大学物理第九章电荷与真空中的静电场详解
第九章静电场-PPT精品
q
4πε0r 2
2/10/2020
R
高斯面
均匀带电球体电场强度分布曲线
qr
rR
场强E
4 ε 0R 3
rR
q 4 ε 0r 2
E
q 4π ε0 R 2
r
2/10/2020
o
R
[例]求无限长均匀带电圆柱面的电场。已知λ
(λ为沿轴线方向单位长度带电量)
解: rR
E dS
S E d S E d S E dSl
第九章 静电场
重点:
1.基本知识:电场强度,电势,高斯定理, 环路定理。
2.基本方法:微元思想,对称性分析方法。
2/10/2020
§1.电场 电场强度
一.电荷 库仑定律 1.电荷 ①电荷的种类:正电荷 负电荷 同号相斥 异号相吸
质子内电荷分布
中子内电荷分布
2/10/2020
②电荷的量子性
★电荷量(电量):带电体所带电荷的多少。
★距离增大,场强减小。
★沿着矢量方向,垂直于球面。
q0
●
E
2/10/由2020点电荷场强公式,是否当r趋近0时,场强趋近无穷大?
3.场强叠加原理
①点电荷系电场中某点的场强 ——以三个点电荷为例
ur E
ur F
q0
uur uur uur F1 F2 F3
q0
q3
q1
uur uur uur
Φ π rR e E d S E 4 r 2 E
qi
q
4πR3
4πr3
3
3
E4πr2 ε10 qRr33
场强
2/10/2020
E
大学物理静电场介绍
-q2
q1
-q2
电场性质的物理量--电场强度
一、静电场
场的概念最先由法拉弟提出
光速
电荷
电场
电荷
qo Q qo
静电场: 相对于参考系静止的电荷所产生的电场。
二、电场强度
qo
用电场强度 表示电场的强弱和方向。 检验电荷(qo): (2)电量足够小 (3)正电荷 (1)点电荷
实验规律一:在电场的不同点上放同样的检验电荷qo, F3 F1 电场中各处的力学性质不同。 q
??o885??1012c2nm22112ff????四电场力叠加原理和独立性原理q1q2q3q4电荷q1受到q2q3q4对它的库仑力它的库仑力为电场力叠加原理两个电荷之间的作用力不因第三个电荷的引入发生变化独立性原理四个电量分别为和的点电荷如图分布四个电量分别为和的点电荷如图分布先在正方形的正中心放置一个单位正电荷先在正方形的正中心放置一个单位正电荷计算该电荷受到的电场力q1q2a03q1q2a03q1q2q1q2电场性质的物理量电场强度一静电场场的概念最先由法拉弟提出电荷电场电荷光速静电场
二、库仑定律
真空中,两个静止的点电荷之间的相互作用力 F 的 大小与这两个点电荷所带的电量q1 和q2 的乘积成正比, 与它们之间的距离 r 的平方成反比。作用力 F 的方向沿 它们的连线方向,同号相斥,异号相吸。
公式:
q2 q1
F21 =
q1q2 2 er 21 4πεo r21
F12 F21
0 0
d l = ad q =π a
y
E = dEx = dE sin = 0 4 =4
π
d a
π ε a
0
大学物理-第九章 电磁感应 电磁场理论
2.电场强度沿任意闭合曲线的线积分等于以该曲线
为边界的任意曲面的磁通量的变化率的负值。 3.通过任意闭合曲面的磁通量恒等于零。
4.磁场强度沿任意闭合曲线的线积分等于穿过以该 曲线为边界的曲面的全电流。
第第九十章一电章磁真感空应中的电恒磁定场磁理场论
麦克斯韦方程组(物理含义)
(1) SDdSq (2)
例1 有一圆形平板电容器 R , 现对其充电,使电路上
的传导电流为 I ,若略去边缘效应, 求两极板间离开轴
线的距离为 r(r R) 的区域的(1)位移电流;
(2)磁感应强度 .
解 如图作一半径
Q Q
为 r平行于极板的圆形
回路,通过此圆面积的
电位移通量为
I
R P*r
I
ห้องสมุดไป่ตู้
D D(πr2)
D
Edl BdS
L
s t
(3) SBdS0
(4) LHdl IsD t dS
1.电荷是产生电场的源。
2.变化的磁场也是产生电场的源。
3.自然界没有单一的“磁荷”存在。
4.电流是产生磁场的源,变化的电场也是产生磁场的源。
第第九十章一电章磁真感空应中的电恒磁定场磁理场论
解:∵
B只分布在R 1
r
R 2
区
域内且
wm
B2 2
8
I2 2r 2
B I 2 r
第第九十章一电章磁真感空应中的电恒磁定场磁理场论
RR11 RR22
⊙⊙BB II
rr ⊕⊕BB
r dr
所以取体积元为 dVl2rdr
W m VwmdVR R1 28μπ2Ir22l2πrdr
大学物理 科学出版社 第9章 静电场 参考答案
第4篇电磁学第9章静电场9.1 基本要求1 掌握静电场的电场强度和电势的概念以及电场强度叠加原理和电势叠加原理。
掌 握电势与电场强度的积分关系。
能计算一些简单问题中的电场强度和电势。
了解电场强度 与电势的微分关系。
2 理解静电场的规律:高斯定理和环路定理。
理解用高斯定理计算电场强度的条件和 方法。
3 了解导体的静电平衡条件,了解介质的极化现象及其微观解释。
了解各向同性介质 中D和E之间的关系。
了解介质中的高斯定理。
4 了解电容和电能密度的概念。
9.2 基本概念1 电场强度E :试验电荷0q 所受到的电场力F 与0q 之比,即0q =F E 2 电位移D :电位移矢量是描述电场性质的辅助量。
在各向同性介质中,它与场强成正比,即ε=D E 3 电场强度通量e Φ:e Sd Φ=⎰E S电位移通量:D Sd Φ=⎰D S4 电势能pa E :0pa aE q d ∞=⎰E l (设0p E ∞=)5 电势a V :0pa a aE V d q ∞==⎰ E l (设0V ∞=)电势差ab U :ab a b U V V =- 6 场强与电势的关系(1)积分关系 a aV d ∞=⎰E l(2)微分关系 = -V ∇=-E gradV7 电容C:描述导体或导体组(电容器)容纳电荷能力的物理量。
孤立导体的电容:Q C V =;电容器的电容:Q C U= 8 静电场的能量:静电场中所贮存的能量。
电容器所贮存的电能:22222CU Q QUW C ===电场能量密度e w :单位体积的电场中所贮存的能量,即22e E w ε=9.3 基本规律 1 库仑定律:12204rq q rπε=F e 2 叠加原理(1)电场强度叠加原理:在点电荷系产生的电场中任一点的场强等于每个点电荷单独 存在时在该点产生的场强的矢量和。
