第八章 气液相平衡

合集下载

双液系的气-液平衡相图

双液系的气-液平衡相图

双液系的气-液平衡相图一、实验目的1.掌握采用阿贝折光率仪确定二元液体组成的方法;2.掌握测定双组份液体的沸点及正常沸点的方法;3.绘制在恒压下环己烷-乙醇双液系的气-液平衡相图。

二、实验原理两种液态的物质混合而成的二组分体系称为双液系。

它可以分为完全互溶和部分互溶的双液系。

体系的沸点不仅与外压有关,而且与双液系的组成有关。

在恒压下做温度T对组成x的关系图即为T-x图。

由相律可知,对于双液系在恒压下气-液两相共存区域中,自由度为1。

当温度一定时,气-液两相的相对组成也就有了确定值。

根据杠杆原理,两相的相对量也确定了。

因此实验测定一系列不同组成的双液系溶液的气-液相平衡时的沸点及此时气相和液相的组成,即可得T-x图。

因此双液系气-液平衡相图实验主体上包括一系列混合体系的沸点测定和气-液相组成分析两个主要内容。

体系的沸点可用沸点仪测定的,其构造如图7.2所示。

采用电热丝直接加热溶液,以防止过热现象,同时该沸点仪用平衡蒸馏法分离气液两相,具有可便于取样分析及避免分馏等优点。

体系的气液相组成的分析是相图绘制的另一核心,可以根据待测体系的理化性质寻找多种合适的分析方法。

以完全互溶双液系环己烷-乙醇体系为例。

由于环己烷和乙醇两者的折光率相差较大,因此本实验可采用测定溶液折光率方法来确定两组分的组成,用阿贝折光仪测定两组分组成的折光率,可以测出折光率对组成的工作曲线,根据测得液体样品的折光率,从工作曲线上可查得两相的组成。

三、仪器与药品FDY双液系沸点测定仪,阿贝折光仪,超级恒温槽,长滴管,烧杯(50ml,250ml),具塞锥形瓶(10ml),刻度移液管(5ml)丙酮(AR级);环己烷(AR级);乙醇(AR级)图7-1FDY双液系沸点测定仪前面板示意图图7-1是沸点仪加热控制器的前面板示意图,各功能键的说明如下:1、电源开关2、加热电源调节调节所需的加热电源。

3、温度显示窗口显示所测温度值。

4、电压显示窗口显示加热输出电压值。

化学反应工程(第三版)陈甘棠主编第八章气液两相反应器PPT课件

化学反应工程(第三版)陈甘棠主编第八章气液两相反应器PPT课件

(8-14)
定常态操作时,单位界面上反应量等于扩散通量,即
NA(rA )d SA n dtD LA ddA czz0
将A的浓度分布对z求导后代入上式得
式中,
N A( rA )D L LA cA 1 i b D L L D c B c B A AL i kLc A Ai
k LA
DLA L
,称为液膜传质系数。
(8-16)
1 DLBcBL bDLAcAi
,称为瞬间反应的增强系数。物理意义是气
液反应条件下组分A的消失速率与最大物理吸收速率 kLAcAi 之比。 13
式(8-15)中cAi是界面浓度,难以测定,工程设计中通常将 其换算为容易测量的pA来表示的反应速率。因为,
N AkG(A p Ap A)i( rA )kLc A A 1 ib D L L D c c B B A A L i
第八章 气液两相反应器
1
整体概况
概况一
点击此处输入 相关文本内容
01
概况二
点击此处输入 相关文本内容
02
概况三
点击此处输入 相关文本内容
03
2
8.1 概述
气-液相反应是一类重要的非均相反应。主要分为二种类型: (1)化学吸收: 原料气净化、产品提纯、废气处理等。 (2)制取化工产品
a.
b.
c.
(淤浆床)
A ( g b) l) B P(( r A ) k A c B c
定常态条件下,在单位面积的液膜中取一厚度为dz的微元层,对组分
A作物料衡算:
D Ld A dAc z( rA )d z D Ld A d c zAd dAc d z z
整理得
DLAdd2cz2A kcAcB 0

