蒸发器工艺尺寸计算

合集下载

化工原理设计说明书-三效并流蒸发器

化工原理设计说明书-三效并流蒸发器

设计题目:NaOH水溶液三效并流加料蒸发装置的设计设计者:设计日期:年月曰审核:2009级化工单元操作课程设计任务书一、设计题目NaOH水溶液三效并流加料蒸发装置的设计二、设计任务及操作条件1•处理能力 3.96X 1()4吨/年NaOH水溶液2.设备形式中央循环管式蒸发器3•操作条件(1)Na()H水溶液的原料液浓度为5%。

完成液浓度为25%,原料液温度为第一效沸点温度,原料液比热为3.7KJ(kg -°C),各效蒸发器中溶液的平均密度为:^^lOUkg/m', kg/m', 3= 1239 kg/m ' ;⑵加热蒸气压强为500kPa (绝压),冷凝器压强为15 kPa (绝压):⑶各效蒸发器的总传热系数:兀二15()0W/(m2弋),AT2=1000W/(m2 - °C),A73=6OOW/(m2 • °C);(4)各效蒸发器中页面的高度:1.5m;(5)各效加热蒸气的冷凝液均在饱和温度下下排出,假设各效传热面积相等,并忽略热损失;(6)每年按330天计算,每天24小时运行。

三、设计项目(1)设计方案简单,对确定的工艺流程及蒸发器形式进行简要论述;(2)蒸发器的工艺计算,确定蒸发器的传热面积;(3)蒸发器的主要结构尺寸设计;⑷绘制NaOH水溶液三效并流加料蒸发装置的流程尺蒸发器设备工艺简图;(5)对本设计的评述1目录(一)蒸发器的形式.流程、效数论证................. (二)工艺计算......................(三)蒸发器主要工艺尺寸的设计计算................ (四)设计感想......................(五)设计图纸......................2(一)蒸发器的形式、流程、效数论证1•蒸发器的形式:中央循环管式2.蒸发器的流程:三效并流加料3.效数论证:在工业中常用的加热方式有直接加热和间接加热。

蒸发器的工艺计算+最终版1

蒸发器的工艺计算+最终版1

化工原理课程设计说明书设计题目:NaOH水溶液三效并流蒸发装置的设计设计者:班级:化工14组员:谢勋唐洪霆张建雄日期:2016-7-7目录符号说明 (1)一、蒸发装置设计任务书 (3)1.1设计题目 (3)1.2设计任务及操作条件 (3)1.3设计内容 (4)二、前言 (4)2.1概述 (4)2.1.1蒸发及蒸发流程 (4)2.1.2蒸发操作的分类 (5)2.1.3蒸发操作的特点 (5)2.1.4 蒸发设备 (6)三、设计任务 (8)3.1估计各效蒸发量和完成液浓度 (8)3.2估计各效溶液的沸点和总有效传热温差 (8)3.2.1各效由于溶液沸点而引起的温度差损失' (9)3.2.2由于液柱静压力而引起的沸点升高(温度损失) (10)3.2.3由流体阻力引起的温差 (11)3.2.5各效料液的温度和有效总温差 (11)3.3加热蒸汽消耗量和各效蒸发水量的初步计算 (12)3.4估算蒸发器的传热面积 (13)3.5重新分配各效的有效温差 (14)3.6重复上述计算步骤 (15)3.6.1计算各效料液浓度 (15)3.6.2计算各效溶液沸点 (15)3.6.3各效的焓恒算 (16)3.6.4计算蒸发器的传热面积 (18)3.7计算结果列表 (18)四、蒸发器主要工艺尺寸的设计计算 (19)4.1加热管的选择和管数的初步估计 (19)4.2循环管的选择 (20)4.3加热室直径和加热管数目的确定 (21)4.4分离室直径与高度的确定 (22)4.5接管尺寸的确定 (23)4.5.1热蒸汽进口,二次蒸气出口,其中Vs 为流体的体积流量 (23)4.5.2溶液进出口 (24)4.5.3冷凝水出口 (24)五、蒸发装置的辅助设备 (24)5.1气液分离器 (24)5.2.1冷却水量 (25)5.2.2冷凝器直径D (26)5.2.3淋水板的设计 (26)L V符号说明)./(////)./(p 22C m W K kgJ h mh s m g f hkg F hkg D mD md C kg kJ C mb i ︒---------︒--总传热系数,二次蒸汽的焓,高度,重力加速度,校正系数原料液流量,加热蒸汽消耗量,直径,加热管的内径,比热容,管壁厚度,英文字母误差温度损失,对流川热系数,希腊字母质量,单位体积冷却水的蒸汽溶质的质量分率质量流量,蒸发量,分离室的体积,流体得体积流量,蒸发体积强度,-︒-∆︒--------εαCC m W mkg X x hkg Ws hkg W m V sm V s m m U S )./(////)./(233333a//).(//)../(222c P p sm u CT mt Ct m S WC m R kgkJ r R WQ m W q P Pap n n s m kg M mL A e r 压力,流速,温度,管心距,溶液的温度(沸点),传热面积,污垢热阻,气话潜热,雷诺系数总传热速率,热通量,普朗特准数绝对压力,蒸发系统总效数,管数,溶液质量,子周边上的单位时间内通过单位管长度,--︒--︒--︒-----------水流收缩系数管材质的校正系数密度,粘度,导热系数,热利用系数---⋅-︒--ϕφρμλη3/)./(m kg sPa C m W一、蒸发装置设计任务书1.1 设计题目NaOH水溶液蒸发装置的设计1.2 设计任务及操作条件(1)设计任务处理量(): 37083.3 (kg/h)原料液浓度(): 12% 质量分率产品浓度(): 40% 质量分率(2)操作条件加料方式:三效并流加料原料液温度:第一效沸点温度各效蒸发器中溶液的平均密度:ρ1=1014kg/m3,ρ2=1060kg/m3,ρ3=1239kg/m3加热蒸汽压强: 500kPa(绝压),冷凝器压强为 15kPa(绝压)各效蒸发器的总传热系数:K1=1500W/(m2·K),K2=1000W/(m2·K),K3=600W/(m2·K)各效蒸发器中液面的高度: 1.5m各效加热蒸汽的冷凝液均在饱和温度下排出。

