射频电路理论与设计第6章滤波器的设计
滤波器的设计PPT讲解
![滤波器的设计PPT讲解](https://img.taocdn.com/s3/m/abdac1f1f705cc175527091c.png)
3.带通滤波器
功能:让有限带宽( wL w wH )内的交流信号 顺利通过,让频率范围之外的交流信号受到衰减。
wL ——下限频率, wH ——上限频率,
带宽:Bw wH wL
中心角频率:
w0 wn wH wL
A0 s n / 2 带通滤波器传递函数的一般表达式为: A((s) D( s )
A0 为常数, D ( s ) 为多项式, s
jw
A((s ) 的零点在 w 处。 二阶低通滤波器传递 2 A w 0 n 函数的典型表达式为: A( s) wn 2 2 s s wn wn 为特征角频率,Q 为等效品质因数。 Q
2.高通滤波器(HPF) 让高于截止频率 wc 的高频信号通过, 而对从0到阻带频率 ws 的低频频率受到衰减。
三、参数
3、阻尼系数与品质因数
– 阻尼系数是表征滤波器对角频率为w0信号的阻尼作用, 是滤波器中表示能量衰耗的一项指标。 –阻尼系数的倒数称为品质因数,是评价带通与带阻滤波器 频率选择特性的一个重要指标,Q= w0/△w。式中的△w为 带通或带阻滤波器的3dB带宽, w0为中心频率。
4、灵敏度
–滤波电路由许多元件构成,每个元件参数值的变化都会影 响滤波器的性能。滤波器某一性能指标y对某一元件参数x 变化的灵敏度记作Sxy,定义为: Sxy=(dy/y)/(dx/x)。 –该灵敏度与测量仪器或电路系统灵敏度不是一个概念,该 灵敏度越小,标志着电路容错能力越强,稳定性也越高。
A0 A( S ) n S an1 S n1 a1 S a0
多项式系数 an1 , a1 , a0 可根据不同的 次n查表得到 。
和阶
3. 贝赛尔滤波器:
滤波器设计PPT课件
![滤波器设计PPT课件](https://img.taocdn.com/s3/m/9f09d6c552d380eb63946d3f.png)
滤波器
输出
开关电容滤波器(SCF)则直接在抽样信号下工作,不需经过 A/D、D/A变换,毫无疑问,就处理连续信号来说,这就是它比数字 滤波器优越之处。
2021
34
开关电容滤波器
有源双二阶滤波器
R1 Vi +-
R5
R2
C1
R4
-
+ A1
VBF
C2 +A2
R3 VLP
R3 + A3 -VLP
2021
35
C
1
iC (t) T C [v 1 (t) v 2 (t) ]R S C [v 1 (t) v 2 (t)]
RSC
TC C
1
CfC
2021
28
开关电容电路
开关电容能模拟成电阻,解决了模拟集成电路制造中的 一个关键问题。因为在集成电路制造过程中,电阻常常受 到容差和热漂移所困扰,而且要占据昂贵的芯片面积。
电容必然是可编程的。改变会在频谱图上使响应上移或 下移。另一方面,如果需要一个固定和稳定的特征频率 fCLK ,则可用一石英晶体振荡器来产生fCLK。
2021
33
开关电容滤波器
抽样数据系统——开关电容滤波器 开关电容滤波器(SCF)的输入和输出信号均为抽样信号。
连续
抗混叠
恢复
连续
输入
滤波器
SCF
S/H
H()
巴特沃思 贝塞尔
切比雪夫
/0
2021
7
4.滤波器的电路结构 无限增益多重反馈滤波器电路
Z2
Z5
Z1
Z4
-
A
+ Z3
(a)基本电路
C2
射频电路设计(第六章)
![射频电路设计(第六章)](https://img.taocdn.com/s3/m/18c8102d7375a417866f8ffa.png)
环境温度对半导体的电性能 有很大影响。由功率损耗使 器件内部加热,可造成超过 100—1500c的温升。注:在
例题中忽略了带隙能随温度的变 化,这将在第7章中讨论。
6.1半导体基础
二、掺杂半导体:
通过引入杂质原子可以引发半导体的电特性作较大的改变。 这种过程称为掺杂。 1、 N型半导体:为获得N型掺杂(提供附加电子到导带),所 引入的原子较之原来在本征半导体晶格上的原子有更多的价 电子。如:将磷(P)原子移植到si内,就在中性晶格内提供了 弱束缚电子,如右图(b)
6.1半导体基础
以电势的导数代替电场,积分得扩散阻挡层电压(称内建电势):
其中nn和np仍分别是N型半导体和P型半导体中的电子浓度。
ห้องสมุดไป่ตู้
如果再考虑空穴电流从P型半导体到N型半导体的流动以及与之相抵消的场 感应电流中的相应部分IPF,可以得到扩散阻挡层电压: 若:P型半导体中受主浓度NA>>ni N型半导体中施主浓度ND>>ni 则n n= ND n p = ni2 /NA
总电压降为扩散电压:
6.1半导体基础
正空间电荷区在N型半导体内的延伸长度: 正空间电荷区在N型半导体内的延伸长度: 总长度: 三、结点电容:是射频器件的一个重要参量,因为 在高频运行下低电容意味着有快捷的开关速度和适应 能力。通过熟知的平扳电容器公式可找出结电容: C=εA/ds 把距离代人上式.得到电容的表达式如下
I=I0(e v/VT-1)
在负压下有一小的、与电压无关的电流 在负压下有一小的、与电压无关的电流(-Io),而在正压下则为指数增长电流。(图示中的函数关系是理 ,而在正压下则为指数增长电流。
想化的,末考虑到击穿现象。但上式显示出了在外加交流电压下PN结的整流性质。)
滤波器的设计原理
![滤波器的设计原理](https://img.taocdn.com/s3/m/0769024c91c69ec3d5bbfd0a79563c1ec4dad74f.png)
滤波器的设计原理
