对称轴和顶点坐标; ⑵ 求△ABC 的面积;⑶ 记该抛物线的对称轴为直线l ,设抛物线上的点P (m ,n )在第四象限,点P 关于直线l 对称的点为E ,点E 关于x 轴的对称点为点F ,若四边形OFAP 的面积为20,求点P 的坐标.24、如图,已知抛物线c bx ax y ++=2(a ≠0)经过A (-1,0),B (4,0),C (0,2)三点.⑴ 求这条抛物线的解析式;⑵ E 为抛物线上的动点,当以A 、B 、E 为顶点的三角形与△COB 相似时,求点E 的坐标; ⑶ 若将直线BC 平移,使其经过点A ,且与抛物线相交于点D ,连接BD ,求∠BDA 的度数.25、如图,抛物线322--=x x y 与x 轴交于点A 、B 两点(点A 在点B 的左边),与y 轴交于点C ,点D 是抛物线的顶点. ⑴ 求B 、C 、D 三点的坐标;⑵ 连接BC 、BD 、CD ,若点P 为抛物线上一动点,设点P 的横坐标为m ,当△B C D△P B CS S =时,求m 的值(点P 不与点D 重合);⑶ 连接AC ,将△AOC 沿x 轴正方向平移,设移动距离为a ,当点A 和点B 重合时,停止运动,设运动过程中△AOC 与△BOC 重叠部分的面积为S ,请直接写出S 与a 之间的函数关系式,并写出相应的自变量a 的取值范围.26、如图⑴,抛物线52++=bx ax y (a ≠0)与x 轴交于A 、B 两点,与y 轴交于点C ,直线AC 的解析式为5+=x y ,抛物线的对称轴与x 轴交于点E ,点D (-2,-3)在对称轴上.⑴ 求抛物线的解析式;⑵ 如图⑴,若点M 是线段OE 上一点(点M 不与点O 、E 重合),过点M 作MN ⊥x 轴,交抛物线于点N ,记点N 关于抛物线的对称轴的对称点为点F ,点P 是线段MN 上一点,且满足MN=4MP ,连接FN 、FP ,作QP ⊥PF 交x 轴于点Q ,且满足PF=PQ ,求点Q 的坐标;⑶ 如图⑵,过点B 作BK ⊥x 轴交直线AC 于点K ,连接DK 、AD ,点H 是DK 的中点,点G 是线段AK 上任意一点,将△DGH 沿GH 翻折得△D ¹GH ,求当KG 为何值时,△D ¹GH 与△KGH 重叠部分的面积是△DGK 面积的41.图⑴ 图⑵备用图27、如图,二次函数y=ax 2+bx (a≠0)的图象经过点A (1,4),对称轴是直线x=-23 ,线段AD 平行于x 轴,交抛物线于点D .在y 轴上取一点C (0,2),直线AC 交抛物线于点B ,连结OA ,OB ,OD ,BD . (1)求该二次函数的解析式;(2)求点B 坐标和坐标平面内使△EOD ∽△AOB 的点E 的坐标;(3)设点F 是BD 的中点,点P 是线段DO 上的动点,问PD 为何值时,将△BPF 沿边PF 翻折,使△BPF 与△DPF 重叠部分的面积是△BDP 的面积的41?28、如图,二次函数c bx ax y ++=2的图象与x 轴交于A (-1,0)、B (3,0),与y 轴交于C (0,-3),顶点为D.连接BC 、BD 、AC 、CD.将△AOC 绕点O 逆时针旋转90°得△MOB.⑴ 求抛物线的解析式及直线BD 的解析式;⑵ ① 操作一:动点P 从点M 出发到x 轴上的点N ,又到抛物线的对称轴上的点Q ,再回到y 轴上的点C ,当四边形MNQC 的周长最小时,则四边形MNQC 的最小周长为 ,此时,tan ∠OMN=② 操作二:将△AOC 旋转过程中,A 的对应点1A ,点C 的对应点1C ,当 O 1A ⊥AC 时,求直线O 1C 与抛物线的交点的坐标;⑶ 将△BOM 沿y 轴的负半轴以每秒1个单位的速度平移,当BM 过点D 时停止平移,设平移的时间为t 秒,△BOM 与△BCD 的重叠部分的面积为S ,请直接写出S 与t 的函数关系式及相应的t 的取值范围29、如图⑴,抛物线52++=bx ax y (a ≠0)与x 轴交于A 、B 两点,与y 轴交于点C ,直线AC 的解析式为5+=x y ,抛物线的对称轴与x 轴交于点E ,点D (-2,-3)在对称轴上.(1)求此抛物线的解析式;(2)如图(1),若点M 是线段OE 上一点(点M 不与点O 、E 重合),过点M 作MN轴,交抛物线于点N ,记点N 关于抛物线对称轴的对称点为点F ,点P 是线段MN 上一点,且满足MN=4MP ,连接FN 、FP ,作QP PF 交轴于点Q ,且满足PF=PQ ,求点Q 的坐标;(3)如图(2),过点B 作BK轴交直线AC 于点K ,连接DK 、AD ,点H 是DK 的中点,点G 是线段AK 上任意一点,将DGH 沿GH 边翻折得,求当KG为何值时,与重叠部分的面积是DGK 面积的.30、已知如图,抛物线33122+--=x x y 与x 轴相交于点A 、B ,与y 轴相交于点C ,点D 为抛物线的顶点,抛物线的对称轴与x 轴相交于点E.⑴ 如图① 点F 是直线AC 上方抛物线上的一个动点,过点F 作FG ∥x 轴,交直线AC 与点G ,求线段FG 的最大值;⑵ 如图② 点P 为x 轴下方、对称轴左侧抛物线上的一点,连接PA ,以线段PA 为边作等腰直角三角形PAQ ,当点Q 在抛物线对称轴上时,求点P 的坐标;⑶ 如图③ 将线段AB 绕点A 顺时针旋转30°,与y 轴相交于点M ,连接BM.点S 是线段AM 的中点,连接OS ,得△OSM.若点N 是线段BM 上一动点,连接SN ,将△SMN 绕点S 逆时针旋转60°得到△SOT ,延长TO 交BM 于点K.若△KTM 的面积等于△ABM 的面积的121,求线段MN 的长.31、如图1,已知抛物线c bx x y ++=23经过点A (3,0),点B (-1,0),与y 轴负半轴交于点C ,连接BC 、AC ⑴ 求抛物线的解析式;⑵ 在抛物线上是否存在点P ,使得以A 、B 、C 、P 为顶点的四边形的面积等于△ABC 的面积的23倍?若存在,求出点P 的坐标;若不存在,请说明理由. ⑶ 如图2,直线BC 与抛物线的对称轴交于点K ,将直线AC 绕点C 按顺时针方向旋转°α,旋转中直线A ´C 与抛物线的另一个交点为M.求在旋转过程中△MCK 为等腰三角形时点M 的坐标.32、已知,抛物线33163310332+-=x x y 与x 轴交于点A 、B 两点,与y 轴交于点C.⑴ 设抛物线的顶点为P ,点M 为抛物线BP 之间的一动点,求四边形ABMP 面积的最大值; ⑵ 把△APB 翻折,使点P 落在线段AB 上(不与A 、B 重合),记作P ´,折痕为EF ,设 AP ´=x ,PE=y ,求y 关于x 的函数关系式,并写出自变量x 的取值范围;⑶ 当点P ´在线段AB 上运动但不与A 、B 重合时,能否使△BFP ´为直角三角形?若能,请求出此时点P ´的坐标;若不能,请你说明理由.33、如图,若二次函数363632--=x x y 的图象与x 轴交于点A 、B 两点,与直线x y 3=交于C 、D 两点,抛物线的顶点为E.⑴ 若点F 在y 轴正半轴上,且使得△AEF 的面积为235,求点F 的坐标; ⑵ 点M 为线段CD 上一点,过点M 作MN ∥x 轴,交抛物线对称轴右侧部分于点N ,当线段MN 的长度取得最大值时,求tan ∠MAB 的值⑶ 如图② 点G 在直线x y 3=上,其横坐标与B 点的横坐标相同.点A 关于直线x y 3=的对称点A ´(此时点A ´会落在抛物线上),连接AA ´,交直线x y 3=于点H ,连接AG 、A ´G.已知点P 在线段AG 上,点Q 在线段A ´G 上,且AP=2GQ ,连接PQ 、QH 、PH ,若将△APH 和△A ´QH 分别沿PH 、QH 翻折,恰好使得翻折后A 点和A ´点的对称点都落在直线PQ 上,求此时线段AP 的长.34、如图,抛物线42-+=bx ax y 与x 轴交于A 、B 两点,与y 轴交于点C ,对称轴是直线x=25,直线421-=x y 经过B 、C 两点. ⑴ 求抛物线的解析式;⑵ 若在对称轴右侧的抛物线上有一点P ,过点P 作PD ⊥直线BC ,垂足为D ,当∠PBD=∠ACO 时,求出点P 的坐标;⑶ 如图2,过点C 作CE ∥x 轴交抛物线于点E ,连接AE ,点F 是线段CE 上的动点,过点F 作FG ⊥x 轴,交AE 于H ,垂足为点G ,将△EFH 沿直线AE 翻折,得到△EMH ,连接GM.是否存在这样的点F ,使△GHM 是等腰三角形?若存在,求出对应的EF 的长度;若不存在,请说明理由35、已知抛物线c bx x y ++-=23与x 轴交于点A (1,0)、B (3,0),与y 轴相交于点C ,抛物线的顶点为D.⑴ 求b 、c 的值及顶点D 的坐标;⑵ 如图1,点E 是线段BC 上的一点,且BC=3BE ,点F (0,m )是y 轴正半轴上一点,连接BF 、EF ,EF 交线段OB 于点G ,OF :OG=2:3,求△FEB 的面积;⑶ 如图2,P 为线段BC 上一动点,连接DP ,将△DBP 绕点D 顺时针旋转60°得△DB ´P ´,(点B 的对应点是B ´,点P 的对应点是P ´),DP ´交y 轴于点M ,N 为MP ´的中点,连接PP ´、NO ,延长NO 交BC 于点Q ,连接QP ´,若△PP ´Q 的面积是△BOC 面积的91,求线段BP 的长.36、如图①所示,抛物线c bx ax y ++=2过A 、D 、C 三点,其中D (0,32)、C (6,32),已知CB ⊥AB ,AD ⊥DB ,点P 是边BC 上的动点(点P 不与点B 、C 重合), 过点P 作直线PQ ∥BD ,交CD 边于点Q ,再把△PQC 沿着直线PQ 对折,点C 的对应点为R.⑴ 求抛物线的解析式及R 落在BD 上时CP 的长;⑵ 当点R 刚好落在线段AB 上时,如图②,若此时将△所得的点R 在线段AB 上移动,问在移动过程中是否存在某一时刻,使得△ADR 为等腰三角形?若存在,求出AR 的长度;若不存在,请说明理由;⑶ 当点R 落在BD 上时(如图③),点M 为BC 边上一动点,连接QM ,将△CQM 绕点Q 顺时针旋转60°,得到△RQH.延长HR 交直线CB 于点K.若△HMK 的面积等于23.求CM 的长.37、如图,二次函数322--=x x y 的图象与x 轴交于A 、B 两点,与y 轴交于点C ,顶点为D.⑴ 点E (2213+,m )是抛物线上的一点,求∠AOE 的度数; ⑵ 动点P 在线段OB 上以每秒1个单位的速度从O 点出发向B 点运动,同时动点Q 在线段BC 上以每秒2个单位的速度从C 点向B 点运动,设运动时间为t ,求△OPQ 面积的最大值和对应的时间t 的值;⑶ 当△OPQ 面积最大时,直线PQ 与抛物线在第四象限相交于点N ,在直线AN 上有一动点M ,M 点关于x 轴的对称点为M ₁,M 关于y 轴的对称点为M ₂,是否存在M 点使 △D M M 21为直角三角形?若存在,求出M 点的坐标,若不存在,请说明理由.38、如图,抛物线3332332-+=x x y 交x 轴于点A 、B ,交y 轴于点C. ⑴ 求抛物线的对称轴及△ABC 的面积;⑵ 如图1,已知点Q (0,3),点P 是直线AC 下方抛物线上的一动点,连接PQ 交直线AC 于点K ,连接BQ 、BK.当点P 使得△BQK 周长最小时,请求出△BQK 周长的最小值和此时点P 的坐标;⑶ 如图2,线段AC 水平向右移动的线段FE (点A 的对应点是F ,点C 的对应点E ),将△ACF 沿CF 翻折得△CFA ´,连接A ´E ,是否存在点F ,使得△CEA ´是直角三角形?若存在,请求出点F 的坐标;若不存在,请说明理由39、已知,如图,在平面直角坐标系中,点A 坐标为(4,0),点B 的坐标为(0,-4),C 为y 轴负半轴上一点,且OC=AB ,抛物线c bx x y ++=22的图象经过A 、C 两点. ⑴ 求此抛物线的解析式;⑵ 将∠OAB 的顶点A 沿AB 平移,在平移过程中,保持∠OAB 的大小不变,顶点A 记为A 1,一边AB 记为A 1B ₁,A 1与B 重合时停止平移.A 1B 1与y 轴交于点D.当△A 1OD 是以A 1D 为腰的等腰三角形时,求点A 1的坐标;⑶ 在⑵问的条件下,直线A 1B 1与x 轴交于点E ,P 为⑴中抛物线上一动点,直线PA 1交x 轴于点G ,在直线EB 1下方的抛物线上是否存在一点P ,使得△PDA 1与△GEA 1的面积之比为()221+:1.若存在,求点P 的坐标;若不存在,请说明理由.40、如图,在平面直角坐标系xoy 中,矩形ABCD 的边AB 在x 轴上,且AB=3,BC=23,直线323-=x y 经过点C ,交y 轴于点G.⑴ 求C 、D 的坐标;⑵ 已知抛物线顶点在323-=x y 上,且经过点C 、D ,若抛物线于y 轴交于点M ,连接MC ,设点Q 是线段下方此抛物线上一点,当点Q 运动到什么位置时,△MCQ 的面积最大?求出此时点Q 的坐标和面积的最大值.⑶ 将⑵中抛物线沿着直线323-=x y 平移,平移后的抛物线交y 轴于点F ,顶点为E (顶点在y 轴右侧),平移后是否存在这样的抛物线,使△EFG 为等腰三角形?若存在,求出此时抛物线的解析式;若不存在,请说明理由.。

