腐蚀环境种类

合集下载

腐蚀环境分类

腐蚀环境分类
浪溅区下界至设计低水位减1.0m之间
水位变动区下界至泥面
泥面
以下

掩护
按现行行业标准《港口与航道水文规范》(JTS145)计算的设计水位
设计高水位加(+1.0m)以上
大气区下界至
设计高水位减
之间
浪溅区下界至设计低水位减1.0m之间
水位变动区下界至泥面
泥面
以下
按天文潮潮位
最高天文潮位加0.7倍百年一遇有效波高H1/3以上
注:在沿海区的炎热、潮湿地带,质量或厚度损失可能超过C5—M种类的界限。
表B.2海水环境中Hat+H组合桩防腐蚀部位划分
掩护条件
划分类别
大气区
浪溅区
水位变动区水Biblioteka 区泥下区有掩护
按现行行业标准《港口与航道水文规范》(JTS145)计算的设计水位
设计高水位加1.5m以上
大气区下界至设计高水位减
1.0m之间
表B.3淡水环境中Hat+H组合桩防腐蚀部位划分
水上区
水下区
水位变动区
设计高水位以上
设计低水位以下
水上区与水下区之间
注:①水上区也可按历年来平均最高水位以上划分;
②库区工程分为水上区、水下区,以设计低水位作为分界。
C2

10~200
1.3~25
0.7~5
0.1~0.7
污染水平较低,大部分是乡村地区
未加热的地方,冷凝有可能发生在建筑内部
C3
中等
200~400
25~50
5~15
0.7~2.1
城市和工业大气,中等二氧化硫污染,低盐度沿海区
具有高温度和一些空气污染的生产车间
C4

金属腐蚀的种类

金属腐蚀的种类

金属腐蚀的种类金属腐蚀是指金属在特定环境下受到化学或电化学反应的影响,导致其表面失去原有的金属性质和功能的现象。

金属腐蚀种类繁多,主要可分为以下几类:一、普通腐蚀普通腐蚀是指金属在自然环境中或特定工作条件下,受到氧化、水解、酸碱等化学反应作用而导致表面失去原有金属性质和功能的过程。

这种腐蚀主要是由于环境中存在一定浓度的氧气和水分,使得金属表面发生氧化反应而产生锈迹。

二、微生物腐蚀微生物腐蚀是指在特定环境下,某些微生物通过代谢活动产生酸、碱等物质对金属表面进行侵蚀而引起的一种化学反应。

这种类型的腐蚀主要发生在海洋、地下沉积物及某些工业设备中。

三、应力腐蚀应力腐蚀是指在外界作用力(如张力、压缩力等)下,在特定介质中,金属表面发生化学反应而导致金属的腐蚀现象。

这种类型的腐蚀主要发生在高温、高压、高张力等工作环境中。

四、电化学腐蚀电化学腐蚀是指在特定介质中,金属表面与周围环境之间发生电化学反应而导致金属的失效。

这种类型的腐蚀主要是由于电极势差引起的。

五、氢致脆性氢致脆性是指在特定条件下,金属表面吸附大量氢原子而导致其变得容易断裂的现象。

这种类型的腐蚀主要发生在强酸、强碱等介质中,并且对于某些合金材料来说,氢致脆性也是一种常见问题。

六、疲劳裂纹疲劳裂纹是指在重复载荷作用下,金属材料内部产生微小裂纹,并逐渐扩大最终导致材料失效的过程。

这种类型的失效通常发生在机械设备和结构件上。

七、高温氧化高温氧化是指在高温环境下,金属表面与氧气反应而导致其表面发生化学变化的过程。

这种类型的腐蚀主要发生在高温炉窑、热处理设备等工作环境中。

总结:金属腐蚀种类繁多,每一种类型的腐蚀都有其特定的原因和影响因素。

对于不同类型的金属材料,在使用过程中需要根据实际情况选择合适的防护措施来延长其使用寿命。

材料腐蚀的种类、危害及解决办法

材料腐蚀的种类、危害及解决办法

材料腐蚀的种类、危害及解决方法康昆勇腐蚀是指材料受周围环境的作用,发生有害的化学变化、电化学变化或物理变化而失去其固有性能的过程。

通常环境介质对材料有各种不同的作用,其中有多种作用可导致材料遭受破坏,但只有满足以下两个条件,才称为腐蚀作用:①材料受介质作用的部分发生状态变化,转变成新相。

②在材料遭受破坏过程中,整个腐蚀体系的自由能降低。

材料腐蚀发生在材料外表。

按腐蚀反应进行的方式分为化学腐蚀和电化学腐蚀。

前者发生在非离子导体介质中;后者发生在具有离子导电性的介质中,故可通过改变材料的电极电位来改变腐蚀速度。

按材料破坏特点分为均匀腐蚀、局部腐蚀和选择性腐蚀。

均匀腐蚀指材料外表各处腐蚀破坏深度差异很小,没有特别严重的部位,也没有特别轻微的部分。

局部腐蚀是材料外表的腐蚀破坏集中发生在某一区域,主要有孔蚀、缝隙腐蚀、晶间腐蚀等。

选择性腐蚀是金属材料在腐蚀介质中,其活性组元产生选择性溶解,由金属材料合金组分的电化学差异所致。

按腐蚀环境又分为微生物腐蚀、大气腐蚀、土壤腐蚀、海洋腐蚀和高温腐蚀等。

金属材料以及由它们制成的结构物,在自然环境中或者在工况条件下,由于与其所处环境介质发生化学或者电化学作用而引起的变质和破坏,这种现象称为腐蚀,其中也包括上述因素与力学因素或者生物因素的共同作用。

