高二数学选修1-1全套教案

合集下载

高中数学人教A版选修1-1第3章3-2立体几何中的向量方法教案

高中数学人教A版选修1-1第3章3-2立体几何中的向量方法教案

即 a2 = 3x2 + 2(3x2 cos )
x=
1a
3 + 6 cos
∴ 这个四棱柱的对角线的长可以确定棱长。
(3)本题的晶体中相对的两个平面之间的距离是多少?(提示:求
两个平行平面的距离,通常归结为求两点间的距离)
分析:面面距离 点面距离 向量的模 回归图形
解: 过 A1点作 A1H ⊥ 平面 AC 于点 H.
解:
设平面 AEF 的法向量为
则有
6,如图所示建立坐标系,有
为平面 AEF 的单位法向量。
分别求平面 SAB 与平面 SDC 的法向量,并求出它们夹角的余弦。 解:因为 y 轴 平面 SAB,所以平面 SAB 的法向量为 设平面 SDC 的法向量为, 由
§3.2.2 空间角与距离的计算举例
【学情分析】:
空间中的几何元素
如图,在空间中,我们取一点 O 作为基点,那么空间中任意一点 P 点、直线、平面的
的位置就可以用向量 OP 来表示.称向量 OP 为点的位置向量。
位置的向量表示方 法。
●P
基点 O●
2. 思考:在空间中给定一个定点 A 和一个定方向(向量),能确定一条直
线在空间的位置吗? l
a
P
A
AP = a( R)
∴ sin BAD = 1− 9 = 32 , 105 35
五、小结 六、作业
∴ S ABCD =| AB | | AD | sin BAD = 8 6 .
1. 点、直线、平面的位置的向量表示。 2. 线线、线面、面面间的平行与垂直关系的向量表示。 A,预习课本 105~110 的例题。 B,书面作业:
(1)求证: AP 是平面 ABCD 的法向量; (2)求平行四边形 ABCD 的面积.

高二数学选修1-1 圆锥曲线及轨迹-苏教版 教案

高二数学选修1-1 圆锥曲线及轨迹-苏教版 教案

高二数学选修1-1 圆锥曲线及轨迹-苏教版一、复习的目标、重点1、通过用平面截圆锥面,经历从具体情境中抽象出圆锥曲线的过程,掌握它的定义。

2、通过用平面截圆锥面,感受、了解双曲线、抛物线的定义。

3、理解圆锥曲线的统一定义4、理解曲线与方程的关系,掌握求轨迹方程的一般方法和步骤。

二、知识结构1、圆锥曲线的定义,并利用定义解决有关问题。

2、求轨迹方程并判断是什么曲线 三、基础训练1、设定点F 1(0,-3),F 2(0,3),动点P(x ,y )满足条件|PF 1|+|PF 2|=a (a >0),则动点P 的轨迹是 椭圆或线段或不存在2、已知A 、B 两地相距800m ,在A 地听到炮弹爆炸声比在B 地晚2s ,且声速为340m /s ,则炮弹爆炸点的所在曲线为 双曲线的一支3、如果M(x ,y )在运动过程中,总满足关系式10)3()3(2222=-++++y x y x ,则M 的轨迹是 椭圆4、若动圆与定圆(x -2)2+y 2=1外切,又与直线x +1=0相切,则动圆圆心的轨迹是 抛物线5、“点M 在曲线y 2=4x 上”是“点M 的坐标满足方程y =x 2-”的 必要不充分 条件6、若P(2,-3)在曲线x 2-ay 2=1上,则a 的值为31四、典例选讲例1、若一个动点P(x ,y )到两个定点F 1(-1,0)、F 2(1,0)的距离之差的绝对值为定值a (0≤a ≤2),试探求点P 的轨迹。

解:当a =0时,|PF 1-PF 2|=0,从而PF 1=PF 2,所以点P 的轨迹为直线:x =0 当a =2时,|PF 1-PF 2|=2=F 1F 2,点P 的轨迹为两条射线:y =0(|x |≥1)当0<a <2时,|PF 1-PF 2|=a <F 1F 2,点P 的轨迹是以F 1、F 2为焦点,a 为实轴长的双曲线。

例2、已知圆C 1:(x +3)2+y 2=1和圆C 2:(x -3)2+y 2=9,动圆M 同时与圆C 1及圆C 2相外切,求动圆圆心M 的轨迹。

人教版高中数学选修1-1全套教案

人教版高中数学选修1-1全套教案

第一课时1。

1.1 命题及其关系(一)教学要求:了解命题的概念,会判断一个命题的真假,并会将一个命题改写成“若,则”的形式.教学重点:命题的改写.教学难点:命题概念的理解。

教学过程:一、复习准备:阅读下列语句,你能判断它们的真假吗?(1)矩形的对角线相等;(2)3;(3)3吗?(4)8是24的约数;(5)两条直线相交,有且只有一个交点;(6)他是个高个子.二、讲授新课:1。

教学命题的概念:①命题:可以判断真假的陈述句叫做命题(proposition)。

也就是说,判断一个语句是不是命题关键是看它是否符合“是陈述句”和“可以判断真假”这两个条件。

上述6个语句中,(1)(2)(4)(5)(6)是命题。

②真命题:判断为真的语句叫做真命题(true proposition);假命题:判断为假的语句叫做假命题(false proposition).上述5个命题中,(2)是假命题,其它4个都是真命题。

③例1:判断下列语句中哪些是命题?是真命题还是假命题?(1)空集是任何集合的子集;(2)若整数是素数,则是奇数;(3)2小于或等于2;(4)对数函数是增函数吗?(5);(6)平面内不相交的两条直线一定平行;(7)明天下雨。

