九年级数学垂径定理

合集下载

九年级数学上册《垂径定理》PPT

九年级数学上册《垂径定理》PPT

即对于圆上任意一点A,在圆上都有关于直线CD的对
称点A'
∴⊙O关于直线CD对称
即圆是轴对称图形,任何一条直径所在的直
线都是它的对称轴.
如图,AB是⊙O的一条弦,作直径CD,使CD⊥AB于E点.
你能发现图中有那些相等的线段和弧?为什么?
C
·O
E
A
B
D
C
·O
E
A
B
把圆沿着直径CD折叠时,CD两侧的两D个半圆⌒重
归纳小结
1、圆是 轴__对__称_图形,_任__何__一__条__直_径___ 所在的 直线都是它的对称轴. 2、垂径定理:_垂__直__于_弦__的__直__径___平分弦,并 且平分弦_所__对__的_两__弧__ . 推论:平分弦(不是 _直__径__)的直径 __垂_直__于__弦,并且__平_分____弦所对的两条弧. 3、学习反思:_______________________
37m
C
A
D
7.23m
B
O
解决求赵州桥拱半径的问题
如图,用 A表B 示主桥拱,设AB 所A在圆的圆心为O,半
径为R.经过圆心O 作弦AB 的B垂线OC,D为垂足,
OC与AB 相交于点D,根据前面的结论,D是AB的中
点,C是 A的B 中点,CD就是拱高.
C
在图中 AB=37,CD=7.23,
AD
1 2
学习目标
1 理解圆的轴对称性;
掌握垂径定理及其推论,并能应 2 用它们解决一些计算题和证明题.
实践探究
把一个圆沿着它的任意一条直径对折, 重复几次,你发现了什么?由此你能得到 什么结论?
可以发现: 圆是轴对称图形,任何一条直径所在直

人教版初中数学垂径定理知识点总结

人教版初中数学垂径定理知识点总结

人教版初中数学垂径定理知识点总结一、垂径定理的定义垂径定理是关于直径和过该直径的直线(或圆)交于圆内两点之间的线段长度和关系的重要定理。

如果一个直径和一条过该直径的直线交于圆内两点,那么这条直径平分过这两点的线段,并且这条直径垂直于过这两点的直线。

二、垂径定理的表述1.平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧。

2.垂直于弦的直径平分弦(不是直径),并且平分弦所对的两条弧。

3.垂直于弦的直径平分过弦的两条直线,并且平分弦所对的两条弧。

三、垂径定理的应用垂径定理在几何学中有着广泛的应用,特别是在解决与圆和直径相关的问题时。

例如,可以利用垂径定理来证明圆的性质,如圆的对称性、圆的周长和面积等。

此外,垂径定理还可以用于解决与圆和直线相关的问题,如求圆的半径、确定圆的中心等。

四、垂径定理的推论1.从圆心到弦的垂线是弦的中垂线。

2.圆内一条弦的两端到圆心的距离相等。

3.圆内一条过圆心的弦最短,其长度为圆的直径。

4.圆内一条不过圆心的弦最短,其长度等于从圆心到弦中点的线段长。

五、垂径定理的证明垂径定理可以通过以下两种方法证明:1.直接证明法:通过作图和推理,直接证明垂径定理。

这种方法比较直观和简洁,但需要一定的几何知识和推理能力。

2.代数法:利用圆的性质和代数运算,证明垂径定理。

这种方法比较抽象,但具有普适性,可以用于证明其他类似的定理。

六、注意事项1.在使用垂径定理时,要注意区分直径和其他弦的区别,避免混淆。

2.在作图时,要确保所作的线段是垂直于弦的直径,否则将无法使用垂径定理。

3.在解决实际问题时,要根据具体情况选择合适的方法来应用垂径定理。

七、垂径定理的应用场景1.确定圆的形状和大小:垂径定理可以用于确定圆的形状和大小。

例如,通过测量圆的直径或半径,可以确定圆的大小;通过观察垂径定理的各种表现,可以判断圆的状态和形状。

2.计算圆的周长和面积:垂径定理可以用于计算圆的周长和面积。

例如,通过已知的直径或半径,可以计算出圆的周长和面积。

浙教版数学九年级上册3.3垂径定理(共13张PPT)

浙教版数学九年级上册3.3垂径定理(共13张PPT)
3.3 垂径定理
复习
M

A
1、圆弧:圆上任意两点之间的部分
2、等弧:能够完全重合的圆弧
3、弦:连结圆上任意两点的线段
4、圆具有轴对称性
O
B
实验操作
1、取出课前准备的圆,折出这个圆的一条对称轴
2、请用折叠的方法在圆上找到两个对称点
你能发现图中有那些相等的线段和弧?为什么?
C
O
·
E
A
B
D
几何演绎
如图,理由是:
梳理
A
C
M


B
O
D
条件
由①CD是直径
②CD⊥AB
可推得
结论
③AM=BM
⌒ ⌒
④AC=BC
⌒ ⌒
⑤AD=BD
归纳小结
定理:垂直于弦的直径平分弦, 并且平分弦所对的弧.
如图∵ CD是直径,
CD⊥AB,
B
∴AM = BM,
C
A
M└
O



AC =BC,


AD=BD.
D
分一条弧成相等的两条弧的点,叫做这条弧的中点.
问题一:

例1、已知AB如图,用直尺和圆规求作这条弧的中点.
E

分析:要平分AB,只要画垂
直于弦AB的直径.而这条直径应在弦A源自的垂直平分线上.A
作法:
1. 连结AB;

2. 作AB的垂直平分线CD,交AB与点E;

∴点E就是所求AB的中点.
B
问题二:
例2:如图已知在⊙ O 中 弦AB=16,半径0B=10,
连接OA,OB, 则OA=OB.

人教版九年级数学上册课件:24.1.2垂径定理(共15张PPT)

人教版九年级数学上册课件:24.1.2垂径定理(共15张PPT)

船能过拱桥吗
AB 7.2,CD 2.4, HN 1 MN 1.5.
AD 1 AB 1 7.2 3.6,
2
2
2
OD OC DC R 2.4.
在Rt△OAD中,由勾股定理,得
OA2 AD2 OD 2 ,
即R2 3.62 (R 2.4)2.
A
D
E C
O
B
自学指导(二)
认真阅读课本8 2页赵州桥问题,并思考:
1、解决赵州桥求半径问题做了什么辅助过线圆?心作弦的垂线 2、由图24.1-8知主桥拱是__A_B____, 跨度是__弦_A_B__,拱 高是__C_D__,弦心距是__O_D___,半径是__O_A_,_O_B___ , AD= _B_D___.
任意知道两个量,可根据垂径定理求出第三个量:
必做题:课本P83练习1、2题。 选做题:课本P89第2题。 思考题:课本P89第8题。
判断下列说法的正误
①平分弧的直径必平分弧所对的弦 ②平分弦的直线必垂直弦 ③垂直于弦的直径平分这条弦 ④平分弦的直径垂直于这条弦 ⑤弦的垂直平分线是圆的直径 ⑥弦的垂直平分线一定经过圆心
2、如图,直径为10cm的圆中,圆心到弦 AB的距离OM为4cm,求弦AB的长。
O
A
M
B
相信自己,我能行
破镜重圆
自学指导(一)
认真阅读课本81页—82页“赵州桥问 题” 上面的内容: 1、圆是______图形, __________都是它 的对称轴,对称轴有____条.
2、垂径定理的内容是_________________.
3、对照24.1-6用符号语言表示垂径定理 ? 4、垂径定理的推论是什么?

人教版九年级上册数学课件24.2.2垂径定理

人教版九年级上册数学课件24.2.2垂径定理
(2)你能发现图中有那些相等的线段和弧?为什么?
答:⊙O的半径为5cm.
2m,你能求出赵洲桥主桥拱的半径吗?
与你一起分享!!! 答:⊙O的半径为5cm.

R2=18.
4m, 拱高(弧的中点到弦的距离)为7.
把圆沿着直径CD折叠时,CD两侧的两个半圆重合,
把圆沿着直径CD折叠时,CD两侧的两个半圆重合,
O E A 9 0 E A D 9 0 O D A 9 0
∴四边形ADOE为矩形,
AE1AC, AD1AB
2
2
又 ∵AC=AB
C
∴ AE=AD
E
·O
∴ 四边形ADOE为正方形.
A
D
B
某地有一座圆弧形拱桥圆心为O,桥下水面宽度为7、2 m ,过O 作OC ⊥ AB 于D, 交圆弧于C,CD=2、4m, 现有一艘宽3m,船舱顶部为方形并高出水面(AB)2m的 货船要经过拱桥,此货船能否顺利通过这座拱桥?
②平分弦的直线必垂直弦
你(能2)①发现线③图段中:有A②哪E=些④B等E量⑤关系平?与同分伴弦说说(你不的是想法直和理径由).的直径垂直于弦,并且平 分弦所对的两D 条弧.
垂弧就直:可①于 A 推弦C出④的=其直B余径C三②平个分结,③弦论A,D.⑤并=且B平D平分弦分所的弦两所条弧对. 的一条弧的直径,垂直平分弦,并且平分弦所对的 平直分径①弦 C所D⑤对平的分两弦②条A弧B③的,直并④线且经过另圆一心,并条且弧垂直. 平分弦.
过点M作直径CD.
下图是轴对称图形吗?如果是,其对称轴是什么?
你能发现图中有哪些等量关系?与同伴说说 你的想法和理由.
C
A
┗●
B 由 CD是直径
M
●O

九年级数学上册专题24.3 垂径定理【十大题型】(举一反三)(人教版)(原卷版)