某些物理作用例如金属材料在某些液态金属中的物理溶解现象也可以归入金属腐蚀范畴。

一般而言,生锈专指钢铁和铁基合金而言,它们在氧和水的作用下形成了主要由含水氧化铁组成的腐蚀产物铁锈。

有色金属及其合金可以发生腐蚀但并不生锈,而是形成与铁锈相似的腐蚀产物,如铜和铜合金外表的铜绿,偶尔也被人称作铜锈。

由于金属和合金遭受腐蚀后又回复到了矿石的化合物状态,所以金属腐蚀也可以说是冶炼过程的逆过程。

上述定义不仅适用于金属材料,也可以广义地适用于塑料、陶瓷、混凝土和木材等非金属材料。

例如,涂料和橡胶由于阳光或者化学物质的作用引起变质,炼钢炉衬的熔化以及一种金属被另一种金属熔融液态金属腐蚀,这些过程的结果都属于材料腐蚀,这是一种广义的定义。

腐蚀及防蚀理论

腐蚀及防蚀理论

M2+水化及不动态皮膜破坏
腐蚀初期阶段 Fe → Fe2+ + eO2 + 2H2O + 4e- → 4OH-
← 隙间腐蚀 的 初 期 阶段
Material : Nickel alloy (Hastelloy C4) Part : Bolts and nuts of agitator (1year)
M(n+x)+ +
☞电话电池(Electrochemical Cell)內的电子消磨反 应 ☞代表性的有卤族元素
Xn- + x e还原反应式 + Cl2 3 e2 Cl+
x
eFe2+
X(n+x)
2 e-
※ 氧化,还原反应通常会同时发生,两级电荷形成均衡 (氧化) 2Na+ + 2 e2Na
(还原)
2Cl-
局部腐蚀(Localized Corrosion)
④ 应力腐蚀开裂 (Stress Corrosion Cracking)
⑤ 氢腐蚀 (Hydrogen Attack) ⑥ 腐蚀疲劳(Corrosion Fatigue) ⑦ 导航仪腐蚀 (Cavitations Corrosion) ⑧ 电偶腐蚀 (Galvanic Corrosion)
4H2O : 酸化第二鐵

腐蚀环境的特性
环境
腐蚀程度
比较
海岸地方
都市环境 山间地方
100 (基准)
20 ~ 30 10 ~ 20
盐分
产业公害物质
※ 上记表是一般的统计资料或都市环境(包含工业地带)时,酸性雨等的影响腐蚀程 度更为严重的增加的趋势
海洋环境的主要腐蚀因子

腐蚀与防腐蚀技术

腐蚀与防腐蚀技术

腐蚀与防腐蚀技术腐蚀是指金属或其他材料在特定的环境中发生的不可逆转的化学或电化学反应,导致其失去原有功能和性能的现象。

腐蚀在工业、航空、电子、能源等领域中都存在,并且对经济社会发展造成了极其严重的影响。

防腐蚀技术是避免腐蚀的发生或降低腐蚀速度的一种手段,其重要性不言而喻。

腐蚀的类型腐蚀主要包括化学腐蚀、电化学腐蚀和生物腐蚀三种类型。

化学腐蚀是由于材料与接触介质发生化学反应而导致的腐蚀,如金属在空气中氧化。

电化学腐蚀是由材料与电解质接触而引起的,如金属的电化学溶解。

生物腐蚀主要是由微生物引起的,这些微生物产生的代谢物质可引起金属量的变化、金属材料结构的破坏和化学变化,从而导致材料失效。

腐蚀的危害腐蚀会导致材料损坏、寿命缩短、性能下降、甚至失效。

在航空航天、能源、交通、化工、海洋等领域,腐蚀造成的损失非常严重,并且还会威胁到人类的生命安全。

对于金属材料来说,腐蚀是一个不可逆转的过程,只有通过防腐蚀措施才能在一定程度上避免腐蚀过程的发生或减缓腐蚀的进展。

防腐蚀技术防腐蚀技术是指通过一定的方式和手段来避免或减缓腐蚀的发生,以保护材料的性能和寿命。

防腐蚀技术的种类繁多,包括表面处理、涂装、镀层、保护金属、防蚀材料等。

表面处理是一种通过物理或化学方法对金属表面进行改性的技术。

表面处理可以在一定程度上提高金属的耐蚀性。

常见的表面处理方法包括机械处理、化学处理和热处理等。

涂装是一种通过在金属表面涂上一层保护涂层的技术。

常见的涂装方法包括喷涂、浸涂、电泳沉积等。

涂层的材料和性质不同,涂层的防蚀效果也会有所区别。

镀层是一种通过在金属表面镀上一层金属或合金的技术。

常见的镀层方法包括电镀、热浸镀、喷镀等。

镀层的材料和厚度可以根据不同的需要进行选择,以达到预期的防蚀效果。

保护金属是一种通过向金属表面施加电位或电流来改变金属表面的物理和化学状态,从而达到保护作用的技术。

常见的保护金属方法包括阳极保护、阴极保护等。

防蚀材料是一种可以在自然气候条件下保护金属的材料。

第2章 腐蚀环境

第2章  腐蚀环境

常 用 金 属 材 料 的 耐 蚀 性
2.3
2.3.1定义:
大气腐蚀
大气腐蚀通常是指在常温下暴露在地球大气中的所发生的腐蚀。
常 用 金 属 材 料 的 耐 蚀 性
2.3.2大气腐蚀的影响因素:
1、湿度的影响
相对湿度 :空气中水蒸气含量与同温度下饱和水蒸气含量的比 值的百分数。
临界湿度——当湿度达到一定程度时,金属突然加速腐蚀时的 湿度值。 临界湿度以下腐蚀可以忽略,大于临界湿度,腐蚀随相对湿度 增加而增加。临界湿度取决于金属及其表面的污染程度。
常 用 金 属 材 料 的 耐 蚀 性
2、水膜中质点的影响
主要是:氧、硫化物、氯化物、灰尘等
3、温度的影响
注:影响大气腐蚀的最主要因素是水分!
常 用 金 属 材 料 的 耐 蚀 性
2.3.3大气分类
1、乡村大气:主要指SO2低。
2、城市大气:含SO2和烟尘。 3、工业大气:工厂区,不同工业会有不同污染。 4、海洋大气:很高的氯化物浓度 。
常 用 金 属 材 料 的 耐 蚀 性
2、海水腐蚀的影响因素:
(1)盐度 (2)pH值 (3)碳酸盐饱和度 (4)含氧量 (5)温度
常 用 金 属 材 料 的 耐 蚀 性 (6)流速
(7)生物的影响
①海生物附着不完整均匀时,附着层内外造成浓差电池; ②由于生物的生命活动,局部改变了海水介质成分; ③附着植物根的穿透和剥落,破坏了金属表面保护层。
土壤是土粒、水和空气的混合物。由于水中溶有各种盐类,故 土壤是一种腐蚀性电解质,金属在土壤中的腐蚀属于电化学腐蚀。 土壤中含有多种无机物质和有机物质,这些物质的种类和含量 既影响土壤的酸碱性,又影响土壤的导电性。土壤是不均匀的,因 此长距离的地下管道和大尺寸的地下设施,其各个部位接触的土壤 的结构和性质可能有较大的变化。土壤中还有大量微生物,对金属 腐蚀能起加速作用。