(学生自练个别回答教师点评)④探究:学生自我举出一些命题,并判断它们的真假。

2。

将一个命题改写成“若,则"的形式:①例1中的(2)就是一个“若,则”的命题形式,我们把其中的叫做命题的条件,叫做命题的结论。

②试将例1中的命题(6)改写成“若,则”的形式。

③例2:将下列命题改写成“若,则”的形式。

(1)两条直线相交有且只有一个交点;(2)对顶角相等;(3)全等的两个三角形面积也相等.(学生自练个别回答教师点评)3。

小结:命题概念的理解,会判断一个命题的真假,并会将命题改写“若,则”的形式.三、巩固练习:1。

练习:教材P41、2、32。

作业:教材P9第1题第二课时 1.1。

2 命题及其关系(二)教学要求:进一步理解命题的概念,了解命题的逆命题、否命题与逆否命题,会分析四种命题的相互关系。

高中数学选修1-1教案

高中数学选修1-1教案

高中数学选修1-1教案教案标题:高中数学选修1-1教案教学目标:1. 理解和掌握数列的概念和性质。

2. 掌握数列的通项公式和求和公式。

3. 能够应用数列的概念和公式解决实际问题。

教学重点:1. 数列的概念和性质。

2. 数列的通项公式和求和公式。

教学难点:1. 如何应用数列的概念和公式解决实际问题。

教学准备:1. 教材:高中数学选修1-1教材。

2. 教具:黑板、粉笔、投影仪、计算器等。

教学过程:Step 1:导入(5分钟)介绍数列的概念,引发学生对数列的兴趣,并与学生讨论数列在日常生活中的应用。

Step 2:概念讲解(15分钟)1. 讲解数列的定义和常见术语,如首项、公差等。

2. 引导学生理解等差数列和等比数列的概念,并通过具体的例子进行说明。

Step 3:性质探究(20分钟)1. 将学生分成小组,让每组选择一个数列,观察数列的规律,并总结数列的性质。

2. 学生展示各自小组的研究成果,并进行讨论。

Step 4:公式推导(20分钟)1. 讲解等差数列的通项公式和求和公式的推导过程,并通过具体的例子演示应用。

2. 讲解等比数列的通项公式和求和公式的推导过程,并通过具体的例子演示应用。

Step 5:练习与拓展(20分钟)1. 给学生分发练习题,让他们独立完成,并及时给予指导和解答。

2. 提供一些拓展题目,让学生进行思考和探索。

Step 6:归纳总结(10分钟)1. 学生归纳总结数列的概念、性质和公式,并记录在黑板上。

2. 教师进行总结和澄清,确保学生对数列的相关知识有清晰的理解。

Step 7:作业布置(5分钟)布置相关习题作为课后作业,要求学生独立完成,并在下节课前交上。

教学反思:在教学过程中,要通过合作学习和实际问题的应用,培养学生的数学思维能力和解决问题的能力。

同时,要关注学生的学习情况,及时给予指导和帮助,确保每个学生都能够掌握数列的相关知识和技能。

高中数学 1.1.1 命题教案 选修1-1

高中数学 1.1.1 命题教案 选修1-1

1.1.1 命题(教师用书独具)●三维目标1.知识与技能理解命题的概念和命题的构成,能判断给定陈述句是否为命题,能判断命题的真假;能把命题改写成“若p,则q”的形式.2.过程与方法多让学生举命题的例子,培养他们的辨析能力;以及培养他们的分析问题和解决问题的能力.3.情感、态度与价值观通过学生的参与,激发学生学习数学的兴趣.●重点、难点重点:命题的概念、命题的构成.难点:分清命题的条件、结论和判断命题的真假.(教师用书独具)●教学建议命题的概念在初中已经学习过,可以通过回顾初中知识引入,讲清命题概念中的两个问题,判断是否为陈述句,能否判断真假;重点放在命题的形式和判断命题真假的教学中,基于教材内容简单且以前曾经接触过,可以采用提问式、讨论式的教学方法,让学生在讨论、回答问题的过程中学习知识,增长技能,进而突破重难点.●教学流程创设问题情境,引出命题的概念,通过实例形成概念原型.⇒引导学生结合初中学习过的命题概念,比较、分析,揭示命题的特点及构成形式.⇒通过引导学生回答所提问题理解判断命题真假的方法.⇒通过例1及其变式训练,使学生掌握如何判断一个语句是否为命题.⇒通过例2及其互动探究,使学生掌握命题真假的判断方法,并对相关知识进行复习.⇒通过例3及其变式训练,完成对命题形式的认识与巩固,学会对命题进行改写.⇒归纳整理,进行课堂小结,整体认识本节课所学知识.⇒完成当堂双基达标,巩固所学知识并进行反馈矫正.(对应学生用书第1页)课标解读1.了解命题的概念及构成.(重点)2.会判断命题的真假.(难点、易错点) 命题的概念【问题导思】观察下列实例:①一条直线l,不是与平面α平行就是相交;②4是集合{1,2,3,4}的元素;③若x∈R,方程x2-x+2=0无实根;④作△ABC∽△A′B′C′上述语句中,哪些能判断真假?【提示】①、②、③、④是祈使句不能判断真假.1.定义在数学中,把用语言、符号或式子表达的,可以判断真假的陈述句叫做命题.2.分类①真命题:判断为真的语句叫做真命题;②假命题:判断为假的语句叫做假命题.命题的形式【问题导思】1.“同位角相等”是命题吗?如果是命题,是真命题还是假命题?【提示】是命题,为假命题.2.你能把“同位角相等”写成“若……,则……”的形式吗?【提示】若两个角为同位角,则这两个角相等.命题的形式:“若p,则q”,其中命题的条件是p,结论是q.(对应学生用书第1页)命题的判断判断下列语句是否为命题,并说明理由.(1)x-2>0;(2)梯形是不是平面图形呢?(3)若a与b是无理数,则ab是无理数;(4)这盆花长得太好了!(5)若x<2,则x<3.【思路探究】(1)这些语句是陈述句吗?(2)你能判断它们的真假吗?【自主解答】(1)不是命题,因为变量x的值没有给定,不能判断真假.(2)不是命题,疑问句不是命题.(3)是命题,因为此语句是陈述句且是假的.(反例a=b =2)(4)不是命题,感叹句不是命题.(5)是命题,因为此语句是陈述句且是真的.判断一个语句是否为命题的步骤:(1)语句格式是否为陈述句,只有陈述句才有可能是命题.(2)该语句能否判断真假,语句叙述的内容是否与客观实际相符,是否符合已学过的公理、定理,是明确的,不能模棱两可.判断下列语句是否为命题,并说明理由.(1)一条直线l,与平面α不是平行就是相交;(2)若xy=1,则x,y互为倒数;(3)作△ABC∽△A′B′C′.【解】(1)是命题.直线l与平面α有相交、平行、l在平面α内三种关系,为假.(2)是命题.因xy=1时,x,y互为倒数,为真.(3)不是命题,祈使句不是命题.命题真假的判定判断下列语句是否是命题,若是,判断其真假,并说明理由.(1)函数y=sin4x-cos4x的最小正周期是π;(2)若x=4,则2x+1<0;(3)一个等比数列的公比大于1时,该数列为递增数列;(4)求证:x∈R时,方程x2-x+2=0无实根.【思路探究】语句――→命题定义判定是否是命题――→证明举反例真假命题【自主解答】(1)(2)(3)是命题,(4)不是命题.命题(1)中,y=sin4x-cos4x=sin2x-cos2x=-cos 2x,显然其最小正周期为π,为真命题.命题(2)中,当x=4,2x+1>0,是假命题.命题(3)中,当等比数列的首项a1<0,公比q>1时,该数列为递减数列,是假命题.(4)是一个祈使句,没有作出判断,不是命题.1.真假命题的判定方法:(1)真命题的判定方法:真命题的判定过程实际就是利用命题的条件,结合正确的逻辑推理方法进行正确逻辑推理的一个过程.判断命题为真的关键是弄清命题的条件,选择正确的逻辑推理方法.(2)假命题的判定方法:通过构造一个反例否定命题的正确性,这是判断一个命题为假命题的常用方法.2.解决本类问题的难点是对相关知识的理解与掌握.在本例中,把不是命题的改为命题后,再把假命题改为真命题.【解】(2)是假命题,改为真命题为:若x=4时,则2x+1>0.(3)是假命题,改为真命题为:一个等比数列的公比大于1,首项大于零时,该数列为递增数列.(4)不是命题,改为真命题为:若x∈R,则方程x2-x+2=0无实根.命题的形式及改写把下列命题改写成“若p,则q”的形式,并判断命题的真假.(1)两个周长相等的三角形面积相等;(2)已知x,y为正整数,当y=x+1时,y=3,x=2;(3)当m>1时,x2-2x+m=0无实根;(4)当abc=0时,a=0且b=0且c=0.【思路探究】(1)这些命题的条件与结论分别是什么?(2)第2小题中大前提“已知x、y为正整数”该怎样处理?【自主解答】(1)若两个三角形周长相等,则这两个三角形面积相等,假命题;(2)已知x,y为正整数,若y=x+1,则y=3,x=2,假命题;(3)若m>1,则x2-2x+m=0无实根,真命题;(4)若abc=0,则a=0且b=0且c=0,假命题.1.解决本例问题的关键是找准命题的条件和结论,进而化成“若p,则q”的形式.2.对于命题的大前提,应当写在前面,不要写在条件中;对于改写时语句不通顺的情况,要适当补充使语句顺畅.把下列命题改写成“若p,则q”的形式,并判断命题的真假.(1)奇数不能被2整除;(2)当(a-1)2+(b-1)2=0时,a=b=1;(3)两个相似三角形是全等三角形;(4)在空间中,平行于同一个平面的两条直线平行.【解】(1)若一个数是奇数,则它不能被2整除,是真命题;(2)若(a-1)2+(b-1)2=0,则a=b=1,是真命题;(3)若两个三角形是相似三角形,则这两个三角形是全等三角形,是假命题.(4)在空间中,若两条直线平行于同一个平面,则这两条直线平行,是假命题.(对应学生用书第4页)因知识欠缺,导致对命题真假判断失误判断下列命题的真假.(1)若a >b ,则1a <1b; (2)x =1是方程(x -1)(x -2)=0的一个根.【错解】 (1)真命题. (2)假命题.【错因分析】 (1)误认为“两数比较大小时,大数的倒数反而小”,而忽视a 、b 的条件,当a >0,b <0时,a >b 但1a >1b. (2)因为方程的根为x =1或x =2,解题时误认为x =1不全面,而没有分析清逻辑关系.【防范措施】 平时学习时一定要对每一个基础知识理解透彻.【正解】 (1)假命题 (2)真命题1.判断一个语句是否是命题要注意两点:(1)是不是陈述句;(2)能否判断真假.2.命题的真假判断要结合已有知识,进行严格的逻辑推理,对于描述较为简洁的命题可以分清条件和结论后改写成“若p ,则q ”的形式再加以判断.(对应学生用书第4页)1.下列语句中是命题的是( )A.π2是无限不循环小数 B .3x ≤5C .什么是“温室效应”D .《非常学案》真好呀! 【解析】 疑问句和祈使句不是命题,C 、D 不是命题,对于B 无法判断真假,只有A 是命题.【答案】 A2.下列命题中是假命题的是( )A .5是15的约数B .对任意实数x ,有x 2<0C .对顶角相等D .0不是奇数 【解析】 对任意实数x ,有x 2≥0,所以B 为假命题.A 、C 、D 均为真命题.【答案】 B3.把命题“垂直于同一平面的两条直线互相平行”改写成“若p ,则q ”的形式为________.【答案】 若两条直线都垂直于同一个平面,则这两条直线互相平行4.判断下列语句是否为命题,若是命题,判断其真假.(1)求证:2是无理数.(2)若G 2=ab ,则a 、G 、b 成等比数列.(3)末位数字是0的整数能被5整除.(4)你是高二的学生吗? 【解】 (1)不是命题,(2)假命题,(3)真命题,(4)不是命题.一、选择题1.(2013·郑州高二检测)在空间,下列命题正确的是( )A .平行直线的平行投影重合B .平行于同一直线的两个平面平行C .垂直于同一平面的两个平面平行D .垂直于同一平面的两条直线平行【解析】 A 中平行投影可能平行,A 为假命题.B 、C 中的两个平面可以平行或相交,为假命题.由线面垂直的性质,D 为真命题.【答案】 D2.命题“6的倍数既能被2整除,也能被3整除”的结论是( )A .这个数能被2整除B .这个数能被3整除C .这个数既能被2整除,也能被3整除D .这个数是6的倍数【解析】 “若p ,则q ”的形式:若一个数是6的倍数,则这个数既能被2整除,也能被3整除.【答案】 C3.下列命题中,是真命题的是( )A .{x ∈R |x 2+1=0}不是空集B .若x 2=1,则x =1C .空集是任何集合的真子集D .若1x =1y,则x =y 【解析】 A 中方程在实数范围内无解,故为假命题;B 中,若x 2=1,则x =±1,也为假命题;因为空集是任何非空集合的真子集,故C 为假命题,D 为真.【答案】 D4.给出命题:方程x 2+ax +1=0没有实数根,则使该命题为真命题的a 的一个值可以是( )A .4B .2C .0D .-3【解析】 方程无实根应满足Δ=a 2-4<0即a 2<4,故当a =0时适合条件.【答案】 C5.有下列命题:①若xy =0,则|x |+|y |=0;②若a >b ,则a +c >b +c ;③矩形的对角线互相垂直. 其中真命题共有( )A .0个B .1个C .2个 【解析】 ①由x ·y =0得到x =0或y =0,所以|x |+|y |=0不正确,是假命题;②当a >b 时,有a +c >b +c 成立,正确,所以是真命题;③矩形的对角线不一定垂直,不正确.是假命题.【答案】 B二、填空题6.把“正弦函数是周期函数”写成“若p ,则q ”的形式是________.【答案】 若函数为正弦函数,则此函数是周期函数.7.如果命题“若x ∈A ,则x +1x≥2”为真命题,则集合A 可以是________.(写出一个即可)【解析】 当x >0时,有x +1x≥2,故A 可以为{x |x >0}. 【答案】 {x |x >0}8.下列命题:①若xy =1,则x ,y 互为倒数,②平行四边形是梯形,③若a >b ,则ac 2>bc 2,④若x 、y 互为相反数,则x +y =0,其中真命题为________.【解析】 ①是真命题,②平行四边形不是梯形,假命题,③若a >b ,则ac 2≥bc 2,故为假命题,④为真命题.【答案】 ①④三、解答题9.把下列命题改写成“若p ,则q ”的形式,并判断真假:(1)实数的平方是非负数;(2)等底等高的两个三角形是全等三角形;(3)当ac >bc 时,a >b ;(4)角的平分线上的点到角的两边的距离相等.【解】 (1)若一个数是实数,则它的平方是非负数,真命题.(2)若两个三角形等底等高,则这两个三角形是全等三角形,假命题.(3)若ac >bc ,则a >b ,假命题.(4)若一个点是一个角的平分线上的点,则该点到这个角的两边的距离相等,真命题.10.判断下列命题的真假并说明理由.(1)合数一定是偶数;(2)若ab >0,且a +b >0,则a >0且b >0;(3)若m >14,则方程mx 2-x +1=0无实根. 【解】 (1)假命题.例如9是合数,但不是偶数.(2)真命题.因为ab >0,则a 、b 同号.又a +b >0故a 、b 不能同负,故a 、b 只能同正,即a >0且b >0.(3)真命题.因为当m >14时,Δ=1-4m <0; ∴方程无实根.11.若命题“ax 2-2ax -3>0不成立”是真命题,求实数a 的取值范围.【解】 因为ax 2-2ax -3>0不成立,所以ax 2-2ax -3≤0恒成立.(1)当a =0时,-3≤0成立;(2)当a ≠0时,应满足⎩⎪⎨⎪⎧ a <0,Δ≤0,解之得-3≤a <0.由(1)(2),得a 的取值范围为[-3,0].(教师用书独具)下列四个命题:①若向量a ,b 满足a·b <0,则a 与b 的夹角为钝角;②已知集合A ={正四棱柱},B ={长方体},则A ∩B =B ;③在平面直角坐标系内,点M (|a |,|a -3|)与N (cos α,sin α)在直线x +y -2=0的异侧;④规定下式对任意a ,b ,c ,d 都成立.⎝ ⎛⎭⎪⎫a b c d 2=⎝ ⎛⎭⎪⎫a b c d ·⎝ ⎛⎭⎪⎫a b c d =⎝ ⎛⎭⎪⎫a 2+bc ab +bd ac +cd bc +d 2,则⎝ ⎛⎭⎪⎫-sin α cos α cos α sin α2=⎝ ⎛⎭⎪⎫1 00 1. 其中真命题是________(将你认为正确的命题序号都填上).【解析】 当a 与b 的夹角为π时,有a·b <0,但此时的夹角不为钝角,所以①是错误的;因为正四棱柱的底面是正方形,所以A ∩B =A ,故②也是错误的;因为|a |+|a -3|-2≥|a -a +3|-2=1>0,cos α+sin α-2=2sin ⎝⎛⎭⎪⎫α+π4-2<0,所以点M ,N 在直线x +y -2=0的异侧,故③是真命题;根据题意有⎝ ⎛⎭⎪⎫-sin α cos α cos α sin α2=⎝ ⎛⎭⎪⎫-sin α cos α cos α sin α·⎝ ⎛⎭⎪⎫-sin α cos α cos α sin α =⎝ ⎛⎭⎪⎫-sin α2+cos 2α -sin αcos α+cos αsin α-sin αcos α+cos αsin α cos 2α+sin 2α=⎝ ⎛⎭⎪⎫1 001, 所以④是真命题,故填③④.【答案】 ③④把下面命题补充完整,使其成为一个真命题.若函数f (x )=3+log 2x (x >0)的图象与g (x )的图象关于x 轴对称,则g (x )=________.【解析】 设g (x )图象上任一点(x ,y ),则它关于x 轴的对称点为(x ,-y ),此点在f (x )的图象上,故有:-y =3+log 2x 成立,即y =-3-log 2x (x >0).【答案】 -3-log 2x (x >0)。