初三中考数学专题复习:二次函数综合题(相似三角形问题)含答案

初三中考数学专题复习:二次函数综合题(相似三角形问题)含答案

中考数学专题复习:二次函数综合题(相似三角形问题)1.如图①,二次函数y =﹣x 2+bx +c 的图象与x 轴交于点A (﹣1,0)、B (3,0),与y 轴交于点C ,连接BC ,点P 是抛物线上一动点.(1)求二次函数的表达式.(2)当点P 不与点A 、B 重合时,作直线AP ,交直线BC 于点Q ,若①ABQ 的面积是①BPQ 面积的4倍,求点P 的横坐标.(3)如图①,当点P 在第一象限时,连接AP ,交线段BC 于点M ,以AM 为斜边向①ABM 外作等腰直角三角形AMN ,连接BN ,①ABN 的面积是否变化?如果不变,请求出①ABN 的面积;如果变化,请说明理由.2.如图,二次函数2314y x bx =++的图像经过点()8,3A ,交x 轴于点B ,C (点B 在点C 的左侧),与y 轴交于点D .(1)填空:b = ______;(2)点P 是第一象限内抛物线上一点,直线PO 交直线CD 于点Q ,过点P 作x 轴的垂线交直线CD 于点T ,若PQ QT =,求点P 的坐标;(3)在x 轴的正半轴上找一点E ,过点E 作AE 的垂线EF 交y 轴于F ,若AEF 与EFO △相似,求OE 的长.3.如图,已知抛物线2y ax bx c =++与x 轴相交于点()1,0A -,()3,0B ,与y 轴的交点()0,6C .(1)求抛物线的解析式;(2)点(),P m n 在平面直角坐标系第一象限内的抛物线上运动,设PBC 的面积为S ,求S 关于m 的函数表达式(指出自变量m 的取值范围)和S 的最大值;(3)点M 在抛物线上运动,点N 在y 轴上运动,是否存在点M 、点N 使得①CMN =90°,且∆CMN 与OBC ∆相似,如果存在,请求出点M 和点N 的坐标.4.如图,抛物线L 1:y =ax 2﹣2x +c (a ≠0)与x 轴交于A 、B (3,0)两点,与y 轴交于点C (0,﹣3),抛物线的顶点为D .抛物线L 2与L 1关于x 轴对称.(1)求抛物线L 1与L 2的函数表达式;(2)已知点E 是抛物线L 2的顶点,点M 是抛物线L 2上的动点,且位于其对称轴的右侧,过M 向其对称轴作垂线交对称轴于P ,是否存在这样的点M ,使得以P 、M 、E 为顶点的三角形与△BCD 相似,若存在请求出点M 的坐标,若不存在,请说明理由.5.如图,在平面直角坐标系中,已知直线4y x =+与x 轴、y 轴分别相交于点A 和点C ,抛物线21y x kx k =++-的图象经过点A 和点C ,与x 轴的另一个交点是点B .(1)求出此抛物线的解析式; (2)求出点B 的坐标;(3)若在y 轴的负半轴上存在点D .能使得以A ,C ,D 为顶点的三角形与①ABC 相似,请求出点D 的坐标.6.如图1,已知抛物线23y ax bx =++经过点()1,5D ,且交x 轴于A ,B 两点,交y 轴于点C ,已知点()1,0A -,(),P m n 是抛物线在第一象限内的一个动点,PQ BC ⊥于点Q .(1)求抛物线的解析式;(2)当PQ =m 的值;(3)是否存在点P ,使BPQ 与BOC 相似?若存在,请求出P 点的坐标;若不存在,请说明理由.7.如图,在平面直角坐标系中,直线y =12x +2与x 轴交于点A ,与y 轴交于点C .抛物线y =ax 2+bx +c的对称轴是x=-32且经过A、C两点,与x轴的另一交点为点B.(1)求二次函数y=ax2+bx+c的表达式;(2)点P为线段AB上的动点,求AP+2PC的最小值;(3)抛物线上是否存在点M,过点M作MN垂直x轴于点N,使得以点A,M,N为顶点的三角形与①ABC 相似?若存在,求出点M的坐标;若不存在,请说明理由.8.如图,抛物线y=−x2+bx+c与x轴相交于A(−1,0),B(3,0)两点,与y轴交于点C,顶点为点D,抛物线的对称轴与BC相交于点E,与x轴相交于点F.(1)求抛物线的函数关系式;(2)连结DA,求sin A的值;(3)若点H线段BC上,BOC与BFH△相似,请直接写出点H的坐标.9.如图,抛物线y=1-2x2+bx+c与x轴交于点A(﹣2,0)和点B(8,0),与y轴交于点C,顶点为D,连接AC,BC,BC与抛物线的对称轴l交于点E.(1)求抛物线的表达式;(2)点P 是第一象限内抛物线上的动点,连接PB ,PC ,当S △PBC =720S △ABC 时,求点P 的坐标; (3)点N 是对称轴l 右侧抛物线上的动点,在射线ED 上是否存在点M ,使得以点M ,N ,E 为顶点的三角形与①OBC 相似?若存在,求点M 的坐标;若不存在,请说明理由.10.如图,抛物线23y ax bx =++与x 轴交于1,0A 、()3,0B -两点,与y 轴交于点C ,设抛物线的顶点为D .(1)求该抛物线的表达式与顶点D 的坐标; (2)试判断BCD △的形状,并说明理由;(3)探究坐标轴上是否存在点P ,使得以P 、A 、C 为顶点的三角形与BCD △相似?若存在,请求出点P 的坐标;若不存在,请说明理由.11.如图,抛物线y =ax 2﹣2ax ﹣3a (a ≠0)与x 轴交于点A ,B .与y 轴交于点C .连接AC ,BC .已知ABC 的面积为2.(1)求抛物线的解析式;(2)平行于x 轴的直线与抛物线从左到右依次交于P ,Q 两点.过P ,Q 向x 轴作垂线,垂足分别为G ,H .若四边形PGHQ 为正方形,求正方形的边长;(3)抛物线上是否存在一点N ,使得①BCN =①CAB ﹣①CBA ,若存在,请求出满足条件N 点的横坐标,若不存在请说明理由.12.如图,二次函数2y x bx c =-++的图像与x 轴交于点A (-1,0),B (2,0),与y 轴相交于点C .(1)求这个二次函数的解析式;(2)若点M 在此抛物线上,且在y 轴的右侧.①M 与y 轴相切,过点M 作MD ①y 轴,垂足为点D .以C ,D ,M 为顶点的三角形与①AOC 相似,求点M 的坐标及①M 的半径长.13.如图,在平面直角坐标系中,抛物线2()0y ax bx c ac =++≠与x 轴交于点A 和点B (点A 在点B 的左侧),与y 轴交于点C .若线段OA OB OC 、、的长满足2OC OA OB =⋅,则这样的抛物线称为“黄金”抛物线.如图,抛物线22(0)y ax bx a =++≠为“黄金”抛物线,其与x 轴交点为A ,B (其中B 在A 的右侧),与y 轴交于点C .且4OA OB =(1)求抛物线的解析式;(2)若P 为AC 上方抛物线上的动点,过点P 作PD AC ⊥,垂足为D . ①求PD 的最大值;①连接PC ,当PCD 与ACO △相似时,求点P 的坐标.14.如图,在平面直角坐标系xOy 中,已知抛物线2y x bx c =++与x 轴交于点A 、B 两点,其中1,0A ,与y 轴交于点()0,3C .(1)求抛物线解析式;(2)如图1,过点B 作x 轴垂线,在该垂线上取点P ,使得①PBC 与①ABC 相似,请求出点P 坐标;(3)如图2,在线段OB 上取一点M ,连接CM ,请求出12CM BM +最小值.15.如图,抛物线y =ax 2+k (a >0,k <0)与x 轴交于A ,B 两点(点B 在点A 的右侧),其顶点为C ,点P 为线段OC 上一点,且PC =14OC .过点P 作DE ①AB ,分别交抛物线于D ,E 两点(点E 在点D 的右侧),连接OD ,DC .(1)直接写出A ,B ,C 三点的坐标;(用含a ,k 的式子表示) (2)猜想线段DE 与AB 之间的数量关系,并证明你的猜想;(3)若①ODC =90°,k =﹣4,求a 的值.16.如图,抛物线223y x bx c =++与x 轴交于A ,B 两点,与y 轴交于C 点,连接AC ,已知B (﹣1,0),且抛物线经过点D (2,﹣2).(1)求抛物线的表达式;(2)若点E 是抛物线上第四象限内的一点,且2ABES=,求点E 的坐标;(3)若点P 是y 轴上一点,以P ,A ,C 三点为顶点的三角形是等腰三角形,求P 点的坐标.17.如图,在直角坐标系xOy 中,抛物线y =ax 2+bx +2(a ≠0)与x 轴交于点A (﹣1,0)和B (4,0),与y 轴交于点C ,点P 是抛物线上的动点(不与点A ,B ,C 重合).(1)求抛物线的解析式;(2)当点P 在第一象限时,设①ACP 的面积为S 1,①ABP 的面积为S 2,当S 1=S 2时,求点P 的坐标; (3)过点O 作直线l ①BC ,点Q 是直线l 上的动点,当BQ ①PQ ,且①BPQ =①CAB 时,请直接写出点P 的坐标.18.如图,在平面直角坐标系xOy中,直线y=﹣x+3与两坐标轴交于A、B两点,抛物线y=x2+bx+c 过点A和点B,并与x轴交于另一点C,顶点为D.点E在对称轴右侧的抛物线上.(1)求抛物线的函数表达式和顶点D的坐标;(2)若点F在抛物线的对称轴上,且EF①x轴,若以点D,E,F为顶点的三角形与①ABD相似,求出此时点E的坐标;(3)若点P为坐标平面内一动点,满足tan①APB=3,请直接写出①P AB面积最大时点P的坐标及该三角形面积的最大值.19.如图,在平面直角坐标系中,抛物线y=ax2+bx+c(a≠0)与x轴交于点A、B,与y轴交于点C,且OC=2OB=6OA=6,点P是第一象限内抛物线上的动点.(1)求抛物线的解析式;(2)连接BC与OP,交于点D,当S△PCD:S△ODC的值最大时,求点P的坐标;(3)点M在抛物线上运动,点N在y轴上运动,是否存在点M、点N.使①CMN=90°,且①CMN与①BOC 相似,若存在,请求出点M、点N的坐标.20.如图,抛物线y=x2+bx+12(b<0)与x轴交于A,B两点(A点在B点左侧),且OB=3OA.(1)请直接写出b=,A点的坐标是,B点的坐标是;(2)如图(1),D点从原点出发,向y轴正方向运动,速度为2个单位长度/秒,直线BD交抛物线于点E,若BE=5DE,求D点运动时间;(3)如图(2),F点是抛物线顶点,过点F作x轴平行线MN,点C是对称轴右侧的抛物线上的一定点,P 点在直线MN上运动.若恰好存在3个P点使得①P AC为直角三角形,请求出C点坐标,并直接写出P点的坐标.答案1.(1)y =﹣x 2+2x +3.(2)P 352或 (3)①ABN 的面积不变,为4.2.(1)2-(2)5⎛ ⎝⎭或5⎛ ⎝⎭(3)4或493.(1)2246y x x =-++(2)S 关于m 的函数表达式为239(03)S m m m =-+<<,S 的最大值是274 (3)存在,M (1,8),N (0,172)或M (74,558),N (0,838)或M (94,398),N (0,38)或M (3,0),N (0,﹣32)4.(1)抛物线L 1:223y x x =--,抛物线L 2:2y x 2x 3=-++;(2)435(,)39M 或(4,5)M -.5.(1)254y x x =++(2)点B 的坐标为(-1,0)(3)点D 的坐标是(0,-203) 6.(1)215322y x x =-++ (2)1或5(3)存在;P (53,529)7.(1)抛物线表达式为:213222y x x =--+;(2)AP +2PC 的最小值是4;(3)存在M(0,2)或(-3,2)或(2,-3)或(5,-18),使得以点A 、M 、N 为顶点的三角形与ABC 相似.8.(1)y =-x 2+2x +3(3)点H 的坐标为(1,2)或(2,1)9.(1)21382y x x =++ (2)P 1(1,10.5),P 2(7,4.5)(3)存在,(3,8)或(3,5或(3,11)30.(1)y =﹣x 2﹣2x +3,(﹣1,4);(2)直角三角形,理由见解析;(3)存在,(0,0)或(0,﹣13)或(-9,0)11.(1)y =﹣13x 2+23x +1(2)﹣6﹣(3)存在,5或11712.(1)22y x x =-++; (2)M 的坐标为(12,94),(32, 54 ),(3,-4),①M 的半径长为12或32或313.(1)213222y x x =--+(2)①PD ①P 坐标为(3,2)-或325()28,-14.(1)243y x x =-+(2)P 点坐标为()3,9或()3,215.(1)点A 、B 、C 的坐标分别为(、、(0,k ) (2)DE =12AB(3)a =1316.(1)224233y x x =--(2)E ,-1)(3)P 点的坐标(0,2)或(02)或(0,﹣2或(0,54)17.(1)213222y x x =-++ (2)点P 的坐标为(103,139)(3)点P 的坐标为(32,﹣2)或(32,﹣2)或(173,﹣509)18.(1)y =x 2﹣4x +3,(2,﹣1)(2)(5,8)或(73,89-)(3)①P AB ,此时P )19.(1)y =﹣2x 2+4x +6 (2)点P 的坐标为(32,152) (3)存在,M 、N 的坐标分别为(3,0)、(0,﹣32)或(94,398)、(0,38)或(1,8)、(0,172)或(74,558)、(0,838)20.(1)﹣8,(2,0),(6,0)(2)3秒或212秒 (3)C 点坐标为(143,﹣329),P 点的坐标为(103,﹣4)或(﹣103,﹣4)或(11027,﹣4)。

重庆市2015年中考数学26题二次函数综合题专题练习一副本

重庆市2015年中考数学26题二次函数综合题专题练习一副本

重庆市2015年中考数学26题---二次函数综合题专题练习一1.(2015•沙坪坝区校级模拟)如图,在平面直角坐标系xOy中,抛物线y=ax2+bx+3与x 轴0.交于点A(-3,0)、C(1,0),与y轴交于点B.(1)求此抛物线的解析式;(2)点P是直线AB上方的抛物线上一动点(不与点A、B重合),过点P作x轴的垂线,垂足为点F,交直线AB于点E,作PD⊥AB于点D.①过点P在什么位置时,△PDE的周长最大,求出此时P点的坐标;②连接PA,以PA为边作正方形APMN,当顶点M或N恰好落在抛物线对称轴上时,求出对应的P点的坐标.2 (2014河南). 如图,抛物线y=-x2+bx+c与x轴交于A(-1,0),B(5,0)两点,直线y=-34x+3与y轴交于点C,,与x轴交于点D.点P是x轴上方的抛物线上一动点,过点P作PF⊥x 轴于点F,交直线CD于点E.设点P的横坐标为m。

(1)求抛物线的解析式;(2)若PE =5 EF,求m的值;(3)若点E/是点E关于直线PC的对称点、是否存在点P,使点E/落在y轴上?若存在,请直接写出相应的点P的坐标;若不存在,请说明理由。

3.(2014•哈尔滨)如图,在平面直角坐标中,点O为坐标原点,直线y=﹣x+4与x轴交于点A,过点A的抛物线y=ax2+bx与直线y=﹣x+4交于另一点B,且点B的横坐标为1.(1)求a,b的值;(2)点P是线段AB上一动点(点P不与点A、B重合),过点P作PM∥OB交第一象限内的抛物线于点M,过点M作MC⊥x轴于点C,交AB于点N,过点P作PF⊥MC于点F,设PF的长为t,MN的长为d,求d与t之间的函数关系式(不要求写出自变量t的取值范围);(3)在(2)的条件下,当S△ACN=S△PMN时,连接ON,点Q在线段BP上,过点Q作QR∥MN交ON于点R,连接MQ、BR,当∠MQR﹣∠BRN=45°时,求点R的坐标.4.如图①,已知抛物线y =ax 2+bx (a ≠0)经过A (3,0)、B (4,4)两点.(1) 求抛物线的解析式;(2) 将直线OB 向下平移m 个单位长度后,得到的直线与抛物线只有一个公共点D ,求m 的值及点D 的坐标;(3) 如图②,若点N 在抛物线上,且∠NBO =∠A BO ,则在(2)的条件下,求出所有满足△POD ∽△NOB 的点P 的坐标(点P 、O 、D 分别与点N 、O 、B 对应).A B DOx y第22题图① A B D O x y 第22题图②N5.(2014•龙岩)如图①,双曲线y=(k≠0)和抛物线y=ax2+bx(a≠0)交于A、B、C三点,其中B(3,1),C(﹣1,﹣3),直线CO交双曲线于另一点D,抛物线与x轴交于另一点E.(1)求双曲线和抛物线的解析式;(2)抛物线在第一象限部分是否存在点P,使得∠POE+∠BCD=90°?若存在,请求出满足条件的点P的坐标;若不存在,请说明理由;(3)如图②过B作直线l⊥OB,过点D作DF⊥l于点F,BD与OF交于点N,求的值.6、如图,抛物线y=-x2+bx+c与x轴交点为A(﹣2,0),与y轴的交点为C,对称轴是x=3,对称轴与x轴交于点B.(1)求抛物线的函数表达式;(2)经过B,C的直线l平移后与抛物线交于点M,与x轴交于点N,当以B,C,M,N为顶点的四边形是平行四边形时,求出点M的坐标;(3)若点D在x轴上,在抛物线上是否存在点P,使得△PBD≌△PBC?若存在,直接写出点P的坐标;若不存在,请说明理由.7.(2014年福建漳州)已知抛物线l:y=ax2+bx+c(a,b,c均不为0)的顶点为M,与y轴的交点为N,我们称以N为顶点,对称轴是y轴且过点M的抛物线为抛物线l的衍生抛物线,直线MN为抛物线l的衍生直线.(1)如图,抛物线y=x2﹣2x﹣3的衍生抛物线的解析式是,衍生直线的解析式是;(2)若一条抛物线的衍生抛物线和衍生直线分别是y=﹣2x2+1和y=﹣2x+1,求这条抛物线的解析式;(3)如图,设(1)中的抛物线y=x2﹣2x﹣3的顶点为M,与y轴交点为N,将它的衍生直线MN先绕点N旋转到与x轴平行,再沿y轴向上平移1个单位得直线n,P是直线n上的动点,是否存在点P,使△POM为直角三角形?若存在,求出所有点P的坐标;若不存在,请说明理由.8.(2014•贵港)如图,抛物线y=ax2+bx﹣3a(a≠0)与x轴交于点A(﹣1,0)和点B,与y轴交于点C(0,2),连接BC.(1)求该抛物线的解析式和对称轴,并写出线段BC的中点坐标;(2)将线段BC先向左平移2个单位长度,在向下平移m个单位长度,使点C的对应点C1恰好落在该抛物线上,求此时点C1的坐标和m的值;(3)若点P是该抛物线上的动点,点Q是该抛物线对称轴上的动点,当以P,Q,B,C四点为顶点的四边形是平行四边形时,求此时点P的坐标.9.(2014•贺州)二次函数图象的顶点在原点O,经过点A(1,);点F(0,1)在y轴上.直线y=﹣1与y轴交于点H.(1)求二次函数的解析式;(2)点P是(1)中图象上的点,过点P作x轴的垂线与直线y=﹣1交于点M,求证:FM 平分∠OFP;(3)当△FPM是等边三角形时,求P点的坐标.10. (2014南宁)在平面直角坐标系中, 抛物线=y 2x +()k x k --1与直线1+=kx y 交于A , B 两点,点A 在点B 的左侧.(1) 如图112-,当1=k 时,直接写出....A ,B 两点的坐标;(2) 在(1)的条件下,点P 为抛物线上的一个动点,且在直线AB 下方,试求出△ABP 面积的最大值及此时点P 的坐标; (3) 如图212-,抛物线=y 2x + ()k x k --1()0>k 与x 轴交于C ,D 两点(点C 在点D 的左侧).在直线1+=kx y 上是否存在唯一一点Q ,使得∠OQC =90°?若存在,请求出此时k 的值;若不存在,请说明理由.11.(2014•贵阳)如图,经过点A(0,﹣6)的抛物线y=x2+bx+c与x轴相交于B(﹣2,0),C两点.(1)求此抛物线的函数关系式和顶点D的坐标;(2)将(1)中求得的抛物线向左平移1个单位长度,再向上平移m(m>0)个单位长度得到新抛物线y1,若新抛物线y1的顶点P在△ABC内,求m的取值范围;(3)在(2)的结论下,新抛物线y1上是否存在点Q,使得△QAB是以AB为底边的等腰三角形?请分析所有可能出现的情况,并直接写出相对应的m的取值范围.12.(2014年贵州黔西南州)已知点P(x0,y0)和直线y=kx+b,则点P到直线y=kx+b的距离d可用公式d=计算.例如:求点P(﹣2,1)到直线y=x+1的距离.解:因为直线y=x+1可变形为x﹣y+1=0,其中k=1,b=1.所以点P(﹣2,1)到直线y=x+1的距离为d====.根据以上材料,求:(1)点P(1,1)到直线y=3x﹣2的距离,并说明点P与直线的位置关系;(2)点P(2,﹣1)到直线y=2x﹣1的距离;(3)已知直线y=﹣x+1与y=﹣x+3平行,求这两条直线的距离.13.(2014年贵州黔西南州)如图所示,在平面直角坐标系中,抛物线y=ax2+bx+c经过A(﹣3,0)、B(1,0)、C(0,3)三点,其顶点为D,连接AD,点P是线段AD上一个动点(不与A、D重合),过点P作y轴的垂线,垂足点为E,连接AE.(1)求抛物线的函数解析式,并写出顶点D的坐标;(2)如果P点的坐标为(x,y),△PAE的面积为S,求S与x之间的函数关系式,直接写出自变量x的取值范围,并求出S的最大值;(3)在(2)的条件下,当S取到最大值时,过点P作x轴的垂线,垂足为F,连接EF,把△PEF沿直线EF折叠,点P的对应点为点P′,求出P′的坐标,并判断P′是否在该抛物线上.。

(word完整版)年重庆中考数学总复习25题《二次函数》练习及答案

(word完整版)年重庆中考数学总复习25题《二次函数》练习及答案

二次函数的综合运用此题主要针对中考26题压轴题此题分为三问(1)求函数解析式(二次函数解析式、一次函数解析式、反比例函数解析式);(2)求二次函数中的一些线段长度或某个四边形的面积;(3)求二次函数中某些动点坐标或轨迹。

