传感器原理与检测技术第11章 超声波传感器
超声波传感器及其测距原理
安全避障是移动机器人研究的一个基本问题。
障碍物与机器人之间距离的获得是研究安全避障的前提,超声波传感器以其信息处理简单、价格低廉、硬件容易实现等优点,被广泛用作测距传感器。
本超声波测距系统选用了SensComp公司生产的Polaroid 6500系列超声波距离模块和600系列传感器,微处理器采用了ATMEL公司的AT89C51。
本文对此超声波测距系统进行了详细的分析与介绍。
1、超声波传感器及其测距原理超声波是指频率高于20KHz的机械波[1]。
为了以超声波作为检测手段,必须产生超生波和接收超声波。
完成这种功能的装置就是超声波传感器,习惯上称为超声波换能器或超声波探头。
超声波传感器有发送器和接收器,但一个超声波传感器也可具有发送和接收声波的双重作用。
超声波传感器是利用压电效应[1]的原理将电能和超声波相互转化,即在发射超声波的时候,将电能转换,发射超声波;而在收到回波的时候,则将超声振动转换成电信号。
超声波测距的原理一般采用渡越时间法TOF(time of flight)[2]。
首先测出超声波从发射到遇到障碍物返回所经历的时间,再乘以超声波的速度就得到二倍的声源与障碍物之间的距离,即1、硬件电路设计我们设计的超声波测距系统由Polaroid 600系列传感器、Polaroid 6500系列超声波距离模块和AT89C51单片机构成。
2.1 Polaroid 600系列传感器此超声波传感器是集发送与接收一体的一种传感器。
传感器里面有一个圆形的薄片,薄片的材料是塑料,在其正面涂了一层金属薄膜,在其背面有一个铝制的后板。
薄片和后板构成了一个电容器,当给薄片加上频率为49.4kHz、电压为300VAC pk-pk的方波电压时,薄片以同样的频率震动,从而产生频率为49.4kHz的超声波。
当接收回波时,Polaroid 6500内有一个调谐电路,使得只有频率接近49.4kHz的信号才能被接收,而其它频率的信号则被过滤。
超声波传感器
第1讲 超声波传感器的特性
测距离
第1讲 超声波传感器的特性
第1讲 超声波传感器的特性
测料位
第1讲 超声波传感器的特性
B扫描超声成像技术
第1讲 超声波传感器的特性
美国的维吉尼亚级潜艇
超声波探头按其工作原理可分为压电式、磁致伸缩式、电磁式等,其
中以压电式最为常用。压电式超声波探头常用的材料是压电晶体和压电陶
瓷,这种传感器统称为压电式超声波探头。 它是利用压电材料的压电效应 来工作的。 压电效应有正向压电效应和逆向压电效应。 超声波发送器是利用逆向压电效应制成——即在压电元件上施加电压, 元件就变形(也称应变)引起空气振动产生超声波,超声波以疏密波形式 传播,传送给超声波接收器。
超声波对液体、固体的穿透本领很大,尤其是在阳光不透明的
固体中,它可穿透几十米的深度。超声波碰到杂质或分界面会 因此超声波检测广泛应用在工业、国防、生物医学等方面 。
产生显著反射形成反射回波,碰到活动物体能产生多普勒效应。
第1讲 超声波传感器的特性
第1讲 超声波传感器的特性
压电式超声波传感器的基本工作原理
子的形状、尺寸、数量、 介质的性质和散射粒子的性质有关。
吸收衰减是由于介质粘滞性,使超声波在介质中传播时造 成质点间的内摩擦,从而使一部分声能转换为热能,通过热传 导进行热交换,导致声能的损耗。
第1讲 超声波传感器的特性
(二) 超声波传感器的特性 3.1 频率特性
接收超声波
发送超声波
第1讲 超声波传感器的特性
第1讲 超声波传感器的特性
超声波传感器
第1讲 超声波传感器的特性
(一) 超声波传感器的原理及结构
利用超声波在超声场中的物理特性和各种效应而研制的装置 称为超声波传感器、探测器或换能器,也称为探头。
超声波传感器检测原理
超声波传感器检测原理
超声波传感器是一种常用于测量和探测距离、位置和物体特征的设备。
它利用
声波在物体中的传播速度和反射特性来实现测量的原理。
超声波传感器通常由发射器和接收器组成。
发射器会发出高频的超声波信号,
通常在20kHz到200kHz之间。
这些超声波信号会向目标物体传播,然后被目标物
体的表面反射回来。
接收器会接收经过目标物体反射回来的超声波信号,并将其转化为电信号。
接
收器中的超声波传感器元件会将接收到的超声波信号转化为电压信号,然后通过放大器进行放大和处理。
根据超声波的传播时间和传播速度,可以计算出目标物体和传感器之间的距离。
根据检测到的超声波信号的强度,还可以判断目标物体的形状、材质和表面特征。
超声波传感器检测原理的优点之一是它对目标物体的材质没有特殊要求。
无论
是金属、塑料、液体还是固体,超声波传感器都可以进行有效的检测。
