17五年级奥数---质数和合数整理

合集下载

小学奥数五年级数学质数、合数和分解质因数

小学奥数五年级数学质数、合数和分解质因数
数中三个数的乘积相同。
• 总结 • 见积分解质因数。
• 例3:708除以一个两位数,余数为43,求这个两位数。
• 708-43=665
• 分解质因数:665=5×7×19
• 665=35×19

=7×95
• 因为除数必须比余数大,所以这个两位数是95。
• 答:这个两位数是95。
• 练习 • 1、310除以一个两位数,余数是37,求这样的两位数。 • 2、一个两位数除250余25,这个数可以是几?
• 14=2×7 24=2×2×2×3 27=3×3×3 • 55=5×11 56=2×2×2×7 99=3×3×11 • 共有:8个2,6个3,2个5,2个7,2个11 • 每一组可分:4个2,3个3,1个5,1个7,1个11 • 第一组:55、27、56、2 • 第二组:99、5、24、14
• 练习 • 1、把40,44,45,63,65个数的乘积相同。 • 2、把10,14,21,30,33,66这六个数平均分成两组,使两组
• 练习 • 1、植树节,赵老师带领同学排成两列人数相等的纵队去植树,已知赵老师和同学
们每人植树的棵数相等,一共植了111棵树。求有多少个同学?每人植树多少棵? • 2、五(2)班在班主任的带领下去种树,学生恰好平均分成3组,如果师生每人种树
一样多,一共种了1073棵,求有多少个同学?平均每人种多少棵?
• 15120=5×(2×3)×7×(2×2×2)×(3×3)

=5×6×7×8×9
• 答:这几个连续自然数是5、6、7、8、9。
• 练习 • 1、四个连续自然数的积是1680,这四个自然数是多少? • 2、小兰、小红、小明、小马四个人是好朋友,更巧的是他们的
年龄正好是四个连续的自然数,并且乘积是3024,你知道她们的 年龄分别是多少吗?

五年级奥数知识点上册

五年级奥数知识点上册

五年级奥数知识点上册五年级奥数知识点上册涵盖了多个数学领域的高级概念,旨在培养学生的逻辑思维能力和解决复杂问题的能力。

以下是一些关键的知识点:一、数论基础- 质数与合数:理解质数和合数的概念,掌握质数的判定方法。

- 因数与倍数:学习如何找出一个数的因数和倍数,理解它们之间的关系。

- 最大公约数和最小公倍数:掌握求两个或多个数的最大公约数和最小公倍数的方法。

二、分数与小数- 分数的加减乘除:学习分数的四则运算,包括通分和约分。

- 分数的比较:掌握如何比较分数的大小。

- 小数的运算:熟悉小数的加减乘除运算,以及小数点的移动规律。

三、几何图形- 面积与周长:学习计算不同几何图形的面积和周长,如三角形、矩形、圆形等。

- 几何变换:了解平移、旋转和反射等基本几何变换。

- 相似与全等:理解相似图形和全等图形的概念和判定方法。

四、排列组合与概率- 排列组合:掌握排列和组合的基本概念,学会计算排列数和组合数。

- 简单概率:了解概率的基本概念,学会计算简单事件的概率。

五、逻辑推理- 逻辑推理题:通过解决逻辑推理问题,培养学生的逻辑思维和推理能力。

- 数列问题:学习数列的基本概念,掌握等差数列和等比数列的性质。

六、应用题- 速度、时间与距离:解决与速度、时间和距离相关的问题。

- 工程问题:理解工作效率和工作时间的关系,解决相关的应用题。

- 经济问题:学习基本的经济概念,如成本、利润和折扣等。

七、数学思维训练- 枚举法:学习如何通过列举所有可能的情况来解决问题。

- 归纳法与演绎法:理解归纳推理和演绎推理的区别,学会应用这两种方法解决问题。

结语五年级奥数的学习不仅能够提高学生的数学素养,还能锻炼他们的逻辑思维和解决问题的能力。

通过掌握这些知识点,学生将能够在数学竞赛和日常生活中更加自信地应对各种挑战。

五年级奥数:第2讲质数和合数

五年级奥数:第2讲质数和合数

北外起航五年级春季班数学第二讲质数和合数教学目标:1.掌握质数、合数的定义和特征。

2.养成准确数学概念、区分概念和灵活运用概念的良好习惯。

知识点拨:概念:一个大于1的整数,如果除了1和它本身以外,不再有别的因数,这个整数就叫做质数(又称为素数)。

一个整数,如果除了1和它本身以外,还有其它的因数,这个整数就叫做合数。

质数特征:①质数只有1和它本身两个约数。

②质数只能表示成1和它本身的乘积,不能表示成任意其它两个整数的积。

③最小的质数是2,2也是唯一的偶数质数,其它所有质数都是奇数。

合数特征:①合数至少有3个约数,至少有1个大于1小于它本身的约数。

②合数可以写成两个大于1的整数的乘积。

③最小的合数是4,大于2的偶数都是合数。

相关知识点:①1既不是质数也不是合数。

②奇数中有质数也有合数。

③在大于零的偶数中只有一个质数2,其它都是合数。

质数的判定:①直接判断:熟记20以内的质数,熟悉100以内的质数;②查看质数表;③试除判断:假设有自然数N、P,且N﹤P2。

可以用小于P的所有质数依次去除N,如果其中某个质数能整除N,则N是合数;如果小于P的所有质数都不能整除N,则N是质数。

附:2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61,67,71,73,79,83,89,97, 共25个.例题精讲:例题1:判断437、541是质数还是合数?【解析】:先简单估算一下试除质数的范围。

437﹤212、541﹤242,小于24的质数有:2、3、5、7、11、13、17、19、23。

依次用上面这些质数试除437和541,得:①437÷19=23,所以437是合数;②这些质数都不能整除541,所以541是质数。

例题2:已知A是质数,而且A+4,A+6,A+10都是质数,求符合条件的最小质数A。

【解析】:要求出符合条件的最小质数,可以将所有质数按从小到大的顺序依次尝试,A等于2、3、5时题中三个算式的得数中都有合数出现,只有A等于7时,题中三个算式的得数依次为:11、13、17,都是质数。

五年级奥数试题-质数和合数(学生版)

五年级奥数试题-质数和合数(学生版)