九年级数学上册专题24.3 垂径定理【十大题型】(举一反三)(人教版)(原卷版)

专题24.3 垂径定理【十大题型】【人教版】【题型1 利用垂径定理求线段长度】 (1)【题型2 利用垂径定理求角度】 (2)【题型3 利用垂径定理求最值】 (3)【题型4 利用垂径定理求取值范围】 (4)【题型5 利用垂径定理求整点】 (6)【题型6 利用垂径定理求面积】 (7)【题型7 垂径定理在格点中的运用】 (8)【题型9 垂径定理与分类讨论中的综合运用】 (10)【题型10 垂径定理的应用】 (11)【题型1 利用垂径定理求线段长度】【例1】(2022•雨花区校级开学)如图,⊙O的半径OD⊥弦AB交AB于点C,连接AO并延长交⊙O于点E,连接EC.若AB=8,EC=2√13,则CD的长为()A.1B.3C.2D.4【变式1-1】(2022•宁津县二模)如图,已知圆O的半径为10,AB⊥CD,垂足为P,且AB=CD=16,则OP的长为()A.6B.6√2C.8D.8√2【变式1-2】(2022•建华区二模)如图,⊙O的直径AB与弦CD相交于点E,若AE=5,EB=1,∠AEC =30°,则CD的长为()A.5B.2√3C.4√2D.2√2+√3+1【变式1-3】(2022春•徐汇区校级期中)如图,AB是⊙O的弦,D为半径OA的中点,过D作CD⊥OA交弦AB于点E,且CE=CB,若BE=2AE,CD=5,那么⊙O的半径为.【题型2 利用垂径定理求角度】【例2】(2022•泰安模拟)如图,⊙O的半径OA,OB,且OA⊥OB,连接AB.现在⊙O上找一点C,使OA2+AB2=BC2,则∠OAC的度数为()A.15°或75°B.20°或70°C.20°D.30°̂上的【变式2-1】(2022秋•天心区期中)如图,已知⊙O半径OA=4,点B为圆上的一点,点C为劣弧AB一动点,CD⊥OA,CE⊥OB,连接DE,要使DE取得最大值,则∠AOB等于()A.60°B.90°C.120°D.135°【变式2-2】(2022秋•青田县期末)如图,在⊙O中,半径OC过弦AB的中点E,OC=2,OE=√2.(1)求弦AB的长;(2)求∠CAB的度数.【变式2-3】(2022秋•开州区期末)如图,在⊙O中,弦BC与半径OA垂直于点D,连接AB、AC.点E为AC的中点,连接DE.(1)若AB=6,求DE的长;(2)若∠BAC=100°,求∠CDE的度数.【题型3 利用垂径定理求最值】【例3】(2022•威海模拟)⊙O中,点C为弦AB上一点,AB=1,CD⊥OC交⊙O于点D,则线段CD的最大值是()A.12B.1C.32D.2【变式3-1】(2022•河北模拟)如图所示,在⊙O中,AB为弦,OC⊥AB交AB于点D.且OD=DC.P为⊙O上任意一点,连接P A,PB,若⊙O的半径为1,则S△P AB的最大值为()A.1B.2√33C.3√34D.3√32【变式3-2】(2022秋•龙凤区校级期末)如图,矩形ABCD中,AB=20,AD=15,P,Q分别是AB,AD 边上的动点,PQ=16,以PQ为直径的⊙O与BD交于点M,N,则MN的最大值为.【变式3-3】(2022秋•延平区校级期末)在Rt△ABC中,∠C=90°,BC=3,AC=4,D、E分别是AC、BC上的一点,且DE=3,若以DE为直径的圆与斜边AB相交于M、N,则MN的最大值为()A.910B.65C.85D.125【题型4 利用垂径定理求取值范围】【例4】(2022•包河区校级二模)如图,在⊙O中,直径AB=10,CD⊥AB于点E,CD=8.点F是弧BC上动点,且与点B、C不重合,P是直径AB上的动点,设m=PC+PF,则m的取值范围是()A.8<m≤4√5B.4√5<m≤10C.8<m≤10D.6<m<10【变式4-1】(2022•佛山)如图,⊙O的直径为10cm,弦AB=8cm,P是弦AB上的一个动点,求OP的长度范围.【变式4-2】(2022秋•盐都区校级月考)如图,点P是⊙O内一定点.(1)过点P作弦AB,使点P是AB的中点(不写作法,保留作图痕迹);(2)若⊙O的半径为13,OP=5,①求过点P的弦的长度m范围;②过点P的弦中,长度为整数的弦有条.【变式4-3】(2022秋•天河区校级期中)已知⊙O的半径为5,点O到弦AB的距离OH=3,点P是圆上一动点,设过点P且与AB平行的直线为l,记直线AB到直线l的距离为d.(1)求AB的长;(2)如果点P只有两个时,求d的取值范围;(3)如果点P有且只有三个时,求连接这三个点所得到的三角形的面积.【题型5 利用垂径定理求整点】【例5】(2022•山海关区一模)已知⊙O的直径CD=10,CD与⊙O的弦AB垂直,垂足为M,且AM=4.8,则直径CD上的点(包含端点)与A点的距离为整数的点有()A.1个B.3个C.6个D.7个【变式5-1】(2022秋•新昌县期末)如图,AB是⊙O的弦,OC⊥AB于点C,连接OB,点P是半径OB上任意一点,连接AP,若OB=5,OC=3,则AP的长不可能是()A.6B.7C.8D.9【变式5-2】(2022•桥西区校级模拟)如图,AB是⊙C的弦,直径MN⊥AB于点O,MN=10,AB=8,如图以O为原点建立坐标系.我们把横纵坐标都是整数的点叫做整数点,则线段OC长是3,⊙C上的整数点有个.【变式5-3】(2022秋•肇东市期末)已知⊙O的半径为5,点O到弦AB的距离为3,则⊙O上到弦AB所在直线的距离为2的点有()A.4个B.3个C.2个D.1个【题型6 利用垂径定理求面积】【例6】(2022•武汉模拟)如图,在半径为1的⊙O中有三条弦,它们所对的圆心角分别为60°,90°,120°,那么以这三条弦长为边长的三角形的面积是()A.√2B.1C.√32D.√22【变式6-1】(2022秋•黄州区校级月考)如图,矩形MNGH的四个顶点都在⊙O上,顺次连接矩形各边的中点,得到菱形ABCD,若BD=12,DF=4,则菱形ABCD的面积为.【变式6-2】(2022秋•西城区校级期中)如图,AB为⊙O直径,过点O作OD⊥BC于点E,交⊙O于点D,CD∥AB.(1)求证:E为OD的中点;(2)若CB=6,求四边形CAOD的面积.【变式6-3】(2022•新洲区模拟)如图,点A,C,D均在⊙O上,点B在⊙O内,且AB⊥BC于点B,BC ⊥CD于点C,若AB=4,BC=8,CD=2,则⊙O的面积为()A.125π4B.275π4C.125π9D.275π9【题型7 垂径定理在格点中的运用】【例7】(2022秋•襄都区校级期末)如图所示,一圆弧过方格的格点AB,试在方格中建立平面直角坐标系,使点A的坐标为(0,4),则该圆弧所在圆的圆心坐标是()A.(﹣1,2)B.(1,﹣1)C.(﹣1,1)D.(2,1)【变式7-1】(2022春•海门市期中)如图所示,⊙P过B、C两点,写出⊙P上的格点坐标.【变式7-2】(2022•商城县三模)如图所示的网格中,每个小正方形的边长均为1,点A、B、C均在小正方形的顶点上,点C同时也在AB̂上,若点P是BĈ的一个动点,则△ABP面积的最大值是.【变式7-3】(2017秋•靖江市校级月考)如图,在单位长度为1的正方形网格中建立一直角坐标系,一条圆弧经过网格点A、B、C,请在网格图中进行下列操作(以下结果保留根号):(1)利用网格作出该圆弧所在圆的圆心D点的位置,并写出D点的坐标为;(2)连接AD、CD,则⊙D的半径为,∠ADC的度数.【题型8 垂径定理在坐标系中的运用】【例8】(2022•博山区一模)如图,在平面直角坐标系中,半径为5的⊙E与y轴交于点A(0,﹣2),B (0,4),与x轴交于C,D,则点D的坐标为()A.(4−2√6,0)B.(−4+2√6,0)C.(−4+√26,0)D.(4−√26,0)【变式8-1】(2022秋•西林县期末)如图,⊙P与y轴交于点M(0,﹣4),N(0,﹣10),圆心P的横坐标为﹣4.则⊙P的半径为()A.3B.4C.5D.6【变式8-2】(2022•印江县三模)如图,直线l为y=x,过点A1(1,0)作A1B1⊥x轴,与直线l交于点B1,以原点O为圆心,OB1长为半径画圆弧交x轴于点A2;再作A2B2⊥x轴,交直线l于点B2,以原点O为圆心,OB2长为半径画圆弧交x轴于点A3;…,按此作法进行下去,则点A2022的坐标为.【变式8-3】(2015•宜春模拟)如图,半径为5的⊙P与y轴交于点M(0,﹣4),N(0,﹣10),函数y =﹣2x+m图象过点P,则m=.【题型9 垂径定理与分类讨论中的综合运用】【例9】(2022秋•化德县校级期末)⊙O的半径为10cm,弦AB∥CD,且AB=12cm,CD=16cm,则AB 和CD的距离为()A.2cm B.14cm C.2cm或14cm D.10cm或20cm【变式9-1】(2022•包河区二模)已知圆O的半径为5,弦AB=8,D为弦AB上一点,且AD=1,过点D 作CD⊥AB,交圆O于C,则CD长为()A.1B.7C.8或1D.7或1【变式9-2】(2022秋•方正县期末)如图,⊙O的弦AB与半径OC垂直,点D为垂足,OD=DC,AB=2√3,点E在⊙O上,∠EOA=30°,则△EOC的面积为.【变式9-3】(2022秋•淮南月考)如图,已知⊙O的半径为2.弦AB的长度为2,点C是⊙O上一动点,若△ABC为等腰三角形,则BC2的长为.【题型10 垂径定理的应用】【例10】(2022秋•武昌区校级期末)某地有一座圆弧形拱桥,它的跨度(弧所对的弦的长)24m,拱高(弧的中点到弦的距离)4米,则求拱桥的半径为()A.16m B.20m C.24m D.28m【变式10-1】(2022•望城区模拟)《九章算术》是我国古代著名数学经典,其中对勾股定理的论述比西方早一千多年,其中有这样一个问题:“今有圆材埋在壁中,不知大小.以锯锯之,深一寸,锯道长一尺.问径几何?”其意为:今有一圆柱形木材,埋在墙壁中,不知其大小,用锯去锯该材料,锯口深1寸,锯道长1尺.如图,已知弦AB=1尺,弓形高CD=1寸,(注:1尺=10寸)问这块圆柱形木材的直径是()A.13寸B.6.5寸C.26寸D.20寸【变式10-2】(2022秋•西城区校级期中)京西某游乐园的摩天轮采用了国内首创的横梁结构,风格更加简约.如图,摩天轮直径88米,最高点A距离地面100米,匀速运行一圈的时间是18分钟.由于受到周边建筑物的影响,乘客与地面的距离超过34米时,可视为最佳观赏位置,在运行的一圈里最佳观赏时长为分钟.【变式10-3】(2022•浙江)如图,公园内有一个半径为20米的圆形草坪,A,B是圆上的点,O为圆心,̂,一部分市民为走“捷径”,踩坏了花草,走出了一条小路AB.通∠AOB=120°,从A到B只有路AB过计算可知,这些市民其实仅仅少走了步(假设1步为0.5米,结果保留整数).(参考数据:√3≈1.732,π取3.142)。