化学腐蚀的分类

化学腐蚀的分类

化学腐蚀的分类
1. 均匀腐蚀,哎呀,这就像一场慢慢侵蚀的细雨,悄无声息但持续不断。

比如说铁栏杆长期暴露在空气中,它的整个表面都在逐渐被腐蚀,这就是均匀腐蚀啊!
2. 点蚀可厉害了!就好像是被虫子一点点咬出小洞洞。

像不锈钢在含有氯离子的环境中,就容易出现点蚀,一个一个的小坑,多吓人呀!
3. 缝隙腐蚀,这就如同藏在缝隙里的小恶魔呀!比如说螺丝与螺母之间的缝隙,就容易发生这种腐蚀,真让人头疼呢!
4. 晶间腐蚀简直是个隐藏的杀手!就好像是从内部瓦解一样。

不锈钢在焊接后有时就会发生晶间腐蚀,外表还好好的,里面却不行了,气人不!
5. 应力腐蚀,哎呀呀,这就像是压力和腐蚀合起伙来捣乱。

像一些承受应力的金属在特定环境下,就可能因为这个遭殃,你说讨厌不讨厌!
6. 电化学腐蚀,这可是常见的呢!不就像电池在工作嘛。

像铁和铜放在一起,在潮湿环境里,就容易发生电化学腐蚀。

7. 冲刷腐蚀,那可是很猛的哟!就如同激流不断冲击。

比如管道里的流体长期冲刷,就会导致这种腐蚀,多厉害呀!
8. 氢脆腐蚀,这就好像给金属注入了“坏东西”。

一些金属在含氢环境下会发生氢脆腐蚀,这可不好对付呀!
9. 微生物腐蚀,哇塞,这就是微生物在搞鬼呀!像在一些有微生物的环境中,金属就可能被它们影响而腐蚀。

总之,化学腐蚀的种类好多呀,每一种都不容小觑,我们得重视起来,好好保护我们身边的金属制品!。

腐蚀分类

腐蚀分类
⑵ 溶液中的氧浓度:氧浓度增加,缝外阴极还原更易进行, 缝隙腐蚀加速。
⑶ 腐蚀液流速:分两种情况:当流速增加时,缝外溶液中含 氧量相应增加,缝隙腐蚀增加;另一种情况,对由于沉积 物引起的缝隙腐蚀,当流速加大时,可能把沉积物冲掉, 相应使腐蚀减轻。
⑷ 温度:温度升高增加阴极反应,当 T 大于 80℃ 时溶解氧 减少,腐蚀减轻。
图 4.1 、动电位测量阳极极化曲线模式图
图 4.2 304 不锈钢在含 3.5%NaCl 水溶 液中形成的点蚀坑形貌
图 4.3 点蚀坑的各种剖面形貌( ASTM G46—76 )
a) 窄深形 b) 椭圆形 c) 宽浅形 d) 空洞形 e) 底切形 f) 水平形 g) 垂直 形
三、点蚀机理: Hoar 等人提出,点蚀可分为两个阶段, 即成核和发展阶段。容易钝化的金属,由于钝态的局部破 坏,孔蚀现象尤为显著。当介质含有某些活性阴离子(如 Cl -)时,他们首先吸附在金属表面某些点上,然后对其 氧化膜发生破坏作用。在膜受到破坏的地方,成为电偶的 阳极,而其余未被破坏的部分则成阴极,于是就形成活化 —钝化电池。由于阳极面积比阴极面积小得多,阳极电流 密度很大,很快就被腐蚀成为小孔。与此同时,当腐蚀电 流流向小孔周围的阴极,又使这一部分受到保护,继续维 持在钝态,溶液中的 Cl -离子,随着电流的流通,即向小 孔里迁移。这样就使小孔内形成金属氯化物的浓溶液,它 使小孔内继续保持着活化状态,又由于氯化物的水解,小 孔内溶液的酸度增加,使小孔进一步腐蚀,这就是点蚀的 自催化理论。
五、防止点蚀措施:
⑴ 改善介质条件:如降低溶液中 Cl -含量,降低温度。 ⑵ 阴极保护:阴极极化使电位低于 Eb ,最可靠是低于
Ep ,使不锈钢处于稳定钝化区。 ⑶ 对合金表面进行钝化处理,提高材料钝态稳定性。 ⑷ 使用缓蚀剂:封闭系统中使用缓蚀剂最有效,对不锈钢

腐蚀的种类和定义

腐蚀的种类和定义

腐蚀的种类和定义腐蚀是指材料在特定环境下受到侵蚀、损坏的过程。

腐蚀不仅仅对金属材料有影响,还可以对混凝土、陶瓷、塑料等其他材料造成损害。

腐蚀的种类和定义主要有以下几种:1.电化学腐蚀:电化学腐蚀是指在电解质液中,电极表面的金属在阳极区被溶解,形成金属离子,并在阴极区还原成金属。

这种腐蚀过程是由于金属表面形成的阳极和阴极之间的电势差所引起的。

电化学腐蚀是最常见的腐蚀形式,比如金属结构在海洋和化工环境中容易受到电化学腐蚀的影响。

2.化学腐蚀:化学腐蚀是指发生在一些特殊介质中的腐蚀过程。

这种腐蚀并不需要电化学反应,而是由于其中一种化学物质对材料的侵蚀作用。

常见的化学腐蚀形式包括酸腐蚀、碱腐蚀和盐腐蚀等。

例如,硫酸和盐酸可以对金属产生强烈的酸腐蚀。

3.气体腐蚀:气体腐蚀是指气体对材料的侵蚀作用。

不同的气体对材料有不同的腐蚀影响,比如酸性气体如二氧化硫和氯气可引起金属腐蚀,而水蒸汽对一些材料的氧化也属于气体腐蚀的一种。

气体腐蚀在许多工业过程中都是一个重要的问题,如炼油、化工和电力等领域。

4.微生物腐蚀:微生物腐蚀是由微生物对材料表面的侵蚀作用引起的一种特殊腐蚀形式。

微生物腐蚀主要是由细菌、真菌和藻类等微生物引起的。

这些微生物能够分解材料表面的有机物,并产生酸性物质,从而导致材料的腐蚀。

微生物腐蚀在海洋环境和水处理过程中都很常见。

5.磨蚀腐蚀:磨蚀腐蚀是由于材料表面的磨损和腐蚀共同作用而发生的一种腐蚀形式。

磨蚀腐蚀主要是由于颗粒物的磨损作用以及腐蚀介质对材料的侵蚀作用共同作用引起的。

磨蚀腐蚀在一些机械设备和液体输送管道中经常发生。

以上是几种常见的腐蚀种类和定义,不同种类的腐蚀对材料造成的损害也有所不同。

为了防止和减轻腐蚀的发生,需要采取相应的措施,比如使用耐腐蚀材料、表面涂层和阴极保护等方法。

此外,加强腐蚀研究以及开发新型抗腐蚀材料也是重要的方向。

腐蚀分类1.