(2)电势叠加原理:在点电荷系产生的电场中,某点的电势等于每个点电荷单独存在时 在该点产生的电势的代数和。
第九章电荷与真空中的静电场
第九章电荷与真空中的静电场第九章电荷与真空中的静电场9.1 电荷库仑定律⼀、电荷对物质电性质的最早认识:摩擦起电和雷电电荷的基本认识包括:电荷类型:正电荷(丝绸摩擦玻璃棒)负电荷(⽑⽪摩擦橡胶棒)电性⼒:同号相斥、异号相吸电量:物体带电荷数量的多少2.电荷所遵循的基本实验规律:1)电荷是量⼦化的在⾃然界中,电荷总是以基本单元的整数倍出现,近代物理把电荷的这种不连续性称为电荷的量⼦化。
⼀个电⼦或质⼦所带电量既为⼀个基本电量单元,其电量为:e = 1.602 10-19 C(库仑)所有带电体的电量均为:q=ne n=±1, ±2, ±3,2)电荷遵从守恒定律电荷守恒定律是⾃然科学中的基本定律之⼀。
电荷既不能创造,也不会被消灭,它只能从⼀个物体转移到另⼀个物体(如摩擦起电),或从物体的⼀部分转移到另⼀部分(如静电感应)。
在任何物理过程中,电荷的代数和是恒定不变的。
9.2 电场电场强度⼀、电场电场强度静电场:存在于电荷周围的,可以对其它电荷施加作⽤⼒的物质,称之为电场,⽽由相对于观察者静⽌的电荷激发的电场则称为 “静电场”场的物质性体现在:给电荷施加⼒(动量),移动电荷做功(能量) 场与实物的共同性:1客观存在;2遵循守恒定律;3不能创⽣场是客观存在的特殊物质,与普通实物⼀样具有能量、质量、动量等,不同的是,场可以与实物共占空间,具有“可侵⼊性”⼆.电场强度— 描述电场各点对电荷作⽤强弱的物理量定义:电场中某点,单位正电荷所受到的电场⼒为该点电场的电场强度,简称场强. 单位:⽅向:某点电场强度E 与该点正电荷受⼒⽅向相同9.3 电通量真空中静电场⾼斯定理1. 电场线电场线(E )线:描述电场空间分布情况的⼀组曲线规定:电场强度的⽅向:曲线在某点的切线⽅向电场强度的⼤⼩:曲线的疏密程度(通过垂直于电场线单位0q F E =1m V -?⾯积的电场线数)。
2. 电通量定义:通过电场中任⼀⾯积的电场线数⽬称为通过该⾯的电通量匀强电场穿过垂直均匀电场的平⾯的电通量通过⼀均匀电场中任⼀平⾯的电通量⾼斯定理:在真空中,通过任意闭合曲⾯S 的电通量等于该曲⾯内所包围的⾃由电荷的代数和除以真空电容率点电荷置于任⼀闭合曲⾯内:由于电场线的连续性,穿过该曲⾯的电⼒线根数与包围同⼀电荷的球⾯相同,当所有电荷均位于曲⾯外时:与曲⾯相切的电⼒线对曲⾯的通量没有贡献,穿过曲⾯的所有电场线都将穿出曲⾯,⽽电场线穿⼊曲⾯为负,穿出为正真空中的⾼斯定理:在真空中,通过任意闭合曲⾯S的电通量等于该曲⾯内所包围的⾃由电荷的代数和除以真空电容率⾼斯定理表明静电场是有源场,电荷就是静电场的源。
真空中的静电场
13真空中的静电场真空中静电场的基本概念(1) 静电场的基本定律库仑定律:两点电荷在真空中的相互作用力电荷守恒定律:在一个与外界无电荷交换的系统内,任何过程中正负电荷的代数和永不改变.叠加原理:点电荷系在空间某点处产生的场强(或电势)等于各个点电荷单独存在时在该点产生的场强(或电势)之和.(2) 重要定理高斯定理:通过任一封闭面的电通量等于该封面所包围的电荷电量代数和的倍.1/ε,说明静电电场是有源场.环路定理:在静电场中,电场强度沿任一闭合路径的积分恒为0.,说明静电场是保守场,静电力是保守力.(3) 电场强度在电场中任一给定点处,检验电荷q0所受的电场力F与其电量q0的比值为给定的电场强度电场强度E是一矢量,其大小为,方向为电场中给定点处正检验电荷所受力的方向.(4) 电势①电势能静电场是保守场,引入电势能的概念.电荷q0在静电场a点的电势能.若带电体系分布在有限空间内,常取无限远处电势能为零,则上式表明,在静电场中,电荷q0在a点的电势能等于将电荷q0从a点移动到无穷远处电场力所作的功.②电势静电场中a点的电势静电场中a点的电势等于单位电量在该点所具有的电势能,即将单位电量从该点a移动到无穷远处电场力所作的功.电势的单位为伏(V).③电势差静电场中a,b 两点的电势差.静电场中a,b两点的电势差等于单位电量从a点移动到b点是电场力所作的功.解题指导(1)场强E、电势U 的计算场强和电势的计算可归纳为两大类题型:第一类,场具有球、柱、面对称性.先用高斯定理再用电势公式第二类,一般的场.原则:点电荷的场、叠加原理.点电荷的场场强电势点电荷系的场场强电势连续带电体的场场强将带电体分成无穷多个点电荷,取一点电荷,其场强为将d E分解到x方向和y方向再对场强在x方向的分量及y方向的分量积分电势取一点电荷,其电势为对所有点电荷产生的电势求和即求积分求解连续带电体的场强需用矢量积分(上面已介绍了基本方法),一般计算较为复杂.此问题也可简化:先计算带电体在空间的电势(电势计算积分为标量积分,比场强矢量积分简单),然后用求场强.(2) 运用F= q0E计算电场力时,应注意E是除q0以外的电荷产生的电场强度.(3) 对高斯定理中的每一个量,要有正确的理解.Φe只跟封闭面包围的电量有关,而E则是封闭面(也称高斯面)内、外所有电荷产生的总场强,跟高斯面内、外电荷有关.Φe>0,说明高斯面内净电荷(正、负电荷相加)大于零(也即正电荷比负电荷多),不能说高斯面内只有正电荷.(4)电场与电势的关系积分关系.微分关系.电场强度E大的地方,电势的高低要看积分的值大还是小,即单位电量从a→电势零点电场力作功大还是小来决定.从微分关系看,E l大,说明电势在l方向的方向导数大,即电势U随l的变化率大,即单位长度电势的变化大,反过来看电势高的地方也不能笼统地讲电场也强典型例题13-1 对于高斯定理举例说明下列说法是否正确:(1) 若高斯面内无电荷,则通过高斯面的电通量必为零;(2) 若高斯面内电荷的代数和不为零,则高斯面上的场强一定处处不为零;(3) 若高斯面上的场强处处为零,则高斯面内一定处处无电荷;(4) 若高斯面上的场强处处不为零,则高斯面内必有电荷.答(1) 正确.根据高斯定理因电荷都分布在高斯面外,任一电力线穿入高斯面后必要穿出高斯面,所以总电通量必为零.(2) 不正确.高斯面上的场强有些地方可以为零.例:有两正点电荷(+q,+q),高斯面通过两点电荷的中点O (如图13.3-1(a) ),O点处的场强 = 0.不正确.高斯面上的场强处处为零,说明表明高斯面内净电荷 = 0,可能存在正、负电荷相加为0的情况.