化工原理(第二版)第八章-

化工原理(第二版)第八章-

中一
(8-11)
第二节 吸收过程的相平衡关系
(3)吸收平衡线 表明吸收过程中气、液相平衡关系 的图线称吸收平衡线。在吸收操作中,通常用图来表示。
图8-2吸收平衡线
第二节 吸收过程的相平衡关系
式(8-10)是用比摩尔分数表示的气液相平衡关系。
它在坐标系中是一条经原点的曲线,称为吸收平衡线,如 图8-2(a)所示;式(8-11)在图坐标系中表示为一条经 原点、斜率为m的直线。如图8-2(b)所示。
第二节 吸收过程的相平衡关系
相平衡关系随物系的性质、温度和压力而异,通常由 实验确定。图8-1是由实验得到的SO2和NH3在水中的溶解度 曲线,也称为相平衡曲线。图中横坐标为溶质组分(SO2 、 NH3)在液相中的摩尔分数 ,纵坐标为溶质组分在气相中 的分压 。从图中可见:在相同的温度和分压条件下, 不同的溶质在同一个溶剂中的溶解度不同,溶解度很大的 气体称为易溶气体,溶解度很小的气体称为难溶气体;同 一个物系,在相同温度下,分压越高,则溶解度越大;而 分压一定,温度越低,则溶解度越大。这表明较高的分压 和较低的温度有利于吸收操作。在实际吸收操作过程中, 溶质在气相中的组成是一定的,可以借助于提高操作压力 来提高其分压 ;当吸收温度较高时,则需要
(8-6) 式中 ——溶质在气相中的平衡分压,kPa;
——溶质在溶液中的摩尔分数; ——亨利系数,其单位与压力单位一致。 式(8-6)即为亨利定律的数学表达式,它表明稀溶 液上方的溶质平衡分压 与该溶质在液相中的摩尔分数 成正比,比例系数称为亨利系数。亨利系数的数值可由实 验测得,表8-1列出了某些气体水溶液的亨利系数值。
第二节 吸收过程的相平衡关系
1
分子扩散 物质以分子运动的方式通过静止流体

化工原理8.2 相平衡关系8.2 吸收过程的相平衡关系

化工原理8.2 相平衡关系8.2 吸收过程的相平衡关系

溶解度/[g(SO2)/1000g(H2O)]
250
200 150
0 oC 10 oC
100 50
20 oC 30 oC 40 oC
50 oC
0
20 40 60 80 100 120
pSO2/kPa
SO2在水中的溶解度
(1)总压、y一定,温度下降,在同一溶剂中,溶 质的溶解度x随之增加,有利于吸收。
101.3kPa
y
202.6kPa
x
20℃下SO2在水中的溶解度
(2)温度、y一定,总压增加,在同一溶剂中,溶 质的溶解度x随之增加,有利于吸收。
4
溶解度/[g(SO2)/1000g(H2O)]
溶解度/[g(O2)/1000g(H2O)]
0.10 0.08 0.06 0.04 0.02
0 oC
10 oC 20 oC 30 oC 40 oC 50 oC
p*=E·x
亨利系数,kPa
E值大,溶解度小,难溶气体 E值小,溶解度大,易溶气体 E影响因素:溶质、溶剂、T
T,E
p*=c/H
H 越大,溶解度越大 H :T,H
溶解度系数,kmol/(m3·kPa)
y*=m·x
m越大,溶解度越小; m:T,m;p,m
相平衡常数,无因次
Y*=mX
X:液相摩尔比 Y:气相摩尔比
在低浓度气体吸收计算中,通常采用基准不变的摩尔 比 Y( 或 X )表示组成
Y

气相中溶质A的摩尔数 气相中惰气B的摩尔数

y 1 y
X

液相中溶质A的摩尔数 液相中溶剂S的摩尔数

x 1 x
以摩尔比表示组成 的相平衡关系

第八章 气体吸收-第二节-汽液相平衡

第八章 气体吸收-第二节-汽液相平衡

m——相平衡常数,无因次。
ye = mx ⇒ Pe = Ex Pe = mx P
m与E的关系:
E m= P
m的讨论:1)m大,溶解度小,难溶气体
2) T ↑ ⇒ m ↑
p↓ ⇒ m ↑
西北大学化工原理
【例5-1】某系统温度为10℃,总压101.3kPa, 试求此条件下在与空气充分接触后的水中,每立 方米水溶解了多少克氧气? 查得10℃时,氧气在水中的亨利系数E为 3.31×106kPa。
y1 x1<x1e
y1
西北大学化工原理
3、计算过程的推动力
相接触的气、液两相的溶质摩尔分率分别是y、x, 该处的吸收推动力即是:以气相浓度表示时为
以液相浓度表示时为
y y x A
线
y − ye= y − m x xe − x = y/m − x

ye x
平衡

xe
I区—吸收 II区—解吸
图 8-8
西北大学化工原理
二、相平衡与吸收过程的关系
1、判断过程进行的方向,(吸收还是解吸) 1atm,20℃下,稀MH3水的相平衡方程式为 ye = 0.94 x 含氨y=10%和x=0.05的氨水接触
X=0.05 y>ye x<xe
ye = 0.94 × 0.05 = 0.047
y=0.1>ye=0.047
两相接触时部分氨将会从气相转入 液相。实际发生的是吸收过程。
y=0.1
吸收
西北大学化工原理
y 0 .1 xe = = = 0.106 m 0.94
x=0.05<xe=0.106, 两相接触发生的是吸收过程。 若y=0.05,x=0.1气液两相接触 ye = 0.94 × 0.1 = 0.094