人教A版高中数学高二选修1-1教案 椭圆及其标准方程

人教A版高中数学高二选修1-1教案 椭圆及其标准方程

2.1椭圆2.1.1 椭圆及其标准方程(教师用书独具)●三维目标1.知识与技能(1)了解椭圆的实际背景,经历从具体情景中抽象出椭圆模型的过程;(2)使学生理解椭圆的定义,掌握椭圆的标准方程及其推导过程.2.过程与方法(1)让学生亲身经历椭圆定义和标准方程的获取过程,掌握求曲线方程的方法和数形结合的思想;(2)学会用运动变化的观点研究问题,提高运用坐标法解决几何问题的能力.3.情感、态度与价值观(1)通过主动探究、合作学习,感受探索的乐趣与成功的喜悦;培养学生认真参与、积极交流的主体意识和乐于探索创新的科学精神;(2)通过椭圆知识的学习,进一步体会到数学知识的和谐美、几何图形的对称美,提高学生的审美情趣.●重点、难点重点:椭圆定义及其标准方程.难点:椭圆标准方程的推导过程.椭圆定义是通过它的形成过程进行定义的,揭示了椭圆的本质属性,也是椭圆方程建立的基石.这给学生提供动手操作、合作学习的机会,通过实例使学生去探究椭圆的形成过程,进而顺理成章的可以推导出椭圆标准方程,以实现重、难点的化解与突破.(教师用书独具)●教学建议本节课宜采取的教学方法是“问题诱导—启发讨论—探索结果”以及“直观观察—归纳抽象—总结规律”的一种探究式教学方法,注重“引、思、探、练”的结合.引导学生学习方式发生转变,采用“激发兴趣、主动参与、积极体验、自主探究”的学习方式,形成师生互动的教学氛围.学法方面,通过利用圆的定义及圆的方程的推导过程,从而启发椭圆的定义及椭圆的标准方程的推导,让学生体会到类比思想的应用;通过利用椭圆定义探索椭圆方程的过程,指导学生进一步理解数形结合思想,产生主动运用的意识;通过揭示因椭圆位置的不确定性所引起的分类讨论,进行分类讨论思想运用的指导.●教学流程创设问题情境,引出问题:按问题要求画出什么样的图形?⇒引导学生共同画图,观察、分析画出的图形的特点与满足的要求,引出椭圆定义.⇒通过观察椭圆的形状,结合定义,引导学生求出椭圆的标准方程,理解参数a,b,c的意义.⇒通过例1及其变式训练,使学生理解椭圆的定义,学会使用定义解决问题.⇒通过例2及其互动探究,使学生掌握用待定系数法求椭圆方程.⇒(对应学生用书第19页)课标解读1.掌握椭圆的定义会用待定系数法求椭圆的标准方程.(重点)2.了解椭圆标准方程的推导、坐标法的应用.(难点)椭圆的定义1.取一条定长的细绳,把它的两端都固定在图板的同一点处,套上铅笔,拉紧绳子,移动笔尖,这时能在图板上画出一个圆.如果把细绳的两端拉开一段距离,分别固定在图板的两点处(如图)套上铅笔,拉紧绳子,移动笔尖,画出什么样的一个图形?【提示】椭圆.2.在上述画出椭圆的过程中,你能说出笔尖(动点)满足的几何条件吗?【提示】笔尖(动点)到两定点(绳端点的固定点)的距离之和始终等于绳长.把平面内与两个定点F1、F2的距离的和等于常数(大于|F1F2|)的点的轨迹叫做椭圆,这两个定点叫做椭圆的焦点,两焦点间的距离叫做椭圆的焦距.椭圆的标准方程【问题导思】观察椭圆的形状,你认为怎样建立坐标系才能使椭圆的方程简单?【提示】以椭圆两焦点F1、F2的直线为x(y)轴,线段F1F2的垂直平分线为y(x)轴建系.焦点在x轴上焦点在y轴上标准方程x2a2+y2b2=1(a>b>0)y2a2+x2b2=1(a>b>0)焦点(-c,0)与(c,0)(0,-c)与(0,c) a,b,c的关系c2=a2-b2(对应学生用书第20页)椭圆定义的理解及简单应用(1)已知F1(-4,0),F2(4,0),则到F1、F2两点的距离之和等于8的点的轨迹是________;(2)椭圆x 216+y 225=1的两焦点分别为F 1、F 2,过F 2的直线交椭圆于A 、B 两点,则△ABF 1的周长为________.【思路探究】 (1)动点的轨迹是椭圆吗?(2)怎样用椭圆的定义求△ABF 1的周长? 【自主解答】 (1)由于动点到F 1、F 2的距离之和恰巧等于F 1F 2的长度,故此动点的轨迹是线段F 1F 2.(2)由椭圆的定义,|AF 1|+|AF 2|=2a ,|BF 1|+|BF 1|=2a , ∴|AF 1|+|BF 1|+|AF 2|+|BF 2|=|AF 1|+|BF 1|+|AB |=4a =20, ∴△ABF 1的周长为20.【答案】 (1)线段F 1F 2 (2)201.定义是判断点的轨迹是否为椭圆的重要依据,根据椭圆的定义可知,集合P ={M ||MF 1|+|MF 2|=2a },|F 1F 2|=2c ,a >0,c >0,且a 、c 为常数.当a >c 时,集合P 为椭圆上点的集合; 当a =c 时,集合P 为线段上点的集合; 当a <c 时,集合P 为空集.因此,只有|F 1F 2|<2a 时,动点M 的轨迹才是椭圆.2.注意定义的双向运用,即若|PF 1|+|PF 2|=2a (a >|F 1F 2|),则点P 的轨迹为椭圆;反之,椭圆上任意点到两焦点的距离之和必为2a .椭圆x 225+y 29=1上的一点M 到左焦点F 1的距离为2,N 是MF 1的中点,则|ON |等于( )A .2B .4C .8D.32【解析】 如图,F 2为椭圆右焦点,连MF 2,则ON 是△F 1MF 2的中位线,∴|ON |=12|MF 2|,又|MF 1|=2,|MF 1|+|MF 2|=2a =10, ∴|MF 2|=8,∴|ON |=4. 【答案】 B求椭圆的标准方程求适合下列条件的椭圆的标准方程.(1)两焦点坐标分别为(-4,0)和(4,0)且过点(5,0);(2)中心在原点,焦点在坐标轴上,且经过(2,0)和(0,1)两点.【思路探究】 (1)焦点的位置确定了吗?怎样求出标准方程?(2)焦点位置不确定时该怎么办?有没有简便的求解方法?【自主解答】 (1)∵椭圆的焦点在x 轴上, ∴设它的标准方程为x 2a 2+y 2b 2=1(a >b >0),∴2a =(5+4)2+(5-4)2=10,∴a =5.又c =4,∴b 2=a 2-c 2=25-16=9, 故所求椭圆的标准方程为x 225+y 29=1.(2)法一 当椭圆的焦点在x 轴上时, 设所求椭圆的方程为x 2a 2+y 2b 2=1(a >b >0).∵椭圆经过两点(2,0),(0,1),∴⎩⎨⎧4a 2+0b 2=1,0a 2+1b 2=1.则⎩⎪⎨⎪⎧a =2,b =1. ∴所求椭圆的方程为:x 24+y 2=1;当椭圆的焦点在y 轴上时, 设方程为y 2a 2+x 2b 2=1(a >b >0).∵椭圆经过两点(2,0),(0,1),∴⎩⎨⎧0a 2+4b 2=1,1a 2+0b 2=1.则⎩⎪⎨⎪⎧a =1,b =2.与a >b 矛盾,故舍去. 综上可知,所求椭圆的标准方程为x 24+y 2=1.法二 设椭圆方程为mx 2+ny 2=1(m >0,n >0,m ≠n ). ∵椭圆过(2,0)和(0,1)两点, ∴⎩⎪⎨⎪⎧4m =1,n =1,∴⎩⎪⎨⎪⎧m =14,n =1,综上可知,所求椭圆方程为x 24+y 2=1.1.求椭圆的标准方程的常用方法是待定系数法,即先由条件确定焦点位置,设出方程,再设法求出a 2、b 2代入所设方程,也可以简记为:先定位,再定量.2.当焦点位置不确定时,可设椭圆方程为mx 2+ny 2=1(m ≠n ,m >0,n >0).因为它包括焦点在x 轴上(m <n )和焦点在y 轴上(m >n )两类情况,所以可以避免分类讨论,从而达到了简化运算的目的.本例(2)若改为“经过(-23,1)和(3,-2)两点”,其他条件不变,试求椭圆的标准方程.【解】 设椭圆的标准方程为mx 2+ny 2=1 (m >0,n >0,m ≠n ),将点(-23,1),(3,-2)代入上述方程得⎩⎪⎨⎪⎧12m +n =1,3m +4n =1,解得⎩⎨⎧m =115,n =15,故所求椭圆的标准方程为x 215+y 25=1.求与椭圆有关的轨迹方程已知圆x 2+y 2=9,从这个圆上任意一点P 向x 轴作垂线段PP ′,垂足为P ′,点M 在PP ′上,并且PM →=2MP →,求点M 的轨迹.【思路探究】设动点M (x ,y ),P (x 0,y 0)→找M ,P 的关系→用点M 坐标表示点P 坐标→代入圆方程→得点M 轨迹【自主解答】 设点M 的坐标为(x ,y ),点P 的坐标为(x 0,y 0),则x 0=x ,y 0=3y . ∵P (x 0,y 0)在圆x 2+y 2=9上,∴x 20+y 20=9.将x 0=x ,y 0=3y 代入得x 2+9y 2=9,即x 29+y 2=1. ∴点M 的轨迹是焦点在x 轴上的椭圆x 29+y 2=1.1.转代法(即相关点法)求轨迹方程:有些问题中的动点轨迹是由另一动点按照某种规律运动而形成的,只要把所求动点坐标“转移”到另一个动点在运动中所遵循的条件中去,即可解决问题,这种方法称作“转代法”.2.用转代法求轨迹方程大致步骤是:(1)设所求轨迹上的动点P (x ,y ),再设具有某种运动规律f (x ,y )=0上的动点Q (x ′,y ′);(2)找出P 、Q 之间坐标的关系,并表示为⎩⎪⎨⎪⎧x ′=φ1(x ,y ),y ′=φ2(x ,y );(3)将x ′,y ′代入f (x ,y )=0,即得所求轨迹方程.设A 、B 是椭圆x 225+y 216=1与x 轴的左、右两个交点,P 是椭圆上一个动点,试求AP中点M 的轨迹方程.【解】 设P (x 0,y 0),AP 的中点M (x ,y ),则⎩⎪⎨⎪⎧x =x 0-52,y =y 02,即⎩⎪⎨⎪⎧x 0=2x +5,y 0=2y ,代入椭圆方程x 225+y 216=1,得(2x +5)225+y 24=1,所以AP 中点M 的轨迹方程是(2x +5)225+y 24=1.已知B 、C 是两个定点,|BC |=8,且△ABC 的周长为18,求这个三角形顶点A 的轨迹方程.【思路探究】 (1)解答本题时如何建系更简单?(2)由△ABC 的周长为18能否得到A 到B 、C 的距离之和为定值?这满足椭圆的定义吗?【自主解答】 以过B ,C 两点的直线为x 轴,线段BC 的中点为原点,建立平面直角坐标系.由|BC |=8,可知点B (-4,0),C (4,0). 由|AB |+|BC |+|AC |=18, 得|AB |+|AC |=10>|BC |=8.因此,点A 的轨迹是以B ,C 为焦点的椭圆,这个椭圆上的点与两个焦点的距离之和为2a =10,即a =5,且点A 不能在x 轴上.由a =5,c =4,得b 2=9.所以点A 的轨迹方程为x 225+y 29=1(y ≠0).1.本题紧扣椭圆的定义求得了顶点A 的轨迹方程,解答时不要漏掉y ≠0这一条件. 2.用定义法求椭圆方程的思路是:先观察、分析已知条件,看所求动点轨迹是否符合椭圆的定义,若符合椭圆的定义,则用待定系数法求解即可.已知A (-12,0),B 是圆F :(x -12)2+y 2=4(F 为圆心)上一动点,线段AB 的垂直平分线交BF 于P 点,则动点P 的轨迹方程为________.【解析】 如图,依题意知|PA |=|PB |,所以|PA |+|PF |=|PB |+|PF |=|BF |=2,所以点P 的轨迹为以A (-12,0),F (12,0)为焦点的椭圆,其方程可设为x 2+y 2b 2=1,又因为c =12,a=1,所以b 2=a 2-c 2=34,从而所求的动点P 的轨迹方程为x 2+43y 2=1.【答案】 x 2+43y 2=1(对应学生用书第21页)忽略椭圆标准方程中a >b >0的条件致误方程x 2m 2+y 2(m -1)2=1表示焦点在y 轴上的椭圆,求实数m 的取值范围.【错解】 方程x 2m 2+y 2(m -1)2=1表示焦点在y 轴上的椭圆,则m 2<(m -1)2,解得m <12,所以实数m 的取值范围是(-∞,12).【错因分析】 错解只注意了焦点在y 轴上,而没有考虑m 2>0且(m -1)2>0,这是经常出现的一种错误,解题时要注意.【防范措施】 椭圆的焦点在x 轴上时,其方程为x 2a 2+y 2b 2=1(a >b >0),焦点在y 轴上时,其方程为y 2a 2+x 2b 2=1(a >b >0),应用时一定要注意条件a >b >0,否则极易将焦点位置弄错.【正解】方程x 2m 2+y2(m -1)2=1表示焦点在y 轴上的椭圆,则⎩⎪⎨⎪⎧m 2>0,(m -1)2>0,(m -1)2>m 2,解得⎩⎪⎨⎪⎧m ≠0,m ≠1,m <12.故实数m 的取值范围是(-∞,0)∪(0,12).1.熟悉椭圆定义、标准方程,熟练掌握常用基本方法的同时,要注意揣摩解题过程所运用的数学思想方法,以达到优化解题思路、简化解题过程的目的,但切忌只想不算,形成解题思路后,一定要动手计算,没有形成结论就不应该停手.2.在运用椭圆的定义解题时,一定要注意隐含条件a>c.3.注意焦点分别在x轴和y轴上对应的椭圆方程的区别和联系.4.求椭圆的标准方程常用的方法是定义法和待定系数法.(对应学生用书第22页)1.设P是椭圆x225+y216=1上的一点,F1,F2是椭圆的两个焦点,则|PF1|+|PF2|等于() A.10B.8C.5D.4【解析】由椭圆的定义知|PF1|+|PF2|=2a=2×5=10.【答案】 A2.椭圆x216+y225=1的焦点坐标是()A.(±4,0) B.(0,±4)C.(±3,0) D.(0,±3)【解析】∵a2=25,b2=16且焦点在y轴上,∴c=3,焦点坐标为F1(0,-3),F2(0,3).【答案】 D3.一椭圆的两个焦点坐标分别为F1(0,-8),F2(0,8),且椭圆上一点到两个焦点的距离之和为20,则此椭圆的标准方程为( )A.x 2100+y 236=1 B.y 2400+x 2336=1 C.y 2100+x 236=1 D.y 220+x 212=1 【解析】 由题意c =8,a =10且焦点在y 轴上,∴b 2=a 2-c 2=100-64=36,∴方程为y 2100+x 236=1. 【答案】 C4.已知一椭圆标准方程中b =3,c =4,求此椭圆的标准方程.【解】 ∵b 2=9,c 2=16,∴a 2=b 2+c 2=25.∵此椭圆的焦点不确定,∴标准方程为x 225+y 29=1或y 225+x 29=1.。