滤波器是一种用于处理信号的电路或系统,其设计原理是基于信号处理的需求和特定滤波器类型的特性。
滤波器的设计可以根据以下原理进行:
1. 滤波器类型的选择:根据信号处理的需求,选择合适的滤波器类型,如低通滤波器、高通滤波器、带通滤波器或带阻滤波器等。
2. 频率响应的设定:根据信号处理要求,在滤波器的频率响应中设定所需的增益和衰减。
3. 滤波器的阶数选择:滤波器的阶数决定了其滤波效果的陡峭程度和相位延迟的程度。
选择适当的阶数可以平衡滤波效果和系统的复杂度。
4. 滤波器的传输函数设计:根据滤波器类型和频率响应的设定,通过设计传输函数来实现所需的滤波效果。
5. 滤波器电路的搭建:将设计好的传输函数转化为实际的电路结构,包括使用各种电子元器件(如电容器、电阻器、电感器等)搭建滤波器电路。
6. 参数调整和优化:根据实际应用的需求和系统性能的要求,对滤波器进行参数调整和优化,例如调整滤波器的截止频率、增益等,以获得最佳的滤波效果。
通过以上原理和步骤,可以设计出满足特定信号处理需求的滤波器,实现对信号的滤波和去除不需要的成分。
滤波器的设计需要考虑信号的频率特性、滤波效果、系统复杂度以及实际应用的要求等因素。
射频电路理论与设计(第2版)-PPT-第6章
![射频电路理论与设计(第2版)-PPT-第6章](https://img.taocdn.com/s3/m/9d89cb6527284b73f24250bc.png)
《射频电路理论与设计(第2版)》
(2)带宽。任何一个网络都只能在单一频率上实现匹
配,欲展宽带宽,电路设计要在简单性、带宽以及造 价之间有所权衡。 (3)可实现性。可实现性既要考虑生产工艺的可实现 性,又要考虑尺寸要求的可实现性。 (4)可调ຫໍສະໝຸດ 性。变化的负载需要可调整的匹配网络。
《射频电路理论与设计(第2版)》
图6.2 负载位于归一化单位电导圆内时 L形匹配的圆图图解
《射频电路理论与设计(第2版)》
《射频电路理论与设计(第2版)》
2. 负载位于1+jx圆(归一化单位电 阻圆)内
图6.4 负载位于归一化单位电阻圆
《射频电路理论与设计(第2版)》
3. 负载位于1+jx圆和1+jb圆外
图6.5 负载位于归一化单位电阻和电导圆外时 L形匹配的圆图图解
《射频电路理论与设计(第2版)》
6.1
匹配网络的目的及选择方法
集总参数元件电路的匹配网络设计
6.2
6.3
分布参数元件电路的匹配网络设计
6.4
混合参数元件电路的匹配网络设计
《射频电路理论与设计(第2版)》
6.1 匹配网络的目的及选择方法
1. 匹配网络的目的
匹配包括两个方面,一个是传输线与负载之间的 匹配;一个是信源与负载之间的共轭匹配。传输线与负 载之间的匹配,是使传输线无反射、线上载行波或尽量 接近行波的一种技术措施。
载与传输线间L形
匹配网络共有8种 组合,如图6.1所 示。 图6.1 8种负载与传输线间L形匹配网络
《射频电路理论与设计(第2版)》
双元件负载匹配网络采用图6.1中的哪种形式,取 决于归一化负载阻抗在史密斯圆图上的位置。有3种可能 性,下面分别加以讨论。
射频微波电路综合课程设计带通滤波器实验报告(模板)
![射频微波电路综合课程设计带通滤波器实验报告(模板)](https://img.taocdn.com/s3/m/34e287a6e53a580217fcfe22.png)
射频微波电路综合课程设计带通滤波器实验报告射频微波电路综合课程设计带通滤波器实验报告篇一:射频电路课程设计摘要滤波电路的综合设计是相当复杂的,需要好多理论知识和数学知识做铺垫,我们知道用于无线的模拟电路是在吉赫兹频段,高性能计算机、工作站,当然还有作为这方面例子的个人计算机,他们所使用电路的时钟频率不断的增加。
全球定位系统载波频率在122 7.60m hz~1575.42mh z范围,而此次课程设计主要向大家介绍最大平滑巴特沃兹微波电路和等波纹契比学夫微波电路设计方法。
当微波电路工作在射频的低端频段,可以使用集总参数的元件进行设计,利用集总参数的电感和电容,按照一定的设计规则选取合适的电路和元件的参数,就可以实现归一化低通滤波电路的设计。
然后通过利用频率变换就可以低通微波电路、高通微波电路、带通微波电路和带阻微波电路的设计。
关键字:滤波电路平滑巴特沃兹微波电路等波纹契比学夫微波电路一引言通过对射频设计电路的学习,我们知道无线通信的快速发展,更紧凑的滤波器和混频器电路正在被设计和使用。
通常这些电路的工作频率高于1Ghz。
毫无疑问这种趋势将会继续下去,因此不仅要有独特性能的技术装置,而且要学会对高频电路中遇到的问题进行分析,我们知道随着频率的升高以及其相应的电磁波的波长变得可与分立电路元件的尺寸相比拟时,电阻、电容和电感这些元件的电响应就开始偏离他们的理想频率特性,下面将简单的向大家介绍一下本次滤波电路的设计方法,以及如何对其进行归一化。
射频电路设计-理论与应用_图文
![射频电路设计-理论与应用_图文](https://img.taocdn.com/s3/m/c3bf7e6ef78a6529647d53ac.png)
C1
模拟引线L R 模拟引线L
L2
R
L1
L2
模拟引线间电容Cb
C2
高频电阻等效电路表示法 高频线绕电阻等效电路表示法
18
例1.3 求出用长2.5cm,AWG26铜线连接的500Ω金属膜电阻的 高频阻抗特性,寄生电容Ca=5pF。 解: AWG26的d=16mil,a= 8×2.54×10-5m=0.2032mm
10f6,H1z07
108 109
2
1.8 半径 a=1mm铜线归一化
1.6 AC电流密度的频率特性
1.4
1.2 1kHz
1
0.8 10kHz
0.6
100MHz
0.4 100kHz
1GHz