第八章 气液相平衡

第八章 气液相平衡
/ / q1 / lg 1 Z A 2 Z1 B A q2
2 2
/ / q2 / lg 2 Z B 2 Z 2 A B q1
2 1
8.2.2 伍尔(Wohl)型方程
(4)范拉尔方程—Van Laar方程 q1 A/ / 设:分子体积相差很大即: q2 B A/ lg 1 2
第八章 流体相平衡
2、研究相平衡的意义 (1)为分析解决传质分离设备的设计、操作和控制 提供理论依据 (2)为新工艺、新产品和新技术的开发提供相平衡数 据和相平衡热力学模型
8.1 相平衡判据和处理方法 8.1.1 相平衡判据
一、相平衡判据 1、普适判据——熵判据 依据:熵增原理——dS孤0,即熵增大到最大值时, 体系达平衡。 dS孤=0 特点:需要同时考虑体系和环境的变化,应用不太方便。

V i
8.1.1 相平衡判据
yi iL K xi V

i (3) ( i xi ) ( i xi )
汽液平衡 适用于高压或常压情况 液液平衡
2、汽液平衡四种情形(见表7-1)
8.1.1 相平衡判据
表8-1 汽液平衡情形 情形 1 汽相 理想气体混合物 道尔顿分压定律 液相 理想溶液 拉乌尔定律 理想溶液 Lewis—Randall 规则 非理想溶液 举例 同分异构体或同 系物构成的体系 烃类混合物 适用范围 压力小于 0.2MPa
第八章 流体相平衡
1、相平衡的有关概念 相:体系中的一个均匀空间,其性质和其余部分有区别, 每个相都是一个敞开体系,能与相邻的相进行物质 交换和能量交换。 相迁移:物质从一个相迁移到另一相的过程,叫该物质 的相迁移过程。 相平衡:当物质迁移停止时,此时各相的性质和组成不 再随时间而变化——相平衡(相间的平衡),此时 各相间某些性质如密度、粘度、焓、熵等相差很大, 而有些性质如温度、压力却是相等的。

空气的气液相平衡

空气的气液相平衡

空气的气液相平衡(一)空气的组成空气是一种均匀的多组分混合气体,它的主要成分是氧、氮和氩,此外还含有微量的氢及氖、氦、氪、氙等稀有气体。

根据地区条件的不同,空气中含有不定量的二氧化碳、水蒸气以及乙炔等碳氢化合物,空气的组成及各成分的沸点示于第8章表8-2中。

(二)空气的二元系气液平衡1.气液平衡及氧、氩、氮饱和压力和温度的关系在气液平衡条件下,各相的状态参数保持不变,它们的温度、压力都分别相等,这时的温度称饱和温度,压力称饱和蒸气压力。

纯物质在一定的压力下对应着唯一的饱和温度,或在一定的温度下对应有唯一的饱和压力。

图9-1示出氧、氩、氮纯物质在气液平衡时,饱和压力与温度之间的关系。

图9-1由图知,氧、氩、氮在同一温度下具有不同的饱和蒸气压力,这是由于它们的分子结构和分子间的引力不同所致。

在同一温度下饱和蒸气压的大小,表明了液体气化的难易程度。

饱和蒸气压大的物质容易由液体变为蒸气,反之,饱和蒸气压小的物质不易由液体变为蒸气。

在相同的温度下,氮的饱和蒸气压高于氧的饱和蒸气压,而在相同的压力下,氮的饱和温度低于氧。

氩则介于氧、氮之间。

2.氧-氮二元系的气液平衡压力、温度、比焓与成分的关系氧-氮二元系气液平衡关系可用相平衡图表示。

相平衡图是按用实验方法求得的温度,压力,比焓及摩尔分数之间的关系绘制。

常用的几种平衡图如下:图9-2(1) 图如图9-2所示,图中的每组曲线是在等压下作出的,纵座标表示温度,横座标表示氧的摩尔系数(x及y),对应于每一个压力都有一组气液相平衡曲线(称鱼形曲线,曲线中的压力数值单位是105Pa)。

以任一组曲线为例,上面的一条线称冷凝等压线,它表示在给定的压力下,与液相平衡的气相组成与温度的关系,又称气相线;下面的一条线称沸腾等压线,它表示在给定压力下,与气相平衡的液相组成与温度的关系,又称液相线。