多效蒸发方案(以NaOH为例)

多效蒸发方案(以NaOH为例)

冬胞工夕丸卑化工原理课程设计NaOH蒸发系统设计目录章前言§ 1概述'第二章蒸发工艺设计计算§ 1蒸浓液浓度计算§ 2溶液沸点和有效温度差的确定S 2 • 1各效由于溶液的蒸汽压下降所引起的温度差损失§2 • 2各效由于溶液静压强所因引起的温度差损失§22 • 3由经验不计流体阻力产生压降所引起的温度差损失§2 3加热蒸汽消耗量和各效蒸发水量的计算§2 4蒸发器的传热面积和有效温度差在各效中的分布以及传热系数K的确定§ 5温差的重新分配与试差计算§5 • 1重新分配各效的有效温度差,§ 5• 2重复上述计算步骤§ 6计算结果列表第三章NaO H溶液的多效蒸发优化程序部分§3 1具体的拉格朗日乘子法求解过程§3 2程序内部变量说明§3 3程序内容:§3 4程序优化计算结果§3 5优化前后费用比较第四章蒸发器工艺尺寸计算§4 1加热管的选择和管数的初步估计§4 1 1加热管的选择和管数的初步估计§4 1 2循环管的选择§4 1 3加热室直径及加热管数目的确定§4 1 4分离室直径与高度的确定§4 2接管尺寸的确定§4 2 • 1溶液进出§4 2 • 2加热蒸气进口与二次蒸汽出口§4 2 • 3冷凝水出口第五章、蒸发装置的辅助设备§5 1气液分离器§5 2蒸汽冷凝器§5 2 1冷却水量§5 2 2计算冷凝器的直径§23淋水板的设计§5 3泵选型计算§5 4预热器的选型第六章主要设备强度计算及校核§ 6 • 1蒸发分离室厚度设计§ 6 • 2加热室厚度校核第七章小结与参考文献:符号说明希腊字母:c 比热容,KJ/(Kg.h> a -------- 对流传热系数,W /m2. °Cd --- 管径,mA ------ 温度差损失,CD——直径,mn——误差,D ――加热蒸汽消耗量,Kg/h n ――热损失系数,f --- 校正系数,n ----- 阻力系数,F――进料量,Kg/h入一一导热系数,W /m2. Cg --- 重力加速度,9.81m/s2卩---- 粘度,Pa.sh 咼度,m p 密度,Kg/m3H ――高度,mk――杜林线斜率K ――总传热系数,W/m2. CE――加和L——液面高度,m©——系数-加热管长度,m -淋水板间距,m 下标: -效数 1,2,3——效数的序 -第n 效 0——进料的 -压强,Pai ――内侧热通量,W/m2 m ----- 平均-传热速率,W o - 外侧汽化潜热,KJ/Kg p---- 压强-热阻,m2「C /Ws ――污垢的 -传热面积,m2 w 水的 管心距,m w 壁面的 -蒸汽温度,C 「流速,m/s-蒸发强度,Kg/m2.h 上标:-体积流量,m3/h':二次蒸汽的 -蒸发量,Kg/h :因溶液蒸汽压而引起的 〃:因液柱静压强而引起的 :因流体阻力损失而引起的 第一章前言§ 1概述1蒸发及蒸发流程蒸发是采用加热的方法,使含有不挥发性杂质 <如盐类)的溶液沸腾,除去其中被汽化单位部分杂质, 使溶液得以浓缩的单元操作过程。

制冷技术:蒸发器的选择计算

制冷技术:蒸发器的选择计算

蒸发器的选择计算一、蒸发器选择计算的方法蒸发器的选择计算首先选择蒸发器的形式,然后计算所需的传热面积、被冷却介质的流量和流动阻力。

对于冷却液体的蒸发器,其计算方法与水冷式冷凝器相同。

1、蒸发器型式的选择开式冷水系统采用冷水箱式蒸发器(如制冰)。

冷藏库中根据各类冷间的要求不同,采用冷却排管和冷风机。

1.蒸发器传热面积的计算 蒸发器传热面积F 的计算式为F =Fq Qt K Q 00=∆⋅(m 2) (6-1) 式中 Q 0——制冷装置的制冷量,即蒸发器的负荷。

它等于制冷量与制冷装置的冷量损失之和(kW );K ——蒸发器的传热系数(W /m 2·℃); t ∆——平均传热温差(℃);F q ——蒸发器的单位面积热负荷,即热流密度(W /m 2); 平均传热温差:t ∆=)()(ln ln 020121min max min max t t t t t t t t t t ---=∆∆∆-∆ (6-2)t 1——被冷却介质进入蒸发器的温度(℃); t 2——被冷却介质出蒸发器的温度(℃); t 0——蒸发温度(℃);蒸发器选型计算时,蒸发器的传热系数K 按经验选取,对排管有相应的计算公式。

对于冷却液体的蒸发器,蒸发温度一般比被冷却水的出口温度低3~5℃。

被冷却液体的进出口温差取5℃左右,这样,平均传热温差为5~6℃。

对于冷却空气的蒸发器,由于空气侧的放热系数很低而使传热系数很低,为了设备的初投资,选取较大的平均传热温差,一般蒸发温度比空气的出口温度低10℃左右,平均传热温差为15℃左右。