解答题1、 (2013·重庆A卷25题) 如图,对称轴为直线x=-1的抛物线y=ax2+bx+c(a≠0)与x轴相交于A、B两点,其中点A的坐标为(-3,0).(1)求点B的坐标;(2)已知a=1,C为抛物线与y轴的交点.①若点P在抛物线上,且S△POC=4S△BOC.求点P的坐标;②设点Q是线段AC上的动点,作QD⊥x轴交抛物线于点D,求线段QD长度的最大值.2、(2013·重庆B卷25题)如图,已知正比例函数和反比例函数的图象都经过点A(3,3).(1)求正比例函数和反比例函数的解析式;(2)把直线OA向下平移后与反比例函数的图象交于点B(6,m),求m的值和这个一次函数的解析式;(3)第(2)问中的一次函数的图象与x轴、y轴分别交于C、D,求过A、B、D三点的二次函数的解析式;(4)在第(3)问的条件下,二次函数在第一象限的图象上是否存在点E ,使四边形OECD 的面积S1与四边形OABD 的面积S 满足:S1=S ?若存在,求点E 的坐标;若不存在,请说明理由.3、(2008•重庆)已知:如图,抛物线(a≠0)与y 轴交于点C (0,4),与x 轴交于点A 、B ,点A 的坐标为(4,0). (1)求该抛物线的解析式;(2)点Q 是线段AB 上的动点,过点Q 作QE ∥AC ,交BC 于点E ,连接CQ .当△CQE 的面积最大时,求点Q 的坐标;(3)若平行于x 轴的动直线l 与该抛物线交于点P ,与直线AC 交于点F ,点D 的坐标为(2,0).问:是否存在这样的直线l ,使得△ODF 是等腰三角形?若存在,请求出点P 的坐标;若不存在,请说明理由.2322y ax ax c =-+4、(2011•丹东)己知:二次函数(a≠0)与x 轴交于A 、B 两点(点A 在点B 的左侧),点A 、点B 的横坐标是一元二次方程x2-4x-12=0的两个根. (1)请直接写出点A 、点B 的坐标.(2)请求出该二次函数表达式及对称轴和顶点坐标.(3)如图1,在二次函数对称轴上是否存在点P ,使△APC 的周长最小,若存在,请求出点P 的坐标;若不存在,请说明理由.(4)如图2,连接AC 、BC ,点Q 是线段0B 上一个动点(点Q 不与点0、B 重合).过点Q 作QD ∥AC 交BC 于点D ,设Q 点坐标(m ,0),当△CDQ 面积S 最大时,求m 的值.26y ax bx =++5、如图,已知抛物线与x轴交于A,B两点,A在B的左侧,A坐标为(-1,0)与y轴交于点C(0,3)△ABC的面积为6.(1)求抛物线的解析式;(2)抛物线的对称轴与直线BC相交于点M,点N为x轴上一点,当以M,N,B为顶点的三角形与△ABC相似时,请你求出BN的长度;(3)设抛物线的顶点为D在线段BC上方的抛物线上是否存在点P使得△PDC是等腰三角形?若存在,求出符合条件的点P的坐标;若不存在,请说明理由.6、(2013•珠海)如图,在平面直角坐标系xOy中,矩形OABC的边OA、OC分别在y轴和x轴的正半轴上,且长分别为m、4m(m>0),D为边AB的中点,一抛物线l经过点A、D及点M(-1,-1-m).(1)求抛物线l的解析式(用含m的式子表示);(2)把△OAD沿直线OD折叠后点A落在点A′处,连接OA′并延长与线段BC的延长线交于点E,若抛物线l与线段CE相交,求实数m的取值范围;(3)在满足(2)的条件下,求出抛物线l顶点P到达最高位置时的坐标.7、(2013•舟山)如图,在平面直角坐标系xOy 中,抛物线的顶点为A ,与y轴的交点为B ,连结AB ,AC ⊥AB ,交y 轴于点C ,延长CA 到点D ,使AD=AC ,连结BD .作AE ∥x 轴,DE ∥y 轴.(1)当m=2时,求点B 的坐标; (2)求DE 的长?(3)①设点D 的坐标为(x ,y ),求y 关于x 的函数关系式?②过点D 作AB 的平行线,与第(3)①题确定的函数图象的另一个交点为P ,当m 为何值时,以,A ,B ,D ,P 为顶点的四边形是平行四边形?()221144y x m m m =--+。

九年级数学中考二轮复习:《二次函数综合》压轴题专题训练(含答案)

九年级数学中考二轮复习:《二次函数综合》压轴题专题训练(含答案)

《二次函数综合》压轴题专题训练1.定义:关于x轴对称且对称轴相同的两条抛物线叫作“同轴对称抛物线”.例如:y=(x﹣1)2﹣2的“同轴对称抛物线”为y=﹣(x﹣1)2+2.(1)满足什么条件的抛物线与其“同轴对称抛物线”的顶点重合:.(2)求抛物线y=﹣x2+x+1的“同轴对称抛物线”.(3)如图,在平面直角坐标系中,点B是抛物线L:y=ax2﹣4ax+1上一点,点B的横坐标为1,过点B作x轴的垂线,交抛物线L的“同轴对称抛物线”于点C,分别作点B、C关于抛物线对称轴对称的点B′、C′,连接BC、CC′、B′C′、BB′,设四边形BB′C′C的面积为S(S>0).①当四边形BB′C′C为正方形时,求a的值.②当抛物线L与其“同轴对称抛物线”围成的封闭区域内(不包括边界)共有11个横、纵坐标均为整数的点时,直接写出a的取值范围.2.已知抛物线C:y=ax2+bx+c向左平移1个单位长度,再向上平移4个单位长度得到抛1物线C:y=x2.2(1)直接写出抛物线C的解析式;1与x轴交于A,B两点,点A在点B的左侧,点P(,t)(2)如图1,已知抛物线C1在抛物线C上,QB⊥PB交抛物线于点Q.求点Q的坐标;1上,EM∥x轴,点E在点M的左侧,过点M的直线MD与抛(3)已知点E,M在抛物线C2物线C只有一个公共点(MD与y轴不平行),直线DE与抛物线交于另一点N.若线段2NE=DE,设点M,N的横坐标分别为m,n,直接写出m和n的数量关系(用含m的式子表示n)为.3.如图1,抛物线y=x2+bx+c过点A(4,﹣1),B(0,﹣),点C为直线AB下方抛物线上一动点,M为抛物线顶点,抛物线对称轴与直线AB交于点N.(1)求抛物线的表达式与顶点M的坐标;(2)在直线AB上是否存在点D,使得以C,D,M,N为顶点的四边形是平行四边形,若存在,请求出D点坐标;(3)在y轴上是否存在点Q,使∠AQM=45°?若存在,求点Q的坐标;若不存在,请说明理由.4.如图,已知抛物线y=ax2+bx+c与x轴的交点为A(﹣1,0),B(2,0)且与y轴交于点C,OA=OC.(1)求该抛物线的表达式;(2)点C关于x轴的对称点为C1,M是线段BC1上的一个动点(不与B、C1重合),ME⊥x轴,MF⊥y轴,垂足分别为E、F,当点M在什么位置时,矩形MFOE的面积最大?说明理由;(3)已知点P时直线y=x+1上的动点,点Q为抛物线上的动点,当以C、C1、P、Q 为顶点的四边形为平行四边形时,求出相应的点P和点Q的坐标.5.如图,抛物线y=﹣x2+bx+c与x轴相交于A,B两点(点A位于点B的左侧),与y轴相交于点C,M是抛物线的顶点,直线x=1是抛物线的对称轴,且点C的坐标为(0,3).(1)求抛物线的解析式;(2)已知P为线段MB上一个动点,过点P作PD⊥x轴于点D.若PD=m,△PCD的面积为S.①求S与m之间的函数关系式,并写出自变量m的取值范围;②当S取得最值时,求点P的坐标.(3)在(2)的条件下,在线段MB上是否存在点P,使△PCD为等腰三角形?如果存在,请求出点P的坐标;如果不存在,请说明理由.6.如图1,抛物线y=ax2+bx+c(a≠0)的顶点为C(1,4),交x轴于A、B两点,交y 轴于点D,其中点B的坐标为(3,0).(1)求抛物线的解析式;=3,请求出点P的坐标.(2)如图2,点P为直线BD上方抛物线上一点,若S△PBD(3)如图3,M为线段AB上的一点,过点M作MN∥BD,交线段AD于点N,连接MD,若△DNM∽△BMD,请求出点M的坐标.7.已知抛物线交x轴于A,B两点(A在B右边),A(3,0),B(1,0)交y轴于C点,C(0,3),连接AC;(1)求抛物线的解析式;(2)P为抛物线上的一点,作PE⊥CA于E点,且CE=3PE,求P点坐标;(3)将原抛物线向上平移1个单位抛物线的对称轴交x轴于H点,过H作直线MH,NH,当MH⊥NH时,求MN恒过的定点坐标.:y=(x﹣1)2+k(k>0)经过y轴上的点A,顶点为B.抛物线8.如图,已知抛物线l1l:y=(x﹣h)2+2﹣h(h≥2)的顶点为D,直线y=﹣x+b经过A,B,D三点,两抛物2线交于点C.(1)求b的值和点B的坐标;(2)设点C的横坐标为m,探究m与h之间的数量关系;(3)当△ABC是直角三角形时,求h的值.9.综合与探究.如图1,抛物线y=x2﹣x﹣2与x轴交于A,B两点,与y轴交于点C,经过点B的直线交y轴于点E(0,2).(1)求A,B,C三点的坐标及直线BE的解析式.(2)如图2,过点A作BE的平行线交抛物线于点D,点P是抛物线上位于线段AD下方的一个动点,连接PA,PD,求OAPD面积的最大值.(3)若(2)中的点P为抛物线上一动点,在x轴上是否存在点Q,使得以A,D,P,Q 为顶点的四边形是平行四边形?若存在,请直接写出点Q的坐标;若不存在,请说明理由.10.如图,抛物线y=ax2+bx+c与x轴交于A(1,0)、B(3,0)两点,与y轴交于点C(0,3),抛物线的对称轴与直线BC交于点D.(1)求抛物线的表达式;(2)在抛物线的对称轴上找一点M,使|BM﹣CM|的值最大,求出点M的坐标;(3)点E为直线BC上一动点,过点E作y轴的平行线EF,与抛物线交于点F问是否存在点E,使得以D、E、F为顶点的三角形与△BCO相似?若存在,直接写出点E的坐标.11.如图1,抛物线y=ax2+2ax+c(a≠0)与x轴交于点A,B(1,0)两点,与y轴交于点C,且OA=OC.(1)求抛物线的解析式;(2)点D是抛物线顶点,求△ACD的面积;(3)如图2,射线AE交抛物线于点E,交y轴的负半轴于点F(点F在线段AE上),点P是直线AE下方抛物线上的一点,S=,求△APE面积的最大值和此动点P的坐标.△ABE12.图①,抛物线y=﹣2x2+bx+c过A(﹣1,0)、B(3,0)两点,交y轴于点C,连接BC.(1)求该抛物线的表达式和对称轴;(2)点D是抛物线对称轴上一动点,当△BCD是以BC为直角边的直角三角形时,求所有符合条件的点D的坐标;(3)如图2,将抛物线在BC上方的图象沿BC折叠后与y轴交与点E,求点E的坐标.13.已知,抛物线y=ax2,其中a>0.(1)如图1,若点A、B是此抛物线上两点,且分属于y轴两侧,连接AB与y轴相交于点C,且∠AOB=90°.求证:CO=;(2)如图2,若点A是此抛物线上一点,过点A的直线恰好与此抛物线仅有一个交点,且与y轴交于点B,与x轴相交于点C.求证:AC=BC.14.如图,抛物线y=ax2﹣x+c与x轴交于A,B两点,与y轴交于C点,连结AC,已知B(1﹣,0),且抛物线经过点D(2,﹣2).(1)求抛物线的解析式;(2)若点E是抛物线上位于x轴下方的一点,且S△ACE =S△ABC,求E的坐标;(3)若点P是y轴上一点,以P、A、C三点为顶点的三角形是等腰三角形,求P点的坐标.15.如图,在平面直角坐标系中,直线y=﹣x+4分别与x轴、y轴相交于点B、C,经过点B、C的抛物线y=﹣+bx+c与x轴的另一个交点为A.(1)求出抛物线表达式,并求出点A坐标.(2)已知点D在抛物线上,且横坐标为3,求出△BCD的面积;(3)点P是直线BC上方的抛物线上一动点,过点P作PQ垂直于x轴,垂足为Q.是否存在点P,使得以点A、P、Q为顶点的三角形与△BOC相似?若存在,请求出点P的坐标;若不存在,请说明理由.参考答案1.解:(1)∵“同轴对称抛物线”的顶点重合,∴顶点关于x轴对称且重合,∴顶点在x轴上,故答案为:顶点在x轴上;(2)∵y=﹣x2+x+1=﹣(x﹣1)2+,∴“同轴对称抛物线”的顶点坐标为(1,﹣),∴y=(x﹣1)2﹣;(3)①由题可知,B(1,1﹣3a),∴C(1,3a﹣1),∵抛物线y=ax2﹣4ax+1的对称轴为x=2,∴B'(3,1﹣3a),C'(3,3a﹣1),∴BB'=CC'=2,∴BC=2﹣6a或BC=6a﹣2,∴2﹣6a=2或6a﹣2=2,∴a=0(舍去)或a=;②函数的对称轴为x=2,函数L的顶点坐标为(2,1﹣4a),∵L与“同轴对称抛物线”是关于x轴对称的,所以整数点也是对称的出现,∵抛物线L与其“同轴对称抛物线”围成的封闭区域内,在x轴上的整数点可以是3个或5个,∴L与x轴围城的区域的整数点为4个或3个;当a>0时,当x=1时,﹣2≤1﹣3a<﹣1,∴<a≤1,当x=2时,1﹣4a<﹣2,∴a>,∴<a≤1;当a<0时,当x=2时,1﹣4a≤2,∴a≥﹣,当x=﹣1时,5a+1<0,∴a<﹣,∴﹣≤a<﹣;综上所述:<a≤1或﹣≤a<﹣.2.解:(1)由已知可知,抛物线C:y=x2向右平移1个单位长度,再向下平移4个单位2:y=ax2+bx+c,长度得到抛物线C1:y=(x﹣1)2﹣4,∴抛物线C1故答案为y=(x﹣1)2﹣4;(2)∵y=(x﹣1)2﹣4,令y=0,(x﹣1)2﹣4=0,解得x=3或x=﹣1,∴A(﹣1,0),B(3,0),上,∵点P(,t)在抛物线C1∴t=(﹣1)2﹣4,解得t=﹣,∴P(,﹣),设Q(t,t2﹣2t﹣3),过点P作PM⊥x轴交于点M,过点Q作QN⊥x轴交于点N,∵BQ⊥BP,∴∠QBN+∠MBP=∠QBN+∠MQN=90°,∴∠BQN=∠PBM,∴△BNQ∽△QMP,∴=,∴=,∴t=﹣或t=3,∵Q点在第二象限,∴t=﹣,∴Q(﹣,);(3)∵点M与N在y=x2上,∴M(m,m2),N(n,n2)∵EM∥x轴,∴E(﹣m,m2),设MD的解析式为y=kx+b,∴m2=km+b,∴b=m2﹣km,∴y=kx+m2﹣km,∵直线MD与抛物线y=x2只有一个交点,∴kx+m2﹣km=x2,∴△=k2﹣4(m2+km)=0,∴k=2m,∴直线MD的解析式为y=2mx﹣m2,∵NE=DE,∴D(﹣2m﹣n,2m2﹣n2),∴2m2﹣n2=2m(﹣2m﹣n)﹣m2,整理得,n2﹣2mn﹣7m2=0,∴n=(1±2)m,故答案为n=(1±2)m.3.解:(1)将点A(4,﹣1),B(0,﹣)代入抛物线y=x2+bx+c,得,解得,∴y=x2﹣x﹣,∴M点的坐标为(1,﹣4);(2)设直线AB的表达式为y=mx+n,∴,解得,∴y=x﹣;当x=1时,y=﹣3,∴N(1,﹣3),∴MN=1;①若MN为平行四边形的一边时,则有CD∥MN,且CD=MN,设C(t,t2﹣t﹣),则D(t,t﹣),∴CD=t﹣﹣(t2﹣t﹣)=1,∴t=3或t=1(舍去),∴D(3,﹣);②若MN为平行四边形的对角线,设D(t,t﹣),则C(2﹣t,﹣t﹣),将点C代入抛物线解析式得,(2﹣t)2﹣(2﹣t)﹣=﹣t﹣,∴t=﹣1或t=1(舍去),∴D(﹣1,﹣);综上所述:符合条件的D点坐标为(3,﹣)或(﹣1,﹣);(3)在对称轴上取点P(1,﹣1),∴PA=PM=3,∠APM=90°,以P为圆心,PA为半径作圆交y轴于点Q,∴∠AQM=∠APM=45°,作PE⊥y轴交于点E,∴PE=1,∵PQ=3,∴EQ==2,∴Q点坐标为(0,﹣1+2)或(0,﹣1﹣2).4.解:(1)∵点A (﹣1,0) ∴OA =1,∵OA =OC =1,且点C 在y 轴负半轴, ∴点C (0,﹣1)∵抛物线y =ax 2+bx +c 与x 轴的交点为A (﹣1,0),B (2,0)且与y 轴交于点C , ∴解得:∴抛物线的表达式为:y =x 2﹣x ﹣1; (2)∵点C 关于x 轴的对称点为C 1, ∴C 1(0,1),∵点B (2,0),点C 1(0,1), ∴直线BC 1的解析式为:y =﹣x +1, ∴设点M 坐标为(m ,﹣m +1) ∴MF =m ,ME =﹣m +1,∴矩形MFOE 的面积=MF ×ME =m ×(﹣m +1)=﹣m 2+m =﹣(m ﹣1)2+, ∴当m =1时,矩形MFOE 的最大面积为,此时点M 的坐标为(1,),即点M 为线段C 1B 中点时,S 矩形MFOE 最大;(3)由题意,C (0,﹣1),C 1(0,1),以C 、C 1、P 、Q 为顶点的四边形为平行四边形,分以下两种情况:①C 1C 为边,则C 1C ∥PQ ,C 1C =PQ , 设P (m ,m +1),Q (m ,m 2﹣m ﹣1), ∴|(m 2﹣m ﹣1)﹣(m +1)|=2, 解得:m 1=4,m 2=﹣2,m 3=2,m 4=0(舍),P 1(4,3),Q 1(4,5);P 2(﹣2,0),Q 2(﹣2,2);P 3(2,2),Q 3(2,0)②C 1C 为对角线,∵C 1C 与PQ 互相平分,C 1C 的中点为(0,0), ∴PQ 的中点为(0,0),设P (m ,m 2﹣m +1),则Q (﹣m ,m 2+m ﹣1) ∴(m +1)+(m 2+m ﹣1)=0, 解得:m 1=0(舍去),m 2=﹣2, ∴P 4(﹣2,0),Q 4(2,0);综上所述,点P 和点Q 的坐标为:P 1(4,3),Q 1(4,5)或P 2(﹣2,0),Q 2(﹣2,2)或P 3(2,2),Q 3(2,0)或P 4(﹣2,0),Q 4(2,0).5.解:(1)∵直线x =1是抛物线的对称轴,且点C 的坐标为(0,3), ∴c =3,﹣=1,∴b =2,∴抛物线的解析式为:y =﹣x 2+2x +3; (2)①∵y =﹣x 2+2x +3=﹣(x ﹣1)2+4, ∴点M (1,4),∵抛物线的解析式为:y =﹣x 2+2x +3与x 轴相交于A ,B 两点(点A 位于点B 的左侧), ∴0=﹣x 2+2x +3 ∴x 1=3,x 2=﹣1,∴点A (﹣1,0),点B (3,0), ∵点M (1,4),点B (3,0) ∴直线BM 解析式为y =﹣2x +6,∵点P 在直线BM 上,且PD ⊥x 轴于点D ,PD =m , ∴点P (3﹣,m ),∴S △PCD =×PD ×OD =m ×(3﹣)=﹣m 2+m , ∵点P 在线段BM 上,且点M (1,4),点B (3,0), ∴0<m ≤4∴S与m之间的函数关系式为S=﹣m2+m(0<m≤4)②∵S=﹣m2+m=﹣(m﹣3)2+,∴当m=3时,S有最大值为,∴点P(,3)∵0<m≤4时,S没有最小值,综上所述:当m=3时,S有最大值为,此时点P(,3);(3)存在,若PC=PD=m时,∵PD=m,点P(3﹣,m),点C(0,3),∴(3﹣﹣0)2+(m﹣3)2=m2,∴m1=18+6(舍去),m2=18﹣6,∴点P(﹣6+3,18﹣6);若DC=PD=m时,∴(3﹣﹣0)2+(﹣3)2=m2,∴m3=﹣2﹣2(舍去),m4=﹣2+2,∴点P(4﹣,﹣2+2);若DC=PC时,∴(3﹣﹣0)2+(m﹣3)2=(3﹣﹣0)2+(﹣3)2,∴m5=0(舍去),m6=6(舍去)综上所述:当点P的坐标为:(﹣6+3,18﹣6)或(4﹣,﹣2+2)时,使△PCD为等腰三角形.6.解:(1)设抛物线的解析式为y=a(x﹣1)2+4,将点B(3,0)代入得,(3﹣1)2×a+4=0.解得:a=﹣1.∴抛物线的解析式为:y=﹣(x﹣1)2+4=﹣x2+2x+3.(2)过点P作PQ∥y轴交DB于点Q,∵抛物线的解析式为y=﹣x2+2x+3∴D(0,3).设直线BD的解析式为y=kx+b,∴,解得:,∴直线BD的解析式为y=﹣x+3.设P(m,﹣m2+2m+3),则Q(m,﹣m+3),∴PQ=﹣m2+2m+3﹣(﹣m+3)=﹣m2+3m.∵S△PBD =S△PQD+S△PQB,∴S△PBD=(3﹣m)=PQ=﹣m,∵S△PBD=3,∴﹣m=3.解得:m1=1,m2=2.∴点P的坐标为(1,4)或(2,3).(3)∵B(3,0),D(0,3),∴BD==3,设M(a,0),∵MN∥BD,∴△AMN∽△AMD,∴,即.∴MN=(1+a),DM==,∵△DNM∽△BMD,∴,∴DM2=BD•MN.∴9+a2=3(1+a).解得:a=或a=3(舍去).∴点M的坐标为(,0).7.解:(1)∵抛物线过A(3,0),B(1,0),∴可设抛物线的解析式为y=a(x﹣3)(x﹣1)(a≠0),把c(0,3)代入,得3a=3,∴a=1,∴抛物线的解析式是y=(x﹣3)(x﹣1)=x2﹣4x+3,即y=x2﹣4x+3;(2)过点P作PD⊥x轴于点D,过E作EF⊥y轴于F,延长FE与PD交于点G,如图1,∵A(3,0),C(0,3),∴OA=OC=3,∴∠OAC=45°,∵FG∥OA,∴∠CEF=45°,∴CF=EF=CE,∵PE⊥CA,∴∠PEG=45°,∴PG=EG=PE,∵CE=3PE,∴EF=3FG,设EF=3m,则PG=EG=m,FG=4m,∴DG=OF=OC﹣CF=3﹣3m,PD=PG+DG=3﹣2m,∴P(4m,3﹣2m),把P(4m,3﹣2m)代入y=x2﹣4x+3中得,3﹣2m=16m2﹣16m+3,∴m=,或m=0(舍去),∴P(,);(3)∵y=x2﹣4x+3=(x﹣2)2﹣1,∴抛物线y=x2﹣4x+3的顶点为(2,﹣1),∵将原抛物线向上平移1个单位抛物线的对称轴交x轴于H点,∴H(2,0),由题意知,点H是新抛物线的顶点,∴新抛物线的解析式为y=(x﹣2)2,设M(m,(m﹣2)2),N(n,(n﹣2)2),过M作MK⊥x轴于点K,过点N作NL⊥x轴于点L,则MK=(m﹣2)2,KH=2﹣m,HL=n﹣2,NL=(n﹣2)2,∵MH⊥NH,∴∠MHK+∠HMK=∠MHK+∠NHL=90°,∴∠HMK=∠NHL,∵∠MKH=∠HLN=90°,∴△KHM∽△LNH,∴,,∴,∴,设直线MN的解析式为:y=kx+b(k≠0),则,∴,∴直线MN的解析式为:,当x=2时,y=﹣(m2﹣4m+3)=m2﹣4m+4﹣m2+4m﹣3=1,∴MN恒过的定点(2,1).8.解:(1)∵y=(x﹣1)2+k(k>0)经过y轴上的点A,顶点为B,∴A(0,1+k),B(1,k),∵y=(x﹣h)2+2﹣h(h≥2)的顶点为D,∴D(h,2﹣h),∵直线y=﹣x+b经过A,D,∴,∴,∴b的值为2,点B的坐标为(1,1);:y=(x﹣1)2+1,(2)由(1)知,抛物线l1∵点C的横坐标为m,两抛物线交于点C.∴(m﹣1)2+1=(m﹣h)2﹣h+2,整理得2mh﹣2m=h2﹣h∵h≥2∴m==;(3)当AC⊥AB时,则直线AC解析式为:y=x+2,∴∴(舍去),,∴点C坐标为(3,5),∴3=∴h=6;当BC⊥AB时,则直线BC解析式为:y=x,∴∴(舍去),∴点C坐标为(2,2),∴2=∴h=4;9.解:(1)令y=0,则x2﹣x﹣2=0,解得x=4或x=﹣1,∴A(﹣1,0),B(4,0),令x=0,则y=﹣2,∴C(0,﹣2),设直线BE的解析式为y=kx+b,将B(4,0)、E(0,2)代入得,,解得:,∴y=﹣x+2;(2)由题意可设AD的解析式为y=﹣x+m,将A(﹣1,0)代入,得到m=﹣,∴y=﹣x﹣,联立,解得:,,∴D(3,﹣2),过点P作PF⊥x轴于点F,交AD于点N,过点D作DG⊥x轴于点G.∴S△APD =S△APN+S△DPN=PN•AF+PN•FG=PN(AF+FG)=PN•AG=×4PN=2PN,设P(a,﹣a2﹣a﹣2),则N(a,﹣a﹣),∴PN=﹣a2+a+,∴S△APD=﹣a2+2a+3=﹣(a﹣1)2+4,∵﹣1<0,﹣1<a<3,∴当a=1时,△APD的面积最大,最大值为4;(3)存在;①当PD与AQ为平行四边形的对边时,∵AQ∥PD,AQ在x轴上,∴P(0,﹣2),∴PD=3,∴AQ=3,∵A(﹣1,0),∴Q(2,0)或Q(﹣4,0);②当PD与AQ为平行四边形的对角线时,PD与AQ的中点在x轴上,∴P点的纵坐标为2,∴P(,2)或P(,2),∴PD的中点为(,0)或(,0),∵Q点与A点关于PD的中点对称,∴Q(,0)或Q(,0);综上所述:点Q的坐标为(2,0)或(﹣4,0)或(,0)或(,0).10.解:(1)∵抛物线y=ax2+bx+c经过点A(1,0)、B(3,0)、C(0,3),∴,解得,∴抛物线的表达式为y=x2﹣4x+3;(2)∵抛物线对称轴是线段AB的垂直平分线,∴AM=BM,由三角形的三边关系,|BM﹣CM|=|AM﹣CM|<AC,∴点A、C、M三点共线时,|BM﹣CM|最大,设直线AC的解析式为y=mx+n,则,解得,又∵抛物线对称轴为直线x =﹣=2,∴x =2时,y =﹣3×2+3=﹣3, 故,点M 的坐标为(2,﹣3); (3))∵OB =OC =3,OB ⊥OC , ∴△BOC 是等腰直角三角形,∵EF ∥y 轴,直线BC 的解析式为y =﹣x +3, ∴△DEF 只要是直角三角形即可与△BOC 相似, ∵D (2,1),A (1,0),B (3,0), ∴点D 垂直平分AB 且到点AB 的距离等于AB , ∴△ABD 是等腰直角三角形, ∴∠ADB =90°, 如图,①点F 是直角顶点时,点F 的纵坐标与点D 的纵坐标相同,是1, ∴x 2﹣4x +3=1, 整理得x 2﹣4x +2=0, 解得x =2±,当x =2﹣时,y =﹣(2﹣)+3=1+, 当x =2+时,y =﹣(2+)+3=1﹣, ∴点E 1(2﹣,1+)E 2(2+,1﹣),②点D 是直角顶点时,联立,解得,,当x =1时,y =﹣1+3=2, 当x =4时,y =﹣4+3=﹣1, ∴点E 3(1,2),E 4(4,﹣1), 综上所述,存在点E 1(2﹣,1+)或E 2(2+,1﹣)或E 3(1,2)或E 4(4,﹣1),使以D 、E 、F 为顶点的三角形与△BCO 相似.11.解:(1)∵抛物线y =ax 2+2ax +c (a ≠0)与x 轴交于点A ,B (1,0)两点,与y 轴交于点C ,且OA =OC ,∴a +2a +c =0,点C 的坐标为(0,c ), ∴点A 的坐标为(c ,0), ∴ac 2+2ac +c =0, ∴,解得,或,∵函数图象开口向上, ∴a >0, ∴a =1,c =﹣3,∴抛物线的解析式为y =x 2+2x ﹣3;(2)∵y =x 2+2x ﹣3=(x +1)2﹣4,抛物线与与y 轴交于点C ,顶点为D ,OA =OC ,抛物线y =ax 2+2ax +c (a ≠0)与x 轴交于点A ,B (1,0)两点,∴点D 的坐标为(﹣1,﹣4),点C 的坐标为(0,﹣3),点A 的坐标为(﹣3,0), 连接OD ,如右图1所示, 由图可知:S △ACD =S △OAD +S △OCD ﹣S △OAC==3;(3)∵A(﹣3,0),点B(1,0),∴AB=4,设点E的纵坐标为t,t<0,∵S△ABE=,∴=,得t=,把y=﹣代入y=x2+2x﹣3,得﹣=x2+2x﹣3,解得,x1=,x2=,∵点E在y轴的右侧,∴点E(,﹣),设直线AE的解析式为y=mx+n(m≠0),∴,得,∴直线AE的解析式为y=﹣x﹣1,过点P作y轴的平行线交AC于点G,如图2所示,设点P的横坐标为x,则P(x,x2+2x﹣3),点G(x,﹣x﹣1),∴PG=(﹣x﹣1)﹣(x2+2x﹣3)=﹣x2﹣x+2,又∵A(﹣3,0),E(,﹣),∴S△APE =S△APG+S△PEG=(﹣x2﹣x+2)(x+3)+(﹣x2﹣x+2)(﹣x)=(﹣x2﹣x+2)(3+)=(x+)2+,∴当x=﹣时,S取得最大值,最大值是,△APE把x=﹣代入y=x2+2x﹣3,得y=(﹣)2+2×(﹣)﹣3=﹣,∴此时点P的坐标为(﹣,﹣).12.解:(1)∵抛物线y=﹣2x2+bx+c过A(﹣1,0)、B(3,0)两点,∴,得,∴y=﹣2x2+4x+6=﹣2(x﹣1)2+8,∴抛物线的对称轴是直线x=1,即该抛物线的解析式为y=﹣2x2+4x+6,对称轴是直线x=1;(2)分两种情况:设点D的坐标为(1,y)第一种情况是:∠BCD=90°时,则CD2+BC2=BD2,∵点B的坐标为(3,0),抛物线y=﹣2x2+4x+6交y轴于点C,∴点C的坐标为(0,6),∴[12+(y﹣6)2]+(32+62)=(3﹣1)2+y2,解得,y=6.5,∴点D的坐标为(1,6.5);第二种情况:当∠DBC=90°时,BD2+BC2=CD2,即[(3﹣1)2+y2]+(32+62)=12+(6﹣y)2,解得,y=﹣1,∴点D的坐标为(1,﹣1),综上所述,符合条件的点D的坐标为(1,6.5),(1,﹣1);(3)因为点C的坐标为(0,6),点B的坐标为(3,0),设直线BC的解析式为y=kx+6,则3k+6=0,得k=﹣2,即直线BC的解析式为y=﹣2x+6,如右图所示,作点E关于直线BC的对称点E′交BC于点F,过点F作FN⊥y轴于点N,设E(0,m),E′(x,y),则EE′⊥BC,∴∠CFE=∠COB=90°,∴BC==3,∵∠ECF=∠BCO,∴△ECF∽△BCO,∴,即,解得,CF=,又∵∠CNF=∠COB,∠NCF=∠OCB,∴△NCF∽△OCB,∴,即,解得,FN=,∴点F的横坐标为,把x=代入直线BC的解析式,得y=,∴点F的坐标为(,),∵EE′关于直线BC对称,∴点F为EE′的中点,∴,解得,∴E′(,),∵点E′在抛物线y=﹣2x2+4x+6上,∴=﹣2×[]2+4×+6,解得,m1=6,m2=,∴点E的坐标为(0,6)或(0,).13.证明:(1)设A(b,ab2),B(c,ac2),∵∠AOB=90°,∴AB2=AO2+BO2,∴(b﹣c)2+(ab2﹣ac2)2=b2+a2b4+c2+a2c4,﹣2bc﹣2a2b2c2=0,1+a2bc=0,∴bc=﹣,设直线AB的解析式为:y=mx+n,则,解得,∴直线AB的解析式为:y=a(b+c)x﹣abc,当x=0时,y=OC=﹣abc=﹣a•(﹣)=;(2)如图2,过A作AD⊥y轴于D,设直线AB的解析式为:y=kx+b,当y=0时,kx+b=0,∴x=﹣,∴OC=﹣,∵过点A的直线AB恰好与此抛物线仅有一个交点,∴ax2=kx+b,∴ax2﹣kx﹣b=0,△=k2+4ab=0,∴b =﹣,OC =﹣=,∴x =,∵a >0,k >0,∴AD =,∵AD ∥OC ,∴==,∴AB =2BC ,∴AC =BC .14.解:(1)把B (﹣1,0),D (2,﹣2)代入y =ax 2﹣x +c 得, 解得:.故抛物线的解析式为y =x 2﹣x ﹣2;(2)当y =0时,x 2﹣x ﹣2=0,解得x 1=﹣1,x 2=3,∴A (3,0),∴AB =4,当x =0时,y =﹣2,∴C (0,﹣2),∴OC =2,∴S △ABC =×4×2=4,设AC 的解析式为y =kx +b ,把A (3,0),C (0,﹣2)代入y =kx +b 得, 解得.∴y =x ﹣2,如图1,过点E 作x 轴的垂线交直线AC 于点F ,设点F (a ,a ﹣2),点E (a ,a 2﹣a ﹣2),其中﹣1<a <3,∴S △ACE =EF |x A ﹣x C |=|a 2﹣a |=,∵S △ACE =S △ABC ,∴a 2﹣3a =2或﹣a 2+3a =2,解得a 1=(舍去),a 2=,a 3=1,a 4=2, ∴E 1(,),E 2(1,﹣),E 3(2,﹣2);(3)在y =ax 2+bx ﹣2中,当x =0时,y =﹣2,∴C (0,﹣2),∴OC =2,如图2,设P (0,m ),则PC =m +2,OA =3,AC ==,①当PA =CA 时,则OP 1=OC =2,∴P 1(0,2);②当PC =CA =时,即m +2=,∴m =﹣2, ∴P 2(0,﹣2); ③当PC =PA 时,点P 在AC 的垂直平分线上,则△AOC ∽△P 3EC ,∴=,∴P 3C =,∴m =, ∴P 3(0,),④当PC =CA =时,m =﹣2﹣,∴P 4(0,﹣2﹣).综上所述,P点的坐标(0,2)或(0,﹣2)或(0,)或(0,﹣2﹣).15.解:(1)由已知可求B(6,0),C(0,4),将点B(6,0),C(0,4)代入y=﹣+bx+c,则有,解得,∴y=﹣x2+x+4,令y=0,则﹣x2+x+4=0,解得x=﹣1或x=6,∴A(﹣1,0);(2)∵点D在抛物线上,且横坐标为3,∴D(3,8),过点D作y轴的垂线交于点E,过点B作BF⊥DE交ED的延长线于点F;∴E(0,8),F(6,8),∴S△BCD =S梯形ECBF﹣S△CDE﹣S△BFD=(EC+BF)×OB﹣×EC×ED﹣×DF×BF=×(4+8)×6﹣×4×3﹣×3×8=36﹣6﹣12=18;(3)设P(m,﹣m2+m+4),∵PQ垂直于x轴,∴Q(m,0),且∠PQO=90°,∵∠COB=90°,∴点A、P、Q为顶点的三角形与△BOC相似有两种情况:①△PAQ∽△CBO时,==,∴=,解得m=5或m=﹣1,∵点P是直线BC上方的抛物线上,∴0≤m≤6,∴m=5,∴P(5,4);②△PAQ∽△BCO时,==,∴=,解得m=﹣1或m=,∵点P是直线BC上方的抛物线上,∴0≤m≤6,∴m=,∴P(,);综上所述:P(5,4)或P(,)时,点A、P、Q为顶点的三角形与△BOC相似.。