人教版九年级数学上册24.垂径定理课件

人教版九年级数学上册24.垂径定理课件

OD OC DC R 2.4.
在Rt△OAD中,由勾股定理,得 A E
D
OA2 AD2 OD 2 ,
N B
F
即R2 3.62 (R 2.4)2.
O
解得 R≈3.9(m). 在Rt△ONH中,由勾股定理,得
OH ON2 HN2 , 即OH 3.92 1.52 3.6.
DH 3.6 1.5 2.1 2. ∴此货船能顺利通过这座拱桥.
C
A
M
N
.1 如图,一条公路的转弯处是一段圆弧(即 图中弧CD,点O是弧CD的圆心),其中CD=600m,E 为弧CD上的一点,且OE⊥CD垂足为F,EF=90m. 求这段弯路的半径.
C E
F

D
O
例3、赵州桥的主桥是圆弧形,它的跨度(弧所对 的弦的长)为37m, 拱高(弧的中点到弦的距离) 为7.23m,求赵州桥主桥拱的半径(精确到小数 点后一位)。
圆是轴对称图形,任何一条直径所在直线都是圆 的对称轴。
C
·O
E
A
B
D
C 垂径定理及其推论的内容是
什么?

O E
垂径定理:垂直于弦的直径 B 平分弦,并且平分弦所对的

两条弧. ∴AE=BE,
∵ CD是直径(过圆心)
A⌒C=⌒BC,
CD⊥AB
A⌒D=B⌒D.
垂径定理的推论:平分弦(不是直径)的
直径垂直于弦,并且平分弦所对的两条
• 学习目标: 1.理解圆的轴对称性,会运用垂径定理 解决有关的证明、计算和作图问题; 2.感受类比、转化、数形结合、方程等 数学思想和方法,在实验、视察、猜想、 抽象、概括、推理的过程中发展逻辑思维 能力和识图能力.

九年级数学圆第三节垂径定理知识梳理及典例分析

九年级数学圆第三节垂径定理知识梳理及典例分析

第三节垂径定理知识点梳理【知识点一】垂径定理1.圆的轴对称:圆是轴对称图形,每一条过圆心的直线都是它的对称轴。

2.垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的弧。

3.弧的中点:分一条弦成相等的两条弧的点,叫做这条弧的中点。

4.弦心距:圆心到圆的一条弦的距离叫做弦心距。

【知识点二】垂径定理的逆定理1.定理1:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的弧。

2.定理2:平分弧的直径垂直平分弧所对的弦。

典例分析【题型一】利用垂径定理进行计算【例1】如图,在⊙O中,AB,AC为互相垂直且相等的两条弦,OD丄AB ,0E丄AC,垂足分别为D,E.若 AC=AB=2 cm,求⊙O的半径.【变式1】如图⊙O的直径AB =16 cm,P是0B的中点,∠APD=30°,求CD的长.【题型二】在直角坐标系中利用垂径定理求点的坐标【例1】如图,以点P为圆心的圆弧与x轴交于A,B两点,点P的坐标为(4,2) ,点A的坐标为(2,0) ,则点B的坐标为_______【变式1】如图在平面直角坐标系中,点O为坐标原点,点P在第一象限,⊙P与x轴交于O,A 两点,点A的坐标为(6,0),⊙P的半径为13,则点P的坐标为_________【题型三】应用垂径定理等分弧【例1】如图为一自行车内胎的一部分,如何利用所学知识将它平均分给四个小朋友做玩具?【变式1】小云出黑板报时遇到了一个难题,在版面设计过程中需要将一个半圆面三等分.如图,请帮她设计一个合理的等分方案,要求尺规作图,保留作图痕迹。

【题型四】垂径定理的实际应用【例1】某居民区一处圆形下水管道破裂,修理人员准备更换一段新管道.如图,污水水面宽度为60 cm,水面至管道顶部距离为10 cm,问:修理人员应准备内径多大的管道?【变式1】如图是一条水平铺设的直径为2 m的通水管道横截面,其水面宽1.6 m,则这条管道中此时最深为__________m【题型五】利用垂径定理求最值【例1】如图 , ⊙O的半径为5 ,弦AB 的长为8,M是弦AB上的一个动点,则线段0M长的最小值为( ).A.2B.3C.4D.5【变式1】如图,在⊙O 中,AB 是⊙O 的直径,AB = 8 cm,AC =CD =BD ,M 是AB 上一动点,CM十DM 的最小值为______cm【题型六】与垂径定理有关的分类讨论问题【例1】已知点 A,B,C 都在⊙O 上,且 AB=AC,圆心O 到BC 的距离为6 cm,圆的半径为l4 cm,求AB 的长.【变式1】已知⊙O 的直径CD=10 cm ,AB 是⊙O 的弦,AB= 8 cm,且AB 丄CD,垂足为点 M,则 AC 的长为( ). A.52cm B.54cm C.52cm 或54cm D.32cm 或34cm【变式2】已知,⊙O 的半径是5,AB, CD 为⊙O 的两条弦,且 AB ∥CD, AB=6, CD = 8,求 AB, CD 间的距离。

垂径定理 (共23张PPT)

垂径定理 (共23张PPT)

C 三、小组合作,再探新知
已知:如图,CD是⊙O的直径, 求AA证D证B=明:为B:DC弦连D,,⊥接且AOABAE,,=且B⌒OEB.⌒,则A⌒C =⌒BC A
·O
E D
B
OA=OB
∵ AE=BE
∴ CD⊥AB
逆定理:平分弦(不是直 径)的直径垂直于弦,并且

A⌒D=⌒BD,
⌒ AC
⌒ =BC
平分弦所对的两条弧.
三:小组合作,再探新知
垂径定理逆定理:平分弦(不是直径)
的直径垂直于弦,并且平分弦所对的两条弧。
“不是直径”这个条件能去掉吗?
如果不能,请举出反例。
A
C
·O B
D
三:小组合作,再探新知
活动二:比一比

垂径定理:垂直于弦的直径平分ຫໍສະໝຸດ 弦,并且平分弦所对的两条弧.