此外,超声波传感器工作时不会产生害处,且能够在各种环境条件下正常工作,包括水下。
因此,它在工业自动化、智能车辆、测距测速、安全监测等领域得到广泛应用。
总之,超声波传感器是一种利用超声波在物体中的传播特性进行测量和探测的
设备。
它通过发射和接收超声波信号,可以实现距离、位置和物体特征的检测。
由于其优越的性能和可靠性,超声波传感器在多个领域都有广泛的应用。
超声波纠偏传感器原理
超声波纠偏传感器原理超声波纠偏传感器是一种用于测量物体位置和姿态的传感器,主要应用于机器人、机械加工和自动化控制系统中。
该传感器利用超声波技术实现对目标物体的三维位置和姿态的精确检测。
传感器通过发射超声波,利用物体反射回来的波来计算其与传感器的距离和方向。
当传感器发射超声波时,它会计时和测量发射到接收波的时间。
由于声速在介质中传递的速度是已知的,因此可以根据时间和速度计算物体与传感器之间的距离。
利用传感器发射的超声波的反射信号,可以检测出物体的相对位置和姿态。
传感器可以检测出物体是否向左、右、上或下移动,以及物体是否旋转。
因此,超声波传感器可以实现高度精确的姿态计算。
超声波传感器具有以下优点:1. 非接触式测量:传感器不需要接触目标物体,因此可以避免机械损坏和减小对目标物体的影响。
2. 高精度:传感器可以实现高精度的位置和姿态测量。
3. 广范围:传感器可以在宽广的距离和角度范围内进行测量,从而适用于各种应用场景。
4. 可靠性:传感器具有较高的可靠性和稳定性,可以在较长时间内持续良好的工作。
5. 易于集成:传感器易于集成到各种自动化系统中。
超声波纠偏传感器应用广泛,在工业、制造、安全、军事和航空等领域都有使用。
主要应用于以下领域:1. 机器人:传感器可用于机器人姿态控制和定位系统。
2. 机械加工:传感器可在机械加工中测量工作件的位置和姿态,以便于机器人的操作和加工。
3. 自动搬运:传感器可用于自动搬运和悬吊系统中,以实现安全、精确的操作。
4. 安全系统:传感器可用于工厂和建筑安全系统中,以检测物体的位置和姿态,防止意外事故的发生。
总结超声波纠偏传感器是一种利用超声波技术实现物体位置和姿态测量的传感器。
该传感器的优点包括非接触式测量、高精度、广泛的测量范围、可靠性和易于集成等。
因此,超声波纠偏传感器被广泛应用于工业、制造、安全、军事和航空等领域。
超声波传感器
2020/9/5
5
超声波在医学检查中的应用
2020/9/5
胎儿的 B超影像
6
超声波用于高效清洗
当弱的声波信号作用于液体中时,会对液体产 生一定的负压,即液体体积增加,液体中分子空隙 加大,形成许多微小的气泡;而当强的声波信号作 用于液体时,则会对液体产生一定的正压,即液体 体积被压缩减小,液体中形成的微小气泡被压碎。 经研究证明:超声波作用于液体中时,液体中每个 气泡的破裂会象被称之为“空化作用”,超声波清洗正是利 用液体中气泡破裂所产生的冲击波来达到清洗和冲 刷工件内外表面的作用。超声清洗多用于半导体、 机械、玻璃、医疗仪器等行业。
量两接收探头上超声波传播的时间差t,可得到
流体的平均速度及流量。从下式看出,与声速有 关所以受温漂影响
qv dc2 tan αt
8
2020/9/5
37
超声波时间差法测流量演示
F1
F2
α
d
T2
T1
此安装方法方法为透射式
2020/9/5
38
一、超声波流量计
F1发射的超声波先到达 T1
2020/9/5
30
四、耦合剂
1、探头不能直接放在被测介质中,以防磨损。 2、超声探头与被测物体接触时,探头与被测物体表面
间存在一层空气薄层,空气将引起三个界面间强烈 的杂乱反射波,造成干扰,并造成很大的衰减。为 此,必须将接触面之间的空气排挤掉,使超声波能 顺利地入射到被测介质中。 在工业中,经常使用一种称为耦合剂的液体物质, 使之充满在接触层中,起到传递超声波的作用。常用的 耦合剂有自来水、机油、甘油、水玻璃、胶水、化学浆 糊等。水式探头是指耦合剂。
结构:
将两个单晶探头组合装 配在同一壳体内,其中一片 发射超声波,另一片接收超 声波。两晶片之间用一片吸 声性能强、绝缘性能好的薄 片加以隔离。
超声波传感器测距原理
一、超声波测距原理超声波测距原理是通过超声波发射器向某一方向发射超声波,在发射时刻的同时开始计时,超声波在空气中传播时碰到障碍物就立即返回来,超声波接收器收到反射波就立即停止计时。
超声波在空气中的传播速度为v ,而根据计时器记录的测出发射和接收回波的时间差△t ,就可以计算出发射点距障碍物的距离S ,即:S = v·△t /2 ①这就是所谓的时间差测距法。
由于超声波也是一种声波, 其声速C与温度有关,表1列出了几种不同温度下的声速。