中考数学第26题专项训练

中考数学第26题专项训练

1.如图,以O为原点的直角坐标系中,A点的坐标为(0,1),直线x=1交x轴于点B。

P 为线段AB上一动点,作直线PC⊥PO,交直线x=1于点C。

过P点作直线MN平行于x轴,交y轴于点M,交直线x=1于点N。

(1)当点C在第一象限时,求证:△OPM≌△PCN;(2)当点C在第一象限时,设AP长为m,四边形POBC的面积为S,请求出S与m间的函数关系式,并写出自变量m的取值范围;(3)当点P在线段AB上移动时,点C也随之在直线x=1上移动,△PBC是否可能成为等腰三角形?如果可能,求出所有能使△PBC成为等腰直角三角形的点P的坐标;如果不可能,请说明理由。

第1题图2.关于x的二次函数y=-x2+(k2-4)x+2k-2以y轴为对称轴,且与y轴的交点在x轴上方.(1)求此抛物线的解析式,并在直角坐标系中画出函数的草图;(2)设A是y轴右侧抛物线上的一个动点,过点A作AB垂直x轴于点B,再过点A作x 轴的平行线交抛物线于点D,过D点作DC垂直x轴于点C, 得到矩形ABCD.设矩形ABCD的周长为l,点A的横坐标为x,试求l关于x的函数关系式;(3)当点A在y轴右侧的抛物线上运动时,矩形ABCD能否成为正方形.若能,请求出此时正方形的周长;若不能,请说明理由.3.如图所示, 在平面直角坐标系xoy中, 矩形OABC的边长OA、OC分别为12cm、6cm, 点A、C分别在y轴的负半轴和x轴的正半轴上, 抛物线y=ax2+bx+c经过点A、B, 且18a + c = 0.(1)求抛物线的解析式.(2)如果点P由点A开始沿AB边以1cm/s的速度向终点B移动, 同时点Q由点B开始沿BC边以2cm/s的速度向终点C移动.①移动开始后第t秒时, 设△PBQ的面积为S, 试写出S与t之间的函数关系式, 并写出t的取值范围.②当S取得最大值时, 在抛物线上是否存在点R, 使得以P、B、Q、R为顶点的四边形是平行四边形? 如果存在, 求出R点的坐标, 如果不存在, 请说明理由.第3题图4.已知二次函数y=x2+bx+c与x轴交于A(-1,0)、B(1,0)两点.(1)求这个二次函数的关系式;(2)若有一半径为r的⊙P,且圆心P在抛物线上运动,当⊙P与两坐标轴都相切时,求半径r的值.(3)半径为1的⊙P在抛物线上,当点P的纵坐标在什么范围内取值时,⊙P与y轴相离、相交?5.如图示已知点M 的坐标为(4,0),以M 为圆心,以2为半径的圆交x 轴于A 、B ,抛物线c bx x y ++=261过A 、B 两点且与y 轴交于点C . (1)求点C 的坐标并画出抛物线的大致图象 (2)已知点Q (8,m ),P 为抛物线对称轴上一动点, 求出P 点坐标使得PQ +PB 值最小,并求出最小值. (3)过C 点作⊙M 的切线CE ,求直线OE 的解析式.6.如图,在ABC ∆中,∠A 90=°,10=BC , ABC ∆的面积为25,点D 为AB 边上的任意一点(D 不与A 、B 重合),过点D 作DE ∥BC ,交AC 于点E .设x DE =以DE 为折线将△ADE 翻折,所得的DE A'∆与梯形DBCE 重叠部分的面积记为y. (1).用x 表示∆ADE 的面积;(2).求出0﹤x ≤5时y 与x 的函数关系式; (3).求出5﹤x ﹤10时y 与x 的函数关系式; (4).当x 取何值时,y 的值最大?最大值是多少?第5题图CBA7.如图,直线334y x=+和x轴y轴分别交与点B、A,点C是OA的中点,过点C向左方作射线CM⊥y轴,点D是线段OB上一动点,不和B重合,DP⊥CM于点P,DE⊥AB于点E,连接PE。