0.2
1MHz 10MHz
00 0.1 0.2 0.3 0.4r,0.5m0m.6 0.7 0.8 0.9 1
17
射频电路设计-理论与应用_图文.ppt
近年来由于通信技术及计算机技术的迅猛发展, 工作频率日益提高,射频和微波电路得到广泛应用。
目前大多数教材都是面向两种不同的读者: 1. 具有坚实理论基础的研究生常常通过电磁场处 理方法进入这个领域。
2. 对数学和物理的严格性不太感兴趣的工程技术人 员则更喜欢采用电路理论来处理问题。
平面电磁波的主要性质: 1. 电磁波是横波,E和H都与传播方向垂直; 2. E和H互相垂直,且同相位。
10
根据经典场论,电场和磁场分量的比值就是本征阻抗(波
阻抗):
其中磁导率μ和介电常数ε与材料有关,μ0=4π×10-7(H/m), ε0=8.85×10-12 (F/m) , μr和εr为相对值。
• 在第2章“传输线分析”中将讨论微带线的阻抗特性,其定量 求解过程在第3章“Smith”圆图中介绍。
射频滤波器的设计与仿真设计
![射频滤波器的设计与仿真设计](https://img.taocdn.com/s3/m/37c801b7f524ccbff12184e4.png)
射频滤波器的设计与仿真摘要射频滤波器,主要用于电子设备、频率高工作更大的衰减高频电子设备产生的干扰信号。
射频滤波器是最基本射频设备。
能够由微带线组成,也能够由电阻,电容等组成。
由实践可知,很多射频系统中的元件不存在准确频率选择性,因此往往需要添加滤波器,用来极其准确地完成设定的选择特性,所以对射频滤波器的设计有重要的意义。
在射频有源电路的各级之间都可以借助滤波器对射频信号进行隔离、选择或是重新组合。
在设计模拟电路时,需要对高频信号在特定频率或频段内的频率分量做放大或衰减处理。
这是十分重要的任务,因此本文将重点研究如何设计和实现这个任务的射频电路——射频滤波器。
关键词:射频,微波滤波器,微带线,workbench ,Advanced Design System;The design and simulation of radio frequency filtersABSTRACTRf filter, mainly used in electronic devices, high frequency work greater interference signal attenuation of high frequency electronic device. Rf filter is the most basic radio frequency devices. Can consist of microstrip line, also can by resistance, capacitance, etc.The practice shows that a lot of rf components do not exist in the system accurate frequency selective, so often need to add the filter, used extremely accurately complete set of selected features, so the design of rf filter has an important significance. Between active rf circuit at all levels can use filter to segregate, choice or rearrange the rf signal.In analog circuit design, the need for high frequency signal at a particular frequency or frequency component in the spectrum for amplification or decay process. It is very important task, so this article will focus on how to design and implement the task of rf circuit, rf filter. Keywords: R f, Microwave filter, Microstrip line, The workbench; ADS;目录第一章绪论 (1)1.1 课题研究的背景及意义 (1)1.2 国内外滤波器的研究现状及发展趋势 (2)1.2.1 国内外滤波器的发展现状 (2)1.3 论文组织 (3)第二章射频滤波器 (4)2.1 滤波器的分类 (4)2.2 滤波器的主要参数 (4)2.3 滤波器的综合设计和分析方法 (6)2.3.1 综合设计方法 (6)2.3.2 分析方法 (7)2.4 常见的射频滤波器 (7)第三章 worhbench设计与仿真 (9)3.1 workbench软件介绍 (9)3.2 模拟带通滤波器设计 (9)3.2.1 设计目的 (9)3.2.2 设计要求 (9)3.3滤波器的设计原理及组件选择 (9)3.3.1 滤波器介绍 (9)3.3.2 有源滤波器的设计 (10)3.3.3 滤波器类型的选择分析 (10)3.3.4 741运算放大器 (12)3.4.workbench电路仿真设计 (13)3.4.1 仿真电路图: (13)第四章微带滤波器的设计与仿真 (16)4.1微带线 (16)4.1.1 微带线传输的主模 (16)4.1.2 微带线的特性参量 (16)4.2耦合微带线 (16)4.3微波谐振器 (18)4.3.1 微波谐振器的基本参量 (18)4.3.2 谐振腔的等效电路 (20)4.4基本阻抗匹配理论 (20)4.4.1匹配电路的概念和意义 (20)4.4.2射频电路匹配网络 (21)4.5 微带滤波器的设计与仿真 (21)4.5.1 微带滤波器的基本原理 (21)4.5.2 微带耦合滤波器的设计 (22)4.5.3 电路参数设置 (22)4.5.4 原理图仿真 (23)4.5.5 滤波器电路的优化 (25)4.6 本章小结 (28)参考文献: (29)第一章绪论1. 1课题研究的背景及意义根据电气和电子工程师协会对于频谱划分的方式,通常把频30MHz,--4GHz 的频段范围称为射频,另外处于300MHz~300GHz的频段范围。