在使用时,如果温度变化不大, 则可认为声速是基本不变的。
常温下超声波的传播速度是334 米/秒,但其传播速度V 易受空气中温度、湿度、压强等因素的影响,其中受温度的影响较大,如温度每升高1 ℃, 声速增加约0. 6 米/ 秒。
如果测距精度要求很高, 则应通过温度补偿的方法加以校正(本系统正是采用了温度补偿的方法)。
已知现场环境温度T 时, 超声波传播速度V 的计算公式为:V = 331.45 + 0.607T ②声速确定后, 只要测得超声波往返的时间,即可求得距离。
这就是超声波测距仪的机理。
二、系统硬件电路设计图2 超声波测距仪系统框图基于单片机的超声波测距仪框图如图2所示。
该系统由单片机定时器产生40KHZ的频率信号、超声波传感器、接收处理电路和显示电路等构成。
单片机是整个系统的核心部件,它协调和控制各部分电路的工作。
工作过程:开机,单片机复位,然后控制程序使单片机输出载波为40kHz的10个脉冲信号加到超声波传感器上,使超声波发射器发射超声波。
当第一个超声波脉冲群发射结束后,单片机片内计数器开始计数,在检测到第一个回波脉冲的瞬间,计数器停止计数,这样就得到了从发射到接收的时间差△t;根据公式①、②计算出被测距离,由显示装置显示出来。
下面分别介绍各部分电路:1 、超声波发射电路超声波发射电路如图3所示,89C51通过外部引脚P1.0 输出脉冲宽度为250μs , 40kHz的10个脉冲串通过超声波驱动电路以推挽方式加到超声波传感器而发射出超声波。
超声波传感器的工作原理
超声波传感器的工作原理1、超声波传感器概述超声波传感器主要材料有压电晶体(电致伸缩)及镍铁铝合金(磁致伸缩)两类。
电致伸缩的材料有锆钛酸铅(PZT)等。
压电晶体组成的超声波传感器是一种可逆传感器,它可以将电能转变成机械振荡而产生超声波,同时它接收到超声波时,也能转变成电能,所以它可以分成发送器或接收器。
有的超声波传感器既作发送,也作接收。
小型超声波传感器,发送与接收略有差别,它适用于在空气中传播,工作频率一般为23~25kHz及40~45kHz。
这类传感器适用于测距、遥控、防盗等用途。
另有一种密封式超声波传感器,它的特点是具有防水作用(但不能放入水中),可以作料位及接近开关用,它的性能较好,如下图所示。
▲超声波探头2、超声波传感器的类型与组成超声波应用有三种基本类型,透射型用于遥控器、防盗报警器、自动门、接近开关等;分离式反射型用于测距、液位或料位;反射型用于材料探伤、测厚等。
超声波传感器由发送传感器(或称波发送器)、接收传感器(或称波接收器)、控制部分与电源部分组成。
发送传感器由发送器与使用直径为15mm左右的陶瓷振子换能器组成,换能器的作用是将陶瓷振子的电振动能量转换成超能量并向空中辐射;而接收传感器由陶瓷振子换能器与放大电路组成,换能器接收波产生机械振动,将其变换成电能量,作为传感器接收器的输出,从而对发送的超声波进行检测,如下图所示。
▲超声波发射接收器a)超声波发送器b)超声波接收器而实际使用中,用作发送传感器的陶瓷振子也可以用作接收传感器的陶瓷振子。
控制部分主要对发送器发出的脉冲链频率、占空比及稀疏调制和计数及探测距离等进行控制。
若对发送传感器内谐振频率为40kHz的压电陶瓷片(双晶振子)施加40kHz高频电压,则压电陶瓷片就根据所加高频电压极性伸长与缩短,于是发送40kHz频率的超声波,其超声波以疏密形式传播(疏密程度可由控制电路调制),并传给波接收器。
接收器是利用压力传感器所采用的压电效应的原理,即在压电元件上施加压力,使压电元件发生应变,则产生一面为“+”极,另一面为“-”极的40kHz正弦电压。
超声波传感器原理
超声波传感器原理
超声波传感器是一种由应用发射声波探测特殊物体的传感器,通常是一种电性复合设备,可以把二维超声波信号转换为电性或者数字信号。
它可以检测诸如距离和物件形状等信息,广泛应用于工业、汽车和消费类产品中。
超声波传感器的原理基于超声波在空气中的散射原理,用简单来说就是回声定位原理,它以准确的衰减距离-时间延迟定位任何物体。
首先,超声波传感器发射一脉冲超声,然后把接收到的超声回声转换为电脉冲,再根据超声波脉冲反射的时间差来确定距离,这就是超声波检测原理。
超声波传感器的特点是可以检测固体、液体和气体,而且它还能测量变化非常小的物件,可以检测空气中的悬浮微细颗粒,因此在空气质量检测中非常有用,同时也可以检测温度、颜色和湿度等物理参数。
此外,由于超声波的性质,它的准确度可以达到毫米级,适用于各种安防系统。
超声波传感器正在被广泛应用于多个行业,比如机器人系统的激光测距、有害气体的检测等。
此外,超声波技术还被用于汽车自动驾驶系统中,帮助实现汽车与行人、道路交通信号灯障碍物之间的距离测量。