第十三讲质数和合数1、自然数按因数的个数来分:质数、合数、1、0四类.(1)质数(或素数):只有1和它本身两个因数。

(2)合数:除了1和它本身还有别的因数(至少有三个因数:1、它本身、别的因数)。

(3)1:只有1个因数。

“1”既不是质数,也不是合数。

注:①最小的质数是2,最小的合数是4,连续的两个质数是2、3。

②每个合数都可以由几个质数相乘得到,质数相乘一定得合数。

③ 20以内的质数:有8个(2、3、5、7、11、13、17、19)④ 100以内的质数有25个:2、3、5、7、11、13、17、19、23、29、31、37、41、43、47、53、59、61、67、71、73、79、83、89、972、100以内找质数、合数的技巧:看是否是2、3、5、7、11、13…的倍数,是的就是合数,不是的就是质数。

关系:奇数×奇数=奇数质数×质数=合数3、常见最大、最小A的最小因数是:1;最小的奇数是:1;A的最大因数是:本身;最小的偶数是:0;A的最小倍数是:本身;最小的质数是:2;最小的自然数是:0;最小的合数是:4;4、分解质因数:把一个合数分解成多个质数相乘的形式。

树状图例:分析:先把36写成两个因数相乘的形式,如果两个因数都是质数就不再进行分解了;如果两个因数中海油合数,那我们继续分解,一直分解到全部因数都是质数为止。

把36分解质因数是:36=2×2×3×35、用短除法分解质因数(一个合数写成几个质数相乘的形式)。

例:分析:看上面两个例子,分别是用短除法对18,30分解质因数,左边的数字表示“商”,竖折下面的表示余数,要注意步骤。

具体步骤是:6、互质数:公因数只有1的两个数,叫做互质数。

两个质数的互质数:5和7两个合数的互质数:8和9一质一合的互质数:7和87、两数互质的特殊情况:⑴1和任何自然数互质;⑵相邻两个自然数互质;⑶两个质数一定互质;⑷2和所有奇数互质;⑸质数与比它小的合数互质;教学重点:质数和合数的概念。

五年级数论_质数、合数

五年级数论_质数、合数

质数与合数知识点精讲(一)概念: 只能被两个不同的自然数整除的自然数叫质数。

因为任何自然数都能被1和它本身整除,所以这类自然数的特征是大于1,且只能被1和它本身整除。

(二)100以内的质数:2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61,67,71,73,79,83,89,97。

(三)质因数与分解质因数如果一个质数是某个数的约数,那么就说这个质数是这个数的质因数。

把一个合数用质因数相乘的形式表示出来,叫做分解质因数。

找出1992所有的不同质因数,它们的和是_____.小超写了四个小于10的自然数,它们的积是360.已知这四个数中只有一个是合数.这四个数是____、____、____和____.(四)乘积与和(将乘积分解成符合要求的形式)1.两个自然数的和与差的积是41,那么这两个自然数的积是_____.2.三个连续自然数的积是1716,这三个自然数是_____、_____、_____.(五)两个数的乘积一定的时候,这两个数越接近,他们的和越小;两个数的和一定的时候,这两个数越接近,他们的积越大。

1. 9216可写成两个自然数的积,这两个自然数的和最小可以达到_____.2. 30可以写成两个数的和,这两个数的积最大可以达到_____.(六)(七)完全平方数完全平方数分解质因数之后,每个不同质因数的个数都是偶数。

2400与另一个数的乘积是一个完全平方数,这个数最小是______。

(八)判断是质数还是合数.先找出一个大于N的最小的完全平方数2k,再写出k以内的所有质数;若这些质数都不能整除N,则N是质数;若这些质数中有一个质数能整除N,则N为合数.(请想想这其中的道理)判断103、437为质数还是合数?(九)乘积末尾连续0的个数在乘积1000×999×998×…×3×2×1 中,末尾连续有多少个零?课堂例题1.两个质数的和是39,那么这两个质数的积是多少?AB⨯⨯2.把232323的全部质因数的和表示为,那么A B AB=_____.3.有三个学生,他们的年龄一个比一个大3岁,他们三个人年龄数的乘积是1620,这三个学生年龄的和是_____.4.边长为自然数,面积为105的长方形的形状不同的长方形共有多少种?5.11112222个棋子排成长方形棋阵,每一横行的棋子数比每一竖行的棋子数多一个,这个长方形每一横行各有多少个棋子?6.5个相邻自然数的乘积是55440,求这5个自然数分别是多少?7.自然数a乘以338,恰好是自然数b的平方,求a的最小是多少以及此时b是多少?8.在乘积1000×999×998×995×……×500的结果中,末尾连续有多少个零?9.分别判断351、143是质数还是合数.练习题:1.有四个不同约数的最小自然数是_________。

质数合数小学知识点总结

质数合数小学知识点总结

质数合数小学知识点总结一、质数的定义1.1 质数的概念质数又称素数,是指大于1的自然数中,除了1和它本身外,没有其他正因数的数。

换句话说,如果一个大于1的自然数只能被1和它自己整除,那么它就是质数。

1.2 质数的特点• 质数大于1。

• 质数除了1和它本身外,没有其他正因数。

• 2是最小的质数。

1.3 质数的例子2, 3, 5, 7, 11, 13, 17, 19, 23, 29, …质数是数学中非常重要的一类数,它们有很多特殊的性质和应用。

在小学数学中,学生需要掌握并理解质数的基本概念和性质,为后续数学学习打下基础。

二、合数的定义2.1 合数的概念合数是指大于1的自然数中,除了1和它本身外,还有其他正因数的数。

换句话说,如果一个大于1的自然数能够被除了1和它自己外的其他正整数整除,那么它就是合数。

2.2 合数的特点• 合数大于1。

• 合数除了1和它本身外,还有其他正因数。

2.3 合数的例子4, 6, 8, 9, 10, 12, 14, 15, 16, 18, …合数与质数相对,是指除了质数外的其他数。

在自然数中,合数是非常常见的,大部分自然数都是合数。

学生需要了解并掌握合数的概念和性质,以便于进一步的数学学习和应用。

三、质数和合数的判断方法3.1 判断质数的方法要判断一个大于1的自然数是否是质数,可以使用以下方法:• 将该数逐一除以从2到它的平方根之间的每一个数,如果除尽,则该数为合数,否则为质数。

• 例如,要判断29是否为质数,我们只需要逐一除以2、3、4、5,直至其平方根5(因为5*5=25),如果都不能整除,则29为质数。

3.2 判断合数的方法要判断一个大于1的自然数是否为合数,只需要判断是否有除了1和它本身外的其他正因数。

如果有,则为合数,否则为质数。

3.3 判断方法的应用在小学数学中,学生通常采用逐一判断的方法来判断一个数是不是质数或合数。

这个方法虽然比较直接,但对于一些比较大的数来说工作量较大。

五年级奥数基础教程质数与合数小学

五年级奥数基础教程质数与合数小学

五年级奥数基础教程质数与合数小学自然数按照能被多少个不同的自然数整除可以分为三类:第一类:只能被一个自然数整除的自然数,这类数只有一个,就是lo第二类:只能被两个不同的自然数整除的自然数。