射频滤波器设计
![射频滤波器设计](https://img.taocdn.com/s3/m/1a4c5574effdc8d376eeaeaad1f34693daef10fb.png)
射频滤波器设计一、引言射频滤波器是一种重要的电子元件,用于滤除射频电路中不需要的频率成分,以保证系统的正常运行。
本文将介绍射频滤波器的设计方法和步骤。
二、射频滤波器的类型根据滤波器的工作原理,射频滤波器可以分为主动滤波器和被动滤波器两大类。
主动滤波器采用放大器等主动元件来实现滤波功能,适用于对信号进行加工和处理的场合;被动滤波器则由电感、电容和电阻等被动元件构成,适用于对信号频率进行筛选和分离的场合。
三、射频滤波器设计步骤1. 确定滤波器的规格和参数:根据应用场景和需求,确定滤波器的工作频率范围、通带衰减、阻带衰减等参数。
2. 选择滤波器的拓扑结构:根据规格和参数要求,选择合适的滤波器结构,如低通滤波器、高通滤波器、带通滤波器或带阻滤波器等。
3. 选择滤波器的元件:根据选定的拓扑结构,选择合适的电感、电容和电阻等元件,并计算它们的数值。
4. 进行滤波器的电路设计:根据元件的数值,设计滤波器的电路图,并进行仿真和优化,以满足预定的滤波规格和参数。
5. 制作滤波器的原型:根据设计的电路图和元件数值,制作滤波器的原型电路板。
6. 进行滤波器的测试和调整:使用仪器设备对滤波器进行测试,如频率响应、插入损耗等,根据测试结果对滤波器进行调整和优化。
7. 滤波器的最终验证和生产:经过调整和优化后的滤波器,需要进行最终的验证测试,确保其满足设计要求。
之后,可以进行批量生产和应用,以满足实际的工程需求。
四、射频滤波器设计的注意事项1. 保持信号的完整性:滤波器的设计需要综合考虑信号质量与功耗等因素,确保通信信号的完整性。
2. 抑制杂散信号:射频滤波器的设计要能有效抑制杂散信号,以避免对系统产生不需要的干扰。
3. 阻止电磁干扰:射频滤波器也需要具备一定的抗干扰能力,以阻止外界的电磁干扰对系统的影响。
4. 注意滤波器的可靠性和稳定性:射频滤波器在工作过程中需要保持一定的可靠性和稳定性,以确保系统的正常运行。
五、结语射频滤波器的设计是一项复杂而重要的工作,它能够有效地滤除射频电路中不需要的频率成分,保障系统的稳定运行。
第6章射频滤波器的设计
![第6章射频滤波器的设计](https://img.taocdn.com/s3/m/b60b83fa8ad63186bceb19e8b8f67c1cfbd6ee5f.png)
第6章射频滤波器的设计射频滤波器是一种用于滤除射频电路中杂散信号的电子设备。
在射频电路设计中,滤波器的设计是非常关键的一步,它可以帮助我们滤除不需要的频率成分,提高系统的性能。
本章将介绍射频滤波器的设计原理和常用的设计方法。
射频滤波器的设计原理主要基于电路的频率响应特性。
电路的频率响应可以通过其传递函数来描述,传递函数是输入信号和输出信号之间的关系。
射频滤波器的传递函数通常可以用一个低通、高通、带通或带阻滤波器来表示。
在射频滤波器的设计中,首先需要确定所需的频率范围和带宽。
然后,根据设计要求选择合适的滤波器类型和拓扑结构。
常见的射频滤波器类型包括LC滤波器、谐振器滤波器和微带滤波器等。
LC滤波器是最简单的一种射频滤波器,它由电感和电容组成。
LC滤波器可以通过调整电感和电容的数值来改变其频率响应。
LC滤波器常用于低频射频电路中。
谐振器滤波器是一种基于谐振原理的滤波器。
它通过调整谐振频率来实现滤波效果。
谐振器滤波器通常包括谐振电路和耦合器等组件。
谐振器滤波器在射频电路中被广泛应用,可以实现较高的选择性和抑制杂散信号的能力。
微带滤波器是一种基于微带线的滤波器。
微带线是一种在介质基板上制作的导电线路,可以实现高频率的传输和滤波。
微带滤波器具有体积小、重量轻和易于集成等优点,广泛应用于射频通信系统和微波电路中。
在射频滤波器的设计中,还需要考虑其他因素,如插入损耗、带宽、阻带抑制等。
插入损耗是滤波器在通带内引入的信号功率损耗。
带宽是滤波器的通带范围,决定了滤波器的频率选择性能。
阻带抑制是滤波器在阻带内对信号的抑制能力。
射频滤波器的设计方法包括经验设计和优化设计两种。
经验设计是基于设计师的经验和规范来进行的,通常用于对于简单的滤波器设计。
优化设计是通过数学和计算机仿真的方法来实现的,可以得到更精确和高性能的滤波器设计。
总之,射频滤波器的设计是射频电路设计中非常重要的一环。
合理的滤波器设计可以提高系统的性能和抑制杂散信号,对于射频电路的正常工作具有重要影响。
射频电路理论与设计
![射频电路理论与设计](https://img.taocdn.com/s3/m/78697cc7bb0d4a7302768e9951e79b89680268e7.png)
射频电路理论与设计《射频电路理论与设计》从传输线理论和射频网络的观点出发,系统地介绍了射频电路的基本理论及设计方法,同时将史密斯圆图的图解方法应用到射频电路的设计之中。