总之,超声波传感器是一种重要的传感器,它广泛应用于各种行业,并在不断提高它的精确度和新的功能上取得较大的进步。
它的安装、调试方便且成本低廉,将在工业、汽车和消费类型产品中发挥更大的作用。
超声波传感器 资料
超声波传感器超声波传感器是利用超声波的特性研制而成的传感器。
超声波是一种振动频率高于声波的机械波,由换能晶片在电压的激励下发生振动产生的,它具有频率高、波长短、绕射现象小,特别是方向性好、能够成为射线而定向传播等特点。
超声波对液体、固体的穿透本领很大,尤其是在阳光不透明的固体中,它可穿透几十米的深度。
超声波碰到杂质或分界面会产生显著反射形成反射成回波,碰到活动物体能产生多普勒效应。
基于超声波特性研制的传感器称为“超声波传感器”,广泛应用在工业、国防、生物医学等方面。
中文名超声波传感器所属类别传感器物理学原理超声波的特性组件压电材料工作频率压电晶片的共振频率适用领域工业、国防、生物医学目录.1组成部分.2性能指标.▪工作频率.▪工作温度.▪灵敏度.▪指向性.3相关应用.▪主要应用.▪具体应用.4工作相关.▪工作原理.▪工作程式.▪工作模式.5系统构成.6检测方式.7检测好坏.8液位测试.9其他.▪区分.▪注意事项.▪暴露问题组成部分超声波探头主要由压电晶片组成,既可以发射超声波,也可以接收超声波。
小功率超声探头多作探测作用。
它有许多不同的结构,可分直探头(纵波)、斜探头(横波)、表面波探头(表面波)、兰姆波探头(兰姆波)、双探头(一个探头发射、一个探头接收)等。
性能指标超声探头的核心是其塑料外套或者金属外套中的一块压电晶片。
构成晶片的材料可以有许多种。
晶片的大小,如直径和厚度也各不相同,因此每个探头的性能是不同的,我们使用前必须预先了解它的性能。
超声波传感器的主要性能指标包括:工作频率工作频率就是压电晶片的共振频率。
当加到它两端的交流电压的频率和晶片的共振频率相等时,输出的能量最大,灵敏度也最高。
工作温度由于压电材料的居里点一般比较高,特别是诊断用超声波探头使用功率较小,所以工作温度比较低,可以长时间地工作而不失效。
医疗用的超声探头的温度比较高,需要单独的制冷设备。
主要取决于制造晶片本身。
机电耦合系数大,灵敏度高;反之,灵敏度低。
超声波的传感器原理
超声波的传感器原理超声波是一种高频声波,具有在空气中传播迅速、穿透性强等特点,因此被广泛应用于传感技术中。
超声波传感器是一种通过测量声波在空气中传播时间来实现测量距离、检测物体存在等功能的设备。
本文将介绍超声波传感器的原理及其应用。
一、原理概述超声波传感器主要由发射器、接收器和控制电路组成。
发射器通过准确控制电压信号,将电能转化为超声波能量,向空气中发射超声波。
超声波经过空气传播后,遇到目标物体时,一部分声波被目标物体吸收,另一部分被目标物体反射回来。
接收器感知到反射回来的声波,将其转化为电能信号传回控制电路。
二、发射器发射器是超声波传感器中的重要组成部分。
它通常由压电晶体材料构成,当施加电压时,压电晶体会发生形变,产生机械振动。
随着振动的传播,超声波形成并向外传播。
发射器的产生的超声波频率通常在20kHz到200kHz之间,具体频率根据传感器的应用需求而定。
三、接收器接收器接收到从目标物体反射回来的声波,并将其转化为电信号。
接收器通常由压电晶体材料构成,与发射器相似。
当接收到声波时,压电晶体会发生形变,产生电能信号。
接收器将电信号传回控制电路进行处理。
四、控制电路控制电路是超声波传感器的核心部分,用于控制发射器和接收器的工作以及处理接收到的电信号。
控制电路中包含脉冲发生器,用于控制超声波的发射频率和发射的脉冲宽度。
同时,控制电路还包括计时电路,用于测量超声波的传播时间以及计算距离。
五、工作原理超声波传感器的工作原理基于声波在空气中传播的速度恒定。
当超声波发射器发出声波后,它会在空气中以恒定速度传播,遇到目标物体后部分声波会被吸收,而另一部分声波会被目标物体反射回来。
接收器接收到反射回来的声波后,控制电路会记录下发射到接收的时间间隔,并通过时间间隔与声波在空气中传播的速度计算出目标物体与传感器的距离。
通常情况下,声波在空气中的传播速度约为343米/秒,根据测得的时间间隔可以通过简单的数学计算得出距离。
超声波传感器的应用及技术原理介绍
超声波传感器的应用及技术原理介绍超声波传感器是一种重要的传感器,被广泛应用于测距、检测障碍、测流等领域。
本文将介绍超声波传感器的应用及技术原理。
一、超声波传感器的基本原理超声波传感器利用声波在介质中的传播特性,通过发射超声波并接收反射回来的波来实现对目标的探测和测量。
它的基本结构包括超声波发射器、接收器和信号处理电路。