腐蚀分类1.

第二阶段:蚀孔发展
当蚀孔形成后,蚀孔内部的电化学条件 会发生显著的改变,蚀孔内部的电化学条件 对蚀孔的生长产生很大的影响。 蚀孔发展的过程:先形成“闭塞电池” , 然后形成“活化-钝化腐蚀电池 ”加速蚀孔 的发展-自催化机制 稳定的蚀孔一旦形成,发展十分迅速。
1.闭塞电池的形成条件: 在反应体系中存在以下条件: 阻碍液相传质过程条件: 蚀孔口腐蚀产物的塞积,缝隙及(应力腐蚀的)裂纹; 局部不同于整体的环境; 局部不同于整体的电化学和化学反应 2. “活化-钝化腐蚀电池”蚀孔自催化发展过程: 蚀孔的发展过程中,腐蚀体系是个多电极腐蚀电池体 系(多电极反应耦合系统),蚀孔内、外的阴极反应不同。
点蚀的影响因素
一、环境因素 : 1、介质类型:
材料易发生点蚀的介质是特定的。 例如: 不锈钢容易在含有卤素离子Cl-、Br-、I-的溶液中发生点蚀 铜对SO42-敏感,在含SO42-溶液中发生点蚀 当溶液中具有FeCl3、CuCl2为代表的二价以上重金属氯化物 时,由于金属离子强烈的还原作用,大大促进孔蚀的形成和 发展。
第一阶段:蚀孔成核
1. 钝化膜破坏理论: 钝化的成相膜理论认为,当电极阳极极化时, 钝化膜中的电场强度增加,吸附在钝化膜表面上的 腐蚀性阴离子(如Cl-),因其离子半径较小而在 电场的作用下进入钝化膜,使钝化膜局部成为强烈 的感应离子导体,钝化膜在该点上出现了高的电流 密度,并使阳离子杂乱移动而活跃起来。 当钝化膜-溶液界面的电场强度达到某一临界 值时,就导致蚀孔成核。
2、介质浓度:
只有当卤素离子达到一定浓度时,才发生点蚀。产生点 蚀的最小浓度可以作为评定点蚀趋势的一个参量。
例如,不锈钢的点蚀电位随卤素离子浓度升高而下降, 其关系可表示为:

大气腐蚀环境等级

大气腐蚀环境等级

大气腐蚀环境等级大气腐蚀是指大气污染物质与金属材料发生化学反应,使其腐蚀损坏的一种现象。

由于大气中的污染物质种类繁多,腐蚀程度也不同,因此,对大气腐蚀环境进行分类并对其进行测量评估对于防止腐蚀产生具有重要意义。

目前,国际上普遍使用的评估方法是根据大气腐蚀的程度将其分为不同的环境等级。

一、第一类环境等级:腐蚀性弱第一类环境等级是指具有腐蚀性的物质在这种环境中呈非常微弱的存在状态,如果存在腐蚀,其对材料的破坏也很微弱,一般情况下不会对材料造成重大的腐蚀损伤。

此类环境包括干燥的大气环境、冷凝水或高度污染的公路隧道等。

二、第二类环境等级:腐蚀性中等在第二类环境中,具有腐蚀性的物质在一定程度上存在,如果材料没有得到保护,那么它会在一定时间内受到显著的腐蚀损伤。

这种环境包括城市和工业区域的大气,海洋海岸地区以及边缘地带。

三、第三类环境等级:强腐蚀性第三类环境等级是指腐蚀性物质存在于大气中,对金属的腐蚀影响非常严重,会造成材料的迅速破坏和腐蚀损伤。

这种环境包括化工厂、工矿区域、海洋、化肥厂等。

四、第四类环境等级:特殊环境有些环境具有非常特殊的腐蚀条件,例如强酸、强碱性环境等。

这种环境不同于前三类环境,对生产以及生活十分不利,对于防腐控制来说也具有相当的难度。

对于不同的大气腐蚀环境,我们需要采取不同的防护措施。

在无法改变环境的情况下,我们可以采用防护涂料或采用钢结构、铝合金、不锈钢等腐蚀性能良好的材料。

同时定期检测和维护保养是非常重要的,能够有效延长设备寿命。

大气腐蚀环境等级的评估不仅仅是一种科学技术,还与我们的生产和生活息息相关。

通过更好地认识和研究大气腐蚀环境,我们可以更好地预防腐蚀、节约资源、保护环境,为人类的可持续发展贡献力量。

化工腐蚀的类型

化工腐蚀的类型

全面腐蚀⏹定义:化学或电化学反应在全部暴露的表面或大部分表面上均匀地进行,金属m,逐渐变薄,最终失效。

⏹电化学特点:腐蚀的电池的阴阳面积非常小,微阳极和微阴极的位置是变化不定的,整个金属属于活化状态保护措施:(造成金属的大量损失,不会有突发事故)⏹1)工程设计时考虑合理的腐蚀裕度⏹2)合理选材⏹3)涂覆保护层(最广泛、普遍的方法)⏹4)加入缓蚀剂(如在循环水系统中加入磷系缓蚀剂,在油田系统中加入防止CO2腐蚀的缓蚀剂)⏹5)阴极保护(埋地管线、海洋环境中的钢结构、桥梁、船舶普遍采用)局部腐蚀⏹定义局部腐蚀是指金属表面局部区域的腐蚀破坏比其余表面大得多,从而形成坑洼、沟槽、分层、穿孔、破裂等破坏形态。

主要类型(1)晶间腐蚀、缝隙腐蚀(2)电偶腐蚀、氢损伤、细菌腐蚀、杂散电流腐蚀(3)小孔腐蚀、选择性腐蚀(4)应力腐蚀、磨损腐蚀破坏形态:发生原因:⏹凹坑⏹裂缝⏹裂缝⏹深孔⏹发生原因:1)金属方面的不均匀性2)溶液(环境)方面的不均匀性3)几何结构不当危害性局部腐蚀破坏有如下特征:⏹复杂性⏹集中性⏹突发性发生局部腐蚀的条件(1) 金属方面或溶液方面存在较大的电化学不均一性,即可以形成明确区分的阳极区、阴极区,且阳极区位置固定不变。