《射频电路理论与设计(第2版)/21世纪高等院校信息与通信工程规划教材·精品系列》共12章,第1章为引言;第2~4章为传输线理论、史密斯圆图和射频网络基础,系统地介绍了射频电路的基本概念、基本参数、图解工具和基本研究方法;第5~11章为谐振电路、匹配网络、滤波器、放大器、振荡器、混频器和检波器的设计,这些电路设计可以构成完整的射频电路解决方案;第12章为ADS射频电路仿真设计简介,目的是架起射频电路理论与ADS射频仿真设计的桥梁。
书中不仅列举了大量具有实用价值的例题,并且以较大的篇幅详细地给出了设计求解过程。
书中每章都配有小结、思考题和练习题,并在书末附有思考题和练习题的答案。
本书有配套的ADS射频电路仿真教材,分别为《ADS射频电路设计基础与典型应用》和《ADS射频电路仿真与实例详解》。
《射频电路理论与设计(第2版)/21世纪高等院校信息与通信工程规划教材·精品系列》可作为高等学校电子工程、通信工程、自动控制、微电子学、仪器仪表及相关专业本科生的教材,也可作为射频、微波及相关专业技术人员的参考书。
第1章引言1.1 射频概念1.1.1 频谱划分1.1.2 射频和微波1.1.3 射频通信系统的工作频率1.1.4 射频的基本特性1.2 射频电路的特点1.2.1 频率与波长1.2.2 低频电路理论是射频电路理论的特例1.2.3 射频电路的分布参数1.2.4 射频电路的集肤效应1.3 射频系统1.3.1 射频系统举例1.3.2 收发信机1.3.3 ADS射频仿真设计1.4 本书安排本章小结思考题和练习题第2章传输线理论2.1 传输线结构2.1.1 传输线的构成2.1.2 几种常用的TEM传输线2.2 传输线等效电路表示法2.2.1 长线2.2.2 传输线的分布参数2.2.3 传输线的等效电路2.3 传输线方程及其解2.3.1 均匀传输线方程2.3.2 均匀传输线方程的解2.3.3 行波2.3.4 传输线的二种边界条件2.4 传输线的基本特性参数2.4.1 特性阻抗2.4.2 反射系数2.4.3 输入阻抗2.4.4 传播常数2.4.5 传输功率2.5 均匀无耗传输线工作状态分析2.5.1 行波工作状态2.5.2 驻波工作状态2.5.3 行驻波工作状态2.5.4 阻抗变换器2.6 信号源的功率输出和有载传输线2.6.1 包含信号源与终端负载的传输线2.6.2 传输线的功率2.6.3 信号源的共轭匹配2.6.4 回波损耗和插入损耗2.7 微带线2.7.1 微带线的有效介电常数和特性阻抗2.7.2 微带线的传输特性2.7.3 微带线的损耗与衰减本章小结思考题和练习题第3章史密斯圆图3.1 复平面上反射系数的表示方法3.1.1 反射系数复平面3.1.2 等反射系数圆和电刻度圆3.2 史密斯阻抗圆图3.2.1 归一化阻抗3.2.2 等电阻圆和等电抗圆3.2.3 史密斯阻抗圆图3.2.4 史密斯阻抗圆图的应用3.3 史密斯导纳圆图3.3.1 归一化导纳3.3.2 史密斯导纳圆图3.3.3 史密斯阻抗-导纳圆图3.4 史密斯圆图在集总参数元件电路中的应用3.4.1 含串联集总参数元件时电路的输入阻抗3.4.2 含并联集总参数元件时电路的输入导纳3.4.3 含一个集总电抗元件时电路的输入阻抗3.4.4 含多个集总电抗元件时电路的输入阻抗本章小结思考题和练习题第4章射频网络基础4.1 二端口低频网络参量4.1.1 阻抗参量4.1.2 导纳参量4.1.3 混合参量4.1.4 转移参量4.2 二端口射频网络参量4.2.1 散射参量4.2.2 传输参量4.3 二端口网络的参量特性4.3.1 互易网络4.3.2 对称网络4.3.3 无耗网络4.4 二端口网络的参量互换4.4.1 网络参量[Z]、[Y]、[h]、[ABCD]之间的相互转换4.4.2 网络参量[S]和[T]之间的相互转换4.4.3 网络参量[Z]、[Y]、[h]、[ABCD]与[S]之间的相互转换4.5 多端口网络的散射参量4.5.1 多端口网络散射参量的定义4.5.2 常见的多端口射频网络4.6 信号流图4.6.1 信号流图的构成4.6.2 信号流图的化简规则本章小结思考题和练习题第5章谐振电路5.1 串联谐振电路5.1.1 谐振频率5.1.2 品质因数5.1.3 输入阻抗5.1.4 带宽5.1.5 有载品质因数5.2 并联谐振电路5.2.1 谐振频率5.2.2 品质因数5.2.3 输入导纳5.2.4 带宽5.2.5 有载品质因数5.3 传输线谐振器5.3.1 终端短路传输线5.3.2 终端短路传输线5.3.3 终端开路传输线5.3.4 终端开路传输线5.4 介质谐振器本章小结思考题和练习题第6章匹配网络6.1 匹配网络的目的及选择方法6.2 集总参数元件电路的匹配网络设计6.2.1 传输线与负载间L形匹配网络6.2.2 信源与负载间L形共轭匹配网络6.2.3 L形匹配网络的带宽6.2.4 T形匹配网络和鹦纹ヅ渫6.3 分布参数元件电路的匹配网络设计6.3.1 负载与传输线的阻抗匹配6.3.2 信源与负载的共轭匹配6.4 混合参数元件电路的匹配网络设计本章小结思考题和练习题第7章滤波器的设计7.1 滤波器的类型7.2 用插入损耗法设计低通滤波器原型7.2.1 巴特沃斯低通滤波器原型7.2.2 切比雪夫低通滤波器原型7.2.3 椭圆函数低通滤波器原型7.2.4 线性相位低通滤波器原型7.3 滤波器的变换7.3.1 阻抗变换7.3.2 频率变换7.4 短截线滤波器7.4.1 理查德变换7.4.2 科洛达规则7.4.3 低通滤波器设计举例7.4.4 带阻滤波器设计举例7.5 阶梯阻抗低通滤波器7.5.1 短传输线段的近似等效电路7.5.2 滤波器设计举例7.6 