各种蒸发器的传热系数K 值等参数见表6-7。

3、 被冷却介质(水或空气)流量的计算与冷凝器中冷却介质流量的计算方法相同,不再重复。

蒸发器的传热系数和单位面积热负荷 表6-7二、冷风机选型计算(一)根据冷间冷却设备负荷,按公式(6-1)计算所需冷风机的冷却面积; 注意△t 取冷间温度与制冷剂温度差。

传热系数K 见表6-8。

盘管的长度计算

盘管的长度计算
实际调试毛细管的时候,是将压缩机的低压端开口放置在大气中,大气压力在表上的读数为0,实际的压力为0.1MPa。
在压缩机高压端接压力表和毛细管,由于毛细管的阻流产生了高压压力读数,高压压力也应该是低压压力的10倍,所以高压压力的只是1MPa,读数为0.9MPa。
其实一台好的电冰箱其压缩比可以达到1:12的,因此调试毛细管的长度高压读数为1.1MPa也是可以的。因此毛细管的长度可以有一定的伸缩性的,不一定就是标准要多少的。
铜管的直径和卸冷能力:(零下15度试验满足要求)
直径(毫米)卸冷能力(瓦/米)
6 14.2
8 19ห้องสมุดไป่ตู้3
10 24
12 32
对于冰箱而言,
冷冻室蒸发器铜管长度为总长的5/6,冷藏室长度为铜管总长的1/6.另外压缩机功率并不表示冰箱或冰柜的制冷功率
压缩机功率并不代表他的制冷能力,而真正的制冷能力对三星级冰箱来说一般的压缩机的制冷功率使压缩机功率的2.2~2.4倍,那么也就是压缩机功率的2倍左右除以选择的铜管直径的单位表冷功率,即可得到需要的铜管长度。下面我举例说明:
R12 1.15~1.25MPa
R134 1.05~1.15MPa
R22 1.55~1.8 MPa
R600 0.96~1.05MPa
在实际维修当中不断的测试及可得出标准的长度可供以后无需测试及可知道长度,但是必须和测试的毛细管的直径一致。
二、蒸发器的自制(直冷式):
很多冰箱采用的是铝管、留轧钢管、铝板压合的蒸发器,一旦腐烂严重或根本就无法找到漏点,就无法修复,只有更换,由于市面上所出售的很难找到既符合尺寸又符合表冷面积的蒸发器,那就需要自制,在自制的过程中一般选择铜管,它既便于焊接又方便制作,为了既能满足卸冷的要求又要节省材料那就需要一个计算,下面我介绍一种计算方法:

了解蒸发器的结构及选型55

了解蒸发器的结构及选型55

6
7
5)强制循环蒸发器 循环速度高达2.0~5.0m/s。 处理粘度大、易结沟或易结晶的溶液。
8
9
2.膜式式(单程型)蒸发器
1)升膜蒸发器: 加热管长径比为100~150,管径为25~50mm。二
次蒸汽在加热管内的速度为20~50m/s,减压下为: 100~160m/s。
处理蒸发量较大的稀溶液以及热敏性或生泡的溶 液。不适合处理易结晶、易结垢或粘度特大的溶液。
7
8
1.基本关系
1)物料衡算 对整个蒸发系统作溶质衡算,可得:
Fx0 F W xn
W
Fxn
xn
x0
F1
x0 xn
W W1 W2 Wn
9
对任一效作溶质衡算,可得:
Fx0 F W1 W2 Wi xi i 2
xi
F
W1
Fx0 W2
Wi
0
2)焓衡算
以00C的液体为基准,忽略热损失,可得: 第一效:
Fh0
D1 H1
hw
F
W1 h1
W1
H
1 1
若溶液的稀释热,且加热蒸汽的冷凝液在饱和温度
下排出,可得:
Q1 D1r1 Fc p0 t1 t0 W1r11
1
第i效:
Qi Di ri
Fc p0 W1c pw W2c pw Wi1c pw ti ti1 Wi ri1
H hw
0
若加热蒸汽的冷凝液在蒸汽的饱和温度下 排除,则:
D WH F W h1 Fh0 QL
r
1
2
2)溶液的稀释热可以忽略时
溶液的焓可以由比热算出,则:
h0 c p0 t0 0 c p0t0 h1 c p1 t1 0 c p1t1 hw c pw T 0 c pwT

蒸发器设计

蒸发器设计

目录第一章设计方案的确定 (3)1.1 蒸发器的类型与选择 (3)1.2 蒸发操作条件的确定 (1)1.2.1 加热蒸汽压强的确定 (1)1.2.2 冷凝器操作压强的确定 (2)第二章蒸发工艺的设计计算 (2)2.1 蒸发器的设计步骤 (2)2.2 各效蒸发量和完成液浓度的估算 (2)2.3溶液沸点和有效温度差的确定 (3)2.3.1各效由于溶液的蒸汽压下降所引起的温度差损失∆/ (4)2.3.2由于蒸发器中溶液静压强引起的温度差损失∆'' (4)2.3.3由流动阻力而引起的温度差损失∆''' (5)2.3.4各效溶液的沸点和有效总温度差 (6)2.4加热蒸汽消耗量和各效蒸发水量的初步计算 (6)2.5估算蒸发器的传热面积 (7)2.6温差的重新分配与试差计算 (8)2.6.1重新分配各效的有效温度差 (8)2.6.2重复上述计算步骤 (9)第三章蒸发器的主要结构工艺尺寸的设计 (14)3.1 加热管的选择和管束的初步估计 (14)3.1.1 循环管直径的选择 (14)3.1.2 加热室直径及加热管数目的确定 (15)3.1.3分离室直径和高度的确定 (16)3.2接管尺寸的确定 (15)3.2.1溶液的进出口管 (15)3.2.2加热蒸汽与二次蒸汽接管 (15)3.2.3冷凝水出口 (16)第四章蒸发装置的辅助设备的设计 (17)4.1 气液分离器 (17)4.2蒸汽冷凝器主要类型 (17)4.3蒸汽冷凝器的设计与选用 (19)4.3.1工作水量的计算 (19)4.3.2喷射器结构尺寸的计算 (19)4.3.3射流长度的决定 (22)第五章设计结果一览表 (22)结束语.............................................. 错误!未定义书签。