(必要条件)(2) 阳极区和阴极区的电化学条件差异在腐蚀过程中一直保持下去。

局部腐蚀和全面腐蚀的比较\金属不均匀导致的局部腐蚀(一)——电偶腐蚀◆电偶腐蚀的概念和特征定义:当两种不同电位金属相互接触,并浸入电解液中,发现电位较负的金属腐蚀速率加大,电位较正的金属的腐蚀速率减缓或受到保护的现象。

⏹特征:腐蚀发生在相互接触的边线附近。

如果接触面同时存在缝隙,缝隙又存留有电解质,就可能构成电偶腐蚀和缝隙腐蚀的联合作用,腐蚀加剧。

条件:⏹1)存在两种不同电位的金属或非金属导体⏹2)有电解质溶液存在⏹3)两种金属通过导线连接或直接接触⏹发生电偶腐蚀的几种情况(1)异金属部件的组合。

(2)金属镀层。

金属材料的腐蚀与防护

金属材料的腐蚀与防护

金属材料的腐蚀与防护在工业生产和日常生活中,金属材料扮演着不可替代的角色。

但是,它们也会因为环境因素、化学作用等原因而发生腐蚀,损害其机械性能和使用寿命,甚至影响人们的生命安全。

因此,了解金属材料的腐蚀过程和防护方法具有重要意义。

一、金属材料的腐蚀过程腐蚀是指金属材料在化学或电化学作用下,与环境中的物质发生反应,导致它的表面和内部结构发生不可逆的化学和物理变化,失去原有的功能和性能,最终导致材料的破坏。

腐蚀过程是复杂的,它受到多种因素的影响,包括金属的化学成分、物理状态、表面状态、环境因素等。

一般来说,腐蚀过程可以分为以下几个步骤:1.电化学反应:当金属材料暴露在潮湿的环境中时,发生了电化学反应。

金属表面被氧化,释放出电子,金属离子与电子形成离子完成电化学反应。

2.离子传递:金属被氧化成离子后,会从金属表面溶解进入环境中。

这些离子会在溶解溶液中扩散。

3.物质传递:与离子不同,扩散的分子需要通过相对稀薄的化学层来到达金属表面。

4.反应过程:化学反应发生在金属表面附近的化学小区。

5.物质生成:这些反应会发生物质生成,依照具体环境和材料而有所不同。

二、金属材料腐蚀的种类金属材料的腐蚀情况和作用环境有关,腐蚀种类有以下几种:1.常温常压下的氧化腐蚀:接触到空气、湿度和离子,金属的表面开始氧化并形成氧化物,会引起材料的凝覆和断裂。

2.化学腐蚀:当金属与化学介质如华盐、硫酸等相遇时,化学反应会导致金属的变化,造成分解和溶解,使材料的结构和性质发生变化。

3.微生物腐蚀:水中常常存在着多种微生物,在特定的条件下侵蚀金属。

4.蚀刻腐蚀:电解去除或清除金属表面异质物或表面上的细小缺陷。

三、金属材料腐蚀的防护方法1.选择合适的材料:高品质的金属材料在腐蚀环境下能够表现出不同的耐腐蚀性能,包括提供防腐保护的优良表面处理层、抗蚀材料的表面涂料和特殊的合金。

2.改进金属材料表面的情况:通过修改金属的表面特性来进行防腐。

如金属材料表面电镀、镀铬、喷涂等。

腐蚀总结

腐蚀总结

1.腐蚀的定义,因素材料受环境介质的化学作用或电化学作用而变质和破坏的现象。

三个基本要素:腐蚀的对象,腐蚀的性质,腐蚀的后果。

腐蚀过程的本质,△G﹤0,自发过程,不可逆过程腐蚀、磨损和断裂,决定了材料的寿命;2.腐蚀控制的基本方法:1)合理的结构设计2)正确选材和发展新型耐,蚀材料3)采用合理的表面工程技术4)改善环境和合理使用缓蚀剂5)电化学保护3. 按腐蚀环境分类:(较直观和使用)有:干燥气体腐蚀、潮湿环境腐蚀、非电解液的腐蚀。

按腐蚀形态分类:(有利于辨别和诊断腐蚀失效)分为全面腐蚀、局部腐蚀两大类。

局部腐蚀的类型:(1)小孔腐蚀(2)缝隙腐蚀(3)电偶腐蚀(4)晶间腐蚀(5)应力腐蚀破裂(6)氢脆(7)腐蚀疲劳(8)选择性腐蚀4.材料腐蚀程度的表示方法1.重量指标:材料因腐蚀而发生的重量变化,换算成相当于单位材料表面积于单位时间内重量变化的数值, 常用单位:mg/cm2h2. 深度指标:材料的厚度因腐蚀而减少的量,以长度单位表示,并换算成单位时间的数值,常用单位:mm/a3. 电流指标:用腐蚀金属的阳极电流密度的大小,衡量金属腐蚀速度的快慢,常用单位:mA/cm25.腐蚀电池三个基本过程:阳极过程:金属溶解并以离子形式进入溶液,同时把等当量的电子留在金属中。

阴极过程:从阳极移迁过来的电子被电解质溶液中能够吸收电子的物质D所接受。

电荷的传递:金属中依靠电子从阳极到阴极;在溶液中依靠离子的迁移6. 根据热力学原理,可用吉布斯(Gibbs)自由能判据来判断化学反应发生的方向和限度。

动力学:腐蚀反应中电极电位7.金属-溶液界面上建立了双电层,使得金属与溶液间产生电位差,这种电位差称为电极电位。

电极电位影响因素:1. 构成电极的物质自身性质 2. 物质表面状态 3. 溶液中离子的浓度 4. 气态物质的分压、温度电极电位的测量。

测定其它电极的标准电极电位时,可将标准态的待测电极与标准氢电极组成原电池,测定原电池的电动势,8. α氧化/ α还原-为氧化物质和还原物质的活度比,E0 -标准电极电位,n -金属离子价数,F -法拉第常数,R -理想气体常数,T -热力学温度9.腐蚀电化学判据:,ε=Ec –Ea:阴极电位和阳极电位之差,阳极溶解和阴极还原反应构成的腐蚀电池体系中:Ea < Ec:电位为Ea的金属发生腐蚀,Ea = Ec:平衡状态,Ea > Ec:电位为Ea的金属不发生腐蚀10. 电位-PH图:以电位(平衡电极电位)为纵坐标,以pH为横坐标的电化学平衡图,又称布拜图. 物理意义:给出反应的平衡电极电位与pH关系应用:可以直接判断在给定条件下反应进行的可能性。