平行耦合微带线滤波器7.6.1 奇模和偶模7.6.2 平行耦合微带线的滤波特性7.6.3 带通滤波器设计举例本章小结思考题和练习题第8章放大器的稳定性、增益和噪声8.1 放大器的稳定性8.1.1 稳定准则8.1.2 稳定性判别的图解法8.1.3 绝对稳定判别的解析法8.1.4 放大器稳定措施8.2 放大器的增益8.2.1 功率增益的定义和计算公式8.2.2 最大功率增益8.2.3 晶体管单向情况8.2.4 晶体管双向情况8.3 输入输出电压驻波比8.3.1 失配因子8.3.2 输入、输出驻波分析8.4 放大器的噪声8.4.1 等效噪声温度和噪声系数8.4.2 级连网络的等效噪声温度和噪声系数8.4.3 等噪声系数圆本章小结思考题和练习题第9章放大器的设计9.1 放大器的工作状态和分类9.1.1 基于静态工作点的放大器分类9.1.2 基于信号大小的放大器分类9.2 放大器的偏置网络9.2.1 偏置电路与射频电路之间的连接9.2.2 偏置电路的设计9.3 小信号放大器的设计9.3.1 小信号放大器的设计步骤9.3.2 最大增益放大器的设计9.3.3 固定增益放大器的设计9.3.4 最小噪声放大器的设计9.3.5 低噪声放大器的设计9.3.6 宽带放大器的设计9.4 功率放大器的设计9.4.1 A类放大器的设计9.4.2 交调失真9.5 多级放大器的设计本章小结习题第10章振荡器的设计10.1 振荡电路的形成10.1.1 振荡器的基本模型10.1.2 振荡器的有源器件10.1.3 振荡器与放大器的比较10.2 微波振荡器10.2.1 振荡条件10.2.2 晶体管振荡器10.2.3 二极管振荡器10.2.4 介质谐振器振荡器10.2.5 压控振荡器10.3 振荡电路的一般分析10.3.1 晶体管振荡器的一般电路10.3.2 考毕兹(Colpitts)振荡器10.3.3 哈特莱(Hartley)振荡器10.3.4 皮尔斯(Pierce)晶体振荡器10.4 振荡器的技术指标本章小结思考题和练习题第11章混频器和检波器的设计11.1 混频器11.1.1 混频器的特性11.1.2 混频器的种类11.1.3 混频器主要技术指标11.1.4 单端二极管混频器11.1.5 单平衡混频器11.2 检波器11.2.1 整流器与检波器11.2.2 二极管检波器11.2.3 检波器的灵敏度本章小结思考题和练习题第12章 ADS射频电路仿真设计简介12.1 美国安捷伦(Agilent)公司与ADS软件12.2 ADS的设计功能12.3 ADS的仿真功能12.4 ADS的4种主要工作视窗12.4.1 主视窗12.4.2 原理图视窗12.4.3 数据显示视窗12.4.4 版图视窗本章小结思考题和练习题附录A 国际单位制(SI)词头附录B 电学、磁学和光学的量和单位附录C 某些材料的电导率附录D 某些材料的相对介电常数和损耗角正切附录E 常用同轴射频电缆特性参数思考题和练习题答案参考文献。
射频电路理论与技术 微带滤波器
![射频电路理论与技术 微带滤波器](https://img.taocdn.com/s3/m/b39cc41a03d8ce2f00662328.png)
0 L
RE 0, R 0
如果用G和GE替换R和RE,可以导出并联谐振电路的类似表达式。
2017/6/12
南京理工大学通信工程系
通常以谐振频率为基准,引入归一化频率偏差:
并展开为:
0 0
f 1 f 0
1
f f0 f f0 f0 1 f0 f0 f f0 f0
2017/6/12
南京理工大学通信工程系
对于储能系统或LC网 络,我们可以采用前 面引入的品质因数来 计算滤波器的3dB通带 或阻带的带宽:
表2.1 串联和并联谐振器
C R 参量符号 L 阻抗和导纳 L C R
BW
f0 Q
Z R jL
1 jC
Y G jC
1 jL
2017/6/12
0 1 1 1 R L
1 1 1 R R R R G G L 0 j L R L 1 1 1 1 jC R L
南京理工大学通信工程系
可以直接导出:
由上式可导出品质因数微分变化的表达式:
2
f f0
QLD
f QLD 2 QLD f0
2017/6/12
南京理工大学通信工程系
令:
X L
QLD
f QLD 2 QLD f0
QLD
QLD
f0 dX 2RE R df
f f0
串联电路
令:
B 1 L
Pin 2 IL 10log 10log 1 in PL
PL ——滤波器向负载输出的功率
射频电路理论与设计
![射频电路理论与设计](https://img.taocdn.com/s3/m/69f0472fa1c7aa00b42acb6a.png)
13、无耗传输线上通过任意点的传输功率等于该点的入射 波功率与反射波功率之差。
14、TEM传输线(即传输TEM波的传输线)无色散。色 散是指电磁波的传播速度与频率有关。TEM传输线上电 磁波的传播速度与频率无关。
在已知传输线始端电压 V 1 和始端电流 I 2 的前提下:
V (z)V 1I1 Z 0ejz V 1I1 Z 0ejz
2
2
I(z)V 1I1Z0ejzV 1I1Z0ejz
2Z0
2Z0
5、反射系数
(z')V V ((zz''))II ((zz''))V V 22 2 II22Z Z00eej jzz'' V V2 2 ej2z' Lej2z' LejLej2z' Lej(L2z') 2
终端短路的一段传输线可以等效为集总元件的电感,
等效关系为jX LjLjZ 0ta4 nff(0)S0 Z
终端开路的一段的传输线可以等效为集总元件的电
6、容科,洛等达效规关j则B C 系 为P14j7表C 6.6jY 0tan 4ff(0)S0Y