在气相线与液相线之间的区域称湿蒸气区。

曲线的两端点的纵座标分别表示纯氧和纯氮在该压力下的饱和温度。

溶液气液相平衡ppt课件

溶液气液相平衡ppt课件
6.2 溶液的气、液相平衡
蒸馏过程:气液两相间的传质过程; 过程的极限:气、液相平衡。 相平衡关系:两相或多相接触达物理平衡时,各相组成之间
的关系。
1
6.2.1 气、液相平衡的自由度
根据相律有: F c 2
对于双组分物系的气液平衡:
C2 2 F2
即双组分物系气、液相平衡的自由度为2。 对多组分物系的气、液相平衡的自由度为组分数C。 双组分物系的独立变量:
yA
pA P
PA0 x A P
yB
pB0 xB P
7
关于平衡计算的说明: (1)已知 P、 t , 求 相互平衡的 x 、 y , 不必试差 t → pA0, pB0 → x , y (2)已知 x , 求与之平衡的 y, t 或 已知 y 求与之平衡的 x , t ,试差计算 试算过程为:
假设 t
x
判断x
y
假设 t
x
y
判断 y x
8
(2)相图 ① 温度-组成图(t-x-y) 总压一定时,给定 t p0A,pB0 x,y
9
图线说明: ① 曲线 t-x 表示恒定压力下,饱和液体组成与泡点的关系,
称为饱和液体线或泡点曲线。 ② 曲线t-y表示恒定压力下,饱和蒸气的组成和露点的关系,
称为饱和蒸气线或露点曲线。 ③ 在t-x 线下方为过冷液相区。 ④ 在t-y 线上方为过热气相区。 ⑤ 在两线之间为两相共存区,即气、液相平衡区。
13
压力对温度组成图的影响
14
② 气、液平衡组成的 x-y 图 标绘:略去温度坐标,依x-y 的对应关系做图 ,得x-y图。
15
说明: (1)组成 均以易挥发组分的组成表示,故曲线位于对角线上方

气液相平衡方程

气液相平衡方程

气液相平衡方程
气液相平衡方程是描述气体和液体之间物质传递的数学关系。

它是化学工程、环境科学、生物工程等领域中重要的理论工具。

气液相平衡方程的基本形式是亨利定律,即气体在液体中的溶解度与气体的分压成正比。

这个方程可以用以下数学表达式表示:
C = kH * P
其中,C是气体在液体中的溶解度,kH是亨利常数,P是气体的分压。

亨利常数是气体溶解度与分压的比例常数,它依赖于具体的气体和溶剂系统。

除了亨利定律,还有其他描述气液相平衡的方程,比如罗特定律和拉乌尔定律。

罗特定律是描述溶剂中溶质的逸度与溶液中溶质的摩尔分数之间的关系。

拉乌尔定律是描述理想混合溶液的蒸气压与组成之间的关系。

在工程实践中,气液相平衡方程经常用于设计和优化化工装置。

例如,在气体吸附过程中,通过气液相平衡方程可以计算出吸附剂中溶质的负荷量。

在化学反应工程中,气液相平衡方程可以帮助确定反应器中气体和液体的相互作用,从而优化反应条件。

此外,气液相平衡方程还可以应用于环境科学研究中。

例如,在水体中溶解氧的研究中,可以利用亨利定律来计算氧气在水中的溶解度,从而评估水体的氧化能力。

在大气污染研究中,可以利用拉乌尔定律来估算不同气体在大气中的浓度。

总之,气液相平衡方程是描述气体和液体之间物质传递的重要工具。

通过这些方程,可以深入理解气体和液体的相互作用,为工程设计和科学研究提供有力的支持。

[8-2]气液相平衡

[8-2]气液相平衡

E m与E的关系:p P ye ye P Ex m P 讨论:
② ye~x关系: 气液两相的组成分别用溶质A的摩尔分率y和x来表示,有: m——相平衡常数,无因次; ye mx ye——平衡气相中溶质的摩尔分率。
Ⅰ、m是平衡条件下ye~x直线的斜率。m 越大,气体的溶解 度越小,属难溶气体; Ⅱ、m与E的关系:
一、溶解度
1. 溶解度的概念 ① 平衡状态: 恒定T、P下,一定量的吸收剂与混合气体充分接触,气相中 的溶质向溶剂中转移,长期充分接 触后,液相中溶质组分的浓度 不再增加,此时的气液两相达到平衡。 ② 溶解度: 也称平衡溶解度,指平衡时溶质在液相中的浓度。通常用单 位体积(或质量)溶液中所含溶质物质的量(或质量)表示,单位为: kmol溶质/m3溶液 或 g溶质/kgH2O 气体在液体中的溶解度表明了一定条件下吸收过程可能达到 的极限程度,不同气体在同一溶剂中的溶解度差异较大。
为什么?请往下看!
8.2.2 Henry’s Law
一、气液相组成的关系曲线
气 当吸收操作的总压P不太高、相 中 且吸收温度T恒定时,有: 氨 的 分 pe=f1(x) 压
P=1atm
60℃
50℃
40℃ 30℃ 液相中氨的摩尔分率 氨在水中的溶解度
ye=f2(x)
pe =f 3 ( c) 因此,吸收过程气液组成的 关系曲线主要有三组: pe~ x,ye~x和 pe~c
(3)在总压202.6kPa,温度30℃条件下,SO2在水中的亨利系数E=4850kPa
E 4850 m 23.94 从气相分析: ye=mx=23.94×0.01=0.24 p 202.6 ye<y=0.3,故SO2必然从气相转移到液相,进行吸收过程。

化工原理下册复习提纲(修改)

化工原理下册复习提纲(修改)