主要参考文献........................................ 错误!未定义书签。

第二章 蒸发工艺设计计算

第二章 蒸发工艺设计计算

化工原理课程设计说明书●班级:●姓名:●组员:●学号:●日期:●指导老师:目录一.概述………………………………………………………………1-1蒸发操作特点……………………………………………………1-2蒸发操作分类……………………………………………………1-3蒸发设备…………………………………………………………1-4蒸发流程示意图…………………………………………………二.蒸发设计计算……………………………………………………2-1完成液浓度和各效水分蒸发量的计算…………………………2-2各效溶液的沸点和总有效温度差估算…………………………2-3加热蒸汽消耗量的计算…………………………………………2-4传热系数的确定…………………………………………………2-5有效温差在各效的分配…………………………………………2-6蒸发器传热面积计算……………………………………………三.蒸发器主要结构尺寸计算………………………………………3-1加热管的选择和管数的初步估计………………………………3-2循环管的选择……………………………………………………3-3加热管的直径以及加热管数目的确定…………………………3-4分离室直径和高度的计算………………………………………3-5接管尺寸的确定…………………………………………………四.蒸发装置的辅助设备……………………………………………4-1气液分离器………………………………………………………4-2蒸汽冷凝器………………………………………………………4-3真空泵的选型……………………………………………………4-4预热器的选型……………………………………………………五.主要设备强度计算及校核………………………………………5-1加热室的强度校核………………………………………………5-2蒸发室的强度校核………………………………………………5-3支座的选择与强度校核…………………………………………六.设计总结…………………………………………………………6-1设计结果汇总表………………………………………………6-2设计评价………………………………………………………6-3心得体会………………………………………………………参考文献………………………………………………………………第一章概述1—1蒸发操作的特点蒸发的目的是是溶剂和溶质分离,但溶液中的含溶质的数量不变,而溶剂气化速率只取决于在传热速率,即蒸发是传热过程。

蒸发器蒸发方案设计课程设计

蒸发器蒸发方案设计课程设计

蒸发器蒸发方案设计课程设计第1章蒸发方案设计一般的加热蒸汽压强在.5~0.8MPa范围内加热蒸汽的确定需要考虑加热蒸汽温度的上限和下限。

被蒸发的溶液有一个最高的蒸发温度,超过此温度蒸发就物料就会变质,破坏和分解,这是确定加热蒸气压强的一个依据通常所用饱和蒸汽的温度不超过180℃,超过时相应的压强就很高,这将增加加热的设备费和操作费。

进入冷凝器冷凝需消耗大量冷却水,而且溶液粘度大,传热差。

但对于那些热敏性物料的蒸发,为充分利用热源还是经常采用。

对混合式冷凝器,其最大的真空度取决于冷凝器内的水温和真空装置的性能。

若第一效用较高压强的加热蒸汽,则末效可采用常压或真空蒸发,此时末效产生的二次蒸汽具有较高的温度,可以全部利用。

而且各效操作温度高时,溶液黏度低,传热好。

若一效加热蒸汽压强低,末效应采用真空操作。

此时各效二次蒸汽温度低,③蒸发的类型:本设计采用中央循环管式蒸发器中央循环管式蒸发器结构紧凑,制造方便,操作可靠,故在工业上应用广泛,有所谓标准蒸发器。

但设备的清洗和检修保证较大的传热系数,满足生产工艺的要求生产能力大,能完善分离液沫,尽量减慢传热面上垢层的生成本设计蒸发器效数采用3效为充分利用热能,为提高热能利用效率,生产中一般采用多效蒸发,但并不是效经济上的限制是指效数超过一定数时经济上不合算。

多效蒸发中,随效数的增加,总蒸发量相同时所需蒸汽量减少,使蒸汽用量减少,使操作费用降低。

但随效数增加,设备费成倍增长,而所节省的蒸汽量愈来愈少,所以无限制增加效数已无实际意义,最适宜的效数应使设备费和操作费二者之和为最小。

技术上的限制是指效数过多,蒸发操作难于进行。

一般工业秤中加热蒸汽压强和冷凝器操作压强都有一定限制,因此在一定操作条件下,蒸发器的理论总温度差为一定值。

在效数增加时,由于各效温差损失之和的增加,使总有效温差减小,分配到各效的有效温差小到无法保证各效发生正常的沸腾状态时,蒸发操将无法进行下去。

蒸发器尺寸设计

蒸发器尺寸设计

蒸发器尺寸设计集团文件版本号:(M928-T898-M248-WU2669-I2896-DQ586-M1988)蒸发器工艺尺寸计算加热管的选择和管数的初步估计1加热管的选择和管数的初步估计蒸发器的加热管通常选用38*2.5mm无缝钢管。

加热管的长度一般为0.6—2m,但也有选用2m以上的管子。

管子长度的选择应根据溶液结垢后的难以程度、溶液的起泡性和厂房的高度等因素来考虑,易结垢和易起泡沫溶液的蒸发易选用短管。

根据我们的设计任务和溶液性质,我们选用以下的管子。

可根据经验我们选取:L=2M,38*2.5mm可以根据加热管的规格与长度初步估计所需的管子数n’,=124(根)式中S=----蒸发器的传热面积,m2,由前面的工艺计算决定(优化后的面积);d0----加热管外径,m; L---加热管长度,m;因加热管固定在管板上,考虑管板厚度所占据的传热面积,则计算n’时的管长应用(L—0.1)m.2循环管的选择循环管的截面积是根据使循环阻力尽量减小的原则考虑的。