超声波发射器产生高频声波,经过透镜聚焦,形成一个声波束,照射到目标上。
目标表面会反射一部分声能,这些反射声波被接收器接收,并转化为电信号。
信号处理电路将接收到的信号进行放大、滤波、数字化等操作,最终输出距离、速度、流量等物理量。
二、超声波传感器的应用1. 距离测量超声波传感器可以测量距离,特别是在避障、机器人导航等领域得到了广泛应用。
通过计算发射和接收时间差,可以估算目标距离,实现精确的距离测量。
2. 检测障碍超声波传感器也常用于检测障碍。
在汽车中应用,可以实现自动泊车、避免碰撞等功能。
在工业生产中,可以用于控制机器人、机械手臂等设备避开障碍物,提高生产效率。
3. 测流超声波传感器还可应用于测流量,适用于液体和气体的流量测量。
它不会对被测介质产生压力和阻力,而且不受温度、粘度等因素的影响。
因此,被广泛应用于化工、水利、能源等行业。
三、超声波传感器的技术原理1. 超声波的传播特性超声波传感器利用的是声波在介质中的传播特性。
声波在介质中传播的速度和密度有关,通常情况下,介质密度越大,声波传播速度越快。
因此,在水中传播的声波速度显著高于空气中的声波速度。
2. 聚焦技术聚焦是超声波传感器技术的重要组成部分,它能够将声波束集中在一个小区域内,提高能量密度,增加返回信号的强度。
可以通过聚焦透镜、聚焦阵列等方式实现,这些聚焦元器件能够控制声波的传播方向和形状,提高信号的质量和可靠性。
3. 多普勒效应在测量物体速度时,超声波信号被发射向物体,并反弹回来,测量时间差就可以估算物体移动的距离和速度。
为了进一步提高速度测量的精度,可以利用多普勒效应,通过检测回波频率的变化来计算物体的速度。
超声波传感器每部分组成所涉及到的基础知识
超声波传感器每部分组成所涉及到的基础知识1.引言1.1 概述概述部分的内容应该是对超声波传感器的基本概念和应用进行简要介绍。
以下是一个可能的概述内容:超声波传感器是一种基于超声波技术的传感器,可以用于测距、检测物体的存在及其位置等应用。
它通过发射超声波脉冲并接收返回的反射波来实现测量和探测功能。
超声波是一种频率高于人类能听到的声波,通常在20kHz至200kHz 的范围内。
超声波传感器利用声波在空气中的传播特性,通过测量超声波的传播时间或相位差来得到被测量物体与传感器之间的距离。
超声波传感器由发射部分、接收部分和信号处理部分组成。
发射部分包括发射器和发射驱动电路,用于产生和发射超声波脉冲。
接收部分包括接收器和接收驱动电路,用于接收和放大反射波信号。
信号处理部分负责对接收到的信号进行滤波、放大和数字化处理,以提取有效信息并进行进一步的分析和判断。
超声波传感器具有使用简单、非接触测量、高精度等优点,广泛应用于工业自动化、医疗诊断、安防监控等领域。
例如,超声波传感器可在自动驾驶车辆中用于测距和避障,也可在医疗设备中用于测量心脏功能和胎儿成像等。
随着科技的进步和应用需求的增长,超声波传感器在未来的应用前景将更加广阔。
本文将对超声波传感器的原理、各部分组成及其在不同领域中的应用进行详细介绍和探讨,以加深对超声波传感技术的理解和应用。
1.2 文章结构文章结构是指整篇文章的组织架构和内容安排。
在本文中,文章结构主要包括以下几个部分:1. 引言:在引言部分,将对超声波传感器进行概述,介绍其基本原理和应用领域,引起读者的兴趣。
同时说明本文的目的和内容安排。
2. 正文:正文是文章的核心部分,包括以下几个方面的内容:2.1 超声波传感器的原理:介绍超声波传感器的基本原理,包括超声波的产生、传播和检测的原理,以及超声波传感器在测距、检测物体位置等方面的应用。
2.2 超声波传感器的发射部分组成:详细介绍超声波传感器发射部分的各个组成部分,包括超声波发生器、发射探头等,并解释它们的作用和工作原理。
传感器与检测技术(第二版)参考答案参考答
传感器与检测技术(第二版)参考答案第1章 检测技术基本知识1.1单项选择:1.B2.D3. A4.B1.2见P1;1.3见P1-P3;1.4见P3-P4;1.5 见P5;1.6 (1)1℃(2)5﹪,1﹪ ;1.7 0.5级、0.2级、0.2级;1.8 选1.0级的表好。
0.5级表相对误差为25/70=3.57﹪, 1.0级表相对误差为1/70=1.43﹪;1.9见P10-P11;1.10见P11- P12;1.11 见P13-P14第2章 电阻式传感器及应用2.1 填空1.气体接触,电阻值变化;2.烧结型、厚膜型;3.加热器,加速气体氧化还原反应;4.吸湿性盐类潮解,发生变化2.2 单项选择1.B 2. C 3 B 4.B 5.B 6. A2.3 P17;2.4 P17;2.5P24;2.6 P24;2.7 P24-P25;2.8 P25;2.9 P26;2.10 P30-312.11 应变片阻值较小;2.12P28,注意应变片应变极性,保证其工作在差动方式;2.16 Uo=4m V ;2.17 P34;2.18 P34;2.19 (1) 桥式测温电路,结构简单。