αx y= 1 + (α − 1) x
相平衡方程
α的大小可作为用蒸馏分离某一物系的难易程度标志。 的大小可作为用蒸馏分离某一物系的难易程度标志。
P ↓, α ↑ ,两相区扩大,有利于分离
液相组成x对应的y值愈大, α愈大则同一 液相组成x对应的y值愈大, α=1时 y=x,则汽液两相组成相同即y α=1时,y=x,则汽液两相组成相同即yA=xA,yB=xB, 这时用一般精馏方法无法分离。 这时用一般精馏方法无法分离。

气液相平衡
1、溶解度曲线 •吸收剂、温度T、p 一定时,不同物质的溶解度不同。 温度、溶液的浓度一定时,溶液上方分压越大的物质越难溶。 •对于同一种气体,分压一定时,温度T越高,溶解度越小。 •对于同一种气体,温度T一定时,分压pA越大,溶解度越大。 •加压和降温对吸收操作有利,而减压和升温则有利于解吸操作 加压和降温对吸收操作有利, 加压和降温对吸收操作有利 溶解度仅取决于溶质分压。
三、四线及最小回流比
L D R 1 y n +1 = xn + xD = xn + xD V V R +1 R +1 L W RD + qF F −D yn +1 = xn − xw = xn − xw ( R + 1) D − (1 − q ) F ( R + 1) D − (1 − q ) F V V
2、亨利定律 相平衡关系数学描述 (1) y e = mx (2) pe = HC (3)
pe = Ex
(1)三种表达形式
E、m、H的数值越小,溶质的溶解度越大 E≈ Hρ s Ms E m= P m除与温度有关外,还与总压有关
E = f(t) H = f(t) t↓ ↓

气液平衡

气液平衡

汽液平衡数据的测定汽液平衡数据是最常用的化工基础数据。

许多化工过程如精馏的设计、操作及过程控制等都离不开汽液平衡数据。

有热力学研究方面,新的热力学模型的开发,各种热力学模型的比较筛选等也离不开大量精确的汽液平衡实测数据。

现在,各类化工杂志每年都有大量的汽液平衡数据及汽液平衡测定研究的文章发表。

所以汽液平衡数据的测定及研究深受化工界人士的重视一、实验目的:通过测定常压下乙醇—水二元系统汽液平衡数据的实验,使同学们了解、掌握汽液平衡数据测定的方法和技能,熟悉有关仪器的使用方法,将课本上学到的热力学理论知识与实际运用有机地联系在一起。

从而既加深对理论知识的理解和掌握,又提高了动手的能力。

二、汽液平衡测定和种类:由于汽液平衡体系的复杂性及汽液平衡测定技术的不断发展,汽液平衡测定也形成了特点各异的不同种类。

按压力分,有常减压汽液平衡和高压所液平衡测定。

高压汽液平衡测定的技术相对比较复杂,难度较大。

常减压汽液平衡测定则相对较易。

按形态分,有静态法和动态法。

静态法技术相对要简单一些,而动态法测定的技术要复杂一些但测定较快较准。

在动态法里又有单循环法和双循环法。

双循环法就是让汽相和液相都循环,而单循环只让其中一相(一般是汽相)循环。

在一般情况下,常减压汽液平衡都采用双循环,而在高压所液平衡中,只让汽相强制循环。

循环的好处是易于平衡、易于取样分析。

根据对温度及压力的控制情况,有等温法与等压法之分。

一般,静态法采用等温测定,动态法的高压汽液平等多采用等温法。

总之汽液平衡系统特点各异,而测定的方法亦丰富多彩。

本实验采用的是常压下(等压)双循环法测定乙醇—水的汽液平衡数据。

三、实验原理:以循环法测定汽液平衡数据的平衡釜有多种形式,但基本原理是一样的。

如图书馆所示,当体系达到平衡时,A 和B 两容器中组成不随时间布景为化,这时从A 和B 两容器中取样分析可以得到一组汽液平衡实验数据。

根据下平衡原理,当所液两相达到相平衡时,汽液两相温度压力相等,同时任一组分在各相中的逸度相等,即:v L i i f f =))这里 v v i i i f y P =Φ)) 0L i i i i f r x f =))对低压汽液平衡,其汽相可以视为理想气体混合物,即1v i Φ=),忽略压力对液体逸度的影响,即0i i f P =),从而得出低压下汽液平衡关系式:i i i i Py r x P =式中 P ——体系压力(总压)i P ——纯组分i 在平衡温度下的饱合蒸汽压。