因为任何自然数都能被1 和它本身整除,所以这类自然数的特征是大于1,且只能被1和它本身整除。

这类 自然数叫质数(或素数)。

例如,2, 3,5,7,-第三类:能被两个以上的自然数整除的自然数。

这类自然数的特征是大于 1,除了能被1和它本身整除外,还能被其它一些自然数整除。

这类自然数叫合数。

例如,4, 6, & 9, 15,-上面的分类方法将自然数分为质数、合数和1, 1既不是质数也不是合数。

例1 1〜100这100个自然数中有哪些是质数?分析与解:先把前TOO 个自然数写出来,得下表:1既不是质数也不是合数。

2是质数,留下来,后面凡能被2整除的数都是合数,都划去;3是质数,留下来,后面凡能被3整除的数都是合数,都划去;类似地,把5留下来,后面凡是5的倍数的数都划去;把7留下来,后面凡是7的倍数的数都划去。

经过以上的筛选,划去的都是合数,余下26个数,除1外,剩下的25个都是质 数。

这样,我们便得到了 100以内的质数表:2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41,43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97。

这些质数同学们应当熟记!细心的同学可能会注意到,以上只划到7的倍数,为什么不继续划去11, 13,…的倍数呢?事实上,这些倍数已包含在已划去的倍数中。

例如,100以内 11的倍数应该是11XAW100 (其中A 为整数),= 9.09。

显然,A 只能取 2, 3, 4, 5, 6, 7, 8,9o 因为 4=22, 6=2X3, 8=23, 9=3;所以 A 必是 2, 3, 5, 7之一的倍数。

山此推知,11的倍数已全部包含在2, 3, 5, 7的倍数中,已在 前面Q T 1113 N 因 S2 23 爼 31題 34 4143 44 51 53 53 54 S 163 64 T173 巒83 34 51 酬717 & 28 29 37 S8 47 的 5? 59 6? 馭 7? 79 聚 &8 89 9T 翦32O3Q 611711戲划去了。

五年级数学下册《质数和合数》重点知识汇总

五年级数学下册《质数和合数》重点知识汇总
② 每个合数都可以由几个质数相乘得到,质数相乘一定得合数。
③ 20以ቤተ መጻሕፍቲ ባይዱ的质数:有8个(2、3、5、7、11、13、17、19)
④ 100以内的质数有25个。
3、100以内找质数、合数的技巧:看是否是2、3、5、7、11、13…的倍数,是的就是合数,不是的就是质数。
4、关系:奇数×奇数=奇数
质数×质数=合数
《质数和合数》重点知识汇总
1、自然数按因数的个数来分:质数、合数、1、0四类。
(1)质数(或素数):只有1和它本身两个因数。
(2)合数:除了1和它本身还有别的因数(至少有三个因数:1、它本身、别的因数)。
(3)1:只有1个因数。“1”既不是质数,也不是合数。
2、①最小的质数是2,最小的合数是4,连续的两个质数是2、3。
5、常见最大、最小
A的最小因数是:1;
A的最大因数是:本身;
A的最小倍数是:本身;
最小的自然数是:0;
最小的奇数是:1;
最小的偶数是:0;
最小的质数是:2;
最小的合数是:4;
6、分解质因数:把一个合数分解成多个质数相乘的形式。
7、用短除法分解质因数(一个合数写成几个质数相乘的形式)。
8、互质数:公因数只有1的两个数,叫做互质数。
(1)两个不相同的质数一定是互质数。
(2)一个质数如果不能整除另一个质数,这两个数便为互质数。
(3)相邻的两个自然数是互质数。
(4)相邻的两个奇数是互质数。
(5)两个质数一定互质;
(6)2和任何奇数是互质数。
(7)1和任何自然数互质;

五年级奥数-质数与合数

五年级奥数-质数与合数

五年级奥数-质数与合数
1.有人说:“任何7个连续整数中一定有质数。

”请你举一个例子,说明这句话是错的。

2.两个质数的和是40,求这两个质数的乘积最大是多少?
3.在做一道两位数乘以两位数的乘法题时,小马虎把一个乘数中的数字5看成了8,由此得乘积为1872。

那么原来的乘积是多少?
4.如果两数的和是64,两数的积可以整除4875,那么这两个数的差等于多少?
5.从100~150之间,找出两个整数,使其乘积等于231与65的乘积。

6.将2、5、14、24、27、55、56、99分成两组,使得两组各数的乘积相等
五年级奥数-质数与合数答案
1、解析:例如90、91、9
2、9
3、9
4、9
5、96,答案不唯一。

2.解析:当两数和固定时,两数越接近其乘积就越大,因此这两个质数应取17和23,乘积为23×17=391。

3.解析:18722478⨯=3948⨯=,所以原来的算式是2475⨯=1800或=⨯39451755。

4.解析:1355534875⨯⨯⨯⨯=,4875的约数有:1,3,5,13,15,25,39,……,其中25和39满足25+39=64,所以这两个数即位25和39,它们的差是14。