E D
B由 ① CD是直径 ② CD⊥AB
重要思路构:造(R由t△)的垂“径七定字理口—诀—”构:造半径半弦弦 Rt△——心(距结合)勾股定理——建立方程
鲁教版九年级下册数学第五章第三节
垂径定理
开发区实验中学 季明莉
赵州桥主桥拱的半径是多少?
问题 :你知道赵州桥吗?它是1300多年前我国隋代建造的石 拱桥, 是我国古代人民勤劳与智慧的结晶.它的主桥是圆弧 形,它的跨度(弧所对的弦的长)为37.4m, 拱高(弧的中点到弦 的距离)为7.2m,你能求出赵洲桥主桥拱的半径吗?
C
解:连接OC.
E 设弯路的半径为Rm,则OF (R 90)m.
F

O
OE CD, D CF 1 CD 1 600 300(m).
22 根据勾股定理,得 OC 2 CF 2 OF 2,即

垂径定理课件(26张PPT)冀教版数学九年级上册

垂径定理课件(26张PPT)冀教版数学九年级上册

知识点 2 垂径定理的推论
如图所示,在☉O中,直径CD与弦AB(非直径)相交于点E. C
【思考】
(1)若AE=BE,能判断CD与AB垂直吗?
O
AD 与 BD (或 AC 与 BC )相等吗?说明你的理由. A
EB
D
(2)若 AD = BD (或 AC =BC ),能判断CD与AB垂直吗?
AE与BE相等吗?说明你的理由.
C
O EB D
结论 垂直于弦的直径平分这条弦,并且平 分这条弦所对的两条弧.
能不能用所学过的知识证明你的结论?
C
O
A
EB
D
已知:如图,在⊙O中,CD为直径,AB为弦,且
CD⊥AB,垂足为E.
求证:AE=BE,AD BD,AC BC.
证明:如图,连接OA,OB.
C
在△OAB中,∵OA=OB,OE⊥AB, ∴AE=BE,∠AOE=∠BOE. ∴ AD BD . ∵∠AOC=180°-∠AOE,∠BOC=180°-∠BOE,
解:(1)CD⊥AB,AD BD (或 AC BC ). C
理由:连接OA,OB,如图所示,则△OAB是等 腰三角形,
∵AE得 AD BD, AC BC .
A
EB
(2)CD⊥AB,AE=BE. 理由: ∵ AD BD,∴∠AOD=∠BOD, 又∵OA=OB,OE=OE, ∴△AEO≌△BEO,
A
E C
O
D
B
拓宽视野: 对于圆中的一条直线,如果具备下列五个条件中的任意两个, 那么一定具备其他三个: (1)过圆心;(2)垂直于弦;(3)平分弦(非直径);(4) 平分弦所对的劣弧;(5)平分弦所对的优弧. 简记为“知二推三”.

人教版数学九年级上册课件垂径定理的推论

人教版数学九年级上册课件垂径定理的推论

沧海可填山可移,男儿志气当如斯。
顶心天随立 朗地月奇高 一男,子志点,与要秋,把霜乾洁且坤。扭O转来E。⊥CD垂足为F,EF=90m.求这段弯路
贫穷是一切艺术职业的母亲。
的半径. 石看纹理山看脉,人看志气树看材。
寄言燕雀莫相唣,自有云霄万里高。 成功往往偏向于有准备的人 志不立,天下无可成之事。
解:连接OC.
① 直径过圆心 ② 垂直于弦 ③ 平分弦
(10)平分弦所对的两条弧的直径过圆心, 并且垂直平分弦.
课堂小结
1. 圆是轴对称图形
任何一条直径所在的直线都是它的对称轴.
O
2. 垂径定理
垂直于弦的直径平分弦,并且平分 弦所对的两条弧.
C
几何语言:
O E A
D
∵CD是⊙O的直径, CD⊥AB. B ∴AE=BE,A⌒C=B⌒C,A⌒D=的弧相等.
M
证明:作直径MN垂直于弦AB
D ∵ AB∥CD
B ∴ 直径MN也垂直于弦CD
∴A⌒M=B⌒M,
O
C⌒M=D⌒M
∴A⌒M-C⌒M =B⌒M-D⌒M
即 A⌒C=B⌒D N
两条弦在圆心的同侧
垂径定理的推论2 有这两种情况:
O
A
B 两条弦在圆心的两侧
C
D
A
B
O
C
D
小练习 C
AD 1 AB 1 37.4 18.7,
2
2
OD=OC-CD=R-7.2
在Rt△OAD中,由勾股定理,得 A
C
D
B
OA2=AD2+OD2
R
即 R2=18.72+(R-7.2)2
O
解得 R≈27.9(m)

垂径定理九年级数学知识点

垂径定理九年级数学知识点

垂径定理九年级数学知识点垂径定理是九年级数学中的一个重要知识点,它涉及到平面几何的基本概念和性质。

在学习垂径定理之前,我们先来了解一下什么是垂径。

一、垂径的定义和性质垂径是在平面上与一条直线垂直相交的线段。

根据垂径的定义,我们可以得到以下性质:1. 一个点到直线的垂径只有一个。

2. 直径的两个垂径互相垂直。

3. 如果两条直径互相垂直,那么它们一定相交于圆的圆心上。

了解了垂径的定义和性质,我们就可以进一步探讨垂径定理了。

二、垂径定理的表述垂径定理是指:如果一条直径和一条垂径相交于圆上的一个点,那么这条垂径所对的弧就是直径所对的弧的一半。

换句话说,直径和垂径所对的弧互为一半。

三、垂径定理的证明垂径定理的证明可以通过利用圆的基本性质和几何知识来完成。

下面我们通过具体的例子来进行证明。

假设在圆O中,AB是直径,CD是与AB垂直相交于点E的垂径。

我们要证明的是:弧CD是弧AB的一半。

首先,连接OA和OB。

根据垂径的性质,我们知道OA和CD互相垂直,所以OA和CD构成一对垂直线段。

同样地,OB和CD也构成一对垂直线段。

由于OA和OB是圆的直径,所以它们穿过圆心O,并且与圆相交于圆上的两个点A和B。

根据圆的性质,直径的两条垂径与圆相交的弧互为一半。

因此,我们可以得出结论:弧CA等于弧CB的一半。

根据弧度的性质,我们知道弧度等于圆心角的度数。

所以弧度CA等于角CBA的度数。

同理,弧度CB等于角CAB的度数。

既然我们已经知道角CBA和角CAB是互补角,而且它们的两条弧互为一半。

所以我们可以得出结论:弧CD等于弧AB的一半。

四、垂径定理的应用垂径定理的应用非常广泛,不仅在九年级的几何学中常常被使用,而且在实际生活中也可以见到它的应用。

例如,在建筑设计中,我们经常会使用垂径定理来确定建筑物的位置和相对位置。

通过利用垂径定理,我们可以确定建筑物的中心位置,从而达到平衡和美观的效果。

此外,在航空和导航领域,垂径定理也被广泛运用。

九年级中考数学复习 垂径定理的复习 课件

九年级中考数学复习 垂径定理的复习 课件
∴PO 平分∠BPD.
变:求证PB=PD
【用】
考点三:垂径定理在生活中的应用
例3:一根排水管的横截面如图所示(排水管的厚度忽略不计),已知排水管的半径
AO=10,排水管中水面宽AB=12.
(1)求圆心O到水面的距离OC.
(2)此时排水管中水的最大深度是多少?
(3)若水量增大,请问排水管中水上涨多少米后,
O
水面宽会变为16?
A
C
B
一根排水管的横截面如图所示(排水管的厚度忽略不计),已知排水管的
半径AO=10,排水管中水面宽AB=12.
(1)求圆心O到水面的距离OC.
解 由题意得,OC⊥AB,
1
1
∴AC=BC= AB= ×12=6.
2
2
由勾股定理,得
OC= 2 − 2 =8 .
O
A
C
半径
B
思考2:根据题目信息,你能求出圆弧形隧道的半径吗?
C

中点
C为
OD=6-R
OA=R
O
A
D
(圆心O在AB上方)
找圆心,连圆心和弧中点
B
O在CD上
OC⊥AB
1
AD =2 =4
CD⊥AB
Rt△OAD中,R2=(6-R)2+42,
13
解得:R= .
3
车辆只走一侧
变式 如图,有一个双车道隧道,横截面呈圆弧形,隧道内路面宽为
如图,在⊙O中,半径OC⊥AB于点D.且AB=8cm,OC=5cm,求DC的长
【思想方法】 求圆中的弦长或其他线段长时,通常
连半径,由半径、弦的一半以及圆心到弦的距离构成
直角三角形进行求解.

北师大九年级数学下32垂径定理

北师大九年级数学下32垂径定理

垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的弧。

垂径定理逆定理:平分弦(不就是直径)的直径垂直于弦,并且平分弦所对的弧。

一、如何运用垂径定理:垂径定理及其逆定理反映了圆的重要性质,就是在圆中证明线段相等、角相等、弧相等及判定两直线的垂直关系的重要依据。

在解有关弦的问题时,常常需要作“垂直于弦的直径”作为辅助线,以构成垂径定理的基本图形(而实际中,往往只需要从圆心作一条与弦垂直的线段即弦心距就可以)。

在运用垂径定理时,涉及弦长a、弦心距d、半径r及弓形高(弦所对的弧的中点到弦的距离)h这四者之间的关系,如图所示,它们的关系就是:222)2(adr+=,hdr+=,根据这两个公式,在a,d,r,h四个量中,知道任意两个量便可求出其她两个量。

典型中考题讲解:1、(2014•盘锦三模)如图,CD为⊙O的直径,CD⊥AB,垂足为点F,AO⊥BC,垂足为E,,(1)求AB的长;(2)求⊙O的半径.2、(2014•浦东新区二模)已知:如图,∠PAQ=30°,在边AP上顺次截取AB=3cm,BC=10cm,以BC为直径作⊙O交射线AQ于E、F两点,求:(1)圆心O到AQ的距离;(2)线段EF的长.3、(2014•金山区一模)如图,已知AB就是⊙O的弦,点C在线段AB上,OC=AC=4,CB=8.求⊙O的半径.4、(2014•槐荫区一模)如图,在⊙O中,点C就是的中点,弦AB与半径OC相交于点D,AB=12,CD=2.求⊙O半径的长.5、.(2014•天河区二模)如图,AB就是⊙O的弦,半径OA=20cm,∠AOB=120°,求线段AB的长.二、圆心角、弧、弦、弦心距之间的相等关系定理及其推论:(1)定理:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦相等,所对的弦的弦心距相等。