化工原理 气液相平衡

化工原理 气液相平衡
6.2 气液相平衡
一、气体在液体中的溶解度
气液两相处于平衡状态时,溶质在液相中的含量。
pA
O2
CO2
SO2
由图可见,曲线愈平坦,
该组分的溶解度愈大;曲线
愈陡峭,溶解度愈小。
NH 3
cA
几种气体在水中的溶解度曲线图
当总压不太高(p<0.5MPa)时,
总压的变化不改变pA—CA之间的 关系。对于稀溶液,pA—CA符合 线性关系。
y2
x2
x2
y2 y2min
y1
x11 x1max
当吸收剂用量 L↓→x1↑→x1max=x1*=y1/m
x1
y1
L↑→y2↓→y2min=y2*=mx2
Hale Waihona Puke 3.计算过程的推动力y

y
x
x*
吸收 y y* x x*
推动力:y y y x x* x
y
y

x
x
解吸 y y* x x*
y y* y
推动力:
x x x
二、亨 利 (Henry)定 律
亨利定律:对稀溶液,溶解度曲线为一直线。
pA ExA
E——亨利系数
p
A
cA
/H
H——溶解度系数

y
A
mxA
m——相平衡常数
各参数之间的关系
p
A
cA
/
H= cM H
cA cM
cM H
xA
p
A
/
P总
E
P总
xA
E CM s
H MsH m E
P总
c
A
Hp A

气液平衡相图的测定

气液平衡相图的测定
背景
随着工业的发展,多相流体的处理和分离技术在石油、化工、能源等领域的应用 越来越广泛。气液平衡相图作为描述多相流体相平衡关系的基础数据,对于这些 领域的技术开发、工艺优化和过程控制具有重要的指导作用。
气液平衡相图的重要性
基础研究
气液平衡相图是研究多相流体热力学性质的基础数据,对于理解多相流体的相平衡规律、界面张力以及传递性质 具有重要意义。
03
气液平衡相图的测定方法
实验设备与材料
气液平衡相图测定仪
用于测定气液平衡相图,包括恒温槽、压力表、气、氮气、水等。
辅助工具
如注射器、管路、密封圈等。
实验步骤与操作
设定温度
根据实验需求设定恒温槽的温 度,确保实验过程中温度恒定。
开始实验
加强气液平衡相图在工 业上的应用研究,推动 其在更多领域的应用普 及。
跨学科合作
加强与其他学科的合作, 如化学工程、物理化学、 材料科学等,共同推进 气液平衡相图的研究和 应用。
人才培养与交流
加强人才培养和学术交 流,促进气液平衡相图 领域的持续发展。
THANKS
感谢观看
工业应用
在石油、化工、能源等领域,气液平衡相图是设计和优化油藏工程、油气分离、吸收解吸、萃取精馏等工艺过程 的关键参数。通过测定气液平衡相图,可以预测多相流体的流动特性、分离效果和经济性,为工业过程的优化提 供科学依据。
02
气液平衡相图的基本概念
相平衡
相平衡是指在一定的温度和压力条件下,物质的气相和液相达到平衡状态的状态 。在这种状态下,气相和液相之间不再发生质量传递,即气相和液相的组成保持 不变。
05
应用与展望
工业应用
分离过程优化
气液平衡相图在工业上可用于优 化分离过程,如蒸馏、吸收等,

气液平衡相图

气液平衡相图
药品:环己烷-乙醇溶液:x(环己烷 摩尔分数)分别约为0.05、0.15、0.3、 0.45、0.55、0.65、0.8、0.95
1.安装沸点仪
实验步骤
2.测定各溶液的沸点及平衡时气、液两相的折光率
3.从支管加入约30cm3溶液,以液面位于温度计水银球的崐中部 为止,接通冷凝水和电源,调节加热电压8-10V,液体沸腾后, 再调节电压,使回流高度一定(2cm左右),将最初冷凝液到回烧 瓶,反复2-3次,沸点稳定后,读温度,停止加热。
1. 安装沸点仪 将干燥的沸点仪如图安装好。检查带有
温度计的木塞是否塞紧,加热用的电热丝 要靠近容器(1)底部的中心,温度计水银球 的位置要在支管(6)之下且稍高于电热丝。
2. 粗略配制 10%、30%、45%、55%、 65%、80%、95% 等组成的环已烷-异丙 醇溶液。
3. 测定沸点 将一配制好的样品注入沸点仪中,
一定要在停止通电加热之后,方可取样进行 分析。
沸点仪中蒸气的分馏作用会影响气相的平衡 组成,使得气相样品的组成与气液平衡时气 相的组成产生偏差,因此要减少气相的分馏 作用。
思考题
1.沸点仪中的小球体积过大或过小,对测量 有何影响?
2. 若在测定时,存在过热或分馏作用,将 使测得的相图图形产生什么变化? 3. 按所得相图,讨论环已烷-乙醇溶液蒸馏时 的分离情况。
T/K
T1
A x液
x气 xB
B
测定沸点:用回流冷凝法
测定组成:用折光率法,折光率是物质的 一个物理性质,它与物质的组成有关,先 测定出一系列已知浓度的溶液的折光率, 作出工作曲线,用内插法测得未知溶液的 浓度。环己烷-乙醇工作曲线
仪器和药品
仪器:沸点仪 折光仪 超级恒温槽 调压变压器 温度计(50-100℃) 加热器 滴管