(2)指示仪表 内阻大些好。
(3)RB:电桥平衡调零电阻。
2.20 2.21 线性范围内,希望传感器的灵敏度越高越好;传感器的延迟时间越短越好;传感器的线性范围越宽,则其量程越大,并且能保证一定的测量精度。
2.23 P44;2.33 P45第3章 电容式传感器及应用3.1 P53-P56;3.2 变面积传感器输出特性是线性的。
3.3 P58-P59;3.4 P59-P613.5 当环境相对湿度变化时,亲水性高分子介质介电常数发生改变,引起电容器电容值的变化。
属于变介电常数式。
3.6 参考变面积差动电容传感器工作原理。
参考电容式接近开关原理。
3.8 (1)变介电常数式;(2)参P62 电容油料表原理第4章 电感式传感器及应用4.1 单项选择1.B;2.A4.2 P65;4.3 P68;4.4 螺线管式电感传感器比变隙式电感传感器的自由行程大。
超声波传感器测距原理
超声波传感器测距原理
首先,超声波传感器通过发射超声波脉冲,并接收目标物体反射回来的超声波脉冲。
当超声波脉冲发射后,经过一定的时间后,接收到目标物体反射回来的超声波脉冲。
根据超声波在空气中的传播速度,可以通过测量发射和接收超声波脉冲之间的时间差来计算目标物体与传感器之间的距离。
其次,超声波在空气中的传播速度是一个已知的常数,一般情况下约为340m/s。
因此,通过测量超声波脉冲的往返时间,可以利用以下公式来计算目标物体与传感器之间的距离:
距离 = 传播速度× 时间差 / 2。
其中,时间差为发射超声波脉冲到接收目标物体反射回来的超声波脉冲的时间间隔,除以2是因为超声波脉冲是往返传播的,需要将时间差除以2才能得到单程的距离。
另外,超声波传感器测距原理还需要考虑到超声波在空气中传播的特性。
由于空气中存在温度、湿度等因素的影响,会对超声波的传播速度产生一定的影响。
因此,在实际应用中,需要对测得的
距离进行修正,以提高测距的准确性。
总的来说,超声波传感器测距原理是利用超声波在空气中的传播速度来计算目标物体与传感器之间的距离。
通过测量超声波脉冲的往返时间,并考虑到空气中的温度、湿度等因素的影响,可以实现精准的测距功能。
超声波传感器在工业自动化、智能车辆等领域有着广泛的应用,其测距原理的了解对于工程师和研发人员具有重要的意义。
传感器原理及应用 超声波传感器
传感器原理及应用超声波传感器
超声波传感器是一种利用超声波进行测量和检测的传感器。
其原理是通过发射超声波脉冲,并监听超声波的回波来计算目标物体与传感器之间的距离。
当超声波探测到目标物体时,会发出回波信号。
通过测量回波信号的时间延迟或频率变化,可以计算出目标物体与传感器之间的距离。
超声波传感器主要应用于距离测量、障碍物检测和流体的液位测量等领域。
具体应用包括但不限于以下几个方面:
1. 距离测量:超声波传感器可以用来测量物体到传感器的距离,常用于自动停车辅助系统、机器人导航以及障碍物检测等。
2. 障碍物检测:通过测量超声波传感器与障碍物之间的距离,可以实现障碍物检测功能。
这在自动驾驶、智能家居和工业自动化等场景中非常常见。
3. 液位测量:超声波传感器可以测量液体的液位高度,适用于液体储罐、水池、水井等场景,并可以实现液位报警和自动控制等功能。
4. 声呐:超声波传感器的超声波发射和接收功能可以用于声纳系统中,用于海底测深、地下探测等领域。
总的来说,超声波传感器凭借其非接触、高精度、广泛的测量范围以及可靠性等特点,被广泛应用于工业自动化、智能交通、医疗仪器、智能家居等领域。
超声波传感器的原理
超声波传感器的原理超声波传感器是一种常用的非接触式测距传感器,它利用超声波的特性来实现距离测量。
超声波传感器的原理主要基于声波在空气中的传播和反射,通过测量超声波从发射到接收所经历的时间来计算目标物体与传感器的距离。
接下来,我们将详细介绍超声波传感器的原理及其工作过程。
首先,超声波传感器由发射器和接收器两部分组成。
发射器会产生一系列超声波脉冲,这些脉冲经过空气传播并与目标物体发生反射。
接收器接收到反射回来的超声波,并将其转换为电信号。
然后,通过测量超声波从发射到接收所经历的时间,我们可以得到目标物体与传感器之间的距离。
其次,超声波传感器的原理基于声波在空气中的传播速度是已知的。
在标准大气压下,声波在空气中的传播速度约为343米/秒。