高二数学(人教B版)选修1-1全册课件1、1-3-2命题的四种形式

高二数学(人教B版)选修1-1全册课件1、1-3-2命题的四种形式
人 教 B 版 数 学
取值范围是________.
[答案] m≥1或m=0 [解析] m≥0; 命题p:关于x的不等式mx2+1>0的解集是R,
第一章 常用逻辑用语
(选修1-1)
命题q:函数f(x)=logmx是减函数,0<m<1.
p假:m<0;q假:m≥1或m≤0. p真q假:m≥1或m=0; p假q真:无解. 综上所述,m的取值范围是:m≥1或m=0.
人 教 B 版 数 学
(4)“对顶角相等”的逆命题.
其中真命题的个数是 A.0 C.2 [答案] B B.1 D.3 ( )
第一章 常用逻辑用语
(选修1-1)
[解析]
题.
(1)“若x+y≠0,则x、y不是相反数”是真命
(2)“若a2≤b2,则a≤b”,取a=-1,b=0,因为a<b, 但a2=1,b2=0,a2>b2,故是假命题. (3)“若x>-3,则x2-x-6≤0”,解不等式x2-x-6≤0
人 教 B 版 数 学
第一章 常用逻辑用语
(选修1-1)
人 教 B 版 数 学
第一章 常用逻辑用语
(选修1-1)
一、选择题 1.若x2=1,则x=1的否命题为 A.若x2≠1,则x=1 C.若x2≠1,则x≠1 ( )
人 教 B 版 数 学
B.若x2=1,则x≠1 D.若x≠1,则x2≠1
[答案] C
(选修1-1)
写出下列命题的逆命题、否命题和逆否命题,并判断 其真假: (1)实数的平方是非负数; (2)若q≤1,则方程x2+2x+q=0有实根.
人 教 B 版 数 学
[解析]
(1)逆命题:如果一个数的平方是非负数,则