5.解析:143105111375365231⨯=⨯⨯⨯⨯=⨯,这两个数为105和143。

6.解析:2×27×55×56=5×14×24×99。

五年级奥数解析5.质数和合数

五年级奥数解析5.质数和合数

小学奥数教案---质数与合数与质数有关的构造问题,通过分解质因数求解的整数问题.1、有人说:"任何7个连续整数中一定有质数."请你举一个例子,说明这句话是错的.[分析与解]例如连续的7个整数:842、843、844、845、846、847、848分别能被2、3、4、5、6、7、8整除,电就是说它们都不是质数.评注:有些同学可能会说这是怎么找出来的,翻质数表还是……,我们注意到<n+1>!+2,<n+1>!+3,<n+1>!+4,…,<n+1>!+<n+1>这n个数分别能被2、3、4、…、<n+1>整除,它们是连续的n个合数.其中n!表示从1一直乘到n的积,即1×2×3×…×n.2、从小到大写出5个质数,使后面的数都比前面的数大12.[分析与解] 我们知道12是2、3的倍数,如果开始的质数是2或3,那么后一个数即23或与12的和一定也是2或3的倍数,将是合数,所以从5开始尝试.有5、17、29、41、53是满足条件的5个质数.3.9个连续的自然数,它们都大于80,那么其中质数最多有多少个?[分析与解]大于80的自然数中只要是偶数一定不是质数,于是奇数越多越好,9个连续的自然数中最多只有5个奇数,它们的个位应该为1,3,5,7,9.但是大于80且个位为5的数一定不是质数,所以最多只有4个数.验证101,102,103,104,105,106,107,108,109这9个连续的自然数中101、103、107、109这4个数均是质数.也就是大于80的9个连续自然数,其中质数最多能有4个.4. 用1,2,3,4,5,6,7,8,9这9个数字组成质数,如果每个数字都要用到并且只能用一次,那么这9个数字最多能组成多少个质数?[分析与解]要使质数个数最多,我们尽量组成一位的质数,有2、3、5、7均为一位质数,这样还剩下1、4、6、8、9这5个不是质数的数字未用.有1、4、8、9可以组成质数41、89,而6可以与7组合成质数67.所以这9个数字最多组成了2、3、5、41、67、89这6个质数.5.3个质数的倒数之和是16611986,则这3个质数之和为多少?[分析与解]设这3个质数从小到大为a、b、c,它们的倒数分别为1a、1b、1c,计算它们的和时需通分,且通分后的分母为a×b×c,求和得到的分数为Fabc,如果这个分数能够约分,那么得到的分数的分母为a、b、c或它们之间的积.现在和为16611986,分母1986=2×3×331,所以一定是a=2,b=3,c=331,检验满足.所以这3个质数的和为2+3+331=336.6.已知一个两位数除1477,余数是49.求满足这样条件的所有两位数.[分析与解]有1477÷除数=商……49,那么1477-49:除数×商,所以,除数×商=1428=2×2×3×7×17.一般情况下有除数大于余数.即除数大于49且整除1428,有84、51、68满足.所以满足题意的两位数有51、68、84.7.有一种最简真分数,它们的分子与分母的乘积都是140.如果把所有这样的分数从小到大排列,那么第三个分数是多少?[分析与解] 有140=2×2×5×7,因为这些分数的分子与分母的乘积均为140,当分母越大时,分子越小,所以对应的分数也越小.有分母从大到小依次为140、70、35、28、20、14、10、7、5、4、2、1;对应分子从小到大依次为1、2、4、5、7、10、14、20、28、35、70、140;对应分数从小到大依次为而1140、270、435、528、720、1014、1410、…其中第三个最简真分数为.8.某校师生为贫困地区捐款1995元.这个学校共有35名教师,14个教学班.各班学生人数相同且多于30人不超过45人.如果平均每人捐款的钱数是整数,那么平均每人捐款多少元?[分析与解]这个学校最少有35+14×30=455名师生,最多有35+14×45=665名师生,并且师生总人数能整除1995.1995=3×5×133,在455~665之间的约数只有5×133=665,所以师生总数为665人,则平均每人捐款1995÷665=3元.9.在做一道两位数乘以两位数的乘法题时,小马虎把一乘数中的数字5看成8,由此得乘积为1872.那么原来的乘积是多少?[分析与解]1872=2×2×2×2×3×3×13=口口×口口,其中某个口为8, 一一验证只有:1872=48×39,1872=78×24满足.当为1872=48×39时,小马虎错把5看成8,也就是错把45看成48,所以正确的乘积应该是45×39=1755.当为1872=78×24时,小马虎错把5看成8,也就是错把75看成78,所以正确的乘积应该是75×24=1800.所以原来的积为1755或1800.10.已知两个数的和被5除余1,它们的积是2924,那么它们的差等于多少?[分析与解]2924=2×2×17×43=A×B,且有A+B被5除余l,则和的个位为1或6.有4×17+43=68+43=11l,也就是说68、43为满足题意的两个数.它们的差为68-43=25.11.在射箭运动中,每射一箭得到的环数或者是"0"<脱靶>,或者是不超过10的自然数.甲、乙两名运动员各射了5箭,每人5箭得到的环数的积都是1764,但是甲的总环数比乙少4环.求甲、乙的总环数各是多少?[分析与解]1764=2×2×3×3×7×7,1764对应为5个小于10的自然数乘积.只能是1764=4×3×3×7×7=2×6×3×7×7=2×2×9×7×7=1×6×6×7×7=1×4×9×7×7对应的和依次为4+3+3+7+7=24,2+6+3+7+7=25,2+2+9+7+7=27,1+6+6+7+7=27,l+4+9+7+7=28.对应的和中只有24,28相差4,所以甲的5箭环数为4、3、3、7、7,乙的5箭环数为1、4、9、7、7.所以甲的总环数为24,乙的总环数为28.12.在面前有一个长方体,它的正面和上面的面积之和是209,如果它的长、宽、高都是质数,那么这个长方体的体积是多少?[分析与解]如下图,设长、宽、高依次为a、b、c,有正面和上面的和为ac+ab=209.ac+ab=a×<c+b>=209,而209=11×19.当a=11时,c+b=19,当两个质数的和为奇数,则其中必定有一个数为偶质数2,则c+b=2+17;当a=19时,c+b=11,则c+b=2+9,b为9不是质数,所以不满足题意.所以它们的乘积为11×2×17=374.13.一个长方体的长、宽、高是连续的3个自然数,它的体积是39270立方厘米,那么这个长方体的表面积是多少平方厘米?[分析与解]方法一:39270=2×3×5×7×11×17,为三个连续自然数的乘积,而34×34×34即334最接近39270,39270的约数中接近或等于34的有35、34、33,有33×34×35=39270.所以33、34、35为满足题意的长、宽、高.则长方体的表面积为:2×<长×宽+宽×高+高×长>=2×<33×34+34×35+35×33>=6934<平方厘米>.方法二:39270=2×3×5×7×11×17,为三个连续自然数的乘积,考虑质因数17,如果17作为长、宽或高显然不满足.当17与2结合即34作为长方体一条边的长度时有可能成立,再考虑质因数7,与34接近的数32~36中,只有35含有7,于是7与5的乘积作为长方体的一条边的长度.而39270的质因数中只剩下了3和1l,所以这个长方体的大小为33×34×35.长方体的表面积为2×<3927033+3927034+3927035>=2×<1190+1155+1122>=2×3467=6934<平方厘米>.14.一个长方体的长、宽、高都是整数厘米,它的体积是1998立方厘米,那么它的长、宽、高的和的最小可能值是多少厘米?[分析与解] 我们知道任意个已确定个数的数的乘积一定时,它们相互越接近,和越小.如3个数的积为18,则三个数为2、3、3时和最小,为8.1998=2×3×3×3×37,37是质数,不能再分解,所以2×3×3×3对应的两个数应越接近越好.有2×3×3×3=6×9时,即1998=6×9×37时,这三个自然数最接近.它们的和为6+9+37=52<厘米>.15.如果两数的和是64,两数的积可以整除4875,那么这两个数的差等于多少?[分析与解]4875=3×5×5×5×13,有a×b为4875的约数,且这两个数的和为64.发现39=3×13、25=5×5这两个数的和为64,所以39、25为满足题意的两个数.那么它们的差为39-25=14.评注:由上题可推知,当两个数的和一定时,这两个数越接近,积越大,所以两个和为64的数的乘积最大为32×32=1024,而积最小为1×63=63.而4875在64~1024之间的约数有65,195,325,375,975等.我们再对65,195,325,375,975等一一验证.严格的逐步计算,才不会漏掉满足题意的其他的解.而在本题中满足题意的只有39、25这组数.练习一、填空题1. 在一位的自然数中,既是奇数又是合数的有_____;既不是合数又不是质数的有_____;既是偶数又是质数的有_____.2. 最小的质数与最接近100的质数的乘积是_____.3.两个自然数的和与差的积是41,那么这两个自然数的积是_____.4. 在下式样□中分别填入三个质数,使等式成立.□+□+□=505. 三个连续自然数的积是1716,这三个自然数是_____、_____、_____.6. 找出1992所有的不同质因数,它们的和是_____.7. 如果自然数有四个不同的质因数, 那么这样的自然数中最小的是_____.8. 9216可写成两个自然数的积,这两个自然数的和最小可以达到_____.9.从一块正方形的木板上锯下宽为3分米的一个木条以后,剩下的面积是108平方分米.木条的面积是_____平方分米.10.今有10个质数:17,23,31,41,53,67,79,83,101,103.如果将它们分成两组,每组五个数,并且每组的五个数之和相等,那么把含有101的这组数从小到大排列,第二个数应是_____.二、解答题11.2,3,5,7,11,…都是质数,也就是说每个数只以1和它本身为约数.已知一个长方形的长和宽都是质数个单位,并且周长是36个单位.问这个长方形的面积至多是多少个平方单位?12.把7、14、20、21、28、30分成两组,每三个数相乘,使两组数的乘积相等.13.学生1430人参加团体操,分成人数相等的若干队,每队人数在100至200之间,问哪几种分法?14.四只同样的瓶子内分别装有一定数量的油,每瓶和其他各瓶分别合称一次,记录千克数如下:8、9、10、11、12、13.已知四只空瓶的重量之和以与油的重量之和均为质数,求最重的两瓶内有多少油?。