2021中考数学专题复习:二次函数综合专项训练题1(培优 附答案详解)

2021中考数学专题复习:二次函数综合专项训练题1(培优   附答案详解)
4.如图,已知抛物线y=ax2+bx+6经过两点A(﹣1,0),B(3,0),C是抛物线与y轴的交点.
(1)求抛物线的解析式;
(2)点P(m,n)在平面直角坐标系第一象限内的抛物线上运动,设△PBC的面积为S,求S关于m的函数表达式(指出自变量m的取值范围)和S的最大值;
(3)点M在抛物线上运动,点N在y轴上运动,是否存在点M、点N使得∠CMN=90°,且△CMN与△OBC相似,如果存在,请求出点M和点N的坐标.(1)求这个抛物 Nhomakorabea的表达式;
(2)已知点D在抛物线上,且横坐标为2,求出△BCD的面积;
(3)点P是直线BC上方的抛物线上一动点,过点P作PQ垂直于x轴,垂足为Q.是否存在点P,使得以点A、P、Q为顶点的三角形与△BOC相似?若存在,请求出点P的坐标;若不存在,请说明理由.
12.如图,抛物线 与 轴交于点 、 ,与 轴交于点 , , 、 两点间的距离为 ,抛物线的对称轴为 .
6.如图,在平面直角坐标系xOy中,直线y=mx+k,与x轴,y轴分别交于点A,B,经过点A的抛物线y=ax2+bx﹣3a与x轴另一个交点为点D,AD=4,将点B向右平移5个单位长度,得到点C.
(1)求点C的坐标(用k表示);
(2)求抛物线的对称轴;
(3)若抛物线的对称轴在y轴右侧,连接BD,BD比BO长1,抛物线与线段BC恰有一个公共点,求直线y=mx+k的解析式和a的取值范围.
(1)求抛物线的解析式;
(2)如图1,对称轴上是否存在点 ,使 ,若存在,求出点 的坐标;若不存在,请说明理由.
(3)如图2,抛物线的顶点为 ,对称轴交 轴于点 ,点 为抛物线上一点,点 不与点 重合.当 时,过点 分别作 轴的垂线和平行线,与 轴交于点 、与对称轴交于点 ,得到矩形 ,求矩形 周长的最大值;

中考数学专题:二次函数综合题带答案

中考数学专题:二次函数综合题带答案

二次函数综合题类型一线段、周长、面积问题1.如图,直线y=-x+分别与x轴、y轴交于B、C两点,点A在x轴上,∠ACB=90°,抛物线y=ax2+bx+经过A,B两点.(1)求A、B两点的坐标;(2)求抛物线的解析式;(3)点M是直线BC上方抛物线上的一点,过点M作MH⊥BC于点H,作MD∥y轴交BC于点D,求△DMH周长的最大值.2.如图1,在平面直角坐标系中,直线y=﹣5x+5与x轴,y轴分别交于A,C两点,抛物线y=x2+bx+c经过A,C两点,与x轴的另一交点为B.(1)求抛物线解析式及B点坐标;(2)若点M为x轴下方抛物线上一动点,连接MA、MB、BC,当点M运动到某一位置时四边形AMBC面积最大,求此时点M的坐标及四边形AMBC的面积;(3)如图2,若P点是半径为2的⊙B上一动点,连接PC、PA,当点P运动到某一位置时,PC+PA的值最小,请求出这个最小值,并说明理由.3.已知抛物线y=ax2+bx-4经过点A(2,0)、B(-4,0),与y轴交于点C.(1)求这条抛物线的解析式;(2)如图1,点P是第三象限内抛物线上的一个动点,当四边形ABPC的面积最大时,求点P的坐标;(3)如图2,线段AC的垂直平分线交x轴于点E,垂足为D,M为抛物线的顶点,在直线DE上是否存在一点G,使△CMG的周长最小?若存在,求出点G的坐标;若不存在,请说明理由.4.如图,抛物线y=ax2-3ax-4a的图象经过点C(0,2),交x轴于点A、B(点A在点B左侧),连接BC,直线y=kx+1(k>0)与y轴交于点D,与BC上方的抛物线交于点E,与BC交于点F.(1)求抛物线的解析式及点A、B的坐标;(2)是否存在最大值?若存在,请求出其最大值及此时点E的坐标;若不存在,请说明理由.类型二存在性问题5.如图,抛物线与x轴交于A,B两点,与y轴交于点C(0,-2),点A的坐标是(2,0),P为抛物线上的一个动点,过点P作PD⊥x轴于点D,交直线BC于点E,抛物线的对称轴是直线x=-1.(1)求抛物线的函数表达式;(2)若点P在第二象限内,且PE=OD,求△PBE的面积.(3)在(2)的条件下,若M为直线BC上一点,在x轴的上方,是否存在点M,使△BDM是以BD为腰的等腰三角形?若存在,求出点M的坐标;若不存在,请说明理由.6.如图,在平面直角坐标系中,∠ACB=90°,OC=2OB,tan∠ABC=2,点B的坐标为(1,0).抛物线y=-x2+bx+c经过A、B两点.(1)求抛物线的解析式;(2)点P是直线AB上方抛物线上的一点,过点P作PD垂直x轴于点D,交线段AB于点E,使PE=DE.①求点P的坐标;②在直线PD上是否存在点M,使△ABM为直角三角形?若存在,求出符合条件的所有点M的坐标;若不存在,请说明理由.7.在平面直角坐标系中,平行四边形ABOC如图放置,点A、C的坐标分别是(0,4)、(﹣1,0),将此平行四边形绕点O顺时针旋转90°,得到平行四边形A′B′OC′.(1)若抛物线经过点C、A、A′,求此抛物线的解析式;(2)在(1)的情况下,点M是第一象限内抛物线上的一动点,问:当点M在何处时,△AMA′的面积最大?最大面积是多少?并求出此时M的坐标;(3)在(1)的情况下,若P为抛物线上一动点,N为x轴上的一动点,点Q坐标为(1,0),当P、N、B、Q构成平行四边形时,求点P的坐标,当这个平行四边形为矩形时,求点N的坐标.7.如图,二次函数y═ax2+bx+4的图象与x轴交于点A(-1,0),B(4,0),与y轴交于点C,抛物线的顶点为D,其对称轴与线段BC交于点E,垂直于x轴的动直线l分别交抛物线和线段BC于点P和点F,动直线l在抛物线的对称轴的右侧(不含对称轴)沿x轴正方向移动到B点.(1)求出二次函数y=ax2+bx+4和BC所在直线的表达式;(2)在动直线l移动的过程中,试求使四边形DEFP为平行四边形的点P的坐标;(3)连接CP,CD,在动直线l移动的过程中,抛物线上是否存在点P,使得以点P,C,F为顶点的三角形与△DCE相似?如果存在,求出点P的坐标;如果不存在,请说明理由.类型三角相等问题8.如图,已知点A(-1,0),B(3,0),C(0,1)在抛物线y=ax2+bx+c上.(1)求抛物线解析式;(2)在直线BC上方的抛物线上求一点P,使△PBC面积为1;(3)在x轴下方且在抛物线对称轴上,是否存在一点Q,使∠BQC=∠BAC?若存在,求出Q点坐标;若不存在,说明理由.9.如图,抛物线y=ax2+bx+c经过A(-1,0),B(4,0),C(0,3)三点,D为直线BC上方抛物线上一动点,DE⊥BC于E.(1)求抛物线的函数表达式;(2)如图1,求线段DE长度的最大值;(3)如图2,设AB的中点为F,连接CD,CF,是否存在点D,使得△CDE中有一个角与∠CFO相等?若存在,求点D的横坐标;若不存在,请说明理由.答案和解析1.【答案】解:(1)∵直线y=-x+分别与x轴、y轴交于B、C两点,∴B(3,0),C(0,),∴OB=3,OC=,∴tan∠BCO==,∴∠BCO=60°,∵∠ACB=90°,∴∠ACO=30°,∴=tan30°=,即=,解得AO=1,∴A(-1,0);(2)∵抛物线y=ax2+bx+经过A,B两点,∴,解得,∴抛物线解析式为y=-x2+x+;(3)∵MD∥y轴,MH⊥BC,∴∠MDH=∠BCO=60°,则∠DMH=30°,∴DH=DM,MH=DM,∴△DMH的周长=DM+DH+MH=DM+DM+DM=DM,∴当DM有最大值时,其周长有最大值,∵点M是直线BC上方抛物线上的一点,∴可设M(t,-t2+t+),则D(t,-t+),∴DM=-t2+t+-(-t+)=-t2+t=-(t-)2+,∴当t=时,DM有最大值,最大值为,此时DM=×=,即△DMH周长的最大值为.【解析】(1)由直线解析式可求得B、C坐标,在Rt△BOC中由三角函数定义可求得∠OCB=60°,则在Rt△AOC中可得∠ACO=30°,利用三角函数的定义可求得OA,则可求得A点坐标;(2)由A、B两点坐标,利用待定系数法可求得抛物线解析式;(3)由平行线的性质可知∠MDH=∠BCO=60°,在Rt△DMH中利用三角函数的定义可得到DH、MH与DM的关系,可设出M点的坐标,则可表示出DM的长,从而可表示出△DMH 的周长,利用二次函数的性质可求得其最大值.本题为二次函数的综合应用,涉及待定系数法、三角函数的定义、二次函数的性质、方程思想等知识.在(1)中注意函数图象与坐标的交点的求法,在(2)中注意待定系数法的应用,在(3)中找到DH、MH与DM的关系是解题的关键.本题考查知识点较多,综合性较强,难度适中.2.【答案】解:(1)直线y=-5x+5,x=0时,y=5∴C(0,5)y=-5x+5=0时,解得:x=1∴A(1,0)∵抛物线y=x2+bx+c经过A,C两点,∴解得:,∴抛物线解析式为y=x2-6x+5;当y=x2-6x+5=0时,解得:x1=1,x2=5∴B(5,0);(2)如图1,过点M作MH⊥x轴于点H,∵A(1,0),B(5,0),C(0,5)∴AB=5-1=4,OC=5∴S△ABC=AB•OC=×4×5=10∵点M为x轴下方抛物线上的点∴设M(m,m2-6m+5)(1<m<5)∴MH=|m2-6m+5|=-m2+6m-5∴S△ABM=AB•MH=×4(-m2+6m-5)=-2m2+12m-10=-2(m-3)2+8∴S四边形AMBC=S△ABC+S△ABM=10+[-2(m-3)2+8]=-2(m-3)2+18∴当m=3,即M(3,-4)时,四边形AMBC面积最大,最大面积等于18;(3)如图2,在x轴上取点D(4,0),连接PD、CD,∴BD=5-4=1∵AB=4,BP=2∴∵∠PBD=∠ABP∴△PBD∽△ABP∴∴PD=AP∴PC+PA=PC+PD∴当点C、P、D在同一直线上时,PC+PA=PC+PD=CD最小∵CD=∴PC+PA的最小值为.【解析】本题考查了二次函数的图象与性质,求二次函数最大值,解一次方程(组)和一元二次方程,相似三角形的判定和性质,两点之间线段最短.求线段与线段的几分之几的和的最小值,一般将“线段的几分之几”进行转换,变成能用“两点之间线段最短”的图形来求最小值.(1)由直线y=-5x+5求点A、C坐标,用待定系数法求抛物线解析式,进而求得点B坐标.(2)从x轴把四边形AMBC分成△ABC与△ABM;由点A、B、C坐标求△ABC面积;设点M横坐标为m,过点M作x轴的垂线段MH,则能用m表示MH的长,进而求△ABM的面积,得到△ABM面积与m的二次函数关系式,配方即求得m为何值时取得最大值,进而求点M坐标和四边形AMBC的面积最大值.(3)作点D坐标为(4,0),可得BD=1,进而有,再加上公共角∠PBD=∠ABP,根据两边对应成比例且夹角相等可证△PBD∽△ABP,得等于相似比,进而得PD=AP,所以当C、P、D在同一直线上时,PC+PA=PC+PD=CD最小.用两点间距离公式即求得CD的长.3.【答案】解:(1)∵抛物线y=ax+bx-4经过点A(2,0),B(-4,0),∴,解得,∴抛物线解析式为y=x2+x-4;(2)如图1,连接OP,设点P(x,),其中-4<x<0,四边形ABPC的面积为S,由题意得C(0,-4),∴S=S△AOC+S△OCP+S△OBP=+,=4-2x-x2-2x+8,=-x2-4x+12,=-(x+2)2+16.∵-1<0,开口向下,S有最大值,∴当x=-2时,四边形ABPC的面积最大,此时,y=-4,即P(-2,-4).因此当四边形ABPC的面积最大时,点P的坐标为(-2,-4).(3),∴顶点M(-1,-).如图2,连接AM交直线DE于点G,此时,△CMG的周长最小.设直线AM的解析式为y=kx+b,且过点A(2,0),M(-1,-),∴,∴直线AM的解析式为y=-3.在Rt△AOC中,=2.∵D为AC的中点,∴,∵△ADE∽△AOC,∴,∴,∴AE=5,∴OE=AE-AO=5-2=3,∴E(-3,0),由图可知D(1,-2)设直线DE的函数解析式为y=mx+n,∴,解得:,∴直线DE的解析式为y=--.∴,解得:,∴G().【解析】(1)把点A、B的坐标代入抛物线解析式,利用待定系数法求函二次数解析式解答;(2)连接OP,由S=S△AOC+S△OCP+S△OBP,可得出关于P点横坐标的表达式,然后利用二次函数的最值问题求出点P的坐标;(3)连接AM交直线DE于点G,此时,△CMG的周长最小.求出直线AM的解析式,再由△ADE∽△AOC,求出点E的坐标,求出直线DE的解析式,则由AM、DE两直线的交点可求得G点坐标.本题是二次函数综合题型,主要利用了待定系数法求二次函数解析式,待定系数法求一次函数解析式,三角形的面积,相似三角形的判定与性质,勾股定理,二次函数的最值问题.理解坐标与图形性质;会运用数形结合思想解决数学问题.4.【答案】解:(1)把C(0,2)代入y=ax2-3ax-4a得:-4a=2.解得a=-.则该抛物线解析式为y=-x2+x+2.由于y=-x2+x+2=-(x+1)(x-4).故A(-1,0),B(4,0);(2)存在,理由如下:由题意知,点E位于y轴右侧,作EG∥y轴,交BC于点G,∴CD∥EG,∴=.∵直线y=kx+1(k>0)与y轴交于点D,则D(0,1).∴CD=2-1=1.∴=EG.设BC所在直线的解析式为y=mx+n(m≠0).将B(4,0),C(0,2)代入,得.解得.∴直线BC的解析式是y=-x+2.设E(t,-t2+t+2),则G(t,-t+2),其中<t<4.∴EG=(-t2+t+2)-(-t+2)=-(t-2)2+2.∴=-(t-2)2+2.∵<0,∴当t=2时,存在最大值,最大值为2,此时点E的坐标是(2,3).【解析】(1)将点C的坐标代入函数解析式求得a值即可;将所求得的抛物线解析式转化为两点式,易得点A、B的坐标;(2)由题意知,点E位于y轴右侧,作EG∥y轴,交BC于点G,根据平行线截线段成比例将求的最大值转化为求的最大值,所以利用一次函数图象上点的坐标特征、二次函数图象上点的坐标特征,两点间的距离公式以及配方法解题即可.本题考查了二次函数综合题型,需要综合运用一次函数的性质,一次函数图象上点的坐标特征,二次函数图象上点的坐标特征,二次函数最值的求法,待定系数法确定函数关系式以及平行线截线段成比例等知识点,综合性较强,难度不是很大.5.【答案】解:(1)点A的坐标是(2,0),抛物线的对称轴是直线x=-1,则点B(-4,0),则函数的表达式为:y=a(x-2)(x+4)=a(x2+2x-8),即:-8a=-2,解得:a=,故抛物线的表达式为:y=x2+x-2;(2)将点B、C的坐标代入一次函数表达式:y=mx+n并解得:直线BC的表达式为:y=-x-2,则tan∠ABC=,则sin∠ABC=,设点D(x,0),则点P(x,x2+x-2),点E(x,x-2),∵PE=OD,∴PE=(x2+x-2+x+2)=(-x),解得:x=0或-5(舍去x=0),即点D(-5,0)S△PBE=×PE×BD=(x2+x-2+x+2)(-4-x)=;(3)由题意得:△BDM是以BD为腰的等腰三角形,只存在:BD=BM的情况,BD=1=BM,则y M=-BM sin∠ABC=-1×=-,则x M=,故点M(,-).【解析】(1)点A(2,0)、点B(-4,0),则函数的表达式为:y=a(x-2)(x+4)=a (x2+2x-8),即可求解;(2)PE=OD,则PE=(x2+x-2-x+2)=(-x),求得:点D(-5,0),利用S△PBE= PE×BD=(x2+x-2-x+2)(-4-x),即可求解;(3)BD=1=BM,则y M=-BM sin∠ABC=-1×=-,即可求解.主要考查了二次函数的解析式的求法和与几何图形结合的综合能力的培养.要会利用数形结合的思想把代数和几何图形结合起来,利用点的坐标的意义表示线段的长度,从而求出线段之间的关系.6.【答案】解:(1)∵B(1,0),∴OB=1,∵OC=2OB=2,∴C(-2,0),Rt△ABC中,tan∠ABC=2,∴,∴,∴AC=6,∴A(-2,6),把A(-2,6)和B(1,0)代入y=-x2+bx+c得:,解得:,∴抛物线的解析式为:y=-x2-3x+4;(2)①∵A(-2,6),B(1,0),易得AB的解析式为:y=-2x+2,设P(x,-x2-3x+4),则E(x,-2x+2),∵PE=DE,∴-x2-3x+4-(-2x+2)=(-2x+2),x=1(舍)或-1,∴P(-1,6);②∵M在直线PD上,且P(-1,6),设M(-1,y),∴AM2=(-1+2)2+(y-6)2=1+(y-6)2,BM2=(1+1)2+y2=4+y2,AB2=(1+2)2+62=45,分三种情况:i)当∠AMB=90°时,有AM2+BM2=AB2,∴1+(y-6)2+4+y2=45,解得:y=3,∴M(-1,3+)或(-1,3-);ii)当∠ABM=90°时,有AB2+BM2=AM2,∴45+4+y2=1+(y-6)2,y=-1,∴M(-1,-1),iii)当∠BAM=90°时,有AM2+AB2=BM2,∴1+(y-6)2+45=4+y2,y=,∴M(-1,);综上所述,点M的坐标为:∴M(-1,3+)或(-1,3-)或(-1,-1)或(-1,).【解析】(1)先根据已知求点A的坐标,利用待定系数法求二次函数的解析式;(2)①先得AB的解析式为:y=-2x+2,根据PD⊥x轴,设P(x,-x2-3x+4),则E(x,-2x+2),根据PE=DE,列方程可得P的坐标;②先设点M的坐标,根据两点距离公式可得AB,AM,BM的长,分三种情况:△ABM为直角三角形时,分别以A、B、M为直角顶点时,利用勾股定理列方程可得点M的坐标.此题是二次函数的综合题,考查了待定系数法求二次函数的解析式,铅直高度和勾股定理的运用,直角三角形的判定等知识.此题难度适中,解题的关键是注意方程思想与分类讨论思想的应用.7.【答案】解:(1)∵平行四边形ABOC绕点O顺时针旋转90°,得到平行四边形A′B′OC′,且点A的坐标是(0,4),∴点A′的坐标为:(4,0),∵点A、C的坐标分别是(0,4)、(-1,0),抛物线经过点C、A、A′,设抛物线的解析式为:y=ax2+bx+c,∴,解得:,∴此抛物线的解析式为:y=-x2+3x+4;(2)如图1,连接AA′,设直线AA′的解析式为:y=kx+m,∴,解得:,∴直线AA′的解析式为:y=-x+4,设点M的坐标为:(x,-x2+3x+4),则S△AMA′=×4×[-x2+3x+4-(-x+4)]=-2x2+8x=-2(x-2)2+8,∴当x=2时,△AMA′的面积最大,最大值S△AMA′=8,∴M的坐标为:(2,6);(3)设点P的坐标为(x,-x2+3x+4),当P,N,B,Q构成平行四边形时,∵平行四边形ABOC中,点A、C的坐标分别是(0,4)、(-1,0),∴点B的坐标为(1,4),∵点Q坐标为(1,0),P为抛物线上一动点,N为x轴上的一动点,①当BQ为边时,PN∥BQ,PN=BQ,∵BQ=4,∴-x2+3x+4=±4,当-x2+3x+4=4时,解得:x1=0,x2=3,∴P1(0,4),P2(3,4);当-x2+3x+4=-4时,解得:x3=,x4=,∴P3(,-4),P4(,-4);②当BQ为对角线时,BP∥QN,BP=QN,此时P与P1,P2重合;综上可得:点P的坐标为:P1(0,4),P2(3,4),P3(,-4),P4(,-4);如图2,当这个平行四边形为矩形时,点N的坐标为:(0,0)或(3,0).【解析】此题属于二次函数的综合题,考查了待定系数法求函数解析式的知识、平行四边形的性质以及三角形面积问题.掌握分类讨论思想的应用是解此题的关键.(1)由平行四边形ABOC绕点O顺时针旋转90°,得到平行四边形A′B′OC′,且点A 的坐标是(0,4),可求得点A′的坐标,然后利用待定系数法即可求得经过点C、A、A′的抛物线的解析式;(2)首先连接AA′,设直线AA′的解析式为:y=kx+m,利用待定系数法即可求得直线AA′的解析式,再设点M的坐标为:(x,-x2+3x+4),继而可得△AMA′的面积,继而求得答案;(3)分别从BQ为边与BQ为对角线去分析求解,即可求得答案.结合平行四边形的情况分析即可得到矩形的情况.8.【答案】解:(1)将点A(-1,0),B(4,0),代入y═ax2+bx+4,得:,解得:,∴二次函数的表达式为:y=-x2+3x+4,当x=0时,y=4,∴C(0,4),设BC所在直线的表达式为:y=mx+n,将C(0,4)、B(4,0)代入y=mx+n,得:,解得:,∴BC所在直线的表达式为:y=-x+4;(2)∵DE⊥x轴,PF⊥x轴,∴DE∥PF,只要DE=PF,四边形DEFP即为平行四边形,∵y=-x2+3x+4=-(x-)2+,∴点D的坐标为:(,),将x=代入y=-x+4,即y=-+4=,∴点E的坐标为:(,),∴DE=-=,设点P的横坐标为t,则P的坐标为:(t,-t2+3t+4),F的坐标为:(t,-t+4),∴PF=-t2+3t+4-(-t+4)=-t2+4t,由DE=PF得:-t2+4t=,解得:t1=(不合题意舍去),t2=,当t=时,-t2+3t+4=-()2+3×+4=,∴点P的坐标为(,);(3)存在,理由如下:如图2所示:由(2)得:PF∥DE,∴∠CED=∠CFP,又∵∠PCF与∠DCE有共同的顶点C,且∠PCF在∠DCE的内部,∴∠PCF≠∠DCE,∴只有∠PCF=∠CDE时,△PCF∽△CDE,∴=,∵C(0,4)、E(,),∴CE==,由(2)得:DE=,PF=-t2+4t,F的坐标为:(t,-t+4),∴CF==t,∴=,∵t≠0,∴(-t+4)=3,解得:t=,当t=时,-t2+3t+4=-()2+3×+4=,∴点P的坐标为:(,).【解析】(1)由题意得出方程组,求出二次函数的解析式为y=-x2+3x+4,则C(0,4),由待定系数法求出BC所在直线的表达式即可(2)证DE∥PF,只要DE=PF,四边形DEFP即为平行四边形,由二次函数解析式求出点D的坐标,由直线BC的解析式求出点E的坐标,则DE=,设点P的横坐标为t,则P的坐标为:(t,-t2+3t+4),F的坐标为:(t,-t+4),由DE=PF得出方程,解方程进而得出答案;(3)由平行线的性质得出∠CED=∠CFP,当∠PCF=∠CDE时,△PCF∽△CDE,则=,得出方程,解方程即可.本题是二次函数综合题目,考查了待定系数法求二次函数和一次函数的解析式、二次函数的性质、平行四边形的判定与性质、平行线的性质、相似三角形的判定与性质、勾股定理等知识;本题综合性强,熟练掌握待定系数法求函数解析式,熟记二次函数的性质是解题的关键.9.【答案】解:(1)设抛物线的解析式为y=a(x+1)(x-3),将C(0,1)代入得-3a=1,解得:a=-,∴抛物线的解析式为y=-x2+x+1.(2)过点P作PD⊥x,交BC与点D.设直线BC的解析式为y=kx+b,则,解得:k=-,∴直线BC的解析式为y=-x+1.设点P(x,-x2+x+1),则D(x,-x+1)∴PD=(-x2+x+1)-(-x+1)=-x2+x,∴S△PBC=OB•DP=×3×(-x2+x)=-x2+x.又∵S△PBC=1,∴-x2+x=1,整理得:x2-3x+2=0,解得:x=1或x=2,∴点P的坐标为(1,)或(2,1).(3)存在.如图:∵A(-1,0),C(0,1),∴OC=OA=1∴∠BAC=45°.∵∠BQC=∠BAC=45°,∴点Q为△ABC外接圆与抛物线对称轴在x轴下方的交点.设△ABC外接圆圆心为M,则∠CMB=90°.设⊙M的半径为x,则Rt△CMB中,由勾股定理可知CM2+BM2=BC2,即2x2=10,解得:x=(负值已舍去),∵AC的垂直平分线的为直线y=-x,AB的垂直平分线为直线x=1,∴点M为直线y=-x与x=1的交点,即M(1,-1),∴Q的坐标为(1,-1-).【解析】本题主要考查的是二次函数的综合应用,解答本题主要应用了待定系数法求二次函数的解析式、三角形的外心的性质,求得点M的坐标以及⊙M的半径的长度是解题的关键.(1)设抛物线的解析式为y=a(x+1)(x-3),将C(0,1)代入求得a的值即可;(2)过点P作PD⊥x,交BC与点D,先求得直线BC的解析式为y=-x+1,设点P(x,-x2+x+1),则D(x,-x+1),然后可得到PD与x之间的关系式,接下来,依据△PBC的面积为1列方程求解即可;(3)首先依据点A和点C的坐标可得到∠BQC=∠BAC=45°,设△ABC外接圆圆心为M,则∠CMB=90°,设⊙M的半径为x,则Rt△CMB中,依据勾股定理可求得⊙M的半径,然后依据外心的性质可得到点M为直线y=-x与x=1的交点,从而可求得点M的坐标,然后由点M的坐标以及⊙M的半径可得到点Q的坐标.10.【答案】解:(1)由题意,得,解得,抛物线的函数表达式为y=-x2+x+3;(2)设直线BC的解析是为y=kx+b,,解得∴y=-x+3,设D(a,-a2+a+3),(0<a<4),过点D作DM⊥x轴交BC于M点,如图1,M(a,-a+3),DM=(-a2+a+3)-(-a+3)=-a2+3a,∵∠DME=∠OCB,∠DEM=∠BOC,∴△DEM∽△BOC,∴=,∵OB=4,OC=3,∴BC=5,∴DE=DM∴DE=-a2+a=-((a-2)2+,当a=2时,DE取最大值,最大值是,(3)假设存在这样的点D,△CDE使得中有一个角与∠CFO相等,∵点F为AB的中点,∴OF=,tan∠CFO==2,过点B作BG⊥BC,交CD的延长线于G点,过点G作GH⊥x轴,垂足为H,如图2,①若∠DCE=∠CFO,∴tan∠DCE==2,∴BG=10,∵△GBH∽BCO,∴==,∴GH=8,BH=6,∴G(10,8),设直线CG的解析式为y=kx+b,∴,解得∴直线CG的解析式为y=x+3,∴,解得x=,或x=0(舍).②若∠CDE=∠CFO,同理可得BG=,GH=2,BH=,∴G(,2),同理可得,直线CG的解析是为y=-x+3,∴,解得x=或x=0(舍),综上所述,存在点D,使得△CDE中有一个角与∠CFO相等,点D的横坐标为或.【解析】(1)根据待定系数法,可得函数解析式;(2)根据平行于y轴直线上两点间的距离是较大的纵坐标减较小的纵坐标,可得DM,根据相似三角形的判定与性质,可得DE的长,根据二次函数的性质,可得答案;(3)根据正切函数,可得∠CFO,根据相似三角形的性质,可得GH,BH,根据待定系数法,可得CG的解析式,根据解方程组,可得答案.本题考查了二次函数综合题,解(1)的关键是待定系数法,解(2)的关键是利用相似三角形的性质得出DE的长,又利用了二次函数的性质;解(3)的关键是利用相似三角形的性质得出G点的坐标,由;利用了待定系数法求函数解析式,解方程组的横坐标.。