我们选用的中央循环管式蒸发器的循环管截面积可取加热管总截面积的40%--100%。

加热管的总截面积可按n’计算。

循环管内径以D1表示,则所以mm对于加热面积较小的蒸发器,应去较大的百分数。

选取管子的直径为:循环管管长与加热管管长相同为2m。

按上式计算出的D1后应从管规格表中选取的管径相近的标准管,只要n和n’相差不大。

循环管的规格一次确定。

循环管的管长与加热管相等,循环管的表面积不计入传热面积中。

3加热室直径及加热管数目的确定加热室的内径取决于加热管和循环管的规格、数目及在管板撒谎能够的排列方式。

加热管在管板上的排列方式有三角形排列、正方形排列、同心圆排列。

根据我们的数据表加以比较我们选用三角形排列式。

管心距t为相邻两管中心线之间的距离,t一般为加热管外径的1.25—1.5倍,目前在换热器设计中,管心距的数据已经标准化,只要确定管子规格,相应的管心距则是定值。

降膜蒸发器的设计.

降膜蒸发器的设计.

齐齐哈尔大学蒸发水量为2000kg ℎ的真空降膜蒸发器题目蒸发水量为2000kg ℎ的真空降膜蒸发器学院机电工程学院专业班级过控133学生姓名戴蒙龙指导教师张宏斌成绩2016年 12月 20日目录摘要.............................................................. I II Absract............................................................ I V第1章蒸发器的概述 (1)1.1蒸发器的简介 (1)1.2蒸发器的分类 (1)1.3蒸发器的类型及特点、 (2)1.4蒸发器的维护 (5)第2章蒸发器的确定 (6)2.1 设计题目 (6)2.2 设计条件: (6)2.3 设计要求: (6)2.4 设计方案的确定 (6)第3章换热面积计算 (8)3.1. 进料量 (8)3.2. 加热面积初算 (8)3.2.1估算各效浓度: (8)3.2.2沸点的初算 (8)3.2.3计算两效蒸发水量W1,W2及加热蒸汽的消耗量D1 (9)3.3. 重算两效传热面积 (11)3.3.1. 第一次重算 (11)第4章蒸发器主要工艺尺寸的计算 (13)4.1加热室 (13)4.2分离室 (13)4.3其他工件尺寸 (14)第5章强度校核 (15)5.1 筒体 (15)5.2前端管箱 (16)参考文献 (19)致谢 (21)摘要蒸发就是采用加热的方法,使溶液中的发挥性溶剂在沸腾状态下部分气化并将其移除,从而提高溶液浓度的一种单元操作,蒸发操作是一个使溶液中的挥发性溶剂与不挥发性溶质分离的过程。

蒸发设备称为蒸发器,蒸发操作的热源,一般为饱和蒸汽。

蒸发在操作广泛应于化学、轻工、食品、制药等工业中。

工业上被蒸发处理的溶液大多数为水溶液。

本次设计的装置为蒸发水量为2000kg ℎ降膜蒸发器,浓缩物质为牛奶。

降膜蒸发器除适用于热敏性溶液外,还可用于蒸发浓度较高的液体。

盘管的长度计算

盘管的长度计算
大冷冻室制作蒸发器根据原有式样盘管即可。
冷藏室蒸发器制作范围占有背面的1/3面积即可,安装时注意管道上的冷凝水能从排水口流出。
焊接头留在冷藏室便于操作。
毛细管在安装蒸发器前可以先焊好,和管道一起进入冷藏室,再和回气管一起接出。
不说理论,实际中我这样盘:冰柜7-8圈,从上往下。冰箱冷冻室12米,冷藏室3米
在需要更换毛细管的冰箱的冷凝器输出端换一个双尾干燥过滤器,焊接好冷凝器的接头和工艺管(工艺管选择直径5毫米的铜管和三通压力表架,在选择一条基本上与原毛细管差不多直径的毛细管,长度在可根据压缩机的功率估计,一般在2.0米-2.8米之间,一端焊接到干燥过滤器的输出端,插入深度一般在0.5~1厘米左右不能太深,过深会触到干燥过滤器的过滤网上造成堵塞,也不能过短,太短会使赃物堵住毛细管的口径,焊接无误后,切开压缩机的工艺口,开启压缩机观查接在干燥过滤器上的压力表的压力,根据所用的制冷剂的不同选择压力的大小,如压力过高可截短一些毛细管,反之要加长,当基本上符合下面提供的压力范围内即可。下面提供不同的制冷剂的压力范围:
不论冰箱的大小,冷冻室盘管间隔5-6CM,两头各空开一些(箱门空2-3CM,里面空3-4CM)就行。冷藏室不需自行盘管,可在配件店买一块现成的装上即可
150升-----350升用8个管盘7-8圈,毛细管2.00米既可。350升----500升用10个管盘10圈,毛细管2.8米x2根,也就是双毛细管。
4. 冰柜盘管长度的确定当然了,也可以参考<家电维修>2001年3期31页的文章,铜管长度=1/3总容积*0.148米/升+2/3总容积*0.03米/升以178升为例,铜管长度=1/3*178*0.148+2/3*178*0.03=约13米长(冰柜铜管口径为8MM)(冰箱铜管口径为6MM