钢结构大气环境腐蚀性等级分类、程防腐设计文件要求、材料质量影响因子、施工质量影响因素及等级要求

钢结构大气环境腐蚀性等级分类、程防腐设计文件要求、材料质量影响因子、施工质量影响因素及等级要求

附录I钢结构大气环境腐蚀性等级分类ImR和IR(R,reduced)分别代表质量变化和重量变化,单位分别为g∕m2和μm; 2试样的质量或厚度划分腐蚀性等级,两者结果不同时,应按较高的等级确定。

附录II钢结构工程防腐设计文件要求II.0.1钢结构防腐设计应明确项目的钢构件防腐蚀年限。

H.0.2钢结构防腐设计应明确项目所处的腐蚀环境等级。

II.0.3钢结构防腐设计应对构件表面的清洁度等级和粗糙度数值做出规定,宜给出构件表面(包括板件边角、焊缝表面等)的表面处理方式。

II.0.4钢结构防腐设计应确定底漆、中间漆和面漆的种类、干膜厚度和涂覆遍数。

H.0.5钢结构防腐设计应给出防腐涂装的施工注意事项,包括:1抛丸除锈后与第一遍底漆涂装之间的时间间隙;2适宜涂装的温度、湿度、通风条件,以及在不同季节需要避开的不利于涂装作业的时间段;3涂层与基材之间的粘结强度要求;4最外侧涂层与防火涂料之间的兼容性要求;5其他需要注意的事项。

IL0.6钢结构防腐设计应给出钢结构构件特殊部位的防腐施工方法,这些特殊部位包括:1型钢混凝土构件内的型钢、现场焊缝等不需要进行工厂涂装的部位;2现场焊缝部位;3高强螺栓连接的摩擦面;4当螺栓球网架节点;5柱脚位置;6其他需要特殊处理的部位。

附录In钢结构防腐蚀工程选用材料质量影响因子附录IV钢结构防腐蚀工程施工质量影响因素及等级要求ιv.o.ι注册资金企业注册资金根据企业性质要求如表IV.O.loIV.0.2涂装车间及储存仓库钢结构防腐蚀涂装企业应具备符合涂料存储要求的仓库。

涂装车间面积(包括表面处理车间、喷涂车间等)要求如表IV.0.2oIV.0.3涂装规模及技术难度1近3年年均钢结构涂装产值要求如表IV.03-102承担过钢结构防腐蚀涂装工程质量达到《钢结构工程施工质量验收规范》(GB50205)或其他相关标准的要求,工程的腐蚀环境或钢结构设计使用年限要求如IvO.3-2。

钢结构防护涂装基本设备要求如表IV.0.4o2钢结构防护涂装企业应具备基本的涂装质量试验检验条件,基本要求如表IVo5・2oIV.0.6企业主要人员技术负责人应具有从事钢结构防护涂装施工技术管理工作经历,熟悉各相关专业技能:管理人员包括持有岗位证书的施工员、质量员、安全员、造价员等;技术工人应通过培训并考核合格。

腐蚀的种类,原因,影响及其腐蚀的控制

腐蚀的种类,原因,影响及其腐蚀的控制

腐蚀及腐蚀的控制许多物品和构件涂漆主要是为了装饰;即:改变其外观。

使用保护涂料时,其目的则是为了保护表面免遭腐蚀。

当然,大多数涂料施工在表面上起着保护和装饰双重作用。

基本了解腐蚀过程将有助于使检查人员懂得为什么要使用保护涂料,并学会应用将碰到的各种配套。

每个人都亲眼目睹过一种或多种形式的腐蚀。

在工作场所和日常生活中有许多关于腐蚀的实例。

定义NACE 按如下定义腐蚀:腐蚀是一种材料(通常为金属)因与周围环境发生反应而变坏的现象。

该定义范围甚广,并说明除了金属以外,其它材料例如:混凝土,木材和塑料等也会变坏或遭受腐蚀。

对于本讨论,我们将主要关注用于建造业的钢材以及其它金属的电化学腐蚀。

[在本大纲的高级单元中,我们将研究混凝土的‘腐蚀’并发现钢筋混凝土的损坏往往由于增强(钢)筋遭受腐蚀而造成。

] 腐蚀是一种遵循科学规律的自然现象或过程,所以我们不应对腐蚀发生的现实情况感到惊奇。

几乎所有材料暴露于自然环境中都会变坏。

例如:铁或钢暴露于空气和水中时,我们会看到锈在几小时内逐步显现出来,出现我们所熟悉的红棕色氧化铁。

有时甚至会在几分钟内产生腐蚀。

如果是其它材料,例如:用铜,黄铜,锌,铝或不锈钢代替铁,也会发生某种程度的腐蚀,但可能所花时间较长。

这些材料腐蚀速率降低的一个原因是由于铜,锌,铝或铬形成了保护性金属氧化物。

这种氧化层虽然相当薄,但对不断的侵蚀形成了一种保护屏障,因而降低了腐蚀速率,使其几乎处于停止状态。

这种自然过程称作钝化。

无论是氧化物,碳酸盐,氯化物,硫酸盐,还是其它化合物,这一表面层的形成是耐腐蚀的主要因素,特别是如果表面层能有效地将金属与所处环境隔离开来。

这种自然形成的涂层必定是既具耐扩散性又具耐水性。

措施进行保护,金属最终必将遭至损坏。

在大多数情况下,保护涂料用于在金属表面上生成人工保护层并延长金属的有使用寿命。

通常认为金属的腐蚀与电化学有关。

电流通过电解质气。

[我们称这种腐蚀过程为电化学反应(有时也称作电池作用)的化学反应。

腐蚀的理论及应用-部分章节总结

腐蚀的理论及应用-部分章节总结

《腐蚀理论及应用》部分篇章总结根据腐蚀的基本过程易知,其主要是在金属与介质之间的界面上进行,故腐蚀介质对金属材料的腐蚀过程有重大的影响。

在石油化工生产中,由于各种介质的性质不同,金属在其中的腐蚀规律也不同。

以下简述金属在各种环境下的腐蚀。

(1)金属在干燥气体中的腐蚀:分析金属在干燥气体中的腐蚀,有实际意义的是高温(500~1000℃)下的腐蚀,包括金属的高温氧化、钢的脱碳、铸铁的肿胀和钢在高温高压下的氢腐蚀。

(2)金属在大气中的腐蚀:这是最古老的腐蚀问题,在很大程度上取决于大气的成分、湿度和温度。

表面的潮湿程度,通常是决定大气中腐蚀速度的主要因素,腐蚀率通常随湿度增加而增加,对于许多金属都存在一个临界湿度,在临界湿度以上,腐蚀速度迅速增大。

腐蚀程度最大的是潮湿的、受严重污染的工业大气,对于大多数工业结构合金来说,最能加速腐蚀工程的是二氧化硫、硫化氢、氯。

(3)金属在海水中的腐蚀:海水是唯一的含盐浓度相当高的电解质溶液也是天然腐蚀剂中腐蚀性最强的介质之一。

海水除含盐类外,还有含量小的其他组分,如臭氧、游离的碘和溴亦是强烈的阴极去极化剂和腐蚀促进剂。

由于海水对金属的腐蚀作用是有电化学的本质,故金属在海水腐蚀中的一个重要参数是电极电位,然而多数金属在海水中的开路电位不是一个常数,它随氧含量、水速、温度和金属的表面条件、冶金因素而改变。

而许多非铁金属如铝、钛等在静止或缓慢流动的海水中,腐蚀率是比较小的。

(4)金属在土壤中的腐蚀:多数土壤是无机的和有机的胶质混合颗粒的集合,有毛细管多孔性,土壤的空隙为空气和水气所充满,土壤中含有的盐类溶解在水中,使土壤具有离子导电性,成为一种电解质。

大多数金属在土壤中的腐蚀都属于氧去极化腐蚀,只有在少数情况下才发生氢去极化腐蚀。

土壤腐蚀常见的形式有:由于充气不均引起的腐蚀、由杂质电流引起的腐蚀和由微生物引起的腐蚀。

(5)金属在酸、碱中的腐蚀:酸类对金属的腐蚀情况包括非氧化性酸腐蚀(腐蚀的阴极过程纯粹为氢去极化过程)和氧化性酸腐蚀(腐蚀的阴极过程主要是氧化剂的还原过程)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

环境种类大气腐蚀环境1.农村大气农村大气是最洁净的大气,空气中不含强烈的化学污染,主要含有有机物和无机物尘埃等。

影响腐蚀的因素主要是相对湿度、温度和温差.2.城市大气城市大气的主要污染物主要是城市居民生活所造成的大气污染,如汽车尾气、锅炉排放的SO2等。

实际上,很多大城市往往也是工业城市,或者是海滨城市,所以大气环境污染的相当复杂。

3.工业生产区大气工业生产区所排放的污染物含有大量的SO2、H2S等含硫化合物,所以工业大气环境最大的特征是含有硫化物。

他们易溶于水,形成的水膜成为强腐蚀介质,加速金属的腐蚀。

随着大气相对湿度和温差的变化,这种腐蚀作用更强。

很多石化企业和钢铁企业往往非常大,可以形成一个中等城市规模,大气质量相当差,对工业设备和居民生活造成的污染极其严重。

4.海洋大气其特点是空气湿度大,含盐分多。

暴露在海洋大气中的金属表面有细小盐粒子的沉降。

海盐粒子吸收空气中的水分后很容易在金属表面形成液膜,引起腐蚀。

在季节或昼夜变化气温达到露点是尤为明显。

同时尘埃、微生物在金属表面的沉积,会增强环境的腐蚀性。

所以海洋大气对金属结构的腐蚀性比内陆大气,包括乡村大气和城市大气要严重的多.海洋的风浪条件、离海面的高度等都会影响到海洋大气腐蚀性。

风浪大时,大气中的水分含盐量高,腐蚀性增加。

据研究,离海平面7~8m处的腐蚀最强,在此之上越高腐蚀性越弱。

雨量的大小也会影响腐蚀,频繁的降雨会冲刷掉金属表面的沉积物,腐蚀会减轻。

相对湿度升高会使海洋大气腐蚀加剧。

一般热带腐蚀性最强,温带次之,两级最弱。

中国最典型的处于海洋腐蚀环境中的是杭州湾跨海大桥,地处亚热带海洋性季风气候。

5.处于海滨的工业大气环境,属于海洋性工业大气,这种大气中既含有化学腐蚀污染的有害物质,又含有海洋环境的海盐粒子。

2种腐蚀介质的相互作用对混凝土的危害更大。

淡水腐蚀环境混凝土碳化模型国内外学者提出了许多混凝土碳化深度预测模型,这些模型大致可分为两类:一类是基于试验数据或实际结构的碳化深度实测值,采用数学统计或神经网络等方法拟合得到的经验模型;另一类为基于碳化反应过程的定量分析建立的理论模型。

灰色理论它是一门研究信息部分清楚、部分不清楚并带有不确定性现象的应用数学学科。

传统的系统理论,大部研究那些信息比较充分的系统。

对一些信息比较贫乏的系统.利用黑箱的方法,也取得了较为成功的经验。

但是,对一些内部信息部分确知、部分信息不确知的系统,却研究得很不充分。

这一空白区便成为灰色系统理论的诞生地。

在客观世界中,大量存在的不是白色系统(信息完全明确)也不是黑色系统(信息完全不明确),而是灰色系统。

因此灰色系统理论以这种大量存在的灰色系统为研究而获得进一步发展。

基本观点(1)灰色系统理论认为,系统是否会出现信息不完全的情况、取决于认识的层次、信息的层次和决策的层次,低层次系统的不确定量是相当的高层次系统的确定量,要充分利用已知的信息去揭示系统的规律。

灰色系统理论在相对高层次上处理问题,其视野较为宽广;(2)应从事物的内部,从系统内部结构和参数去研究系统。

灰色系统的内涵更为明确具体;(3)社会、经济等系统,一般不存在随机因素的干扰,这给系统分析带来了很大困难,但灰色系统理论把随机量看作是在一定范围内变化的灰色量,尽管存在着无规则的干扰成分.经过一定的技术处理总能发现它的规律性;(4)灰色系统用灰色数、灰色方程、灰色矩阵、灰色群等来描述,突破了原有方法的局限.更深刻地反映了事物的本质;(5)用灰色系统理论研究社会经济系统的意义,在于一反过去那种纯粹定性描述的方法,把问题具体化、量化,从变化规律不明显的情况中找出规律,并通过规律去分析事物的变化和发展。

例如人体本身就是一个灰色系统,身高、体重、体型等是已知的可测量的指属于白色系统,而特异功能、穴位机理、意识流等又是未知的难以测量的,属黑色系统,介于此间便属灰色系统。

体育领域也是一个巨大的灰色系统,可以用灰色系统理论来进行研究。

GB/T 15957-1995《大气环境腐蚀性分类》针对普通碳钢在不同的大气环境下的腐蚀类型及其相对湿度、空气中的腐蚀物质的对应关系作了规定。

他可以作为碳钢结构在各种大气环境选择防腐蚀涂料系统的依据。

桥梁的腐蚀环境主要是大气腐蚀,涉及所有的大气腐蚀类型,其中腐蚀性最强的主要是工业大气和海洋大气。

所以该标准可以作为桥梁涂装方案设计时的参考引用标准。

腐蚀气体分级注:当大气中同时含有多种腐蚀气体时,腐蚀级别取最高的一种或几种为基准。

大气中腐蚀气体的腐蚀程度目前,己经有大量的文献资料对于建筑物的服役环境进行了分类,分类的结果也各不相同。

《结构可靠度理论》将环境分为自然环境、使用环境等,但这种分类方法的缺点是不能根据环境类别明确确定出环境对于结构的作用。

在后续的研究中,不太容易根据环境类别量化其对结构的影响。

《混凝土结构耐久性》将结构所处环境分为大气环境、海洋环境、土壤环境、工业环境等。

不同环境类别,对结构的影响因素也不相同。

比如在大气环境中要考虑二氧化碳、水汽的影响,而在工业环境中,则要考虑工业废渣、废水的影响等。

《混凝土结构的耐久性设计方法》根据结构工作环境情况、破损机理、形态,以及国内各行业传统经验,将混凝土结构的工作环境分为六大类:大气环境、土壤环境、海洋环境、受环境水影响的环境、化学物质侵蚀环境、特殊环境。

《混凝土结构设计规范》(GB50010-2002)将混凝土服役环境分为五大类:室内正常环境;室内潮湿环境;非严寒和非寒冷地区的露天环境、与无侵蚀性的水或土壤直接接触的环境;严寒和寒冷地区的露天环境、与侵蚀性的水或土壤直接接触的环境;使用除冰盐的环境;严寒和寒冷地区冬季水位变动的环境;滨海室外环境;海水环境;受人为或自然的侵蚀性物质影响的环境。

《混凝土结构耐久性评定标准》(送审稿)在耐久性评定中将环境分为一般环境和大气污染环境两个类别。

在每个类别中又具体细分为一般室外、潮湿环境、高温环境、干湿交替等等。

欧洲混凝土协会CEB-FIB模式规范中将工作环境按暴露等级分为:(1)干燥环境;(2)潮湿环境;(3)有霜冻和除冰盐的潮湿环境;(4)海水环境;(5)侵蚀性化学环境。

其他各国的结构设计规范中对工作环境等级的划分也不太相同。

美国ACI-318-92规范对环境条件划分为暴露于冻结和解冻环境、暴露于碳酸盐环境和防止钢筋锈蚀的要求。

在这几类中还可以细分。

英国混凝土结构规范(BS8110-89)将暴露条件分为轻微、中等、严重、很严重和极严重5个等级。

比较上述的环境类别划分方法,可以看出,CEB-FIP划分方法的优点是能根据环境类别比较容易得出环境作用效应。

环境作用分类环境作用可以分为物理作用、化学作用、生物作用,这是按作用的反应性质来分类的。

物理作用通常包括干湿交替、水的渗透、冻融交替等,化学作用有水解反应、硫酸盐反应、氯离子渗透等,生物作用则有菌类的侵蚀等。

但通常情况下,对结构有显著影响的作用并不多,有以下几种:混凝土的碳化、氯离子侵蚀、冻融循环、化学侵蚀等。

混凝土碳化是指大气中的二氧化碳或某些酸性气体与暴露在空气中的混凝土表面接触并且不断向混凝土内部扩散,与其中碱性水化物反应的多相物理化学过程。

混凝土碳化将导致钢筋锈蚀、混凝土保护层开裂、钢筋与混凝土之间粘结破坏、结构耐久性降低等不良后果。

因此,进行混凝土碳化研究,对于钢筋混凝土结构的耐久性研究具有重要意义。

在碳化引起钢筋锈蚀中,环境中的二氧化碳、温度和湿度的变化起到关键作用。

工业大气环境下,由于生产中会排放一些废气和烟气,空气中的二氧化碳和某些酸性气体含量较高,而且浓度分布不均匀。

同时,生产工艺流程造成的局部环境气候差异也很大,特别在干湿交替、高温环境、潮湿环境下,由碳化引起钢筋锈蚀的情况比较严重。

()l混凝土碳化研究近年来,对混凝土碳化的研究主要集中在混凝土碳化的影响因素及控制措施、碳化深度计算方面。

混凝土碳化的经典理论是基于Fick第一扩散定律的碳化模型,这一模型认为混凝土碳化深度与时间的平方根成正比,目前已被大量实验和工程现场调查所证实。

收集了国内外长期暴露试验与实际工程调查的碳化数据64组,将实测数据换算成同一标准环境,以抗压强度为主要参数,结合环境和使用条件给出了大气环境下混凝土碳化深度的预测模型。

式中:X c(t)为碳化深度(mm);k为碳化系数;K j为角部修正系数,角部取K j=1.15,非角部K j=1.0;Kco2为CO2浓度影响系数;K p为浇筑面修正系数,对浇筑面取K p=1.13;Ks为工作应力影响系数,受压时取1,受拉时取1.12,RH为环境相对湿度(%);T为环境温度(℃);f cuk为混凝土强度标准值(MPa);t为结构使用年限(年)。

《气候条件对混凝土碳化速度的影响》人工气候环境的温度、相对湿度对混凝土碳化的影响进行了试验研究。

研究结果表明,环境温度、湿度气候条件、混凝土水灰比对混凝土碳化速度均有显著的影响,其影响程度分别为环境温度最高,混凝土水灰比次之,环境相对湿度较低。

混凝土碳化速度与环境温度成正比,而与环境湿度成反比。

在10℃-60℃范围内,随着环境温度的升高混凝土碳化速度增大,反之随着环境温度下降混凝土碳化速度减小;在45%-95%相对湿度范围内,随着环境相对湿度的升高混凝土碳化速度减小,反之随着环境相对湿度的降低混凝土碳化速度增大。

在基于混凝土碳化机理的基础上,通过回归分析建立了考虑环境温湿度气候条件的混凝土碳化速度预测模型。

碳化深度与碳化龄期的幂函数关系:D=xt b。

相关文档
最新文档