(2)推论:在同圆或等圆中,如果两个圆心角、两条弧、两条弦或两条弦的弦心距中有一组量相等,那么它们所对应的其余各组量都分别相等。

中考数学垂径定理

中考数学垂径定理

中考数学垂径定理
一、垂径定理基本形式
垂径定理是圆的基本性质之一,它指出:通过圆心且垂直于任意弦的直径将该弦平分。

用数学语言表示就是:如果一条直径通过圆心O,并且垂直于弦AB,那么它将弦AB平分于点C。

即 AC = CB。

二、圆心到弦的垂线性质
根据垂径定理,我们可以推导出圆心到弦的垂线性质。

如果一条弦通过圆心O,且圆心到弦的垂线交弦于点C,那么这条垂线将弦分为两段相等的部分。

即 AC = CB。

同时,这条垂线也是该弦所对的圆周角平分线。

三、圆心到切线的性质
圆心到切线的性质是指:通过圆心的直线与圆的切线垂直。

如果一条直线通过圆心O,且与圆相切于点P,那么这条直线与切线垂直。

即OP与AP垂直。

同时,切线与过切点的半径也垂直。

四、切线长定理
切线长定理是指:过圆上一点作圆的切线,则切线长相等。

具体来说,如果圆上有点A,且过点A分
别作圆的两条切线AB和AC,那么这两条切线的长度相等。

即 AB = AC。

这个定理可以用来证明一些与切线相关的几何问题。

部编数学九年级上册24.3垂直于弦的直径垂径定理(知识讲解)(人教版)含答案

部编数学九年级上册24.3垂直于弦的直径垂径定理(知识讲解)(人教版)含答案

专题24.3 垂直于弦的直径-垂径定理(知识讲解)【学习目标】1.理解圆的对称性;2.掌握垂径定理及其推论;3.利用垂径定理及其推论进行简单的计算和证明.【要点梳理】知识点一、垂径定理1.垂径定理 垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.2.推论 平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.特别说明: (1)垂径定理是由两个条件推出两个结论,即 (2)这里的直径也可以是半径,也可以是过圆心的直线或线段.知识点二、垂径定理的推论根据圆的对称性及垂径定理还有如下结论:(1)平分弦(该弦不是直径)的直径垂直于弦,并且平分弦所对的两条弧;(2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧;(3)平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧.特别说明:在垂径定理及其推论中:过圆心、垂直于弦、平分弦、平分弦所对的优弧、平分弦所对的劣弧,在这五个条件中,知道任意两个,就能推出其他三个结论.(注意:“过圆心、平分弦”作为题设时,平分的弦不能是直径)【典型例题】类型一、利用垂径定理求圆的半径、弦心距、角度、弦1.如图,AB 是O e 的直径,弦CD AB ^于点E ,点M 在O e 上,MD 恰好经过圆心O ,连接MB .(1)若16CD =,4BE =,求O e 的直径;(2)若M D Ð=Ð,求D Ð的度数.【答案】(1)20;(2)30°【分析】(1)由CD =16,BE =4,根据垂径定理得出CE =DE =8,设⊙O 的半径为r ,则4OE r =-,根据勾股定理即可求得结果;(2)由OM =OB 得到∠B =∠M ,根据三角形外角性质得∠DOB =∠B +∠M =2∠B ,则2∠B +∠D =90°,加上∠B =∠D ,所以2∠D +∠D =90°,然后解方程即可得∠D 的度数.解:(1)∵AB ⊥CD ,CD =16,∴CE =DE =8,设OB r =,又∵BE =4,∴4OE r =-∴222(4)8r r =-+,解得:10r =,∴⊙O 的直径是20.(2)∵OM =OB ,∴∠B =∠M ,∴∠DOB =∠B +∠M =2∠B ,∵∠DOB +∠D =90°,∴2∠B +∠D =90°,∵M DÐ=Ð,∴∠B=∠D,∴2∠D+∠D=90°,∴∠D=30°;【点拨】本题考查了垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.也考查了勾股定理.举一反三:e中,弦AB长50mm.求:【变式1】如图,在半径为50mm的OÐ的度数;(1)AOB(2)点O到AB的距离.【答案】(1)60°;(2)【分析】V是等边三角形,从而可得结论;(1)证明AOBAC BC再利用勾股定理可(2)过点O作OC⊥AB,垂足为点C,利用垂径定理求解,,得答案.解:(1)∵OA,OB是⊙O的半径,∴OA=OB=50mm,又∵AB=50mm,∴OA=OB=AB,∴△AOB是等边三角形,∴∠AOB=60°. (2)过点O作OC⊥AB,垂足为点C,如图所示,由垂径定理得AC =CB =12AB =25mm ,在Rt △OAC 中OC 2=OA 2-AC 2=502-252=252×3,∴OC mm ),即点O 到AB 的距离是.【点拨】本题考查的是等边三角形的判定与性质,圆的性质,垂径定理的应用,勾股定理的应用,熟练垂径定理的运用是解题的关键.【变式2】如图,AB 是O e 的直径,E 为O e 上一点,EF AB ^于点F ,连接OE ,//AC OE ,OD AC ^于点D .若2,4BF EF ==,求线段AC 长.【答案】6【分析】设OE =x ,根据勾股定理求出x ,根据全等三角形的判定定理和性质定理得到AD =OF =3,根据垂径定理得到答案.解:设OE =x ,则OF =x -2,由勾股定理得,OE 2=OF 2+EF 2,即x 2=(x -2)2+42,解得,x =5,∴OF =3,∵AC ∥OE ,OD ⊥AC ,∴OD ⊥OE ,∠A =∠EOF ,∵OA =OE ,EF ⊥AB ,∴△ADO ≌△OFE ,∴AD =OF =3,∵OD ⊥AC ,∴AC=2AD=6.【点拨】本题考查的是垂径定理的应用,掌握垂直弦的直径平分这条弦,并且平分弦所对的两条弧是解题的关键.类型二、利用垂径定理求进行证明2.如图,在⊙O中,AB、AC是互相垂直且相等的两条弦,OD^AB,OE^AC,垂足分别为D、E.(1)求证:四边形ADOE是正方形;(2)若AC=2cm,求⊙O的半径.【答案】(1)见分析【分析】(1)根据AC^AB,OD^AB,OE^AC,可得四边形ADOE是矩形,由垂径定理可得AD=AE,根据邻边相等的矩形是正方形可证;(2)连接OA,由勾股定理可得.(1)证明:∵AC^AB,OD^AB,OE^AC,∴四边形ADOE是矩形,12AD AB=,12AE AC=,又∵AB=AC,∴AD=AE,∴四边形ADOE是正方形.(2)解:如图,连接OA,∵四边形ADOE是正方形,∴112OE AE AC===cm,在Rt△OAE中,由勾股定理可得:OA==,即⊙O cm.【点拨】本题考查圆与正方形,熟练掌握正方形的判定方法、圆有关的性质,是解题的关键.举一反三:【变式1】如图,AB、CD为⊙O的两条弦,AB∥CD,经过AB中点E的直径MN与CD交于F点,求证:CF=DF【分析】根据垂径定理进行解答即可.解:∵E为AB中点,MN过圆心O,∴MN⊥AB,∴∠MEB=90°,∵AB∥CD,∴∠MFD=∠MEB=90°,即MN⊥CD,∴CF=DF.【点拨】本题考查了垂径定理的运用,垂径定理:垂直于弦的直径平分这条弦,并且平分这条弦所对的两条弧.【变式2】已知在以点O为圆心的两个同心圆中,大圆的弦AB交小圆于点C,D(如图).求证:AC=BD.【分析】过圆心O 作OE ⊥AB 于点E ,根据垂径定理得到AE=BE ,同理得到CE=DE ,又因为AE-CE=BE-DE ,进而求证出AC=BD .解:过O 作OE ⊥AB 于点E ,则CE=DE ,AE=BE ,∴BE-DE=AE-CE.即AC=BD.【点拨】本题考查垂径定理的实际应用.类型三、利用垂径定理推论求圆的半径、弦心距、角度、弦3.如图,∠AOB 按以下步骤作图:①在射线OA 上取一点C ,以点O 为圆心,OC 长为半径作圆弧PQ ,交射线OB 于点D ;②连接CD ,分别以点C 、D 为圆心,CD 长为半径作弧,交圆弧PQ 于点M 、N ;③连接OM ,MN .根据以上作图过程及所作图形完成下列作答.(1)求证:OA 垂直平分MD .(2)若30AOB Ð=°,求∠MON 的度数.(3)若20AOB Ð=°,6OC =,求MN 的长度.【答案】(1)证明见分析;(2)90MON Ð=°;(3)6MN =.【分析】(1)由垂径定理直接证明即可得;(2)根据相等的弧所对的圆心角也相等求解即可得;(3)由(2)可得:20COM COD DON Ð=Ð=Ð=°,得出60MON Ð=°,根据等边三角形得判定可得OMN n 为等边三角形,即可得出结果.(1)证明:如图所示,连接MD ,由作图可知,CM CD =,∴»ºCM C D =,∵OA 是经过圆心的直线,∴OA 垂直平分MD ;(2)解:如图所示,连接ON ,∵CM CD DN ==,∴»º»CM C D D N ==,∴30COM COD DON Ð=Ð=Ð=°,∴90MON COM COD DON Ð=Ð+Ð+Ð=°,即90MON Ð=°;(3)解:由(2)可得:20COM COD DON Ð=Ð=Ð=°,∴60MON Ð=°,∵OM ON =,∴OMN n 为等边三角形,∴6MN OM OC ===.【点拨】题目主要考查垂径定理,等弧所对的圆心角相等,等边三角形的判定和性质等,理解题意,综合运用这些基础知识点是解题关键.举一反三:【变式1】 如图,AB 为圆O 直径,F 点在圆上,E 点为AF 中点,连接EO ,作CO ⊥EO 交圆O 于点C ,作CD ⊥AB 于点D ,已知直径为10,OE =4,求OD 的长度.【答案】3【分析】根据垂径定理的逆定理得到OE ⊥AF ,由CO ⊥EO ,得到OC ∥AF ,即可得到∠OAE =∠COD ,然后通过证得△AEO ≌△ODC ,证得CD =OE =4,然后根据勾股定理即可求得OD .解:∵E 点为AF 中点,∴OE ⊥AF ,∵CO ⊥EO ,∴OC ∥AF ,∴∠OAE =∠COD ,∵CD ⊥AB ,∴∠AEO =∠ODC ,在△AEO 和△ODC 中,OAE COD AEO ODC OA OC Ð=ÐìïÐ=Ðíï=î,∴△AEO ≌△ODC (AAS ),∴CD =OE =4,∵OC =5,∴OD=3.【点拨】本题考查垂径定理的逆定理、平行线的判定与性质、全等三角形的判定与性质、勾股定理,熟练掌握垂径定理和全等三角形的判定与性质是解答的关键.【变式2】如图所示,直线=y x 轴、y 轴分别交于A 、B 两点,直线BC 交x 轴于D ,交△ABO 的外接圆⊙M 于C ,已知∠COD =∠OBC .(1)求证:MC ⊥OA ;(2)求直线BC 的解析式.