多效蒸发实用工艺设计计算

多效蒸发实用工艺设计计算

目录第一章前言§1·1 概述`第二章蒸发工艺设计计算§2·1蒸浓液浓度计算§2·2溶液沸点和有效温度差的确定§2·2·1各效由于溶液的蒸汽压下降所引起的温度差损失 /§2·2·2各效由于溶液静压强所因引起的温度差损失§2·2·3由经验不计流体阻力产生压降所引起的温度差损失§2·3 加热蒸汽消耗量和各效蒸发水量的计算§2·4 蒸发器的传热面积和有效温度差在各效中的分布以及传热系数K的确定§2·5 温差的重新分配与试差计算§2·5·1重新分配各效的有效温度差,§2·5·2重复上述计算步骤§2·6计算结果列表第三章 NaOH溶液的多效蒸发优化程序部分§3·1 具体的拉格朗日乘子法求解过程§3·2 程序部变量说明§3·3 程序容:§3·4 程序优化计算结果§3·5 优化前后费用比较第四章蒸发器工艺尺寸计算§4·1 加热管的选择和管数的初步估计§4·1·1 加热管的选择和管数的初步估计§4·1·2 循环管的选择§4·1·3 加热室直径及加热管数目的确定§4·1·4 分离室直径与高度的确定§4·2 接管尺寸的确定§4·2·1 溶液进出§4·2·2 加热蒸气进口与二次蒸汽出口§4·2·3 冷凝水出口第五章、蒸发装置的辅助设备§5·1 气液分离器§5·2 蒸汽冷凝器§5·2·1 冷却水量§5·2·2 计算冷凝器的直径§5·2·3 淋水板的设计§5·3泵选型计算§5·4预热器的选型第六章主要设备强度计算及校核§6·1蒸发分离室厚度设计§6·2加热室厚度校核第七章小结与参考文献:符号说明希腊字母:c——比热容,KJ/(Kg.h)α――对流传热系数,W/m2.℃d——管径,mΔ――温度差损失,℃D——直径,mη――误差,D——加热蒸汽消耗量,Kg/hη――热损失系数,f——校正系数,η――阻力系数,F——进料量,Kg/hλ――导热系数,W/m2.℃g——重力加速度,9.81m/s2μ――粘度,Pa.sh——高度,mρ――密度,Kg/m3H——高度,mk——杜林线斜率K——总传热系数,W/m2.℃∑――加和L——液面高度,mφ――系数L——加热管长度,mL——淋水板间距,m 下标:n——效数1,2,3――效数的序号n——第n效0――进料的p——压强,Pa i――侧q——热通量,W/m2m――平均Q——传热速率,W o――外侧r——汽化潜热,KJ/Kg p――压强R——热阻,m2.℃/W s――污垢的S——传热面积,m2w――水的t——管心距,m w――壁面的T——蒸汽温度,℃u——流速,m/sU——蒸发强度,Kg/m2.h上标:V——体积流量,m3/h′:二次蒸汽的W——蒸发量,Kg/h′:因溶液蒸汽压而引起的W——质量流量,Kg/h 〞:因液柱静压强而引起的x——溶剂的百分质量,%:因流体阻力损失而引起的第一章前言§1·1概述1蒸发及蒸发流程蒸发是采用加热的方法,使含有不挥发性杂质(如盐类)的溶液沸腾,除去其中被汽化单位部分杂质,使溶液得以浓缩的单元操作过程。

蒸发器设计计算

蒸发器设计计算

第三章蒸发器设计计算蒸发器主体为加热室和分离室,蒸发器的主要结构尺寸包括:加热室和分离室的直径及高度;加热管的规格、长度及在花板上的排列方式、连接管的尺寸。

这些尺寸的确定取决于工艺计算结果,主要是传热面积。

3.1加热管的选择和管数的初步估计3.1.1管子长度的选择根据溶液结垢的难易程度、溶液的起泡性和厂房的高度等因素来考虑。

本次设计选用外循环式蒸发器,国产外循环式蒸发器蒸发器的管长一般从2560到3000mm不等,具体参考《糖汁加热与蒸发》[1]第139页表6-1,再根据糖汁的黏度情况,选择加热管以及板管型号如下表3-1所示:表3-1加热选择参数所需要每端留出的剩余长度,则计算理论管子数n时的管长实际可以按以下公式计算:L=(L0-0.1)m=3-0.1=2.9 m前面已经计算求得各效面积A取500m2n= = =1307加热管的排布方式按正三角形排列,查《常用化工单元设备设计》[3]第163页表4-6,知道当管数为1303时,排布为a=19层,1307与1303相差不大,在这可以取19层进行计算。

其中排列在六角形内管数为 =1027根,其余排列在弓形面积内,如果按标准间距即管间距离54mm排列,则有四根管排不下,四根管的总面积为:A3=3.1415926×0.042×2.9×3=1.53 m2鉴于前面已经取1.11的安全系数,如果现在取1303根管,则总面积为:=500-1.53=498.47 安全系数为 K= =1.108在安全系数范围内,所以可以不要三根管,取1303根。

3.1.2加热壳体的直径计算D=t(b-1)+2eD-----壳体直径,m;t------管间距,m;b-----沿直径方向排列的管子数目;e-----外层管的中心到壳体内壁的距离,一般取e=(1.0~1.5)d0,在此取1.5。

b =2a-1=2×19-1=37D=0.054×(37-1)+2×1.5×0.042=2.07m参考《糖厂技术准备第三册》[6]第198页表9-2,本次设计常用标准形式的外循环式蒸发器,型号为TWX-550,有关参数如下表所示取标准的壳体直径为2400mm,具体参数如下表3-2-1,3-2-2所示:表3-2-1外循环管蒸发器有关技术参数表3-2-2 管蒸发器有关技术参数3.3 分离室直径与高度的校核分离室的直径取决于分离室的体积,而分离室体积又与二次蒸汽的体积流量及蒸发体积强度有关。