最新九年级中考数学专题: 二次函数综合题(相似三角形问题)含答案

最新九年级中考数学专题: 二次函数综合题(相似三角形问题)含答案

2023年九年级中考数学专题: 二次函数综合题(相似三角形问题)1.如图1,抛物线()221y x m m =--+(m 为常数)与x 轴交于A B 、两点(点B 在点A 右侧),与y 轴交于点C .(1)下列说法:①抛物线开口向上,①点C 在y 轴正半轴上;①12m >;①抛物线顶点在直线21y x =-+上,其中正确的是_______;(2)如图2,若直线21y x =-+与该抛物线交于M N 、两点(点M 在点N 下方),试说明:线段MN 的长是一个定值,并求出这个值;(3)在(2)的条件下,设直线21y x =-+与y 轴交于点D ,连接BM BN BD 、、,当:1:2DN MN =时,求此时m 的值,判断MBN △与MDB △是否相似,并说明理由.2.在平面直角坐标系xOy 中,抛物线()260y ax ax c a =-+>与x 轴交于A 、B 两点(点A 在点B 的左侧),顶点为C ,直线AC 交y 轴于点D ,连接BD ,且ABD △与ABC 的面积之比为1:2.(1)顶点C 的横坐标为__________; (2)求点B 的坐标;(3)连接CO ,将BCO 绕点C 按逆时针方向旋转一定的角度后,点B 与点A 重合,此时点O 恰好也在y 轴上,求抛物线的表达式.3.如图,抛物线2y x bx c =-++与x 轴交于点()1,0A -,()3,0B ,与y 轴交于点C ,点D 是直线BC 上方抛物线上一动点.(1)求抛物线的解析式;(2)如图1,过点D 作DE x ⊥轴于点E ,交直线BC 于点M .当2DM ME =时,求点D 的坐标; (3)如图2,设AB 的中点为点N ,过点D 作DF BC ⊥于点F ,连接CD 、CN ,使得以C 、D 、F 三点为顶点的三角形与CNO 相似,请直接写出点D 的坐标.4.如图,在平面直角坐标系xOy 中,抛物线()2y a x h k =-+与x 轴相交于O ,A 两点,顶点P 的坐标为()2,1-.点B 为抛物线上一动点,连接,AP AB ,过点B 的直线与抛物线交于另一点C .(1)求抛物线的函数表达式;(2)若点B 的横坐标与纵坐标相等,ABC OAP ∠=∠,且点C 位于x 轴上方,求点C 的坐标; (3)若点B 的横坐标为t ,90ABC ∠=︒,请用含t 的代数式表示点C 的横坐标,并求出当0t <时,点C 的横坐标的取值范围.5.如图,在平面直角坐标系xOy 中,抛物线213442y x x =-++与两坐标轴分别相交于A ,B ,C 三点(1)求证:①ACB =90°(2)点D 是第一象限内该抛物线上的动点,过点D 作x 轴的垂线交BC 于点E ,交x 轴于点F . ①求DE +BF 的最大值;①点G 是AC 的中点,若以点C ,D ,E 为顶点的三角形与AOG 相似,求点D 的坐标.6.在平面直角坐标系xOy 中,已知抛物线L 与x 轴交于,A B 两点,且经过点(0,2)C -,抛物线的顶点D 的坐标为325,28⎛⎫- ⎪⎝⎭.(1)求抛物线L 的函数表达式;(2)如图1,点E 为第四象限抛物线L 上一动点,过点E 作EG BC ⊥于点G ,求EG 的最大值,及此时点E 的坐标;(3)如图2,连接,AC BC ,过点O 作直线//l BC ,点,P Q 分别为直线l 和抛物线L 上的点.试探究:在第一象限是否存在这样的点,P Q ,使PQB CAB ∽.若存在,请求出所有符合条件的点P 的坐标;若不存在,请说明理由.7.如图所示,已知抛物线21y x =-与x 轴交于A 、B 两点,与y 轴交于点C .(1)求A 、B 、C 三点的坐标;(2)过点A 作AP ①CB 交抛物线于点P ,求四边形ACBP 的面积;(3)在x 轴上方的抛物线上是否存在一点M ,过M 作MG ①x 轴于点G ,使以A 、M 、G 三点为顶点的三角形与①PCA 相似?若存在,请求出M 点的坐标;否则,请说明理由.8.如图,在同一直角坐标系中,抛物线1L :28y ax bx =++与x 轴交于()8,0A -和点C ,且经过点()2,12B -,若抛物线1L 与抛物线2L 关于y 轴对称,点A 的对应点为'A ,点B 的对应点为'B .(1)求抛物线2L 的表达式;(2)现将抛物线2L 向下平移后得到抛物线3L ,抛物线3L 的顶点为M ,抛物线3L 的对称轴与x 轴交于点N ,试问:在x 轴的下方是否存在一点M ,使MNA '与ACB '△相似?若存在,请求出抛物线的3L 表达式;若不存在,说明理由.9.如图,在平面直角坐标系中,抛物线26y ax bx =++与x 轴交于点(1,0),(3,0)A B -,与y 轴交于点C ,点P 是第一象限内抛物线上的动点. (1)求抛物线的解析式;(2)连接BC 与OP ,交于点D ,当:PD OD 的值最大时,求点P 的坐标;(3)点M 在抛物线上运动,点N 在y 轴上运动,是否存在点M 、点N 使90CMN ∠=︒,且CMN △与BOC 相似,若存在,请直接写出点M 的坐标.10.如图,已知抛物线23y ax bx =+-与x 轴交于()2,0A -、()6,0B 两点,与y 轴交于C 点,设抛物线的顶点为D .过点D 作DE x ⊥轴,垂足为E .P 为线段DE 上一动点,(),0F m 为x 轴上一点,且PC PF ⊥.(1)求抛物线的解析式:(2)①当点P 与点D 重合时,求m 的值;①在①的条件下,将COF 绕原点按逆时针方向旋转90︒并平移,得到111C O F △,点C ,O ,F 的对应点分别是点1C ,1O ,1F ,若COF 的两个顶点恰好落在抛物线上,直接写出点1F 的坐标; (3)当点P 在线段DE 上运动时,求m 的变化范围.11.综合与实践如图1,抛物线y =﹣83x 2﹣94x +6与x 轴交于点A 和点B (点A 在点B 的左侧),与y 轴交于点C .(1)求直线AC 的表达式;(2)点E 在抛物线的对称轴上,在平面内是否存在点F ,使得以点A ,C ,E ,F 为顶点的四边形是矩形?若存在,请直接写出点E 的坐标;若不存在,请说明理由;(3)如图2,设点P 从点O 出发以1个单位长度/秒的速度向终点A 运动,同时点Q 从点A 出发以54个单位长度/秒的速度向终点C 运动,运动时间为t 秒,当①OPQ 的平分线恰好经过OC 的中点时,求t 的值.12.抛物线23y x bx =-++与x 轴交于(3,0),(1,0)A B -两点,与y 轴交于点C ,点D 为抛物线的顶点.(1)求抛物线的表达式及顶点D 的坐标; (2)在直线AC 上方的抛物线上找一点P ,使12ACPACDSS =,求点P 的坐标;(3)在坐标轴上找一点M ,使以点B ,C ,M 为顶点的三角形与ACD △相似,直接写出点M 的坐标.13.如图,将抛物线2443y x =-+平移后,新抛物线经过原抛物线的顶点C ,新抛物线与x 轴正半轴交于点B ,联结BC ,tanB 4=,设新抛物线与x 轴的另一交点是A ,新抛物线的顶点是D .(1)求点D 的坐标;(2)设点E 在新抛物线上,联结,AC DC ,如果CE 平分DCA ∠,求点E 的坐标;(3)在(2)的条件下,将抛物线2443y x =-+沿x 轴左右平移,点C 的对应点为F ,当DEF 和ABC 相似时,请直接写出平移后得到抛物线的表达式.14.在平面直角坐标系xOy 中,已知二次函数2(0)y ax bx c a =++≠的图象与x 轴交于A B ,两点(点A 在点B 的左边),与y 轴交于点C ,其顶点的横坐标为1,且过点(2)3,和(312)--,. (1)求此二次函数的表达式;(2)若直线:(0)l y kx k =≠与线段BC 交于点D (不与点B C ,重合),则是否存在这样的直线l ,使得以B O D ,,为顶点的三角形与BAC 相似?若存在,求出该直线的函数表达式及点D 的坐标;若不存在,请说明理由;(3)若点P 是位于该二次函数对称轴右边图象上不与顶点重合的任意一点,试比较锐角PCO ∠与ACO ∠的大小(不必证明),并写出此时点P 的横坐标p x 的取值范围.15.如图1,在平面直角坐标系中,抛物线2y x bx c =-++经过点A 和点()10B ,,交y 轴于点()0,3C .(1)求抛物线的解析式及顶点D 的坐标;(2)点P 是抛物线上A 、D 之间的一点,过点P 作PE x ⊥轴于点E ,PG y ⊥轴,交抛物线于点G ,过点G 作GF x ⊥轴于点F ,当矩形PEFG 的周长最大时,求点P 的坐标;(3)如图2,连接AD 、BD ,点M 在线段AB 上(不与A 、B 重合),作直线MN x ⊥轴交抛物线于点N ,是否存在点M ,使得AMN 与OBC 相似?若存在,求出点M 的坐标;若不存在,请说明理由.16.在平面直角坐标系xOy 中,已知抛物线2y ax bx c =++与x 轴交于()1,0A -,()4,0B 两点,与y 轴交于点()0,2C -.(1)求抛物线的函数表达式;(2)如图1,点D 为第四象限抛物线上一点,连接AD ,BC 交于点E ,求DEAE的最大值; (3)如图2,连接AC ,BC ,过点O 作直线//l BC ,点P ,Q 分别为直线l 和抛物线上的点,试探究:在第一象限是否存在这样的点P ,Q ,使PQB CAB ∽.若存在,请求出所有符合条件的点P 的坐标;若不存在,请说明理由.17.如图1,在平面直角坐标xoy 系中,已知抛物线y =-12x 2+bx +c 与x 轴交于点A (﹣4,0)、B(2,0),与y 轴交于点C . (1)求抛物线的解析式;(2)如图2,沿直线AC 平移抛物线y =-12x 2+bx +c ,使得A 、C 两点的对应点E 、F 始终在直线AC上.①设在平移过程中抛物线与y 轴交于点M ,求点M 纵坐标的最大值;①试探究抛物线在平移过程中,是否存在这样的点E ,使得以A 、E 、B 为顶点的三角形与①ABF 相似.若存在,请求出此时点E 的坐标;若不存在,请说明理由.18.如图,已知二次函数y =ax 2+bx +c 的图象经过点A (﹣1,0),B (4,0),E (1,3),与y 轴交于点C .(1)求该二次函数表达式;(2)判断△ABC 的形状,并说明理由;(3)P 为第一象限内该二次函数图象上一动点,过P 作PQ ∥AC ,交直线BC 于点Q ,作PM ∥y 轴交BC 于M .①求证:△PQM ∽△COA ; ②求线段PQ 的长度的最大值.19.如图,直线y x n =-+与x 轴交于点(4,0)A ,与y 轴交于点B ,抛物线2y x bx c =-++经过点A ,B .(1)求抛物线的解析式;(2)(m,0)E 为x 轴上一动点,过点E 作ED x ⊥轴,交直线AB 于点D ,交抛物线于点P ,连接BP . ①点E 在线段OA 上运动,若BPD ∆直角三角形,求点E 的坐标;①点E 在x 轴的正半轴上运动,若45PBD CBO ∠+∠=︒.请直接写出m 的值.20.如图,点A ,B 都在x 轴上,过点A 作x 轴的垂线交抛物线24y x x =-+于点C ,过点B 作x 轴的垂线交该抛物线于点D ,点C ,D 都在第一象限,点D 在点C 的右侧,DE AC ⊥于点E ,连结CD ,BE ,//CD EB .(1)若2OA =,求AB 的长.(2)若点A 是线段OB 的中点,求点E 的坐标.(3)根据(2)的条件,连结OD ,动点P 在线段OB 上,作PQ OD ⊥交OD 于点Q ,当PDQ 与CDE △相似时,求OQOD的值.答案1.(1)①①①;(3)m =3,相似;m =1,不相似2.(1)3;(2)(5,0);(3)2y 3.(1)2y x 2x 3=-++;(2)()2,3D ;(3)57,24D ⎛⎫ ⎪⎝⎭或315,24⎛⎫ ⎪⎝⎭4.(1)214y x x =-或21(2)14y x =--;(2)点C 的坐标为(6,3)或51,4⎛⎫- ⎪⎝⎭;(3)164t t --+;12C x ≥ 5.(1)(2)①9;①(4,6)D 或25(3,)4D .6.(1)213222y x x =--;(2)max ()=EG E 的坐标为(2,3)-;(3)存在,点P 的坐标为6834,99⎛⎫ ⎪⎝⎭或⎝⎭. 7.(1)A (-1,0),B (1,0),C (0,-1);(2)四边形ACBP 的面积为4;(3)M 点的坐标为(-2,3)或(43,79)或(4,15). 8.(1)抛物线2L 的解析式为21382y x x =-++.(2)函数3L 的解析式为:2121322y x x =-+-或2126323y x x =-+-. 9.(1)2 246y x x =-++;(2)点P 的坐标为315,22⎛⎫ ⎪⎝⎭;(3)存在,点M 的坐标为939,48⎛⎫ ⎪⎝⎭. 10.(1)2134y x x =--;(2)①4;①1(2,9)16或13(6-,49)144;(3)748m ≤≤ 11.(1)直线AC 的表达式为364y x =+;(2)点E 1的坐标为20(3,)3--;点E 2的坐标为(3,10)-;点E 3的坐标为(3,3-+;点E 4的坐标为(3,3--;(3)t 的值为5.12.(1)223y x x =--+;(1,4)D -;(2)⎝⎭P 或⎝⎭;(3)点M 的坐标为(0,0)或(9,0)-,或10,3⎛⎫- ⎪⎝⎭. 13.(1)16(1,)3-;(2)(2,4)-;(3)242()433y x =-++或241()4312y x =--+ 14.(1)2y x 2x 3=-++;(2)存在,点D 的坐标分别为3944⎛⎫ ⎪⎝⎭,或(12),; (3)当5p x >时,锐角PCO ACO ∠<∠;当5p x =时,锐角PCO ACO ∠=∠;当25p x <<时,锐角PCO ACO ∠>∠.15.(1)223y x x =--+,()1,4-;(2)()2,3P -;(3)存在,()2,0-或2,03⎛⎫ ⎪⎝⎭16.(1)213222y x x =--;(2)45;(3)存在,点P 的坐标为6834,99⎛⎫ ⎪⎝⎭或⎝⎭17.(1)2142y x x =--+;(2)①6;①存在,E (62--或(62--18.(1)二次函数表达式为:213222y x x =-++ ;(2)△ABC 为直角三角形;(3); 19.(1)234y x x =-++;(2)①(2,0)或(3,0);①7m =或134.20.(1;(2)1296,749E ⎛⎫ ⎪⎝⎭;(3)2或4932。

2019重庆中考第26题二次函数综合问题探索举例(含解题思路提示)

2019重庆中考第26题二次函数综合问题探索举例(含解题思路提示)

P若A(m,n),则C(-n,m)OA=OC1x 2019重庆中考26题二次函数综合问题探索举例二次函数综合问题,是重庆历届中考必考题,在解答此类问题时,除二次函数、一次函数等必备的知识外,还涉及到如下一些知识:1.两点的所有连线中,线段最短,简单说成:两点之间,线段最短 (新人教版七上基础知识)2.连接直线外一点与直线上各点的所有线段中,垂线段最短.简单说成:垂线段最短. (新人教版七下基础知识)3.两点P 1(x 1,y 1),P 2(x 2,y 2)的距离公式:P 1P 2 =212212)y y ()x x (-+- (新人教版八下拓展知识)特别:当P 1P 2∥y 轴时,P 1P 2 =12y y -. 当P 1P 2∥x 轴时,P 1P 2 =12x x -.4.两直线y=k 1x+b 1,y=k 2x+b 2平行的条件:k 1=k 2,且b 1≠b 2. (新人教版八下拓展知识)5.两直线y=k 1x+b 1,y=k 2x+b 2垂直的条件:k 1k 2=-1. (新人教版八下拓展知识)如图,直线y=k 1x ,y=k 2x 垂直的条件是:k 1k 2=-1.6.常见图形的计算、性质、判定等.答图1图1典例探索例1.(2019重庆B 卷)在平面直角坐标系中,抛物线y=32x 23x 432++-与x 轴交于A ,B 两点(点A 在点B 左侧),与y 轴交于点C ,顶点为D ,对称轴与x 轴交于点Q.(1)如图1,连接AC ,BC.若点P 为直线BC 上方抛物线上一动点,过点P 作PE ∥y 轴交BC 于点E ,作PF ⊥BC 于点F ,过点B 作BG ∥AC 交y 轴于点G.点H ,K 分别在对称轴和y 轴上运动,连接PH ,HK.当△PEF 的周长最大时,求PH+HK+23KG 的最小值及点H 的坐标. (2)如图2,将抛物线沿射线AC 方向平移,当抛物线经过原点O 时停止平移,此时抛物线顶点记为D /,N 为直线DQ 上一点,连接点D /,C ,N ,△D /CN 能否构成等腰三角形?若能,直接写出满足条件的点N 的坐标;若不能,请说明理由.思路:点坐标→PH+HK+23KG 的最小值→H 的坐标. (2)由条件→新抛物线→设出N 的坐标求得D /N ,D /C ,CN →建立方程求出N 的坐标.提示:(1)易求A(-2,0),B(4,0),C(0,32),D(1,439),△PEF ∽△BOC. ∴当PE 最大时,△PEF 的周长最大.易求直线BC 的解析式为y=32x 23+- 设P(x, 32x 23x 432++-),则E(x, 32x 23+-) ∴PE=32x 23x 432++--(32x 23+-)=x 3x 432+- ∴当x=2时,PE 有最大值. ∴P(2, 32),此时,如图将直线OG 绕点G 逆时针旋转60 °得到直线l ,过点P 作PM ⊥l 于点M ,过点K 作KM /⊥l 于M /.则PH+HK+23KG= PH+HK+KM /≥PM ,易知∠POB=60°.POM 在一直线上.易得PM=10,H(1,3)(2)易得直线AC 的解析式为y=32x 3+,过D 作AC 的平行线,易求此直线的解析式为y=435x 3+,所以可设D /(m, 435m 3+),平移后的抛物线y 1=435m 3)m x (432++--.将(0,0)代入解得m 1=-1(舍),m 2=5.所以D /(5,4325). 设N(1,n),又C(0,32),D /(5,4325). 所以NC 2=1+(n-32)2,D /C 2=22)324325(5-+=161267,D /N 2=22)n 4325()15-+-(. 分NC 2= D /C 2;D /C 2= D /N 2;NC 2= D /N 2.列出关于n 的方程求解.答案N 1(1,4139338+),N 2(1, 4139338-),N 3(1,41011325+),N 4(1, 41011325-),N 5(1,1363641). 例2.(2019重庆A 卷)如图,在平面直角坐标系中,抛物线y=x 2-2x-3与x 轴交于点A ,B(点A 在点B 的左侧)交y 轴于点C ,点D 为抛物线的顶点,对称轴与x 轴交于点E. (1)连结BD ,点M 是线段BD 上一动点(点M 不与端点B ,D 重合),过点M 作MN ⊥BD 交抛物线于点N (点N 在对称轴的右侧),过点N 作NH ⊥x 轴,垂足为H ,交BD 于点F ,点P 是线段OC 上一动点,当MN 取得最大值时,求HF+FP+31PC 的最小值; (2)在(1)中,当MN 取得最大值,HF+FP+31PC 取得最小值时,把点P 向上平移22个单位得到点Q ,连接AQ ,把△AOQ 绕点O 顺时针旋转一定的角度α(0°<α<360°),得到△A /OQ /,其中边A /Q /交坐标轴于点G ,在旋转过程中,是否存在一点G ,使得∠Q /=∠Q /OG ?若存在,请直接写出所有满足条件的点Q /的坐标;若不存在,请说明理由.思路:(1)MN 取得最大值→FN 最大→点F 坐标及HF 的值→HF+FP+31PC 的最小值. (2)由P 的坐标→Q 点坐标→注意∠Q /=∠AQO 构成直角三角形,求出Q /的坐标.提示:(1)易得A(-1,0),B(3,0),C(0,-3),D(1,-4),E(1,0).直线BD 的解析式为y=2x-6. 易得△MNF ∽△EBD ,所以要MN 取最大值,只要FN 设N(x, x 2-2x-3),F(x,2x-6). 则FN=-x 2+4x-3,∴当x=2时,FN 最大,此时MN 最大,F(2,-2),HF=2. ∴当FP+31PC 最小时,HF+FP+31PC 最小. 如图,以PC 为斜边,31PC 的长为直角边,作Rt △CRP ,其中PR=31PC 因此,当点F ,P ,R 在一条 直线上时,FP+31PC 最小.此时,过F 作y 为S ,则△CPR ∽△FPS.又易得FS=2. S(0,-2) SP=22,FP=223,PC=CS-PS=222-,所以PR=31PC=622-.答案3247+(2)由(1)知SP=22,将P 向上平移22个单位得到的Q 点即为S 点,所以OQ=2. 如图,过Q /作Q /T ⊥x 轴于T.在Rt △OQ /T 中,易得∠Q /OT 的正切为一定值.结合勾股定理及方程思想求出两直角边.552),(552,554-).例3.(2019重庆中考考试说明题型示例)在平面直角坐标系中,抛物线y=22x 23x 422-+与x 轴交于A 、B 两点(点A 在点B 左侧),与y 轴交于点C.(1)如图甲所示,点D 是抛物线第二象限上一点,且满足22x x A D =-,过点D 作AC 的平行线,分别与x 轴、射线CB 交于点F 、E ,点P 为直线AC 下方抛物线上的一动点,连接PD 交线段AC 于点Q ,当四边形PQEF 面积最大时,在y 轴上找一点M ,x 轴上找一点N ,使得PM+MN-53NB 取得最小值; (2)如图乙所示,将△BOC 沿直线AC 平移得到△B /O /C /,再将△B /O /C /沿B /C /翻折得到△B /O //C /,连接C /B ,O //B ,则△C /BO //能否构成等腰三角形?若能,请直接写出所有符合条件的点O //的坐标;若不能,请说明理由.思路:(1)四边形PQEF 面积最大→△PDF 的面积最大→P 点坐标→PM+MN-53NB 最小值. (2)由条件表达出C /,B ,O //的坐标→求得C /B ,O //B ,O //C /→建立方程求出O //的坐标. 提示:(1)易得A(24-,0),B(2,0),C(0,22-),又点D 是抛物线第二象限上一点,且满足22x x A D =-,∴D(26-,27).易得直线AC 的解析式y=22x 21--,∴直线DF 的解析式为y=24x 21+-,易得直线CB 的解析式为y=22x 2-. ∴易得F(28,0),E(2512,2514). ∵四边形PQEF 面积=△PDF 的面积-△DQE 的面积.而平行线得,△DQE 的面积=△DAE 的面积.而△DAE 的面积为定值,∴当△PDF 的面积最大时,四边形PQEF 面积最大. 过P 作PT ⊥x 轴,交DF 于点T ,则当PT 最大时,△PDF 的面积最大. 设P(x, 22x 23x 422-+),则T(x, 24x 21+-).PT=24x 21+--(22x 23x 422-+)=26x 2x 422+--, ∴当x=22-时,PT 最大,此时P(22-,23-). △PDF 的面积最大,四边形PQEF 面积最大.如图,作点P 关于y 轴的对称点P /(22,23-).过点B 作直线l : y=243x 43-(针对53NB) 过P /作直线l ////PM+MN-53NB 5即为所求的最小值.易求直线l /的解析式为y=32x 34--,∴W(52,523-),∴P /W=23.答案23.(2)易得直线AC 的解析式为y=22x 21--,直线OO /的解析式为y=x 21-,直线BB /解析式为y=22x 21+-.直线BC 的解析式为y=22x 2- . AC ⊥BC.设O /(t, t 21-),则C /(t, 22t 21--),B /(2t +,t 21-), 则直线B /C /的解析式为y=22t 25x 2--, 所以O /O //与B /C /的交点坐标为(524t (+,522t 21--),所以O //(528t +,524t 21--). ∴C /B 2=22)22t 21()2t (++-=10t 452+. O //C / 2=O /C / 2=OC 2=8. O //B 2=22)524t 21()2528t (++-+=2t 22t 452++.若C /B=O //C /.则10t 452+=8,此无解,舍去.若C /B=O //B.则10t 452+=2t 22t 452++,解得t=22.∴O //(5281,529-). 若O //B= O //C /.则2t 22t 452++=8,解得t 1=538224+-,t 2=538224--∴O //(538224+,53822+-),O //(538224-,53822--). 答案O //(5281,529-)或O //(538224+,53822+-)或O //(538224-,53822--).图1图2答图如下 例 4.(2019重庆中考考试说明参考试卷)如图所示,在平面直角坐标系中,抛物线y=3x 332x 332--与x 轴交于A 、B 两点(点A 在点B 的左侧),与y 轴交于点C ,对称轴与x 轴交于点D ,点E(4,n)在抛物线上.(1)点P 为直线CE 下方抛物线上的一点,连接PC ,PE.当△PCE 的面积最大时,连接CD ,CB ,点K 是线段CB 的中点,点M 是CP 上的一点,点N 是CD 上的一点,求KM+MN+NK 的最小值;(2)点G 是线段CE 的中点,将抛物线y=3x 332x 332--沿x 轴正方向平移得到新抛物线y /,y /经过点D ,y /的顶点为点F. 在新抛物线y /的对称轴上,是否存在一点Q ,使得△FGQ为等腰三角形?若存在,请直接写出点Q 的坐标,若不存在,请说明理由.思路:(1)△PCE 的面积最大→P 点坐标→KM+MN+NK 的最小值.(2)由条件→新抛物线→设Q 点坐标→求出FG ,GQ ,FQ →建立方程求出Q 点的坐标. 提示:(1)易得A(-1,0),B(3,0),C(0,3-),D(1,0),E(4,335).则易得直线CE 的解析式为y=3x 332-.过P 作x 轴的垂线交直线CE 于T ,则当PT 最大时,△PCE 的面积最大. 设P(x, 3x 332x 332--), T(x, 3x 332-).PT=3x 332--(3x 332x 332--)=x 334x 332+-. ∴当x=2时,PT 最大,△PCE 的面积最大,此时P(2, 3-). 由OC=3,OB=3,易得∠OCB=60°.又易得DB=DC=2.CP ∥x 轴,K 关于CD 对称的点就是点O. 设K 关于CP 对称的点K /.连接OK /交CP 于M ,交DC 于N.则此时的M 、N 使得KM+MN+NK 最小.答案KM+MN+NK 最小值是3. (2)易得F(3,334-),G(2,33),设Q(3,t).则FG 2=328. GQ 2=2)33t (1-+=34t 332t 2+-. QF 2=2)334t (+=316t 338t 2++. 若GQ=FG ,则34t 332t 2+-=328,解得t=32或t=334-(此时Q 与F 重合,舍). 若GQ=QF ,则34t 332t 2+-=316t 338t 2++,解得t=532-. 若QF=FG ,则316t 338t 2++=328,解得t=321234+-或t=. 答案Q(3, 32)或(3, 532-)或(3, 321234+-)或(3, 321234--).例5.(2019重庆巴蜀三诊)如图1,抛物线x 63y 2+-=A 、B 两点(点A 在点B 的右侧),与y 轴相交于点C ,对称轴与x 轴相交于点H ,与AC 相交于点T. (1)点P 是线段AC 上方抛物线上一点,过点PQ ∥AC 交抛物线的对称轴于点Q ,当△AQH 面积最大时,点M 、N 在y 轴上(点M 在点N 的上方),MN=3,点G 在直线AC 上,求PM+NG+21GA 的最小值. (2)点E 为BC 中点,EF ⊥x 轴于F ,连接EH ,将△EFH 沿EH 翻折得△EF /H ,如图2所示,再将△EF /H 沿直线BC 平移,记平移中的△EF /H 为△E /F //H /,在平移过程中,直线E /H /与x 轴交于点R ,则是否存在这样的点R ,使得△RF /H /为等腰三角形,若存在,求出R 点坐标.思路:(1)△AQH 面积最大→△APT 面积最大→P 的坐标→PM+NG+21GA 的最小值. (2)由条件表达出F /,H /,R 的坐标→求出F /H /,F /R ,H /R →建立方程求出R 的坐标.提示:(1)由题意得B(-2,0),A(6,0),C(0,32),设AC 与对称轴交于T ,连接AQ ,PT ,PA.如图.∵S △AQH =S △ATH + S △AQT 而S △ATH 为定值338. ∴△AQH 的面积最大,即△AQT 的面积最大. 又PQ ∥AC ,∴S △AQT =S △APT . 过点P 作PR ∥y 轴交AC 于R. 易求得AC 的解析式为y=32x 33+-设P(m, 32m 332m 632++-),则R(m, 32m 33+-)S △APT =4)m 3m 63(212⨯+-⨯=m 32m 332+-.∴当m=3时面积最大,此时P(3,235). 过点G 作GE ⊥x 轴交x 轴于E ,作x 轴关于直线AC 的对称直线l ,E 的对称点为E /,将PM 沿y 轴 向下平移3个单位至P /N ,作点P /关于y 轴的对称 点P //,作P //S ⊥l 于点S.如图所示,则有PM+NG+21GA=P //N+NG+GE //≥P //S.易求P //S=4315 (2)易得△ABC ,△BOC ,△EFH 均为含30E(-1,3),F(-1,0),H(2,0),F /(21,233). 易得直线BC 的解析式为y=32x 3+, 直线HH /的解析式为y=32x 3-, 直线EH 的解析式为y=332x 33+-. 将△EF /H 沿直线BC 平移,设在水平方向上记平移|t|个单位.则平移后的△E /F //H /中易得E /(t-1,3t 3+),H /(t+2,t 3), 易得直线E /H /的解析式为y=332t 334x 33++-. ∴R(4t+2,0). ∴(F /H /)2=22)233t 3()212t (-+-+=4t 2-6t+9.(H /R)2=22)t 30()]2t ()2t 4[(-++-+=12t 2. (F /R)2=22)2330()212t 4(-+-+=16t 2+12t+9.图1若F /H /= H /R ,4t 2-6t+9=12t 2.解得t=43或t=23-, 此时R(5,0)(此时F /、H /、R 共线,舍)或R(-4,0). 若F /H /= F /R ,4t 2-6t+9=16t 2+12t+9,解得t=0或t=23-, 此时R(2,0)(此时H /、R 重合,舍)或R(-4,0). 若H /R= F /R ,12t 2=16t 2+12t+9.解得t 1=t 2=23-,此时R(-4,0).答案R(-4,0). 例6.(2019重庆南开测试四)如图,在平面直角坐标系中,抛物线3x 49x 43y 2++-=与x 轴交于A ,B 两点(点A 在点B 左侧),与y 轴交于点C ;连接BC.点P 为线段BC 上方抛物线上的一动点,连接OP 交BC 于点Q.(1)如图1,当OQ PQ值最大时,点E 为线段AB 上一点,在线段BC 上有两动点M ,N (M在N 上方),且MN=1,求PM+MN+NE-53BE 的最小值; (2)如图2,连接AC ,将△AOC 沿射线CB 方向平移,点A ,C ,O 平移后的对应点分别记作A 1,C 1,O 1,当C 1B=O 1B 时,连接A 1B ,O 1B ,将△A 1O 1B 绕点O 1沿顺时针方向旋转90°后得△A 2O 1B 1,在直线x=21上是否存在点K ,使得△A 2B 1K 为等腰三角形?若存在,直接写出点K 的坐标;若不存在,请说明理由.思路:(1)OQ PQ值最大→P 点坐标→PM+MN+NE-53BE 的最小值.(2)由条件表达出A 2,B 1,K 的坐标→求出A 2B 1,B 1K ,A 2K →建立方程求出K 的坐标. 提示:(1)易得A(-1,0),B(4,0),C(0,3).直线BC 的解析式为y=3x 43+-. 过点P 作PH ∥y 轴交BC 于H.令P(a,3a 49a 432++-),则H(a, 3a 43+-),∴PH=a 3a 432+-.易得△PQH ∽△OQC ,∴OQ PQ =O CPH=3a3a 432+-=a a 412+-∴当a=2时,OQPQ最大,此时P(2,29)将P 沿MN 方向平移1个单位(即向右平移54,向下平移53)得P /(514,1093).过点A 作AJ ∥CB.过点E 作EK ⊥AJ 于K ,过点P /作P /K /⊥AJ 于K /.则 PM+MN+NE-53BE= PM+MN+NE-53(AB-AE)= PM+MN+NE+53AE-53AB =P /N+NE+EK-2≥P /K /-2=2527-=517. 注:MN=1,EK=53AE ,53AB=3,易得直线AJ 的解析式为y=43x 43--,直线P /K /的解析式为y=61x 34+,∴K /(2511-,5021-),P /K /=527. 答案最小值为517. (2)易得直线AA 1的解析式为y=43x 43--,直线OO 1的解析式为y=x 43-,又直线BC 的解析式为y=3x 43+-.设A 1(t-1,t 43-),则C 1(t,3t 43+-),O 1(t, t 43-).又B(4,0), ∴当C 1B=O 1B 时,22)3t 43()4t (+-+-=22)t 43()4t (-+-,解得:t=2. ∴A 1(1,23-),O 1(2, 23-),∴A 2(2,21-),B 1(27,27-) 设K(21,y),则A 2K 2=22)y 21()212(--+-=25y y 2++,A 2B 12=45, B 1K 2=22)y 27()2127(--+-=485y 7y 2++. 若A 2K= A 2B 1,25y y 2++=445,解得y=25或y=27-. 若A 2B 1=B 1K ,445=485y 7y 2++,解得y=-2或y=-5. 若A 2K= B 1K ,25y y 2++=485y 7y 2++,解得y=825- 答案K 1(21,25)(此时K 1、A 2、B 1在一直线上,舍去), K 2(21,27-),K 3(21,-2),K 4(21,-5),K 5(21,825-). 反思:重庆中考二次函数的综合题,一般设计两个问:第(1)问,通常是线段(均可转化为线段)取最值时,求几条线段和差的最值. 第(2)问,通常是在图形变换下,出现特殊情况时,直接写出坐标.看视较难,其实还是有一定的解题思路:(1)把动点产生的最值问题,转化为动线段的最值,确定其动点取最值时的坐标,再把几条线段和差转化为几何图形的有关最值,或把几条线段和差转化为代数问题求最值.(2)在经历图形变换后,需要求出相关线段的长度,利用方程思想求出其中未知数的值,写出坐标.车到山前必有路,船到桥头自然直,山穷水尽疑无路,柳暗花明又一村.只要不断向前做,定会发现新思路.。