【答案】(1)见分析;(2)y=【分析】(1)利用弧弦角转化得¼¼OC AC=,由垂径定理即可得MC⊥OA;(2)由直线=y x与x轴、y轴分别交于A、B两点,求出A、B两点坐标,从而得到A、B中点M点坐标,再由勾股定理求出OM,进而求出点C坐标.由B、C两点坐标用待定系数法求直线BC解析式即可.解:(1)证明:∵∠COD=∠OBC,∴¼¼OC AC=,∵点M是圆心,∴由垂径定理的推论,得MC⊥OA;(2)解:∵MC⊥OA,∴OG=GA=12OA,∵点M是圆心,∴BM=AM,∴GM是△AOB的中位线,∴GM,∵=y x轴、y轴分别交于A、B两点,∴当x=0时,y y=0时,x=3,∴B(0,A(3,0)∴OB OA=3,∴MG OG=32,连接OM,在Rt△OGM中,由勾股定理,得OM=∴GC=∵点C 在第三象限,∴C (32,).设直线BC 的解析式为:y =kx +b ,∴32k b =+解得:k b ìïíïî,直线BC的解析式为:y =【点拨】本题主要考查了弧弦角的性质,垂径定理,数形结合求出关键点坐标是解决本题的关键.类型四、利用垂径定理推论求进行证明4.如图所示,已知在⊙O 中,AB 是⊙O 的直径,弦CG ⊥AB 于D ,F 是⊙O 上的点,且»»CFCB =,BF 交CG 于点E ,求证:CE =BE .【分析】证法一:连接CB ,可证»»CFGB =,从而可证明CE =BE ;证法二:作ON ⊥BF ,垂足为N ,连接OE ,证明△ONE ≌△ODE ,可得NE =DE,再结合垂径定理可得BN=CD,再根据线段的差即可证明结论;证法三:连接OC交BF于点N,只需要证明△CNE≌△BDE即可证明结论.解:证法一:如图(1),连接BC,∵AB是⊙O的直径,弦CG⊥AB,∴»»CB GB=,∵»»CF BC=,∴»»CF GB=,∴∠C=∠CBE,∴CE=BE.证法二:如图(2),作ON⊥BF,垂足为N,连接OE.∵AB是⊙O的直径,且AB⊥CG,∴»»CB BG=,∵»»CB CF=,∴»»»CF BC BG==,∴BF=CG,ON=OD,∵∠ONE=∠ODE=90°,OE=OE,ON=OD,∴△ONE≌△ODE(HL),∴NE=DE.∵12BN BF=,12CD CG=,∴BN=CD,∴BN-EN=CD-ED,∴BE=CE.证法三:如图(3),连接OC交BF于点N.∵»»=,CF BC∴OC⊥BF,∵AB是⊙O的直径,CG⊥AB,∴»»=,BG BC∴»»»==,CF BG BC=,∴»»BF CG=,ON OD∵OC=OB,∴OC-ON=OB-OD,即CN=BD,又∠CNE=∠BDE=90°,∠CEN=∠BED,∴△CNE≌△BDE,∴CE=BE.【点拨】本题考查垂径定理、圆周角定理、全等三角形的性质和判定等.熟练掌握垂径定理及其推理是解题关键.举一反三:【变式1】如图,已知AB,CD是⊙O内非直径的两弦,求证:AB与CD不能互相平分.【分析】根据反证法的步骤进行证明:先假设AB与CD能互相平分,结合垂径定理的推论,进行推理,得到矛盾,从而肯定命题的结论正确.解:设AB,CD交于点P,连接OP,假设AB与CD能互相平分,则CP=DP,AP=BP,∵AB,CD是圆O内非直径的两弦,∴OP⊥AB,OP⊥C D,这与“过一点有且只有一条直线与已知直线垂直相矛盾”,所以假设不成立,所以AB与CD不能互相平分【点拨】本题考查了反证法,解题的关键是:掌握反证法的步骤.【变式2】如图,已知在⊙O中,»»»==,OC与AD相交于点E.求证:AB BC CD(1)AD∥BC(2)四边形BCDE为菱形.【分析】(1)连接BD,根据圆周角定理可得∠ADB=∠CBD,根据平行线的判定可得结论;(2)证明△DEF≌△BCF,得到DE=BC,证明四边形BCDE为平行四边形,再根据»»=得到BC=CD,从而证明菱形.BC CD解:(1)连接BD,∵»»»==,AB BC CD∴∠ADB=∠CBD,∴AD∥BC;(2)连接CD ,∵AD ∥BC ,∴∠EDF =∠CBF ,∵»»BCCD =,∴BC =CD ,∴BF =DF ,又∠DFE =∠BFC ,∴△DEF ≌△BCF (ASA ),∴DE =BC ,∴四边形BCDE 是平行四边形,又BC =CD ,∴四边形BCDE 是菱形.【点拨】本题考查了垂径定理,圆周角定理,弧、弦、圆心角的关系,全等三角形的判定和性质,菱形的判定,解题的关键是合理运用垂径定理得到BF =DF .类型五、垂径定理及推论解决其他问题5.如图,AB 为O e 的一条弦,连接OA 、OB ,请在O e 上作点C 使得ABC V 为以AB 为底边的等腰三角形.(尺规作图,保留作图痕迹,不写作法)【分析】分别以点A 、B 为圆心,大于AB 长的一半为半径画弧,交于两点,连接这两点,交O e 于点C ,则问题可求解.解:如图所示:【点拨】本题主要考查垂径定理及等腰三角形的性质,熟练掌握垂径定理是解题的关键.举一反三:【变式1】如图,一段圆弧与长度为1的正方形网格的交点是A、B、C,以点O为原点,建立如图所示的平面直角坐标系.(1)根据图形提供的信息,标出该圆弧所在圆的圆心D,并连接AD、CD;(2)请在(1)的基础上,完成下列填空:⊙D的半径为 ;点(6,﹣2)在⊙D (填“上”、“内”、“外”);∠ADC的度数为 .【答案】(1)见分析;(2)90°【分析】(1)根据原点所在的位置,建立平面直角坐标系即可;根据圆心D必在线段AB和线段BC的垂直平分线上进行求解即可;(2)由(1)得到D点坐标,即可得到OA,OD的长,利用勾股定理求解即可得到AD 的长;利用两点距离公式求出点(6,-2)到圆心D的距离与AD的长比较即可得到点(6,-2)与圆D的位置关系;利用勾股定理的逆定理判断△ADC是直角三角形即可得到答案.解:(1)如图所示,即为所求;(2)由(1)可知D 点坐标为(2,0),A 点坐标为(0,4)∴OD =2,OA =4,AD ==∴圆D 的半径为∵点(6,﹣2)到圆心D =∴点(6,﹣2)到圆心D 的距离等于半径的长,∴点(6,﹣2)在⊙D 上.∵D (2,0),C (6,2),A (0,4),∴CD ==,AC ==,∴222CD AD AC +=,∴∠ADC =90°,故答案为:90°.【点拨】本题主要考查了坐标与图形,两点距离公式,确定圆心位置,点与圆的位置关系,勾股定理的逆定理,解题的关键在于能够熟知相关知识.【变式2】如图,O e 中,P 是»AB 的中点,C 、D 是PA 、PB 的中点,过C 、D 的直线交O e 于E 、F .求证:EC FD =.【分析】连结OC,OD,OP交EF于G,由P是»AB的中点,可得¼¼AP BP=,根据弧等相等可得AP=BP,由C、D是PA、PB的中点,根据垂径定理可得OC⊥PA,OD⊥PB,CP=12AP,DP=12BP,可求∠PCO=∠PDO=90°,CP=DP,由勾股定理OC==OD,根据线段垂直平分线判定可得OP是CD的垂直平分线,可得CG=DG,根据垂径定理可得EG=FG即可.解:连结OC,OD,OP交EF于G,∵P是»AB的中点,∴¼¼AP BP=,∴AP=BP,∵C、D是PA、PB的中点,∴OC⊥PA,OD⊥PB,CP=12AP,DP=12BP,∴∠PCO=∠PDO=90°,CP=DP,∴OC=OD,∴OP是CD的垂直平分线,∴CG=DG,∵CD在EF上,EF是弦,OP为半径,OP⊥EF,∴EG=FG,∴EC=EG-CG=GF-GD=DF.∴EC= DF.【点拨】本题考查弧了垂径定理,等腰三角形判定与性质,线段垂直平分线判定与性质,线段和差,掌握垂径定理,等腰三角形判定与性质,线段垂直平分线判定与性质,线段和差是解题关键.类型六、利用垂径定理及推论的实际应用6.把一张圆形纸片按如图方式折叠两次后展开,图中的虚线表示折痕,且折痕6AB =,求O e 的半径.【答案】【分析】过点O 作OE ⊥AB 于点E ,连接OA ,根据垂径定理,可得132AE AB ==,由折叠得: 12OE OA =,然后在Rt AEO V 中,利用勾股定理即可求得结果.解:如图,过点O 作OE ⊥AB 于点E ,连接OA ,∴132AE AB ==,由折叠得:12OE OA =,设=2OE x OA x =,则,∴在Rt AEO V 中,由勾股定理得:222=OE AE OA +,即:2223=4x x +解得: x 1x 2=∴2x答:O e 的半径为【点拨】本题主要考查了折叠的性质、垂径定理和勾股定理,熟练运用相关性质和定理是解题的关键.举一反三:【变式1】某居民小区一处圆柱形的输水管道破裂,维修人员为更换管道,需确定管道圆形截面的半径,下图是水平放置的破裂管道有水部分的截面.(1)请你补全这个输水管道的圆形截面(要求用尺规作图,保留作图痕迹,不写作法);AB=,水面最深地方的高度(即»AB的中点(2)若这个输水管道有水部分的水面宽16cm到弦AB的距离)为4cm,求这个圆形截面所在圆的半径.【答案】(1)见分析(2)10cm【分析】(1)根据尺规作图的步骤和方法做出图即可,(2)先过圆心O作半径CO⊥AB,交AB于点D,设半径为r,得出AD、OD的长,在Rt△AOD中,根据勾股定理求出这个圆形截面的半径.(1)如图所示,⊙O为所求作的圆形截面.(2)如图,作半径OC⊥AB于D,连接OA,AB=8 cm,点C为AB n的中点,则AD=12进而,CD=4 cm.设这个圆形截面所在圆的半径为r cm,则OD=(r-4)cm.在Rt△ADO中,有82+(r-4)2=r2,解得r=10.即这个圆形截面所在圆的半径为10 cm.【点拨】此题考查了垂经定理和勾股定理,关键是根据题意画出图形,再根据勾股定理进行求解.【变式2】如图,有一座圆弧形拱桥,它的跨度AB为30m,拱高PM为9m,当洪水泛滥到跨度只有15m时,就要采取紧急措施,若某次洪水中,拱顶离水面只有2m,即PN=2m时,试求:(1)拱桥所在的圆的半径;(2)通过计算说明是否需要采取紧急措施.【答案】(1)拱桥所在的圆的半径为17m;(2)不需要采取紧急措施,理由见分析.【分析】(1)由垂径定理可知AM=BM、A′N=B′N,再在Rt△AOM中,由勾股定理得出方程,即可求出半径;(2)求出ON=OP﹣PN=15(m),再由勾股定理可得A′N=8(m),则A′B′=2A'N=16米>15m,即可得出结论.解:(1)设圆弧所在圆的圆心为O,连接OA、OA′,设半径为xm,则OA=OA′=OP,由垂径定理可知AM=BM,A′N=B′N,∵AB=30m,AB=15(m),∴AM=12在Rt△AOM中,OM=OP﹣PM=(x﹣9)m,由勾股定理可得:AO2=OM2+AM2,即x2=(x﹣9)2+152,解得:x=17,即拱桥所在的圆的半径为17m;(2)∵OP=17m,∴ON=OP﹣PN=17﹣2=15(m),在Rt△A′ON中,由勾股定理可得A′N=8(m),∴A′B′=2A'N=16米>15m,∴不需要采取紧急措施.【点拨】本题主要考查了垂径定理的应用,勾股定理,准确计算是解题的关键.。