蒸发器设计 2

蒸发器设计   2

2.6.2重复上述计算步骤(1)由所求得的各效蒸发量1W 、2W ,求各效料液的浓度,它们分别为011Fx 37083.330.1215.71F-W 37083.338761.17x ⨯===-%2012Fx 37083.330.1223.51F-W -W 37083.338761.179391.22x ⨯===--%3x =50%0x —原料液的浓度;F —原料液的进料量,kg/h ; (2)计算各效料液的沸点表2-6因末效完成液浓度和冷凝器压力均不变,各种温度差损失及溶液沸点可视为恒定,即''''''3333 1.4410.53112.97∆=∆+∆+∆=++= ℃,故末效溶液的沸点3t 仍为79.47 ℃,而'3t 40.29∆=℃,则第三效加热蒸汽的温度(即第二效二次蒸汽温度)为 ''323340.2979.47119.76T T t t ==+∆=+= ℃ 则()2'2''223119.7627316.216.20.370.422205.8610T a r+∆=∆=⨯⨯=⨯℃2'32gh197.22101096.159.81 2.2/2209048.552m p p Pa ρ=+=⨯+⨯⨯=查表知m T =121.11℃'''11121.11119.76 1.35m T T ∆=-=-=℃ '''21∆=℃121T 143.69+2.11=145.71t =+∆=‘℃2T =''122221.16119.76 2.77143.69T t t =+∆+∆=++=℃由第一效、第二效的二次蒸汽的温度'1T ,'2T 查表知气化潜热 'i r 二次蒸汽压强'i P 如下表所示表2-7()2'2''113143.6927316.216.20.210.282138.1210T a r+∆=∆=⨯⨯=⨯℃1'31gh400.53101061.989.81 2.2/2411989.832m p p Paρ=+=⨯+⨯⨯=由1m p 查表可知水的沸点m T =144.43℃'''11144.43143.60.83m T T ∆=-=-=℃'''11∆=℃''''''11110.280.831 2.11∆=∆+∆+∆=++=℃111T 143.69+2.11=145.71t =+∆=‘℃(3)各效的焓衡算 第Ⅰ效:111111'12091.1D 0.98=0.96D 2138.12D r W r η==⨯(h kg /) (e )第Ⅱ效:])([2211022222r t t C W FCr r D W pw p '--+'=η()()112138.1237083.33 3.95W 4.187145.71-122.530.982205.86W ⨯+⨯-⨯⎡⎤=⨯⎢⎥⎣⎦10.901493.97W =+ (h kg /) (f )第Ⅲ效:])([33221033333r t t C W C W FCr r D W pw pw p '---+'=η()()2122205.8637083.33 3.95W 4.187-W 4.187122.53-79.470.982333.7W ⨯+⨯-⨯⨯⎡⎤=⨯⎢⎥⎣⎦10.6893918.97W =+ (h kg /) (g )又因W =1W +2W +3W =28183.33 kg/h (h ) 联立式(e )至(h ),可得1W =8791.66 h kg / 2W =9406.46 h kg /3W =9976.42 h kg /1D =9157.98 h kg /(4)计算蒸发器的传热面积31119157.982091.110Q =D r =5319514.44W3600⨯⨯=则第一效蒸发器传热面积为21111Q 5319514.44S =129.71K t 300013.67m==∆⨯3'2118791.662138.1210Q =W r =5221562.24W3600⨯⨯=则第二效蒸发器传热面积为22222Q 5221562.24S =129.88K t 190021.16m==∆⨯3'3229406.462205.8610Q =W r =5763703.85W3600⨯⨯=则第三效蒸发器传热面积为23333Q 5763703.85S =130.05K t 110040.29m==∆⨯因313130.05129.710.00260.04130.05S S S --==<计算误差在0.04以下,试差结果合理。

蒸发器工艺尺寸计算

蒸发器工艺尺寸计算

第四章蒸发器工艺尺寸计算蒸发器的主要结构尺寸(以下均以第一效为计算对象)我们选取的中央循环管式蒸发器的计算方法如下。

§4·1 加热管的选择和管数的初步估计§4·1·1加热管的选择和管数的初步估计蒸发器的加热管通常选用38*2.5mm无缝钢管。

加热管的长度一般为0.6—2m,但也有选用2m以上的管子。

管子长度的选择应根据溶液结垢后的难以程度、溶液的起泡性和厂房的高度等因素来考虑,易结垢和易起泡沫溶液的蒸发易选用短管。

根据我们的设计任务和溶液性质,我们选用以下的管子。

可根据经验我们选取:L=2M,38*2.5mm可以根据加热管的规格与长度初步估计所需的管子数n’,=124(根)式中S=----蒸发器的传热面积,m2,由前面的工艺计算决定(优化后的面积);d0----加热管外径,m;L---加热管长度,m;因加热管固定在管板上,考虑管板厚度所占据的传热面积,则计算n’时的管长应用(L—0.1)m.§4·1·2循环管的选择本文由钢管世界-无缝钢管提供:/转载注明出处!循环管的截面积是根据使循环阻力尽量减小的原则考虑的。

我们选用的中央循环管式蒸发器的循环管截面积可取加热管总截面积的40%--100%。

加热管的总截面积可按n’计算。

循环管内径以D1表示,则所以mm对于加热面积较小的蒸发器,应去较大的百分数。

选取管子的直径为:循环管管长与加热管管长相同为2m。

按上式计算出的D1后应从管规格表中选取的管径相近的标准管,只要n和n’相差不大。

循环管的规格一次确定。

循环管的管长与加热管相等,循环管的表面积不计入传热面积中。

§4·1·3加热室直径及加热管数目的确定加热室的内径取决于加热管和循环管的规格、数目及在管板撒谎能够的排列方式。

加热管在管板上的排列方式有三角形排列、正方形排列、同心圆排列。

根据我们的数据表加以比较我们选用三角形排列式。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第四章蒸发器工艺尺寸计算
蒸发器的主要结构尺寸(以下均以第一效为计算对象)
我们选取的中央循环管式蒸发器的计算方法如下。