例:两同心球壳分别带有等量异号电荷+Q、—Q(如图13.3-1(b)所示),两球壳外的电场处处为0,高斯球面在两球壳外,高斯面内有电荷+Q、—Q.(4) 不正确.例:高斯面外有一点电荷q,这时高斯面上场强处处不为零,而高斯面内无电荷.读者还可列举出一些例子来说明以上问题,这样有助于对以上问题更深入的理解.13-2 举例说明下列说法是否正确.(1) 场强大的地方,电势一定高;电势高的地方,场强一定大;(2) 带正电的物体电势一定是正的,电势等于零的物体一定不带电;(3) 场强大小相等的地方电势一定相等,等势面上场强的大小一定相等.答(1) 不正确.例如图13.3-2(a)中带等量异号电荷的平行板电容器,两平行板间的场强大小处处相等,但靠近正极的电势高,靠近负极的电势低.(2)不正确.例如两带电的同心球壳,如图13.3-2(b)所示.内球的电势只要足够大,可能为负值.后一问也不对,电势为零的物体可能带电,如图12.3-2(a)中负板接地电势为零,但带负电.(3)不正确.如图12.3-2(a)中平行板间场强大小处处相等,但电势可能不相同.后一问也不对,如图12.3-2(c)所示,两正、负点电荷,电量大小相等,它们的中垂面为等势面,但其上各点的场强大小不一定相等.13-3 半径为R的半圆形带电细棒,均匀分布有总电荷q ,求圆心O处的场强和电势.解题思路本题的电势分布不具有球、柱、面对称性,属求解一般场强和电势的问题.解这种类型题的原则是:点电荷的场和叠加原理.这里是一个连续带电的半圆环,用叠加原理时数学上用积分方法.这里我们将对求连续带电体的场强、电势的方法作一介绍.①将连续带电体分成无穷多小段,每一小段看成一点电荷;②任意取一小段dl(图12.3-3中所示),这一小段的电量为dq,dq在O点产生的电场强度d E的方向在图中标出,大小将d E分解到x,y方向;③对无穷多小段的点电荷在O点产生的场求和即求积分,很多情况根据带电体对称性(对x 轴,y轴对称情况),可直接看出一分量的场强为零.解如图13.3-3 所示取x,y坐标.将半圆环分成无穷多小段,取一小段d l,带电量,d q在O点的场强方向如图所示.从对称性分析(跟x轴对称的一小段)在y方向的场强相互抵消,只存在x方向的场强dq在圆心O的电势总电势注意:在解连续带电体电场问题中容易犯的错误是,写出任一点电荷在O点的场强d E后,不经分解就直接积分这里的积分是一个矢量积分,矢量积分的方法如下:即要分别求x,y,z轴的分量13-4 有一总电量为q,半径为R的均匀带电球面,求场强和电势的分布.解题思路这是一个电荷分布(或场)具有球对称性的问题,先用高斯定理求E的分布,再用求电势.具体计算时要看场强分布可分成几个区域,如本题可分成r < R及 r > R两个区域,对不同区域分别求解.解r> R,取半径为r的同心球面作高斯面(如图13.3-4(b)所示),根据高斯定理,r ≤R,〔取半径为r的同心球面作高斯面,根据高斯定理〕,以上〔〕中内容跟r > R时相同,也可省去,写“同理”即可.电势计算:r > R2,球外,离球心为r 的a 点的电势r≤R,球壳内,任取一点b,说明:(1) 上面介绍了对球对称情况求电场和电势的基本方法.对球对称问题可作如下变化:①两同心的均匀带电球壳(如图13.3-4′(a)所示),这时场分三个区域.r > R,可得2R< r < R2,1r ≤R,1对以上结果,读者可自己进行计算,并加以验证.②均匀带电球体(如图13.3-4′(b) )所示:r≤R,同理,r > R,电势:r > R,r ≤R,(此结果请读者一定要自己验证).③对不均匀的带电球体,,这时求高斯面所包围的电量要用积分方法.(2)电势的计算:r≤R,,这时积分路线是从b积到∞,在积分路线中E有几种不同的表式,积分就要分几个积分相加,这点特别要提醒读者注意.在本题中,r ≤R,E=0,有些人就误认为.这时从b到∞电场分积分要分两段进行13-5 一个内、外半径分别为a 和b的无限长圆柱体壳层,壳内电荷体密度为式中A为常数,r为壳内任一点到轴线的距离.轴线处有一电荷线密度为λ的无限长均匀带电直线.求A为何值时才能使壳内的场强大小恒定.解题思路本题电荷分布(或场)具有柱对称性,用高斯定理求解.解在壳内作半径r,高l的同轴柱封闭面作高斯面,根据高斯定理,,现在作的柱封闭面(高斯面)由1,2,3三个面组成,积分应分成三个面积分.包括两部分电荷:轴上的电荷lλ及包围的壳内电荷所以上式变为电场方向垂直轴线,一、二两个积分E·d S = 0.要求E 跟r无关,,.说明:⑴对柱对称分布的电荷(无限长均匀带电直线,无限长均匀带电柱面,柱体,无限长同轴均匀带电柱面……)取高斯面为同轴柱封闭面,积分要分3个面积分进行,其中跟轴垂直的两个面1,2的积分为零,只存在对侧面的积分.⑵电荷分布不均匀时,一般要用积分计算.⑶对柱对称问题一般求得场强的形式为:求场中某点的电势时,若取无穷远处电势为零,则会得出任一点的电势,这是不符合实际的.所以现在不能取无穷远处的电势为零.我们知道,电势零点的选取可随问题而定,这时我们选一点离轴线距离为的电势为零,a点的电势.13-6 两个无限长均匀带电共轴薄圆筒,内、外半径分别为.已知外筒和内筒间电势差,求一个电子在离轴线垂直距离r=2 cm处受的电场力.解题思路电子在电场中所受的电场力F=qE,求出E即可得F.对柱对称的电场用高斯定理可得,现已知电势差,可倒过来求得E,再代入F=qE求得电场力.解根据高斯定理,两无限长带电薄圆筒间的场强,两筒间的电势差,所以,.13-7 一无限大厚度为2d的均匀带电平板,单位体积中带电粒子数为n,每个粒子带电量q,求平板内外场强E及电势U的分布(设处电势为零.)解题思路对无限大均匀带电平板,电荷分布及电场有面对称性,取轴垂直于平板且底面平行于平板的柱封闭面为高斯面,利用高斯定理可求E的分布,再根据,求出电势.解电力线垂直于中心面指向外.,作长2l垂直中心面,底面积为S的柱面(图13.3-7中I高斯面)作高斯面根据高斯定理,高斯面有两个底面1,2和一个侧面3,,所以,,作高斯面Ⅱ,同理可得,电势:,,,,,.说明:⑴对面对称分布的电荷用高斯定理求解时,所取的高斯面应是中心面垂直且对称的封闭曲面.⑵对面对称的电场求电势时,也不能取无穷远处的电势为电势零点(若取无穷远处为电势零点,则场中各点的电势都为,失去实际意义),应先取定某点电势为零,再进行计算.13-8如图13.3-8所示,在A点处有点电荷,在B点处有电荷,O点为AB的中点,AB长为,P点与A点相距.求:⑴把电量的点电荷从无限远处移到P点,电场力作功多少?电势能增加多少?⑵将从P点移到O点,电场力作功多少?电势能增加多少?解题思路计算电场力的功及电势能的增量可用公式,将计算后代入即可,一般不要用功的定义计算,这样做会带来一些计算上的麻烦,而且花时间,也容易算错.解:⑴⑵. 13-9 均匀带电细圆环,半径为R,带电量为 q,求圆环轴线上离环心为x 处的任一点P的电势,利用电势梯度求该点的场强.解题思路本题电荷分布无球、柱、面对称性,为一般的场,而且为连续带电体,空间电场强度的计算比较复杂(需用对变量求积分及矢量积分的方法).可先求P点的电势,再用场强电势的微分关系求场强进行简化.解将带电圆环分成无穷多小段,取其中的任意的一小段,所带的电量为,在P点的电势整个圆环在P点产生的电势题解1. 一无限长带电直线,电荷线密度分别为和,求点处的场强E.解在正x轴上取一小段,离O点距离x,在P点的场强(方向如图中)在负x轴上跟O对称取一小段,在P点的场强(方向如图)从对称性分析,在y方向成对抵消,只存在x方向的分量2. 一半径为a的带电半圆弧,上半部均匀分布着电荷+q,下半部均匀分布着电荷—q(如图13.4-2所示)试求圆心O处的电场强度.解 +q上半部产生的场强:将上半部分成无穷多小段,取其中任一小段(所带电量),在O点的场强方向如图所示.—q下半部分产生的场强:以x轴为对称轴取跟d l对称的一小段(带电量)在O点的场强方向如图所示.从图中看出,根据对称性,在x方向的合场强相互抵消为0,只存在y方向的场强分量总场强3.一半径为a的半球壳,均匀地带有负电荷,电荷面密度为.求:球心O 处的电场强度和电势.解将半球面分成无限多个圆环,取一圆环如图13.4-3所示,半径为r,到球心距离为x,所带电量绝对值在O点产生的场强(利用圆环在轴线上场公式)带电半球壳在O点的总场强其中,电势计算:将半球壳分成无穷多小面元d s,所带电量,在O点的电势带电半球壳在O点的总电势.4、用细的塑料棒弯成半径为0.5 m的圆弧,两端空隙为2 cm,所带电量,且均匀分布在棒上.求圆心处的电场强度.解带电圆弧长所带电量q在带隙中补上长2cm,带电量的小条,则圆心O的场强式中分别为q和在O点产生的场强,所以可看成点电荷圆弧形带电塑料棒在O点的场强大小为,方向朝右.5、一无限长均匀带电的圆柱面,半径为R,沿轴线方向单位长电量为,求轴线上场强的大小.解:图13.4-5为圆柱面横截面图,对应的无限长直线单位长带的电量为它在轴线O产生的场强大小为因对称性,成对抵消.6、把某一电荷Q分成两个部分,使它们相隔一定距离.如果要使这两部分有最大的库仑斥力,求这两部分电荷应怎样分配?解设一部分的电量为q,另一部分的电量为(Q-q),则相互斥力为F最大,,7、电荷线密度为的无限长均匀带电直线与另一长度为l、电荷线密度为的均匀带电直线在同一平面内,二者互相垂直,求它们之间的相互作用力.解将AB分成无穷多小段,取一小段,所带电量.受无限长带电直线的作用力,方向朝右,各小段受无限长带电直线的作用力方向都朝右,所以AB受的总作用力8.两个均匀带电的同心球面,若维持外球面半径m以及内外两球面间的电势差U=100V不变,则内球面半径为多大时,才能使内球表面附近场强最小?其值为多大?解设内球带电量q ,两球面间的场强,两球的电势差,可得.代入E中,内球表面附近,最小,9.(1)地球表面附近的电场强度近似为,方向指向地球中心.试求地球带的总电量;(2)在离场面1400m处,电场强度降为,方向仍指向地球中心.试计算在1400m下大气层里的平均电荷密度.解 (1)沿地球表面作一封闭球面S ,设地球所带的总电量为Q,根据高斯定理,.由于地球表面附近电场强度数值相等,方向指向地球中心,于是上式左边,所以(2)在离地面h=1400m处包围地球作一封闭球面,设大气层里总电量为q,根据高斯定理,因大气层体积所以大气层中平均电荷密度.10.设气体放电形成的等离子体在圆柱内的电荷分布可用下式表示:.式中r是到轴线的距离,是轴线上的电荷密度,a是常数. 计算场强分布.解电荷分布有柱对称性,利用高斯定理,在等离子体的圆柱内,作长,半径为r的同轴柱面为高斯面,根据高斯定理,,.由于电场的对称性,方向垂直于圆柱面侧面,通过圆面两底的电通量为零,上式有,.11.一均匀的带电球体,电荷体密度为,球内有一不带电的球形空腔,偏心距为a,求腔内任一点P的电场强度.解将相同电荷体密度的带电物质填满空腔,它在P点的场强为.此时整个实心均匀带电球在P点的场强设为E,很显然空心球在P点的场强,根据高斯定理,同理,所以12. 如图放置的细棒,长为L,电荷线密度( k为常数),求: (1)P(0 ,y )处的电势;(2)用电势梯度求P点处的场强分量;(3)能否由(1)的结果用电势梯度求P点处的场强分量?为什么?解 (1)在细棒上x上处取电荷元,它在P点产生的电势,.(2) .(3)不能由(1)的结果用电势梯度求.因为U=U (0,y)中x =0为确定值,电势梯度必为0.应该先求出任一场点处的电势U (x,y),再由才可求得x=0处的场强分量.13.设电势沿x轴的变化曲线如图所示.试对于每个所示的区间(忽略区间端点的情况),确定电场强度的x分量,并作对x的关系图线.解在a~b区间,;在b~c区间,;在c~e区间,;在e~f区间,;在f~g区间,;在g~h区间,对x的关系线见图13.4(b)所示.。
大学物理第9章《真空中的静电场》习题解答
dE = k
dq λ ds λ = = dϕ 2 2 r 4πε 0 R 4πε 0 R
R1
R2
∞
=
B 点的电势为
ρ ( R22 − R12 ) . 2ε 0
∞
∞
U B = ∫ E ⋅ d l = ∫ Ed r
rB rB
R2
=
rB
∫
3 ρ ( R2 − R13 ) ρ R13 dr (r − 2 )dr + ∫ 3ε 0 r 2 3ε 0 r R2
∞
ρ R13 2 2 = (3 R2 − rB − 2 ) . 6ε 0 rB
4 3 V = π ( R2 − R13 ) 3
包含的电量为 q = ρV 根据高斯定理得可得球壳外的场强为
E=
A 点的电势为
3 q ρ ( R2 − R13 ) ,(R2≦r) = 4πε 0 r 2 3ε 0 r 2
∞
∞
U A = ∫ E ⋅ dl = ∫ Edr
rA rA
3 ρ ( R2 − R13 ) ρ R13 dr = ∫ 0dr + ∫ ( r − 2 )dr + ∫ 3ε 0 r 2 3ε 0 r R2 rA R1
b/2
∫
−σ = ln(b / 2 + a − x ) 2πε 0 =
b/2
−b / 2
σ b ln(1 + ) 2πε 0 a
大学物理12真空中的静电场
03
电势与电势差
电势的概念
总结词
电势是描述电场中某点电荷所具有的势能,其值与零电势点的选 择有关。
详细描述
电势是描述电场中某点电荷所具有的势能,通常用符号"φ"表示。它 是一个标量,其值与零电势点的选择有关。在静电场中,零电势点 是任意选择的,通常选择大地或无穷远处作为零电势点。
电势的计算方法
计算电场能量
利用高斯定理可以计算电场的能量密度和总能量。
静电场的散度与源电荷的关系
02
01
03
静电场的散度等于该点源电荷的密度。
数学表达式:divE = ρ/ε0
其中,divE是电场强度的散度,ρ是电荷的密度,ε0是 真空中的电容率。
05
静电场的环路定理与电场线的引入
静电场的环路定理
总结词
静电场的环路定理描述了电场与磁场之 间的关系,是电磁学中的基本定理之一 。
大学物理12真空中的静电场
目
CONTENCT
录
• 引言 • 电场与电场强度 • 电势与电势差 • 高斯定理与静电场的散度 • 静电场的环路定理与电场线的引入 • 静电场的边界条件与导体表面的电
场线分布 • 静电场的能量与力
01
引言
主题简介
静电场是静止电荷产生的电场,是电 磁学的重要概念之一。
在真空环境中,静电场不受其他电磁 场的影响,因此具有独特的性质和规 律。
指导电路设计
在电路设计中,通过合理 布置导线和元件的位置, 利用电场线的分布来优化 电路性能。
07
静电场的能量与力
静电场的能量分布
静电场的能量分布由电场强度和电势的乘积积分得 到,表示电场中各点的能量密度。
在真空中的静电场,能量分布与电荷分布有关,电 荷密度越大,能量密度越高。
大学物理 电荷和静电场
3 带电体电荷分布为面对称,电场为面对称
一维:
点电荷
无限长带电直线
无限长带电直圆柱面
二维:
带电球面 无限大平板面 无限长带电直圆柱体 带电球体 带电球壳 无限大平板厚板面
三维:
第三节
高斯定理
你知道下面几种特殊带电体的电 一.电场线
场线吗?
二.电通量 三.高斯定理
点,线,球,面
E
e E S
n
s
q
S
q
S
1 E dS
0 ( S内)
q
i
四.利用高斯定理求场强
利用高斯定理求解场强大小的解题步骤:
1.根据题意画出电场线,确定是什么对称 的场强分布; 2.根据电场线选择闭合高斯面;
S
qn
e E dS ( E1 E2 ... En ) dS S S E1 dS E2 dS ... En dS S S S qn q1 q2 e1 e1 ... e1 ...
第三节
高斯定理
(求场强的方法3)
一.电场线的特点
(1)曲线上每点的切线方向与该点的场强方向一致;
(2)起于正电荷(或来自无限远处),止于负电荷(或 伸向无限远处);
(3)不是闭合曲线,也不会在没有电荷的地方中断;
(4)任何两条电场线不会相交;
(5)电场线密的地方平均场强大,电场线疏的地方平均 场强小。
R
R3 E外 2 3 0 r1
(r1 R )
2)球体内:设B为球体内任意一点,距球心o为r2。
大学物理教案真空中的静电场
真空中的静电场一、教学目标1. 了解静电场的基本概念,掌握电场强度、电势和电势差等基本物理量。
2. 学习静电场的叠加原理,理解高斯定律及其应用。
3. 掌握静电场的能量和能量密度,了解静电场的几种常见分布。
4. 能够运用所学知识分析解决实际问题,提高学生的科学素养。
二、教学内容1. 静电场的基本概念电场强度电势电势差2. 静电场的叠加原理场强的叠加电势的叠加3. 高斯定律高斯定律的表述应用高斯定律求解电荷分布4. 静电场的能量和能量密度静电场的能量能量密度5. 静电场的几种常见分布均匀电场非均匀电场点电荷电场线性电场三、教学方法1. 采用讲授法,系统地介绍静电场的基本概念、叠加原理、高斯定律、能量和能量密度以及常见分布。
2. 利用多媒体动画和图片,直观地展示静电场的现象,增强学生的理解。
3. 结合实际例子,让学生学会分析解决实际问题。
4. 布置适量练习题,巩固所学知识。
四、教学环境1. 教室环境舒适,通风良好。
2. 教学设备:计算机、投影仪、黑板、粉笔。
3. 教材、教案、练习题等相关教学资源。
五、教学评价1. 课堂表现:观察学生在课堂上的参与程度、提问回答等情况,了解学生的学习状态。
2. 练习题:检查学生对静电场基本概念、叠加原理、高斯定律、能量和能量密度的掌握程度。
3. 课后反馈:收集学生对教学内容的意见和建议,不断改进教学方法。
4. 期中考试:评估学生在静电场部分的知识水平和应用能力。
六、教学内容6. 静电场中的电势能和势能曲线静电势能的概念势能曲线的绘制与分析静电力做功与势能变化的关系7. 静电场的能量与能量守恒静电场的能量表达式能量守恒在静电场中的应用静电场的能量与电场强度、电势的关系8. 电场线与等势面电场线的定义与性质等势面的概念与绘制电场线与等势面的关系及其在静电场中的应用9. 静电场的边界条件狄拉克原理边界条件的数学表达应用边界条件解静电场问题10. 静电场的数值计算方法有限差分法有限元法蒙特卡洛法数值计算方法在静电场中的应用实例七、教学方法1. 采用案例分析法,深入讲解静电场中的电势能和势能曲线,让学生理解静电力做功与势能变化的关系。
(完整版)大学物理静电场知识点总结
大学物理静电场知识点总结1.电荷的基本特点:(1)分类:正电荷(同质子所带电荷),负电荷(同电子所带电荷)(2)量子化特征(3)是相对论性不变量(4)微观粒子所带电荷老是存在一种对称性2.电荷守恒定律:一个与外界没有电荷互换的孤立系统,不论发生什么变化,整个系统的电荷总量必然保持不变。
3.点电荷:点电荷是一个宏观范围的理想模型,在可忽视带电体自身的线度时才建立。