苏教版数学高二- 选修1-1教案 2.1 圆锥曲线

苏教版数学高二- 选修1-1教案 2.1 圆锥曲线

2.1圆锥曲线●三维目标1.知识与技能通过用平面截圆锥面,经历从具体情境中抽象出椭圆、双曲线、抛物线模型的过程,掌握椭圆、抛物线的定义,了解双曲线的定义,并能用数学符号或自然语言描述.2.过程与方法(1)通过用平面截圆锥面,体会圆锥曲线的形状及产生过程,归纳圆锥曲线的定义内涵,通过数形结合,由具体形象抽象出概念.(2)通过具体动点轨迹的判定过程,体会定义法求动点轨迹的方法.3.情感、态度与价值观通过学生的举例,激发学生学习数学的兴趣和积极性,培养他们透过现象揭示事物内在本质的思维方式,提高他们认识事物的能力.●重点难点重点:椭圆、抛物线、双曲线的定义.难点:用数学符号或自然语言描述三种曲线的定义.教学时,应从回顾圆的定义入手,结合冷却塔、油罐车、探照灯等实例,激发学生的探究兴趣,通过平面按不同的角度截割圆锥曲面的动画效果,使学生生动的认识椭圆、抛物线、双曲线的形象,抽象出三种圆锥曲线的概念.●教学建议本节课作为圆锥曲线的起始课程,安排本章的开篇,本节课教材利用平面对圆锥面的不同截法,产生三种不同的圆锥曲线,得出椭圆、双曲线和抛物线的概念.这样既使学生经历概念的形成过程,更有利于从整体上认识三种圆锥曲线的内在关系.根据问题的难易度及学生的认知水平,要求学生掌握椭圆、抛物线的定义,对双曲线只要求了解其定义,这是建立在学生的最近发展区上的形式化的过程,有利于培养学生的数学化能力,提高数学素养.●教学流程回顾初中有关圆的概念,作为三种圆锥曲线定义的铺垫.⇒通过用平面去截圆锥面得到不同曲线的动画,展示圆锥曲线的产生过程,揭示圆锥曲线的定义内涵.⇒由形象到具体,由具体到抽象,抽象出圆锥曲线的定义,通过生活中的实例,理解概念实质,通过举反例,诠释概念内涵.⇒通过例1及变式训练,使学生掌握椭圆定义及应用,判别动点轨迹是否为椭圆,求椭圆上一点到焦点的距离.⇒通过例2及变式训练,使学生掌握双曲线定义及应用,判别动点轨迹是否为双曲线,求双曲线上一点到焦点的距离.⇒通过例3及变式训练,让学生掌握抛物线定义及应用,抛物线上任一点到焦点的距离等于到准线的距离,二者可以灵活转化.⇒通过易错易误辨析,体会双曲线定义的严谨性,以及双曲线图形的特殊性,严防思维的漏洞.⇒归纳整理,进行课堂小结,整体认识本节课所学知识.⇒完成当堂双基达标,巩固基本知识,形成基本能力.课标解读1.掌握椭圆、抛物线的定义和几何图形.(重点、难点)2.了解双曲线的定义和几何图形.(重点)3.双曲线与椭圆定义的区别.(易混点)圆锥曲线1.平面中,到一个定点的距离为定值的点的轨迹是什么?【提示】圆.2.函数y=x2的图象是什么?【提示】开口向上的抛物线.3.用刀切火腿肠时,截面会有什么形状?【提示】圆、椭圆.1.用平面截圆锥面能得到的曲线图形是两条相交直线、圆、椭圆、双曲线、抛物线.2.设P为相应曲线上任意一点,常数为2a.定义(自然语言) 数学语言双曲线平面内到两个定点F1,F2距离的差的绝对值等于常数(小于F1F2的正数)的点的轨迹叫做双曲线,两个定点F1,F2叫做双曲线的焦点,两焦点间的距离叫做双曲线的|PF1-PF2|=2a<F1F2焦距抛物线平面内到一个定点F和一条定直线l(F不在l上)的距离相等的点的轨迹叫做抛物线,定点F叫做抛物线的焦点,定直线l叫做抛物线的准线PF=d,其中d为点P到l的距离椭圆的定义及应用下列说法中不正确的是________.①已知F1(-4,0),F2(4,0),到F1、F2两点的距离之和等于8的点的轨迹是椭圆;②已知F1(-4,0),F2(4,0),到F1,F2两点的距离之和等于6的点的轨迹是椭圆;③到F1(-4,0),F2(4,0)两点的距离之和等于点M(5,3)到F1,F2的距离之和的点的轨迹是椭圆;④到F1(-4,0),F2(4,0)距离相等的点的轨迹是椭圆.【思路探究】判定是否为椭圆回顾椭圆定义分析距离满足条件【自主解答】①中F1F2=8,故到F1、F2两点的距离之和为常数8的点的轨迹是线段F1F2.②中到F1、F2两点的距离之和6小于F1F2,故这样的轨迹不存在.③中点(5,3)到F1、F2的距离之和为5+42+32+5-42+32=410>F1F2=8,故③中是椭圆的轨迹.④中是线段F1F2的垂直平分线.【答案】①②④1.判断动点P的运动轨迹是否为椭圆,关键分析两点:(1)点P到两定点的距离之和是否为常数.(2)该常数是否满足大于两定点间的距离.如果满足以上两条,则动点P的轨迹便为椭圆.2.椭圆定义不仅可以用来判定动点轨迹形状,也可由椭圆求解其他问题.图2-1-1如图2-1-1,已知F1,F2为椭圆两焦点,直线AB过F1,若椭圆上任一点M满足MF1+MF2=8,F1F2=6,求△ABF2的周长.【解】由椭圆定义,AF1+AF2=8,BF1+BF2=8,∴△ABF2周长为16.双曲线的定义及应用曲线上的点到两个定点F1(-5,0),F2(5,0)的距离之差的绝对值分别等于(1)6,(2)10,(3)12.满足条件的曲线若存在,是什么样的曲线?若不存在,请说明理由.【思路探究】求F1F1→将常数与F1F2比较大小→由定义判别【自主解答】(1)∵F1F2=10>6,∴满足该条件的曲线是双曲线.(2)∵F1F2=10,∴满足该条件的曲线不是双曲线,而是两条射线.(3)∵F1F2=10<12,∴满足条件的点不存在.1.到两定点距离差的绝对值为一个常数时,动点轨迹不一定是双曲线,应与焦距比较大小.2.本例(1)中,若将“绝对值”去掉,则轨迹只是双曲线的一支.若一个动点P到两个定点F1(-1,0)、F2(1,0)的距离之差的绝对值为定值a(a≥0),试讨论点P的轨迹.【解】∵F1F2=2,故有(1)当a=2时,P点轨迹是两条射线y=0(x≥1)或y=0(x≤-1);(2)当a=0时,轨迹是线段F1F2的垂直平分线,即y轴;(3)当0<a<2时,轨迹是以F1、F2为焦点的双曲线;(4)当a>2时,轨迹不存在.抛物线的定义及应用若动点M到点F(3,0)的距离等于它到直线x=-3的距离,那么点M 的轨迹是什么图形?【思路探究】由题意知MF=d(d为点M到直线x=-3的距离),可根据抛物线的定义确定点M的轨迹是抛物线.【自主解答】由题意知,动点M到点F(3,0)和定直线x=-3的距离相等,点F(3,0)不在定直线x=-3上,所以由抛物线的定义知,动点M的轨迹是以F(3,0)为焦点,直线x =-3为准线的抛物线.1.本题中动点M的轨迹是抛物线,在求解的过程中一定要判断点F是否在给定的定直线x=-3上,当F在定直线x=-3上时,动点M的轨迹是以F点为垂足的定直线x=-3的垂线;当F不在定直线x=-3上时,动点M的轨迹才是抛物线.2.利用抛物线的定义判定动点的轨迹,关键是看动点到定直线与到定点的距离是否相等.如图2-1-2所示,在正方体A1B1C1D1-ABCD中,侧面AA1B1B内有一动点P,满足P到平面AA1D1D的距离与到直线BC的距离总相等,则P点的轨迹是________.图2-1-2【解析】如题图,PM是点P到平面AA1D1D的距离,PB是P到直线BC的距离,故PM=PB,所以P的轨迹是以AA1为准线,点B为焦点的一段抛物线.【答案】以AA1为准线,点B为焦点的一段抛物线忽略圆锥曲线定义中的条件致误若一动圆与圆C1:x2+y2=1和圆C2:x2+y2-8x+12=0都外切,则动圆圆心M的轨迹为________.【错解】双曲线.【错因分析】在错解中,忽略了MC2>MC1,从而导致错误.圆C2的圆心C2(4,0),半径为2,设动圆的半径为r.因为动圆与圆C1外切,所以MC1=r+1.又因为动圆与圆C2外切,所以MC2=r+2,从而MC2-MC1=1<C1C2=4,所以根据双曲线的定义可知点M的轨迹是以C1,C2为焦点的双曲线的一支.【防范措施】在椭圆的定义中,一定要注意常数大于F1F2这一条件;在双曲线的定义中,要注意常数为小于F1F2的正数这一条件,同时注意取绝对值;在抛物线的定义中,要注意点不能在定直线上,否则轨迹是一条直线.【正解】双曲线的一支.1.利用圆锥曲线的定义判定动点轨迹时,应注意定义中的条件,若部分满足,则动点轨迹不是完整的圆锥曲线.2.利用圆锥曲线定义解题是本章的一个重要解题方法,此方法常与平面几何知识结合,利用数形结合的思想解题.1.平面内到两定点F1(-3,0),F2(3,0)的距离之和等于6的点P的轨迹是________.【解析】∵F1F2=6,∴点P的轨迹是线段F1F2.【答案】线段F1F22.已知△ABC,其中B(0,1),C(0,-1),且AB-AC=1,则A点的轨迹是________.【解析】∵AB-AC=1<2=BC,∴A点的轨迹是以B、C为焦点的双曲线的下支(x≠0).【答案】以B、C为焦点的双曲线的下支(x≠0)3.抛物线上一点到焦点距离为4,则它到准线的距离为________.【解析】根据抛物线定义,抛物线上的点到焦点的距离与它到准线的距离相等,故它到准线的距离为4.【答案】 44.已知A、B是两个定点,AB=8,且△ABC的周长等于18,试确定这个三角形的顶点C所在的曲线.【解】由题意知,AB+BC+CA=18,∵AB=8,∴BC+CA=10>AB.∴点C所在的曲线是以A,B为焦点的椭圆.(除去椭圆与直线AB的两个交点)一、填空题1.已知M(-2,0),N(2,0)是平面上的两点,动点P满足PM+PN=6,则动点P的轨迹是________.【解析】∵PM+PN=6>4,∴动点P的轨迹是一椭圆.【答案】椭圆2.到定点(0,7)和定直线y=7的距离相等的点的轨迹方程是________.【解析】∵定点(0,7)在定直线y=7上,∴到定点(0,7)与到定直线y=7距离相等的点的轨迹是过(0,7)的该直线的垂线,其方程为x=0.【答案】x=03.命题甲:动点P到定点A、B的距离之和PA+PB=2a(a>0);命题乙:P点的轨迹是椭圆,则命题甲是命题乙的________条件.【解析】甲D⇒/乙,乙⇒甲.【答案】必要不充分4.定点F1(-3,0),F2(3,0),动点M满足|MF1-MF2|=6,则M点的轨迹是________.【解析】∵|MF1-MF2|=6=F1F2,∴M的轨迹是x轴上以F1,F2分别为端点的两条射线.【答案】x轴上分别以F1,F2为端点的两条射线5.若点P到直线x=-1的距离比它到点(2,0)的距离小1,则点P的轨迹为______.(填椭圆、双曲线或抛物线)【解析】由题意P到直线x=-2的距离等于它到点(2,0)的距离,故点P的轨迹为一条抛物线.【答案】抛物线图2-1-36.如图2-1-3,点A为圆O内一定点,P为圆周上任一点,AP的垂直平分线交OP 于动点Q,则点Q的轨迹为________.【解析】由题意,QA=QP,∴OQ+QA=OQ+QP=OP(半径)>OA,∴Q点的轨迹是以O、A为焦点的一椭圆.【答案】以O、A为焦点的一椭圆7.已知椭圆的两个焦点为F1(-4,0),F2(4,0),过F1的直线交椭圆于A,B两点,若△AF1F2的周长为18,则△ABF2的周长为________.【解析】因为AF2+AF1+F1F2=18,F1F2=8,所以AF2+AF1=10,于是BF2+BF1=10,所以△ABF 2的周长为AB +AF 2+BF 2=AF 1+BF 1+AF 2+BF 2=20.【答案】 208.△ABC 的顶点A(0,-4),B(0,4),且4(sin B -sin A)=3sin C ,则顶点C 的轨迹是________.【解析】 运用正弦定理,将4(sin B -sin A)=3sin C 转化为边的关系,即4(b 2R -a 2R)=3×c 2R,则AC -BC =6<AB ,显然,顶点C 的轨迹是以A ,B 为焦点的双曲线的一支去掉点(0,3).故填以A ,B 为焦点的双曲线的上支去掉点(0,3).【答案】 以A ,B 为焦点的双曲线的上支(去掉点(0,3))二、解答题9.已知F 1(-4,3),F 2(2,3)为定点,动点P 满足PF 1-PF 2=2a ,当a =2或a =3时,求动点P 的轨迹.【解】 由已知可得,F 1F 2=6.当a =2时,2a =4,即PF 1-PF 2=4<F 1F 2,根据双曲线的定义知,动点P 的轨迹是双曲线的一支(对应于焦点F 2);当a =3时,PF 1-PF 2=6=F 1F 2,此时动点P 的轨迹是射线F 2P ,即以F 2为端点向x 轴正向延伸的射线.故当a =2时,动点P 的轨迹是双曲线的一支(对应于焦点F 2);当a =3时,动点P 的轨迹是射线F 2P.10.已知圆C 1:(x +3)2+y 2=16,圆C 2:(x -3)2+y 2=1,动圆P 与两圆相外切,求动圆圆心P 的轨迹.【解】 设圆P 的半径为r ,两圆圆心分别为C 1(-3,0),C 2(3,0),由圆P 与两圆相外切可知PC 1=4+r ,PC 2=1+r ,∴PC 1-PC 2=3<C 1C 2=6,∴点P 的轨迹为以C 1,C 2为焦点的双曲线的右支.11.若点P(x ,y)的坐标满足方程x -12+y -22=|3x +4y +12|5,试判断点P 的轨迹是哪种类型的圆锥曲线.【解】x -12+y -22=|3x +4y +12|5, 即x -12+y -22=|3x +4y +12|32+42, 等式左边表示点P(x ,y)到点(1,2)的距离,右边表示点P(x ,y)到直线3x +4y +12=0的距离,即点P(x ,y)到点(1,2)的距离与到直线3x +4y +12=0的距离相等.又∵点(1,2)不在直线3x +4y +12=0上,由拋物线的定义知,点P 的轨迹是以(1,2)为焦点,直线3x +4y +12=0为准线的拋物线.如图,某山区的居民生活用水源于两处,一处是位于该地区内的一口深水井,另一处是位于该地区西边的一条河(河岸近似看成直线).已知井C 到河岸AB 的距离为4千米,请为该区域划一条分界线,并指出应如何取水最合理.【思路探究】审题→转化为数学模型→找距离相等→点的轨迹→转化为实际问题答案【自主解答】 分界线上的点到深水井C 和到河岸AB 的距离应相等,依据抛物线定义可知,分界线是以C 为焦点,河岸AB 为准线的抛物线.所谓取水合理,即选择最近点取水,易知抛物线包含的区域应到深水井取水,抛物线上的区域到深水井或河中取水均可,其他区域则应到河中取水.1.实际问题有时可以以圆锥曲线为数学模型进行思考,要根据题意,抽象出数学关系和条件. 2.利用圆锥曲线的定义求解实际问题,要注意实际意义的限制,很多情形下,动点的轨迹只是圆锥曲线的一部分.一炮弹在某处爆炸,在F 1(-5 000,0)处听到爆炸声的时间比在F 2(5 000,0)处晚30017s ,已知坐标轴的单位长度为1 m ,声速为340 m/s ,爆炸点应在什么样的曲线上?【解】 由声速为340 m/s 可知F 1、F 2两处与爆炸点的距离差为340×30017=6 000(m),且小于F 1F 2=10 000(m),因此爆炸点在以F 1、F 2为焦点的双曲线上,打印版因为爆炸点离F1处比F2处更远,所以爆炸点应在靠近F2处的一支上.高中数学。