§4·1 加热管的选择和管数的初步估计
§4·1·1加热管的选择和管数的初步估计
蒸发器的加热管通常选用38*2.5mm无缝钢管。

加热管的长度一般为0.6—2m,但也有选用2m以上的管子。

管子长度的选择应根据溶液结垢后的难以程度、溶液的起泡性和厂房的高度等因素来考虑,易结垢和易起泡沫溶液的蒸发易选用短管。

根据我们的设计任务和溶液性质,我们选用以下的管子。

可根据经验我们选取:L=2M,38*2.5mm
可以根据加热管的规格与长度初步估计所需的管子数n’,
=124(根)
式中S=----蒸发器的传热面积,m2,由前面的工艺计算决定(优化后的面积);
d0----加热管外径,m;L---加热管长度,m;因加热管固定在管板上,考虑管板厚度所占据的传热面积,则计算n’时的管长应用(L—0.1)m.
§4·1·2循环管的选择
本文由钢管世界-无缝钢管提供:/转载注明出处!
循环管的截面积是根据使循环阻力尽量减小的原则考虑的。

我们选用的中央循环管式蒸发器的循环管截面积可取加热管总截面积的40%--100%。

加热管的总截面积可按n’计算。

循环管内径以D1表示,则
所以mm
对于加热面积较小的蒸发器,应去较大的百分数。

选取管子的直径为:循环管管长与加热管管长相同为2m。

按上式计算出的D1后应从管规格表中选取的管径相近的标准管,只要n和n’相差不大。

循环管的规格一次确定。

循环管的管长与加热管相等,循环管的表面积不计入传热面积中。

§4·1·3加热室直径及加热管数目的确定
加热室的内径取决于加热管和循环管的规格、数目及在管板撒谎能够的排列方式。

加热管在管板上的排列方式有三角形排列、正方形排列、同心圆排列。

根据我们的数据表加以比较我们选用三角形排列式。

管心距t为相邻两管中心线之间的距离,t一般为加热管外径的1.25—1.5倍,目前在换热器设计中,管心距的数据已经标准化,只要确定管子规格,相应的管心距则是定值。

我们选用的设计管心距是:
本文由钢管世界-无缝钢管提供:/转载注明出处!
确定加热室内径和加热管数的具体做法是:先计算管束中心线上管数nc,管子安正三角形排列时,nc=1.1* ;其中n为总加热管数。

初步估计加热室Di=t(nc-1)+2b’,式中b’=(1—1.5)d0.然后由容器公称直径系列,试选一个内径作为加热室内径并以该内径和循环管外景作同心圆,在同心圆的环隙中,按加热管的排列方式和管心距作图。

所画的管数n必须大于初值n’,若不满足,应另选一设备内径,重新作图,直至合适。

由于加热管的外径为38mm,可取管心距为48mm;以三角形排列计算,b’=(1—1.5)d0=1.5*d0,
Di=t(nc-1)+2b’=48*(13-1)+2*38*1.5=690mm,选取加热室壳体内径为800mm鄙厚为12mm;
§4·1·4分离室直径与高度的确定
分离室的直径与高度取决于分离室的体积,而分离室的体积又与二次蒸汽的体积流量及蒸发体积强度有关。

分离室体积V的计算式为:
式中V-----分离室的体积,m3; W-----某效蒸发器的二次蒸汽量,kg/h; P-----某效蒸发器二次蒸汽量,Kg/m3 ,U-----蒸发体积强度,m3/(m3*s);
即每立方米分离室体积每秒产生的二次蒸汽量。

一般用允许值为U=1.1~1.5 m3/(m3*s)
本文由钢管世界-无缝钢管提供:/转载注明出处!
根据由蒸发器工艺计算中得到的各效二次蒸汽量,再从蒸发体积强度U的数值范围内选取一个值,即可由上式算出分离室的体积。

一般说来,各效的二次蒸汽量不相同,其密度也不相同,按上式计算得到的分离室体积也不会相同,通常末效体积最大。

为方便起见,各效分离室的尺寸可取一致。

分离室体积宜取其中较大者。

确定了分离室的体积,其高度与直径符合关系,确定高度与直径应考虑一下原则:
(1)分离室的高度与直径之比H/D=1~2。

对于中央循环管式蒸发器,其分离室一般不能小于1.8m,以保证足够的雾沫分离高度。

分离室的直径也不能太少,否则二次蒸汽流速过大,导致雾沫夹带现象严重。

(2)在条件允许的情况下,分离室的直径尽量与加热室相同,这样可使结构简单制造方便。

(3)高度和直径都适于施工现场的安放。

现取分离室中U=1.2m3/(m3*s);m3。

H=1.8m,,D=1.2m
§4·2接管尺寸的确定
流体进出口的内径按下式计算
式中-----流体的体积流量m3/s ;U--------流体的适宜流速m/s ,估算出内径后,应从管规格表格中选用相近的标准管。

§4·2·1溶液进出口
于并流加料的三效蒸发,第一效溶液流量最大,若各效设备尺寸一致的话,根据第一效溶液流量确定接管。

取流体的流速为0.8 m/s;
本文由钢管世界-无缝钢管提供:/转载注明出处!
所以取ф57X3.5mm规格管。

§4·2·2加热蒸气进口与二次蒸汽出口
各效结构尺寸一致二次蒸汽体积流量应取各效中较大者。

所以取ф76X3.5mm规格管。

§4·2·3冷凝水出口
冷凝水的排出一般属于液体自然流动,接管直径应由各效加热蒸气消耗量较大者确定。

所以取ф65X3.5mm规格管。

本文由钢管世界-无缝钢管提供:/转载注明出处!。

相关文档
最新文档