小学数学五年级质数合数知识点总结

小学数学五年级质数合数知识点总结

小学数学五年级质数合数知识点总结1、自然数按因数的个数来分:质数、合数、1、0四类.(1)、质数(或素数):只有1和它本身两个因数。

(2)、合数:除了1和它本身还有别的因数(至少有三个因数:1、它本身、别的因数)。

(3)、1:只有1个因数。

“1”既不是质数,也不是合数。

注①最小的质数是2,最小的合数是4,连续的两个质数是2、3。

②每个合数都可以由几个质数相乘得到,质数相乘一定得合数。

③除了2和5,其余质数的各位都是1、3、7、9④质数和合数研究的范围是除0以外的自然数⑤20以内的质数:有8个分别是:(2、3、5、7、11、13、17、19)⑥100以内的质数有25个分别是:(2、3、5、7、11、13、17、19、23、29、31、37、41、43、47、53、59、61、67、71、73、79、83、89、97 )2、100以内找质数、合数的技巧:看是否是2、3、5、7、11、13,的倍数,是的就是合数,不是的就是质数。

关系:奇数×奇数=奇数质数×质数=合数3、常见最大、最小A的最小因数是:1;最小的奇数是:1;A的最大因数是:本身;最小的偶数是:0;A的最小倍数是:本身;最小的质数是:2;最小的自然数是:0;最小的合数是:4;4、互质数:公因数只有1的两个数,叫做互质数。

两个质数的互质数5和7两个合数的互质数8和9一质一合的互质数7和85、两数互质的特殊情况:⑴1和任何自然数互质;⑵相邻两个自然数互质;⑶两个质数一定互质;⑷2和所有奇数互质;⑸质数与比它小的合数互质;6、判断质数1、尾巴判断法,排除末尾是0,2,4,6,8,52、和判断法,排除数位上的数字和是3的倍数3、试除判断法,试除质数,被除数逐个从小到大除以质数,直到到商<除数为止。

注意:148,143、179,135,243是不是质数。

三、注意事项把合数写在右边,比如36=2×2×3×3就不能写成2×2×3×3=36;短除法是除法的一种简化,利用短除法分解质因数时,除数和商都不能是1,因为1不是质数。

小学数学奥数习题---质数和合数

小学数学奥数习题---质数和合数
(2)要使975×935×972×( )这个乘积的最后四位数字都为“0”,则( )内填入的最小值是多少?
练习5
(1)算式1×2×3×…×29×30的计算结果的末尾有几个连续的0?
(2)算式31×32×33×…×150的计算结果的末尾有几个连续的0?
例题6
张老师带领同学们去种树,学生的人数恰好等分成三组,已知老师和学生共种树312棵,老师与学生每人种的树一样多,并且不超过10棵。问:一共有多少学生?每人种了几棵树?
二、质因数与分解质因数
(1)质因数:如果一个质数是某个数的因数,那么就说这个质数是这个数的质因数。
(2)互质数:公因数只有1的两个自然数,叫做互质数。
(3)分解质因数:把一个合数用质因数相乘的形式表示出来,叫做分解质因数。
(4)分解质因数的方法:短除法
三、部分特殊数的分解
111=3×37 1001=7X11X13; 11111=41×271; 10001=73X1371995=3×5×7×19; 1998=2×3×3×3×37: 2007=3×3×2232008=2×2X2×251: 2013=3X11X61 10101=3X7×13X37.例题1
(1)在下面的方框中分别填入三个质数,使等式成立
ロ+ロ+ロ=52
(2)已知长方形的长和宽都是质数,并且周长是36厘米。这个长方形的面积最大是多少平方厘米?
练习1
(1)两个质数的和是49,求这两个质数的积是多少?
(2)A、B、C为三个质数,A+B=16,B+C=24,且A<B<C,求这三个质数。
(3)三个质数的倒数之和为431/1547,这三个质数的和是多少?
专题二
第三节质数与合数
知识提要:质数与合数