初三数学垂径定理知识精讲

初三数学垂径定理知识精讲

初三数学垂径定理知识精讲知识考点:1、垂径定理及其推论是指:一条直线①过圆心;②垂直于一条弦;③平分这条弦;④平分弦所对的劣弧;⑤平分弦所对的优弧。

这五个条件只须知道两个,即可得出另三个(平分弦时,直径除外),要求理解掌握。

2、掌握垂径定理在圆的有关计算和证明中的广泛应用。

精典例题:【例1】如图,⊙O 的直径AB 和弦CD 相交于E ,若AE =2cm ,BE =6cm ,∠CEA =300,求: (1)CD 的长; (2)C 点到AB 的距离与D 点到AB 的距离之比。

分析:有关弦、半径、弦心距的问题常常利用它们构造的直角三角形来研究,所以连半径、作弦心距是圆中的一种常见辅助线添法。

解:(1)过点O 作OF ⊥CD 于F ,连结DO ∵AE =2cm ,BE =6cm ,∴AB =8cm∴⊙O 的半径为4 cm ∵∠CEA =300,∴OF =1 cm∴1522=-=OF OD DF cm 由垂径定理得:CD =2DF =152cm(2)过C 作CG ⊥AB 于G ,过D 作DH ⊥AB 于H ,易求EF =3cm ∴DE =)315(+cm ,CE =)315(-cm∴253315315-=+-==DE CE DH CG 【例2】如图,半径为2的圆内有两条互相垂直的弦AB 和CD ,它们的交点E 到圆心O 的距离等于1,则22CD AB +=( )A 、28B 、26C 、18D 、35分析:如图,连结OA 、OC ,过O 分别作AB 、CD 的垂线,垂足分别为M 、N ,则AM =MB ,CN =ND 。

∵OM ⊥MN ,ME ⊥EN ,CN =ND∴222OE ON OM =+从而22222OE CN OC AM OA =-+-即222221)2(2)2(2=-+-CD AB ∴2822=+CD AB 故选A 。

∙例1图H E F G O DCBA ∙例2图MN E O DCBA∙例2图MN E O DCBA【例3】如图,等腰△ABC 内接于半径为5cm 的⊙O ,AB =AC ,tanB =31。

九年级数学秋季教材班第29次课 灵活运用垂径定理

九年级数学秋季教材班第29次课   灵活运用垂径定理

灵活运用垂径定理【知识要点】(1)圆的轴对称性:圆是轴对称图形,经过圆心的每一条直线都是它的对称轴.(2)垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧(3)推论1:①平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.②弦的垂直平分线经过圆心,并且平分弦所对的两条弧.③平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧.推论2.圆的两条平行弦所夹的弧相等.垂径定理及推论1中的三条可概括为五点:(1)经过圆心(2)垂直于弦(3)平分弦(4)平分优弧(5)平分劣弧以上五点已知其中的任意两点,都可以推得其它三点。

如图所示,从垂径定理中得到下列性质:(1)有4对全等的直角三角形:(2)有3个等腰三角形:(3)有3条弧相等:(4)添辅助线方法:连接半径或作垂直于弦的直径(或弦心距),是两种重要的添线方法.可见垂径定理及其推论为证明线段相等、角相等、垂直关系与利用勾股定理计算有关线段的长度提供了依据.【经典例题】例1.如图所示,已知⊙O中,弦AD=8cm,半径OC⊥AD,垂足为E,当CE=2cm时,求⊙O的直径.例2.如图,已知在ABC ∆中,︒=∠90A ,AB=3cm ,AC=4cm ,以点A 为圆心, AC 长为半径画弧交CB 的延长线于点D ,求CD 的长.例3.如图,⊙O 的直径AB 和弦CD 相交于点E,已知AE=6cm ,EB=2cm ,∠CEA=30°,求CD 的长。

例4.如图,AB 、CD 是⊙O 的弦,M 、N 分别为AB 、CD 的中点,且∠AMN=∠CNM 。

求证:AB=CD 。

例5.圆弧形拱桥的跨度是12米,拱高4米,求拱桥圆弧所在圆的直径。

CBA ABD【经典练习】 一、填空1.如图1,AB 是⊙O 的直径,弦CD 与AB 相交于点E , 若__________,则CE=DE (只需填写一个你认为适当的条件)2.如图2,⊙O 的直径CD 与弦AB 交于点M ,添加条件: _________(写出一个即可),就可得到M 是AB 的中点。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初三数学垂径定理、圆心角、弧、弦、弦心距间的关系知识精讲一. 本周教学内容:垂径定理、圆心角、弧、弦、弦心距间的关系[学习目标]1. 理解由圆的轴对称性推出垂径定理,概括理解垂径定理及推论为“知二推三”。

(1)过圆心,(2)垂直于弦,(3)平分弦,(4)平分劣弧,(5)平分优弧。

已知其中两项,可推出其余三项。

注意:当知(1)(3)推(2)(4)(5)时,即“平分弦的直径不能推出垂直于弦,平分两弧。

”而应强调附加“平分弦(非直径)的直径,垂直于弦且平分弦所对的两弧”。

2. 深入理解垂径定理及推论,为五点共线,即圆心O,垂足M,弦中点M,劣弧中点D,优弧中点C,五点共线。

(M点是两点重合的一点,代表两层意义)COA BMD3. 应用以上定理主要是解直角三角形△AOM,在Rt△AOM中,AO为圆半径,OM为弦AB的弦心距,AM为弦AB的一半,三者把解直角形的知识,借用过来解决了圆中半径、弦、弦心距等问题。

无该Rt△AOM时,注意巧添弦心距,或半径,构建直角三角形。

4. 弓形的高:弧的中点到弦的距离,明确由定义知只要是弓形的高,就具备了前述的(4)(2)或(5)(2)可推(1)(3)(5)或(1)(3)(4),实际可用垂径定理及推论解决弓形高的有关问题。