8气液相反应过程与反应器

8气液相反应过程与反应器

气相组分进入到液相的过程是一个传质过程。
双膜论
Ci
pG
δ g δ L
CL pi
G
G
L
L
1、气相中反应组分由气相主体 透过气膜扩散到气液界面; 2、该组分进入液相后,通过液 膜扩散到液相主体; 3、进入液相的该组分与液相中 反应组分进行反应生成产物; 如为挥发性产物,: 4、产物由液相主体透过液膜扩 散到气液界面; 5、产物从气液界面透过气膜扩 散到气相主体。
dnAL DAL S (c AI c AL ) k AL S (c AI c AL ) dt L
定态,则:dnAG
dnAL dt dt
组分A与B在液相中进行化学反应:aA bB rR rA rB m n r kcA cB
A
B
液膜内离相界面I处取一厚度为dl,与传质方向垂直的面积S的体积 作为体积元,对该体积元作A组分的物料衡算,在单位时间内:
L
dcA 气液界面处:D AL ( ) I k AL (c AL c AI ) k AL D AL / L dl
同理,有: k BL DBL / L , k AG DAG / G
这是在液膜区内无化学反应,即物理吸收过程的规律:
' L /L 1
dnA 1 S ( p AG Kc AL ) 1 K dt k AG k AL
BC:l 0 : c A c AI ; l R : c A 0
dcA n c AI , m c AI / R dl
R l L 液膜中仅有组分B而没有组分A:
DBL
BC: l R : cB 0; l L : cB c BL

气液相平衡

气液相平衡

第八章习题气液相平衡1.在盛水的鼓泡吸收器中通入纯CO2气,经长期接触后测得水中CO2的平衡溶解度为2.857×10-2mol/L溶液。

鼓泡器中的总压为101.3kPa,水温30℃,溶液的密度ρm=996kg/m3。

求亨利系数,并将此实验值与文献值E=188.5MPa作比较。

2.惰性气与CO2的混合气中含CO230% (体积百分数),在1MPa(表压)下用水吸收。

设吸收塔底水中溶解的CO2达到饱和,此吸收液在膨胀槽中减压至20kPa(表压),放出大部分CO2,然后再在解吸塔中吹气解吸。

设全部操作范围内水与CO2的平衡关系服从亨利定律,操作温度为25℃。

求1kg水在膨胀槽中最多能放出多少kgCO2气。

习题1 附图习题2附图3.20℃的水与N2气逆流接触以脱除水中溶解的O2气。

塔底入口的N2气中含氧0.1% (体积),设气液两相在塔底达到平衡,平衡关系服从亨利定律。

求下列两种情况下水离开塔底时的最低含氧量。

以mg/m3水表示。

(1)操作压强为101.3kPa(绝对)。

(2)操作压强为40kPa(绝对)。

4.气液逆流接触的吸收塔,在总压为101.3kPa下用水吸收Cl2气,进入塔底的气体混合物中含氯1%(体积),塔底出口的水中含氯浓度为x=0.8×10-5(摩尔分率)。