五年级奥数.数论.质数与合数(C级).学生版

五年级奥数.数论.质数与合数(C级).学生版

一、 质数与合数一个数除了1和它本身,不再有别的约数,这个数叫做质数(也叫做素数).一个数除了1和它本身,还有别的约数,这个数叫做合数。

要特别记住:0和1不是质数,也不是合数。

常用的100以内的质数:2、3、5、7、11、13、17、19、23、29、31、37、41、43、47、53、59、61、67、71、73、79、83、89、97,共计25个;除了2其余的质数都是奇数;除了2和5,其余的质数个位数字只能是1,3,7或9.考点:⑴ 值得注意的是很多题都会以质数2的特殊性为考点.⑵ 除了2和5,其余质数个位数字只能是1,3,7或9.这也是很多题解题思路,需要大家注意.二、 判断一个数是否为质数的方法根据定义如果能够找到一个小于p 的质数q (均为整数),使得q 能够整除p ,那么p 就不是质数,所以我们只要拿所有小于p 的质数去除p 就可以了;但是这样的计算量很大,对于不太大的p ,我们可以先找一个大于且接近p 的平方数2K ,再列出所有不大于K 的质数,用这些质数去除p ,如没有能够除尽的那么p 就为质数.例如:149很接近1441212=⨯,根据整除的性质149不能被2、3、5、7、11整除,所以149是质数.三、 质因数与分解质因数(1).质因数:如果一个质数是某个数的约数,那么就说这个质数是这个数的质因数.(2).互质数:公约数只有1的两个自然数,叫做互质数.(3).分解质因数:把一个合数用质因数相乘的形式表示出来,叫做分解质因数.例如:30235=⨯⨯.其中2、3、5叫做30的质因数.又如21222323=⨯⨯=⨯,2、3都叫做12的质因数,其中后一个式子叫做分解质因数的标准式,在求一个数约数的个数和约数的和的时候都要用到这个标准式.分解质因数往往是解数论题目的突破口,因为这样可以帮助我们分析数字的特征.知识框架质数与合数(4).分解质因数的方法:短除法 例如:212263,(┖是短除法的符) 所以12223=⨯⨯;四、 唯一分解定理任何一个大于1的自然数n 都可以写成质数的连乘积,即:312123k a a a a k n p p p p =⨯⨯⨯⨯其中为质数,12k a a a <<<为自然数,并且这种表示是唯一的.该式称为n 的质因子分解式.例如:三个连续自然数的乘积是210,求这三个数.分析:∵210=2×3×5×7,∴可知这三个数是5、6和7.部分特殊数的分解111337=⨯;100171113=⨯⨯;1111141271=⨯;1000173137=⨯;199535719=⨯⨯⨯;1998233337=⨯⨯⨯⨯;200733223=⨯⨯;2008222251=⨯⨯⨯;10101371337=⨯⨯⨯.【例 1】 著名的哥德巴赫猜想是:“任意一个大于4的偶数都可以表示为两个质数的和”。

小学奥数专题-质数与合数(一)

小学奥数专题-质数与合数(一)

1.掌握质数与合数的定义 2.能够用特殊的偶质数2与质数5解题 3.能够利用质数个位数的特点解题 4. 质数、合数综合运用一、质数与合数 一个数除了1和它本身,不再有别的约数,这个数叫做质数(也叫做素数).一个数除了1和它本身,还有别的约数,这个数叫做合数。

要特别记住:0和1不是质数,也不是合数。

常用的100以内的质数:2、3、5、7、11、13、17、19、23、29、31、37、41、43、47、53、59、61、67、71、73、79、83、89、97,共计25个;除了2其余的质数都是奇数;除了2和5,其余的质数个位数字只能是1,3,7或9.考点:⑴ 值得注意的是很多题都会以质数2的特殊性为考点.⑵ 除了2和5,其余质数个位数字只能是1,3,7或9.这也是很多题解题思路,需要大家注意.二、判断一个数是否为质数的方法根据定义如果能够找到一个小于p 的质数q (均为整数),使得q 能够整除p ,那么p 就不是质数,所以我们只要拿所有小于p 的质数去除p 就可以了;但是这样的计算量很大,对于不太大的p ,我们可以先找一个大于且接近p 的平方数2K ,再列出所有不大于K 的质数,用这些质数去除p ,如没有能够除尽的那么p 就为质数.例如:149很接近1441212=⨯,根据整除的性质149不能被2、3、5、7、11整除,所以149是质数.模块一、判断质数合数 【例 1】 下面是主试委员会为第六届“华杯赛”写的一首诗:美少年华朋会友,幼长相亲同切磋;杯赛联谊欢声响,念一笑慰来者多;九天九霄志凌云,九七共庆手相握;聚起华夏中兴力,同唱移山壮丽歌.请你将诗中56个字第1行左边第一字起逐行逐字编为1—56号,再将号码中的质数由小到大找出来,将它们对应的字依次排成一行,组成一句话,请写出这句话.【例 2】 著名的哥德巴赫猜想是:“任意一个大于4的偶数都可以表示为两个质数的和”。