4.库仑定律:表示了两个电荷之间的静电互相作用,是电磁学的基本定律之一,是表示真空中两个静止的点电荷之间互相作用的规律r1 q1q2 rF1240 r123r 125.电场强度:是描绘电场状况的最基本的物理量之一,反应了电rr F场的基Eq0 6.电场强度的计算:(1)单个点电荷产生的电场强度,可直接利用库仑定律和电场强度的定义来求得(2)带电体产生的电场强度,能够依据电场的叠加原理来求解r1nq i r r1dq rE r i E r40 i 1 r i3r 340(3)拥有必定对称性的带电体所产生的电场强度,能够依据高斯定理来求解(4)依据电荷的散布求电势,而后经过电势与电场强度的关系求得电场强度7.电场线:是一些虚假线,引入其目的是为了直观形象地表示电场强度的散布(1)电场线是这样的线: a.曲线上每点的切线方向与该点的电场强度方向一致b.曲线散布的疏密对应着电场强度的强弱,即越密越强,越疏越弱。
(2)电场线的性质: a.起于正电荷(或无量远),止于负电荷(或无量远)。
b.不闭合,也不在没电荷的地方中止。
c.两条电场线在没有电荷的地方不会订交8.电通量:e s r r E dS(1)电通量是一个抽象的观点,假如把它与电场线联系起来,能够把曲面 S 的电通量理解为穿过曲面的电场线的条数。
(2)电通量是标量,有正负之分。
9.高斯定理:òs r r1E dS q i0( S里)r(1)定理中的E是由空间全部的电荷(包含高斯面内和面外的电荷)共同产生。
电荷和静电场详解
0
E
+q
3) 任意形状封闭曲面
E
q
0
+q
4) 点电荷位于封闭曲面外
E 0
E
32
2. 点电荷系的情况
根据 场强迭加原理
q1 q2 qi qn
n E Ei
i 1
E
s
n
n E dS E i dS
i 1 s
n i 1
i
9 2 2
SI制
q 1
F21
q 1
r12
r12
F12
q2
d
F21
q2
F12
6
1) 真空电容率
说明
1 k ( 0 为真空电容率) 4π 0 1 0 8.8542 10 12 C 2 N 1 m 2 4πk
F12
1 q1q2 e12 F21 2 4π 0 r 12
电荷的代数和保持不变。 这是一条在一切已发现的宏观过程和微观过程中都普遍遵守的规律。
4
五、点电荷:
1、点电荷是一个理想化模型. 2、看成点电荷的条件:
①带电体之间的距离比它们自身的大小大得多;
②带电体的形状和大小对相互作用力的影响可以忽略. 六、库仑定律 ( Coulomb Law) 1785年,库仑通过扭称实验得到。
R + + + + + + + R R + + + + + + + +
+ + + ++ +R +
3-真空中的静电场
v v ΦE = ∫ E ds = ∫SEds
S
= E∫ ds = E 4π r
S
2
r
Q
R
r≥R时:
ΦE = 4π r E外 = Q ε0
2
1 Q 或 ∴E外 = 2 4πε0 r
v 1 Qv E外 = r 3 4πε0 r
r
r
R
r<R时:
1 4 3 2 ΦE = 4πr E内 = ∫ ρdV = ρ π r ε0 3 ε0 3 Q r Q 2 Qρ = π 内 3 ∴4 r E = 3 (4 3)πR R ε0
2
εo
1
3
当 r≤R 时:
Qr E1 = 3 4πεo R
Q
r R
当 r>R 时:
E2 =
Q 4πεor
2
当 r≤R 时:
U1 = ∫ E1dr + ∫ E2dr
r R
R
∞
q R
=∫
R
r
Qr Q dr + ∫ dr 3 2 R4 4πεo R πεor
2
∞
Q Q Q(3R r ) 2 2 = = (R r ) + 3 8πεo R 4πεo R 8πεo R
∫
q3 qi
S
q1
v v v v v v ∴ΦE = ∫ E dS = ∫ (E1 + E2 +L+ En ) dS
S
S
= ΦE1 + ΦE2 +LΦEn =
即:
1
ε0
i
∑q
S内
k
i
M
q2
qn
v v 1 ΦE = ∫ E ds =
大学物理第九章导体和介质中的静电场
第九章导体与介质中的静电场Electrostatic field in conductor and dielectric §9-1,2静电场中的导体§9-3电容器的电容§9-6电介质中的高斯定理§9-8 静电场的能量§9-1,2静电场中的导体一、导体的静电平衡( electrostatic equilibrium )1.导体绝缘体半导体1)导体(conductor)导电能力极强的物体(存在大量可自由移动的电荷)2)绝缘体(电介质,dielectric)导电能力极弱或不能导电的物体3)半导体(semiconductor)导电能力介于上述两者之间的物体EE E E iii E e E q F 导体静电平衡条件:导体内任一点的电场强度都等于零Ei E E2. 导体的静电平衡条件导体的内部和表面都没有电荷作任何宏观定向运动的状态.导体的静电平衡状态:静电感应E* 推论(静电平衡状态)证:在导体上任取两点p , ql d E V V i qpq pqp V V 0i Epq导体静电平衡条件:2)导体表面任一点场强方向垂直于表面1)导体为等势体,导体表面为等势面否则其切向分量将引起导体表面自由电子的运动,与静电平衡相矛盾。
3.导体上电荷的分布1)当带电导体处于静电平衡状态时,导体内部处处没有净电荷存在, 电荷只能分布于导体的表面上.qdV iiV证明:在导体内任取体积元dV由高斯定理体积元d v 任取导体带电只能在表面!iiqS d E 01 ,0 i E dVn e En e E E S d e E S d E nS E 0S2).导体表面附近的场强方向与表面垂直,大小与该处电荷的面密度成正比.ne ES结论:孤立的带电导体,外表面各处的电荷面密度与该处曲率半径成反比,410R Q V RRrr R ,44,22rRr R rR q Q r R R rQq1)导体表面凸出而尖锐的地方(曲率较大)电荷面密度较大2)导体表面平坦的地方(曲率较小)电荷面密度较小3)导体表面凹进去的地方(曲率为负)电荷面密度更小rq V r 041rq R Q V V R r 004141l d E 导体内,0l d E 腔沿电场线l d E (违反环路定理)在静电平衡状态下,导体空腔内各点的场强等于零,空腔的内表面上处处没有电荷分布.ld E l d E l d E导体内腔沿电场线二、空腔导体(带电荷Q )1 腔内无电荷,导体的电荷只能分布在外表面。
第九章静电场(答案解析)