科洛达规则是利用附加的传输线段,得到在实际上 更容易实现的滤波器。利用科洛达规则既可以将 串联短截线变换为并联短截线,又可以将短截线 在物理上分开。附加的传输线称为单位元件。
二、并联谐振电路
1、谐振频率 0 2、品质因数
1 LC
无载品质因数 Q R
0L
有载品质因数
外部品质因数
Qe
RL 0L
Q L0L(R R LR RL),Q 1LQ 1Q 1e
射频滤波器的设计与仿真毕业设计
![射频滤波器的设计与仿真毕业设计](https://img.taocdn.com/s3/m/2cc6c9e67e192279168884868762caaedc33ba4c.png)
射频滤波器的设计与仿真毕业设计首先,射频滤波器的设计需要明确设计要求和性能指标。
在本设计中,我们选择了一个带通滤波器作为研究对象,要求滤波器具有较好的通带特性和抑制带特性。
具体地,我们希望滤波器的通带范围为2GHz至4GHz,通带波纹小于1dB,抑制带最小衰减为20dB。
其次,射频滤波器的设计可以采用传统的网络理论方法,如电抗耦合法、串联法、并联法等。
在本设计中,我们选择了电抗耦合法进行设计。
电抗耦合法通过选择合适的电抗元件(电感和电容)来实现滤波器的频率响应。
具体地,我们根据设计要求选择了合适的电感和电容值,并通过计算和模拟来验证设计的有效性。
然后,射频滤波器的仿真可以借助于电磁仿真软件,如ADS、HFSS等。
在本设计中,我们选择了ADS软件进行滤波器的仿真。
ADS软件提供了丰富的射频元件模型和仿真工具,可以方便地进行滤波器的建模和仿真。
具体地,我们根据设计的电路图和元件参数,在ADS中建立了一个滤波器的电路模型,并通过参数优化和频率响应分析来验证设计的有效性。
最后,射频滤波器的设计与仿真还需要考虑实际的制造和调试过程。
在本设计中,我们将选择合适的电感和电容元件,并进行布局和连接的设计,以便实现滤波器的制造。
同时,在制造完成后,我们将进行实际的调试和测试,以验证滤波器的性能和指标是否满足设计要求。
总之,本毕业设计旨在通过设计和仿真一个射频滤波器,来探索射频滤波器的设计原理和仿真方法。
通过本设计,我们希望能够深入了解射频滤波器的工作原理和设计方法,并通过实际制造和调试来验证设计的有效性。
希望本设计能够为射频滤波器的设计与仿真提供一定的参考和指导。
射频滤波器
![射频滤波器](https://img.taocdn.com/s3/m/bbfcdd737fd5360cba1adb65.png)
在本次试验中,充分的利用到了学过的知识,进一步复习了低通滤波器的设计及由集总参数电路如何转换为分布参数电路。
通过本次实验,学会了滤波器的基本原理以及基本的设计方法(如巴特沃斯设计方法),并利用其方法及相应的变换规则成功地设计出微带线低通滤波器。
在设计过程中,利用了ADS电路仿真软件,根据实验参数设计出的电路拓扑结构与理论计算结果基本一致,并满足实验要求。根据仿真结果手工制作成实际的电路板,达到实验要求。本次实验理论计算,软件仿真设计,实际手工实践有效地结合在一起,这是一次非常有价值意义的设计实验。
滤波器的设计方法有如下两种:经典方法:即低通原型综合法,先由衰减特性综合出低通原型,再进行频率变换,最后用微波结构实现电路元件。软件方法:先由软件商依各种滤波器的微波结构拓扑做成软件,使用者再依指标挑选拓扑、仿真参数、调整优化。
本次实验要求使用巴特沃斯设计最平坦响应变换过程。(电路采用对称结构)
四、[变换过程]:
五、[电路设计仿真]
利用ADS仿真软件对电路进行集总参数和分布参数设计。在设计向导中输入设计要求参数,向导会自动生成集总参数形势的电路拓扑结构,连接形成仿真电路,进行仿真。观察符合要求后,再次利用向导将集总参数电路转换成分布参数的电路结构,并可以形成集总参数的电路结构模型。
连接成仿真电路,设置频率的起始为100MHz,结束点为4GHz和步长为1MHz。
图4电路结构
利用向导,根据参数设置将电路转化为分布参数的低通滤波器:
图5底层集总电路
对形成的集总参数进行电路仿真,得到的仿真图如下:
图6集总电路S参数曲线
利用相应的变换规则将电路转换成分布参数的电路形式:
图7分布电路
对形成的分布参数进行电路仿真,得到的仿真图如下:
《射频与微波电路设计》--微带滤波器设计56页PPT
![《射频与微波电路设计》--微带滤波器设计56页PPT](https://img.taocdn.com/s3/m/449a49e0f111f18583d05aff.png)
《射频与微波电路设计》-微带滤波器设计
26、机遇对于有准备的头脑有特别的 亲和力 。 27、自信是人格的核心。
28、目标的坚定是性格中最必要的力 量泉源 之一, 也是成 功的利 器之一 。没有 它,天 才也会 在矛盾 无定的 迷径中 ,徒劳 无功。- -查士 德斐尔 爵士。 29、困难就是机遇。--温斯顿.丘吉 尔。 30、我奋斗,所以我快乐。--格林斯 潘。
46、我们若已接受最坏的,就再没有什么损失。——卡耐基 47、书到用时方恨少、事非经过不知难。——陆游 48、书籍把我们引入最美好的社会,使我们认识各个时代的伟大智者。——史美尔斯 49、熟读唐诗三百首,不会作诗也会吟。——孙洙 50、谁和我一样用功,谁就会和我一样成功。——莫扎特
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
当频率不高时,滤波器可以由集总元 件的电感和电容构成,但当频率高于 500MHz时,电路寄生参数的影响不可忽 略,滤波器通常由分布参数元件构成。
用插入损耗法设计滤波器,得到的是 集总元件滤波电路,频率高时需要将集总 元件滤波电路变换为分布参数电路实现。
本章首先讨论滤波器的类型;然后用 插入损耗法设计低通滤波器原型;进而通过 滤波器变换将低通滤波器原型变换为各种 类型的集总元件滤波器;最后讨论将集总 元件滤波器变换为各种分布参数滤波器。
图6.1 4种理想滤波器
6.2 用插入损耗法设计 低通滤波器原型
低通滤波器原型是设计滤波器的基础, 集总元件低通、高通、带通、带阻滤波器 以及分布参数元件滤波器,可以根据低通 滤波器原型变换而来。
本节用插入损耗作为考察滤波器的指 标,讨论低通滤波器原型的设计方法。
在插入损耗法中,滤波器的响应是用 插入损耗表征的。插入损耗定义为来自源 的可用功率与传送到负载功率的比值,用 dB表示的插入损耗定义为
图6.8 椭圆函数低通滤波器的响应
6.2.4 线性相位低通滤波器原
型
前面3种滤波器都是设定振幅响应, 但在有些应用中,线性的相位响应比陡峭 的阻带振幅衰减响应更为关键。
线性的相位响应与陡峭的阻带振幅衰 减响应不兼容,如果要得到线性相位,相 位函数必须有如下特征
式(6.13)表明相位的群时延是最平 坦函数。
第6 章 滤波器的设计
射频电路许多有源和无源部件都没有 获得精确的频率特性,因而在设计射频系 统时通常会加入滤波器,以非常精确地实 现预定的频率特性。滤波器是一个二端口 网络,允许所需要频率的信号以最小可能 的衰减通过,同时衰减不需要频率的信号。
镜像参量法和插入损耗法都可以用来 设计滤波器,现今大多数滤波器是采用插 入损耗法设计的,因其可以得到完整的频 率响应。本章讲述采用插入损耗法设计滤 波器。
1. 切比雪夫多项式
第N阶切比雪夫多项式是用TN(x)表示 的N次多项式。前4阶切比雪夫多项式是
2. 通带和阻带
ω<ωc是低通滤波器的通带;ω>ωc是 低通滤波器的阻带;ω=ωc是通带和阻带的 分界点。
3. 低通滤波器原型
切比雪夫低通滤波器原型假定源阻抗 为1Ω,截止频率为ωc=1。
图6.7 切比雪夫滤波器衰减随频率变化的对应关系
将低通滤波器原型的截止频率由1改 变为ωc(ωc≠1),在低通滤波器中需要用 ω/ωc代替低通滤波器原型中的ω,即
图6.9 低通滤波器原型到低通滤波器的频率变换
图6.10 例6.3用图
2. 低通滤波器原型变换为高通滤 波器
将低通滤波器原型变换为高通滤波器, 在高通滤波器中需要用-ωc/ω代替低通滤 波器原型中的ω,ωc为高通滤波器的截止 频率,即
插入损耗可以选特定的函数,随所需 的响应而定,常用的有通带内最平坦、通 带内有等幅波纹起伏、通带和阻带内都有 等幅波纹起伏和通带内有线性相位4种响应 的情形,对应这4种响应的滤波器称为巴特 沃斯滤波器、切比雪夫滤波器、椭圆函数 滤波器和线性相位滤波器。
6.2.1 巴特沃斯低通滤波器原
型
如果滤波器在通带内的插入损耗随频 率的变化是最平坦的,这种滤波器称为巴 特沃斯滤波器,也称为最平坦滤波器。
由式(6.2),当N=2时最平坦响应为
图6.4 二元件低通滤波器原型
用同样的方法可以求出N元件低通滤 波器原型的元件取值。
图6.5 低通滤波器原型电路
6.2.2 切比雪夫低通滤波器原
型
如果滤波器在通带内有等波纹的响应, 这种滤波器称为切比雪夫滤波器,也称为 等波纹滤波器。
图6.6 等波纹低通滤波器的响应
6.5阶梯阻抗低通滤波器来自耦合微带线滤波器6.6
6.1 滤波器的类型6.1 滤波器的类型
滤波器有低通滤波器、高通滤波器、 带通滤波器和带阻滤波器4种基本类型。
理想滤波器是不存在的,实际滤波器 与理想滤波器有差异。实际滤波器既不能 实现通带内信号无损耗地通过,也不能实 现阻带内信号衰减无穷大。
以低通滤波器为例,实际低通滤波器 允许低频信号以很小的衰减通过滤波器, 当信号频率超过截止频率后,信号的衰减 将急剧增大。
对于低通滤波器,最平坦响应的数学 表示式为
图6.2
低通滤波器的最平坦响应
图6.3 低通巴特沃斯滤波器衰减随频率变化的对应关系
2. 低通滤波器原型
滤波器可以由集总元件电感和电容构 成。考虑图6.4所示的二元件电路,是一个 低通滤波器,下面将对最平坦响应推导出 图中元件L和C的值。
采用低通滤波器原型,假定其源阻抗 为1Ω,截止频率为ωc=1。
图6.11 低通滤波器原型到高通滤波器的频率变换
3. 低通滤波器原型变换为带通和 带阻滤波器
低通滤波器原型也能变换到带通和带 阻滤波器响应的情形。
图6.12示出了低通滤波器原型到带通 和带阻滤波器的频率变换,图6.12(a)为低 通滤波器原型响应;图6.12(b)为带通滤波 器响应;图6.12(c)为带阻滤波器响应。
平行耦合微带传输线通常由靠得很近的3个 导体构成(如图624所示),这种结构介 质厚度为d,介质相对介电常数为εr,在介 质的下面为公共导体接地板,在介质的上 面为2个宽度为W、相距为S的中心导体带。
6.1
滤波器的类型
用插入损耗法设计低通滤波器原型
6.2
6.3
滤波器的变换 短截线滤波器的实现
6.4
6.2.3 椭圆函数低通滤波器原
型
最平坦响应和等波纹响应两者在阻带 内都有单调上升的衰减。
在有些应用中需要设定一个最小阻带 衰减,在这种情况下能获得较好的截止陡 度,这种类型的滤波器称为椭圆函数滤波 器。
椭圆函数滤波器在通带和阻带内都有 等波纹响应,如图6.8所示。对于椭圆函数 滤波器这里不做进一步的讨论,相关内容 可以查阅参考文献。
6.3 滤波器的变换
6.3.1 阻抗变换
6.3.2 频率变换
将归一化频率变换为实际频率,相当 于变换原型中的电感和电容值。
通过频率变换,不仅可以将低通滤波 器原型变换为低通滤波器,而且可以将低 通滤波器原型变换为高通滤波器、带通滤 波器和带阻滤波器。下面分别加以讨论。
1. 低通滤波器原型变换为低通滤 波器