重庆中考二次函数25题专题

重庆中考二次函数25题专题

三.解答题(共14小题)17.(2013•福州质检)如图,已知抛物线y=ax2+bx+c(a≠0)与x轴交于A(1,0)、B(4,0)两点,与y轴交于C(0,2),连接AC、BC.(1)求抛物线解析式;(2)BC的垂直平分线交抛物线于D、E两点,求直线DE的解析式;(3)若点P在抛物线的对称轴上,且∠CPB=∠CAB,求出所有满足条件的P点坐标.)由题意,得:解得:y=﹣,∴===x=,∴(,解得:,∴,﹣.∵,,解得:x x+2x=(GA=的坐标为(,﹣,∴NH==1=,点的坐标为(,﹣)或(,18.如图,抛物线y=ax+bx+3与x轴交于A(﹣1,0)、B (3,0)两点,与y轴交于点C,此抛物线的对称轴与抛物线相交于点P,与直线BC相交于点M,连接PB.(1)求点C坐标以及该抛物线的关系式;(2)连接AC,在x轴下方的抛物线上有点D,使S△ABD=S△ABC,求点D的坐标;(3)抛物线上是否存在点Q,使△QMB与△PMB的面积相等?若存在,直接写出点Q的坐标;若不存在,说明理由;(4)在第一象限、对称轴右侧的抛物线上是否存在一点R,使△RPM与△RMB的面积相等?若存在,直接写出点R的坐标;若不存在,说明理由.解得:×,∴±,﹣联立,解得:或)或或﹣=1+C(5,8)两点,点D是抛物线顶点,E是对称轴与直线AC的交点,F与E关于点D对称.(1)求抛物线的解析式;(2)求证:∠AFE=∠CFE;(3)在抛物线的对称轴上是否存在点P,使△AFP与△FDC相似?若有,请求出所有符合条件的点P的坐标;若没有,请说明理由.,解得,===只需=之间)或(点20.如图,抛物线y=ax+bx过点A(4,0)正方形OABC的边BC与抛物线的一个交点为D,点D的横坐标为3,点M在y轴的负半轴上,直线L过点D、M两点且与抛物线的对称轴将于点H,tan∠OMD=.(1)写出D点坐标(3,4),a=﹣,b=,抛物线的对称轴为x=2.(2)求M点坐标,H点坐标;(3)如果点Q是抛物线对称轴上一个动点,那么是否存在点Q使得以点O、M、Q、H为顶点的四边形是平行四边形?若存在,求出点Q的坐标;若不存在,请说明理由.得,解得=,得解得21.(2011•莆田)已知抛物线y=ax+bx+c的对称轴为直线x=2,且与x轴交于A、B两点,与y轴交于点C,其中A(1,0),C(0,﹣3).(1)求抛物线的解析式;(2)若点P在抛物线上运动(点P异于点A).①如图1.当△PBC面积与△ABC面积相等时.求点P的坐标;②如图2.当∠PCB=∠BCA时,求直线CP的解析式.)由题意,得,解得解方程组,得解方程组得),((∴,∴∴的解析式为22.(2005•山西)矩形OABC在直角坐标系中的位置如图所示,A、C两点的坐标分别为A (6,0)、C(0,3),直线y=x与BC边相交于点D.(1)求点D的坐标;(2)若抛物线y=ax2+bx经过D、A两点,试确定此抛物线的表达式;(3)P为x轴上方(2)中抛物线上一点,求△POA面积的最大值;(4)设(2)中抛物线的对称轴与直线OD交于点M,点Q为对称轴上一动点,以Q、O、M为顶点的三角形与△OCD相似,求符合条件的Q点的坐标.xx得解之得﹣+<×==3。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

重庆市 2015 年中考数学26 题 --- 二次函数综合题专题练习一
1. ( 2015?沙坪坝区校级模拟)如图,在平面直角坐标系xOy 中,抛物线y=ax 2+bx+3 与x 轴
0.交于点A( -3 , 0)、 C( 1, 0),与y 轴交于点B.
(1)求此抛物线的解析式;
(2)点P 是直线AB 上方的抛物线上一动点(不与点A、 B 重合),过点P 作x 轴的垂线,
垂足为点F,交直线AB于
点E,作PD⊥ AB于

D.
①过点P 在什么位置时,△PDE的周长最大,求出此时P 点的坐标;
②连接 PA,以 PA为边作正方形 APMN,当顶点 M或 N 恰好落在抛物线对称轴上时,求出对应的 P 点的坐标.
2 (2014 河南). 如图,抛物线y=- x2+bx+c 与 x 轴交于 A (- 1,0),B(5,0 )两点,直线y=-3
x+3 4
与 y 轴交于点C,,与 x 轴交于点 D. 点 P 是 x 轴上方的抛物线上一动点,过点P 作 PF⊥ x 轴于点 F ,交直线CD 于点 E. 设点 P 的横坐标为m。

( 1)求抛物线的解析式;
( 2)若 PE =5 EF, 求 m 的值;
( 3)若点 E/是点 E 关于直线PC 的对称点、是否存在点P,使点 E /落在 y 轴上?若存在,请直接写出相应的点P 的坐标;若不存在,请说明理由。

y
P
C
E
A B
O F D X
3.( 2014?哈尔滨)如图,在平面直角坐标中,点 O 为坐标原点,直线 y= ﹣ x+4 与 x 轴交于点
A ,过点 A 的抛物线 y=ax 2
+bx 与直线 y= ﹣ x+4 交于另一点 B ,且点 B 的横坐标为 1.
( 1)求 a , b 的值;
( 2)点 P 是线段 AB 上一动点(点 P 不与点 A 、B 重合),过点 P 作 PM ∥ OB 交第一象限 内的抛物线于点 M ,过点 M 作 MC ⊥ x 轴于点 C ,交 AB 于点 N ,过点 P 作 PF ⊥ MC 于点 F ,设 PF 的长为 t , MN 的长为 d ,求 d 与 t 之间的函数关系式(不要求写出自变量 t 的取
值范围);
( 3)在( 2)的条件下,当 S △ACN =S △PMN 时,连接 ON ,点 Q 在线段 BP 上,过点 Q 作 QR ∥ MN 交 ON 于点 R ,连接 MQ 、 BR ,当 ∠ MQR ﹣∠ BRN=45 °时,求点 R 的坐标.
4.如图①,已知抛物线y= ax2+ bx(a≠ 0)经过 A(3, 0)、 B (4,4)两点.
(1)求抛物线的解析式;
(2) 将直线 OB 向下平移 m 个单位长度后,得到的直线与抛物线只有一个公共点D,求
m 的值及点 D 的坐标;
(3) 如图②,若点 N 在抛物线上,且∠ NBO =∠ A BO,则在 (2)的条件下,求出所有满
足△ POD ∽△ NOB 的点 P 的坐标 (点 P、 O、 D 分别与点 N、 O、 B 对应 ).
y y
B B
N
O A
x O A x
D D
第 22 题图①第22题图②
5.(2014?龙岩)如图①,双曲线y=(k≠0)和抛物线y=ax 2+bx(a≠0)交于A、 B、C 三
点,其中B( 3, 1), C(﹣ 1,﹣ 3),直线 CO交双曲线于另一点D,抛物线与x 轴交于另一
点 E.
(1)求双曲线和抛物线的解析式;
(2)抛物线在第一象限部分是否存在点 P,使得∠ POE+∠BCD=90°?若存在,请求出满足
条件的点 P 的坐标;若不存在,请说明理由;
(3)如图②过 B 作直线 l ⊥OB,过点 D 作 DF⊥l于点 F, BD与 OF交于点 N,求的值.
6、如图,抛物线 y=- x2+bx+c 与 x 轴交点为 A(﹣ 2,0),与 y 轴的交点为 C,对称轴是 x=3,对称轴与 x 轴交于点 B.
(1)求抛物线的函数表达式;
(2)经过 B, C的直线 l 平移后与抛物线交于点M,与 x 轴交于点N,当以 B, C,M, N 为顶点的四边形是平行四边形时,求出点M的坐标;
(3)若点 D 在 x 轴上,在抛物线上是否存在点P,使得△ PBD≌△ PBC?若存在,直接写出
点 P 的坐标;若不存在,请说明理由.
7. (2014 年福建漳州 ) 已知抛物线l :y=ax 2+bx+c( a, b, c 均不为 0)的顶点为M,与 y 轴的交点为N,我们称以 N 为顶点,对称轴是y 轴且过点M的抛物线为抛物线l 的衍生抛物线,直线 MN为抛物线l 的衍生直线.
(1)如图,抛物线 y=x 2﹣ 2x﹣ 3 的衍生抛物线的解析式是,衍生直线的解析式是; 2
的解析式;
2
线 MN先绕点 N旋转到与x 轴平行,再沿y 轴向上平移 1 个单位得直线n, P 是直线 n 上的动点,是否存在点P,使△ POM为直角三角形?若存在,求出所有点P 的坐标;若不存在,
请说明理由.
8.(2014?贵港)如图,抛物线y=ax 2+bx﹣ 3a(a≠0)与 x 轴交于点 A(﹣ 1, 0)和点 B,与 y 轴交于点 C( 0, 2),连接 BC.
(1)求该抛物线的解析式和对称轴,并写出线段BC的中点坐标;
(2)将线段 BC先向左平移 2 个单位长度,在向下平移m个单位长度,使点C的对应点 C
1 恰好落在该抛物线上,求此时点C1的坐标和 m的值;
(3)若点 P 是该抛物线上的动点,点Q是该抛物线对称轴上的动点,当以P, Q,B, C 四点为顶点的四边形是平行四边形时,求此时点P 的坐标.
9.(2014?贺州)二次函数图象的顶点在原点O,经过点 A( 1,);点 F( 0,1)在 y 轴上.直线 y=﹣ 1 与 y 轴交于点H.
(1)求二次函数的解析式;
y=﹣ 1 交于点M,求证:FM (2)点 P 是( 1)中图象上的点,过点P 作 x 轴的垂线与直线
平分∠ OFP;
(3)当△ FPM是等边三角形时,求P 点的坐标.
10. (2014 南宁)在平面直角坐标系中, 抛 物 线 y x 2 + k
1 x k 与 直 线 y kx
1
交于 A , B 两点,点 A 在点 B 的左侧 .
(1)
如图 12 1
,当 k
1
... .
A ,
B 两点的坐标;
时,直接写出
(2) 在 (1) 的条件下, 点 P 为抛物线上的一个动点,且在直线
AB 下方,试求出△
ABP 面积的最大值及此时点 P 的坐标;
(3) 如图 12 2 ,抛物线
y x 2 + k 1 x k k
0 与 x 轴交于 C ,D 两点(点 C
在点 D 的左侧) . 在直 线 y kx 1上 是否存 在唯一 一点 Q ,使得∠ OQC =90°?
若存在,请求出此时
k 的值;若不存在,请说明理由
.
11.( 2014?贵阳)如图,经过点A( 0,﹣ 6)的抛物线 y=x 2+bx+c 与 x 轴相交于B(﹣ 2,0),C两点.
(1)求此抛物线的函数关系式和顶点D的坐标;
(2)将( 1)中求得的抛物线向左平移 1 个单位长度,再向上平移m(m> 0)个单位长度得
到新抛物线y1,若新抛物线y1的顶点 P 在△ ABC内,求 m的取值范围;
(3)在( 2)的结论下,新抛物线 y1上是否存在点 Q,使得△ QAB是以 AB为底边的等腰三
角形?请分析所有可能出现的情况,并直接写出相对应的m的取值范围.
12. (2014 年贵州黔西南州) 已知点P( x0, y0)和直线y=kx+b ,则点P 到直线y=kx+b 的距离 d 可用公式d= 计算.
例如:求点P(﹣ 2, 1)到直线 y=x+1 的距离.
k=1, b=1.
解:因为直线y=x+1 可变形为x﹣ y+1=0,其中
所以点 P(﹣ 2,1)到直线y=x+1 的距离为
d= = ==.
根据以上材料,求:
(1)点 P( 1,1)到直线 y=3x﹣ 2 的距离,并说明点 P 与直线的位置关系;
(2)点 P( 2,﹣ 1)到直线 y=2x ﹣ 1 的距离;
(3)已知直线 y=﹣ x+1 与 y=﹣ x+3 平行,求这两条直线的距离.
13.(2014年贵州黔西南州) 如图所示,在平面直角坐标系中,抛物线y=ax2+bx+c经过A(﹣
3, 0)、 B( 1, 0)、C( 0,3)三点,其顶点为 D,连接 AD,点 P 是线段 AD上一个动点(不与 A、 D 重合),过点 P 作 y 轴的垂线,垂足点为 E,连接 AE.
(1)求抛物线的函数解析式,并写出顶点D 的坐标;
(2)如果 P 点的坐标为( x,y),△ PAE 的面积为 S,求 S 与 x 之间的函数关系式,直接写出自变量 x 的取值范围,并求出 S 的最大值;
(3)在( 2)的条件下,当S 取到最大值时,过点P 作 x 轴的垂线,垂足为F,连接 EF,
把△ PEF 沿直线 EF 折叠,点P 的对应点为点P′,求出 P′的坐标,并判断P′是否在该抛物线上.。

相关文档
最新文档