如6=3+3,12=5+7,等。

质数合数知识点总结

质数合数知识点总结

质数合数知识点总结一、质数的相关知识点1. 定义- 一个大于1的自然数,除了1和它自身外,不能被其他自然数整除的数叫做质数。

例如2、3、5、7、11等都是质数。

- 最小的质数是2。

2. 质数的判断方法- 试除法:从2到这个数的平方根之间的数依次去除这个数,如果都不能整除,那么这个数就是质数。

例如判断17是否为质数,因为4^2 = 16<17,我们只需用2、3、4去试除17,发现都不能整除,所以17是质数。

3. 质数的性质- 质数只有两个因数,即1和它本身。

- 除2以外的质数都是奇数(因为偶数都能被2整除)。

- 两个质数的积一定是合数。

例如2和3是质数,它们的积6除了能被1和6整除外,还能被2和3整除,所以6是合数。

- 如果一个质数能整除两个自然数的乘积,那么这个质数至少能整除这两个自然数中的一个。

二、合数的相关知识点1. 定义- 一个大于1的整数,如果除了1和它本身以外,还有其他的因数,这样的数就叫做合数。

例如4、6、8、9、10等都是合数。

- 最小的合数是4。

2. 合数的判断方法- 只要能找到除1和它本身以外的一个因数,这个数就是合数。

例如8,除了1和8之外,还有2和4是它的因数,所以8是合数。

3. 合数的性质- 合数至少有三个因数。

- 合数可以分解成几个质数相乘的形式(这是合数分解质因数的依据)。

例如12 = 2×2×3。

- 1既不是质数也不是合数。

这是因为1不符合质数的定义(质数要求有两个不同的因数),也不符合合数的定义(合数要求至少有三个因数)。

小学奥数必知质数与合数知识点讲解【三篇】

小学奥数必知质数与合数知识点讲解【三篇】

【导语】天⾼鸟飞,海阔鱼跃,学习这舞台,秀出你独特的精彩⽤好分秒时间,积累点滴知识,解决疑难问题,学会举⼀反三。

以下是为⼤家整理的《⼩学奥数必知质数与合数知识点讲解【三篇】》供您查阅。

【第⼀篇】
质数与合数
质数:⼀个数除了1和它本⾝之外,没有别的约数,这个数叫做质数,也叫做素数。

合数:⼀个数除了1和它本⾝之外,还有别的约数,这个数叫做合数。

质因数:如果某个质数是某个数的约数,那么这个质数叫做这个数的质因数。

分解质因数:把⼀个数⽤质数相乘的形式表⽰出来,叫做分解质因数。

通常⽤短除法分解质因数。

任何⼀个合数分解质因数的结果是的。

分解质因数的标准表⽰形式:N=,其中a1、a2、a3……an都是合数N的质因数,且a1
求约数个数的公式:P=(r1+1)×(r2+1)×(r3+1)×……×(rn+1)
互质数:如果两个数的公约数是1,这两个数叫做互质数。

【第⼆篇】
【质数合数】
【第三篇】
 【质数与合数概念讲解】。

奥数知识点分类汇总(包含公式)

奥数知识点分类汇总(包含公式)

奥数知识点分类汇总(包含公式)自古以来,数学一直是人类认识和解释世界的重要工具。

而奥数,则是数学中的一个重要分支,注重培养学生的逻辑思维和解决问题的能力。

在奥数学习的过程中,熟练掌握各种知识点和公式是必不可少的。

本文将对奥数的知识点进行分类汇总,并附上相应的公式。

1. 算术算术是奥数的基础,主要包含四则运算、乘方、开方等内容。

常见的算术知识点如下:- 整数的性质和运算法则- 分数的四则运算和化简- 百分数的应用- 平方根和立方根的计算- 利率和利息计算- 奇偶性和倍数的判断- 质数和合数的认识2. 代数代数是数学中的一门重要分支,奥数中也有许多与代数相关的知识点,包括:- 简单方程和方程组的解法- 一次函数和二次函数的性质及应用- 平面和空间几何中的向量运算- 多项式的运算和因式分解- 概率与统计中的排列组合和逻辑推理3. 几何几何是奥数中重要的一个部分,通过几何学习,学生能够培养准确观察和推理的能力。

几何中的知识点有:- 图形的性质与分类,如三角形、四边形等- 几何图形的相似与全等- 角的概念与运算- 圆的性质和相关计算- 空间几何中的多面体和棱锥4. 数论数论是奥数中的一门深入的专题,主要研究整数的性质和规律。

数论中的知识点有:- 数字的奇偶性与整除关系- 最大公约数和最小公倍数的计算- 同余关系及其性质- 质数和素数的判断- 分数的有限小数表示和无限循环小数5. 组合数学组合数学是奥数中的一门应用数学课程,它主要研究对象的选择和排列问题。

组合数学中的知识点包括:- 排列和组合的计算- 集合的运算和性质- 图论的基本概念和应用以上只是奥数中的一些常见知识点的分类汇总,而实际上,奥数还涉及到更多的知识领域,如三角函数、立体几何、模运算等。

在学习的过程中,掌握基础知识点的同时,还需要不断拓展自己的知识面,丰富自己的数学思维。

附录:常用公式1. 面积公式- 三角形的面积公式:$S=\frac{1}{2}ab\sin C$- 矩形的面积公式:$S=a\times b$- 圆的面积公式:$S=\pi r^2$2. 体积公式- 立方体的体积公式:$V=a^3$- 圆柱体的体积公式:$V=\pi r^2h$- 球体的体积公式:$V=\frac{4}{3}\pi r^3$3. 三角函数公式- 正弦定理:$\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}$ - 余弦定理:$c^2=a^2+b^2-2ab\cos C$- 正切的定义:$\tan A=\frac{\sin A}{\cos A}$4. 其他常用公式- 平方差公式:$a^2-b^2=(a+b)(a-b)$- 二次根式的和差公式:$\sqrt{a}+\sqrt{b}=\sqrt{a+b+2\sqrt{ab}}$ - 二次方程求解公式:$x=\frac{-b\pm\sqrt{b^2-4ac}}{2a}$在奥数学习中,积累和掌握这些知识点和公式,对于解题和提高数学能力都具有重要意义。