试求两种不同温度下塔底的吸收推动力,分别以(x e-x)及(y-y e)表示。

(1)塔底温度为20℃。

(2)塔底温度为40℃。

5.某逆流吸收塔塔底排出液中含溶质x=2×10-4(摩尔分率), 进口气体中含溶质2.5%(体积),操作压强为101kPa。

气液平衡关系为y=50x。

现将操作压强由101kPa增至202kPa,问塔底推动力(y-y e)及(x e-x)各增加至原有的多少倍。

扩散与相际传质速率6.柏油马路上积水2mm,水温20℃。

水面上方有一层0.2mm厚的静止空气层,水通过此气层扩散进入大气。

大气中的水汽分压为1.33kPa。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

精品课件
8.1.1 相平衡判据
i d n i id n i 0
dni dni
(ii)dn i0
d
n
i
0
i i
同理,对于多相(相)多组分(N组分)体系的相平 衡判据为:
i i ...i ...( i 1 ,2 ...N )
精品课件
8.1.1 相平衡判据
4、逸度判据
did G iR T dlnf i 恒温
烃类混合物
理想气体
3
混合物
4
非理想溶液
非理想溶液 非理想溶液
大部分体系
含超临界 组分体系
适用范围 压力小于 0.2MPa 压力小于 1.5MPa
低压
高压
精品课件
8.1.2 状态方程法
f
V i
fiL
fiV Pyi iV
fiL PxiiL
PxiiLPyiiV
K
yi
L i
xi
V i
1 P
R T
lni (V i )d P
(3) (ixi)(ixi) 液液平衡
2、汽液平衡四种情形(见表7-1)
精品课件
8.1.1 相平衡判据
表8-1 汽液平衡情形
情形 1
2
汽相 理想气体混合物 道尔顿分压定律
非理想气体混合 物但属理想溶液
液相
理想溶液 拉乌尔定律
理想溶液 Lewis—Randall
规则
举例 同分异构体或同 系物构成的体系
特点:利用状态方程计算逸度
R T0
P
状 或逸度系数,这就要求选用一
ln iVR 1 T0 P(V V i R P T )d P态 方 程 ln iLR 1 T0 P(V iLR P T)精d 品P 课件 法
种状态方程既可用于汽相又适 用于液相,计算结果的可靠性 取决于状态方程的可靠性,通 常用于高压条件。计算过程比 较麻烦。
2、自由焓判据 依据:恒温恒压下,只做体积功的封闭体系的一切自发 过程必将引起体系自由焓的减少,达到平衡时, 体系自由焓最小。即 体系达平衡: dG(T,P)=0 特点:T,P易测易控,应精品用课件广泛。
8.1.1 相平衡判据
3、化学位判据 对于多组分两相平衡的封闭体系(α相、β相),每一
相都可视为一个敞开体系,两相之间有物质交换,对于单 相敞开体系,根据变组成体系热力学基本关系式有:
第八章 流体相平衡
课时:4学时 要求: 1、掌握相平衡的判据,了解相平衡处理方法; 2、二元系组分活度系数与组成间的关系; 3、掌握简单相平衡计算方法 内容: 8.1 相平衡的判据和处理方法 8.2 二元系组分活度系数与组成间的关系 8.3 汽液平衡 8.4由汽液相平衡数据计算活度系数 8.5 汽液相平衡数据热力学精一品课致件 性检验
和电解质的体系难于应用。
1、需要用其他方法计算偏摩尔体积。 2、对含有超临界组分的体系应用
不便。 3、在临界区难以应用。
精品课件
8. 2 二元系组分活度系数与组成间的关系 8.2.1 非理想溶液的过量自由焓
G E G E G G id
G idR T x iln x i
GRT xi lnai
二、相平衡的处理方法
1、汽液平衡的处理方法
(1)
fiV fiL
fiV Pyi iV
fiL i xi fi0
PyiiV ixi fi0
(2)
fiV PyiiV
fiL PxiiL
PxiiLPyiiV
精品课件
气液平衡 低压、加压情况
8.1.1 相平衡判据
K
yi
L i
xi
V i
汽液平衡 适用于高压或常压情况
第八章 流体相平衡
1、相平衡的有关概念
相:体系中的一个均匀空间,其性质和其余部分有区别, 每个相都是一个敞开体系,能与相邻的相进行物质 交换和能量交换。
相迁移:物质从一个相迁移到另一相的过程,叫该物质 的相迁移过程。
相平衡:当物质迁移停止时,此时各相的性质和组成不 再随时间而变化——相平衡(相间的平衡),此时 各相间某些性质如密度、粘度、焓、熵等相差很大, 而有些性质如温度、压力却是相等的。
精品课件
第八章 流体相平衡
2、研究相平衡的意义 (1)为分析解决传质分离设备的设计、操作和控制
提供理论依据 (2)为新工艺、新产品和新技术的开发提供相平衡数
据和相平衡热力学模型
精品课件
8.1 相平衡判据和处理方法
8.1.1 相平衡判据
一、相平衡判据
1、普适判据——熵判据 依据:熵增原理——dS孤0,即熵增大到最大值时, 体系达平衡。 dS孤=0 特点:需要同时考虑体系和环境的变化,应用不太方便。
积分:
i

i0
RTln
fi fi0
对每个相中组分化学位有:
即达到平衡状态时,多
相平衡体系中,每个组分
i
i0
RTln
fia fi0
在各相中的逸度必相等。
i
i0 RTln
fi fi0
fi fi ...... fi ... (i 1,2...N)
根据化学位判据
i
i 精品课件
8.1.1 相平衡判据
d (n G ) (n S )d T (n V )d P id n i d (n G ) (n S )d T (n V )d P id n i
当T,P一定时,封闭体系的自由焓为两相之和:
d n G d(n G )d(n G ) 自由焓判据 (dnG)T,P 0
d(nG )d(nG )0
8.1.2 活度系数法
fiV fiL
fiV PyiiV
fiL i xi fi0
状态方程 活度系数模型
活度系数法
K yi i fi0
xi
P
V i
i
液相活度系数
V i
汽相逸度系数
f
0 i
L—R标准态,即与体系温精度品课和件压力相同的纯液体作为标准态。
8.1.2 活度系数法
fi0fiLPis
isexpP P iS
ViLdP RT
特点:适用低压和中压
f0 i (T,P,xi1)
P is
isexpV iL(P R T P iS)
下汽液相平衡计算。
两种方法比较见表8-2
精品课件
8.1.2 活度系数法
方 法
优点
状 1、不需要标准态。
态 2、不需要相平衡数据,只需要

P、T、V、N数据。
程 3、容易采用对应状态理论。
法 4、可以用在临界区。
1、简单的液体混合物模型已能满

足要求。
度 系 数
2、温度的影响主要反映在标准态 逸度上,而不是活度系数上。
法 3、对于许多类型的混合物,包括 聚
合物、电解质的体系都能应用。
缺点
1、没有一个状态方程能完全适用于 所 有的流体密度区间。
2、受混合规则影响很大。 3、对于含极性物质,大分子化合物
G E R Tx iln a i R Tx iln x i
相关文档
最新文档