北师大选修1-1数学教案

北师大选修1-1数学教案

北师大选修1-1数学教案【篇一:北师大版数学选修1-1教案:第2章-知识归纳:双曲线】2.2 双曲线2.2.1双曲线及其标准方程1、定义:平面内与两个定点f1、f2的距离的差的绝对值等于常数(小于|f1f2|)的点的轨迹叫做双曲线,这两个定点叫做双曲线的焦点,两个焦点的距离叫做双曲线的焦距.x2y2y2x22、标准方程:2?2?1(a>0,b>0)或2?2?1(a>0,b>0) abab3、a、b、c三者之间的关系:a2+b2=c24、与椭圆定义对照,比较两者有什么相同点与不同点?两者都是平面内动点到两个定点的距离问题,两者的定点都是焦点,两者定点间的距离都是焦距,所不同的是椭圆是距离之和,双曲线是距离之差的绝对值.5、椭圆是平面内到两定点的距离和为常数的点的轨迹,双曲线是平面内到两定点的距离的差的绝对值为常数的点的轨迹,只说“差”不行吗?为什么要加“绝对值”三个字呢?只说差表示双曲线的一支,加上“绝对值”三个字,才能表示整条双曲线.6、双曲线的定义中为什么要强调常数——差的绝对值小于|f1f2|呢?如果差的绝对值即常数等于|f1f2|,那么图形为两条射线;如果差的绝对差即常数大于|f1f2|,那么无轨迹.2.2.2 双曲线的简单几何性质1、范围:双曲线位于x≥a与x≤-a的区域内;2、对称性:双曲线关于坐标轴、原点都是对称的,坐标轴是双曲线的对称轴,原点是双曲线的对称中心,即双曲线的中心.x2y24、实(虚)轴:双曲线2?2?1(a>0,b>0)与y轴没ab有交点,但我们也把b1(0,-b),b2(0,b)画在y轴上. 线段a1a2叫做双曲线的实轴,线段b1b2叫做双曲线的虚轴,实轴的长为2a,虚轴的长为2b,a是实半轴的长,b是虚半轴的长,焦点始终在实轴上.cc5、离心率:双曲线的焦距与实轴长的比e=a叫做双曲线的离心率.e=a且e∈(1,+∞),这是因为c>a>0.bx2y2?2?12b7、等轴双曲线:在方程a中,如果a=b,那么双曲线的方程为x2-y2=a2,8、双曲线的画法:画出双曲线的渐近线,先确定双曲线的顶点及第一象限内任意一点的位置,然后再过这两个点并根据双曲线在第一象限内从渐近线的下方逐渐接近渐近线的特点画出双曲线的一部分.最后根据双曲线的对称性画出完整的双曲线.9、.由等式c2-a2=b2可得【篇二:北师大版高中数学选修1-1学案全集】第一章常用逻辑语1.1 命题命题及其关系学习目标:理解命题的概念和命题的构成,能判断命题的真假;了解四种命题的的含义,能写出给定命题的逆命题、否命题和逆否命题;会分析四种命题之间的相互关系;重点难点:命题的概念、命题的构成;分清命题的条件、结论和判断命题的真假。

人教A版高中数学高二版选修1-1 1.4.2含一个量词的命题的否定教案

人教A版高中数学高二版选修1-1  1.4.2含一个量词的命题的否定教案

1.4.2 含一个量词的命题的否定教学目标分析:知识目标:(1)掌握对含有一个量词的命题进行否定的方法,要正确掌握量词否定的各种形式;(2)明确全称命题的否定是存在命题,存在命题的否定是全称命题.过程与方法:使学生体会从具体到一般的认知过程,培养学生抽象、概括的能力.情感目标:通过学生的举例,培养他们的辨析能力以及培养他们的良好的思维品质,在练习过程中进行辩证唯物主义思想教育.重难点分析:重点:全称量词与存在量词命题间的转化;难点:隐蔽性否定命题的确定;互动探究:一、课堂探究:1、复习引入:(1)判断下列命题是否为全称命题:①有一个实数α,tan α无意义;②任何一条直线都有斜率;(2)判断以下命题的真假: ①21,04x R x x ∀∈-+≥;②2,3x Q x ∃∈=数学命题中出现“全部”、“所有”、“一切”、“任何”、“任意”、“每一个”等与“存在着”、“有”、“有些”、“某个”、“至少有一个”等的词语,在逻辑中分别称为全称量词与存在性量词(用符号分别记为“ ∀”与“∃”来表示);由这样的量词构成的命题分别称为全称命题与特称命题。

在全称命题与特称命题的逻辑关系中,,p q p q ∨∧都容易判断,但它们的否定形式是我们困惑的症结所在。

探究一、写出下列命题的否定:(1)所有的矩形都是平行四边形;(2)每一个素数都是奇数;(3)2,210x R x x ∀∈-+≥.这些命题和它们的否定在形式上有什么变化?2、含有一个量词的全称命题的否定:一般地,对于一个含有一个量词的全称命题的否定有下面的结论:全称命题p :,()x M p x ∀∈,它的否定p ⌝:00,()x M p x ∃∈⌝说明:全称命题的否定是特称命题.探究二、写出下列命题的否定:(1)有些实数的绝对值是正数;(2)某些平行四边形是菱形;(3)200,10x R x ∃∈+<. 这些命题和它们的否定在形式上有什么变化?3、含有一个量词的特称命题的否定:一般地,对于一个含有一个量词的特称命题的否定有下面的结论:特称命题p :00,()x M p x ∃∈,它的否定p ⌝:,()x M p x ∀∈⌝.说明:特称命题的否定是全称命题.4、关键量词的否定:(1)p :所有能被3整除的数都是奇数;(2)p :每一个平行四边形的四个顶点共圆;(3)p :对任意x Z ∈,2x 的个位数字不等于3.(4)p :所有的正方形都是矩形.变式:命题“对任意的32,10x R x x ∈-+≤”的否定是( ).A. 不存在32,10x R x x ∈-+≤B. 存在32,10x R x x ∈-+≤C. 存在32,10x R x x ∈-+>D. 对任意的32,10x R x x ∈-+>例2、写出下列特称命题的否定:(1)p :2000,220x R x x ∃∈++≤; (2)p :有的三角形是等边三角形;(3)p :有一个素数含有三个正因数.(4)p :至少有一个实数x ,使310x +=.变式:对下列命题的否定说法错误的是( ).A. p :能被3整除的数是奇数;p ⌝:存在一个能被3整除的数不是奇数B. p :每个四边形的四个顶点共圆;p ⌝:存在一个四边形的四个顶点不共圆C. p :有的三角形为正三角形;p ⌝:所有的三角形不都是正三角形D. p :2,220x R x x ∃∈++≤;p ⌝:2,220x R x x ∀∈++>小结:全称命题的否定变成特称命题.例3、命题“所有能被2整除的整数都是偶数”的否定是( ).A .所有不能被2整除的整数都是偶数B .所有能被2整除的整数都不是偶数C .存在一个不能被2整除的整数是偶数D .存在一个能被2整除的整数不是偶数答案:原命题是全称命题,则其否定是特称命题,故选D.变式:下列命题正确的个数是( ).①“在三角形ABC 中,若sin sin A B >,则A B >”的否命题是真命题;②命题:23p x y ≠≠或,命题:5q x y +≠,则p 是q 的必要不充分条件;③“32,10x R x x ∀∈-+≤”的否定是“32,10x R x x ∃∈-+>”.A.0B.1C.2D.3答案:D.二、课堂练习:教材第26页练习第1、2题1、写出下列命题的否定:(1),n Z n Q ∀∈∈;(2)任意素数都是奇数;(3)每个指数函数都是单调函数.2、写出下列命题的否定:(1) 有些三角形是直角三角形;(2)有些梯形是等腰梯形;(3)存在一个实数,它的绝对值不是正数.反思:全称命题的否定变成特称命题.反思总结:1、 本节课你学到了哪些知识点?2、 本节课你学到了哪些思想方法?3、 本节课有哪些注意事项?课外作业:(一)教材第26页习题1.4 A 组第3题,B 组第1题1、写出下列命题的否定:(1)32,x N x x ∀∈>;(2) 所有可以被5整除的整数,末位数字都是0;(3) 2000,10x R x x ∃∈-+≤; (4) 存在一个四边形,它的对角线互相垂直.2、判断下列命题的真假,写出下列命题的否定:(1)每条直线在y 轴上都有截矩;(2)每个二次函数都与x 轴相交;(3)存在一个三角形,它的内角和小于180︒;(4)存在一个四边形没有外接圆.(二)补充3、命题“对任意的x R ∈,3210x x -+≤”的否定是( )A .不存在x R ∈,3210x x -+≤B .存在x R ∈,3210x x -+≤C .存在x R ∈,3210x x -+>D .对任意的x R ∈,3210x x -+>答案:C4、命题“若12<x ,则11<<-x ”的逆否命题是( )A .若12≥x ,则1≥x 或1-≤x B.若11<<-x ,则12<xC.若1>x 或1-<x ,则12>xD.若1≥x 或1-≤x ,则12≥x答案:D5、已知命题:p x ∀∈R ,sin 1x ≤,则( )A.:p x R ⌝∃∈,sin 1x ≥B.:p x R ⌝∀∈,sin 1x ≥C.:p x R ⌝∃∈,sin 1x >D.:p x R ⌝∀∈,sin 1x >6、写出下列命题的否定:(1)若24x >,则2x >;(2)若0,m ≥则20x x m +-=有实数根;(3)可以被5整除的整数,末位是0;(4)被8整除的数能被4整除;(5)若一个四边形是正方形,则它的四条边相等.7、已知:,sin cos p x R x x m ⌝∃∈+≤为真命题,2:,10q x R x mx ∀∈++>为真命题,求实数m 的取值范围.2m ≤<.课后反思:。

人教版高二数学选修1-1电子课本课件【全册】

人教版高二数学选修1-1电子课本课件【全册】
人教版高二数学选修1-1电子课 本课件【全册】目录ห้องสมุดไป่ตู้
0002页 0098页 0188页 0203页 0219页 0295页 0316页 0336页 0374页 0417页 0474页 0493页 0567页 0594页
第一章 常用逻辑用语 1.2 充分条件与必要条件 阅读与思考 “且”“或”“非”与“交”“并”“补” 小结 第二章 圆锥曲线与方程 探究与发现 为什么截口曲线是椭圆 2.2 双曲线 2.3 抛物线 小结 第三章 导数及其应用 3.2 导数的计算 3.3 导数在研究函数中的应用 3.4 生活中的优化问题举例 小结
人教版高二数学选修1-1电子课本 课件【全册】
1.3 简单的逻辑联结词
人教版高二数学选修1-1电子课本 课件【全册】
阅读与思考 “且”“或”“非”与“ 交”“并”“补”
人教版高二数学选修1-1电子课本 课件【全册】
第一章 常用逻辑用语
人教版高二数学选修1-1电子课本 课件【全册】
1.1 命题及其关系
人教版高二数学选修1-1电子课本 课件【全册】
1.2 充分条件与必要条件

高二数学(人教B版)选修1-1全册课件1、2-3-1抛物线及其标准方程

高二数学(人教B版)选修1-1全册课件1、2-3-1抛物线及其标准方程
人 教 B 版 数 学
第二章 圆锥曲线与方程
(选修1-1)
人 教 B 版 数 学
第二章 圆锥曲线与方程
(选修1-1)
本节重点:抛物线的定义及标准方程. 本节难点:建立标准方程时坐标系的选取.
人 教 B 版 数 学
第二章 圆锥曲线与方程
(选修1-1)
人 教 B 版 数 学
第二章 圆锥曲线与方程
第二章 圆锥曲线与方程
(选修1-1)
p 则 3+ =5,∴p=4,∴抛物线方程为 y2=-8x, 2 又点 M(-3,m)在抛物线上, ∴m2=24,∴m=± 6, 2 ∴所求抛物线方程为 y2=-8x,m=± 6. 2 (2)∵p=4,∴抛物线的焦点坐标为(-2,0), 准线方程是 x=2.
人 教 B 版 数 学
(选修1-1)
[说明] 确定圆锥曲线上的点到两定点的距离之和最 短时的位置,通常有两种情况:(1)当两定点在曲线两侧时,
连结两定点的线段与曲线的交点即为所求点;(2)当两定点
在曲线同侧时,由圆锥曲线定义作线段的等量长度转移, 转变为(1)的情形即可.
人 教 B 版 数 学
第二章 圆锥曲线与方程
(选修1-1)
人 教 B 版 数 学
向上.设所求抛物线为 y2=-2p1x(p1>0)或 x2=2p2y(p2>0), 2 9 把点(-3,2)代入,得 p1= ,p2= .∴所求抛物线方程为 y2 3 4 4 9 2 =- x 或 x = y. 3 2
[说明] 判断抛物线的开口方向,用待定系数法求 之.
第二章 圆锥曲线与方程
[解析]
如图,由抛物线的标准方程可知,焦点F(1,0), 人 教
B 版 数 学
准线方程x=-1.

高二数学(人教B版)选修1-1全册课件1、2-1-2椭圆的几何性质

高二数学(人教B版)选修1-1全册课件1、2-1-2椭圆的几何性质

人 教 B 版 数 学
第二章 圆锥曲线与方程
(选修1-1)
[解析]
x2 y2 将椭圆方程变形为 + =1. 1 1 4 9
1 1 ∴a=2,b=3, ∴c= 1 1 5 4-9= 6 .
人 教 B 版 数 学
∴椭圆的长轴长和焦距分别为 2a=1, 5 c 5 5 2c= 3 ,离心率 e=a= 3 ,焦点坐标为 F1(- 6 ,0), 5 1 1 1 F2( 6 ,0),顶点坐标为 A1(-2,0),A2(2,0),B1(0,-3), 1 B2(0,3).
[说明] 已知直线的斜率,常设直线的斜截式方程, 已知弦的长度,考虑弦长公式列方程,求参数.
人 教 B 版 数 学
第二章 圆锥曲线与方程
(选修1-1)
[例 7] 的值.
x2 y2 1 已知椭圆 2 +m=1(m>0)的离心率为2,求 m
人 教 B 版 数 学
[误解]
∵a2=2,b2=m,∴c2=2-m,
第二章 圆锥曲线与方程
(选修1-1)
4b2 ∴|PF1|· 2|= , |PF 3
|PF1|+|PF2| 2 又∵|PF1|· 2|≤ |PF =a2, 2
人 教 B 版 数 学
c 1 1 ∴3a ≥4(a -c ),∴a≥2,∴e≥2.
2 2 2
又∵椭圆中 0<e<1,∴所求椭圆的离心率的取值范围 1 是2≤e<1.
(选修1-1)
x2 y2 方法二:设椭圆方程为a2+b2=1(a>b>0), 2 则 M(c,3b) c2 4b2 代入椭圆方程,得a2+9b2=1, c2 5 所以 2= , a 9 c 5 5 所以 = ,即 e= . a 3 3

高二数学(人教B版)选修1-1全册课件1、3-1-1平均变化率、瞬时速度与导数

高二数学(人教B版)选修1-1全册课件1、3-1-1平均变化率、瞬时速度与导数

第三章 导数及其应用
(选修1-1)
[例4] 已知f(x)=(x-1)2,求f′(x),f′(0),f′(2). [分析] 求导数的步骤一般是先求导函数,再求导函 因为Δf=(x+Δx-1)2-(x-1)2=2xΔx-2Δx+
2
数在各点的导数.
[解析] (Δx)2,
Δf 2xΔx-2Δx+(Δx) 所以Δx= =2x-2+Δx, Δx Δf 所以 f′(x)=liΔx→0 m =liΔx→0 (2x-2+Δx)=2x-2, m Δx 所以 f′(0)=2· 0-2=-2,f′(2)=2· 2-2=2, 因此 f′(x)=2x-2,f′(0)=-2,f′(2)=2.
第三章 导数及其应用
(选修1-1)
某质点沿曲线运动的方程为y=-2x2+1(x表示时间,y 表示位移),则该质点从x=1到x=2时的平均速度为( A.-4 C.6 B.-8 D.-6 )
人 教 B 版 数 学
[解析]
令f(x)=y=-2x2+1,则质点从x=1到x=2时
的平均速度为
2 2 Δy f(2)-f(1) [-2×2 +1]-[-2×1 +1] v= = = Δx 2-1 2-1
第三章 导数及其应用
(选修1-1)
人 教 B 版 数 学
第三章 导数及其应用
(选修1-1)
人 教 B 版 数 学
第三章 导数及其应用
(选修1-1)
人 教 B 版 数 学
第三章 导数及其应用
(选修1-1)
4.如果函数y=f(x)在开区间(a,b)内的每点处都有导
数,此时对于每一个x∈(a,b),都对应着一个确定的导数
人 教 B 版 数 学
第三章 导数及其应用
(选修1-1)

高二数学(人教B版)选修1-1全册课件1、2-2-1双曲线及其标准方程

高二数学(人教B版)选修1-1全册课件1、2-2-1双曲线及其标准方程

2.在双曲线的定义中,条件0<2a<|F1F2|不应忽视,若
2a=|F1F2|,则动点的轨迹是 两条射线 ; 若 2a>|F1F2| ,
则动点的轨迹是 不存在 . 3.双曲线定义中应注意关键词“ 绝对值 ”,若去掉 定义中“绝对值”三个字,动点轨迹只能是 双曲线一支 .
第二章 圆锥曲线与方程
(选修1-1)
(选修1-1)
本节重点:双曲线的定义及其标准方程. 本节难点:双曲线标准方程的推导.
人 教 B 版 数 学
第二章 圆锥曲线与方程
(选修1-1)
人 教 B 版 数 学
第二章 圆锥曲线与方程
(选修1-1)
1.对于双曲线定义的理解,要抓住双曲线上的点所要 满足的条件,即双曲线上点的几何性质,可以类比椭圆的
人 教 B 版 数 学

第二章 圆锥曲线与方程
(选修1-1)
1 1 a2=-16 解得 12=-1 9 b
(不合题意,舍去).
人 教 B 版 数 学
y x 当双曲线的焦点在 y 轴上时, 设双曲线的方程为a2-b2 =1(a>0,b>0). 3 ( 5)2 4 2 a2 -b2=1 ∵P1、P2 在双曲线上,∴ 2 (4 7)2 3 4 a2- b2 =1
2
第二章 圆锥曲线与方程
(选修1-1)
2
当 k>0 时,k=6.
[辨析] 因为不能确定k的正负,需讨论.
第二章 圆锥曲线与方程
(选修1-1)
[正解]
x2 y2 当 k>0 时,方程化为标准形式: k - k =1 2
人 教 B 版 数 学
k 3k ∵c =2+k= 2 ,
2

(完整版)高二数学选修1-1全套教案

(完整版)高二数学选修1-1全套教案

第一章常用逻辑用语1。

1命题及其关系1。

1.1 命题(一)教学目标1、知识与技能:理解命题的概念和命题的构成,能判断给定陈述句是否为命题,能判断命题的真假;能把命题改写成“若p,则q”的形式;2、过程与方法:多让学生举命题的例子,培养他们的辨析能力;以及培养他们的分析问题和解决问题的能力;3、情感、态度与价值观:通过学生的参与,激发学生学习数学的兴趣。

(二)教学重点与难点重点:命题的概念、命题的构成难点:分清命题的条件、结论和判断命题的真假教具准备:与教材内容相关的资料。

教学设想:通过学生的参与,激发学生学习数学的兴趣。

(三)教学过程学生探究过程:1.复习回顾初中已学过命题的知识,请同学们回顾:什么叫做命题?2.思考、分析下列语句的表述形式有什么特点?你能判断他们的真假吗?(1)若直线a∥b,则直线a与直线b没有公共点.(2)2+4=7.(3)垂直于同一条直线的两个平面平行.(4)若x2=1,则x=1.(5)两个全等三角形的面积相等.(6)3能被2整除.3.讨论、判断学生通过讨论,总结:所有句子的表述都是陈述句的形式,每句话都判断什么事情。

其中(1)(3)(5)的判断为真,(2)(4)(6)的判断为假。

教师的引导分析:所谓判断,就是肯定一个事物是什么或不是什么,不能含混不清.4.抽象、归纳定义:一般地,我们把用语言、符号或式子表达的,可以判断真假的陈述句叫做命题.命题的定义的要点:能判断真假的陈述句.在数学课中,只研究数学命题,请学生举几个数学命题的例子.教师再与学生共同从命题的定义,判断学生所举例子是否是命题,从“判断”的角度来加深对命题这一概念的理解.5.练习、深化判断下列语句是否为命题?(1)空集是任何集合的子集.(2)若整数a是素数,则是a奇数.(3)指数函数是增函数吗?(4)若平面上两条直线不相交,则这两条直线平行.(5)2)2( =-2.(6)x>15.让学生思考、辨析、讨论解决,且通过练习,引导学生总结:判断一个语句是不是命题,关键看两点:第一是“陈述句”,第二是“可以判断真假”,这两个条件缺一不可.疑问句、祈使句、感叹句均不是命题.解略。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章常用逻辑用语1.1命题及其关系1.1.1 命题(一)教学目标1、知识与技能:理解命题的概念和命题的构成,能判断给定陈述句是否为命题,能判断命题的真假;能把命题改写成“若p,则q”的形式;2、过程与方法:多让学生举命题的例子,培养他们的辨析能力;以及培养他们的分析问题和解决问题的能力;3、情感、态度与价值观:通过学生的参与,激发学生学习数学的兴趣。

(二)教学重点与难点重点:命题的概念、命题的构成难点:分清命题的条件、结论和判断命题的真假教具准备:与教材内容相关的资料。

教学设想:通过学生的参与,激发学生学习数学的兴趣。

(三)教学过程学生探究过程:1.复习回顾初中已学过命题的知识,请同学们回顾:什么叫做命题?2.思考、分析下列语句的表述形式有什么特点?你能判断他们的真假吗?(1)若直线a∥b,则直线a与直线b没有公共点.(2)2+4=7.(3)垂直于同一条直线的两个平面平行.(4)若x2=1,则x=1.(5)两个全等三角形的面积相等.(6)3能被2整除.3.讨论、判断学生通过讨论,总结:所有句子的表述都是陈述句的形式,每句话都判断什么事情。

其中(1)(3)(5)的判断为真,(2)(4)(6)的判断为假。

教师的引导分析:所谓判断,就是肯定一个事物是什么或不是什么,不能含混不清。

4.抽象、归纳定义:一般地,我们把用语言、符号或式子表达的,可以判断真假的陈述句叫做命题.命题的定义的要点:能判断真假的陈述句.在数学课中,只研究数学命题,请学生举几个数学命题的例子.教师再与学生共同从命题的定义,判断学生所举例子是否是命题,从“判断”的角度来加深对命题这一概念的理解.5.练习、深化判断下列语句是否为命题?(1)空集是任何集合的子集.(2)若整数a是素数,则是a奇数.(3)指数函数是增函数吗?(4)若平面上两条直线不相交,则这两条直线平行.(5)2)2(=-2.(6)x>15.让学生思考、辨析、讨论解决,且通过练习,引导学生总结:判断一个语句是不是命题,关键看两点:第一是“陈述句”,第二是“可以判断真假”,这两个条件缺一不可.疑问句、祈使句、感叹句均不是命题.解略。

引申:以前,同学们学习了很多定理、推论,这些定理、推论是否是命题?同学们可否举出一些定理、推论的例子来看看?通过对此问的思考,学生将清晰地认识到定理、推论都是命题.过渡:同学们都知道,一个定理或推论都是由条件和结论两部分构成(结合学生所举定理和推论的例子,让学生分辨定理和推论条件和结论,明确所有的定理、推论都是由条件和结论两部分构成)。

紧接着提出问题:命题是否也是由条件和结论两部分构成呢?6.命题的构成――条件和结论定义:从构成来看,所有的命题都具由条件和结论两部分构成.在数学中,命题常写成“若p,则q”或者“如果p,那么q”这种形式,通常,我们把这种形式的命题中的p叫做命题的条件,q 叫做命题结论.7.练习、深化指出下列命题中的条件p和结论q,并判断各命题的真假.(1)若整数a能被2整除,则a是偶数.(2)若四边行是菱形,则它的对角线互相垂直平分.(3)若a>0,b>0,则a+b>0.(4)若a>0,b>0,则a+b<0.(5)垂直于同一条直线的两个平面平行.此题中的(1)(2)(3)(4),较容易,估计学生较容易找出命题中的条件p和结论q,并能判断命题的真假。

其中设置命题(3)与(4)的目的在于:通过这两个例子的比较,学更深刻地理解命题的定义——能判断真假的陈述句,不管判断的结果是对的还是错的。

此例中的命题(5),不是“若P,则q”的形式,估计学生会有困难,此时,教师引导学生一起分析:已知的事项为“条件”,由已知推出的事项为“结论”.解略。

过渡:从例2中,我们可以看到命题的两种情况,即有些命题的结论是正确的,而有些命题的结论是错误的,那么我们就有了对命题的一种分类:真命题和假命题.8.命题的分类――真命题、假命题的定义.真命题:如果由命题的条件P通过推理一定可以得出命题的结论q,那么这样的命题叫做真命题.假命题:如果由命题的条件P通过推理不一定可以得出命题的结论q,那么这样的命题叫做假命题.强调:(1)注意命题与假命题的区别.如:“作直线AB”.这本身不是命题.也更不是假命题.(2)命题是一个判断,判断的结果就有对错之分.因此就要引入真命题、假命题的的概念,强调真假命题的大前提,首先是命题。

9.怎样判断一个数学命题的真假?(1)数学中判定一个命题是真命题,要经过证明.(2)要判断一个命题是假命题,只需举一个反例即可.10.练习、深化例3:把下列命题写成“若P,则q”的形式,并判断是真命题还是假命题:(1)面积相等的两个三角形全等。

(2)负数的立方是负数。

(3)对顶角相等。

分析:要把一个命题写成“若P,则q”的形式,关键是要分清命题的条件和结论,然后写成“若条件,则结论”即“若P,则q”的形式.解略。

11、巩固练习:P42、312.教学反思师生共同回忆本节的学习内容.1.什么叫命题?真命题?假命题? 2.命题是由哪两部分构成的?3.怎样将命题写成“若P,则q”的形式.4.如何判断真假命题.教师提示应注意的问题:1.命题与真、假命题的关系. 2.抓住命题的两个构成部分,判断一些语句是否为命题.3.判断假命题,只需举一个反例,而判断真命题,要经过证明.13.作业:P9:习题1.1A组第1题1.1.2四种命题 1.1.3四种命题的相互关系(一)教学目标◆知识与技能:了解原命题、逆命题、否命题、逆否命题这四种命题的概念,掌握四种命题的形式和四种命题间的相互关系,会用等价命题判断四种命题的真假.◆过程与方法:多让学生举命题的例子,并写出四种命题,培养学生发现问题、提出问题、分析问题、有创造性地解决问题的能力;培养学生抽象概括能力和思维能力.◆情感、态度与价值观:通过学生的举例,激发学生学习数学的兴趣和积极性,培养他们的辨析能力以及培养他们的分析问题和解决问题的能力.(二)教学重点与难点重点:(1)会写四种命题并会判断命题的真假;(2)四种命题之间的相互关系.难点:(1)命题的否定与否命题的区别;(2)写出原命题的逆命题、否命题和逆否命题;(3)分析四种命题之间相互的关系并判断命题的真假.教具准备:与教材内容相关的资料。

教学设想:通过学生的举例,激发学生学习数学的兴趣和积极性,培养他们的辨析能力以及培养他们的分析问题和解决问题的能力.(三)教学过程学生探究过程:1.复习引入初中已学过命题与逆命题的知识,请同学回顾:什么叫做命题的逆命题?2.思考、分析问题1:下列四个命题中,命题(1)与命题(2)、(3)、(4)的条件与结论之间分别有什么关系?(1)若f(x)是正弦函数,则f(x)是周期函数.(2)若f(x)是周期函数,则f(x)是正弦函数.(3)若f(x)不是正弦函数,则f(x)不是周期函数.(4)若f(x)不是周期函数,则f(x)不是正弦函数.3.归纳总结问题一通过学生分析、讨论可以得到正确结论.紧接结合此例给出四个命题的概念,(1)和(2)这样的两个命题叫做互逆命题,(1)和(3)这样的两个命题叫做互否命题,(1)和(4)这样的两个命题叫做互为逆否命题。

4.抽象概括定义1:一般地,对于两个命题,如果一个命题的条件和结论分别是另一个命题的结论和条件,那么我们把这样的两个命题叫做互逆命题.其中一个命题叫做原命题,另一个命题叫做原命题的逆命题.让学生举一些互逆命题的例子。

定义2:一般地,对于两个命题,如果一个命题的条件和结论恰好是另一个命题的条件的否定和结论的否定,那么我们把这样的两个命题叫做互否命题.其中一个命题叫做原命题,另一个命题叫做原命题的否命题.让学生举一些互否命题的例子。

定义3:一般地,对于两个命题,如果一个命题的条件和结论恰好是另一个命题的结论的否定和条件的否定,那么我们把这样的两个命题叫做互为逆否命题.其中一个命题叫做原命题,另一个命题叫做原命题的逆否命题.让学生举一些互为逆否命题的例子。

小结:(1)交换原命题的条件和结论,所得的命题就是它的逆命题:(2)同时否定原命题的条件和结论,所得的命题就是它的否命题;(3)交换原命题的条件和结论,并且同时否定,所得的命题就是它的逆否命题.强调:原命题与逆命题、原命题与否命题、原命题与逆否命题是相对的。

5.四种命题的形式让学生结合所举例子,思考:若原命题为“若P,则q”的形式,则它的逆命题、否命题、逆否命题应分别写成什么形式?学生通过思考、分析、比较,总结如下:原命题:若P,则q.则:逆命题:若q,则P.否命题:若¬P,则¬q.(说明符号“¬”的含义:符号“¬”叫做否定符号.“¬p”表示p的否定;即不是p;非p)逆否命题:若¬q,则¬P.6.巩固练习写出下列命题的逆命题、否命题、逆否命题并判断它们的真假:(1)若一个三角形的两条边相等,则这个三角形的两个角相等;(2)若一个整数的末位数字是0,则这个整数能被5整除;(3)若x2=1,则x=1;(4)若整数a是素数,则是a奇数。

7.思考、分析结合以上练习思考:原命题的真假与其它三种命题的真假有什么关系?通过此问,学生将发现:①原命题为真,它的逆命题不一定为真。

②原命题为真,它的否命题不一定为真。

③原命题为真,它的逆否命题一定为真。

原命题为假时类似。

结合以上练习完成下列表格:由表格学生可以发现:原命题与逆否命题总是具有相同的真假性,逆命题与否命题也总是具有相同的真假性.由此会引起我们的思考:一个命题的逆命题、否命题与逆否命题之间是否还存在着一定的关系呢?让学生结合所做练习分析原命题与它的逆命题、否命题与逆否命题四种命题间的关系. 学生通过分析,将发现四种命题间的关系如下图所示:8.总结归纳若P ,则q . 若q ,则P .由于逆命题和否命题也是互为逆否命题,因此四种命题的真假性之间的关系如下:(1)两个命题互为逆否命题,它们有相同的真假性;(2)两个命题为互逆命题或互否命题,它们的真假性没有关系.由于原命题和它的逆否命题有相同的真假性,所以在直接证明某一个命题为真命题有困难时,可以通过证明它的逆否命题为真命题,来间接地证明原命题为真命题.9.例题分析例4: 证明:若p 2 + q 2 =2,则p + q ≤ 2.分析:如果直接证明这个命题比较困难,可考虑转化为对它的逆否命题的证明。

将“若p 2 + q 2 =2,则p + q ≤ 2”视为原命题,要证明原命题为真命题,可以考虑证明它的逆否命题“若p + q >2,则p 2 + q 2 ≠2”为真命题,从而达到证明原命题为真命题的目的.证明:若p + q >2,则p 2 + q2 =21[(p -q )2+(p +q )2]≥21(p +q )2>21×22=2 所以p 2 + q 2≠2.这表明,原命题的逆否命题为真命题,从而原命题为真命题。

相关文档
最新文档