5. 圆心角、弧、弦、弦心距四者关系定理,理解为:(1)圆心角相等,(2)所对弧相等,(3)所对弦相等,(4)所对弦的弦心距相等。

四项“知一推三”,一项相等,其余三项皆相等。

源于圆的旋转不变性。

即:圆绕其圆心旋转任意角度,所得图形与原图象完全重合。

()()()()1234⇔⇔⇔O B'M'A' BMA6. 应用关系定理及推论,证角等,线段等,弧等,等等,注意构造圆心角或弦心距作为辅助线。

7. 圆心角的度数与弧的度数等,而不是角等于弧。

二. 重点、难点:垂径定理及其推论,圆心角,弧,弦,弦心距关系定理及推论的应用。

【典型例题】例1. 已知:在⊙O 中,弦AB =12cm ,O 点到AB 的距离等于AB 的一半,求:∠AOB 的度数和圆的半径。

点悟:本例的关键在于正确理解什么是O 点到AB 的距离。

解:作OE ⊥AB ,垂足为E ,则OE 的长为O 点到AB 的距离,如图所示:∴==⨯=OE AB cm 1212126() 由垂径定理知:AE BE cm ==6∴△AOE 、△BOE 为等腰直角三角形 ∴∠AOB =90°由△AOE 是等腰直角三角形 ∴==OA AE 626, 即⊙O 的半径为62cm点拨:作出弦(AB )的弦心距(OE ),构成垂径定理的基本图形是解决本题的关键。

例2. 如图所示,在两个同心圆中,大圆的弦AB ,交小圆于C 、D 两点,设大圆和小圆的半径分别为a ,b 。

求证:AD BD a b ·=-22证明:作OE ⊥AB ,垂足为E ,连OA 、OC 则OA a OC b ==,在Rt AOE ∆中,AE OA OE 222=-在Rt COE ∆中,CE OC OE 222=-()()∴-=---AE CE OA OE OC OE 222222=-=-OA OC a b2222即()()AE CE AE CE a b +-=-22BD AC ED CE ==,AD ED AE CE AE =+=+∴ BD AC CE AE ==-即22b a BD AD -=⋅点拨:本题应用垂径定理,构造直角三角形,再由勾股定理解题,很巧妙。

例3. ⊙O 的直径为12cm ,弦AB 垂直平分半径OC ,那么弦AB 的长为( ) A. 33cmB. 6cmC. 63cmD. 123cm(2001年辽宁)解:圆的半径为6cm ,半径OC 的一半为3cm ,故弦的长度为 ()2632321632222-=-=()cm故选C 。

例4. 如图所示,以O 为圆心,∠AOB =120°,弓形高ND =4cm ,矩形EFGH 的两顶点E 、F 在弦AB 上,H 、G 在AB ⋂上,且EF =4HE ,求HE 的长。

DBO解:连结AD 、OG ∠=∠=⨯︒=︒AOD AOB 121212060 OA =OD∴△AOD 为等边三角形∵OD ⊥AN∴NO =ND =4cm ∵OD =OG =8cm设HE x =,则()MG x MO x cm ==+24, 在Rt OMG ∆中,由MG OM OG 222+=得: ()()x x ++=42822解得:x x 121254==-,(舍去) ∴HE 的长为125cm点拨:借助几何图形的性质,找出等量关系,列出方程求解,这是解决几何计算题的常用方法。

例5. 已知,AB 是⊙O 的弦,半径OC ⊥AB 于点D ,且AB cm OC cm ==85,,则DC 的长为( ) A. 3cmB. 2.5cmC. 2cmD. 1cm(2001年北京东城区)解:OD =-=54322∴=-=DC cm 532()故选C 。

常见错误:将DC 错算为OD ,即算出OD 就不再计算DC 了,从而错选A 。

这种错误十分常见,一定要注意慎重的计算完全。

例6. 在⊙O 中,AB AC ⋂=⋂2,那么( )A. AB AC =B. AB AC =2C. AB AC >2D. AB AC <2 解:如图所示,连结BC 。

AB AC ⋂=⋂2 ∴⋂=⋂AC BC∴=AC BC在△ABC 中,AB <AC +BC ∴AB <2AC 故选D 。

点拨:本题考察弦、弧、圆心角之间的关系,要正确理解三者之间的关系定理。

例7. 已知⊙O 的半径是10cm ,AB ⋂是120°,那么弦AB 的弦心距是( )A. 5cmB. 53cmC. 103cmD.523cmA BOC解:如图所示,OA cm =10,∠AOB =120° ∴∠=∠=︒AOC AOB 1260 在Rt △ACO 中,CO AO AOC cm =∠=⨯=·cos ()10125 故选A 。

点拨:本题考察弧、弦、弦心距、圆心角之间的关系,要正确构造三角形,灵活运用。

例8. 等腰△ABC 的顶角A =120°,腰AB =AC =10,△ABC 的外接圆半径等于( ) A. 20 B. 15 C. 10 D. 5 解:如图所示,连结OA 、OB∵AB =AC =10∴⋂=⋂AB AC由垂径定理的推论,得OA 垂直平分BC ,垂足为D 又∵∠BAC =120°∴∠ABC =∠ACB =30° ∴∠BAO =60°又∵OA =OB∴△AOB 是等边三角形 ∴半径OA =OB =AB =10 故选C 。

点拨:垂径定理及其推论是很重要的性质,主要解题思路是构造特殊的三角形,然后应用定理解题。

例9. 点P 为半径是5的⊙O 内一点,且OP =3,在过点P 的所有弦中,长度为整数的弦一共有( ) A. 2条 B. 3条 C. 4条 D. 5条(2002年山东)解:选C 。

点拨:圆是中心对称图形,故与P 点对称的点,关于中点对称有一个,关于轴对称有2个。

因此,长度为整数弦一共有4条。

例10. 如图所示,M 、N 分别是⊙O 的弦AB 、CD 的中点,AB =CD 。

求证:∠AMN =∠CNMD点悟:由弦AB =CD ,想到利用弧,圆心角、弦、弦心距之间的关系定理,又M 、N 分别为AB 、CD 的中点,如连结OM 、ON ,则有OM =ON ,OM ⊥AB ,ON ⊥CD ,故易得结论。

证明:连结OM 、ON∵O 为圆心,M 、N 分别为弦AB 、CD 的中点 ∴OM ⊥AB ,ON ⊥CD ∵AB =CD ∴OM =ON∴∠OMN =∠ONM∵∠AMN =90°-∠OMN ∠CNM =90°-∠ONM ∴∠AMN =∠CNM点拨:有弦中点,常用弦心距利用垂径定理及圆心角、弧、弦、弦心距之间关系定理来证题。

例11. 在⊙O 1与⊙O 2中,分别有40°的MN ⌒和M N 11⌒,那么:(1)MN ⌒与M N 11⌒相等吗?(2)∠MO N 1与∠M O N 121相等吗?错解:(1)因为MN ⌒与M N 11⌒都是40°的弧所以MN ⌒=M N 11⌒(2)MN ⌒与M N 11⌒相等,所以∠∠M O N M O N 11121=常见错误:(1)误以为弧的度数相等弧亦相等,两弧相等必须是在同圆或等圆的前提下,看它们是否“重合”;(2)应该知道圆心角是角,它的大小是可以用度数来衡量的,度数相同的角就相等。

可见它不受所对的弧相等与否来制约。

正解:(1)不一定相等。

(2)相等。

(答题时间:30分钟) 一. 选择题。

1. 下列命题中,正确的命题是( )A. 平分一条弦的直径,垂直平分这条弧所对的弦B. 平分弦的直径垂直于弦,并平分弦所对的弧C. 在⊙O 中,AB 、CD 是弦,若AC BD ⌒⌒=,则AB ∥CD D. 圆是轴对称图形,对称轴是圆的每一条直径2. 已知P 为⊙O 内一点,且OP =3cm ,如果⊙O 的半径是4cm ,那么过P 点的最短弦等于( ) A. 2cmB. 3cmC. 7cmD. 27cm3. 弓形弦长24,弓形高为8,则弓形所在圆的直径是( ) A. 10 B. 26 C. 13 D. 54. 在直径是10cm 的⊙O 中,AB ⋂为60°,则弦AB 的弦心距是( )A. 103cmB.1523cmC. 53cmD.523cm 5. AB 、CD 分别为大小不同圆的弦,共AB =CD ,那么AB CD ⋂⋂、的关系是( )A. AB CD ⋂=⋂B. AB CD ⋂>⋂C. AB CD ⋂<⋂D. 不确定二. 填空题。

6. 已知AB 为⊙O 直径,AC 为弦,OD ∥BC 交AC 于D ,AC =6cm ,则DC =____________。

7. 直角三角形外接圆的圆心在___________,它的半径为___________一半。

8. 若一个圆经梯形ABCD 四个顶点,则这个梯形是___________梯形。

9. 弦AB 把⊙O 分3:7,则∠AOB =___________。

10. 若⊙O 半径是4,P 在⊙O 内,PO =2,则过P 点的最短的弦所对劣弧是___________度。

11. ⊙O 中,弦AB 垂直直径CD 于点P ,半径OA =4cm ,OP =2cm ,则∠AOB =__________,∠ADC =__________,BD ⋂度数为__________,△ADC 周长为__________ cm 。

三. 解答题。

12. 如图,⊙O 的两弦AB ,CD 互相垂直于H ,AH =4,BH =6,CH =3,DH =8,求⊙O 半径。

相关文档
最新文档