因此,我们可以利用已知的声速和超声波的往返时间来计算目标物体与传感器之间的距离。
具体计算公式如下:距离 = (声速×往返时间) / 2。
其中,往返时间是超声波从发射到接收所经历的时间,除以2是因为要考虑到超声波的往返过程。
最后,超声波传感器的工作过程可以简单描述为,首先,发射器发出一系列超声波脉冲;然后,这些脉冲经过空气传播并与目标物体发生反射;接收器接收到反射回来的超声波,并将其转换为电信号;最后,通过测量超声波的往返时间,我们可以计算出目标物体与传感器的距离。
总之,超声波传感器的原理主要基于声波在空气中的传播和反射,通过测量超声波的往返时间来实现距离测量。
它具有测距精度高、测量范围广、响应速度快等优点,因此在工业自动化、智能车辆、机器人等领域得到了广泛的应用。
希望本文能够帮助大家更好地理解超声波传感器的原理和工作过程。
超声波式传感器的原理特点及应用
超声波式传感器的原理特点及应用1. 原理介绍超声波式传感器是一种利用超声波进行测量和探测的设备。
其工作原理是利用超声波在介质中传播的特性进行测距或检测目标物体的存在。
以下是超声波式传感器的原理解析:•发射超声波信号:超声波式传感器通过压电材料产生高频超声波信号,并将其发送到目标物体。
•接收反射信号:当发射的超声波信号遇到目标物体时,会发生反射。
传感器会接收到反射的超声波信号。
•测量时间差:传感器会测量超声波信号从发射到接收的时间差,并利用速度和时间来计算距离。
•信号处理:传感器会对接收到的超声波信号进行放大、滤波和分析等处理,以提取有用的信息。
2. 特点与优势超声波式传感器具有以下特点与优势,使其得到广泛应用:•非接触测量:超声波传感器可以在不接触物体的情况下进行测量,避免了与目标物体的物理接触,减少了磨损和损坏的可能性。
•高精度测量:超声波传感器具有较高的测量精度,可以实现毫米级或亚毫米级的精确测量。
•宽测量范围:超声波传感器可以适应不同测量距离的需求,从几毫米到几十米的范围都可以覆盖。
•快速响应:超声波传感器的测量速度较快,响应时间通常在毫秒级别,适合对快速变化的目标进行实时监测。
•抗干扰能力强:超声波传感器对环境光线、温度等外界因素的影响较小,具有良好的抗干扰能力。
•易于集成:超声波传感器的体积较小,重量较轻,易于集成到各种设备和系统中,便于应用。
3. 应用领域由于其特点和优势,超声波式传感器在多个领域得到了广泛的应用,主要包括以下几个方面:3.1 距离测量超声波式传感器可以用于测量目标物体与传感器之间的距离,常见的应用场景包括:•工业自动化中的物体定位、测距和位置检测。
•智能车辆和机器人的障碍物避免和跟踪。
•清洁设备中的无人驾驶,如扫地机器人等。
3.2 液位检测超声波式传感器对于液体的测量和检测也具备出色的能力,常见应用包括:•水处理行业中的液位监测和控制。
•油罐和化学液体罐中的液位检测。
声波传感器工作原理
声波传感器工作原理
声波传感器是一种利用声波的传播和接收来检测物体位置、距离和形状等信息的装置。
它主要通过发射声波信号,并接收回波信号来实现测距和测量的功能。
传感器的工作原理如下:首先,传感器通过发射器产生一个声波信号,这个信号经过传感器的震动元件被转换成机械振动,并以声波的形式传播出去。
当声波遇到目标物体时,一部分声波被目标物体吸收或反射,形成回波。
然后,传感器的接收器接收并转换回波信号,将其转化为电信号。
接收器一般采用压电材料或共振腔等结构,将声波能量转化为电能。
同时,接收器会进行信号放大和滤波等处理,以提高信号的质量和稳定性。
最后,传感器将接收到的电信号传递给计算机或其他电子设备进行处理。
根据信号的延迟、频率变化或振幅等特征,可以计算出目标物体的位置、距离和形状等信息。
总的来说,声波传感器工作原理是通过发射声波信号并接收回波信号,通过处理这些信号来获取目标物体的相关信息。
这种技术在距离测量、无线通讯、石油勘探和医学影像等领域有广泛应用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
4.声纳
声纳是利用水声传播特性对水中目标进行传感探 测的技术设备,用于搜索、测定、识别和跟踪潜艇 和其他水中目标
工作方式
被动式声纳: 隐蔽性、保密性好,识 别目标能力强,侦察距
离远
主动式声纳: 可以探测静止无声的 目标,并能测出其方 位和距离
(2)采用超声波传感器设计实现机器人自动避障。 (画出检测示意图、说明检测原理)。
第 11 章 小 结
1、超声波的概念 2、超声波在介质中传播的波型取决于介质本身的固
有特性和边界条件 3、利用超声波传感器可实现对物位、液位、流量、
速度、浓度、厚度等多种被测量的测量
习题
1、影响超声波的传播速度的有哪些因素?