一. 选择题[ B ]1 图中所示为一沿x 轴放置的“无限长”分段均匀带电直线,电荷线密度分别为+(x <0)和- (x >0),则Oxy 坐标平面上点(0,a )处的场强E为(A) 0. (B)i a02ελπ.(C)i a 04ελπ. (D)()j i a+π04ελ.【提示】:左侧与右侧半无限长带电直线在(0,a)处产生的场强大小E +、E -大小为:E E +-==矢量叠加后,合场强大小为:02E aλπε=合,方向如图。
[ B ]2 半径为R 的“无限长”均匀带电圆柱体的静电场中各点的电场强度的大小E 与距轴线的距离r 的关系曲线为:【提示】:由场分布的轴对称性,作闭合圆柱面(半径为r ,高度为L )为高斯面,据Guass定理:SE dS=iiqε∑⎰r R ≤时,有:20r 2rL=LE ρππε,即:0=r 2E ρε r R >时,有:20R 2rL=L E ρππε,即:20R =2rE ρε[ C ]3 如图所示,一个电荷为q 的点电荷位于立方体的A 角上,则通过侧面abcd 的电场强度通量等于: (A) 06εq . (B) 012εq.(C)024εq . (D) 048εq .【提示】:添加7个与如图相同的小立方体构成一个大立方体,使A 处于大立方体的中心。
则大立方体外围的六个正方形构成一个闭合的高斯面。
由Gauss 定理知,通过该高斯面的电通量为qε。
再据对称性可知,通过侧面abcd 的电场强度通量等于24εq。
[ D ]4 在点电荷+q 的电场中,若取图中P 点处为电势零点, 则M 点的电势为 (A)a q 04επ. (B) aq08επ.(C) a q 04επ-. (D) aq 08επ-.【提示】:220048PaM Maq q V E dl dr raπεπε-===⎰⎰[ C ]5 已知某电场的电场线分布情况如图所示.现观察到一负电荷从M 点移到N 点.有人根据这个图作出下列几点结论,其中哪点是正确的? (A) 电场强度E M <E N . (B) 电势U M <U N . (C) 电势能W M <W N . (D) 电场力的功A >0.【提示】:静电力做负功,电势能增加。
《大学物理》真空中的静电场练习题及答案解析
《大学物理》真空中的静电场练习题及答案解析一 选择题1. 下列几个说法中哪一个是正确的 (B )(A )电场中某点场强的方向,就是将点电荷放在该点所受电场力的方向(B )电场中某点的场强大小与试验电荷无关。
(C )场强大小由 E =F /q 可知,某点的场强大小与试验电荷受力成正比,与电量成反比。
(D )在以点电荷为中心的球面上,由该点电荷所产生的场强处处相同2. 如图所示为一沿 x 轴放置的“无限长”分段均匀带电直线,电荷线密度分别为+λ、-λ,则 oxy坐标平面上点(0,a )处的场强E 的方向为( A )( A )x 正方向 (B ) x 负方向 (C )y 正方向(D )y 负方向3.如图所示,一个带电量为q 的点电荷位于正立方体的中心上,则通过其中一侧面的电场强度通量等于:( B )(A)04εq (B)06εq (C) 024εq (D) 027εq第2题图 第3题图 4.关于高斯定理0ε∑⎰⎰=⋅=Φi s e q s d E ,下列说法中正确的是( C )(A )如果高斯面无电荷,则高斯面上的电场强度处处为零(B )如果高斯面上的电场强度处处为零,则高斯面内无电荷(C )如果高斯面上的电场强度处处为零,则通过高斯面的电通量为零(D )若通过高斯面的电通量为零,则高斯面上的电场强度处处为零5.如图所示,闭合曲面S 内有一点电荷q ,P 为S 面上一点,在S 面外A 点有一点电荷,q ,将其移到B 点,则( B )(A )通过S 面的电通量不变,P 点的电场强度不变。
(B )通过S 面的电通量不变,P 点的电场强度变化。
(C )通过S 面的电通量改变,P 点的电场强度不变。
(D )通过S 面的电通量改变,P 点的电场强度变化。
6.下列说法中正确的是( D )(A )场强为0的点电势也为0 (B )场强不为0的点电势也不为0(C )电势为0的点,则电场强度也一定为0(D )电势在某一区域为常数,则电场强度在该区域必定为01.B2.A3.B4.C5.D 、6D二 填空题1、在点电荷的q +,q -电场中,作如图所示的三个高斯面,求通过321S S 、、S ,球面的电通量分别为________________、_______________、______________。
(完整版)大学物理静电场知识点总结.doc
大学物理静电场知识点总结1.电荷的基本特征:(1)分类:正电荷(同质子所带电荷),负电荷(同电子所带电荷)(2)量子化特性(3)是相对论性不变量(4)微观粒子所带电荷总是存在一种对称性2.电荷守恒定律:一个与外界没有电荷交换的孤立系统,无论发生什么变化,整个系统的电荷总量必定保持不变。
3.点电荷:点电荷是一个宏观范围的理想模型,在可忽略带电体自身的线度时才成立。
4.库仑定律:表示了两个电荷之间的静电相互作用,是电磁学的基本定律之一,是表示真空中两个静止的点电荷之间相互作用的规律r1 q1q2 rF1240 r123r 125.电场强度:是描述电场状况的最基本的物理量之一,反映了电rr F场的基 Eq0 6.电场强度的计算:(1)单个点电荷产生的电场强度,可直接利用库仑定律和电场强度的定义来求得(2)带电体产生的电场强度,可以根据电场的叠加原理来求解r 1nq i r r 1 dq rE r i E r4 0 i 1 r i3 r 34 0(3)具有一定对称性的带电体所产生的电场强度,可以根据高斯定理来求解(4)根据电荷的分布求电势,然后通过电势与电场强度的关系求得电场强度7.电场线:是一些虚构线,引入其目的是为了直观形象地表示电场强度的分布(1)电场线是这样的线: a.曲线上每点的切线方向与该点的电场强度方向一致b.曲线分布的疏密对应着电场强度的强弱,即越密越强,越疏越弱。
(2)电场线的性质: a.起于正电荷(或无穷远),止于负电荷(或无穷远)。
b.不闭合,也不在没电荷的地方中断。
c.两条电场线在没有电荷的地方不会相交8.电通量:e s r r E dS(1)电通量是一个抽象的概念,如果把它与电场线联系起来,可以把曲面 S 的电通量理解为穿过曲面的电场线的条数。
(2)电通量是标量,有正负之分。
9.高斯定理:òs r r 1E dS q i0( S 里)r(1)定理中的E是由空间所有的电荷(包括高斯面内和面外的电荷)共同产生。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
电荷相斥q1,异号r1电2 荷相吸。q2
F2 1
e12
F12
F1 2
k
q1q2 r122
e12
F2 1
k = 8.98755×109 N·m2 ·C-2 1
F
1
4 0
q1q2 r2
er
4 0
库仑定律是 全部静电学
的基础
0= 8.85×10-12C2 ·N-1·m-2 称为真空中的电容率。
9-2 电场和电场强度
1
4 0
2 2qr0 x3
1
2 0
p x3
1
q
E E 4 0 y 2 (r0 2)2
EB 2E cos i
2q
r0 / 2
i
4 0
(y2
r2 0
/
4) 3 /2
y2
当y r0时 :
EB
qr0
4 0 y3
p
4 0 y3
y
E
EB
B
E y
q
r0
q
x
3、连续分布任意带电体的场强
主要特点:研究对象不再是分离的实物,而是连
续分布的场,用空间函数
( 如E , U , B 等 )来描述。 静电场
电磁学
恒定磁场 变化中的电磁场
第九章 电荷与真空中的静电场
Electrostatic field
太阳风中高能离子沿着磁力 线侵入地球的极区在地球两 极的上层大气中放电而产生 的极光。
雷电
一、电场 Electric Field
1、超距作用不需要论时间
不需要介质
? 电荷
电荷
√ 2、法拉第提出近距作用, 并提出力线和场的概念
电荷 场 电荷
在任何电荷的周围,都存在一种特殊的物质—电场。 电场是物质的一种特殊形态,弥散在整个空间,我们 可以通过电场对电荷的作用来认识电场。
电场 电荷 力的作用 — 电场强度 功的作用 — 电势
本学期的教学内容 第9章 电荷与真空中的静电场 第10章 导体和电介质中的静电场 第11章 恒定电流与真空中的恒定磁场 第12章 磁介质中的恒定磁场 第13章 电磁场与麦克斯韦方程组 第15章 波动光学
第四篇 电 磁 学
电磁学(electromagnetics)是研究电磁相互作用及其 运动规律的。
大小 单位电荷在该点受力的大小 方向 正电荷在该点受力的方向
只要有电荷就有电场存在, 与是否引入检验电荷无关
三、点电荷与点电荷系的电场强度
1、点电荷的电场强度
F
4
1
π 0
Qq0 r2
er
Q
E
F q0
4
1
π 0
Q r2
er
Q
r
q0
F
E
r E q0
E
Q
E Q
2、电场强度叠加原理
点电荷 qi 对 q0 的作用力
dE
1
4 0
dq r2
er
E dE
1
4 0
dq r2
er
dE
r
P
dq
电荷线分布 dl dq dl 电荷线密度
电荷面分布 ds dq ds 电荷面密度
电荷体分布 dV dq dV 电荷体密度
注意:在具体计算时,要化成标量积分, 即先分解,再积分。
例题1 电荷均匀分布在一根长直细棒上,此棒电荷线
两种电荷:正电荷和负电荷 同号相斥、异号相吸
电荷量:物体带电的多少,以q 或Q 来表示 单位:库(C)
一、电荷的量子化
在自然界中,电荷总是以一个基本电量的整数倍出现。
电子电荷的绝对值
e =1.602×10-19 C
q = ±n e
1913年,密立根设计了油滴实验,首先直接测定
了此基元电荷的量值。
夸克、反夸克具有的电量为±e/3或±2e/3。
p qr0 — 电偶极矩
求电偶极子轴线延长线上一点和轴线的中垂线上一
点的场强。
E EA
1
4 0
q
4 0
q
i
r2
E
1 [ (x r0 )2
1
q
i
q r0 o
4 0 r2
1
]i
(x r0 )2
q
4 0
q E A
x
2x r0
(x2
r2 0
/
4)2
E x2
x
当x r0时 :
2 EA
在具体问题中,当带电体的形状和大小与它们之间 的距离相比允许忽略时,可以把带电体看作点电荷。
2、库仑定律 (Coulomb`s Law)
r q1
12
F21
q2
F12
F12
q1q2 r122
在真空中,两个静止的点电荷之间的相互作用力的
大小与它们电荷的乘积成正比,与它们之间距离的平
方成反比;作用力的方向沿着两点电荷的连线,同号
d
dEy
4 0a
sin d
Ex
dEx 4 0a
2 cos d
1
4 0a
(sin 2
sin 1)
Ey
dEy
4 0a
2 sin d
1
4 0a
(cos1
cos2 )
讨论:均匀带电细棒为无限长时 1 0,2
Ex 0
Ey 2 0a
密度为。试计算距细棒垂直距离为a的P点的场强。已
知细棒两端的连线与X轴的夹角分别为1和 2。
解:dE
1
4 0
dq r2
r
0
dx
dEx
1
4 0
dx cos
r2
dEy
1
4 0
dx sin
r2
r a
x a
s in
tan
Y
dE
P
a
1
r
2
O x dx
dx a d sin2
X
dEx
4 0a
cos
Fi
4
1
π 0
qi q0 ri2
ei
q1
q2 q3
r1 r2
r3
F3
F2
q0
F1
由力的叠加原理得 q0 所受合力 F
q0 处总电场强度
E
F
Fi
i
Fi
q0
电场强度的叠加原理 E
i i
q0
1
Ei 4 0
i
qi ri2
ei
*电偶q 极r子0 的电q场强度r0
— 电偶极子的轴
二、电场强度 Electric Field Strength
★试验电荷q0 :电荷量足够小的点电荷
在电场中某一确定位置,
F
q
F q0 恒量 , 与q0的大小无关,
仅与该点电场性质有关。
E
F
—— 电场强度
F
q0
0
q
Q
2q0 3q
0
0
F
2F 3F
q0
单位:牛/库 ( N/C )
电场中 某点电 场强度
二、电荷守恒定律
在一个与外界没有电荷交换的系统内,无论进行怎
样的物理过程,系统内正、负电荷量的代数和总是保 持不变电荷守恒定律。
三、真空中的库仑定律 1785年,库仑(A.de.Coulomb)通过扭称实验总结出f
真空中点电荷之间相互作用的静电力所服从的基本规
? 律—库仑定律 。 1、点电荷 ( Point Charge )
电鳗
Whenever you turn on a light, listen to recorded music, or watch a motion picture you are enjoying one of the discoveries of Thomas Alva Edison.
9-1 电 荷 库 仑 定 律