五年级奥数:第2讲质数和合数

五年级奥数:第2讲质数和合数

第二讲质数和合数教学目标:掌握质数、合数地定义和特征.养成准确数学概念、区分概念和灵活运用概念地良好习惯.知识点拨:概念:一个大于地整数,如果除了和它本身以外,不再有别地因数,这个整数就叫做质数(又称为素数).一个整数,如果除了和它本身以外,还有其它地因数,这个整数就叫做合数.质数特征:①质数只有和它本身两个约数.②质数只能表示成和它本身地乘积,不能表示成任意其它两个整数地积.③最小地质数是,也是唯一地偶数质数,其它所有质数都是奇数.合数特征:①合数至少有个约数,至少有个大于小于它本身地约数.②合数可以写成两个大于地整数地乘积.③最小地合数是,大于地偶数都是合数.相关知识点:①既不是质数也不是合数.②奇数中有质数也有合数.③在大于零地偶数中只有一个质数,其它都是合数.质数地判定:①直接判断:熟记以内地质数,熟悉以内地质数;②查看质数表;③试除判断:假设有自然数、,且﹤.可以用小于地所有质数依次去除,如果其中某个质数能整除,则是合数;如果小于地所有质数都不能整除,则是质数.文档来自于网络搜索附:以内质数表: , 共个.文档来自于网络搜索例题精讲:例题:判断、是质数还是合数?【解析】:先简单估算一下试除质数地范围.﹤、﹤,小于地质数有:、、、、、、、、.依次用上面这些质数试除和,得:①÷,所以是合数;②这些质数都不能整除,所以是质数.例题:已知是质数,而且+,+,+都是质数,求符合条件地最小质数.【解析】:要求出符合条件地最小质数,可以将所有质数按从小到大地顺序依次尝试,等于、、时题中三个算式地得数中都有合数出现,只有等于时,题中三个算式地得数依次为:、、,都是质数.文档来自于网络搜索所以符合条件地最小质数是.例题:将表示为两个质数之和,﹦□+□,在□中填入质数,共有多少种表示法?【解析】:是个奇数,拆成两个整数地和,奇数+偶数﹦奇数,这两个整数必然是一个奇数和一个偶数,要使这两个数都是质数,这个偶数只能是,奇数为().经检验是质数.文档来自于网络搜索则所求表示法有两种:﹦+;﹦+.巩固练习:.连续个自然数中最多有几个质数?为什么?【解析】:连续个自然数中最多有个质数.理由:连续个自然数中,最小地自然数小于或等于时,个连续自然数中都是有个质数(可以一一列举验证).连续个自然数中,最小地自然数大于时,这个自然数中至少有个偶数,都是合数,最多有个奇数,这个奇数中至少有一个数是地倍数是合数,因此最多只有个质数.文档来自于网络搜索综上所述,连续个自然数中最多有个质数..判断和两个数是质数和合数?.两个质数地和为,求这两个数地乘积最大是多少?.有这样一个质数,它分别加上、、、后,得到地仍是质数,这个质数最小是多少?.“哥德巴赫猜想”是说每个大于地偶数都可以表示成两个质数地和,问是哪两个两位数质数地和,并且其中一位地个位数是?文档来自于网络搜索.请给出个质数,把它们按从小到大地顺序排列起来,使每相邻地两数地差都是.【解析】我们知道是、地倍数,如果开始地质数是或,那么后一个数即23或与地和一定也是或地倍数,将是合数,所以从开始尝试.文档来自于网络搜索有、、、、是满足条件地个质数..用,,,,,,,,这个数字组成质数,如果每个数字都要用到并且只能用一次,那么这个数字最多能组成多少个质数?文档来自于网络搜索【解析】要使质数个数最多,我们尽量组成一位地质数,有、、、均为一位质数,这样还剩下、、、、这个不是质数地数字未用.文档来自于网络搜索有、、、可以组成质数、,而可以与组合成质数.所以这个数字最多组成了、、、、、这个质数.。

五年级奥数专题 质数、合数、分解质因数(学生版)

五年级奥数专题 质数、合数、分解质因数(学生版)

学科培优数学“质数、合数、分解质因数”学生姓名授课日期教师姓名授课时长知识定位本讲中的知识点在小学课本内已经有所涉及,并且多以判断题考察。

质数合数的出现是对自然数的另一种分类方式,但是相对于奇数偶数的划分要复杂许多。

质数本身的无规律性也是一个研究质数结构的难点。

在奥数数论知识体系中我们要帮助孩子树立对质数和合数的基本认识,在这个基础之上能够会与之前的一些知识点结合运用。

分解质因数法是一个数论重点方法,本讲另一个授课重点在于让孩子对这个方法能够熟练并且灵活运用。

知识梳理一、质数与合数的基本概念1.质数:一个数除了1和它本身没有其他的约数,这个数就称为一个质数,也叫做素数2.合数:一个数除了1和它本身还有其他的约数,这个数就称为一个合数3.质因数:如果一个质数是某个数的约数,那么就说这个质数是这个数的质因数二、质数和合数的一些性质和常用结论1. 0和1既不是质数也不是合数,因此,我们可以说,自然数可以分成三部分,即,0和1,质数,合数。

2. 最小的质数是2,最小的合数是4。

3. 常用的100以内的质数:2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61,67,71,73,79,83,8 9,97其中2是唯一的偶数,5是唯一个位上数字是5的数,其余的数字个位只为1,3,7,94. 部分特殊数的分解:=⨯1000173137=⨯=⨯⨯1111141271=⨯100171113111337=⨯⨯=⨯⨯⨯⨯200733223=⨯⨯⨯1998233337199535719=⨯⨯⨯+==⨯⨯10101371337 2008222251=⨯⨯⨯200720084015511735. 质数的判定方法判断一个数是否是质数,可以采用“连续小质数试除法”。

例如:判断251是否是质数,可以从最小的质数2开始依次除251,直到所得的商比除数小为止,可以断定251是质数。

251÷2=125...1, 251÷3=83...2, 251÷5=50...1, 251÷7=35...6, (251)17=14…13,此时除数17>商14,由此说明251是质数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

例1、判断下面的数是质数还是合数?
173 189 669 1003 2003 2011 2013
练习:判断下面的数是质数还是合数?
107 127 703 1999
例2、已知三个质数的和是50.那么这三个质数的积最大是多少?
练习:已知A<B<C,且都是质数,A+B=16,B+C=24,那么A+B+C=__________.
例3、A是一个质数,而且A+6,A+8,A+14都是质数。

试求出满足要求的最小质数A. 练习:已知A是一个质数,而且A+4,A+6,A+10都是质数。

求符合条件的最小质数A. 例4、三个连续的自然数的乘积等于39270.那么这三个连续的自然数的和等于多少?
练习:三个自然数的乘积为84,其中两个数的和正好等于另一个数。

求这三个数。

例5、马鹏和李虎计算甲、乙两个大于1的自然数的乘积,马鹏把甲数的个位数字看错了,得乘积473;李虎把甲数的十位数字看错了,得乘积407。

那么甲、乙两数的乘积是多少?
练习:用216元去买钢笔,钱正好用完。

如果每支钢笔便宜1元,则可多买3支钢笔,钱都正好用完。

那么原来共买了多少支钢笔?
例6、秋季开学,国才教育五年级培优班来了四位新同学,他们的年龄恰好是一个比一个大1岁,而他们的年龄的乘积是5040,聪明的小朋友,你能猜到这四位新同学的年龄吗?
练习:
在去西天取经的路上,孙悟空、猪八戒、沙和尚和白龙马捉住的妖怪的数目刚好是四个连续的自然数。

而且。

这四个自然数的乘积刚好是630。

聪明的小朋友你知道他们一共捉住了几个妖怪吗?
例7、把1、2、3、4、5、6、7、8、9填进下面算式方框内,每个数字用一次,使等式成立。

□□□×□□=□□×□□=5568
练习:
下面四张小纸片各盖住一个数字,如果这四个数字是连续的偶数,请写出完整的等式。

□□×□□=1288
例8、有一列数1,4,7,10,......,9997,10000。

将这些数相乘,试求乘积的尾部零的个数(例如270034000的尾部是3个0)
练习:1×2×3×4×5×......×99×100的积,末尾有多少个连续的零?。

相关文档
最新文档