(2)按波型分类。按照在被探工件中产生的波 型可分为纵波探头、横波探头和表面波探头 (3)按入射声束方向分类。按入射波束方向可 分为直探头和斜探头。
(4)按晶片数目分类。按照探头中压电晶片的 数目可分为单晶探头、双晶探头和多晶片探头
2.2 超声换能器 超声波换能器主要由压电晶片组成,可发射及接收
超声波。
入射波
反射波
α'
o
介质1 介质2
折射波
反射定律:入射角α 的正弦与反射 角α ′的正弦之比等于波速之比
折射定律:sin c1
sin c2
第二节 超声波传感器
把发射部分和接收部分均称为超声波换能器,也称为 超声波探头 2.1 超声探头的分类
(1)按工作原理分类。按照工作原理可分为压 电式、磁致伸缩式、电磁式等
第11章 超声波传感器
第一节 超声波及其物理性质 第二节 超声波传感器 第三节 超声波传感器应用
学习要求
1、熟悉超声波的传播特点 2、掌握超声波传感器的工作原理 3、掌握超声波传感器的特点和应用基本要领
第一节 超声波及其物理性质
次声波
声波音乐 语言超来自波0.25×106 探测
20×106
微波
101 102
超 声 波传 感 器 2
B1
B2
L
电路
管道
2.超声波物体/物位检测
超声发射器
被测物体
超声发射器
被测物体
超声接收器
(a) 直射型
(b)发射接收分离型
超声接收器 超声发射/接收器
被测物体
(c)反射型
3.锻件探伤 锻件是一种常用的构件,它一般承受很高的载荷,
制造成本也较高,因此对锻件的探伤要求是相当严格的。
(1)价格比风杯风速计要高很多 (2)操作比较复杂,长时间测量的时候出现的问题很多 (3)受温度的影响,因为温度影响波速
动脑筋想想
●考虑一下,图中所给出超声波物体 /物位检测形式,在实际生活中可以 用在哪些地方?
超声发射器
被测物体
超声接收器
超声发射器
被测物体
超声接收器
创新思考
(1)现在越来越多的家庭拥有了自己的小汽车,车 上配置的倒车防撞雷达多数是基于超声检测原理, 请你思考一下是如何实现这一功能的?(画出检测 示意图、说明检测原理)。
1.直式换能器
金属外壳 吸收块 保护膜
组成部分:压电晶片、阻
导电杆
尼块(吸收
接线片
块)、保护膜
压电晶片
2.斜式换能器 利用透声楔块使声束倾斜于工件表面射入工件的 探头称为斜式换能器,简称斜探头。
接头
外壳
压电晶片
吸声材料
斜楔块
斜式换能器结构图
第三节 超声波传感器应用
1.超声波流量传感器
超 声 波传 感 器 1
2、超声换能器中的阻尼块起什么作用? 3、超声传感器进行物位检测有哪几种方式? 举
例说明其应用情况。
103
104
105
106
声波的频率界限图
107 f / Hz
1.1 超声波的波型及其传播速度 纵波:指质点振动方向与波的传播方向一致的波
横波:指质点振动方向垂直于传播方向的波
表面波:指质点的振动介于横波与纵波之间
超声波的传播速度与介质密度和弹性特性有关
超声波在气体和液体中传播时,由于不存在剪切应 力,所以仅有纵波的传播,其传播速度c为 :
c 1
Ba
ρ 为介质的密度; Ba为绝对压缩系数
气体中的声速为344m/s、液体中声速在900~1900 m/s。
当液体温度、压强、成份发生变化时,会引起声速的变
化。
1.2 超声波的反射和折射
声波从一种介质传播到另一种介质,在两个介质的 分界面上一部分声波被反射, 另一部分透射过界面, 在另一种介质内部继续传播
5.超声测风速、风向
利用两对探头,水平方向垂直布置,测定 两个互相垂直方向的风速 结构形式 利用三对探头,空间方向互相垂直布置, 测定空间的三维风速
超声波风速计的优点:
(1)可以测量两个或者三个风向
(2)高精度
(3)测量距离短,但分辨率很高
(4)测量风速不受气压和潮湿度的影响
超声波风速计的缺点: