系统频域分析课程设计报告
实验:连续系统的频域分析
实验4:连续系统的频域分析一、实验目的(1)掌握连续时间信号的傅里叶变换和傅里叶逆变换的实现方法。
(2)掌握傅里叶变换的数值计算方法和绘制信号频谱的方法。
二、实验原理 1.周期信号的分解根据傅里叶级数的原理,任何周期信号都可以分解为三角级数的组合——称为()f t 的傅里叶级数。
在误差确定的前提下,可以由一组三角函数的有限项叠加而得到。
例如一个方波信号可以分解为:11114111()sin sin 3sin 5sin 7357E f t t t t t ωωωωπ⎛⎫=++++ ⎪⎝⎭合成波形所包含的谐波分量越多,除间断点附近外,它越接近于原波形,在间断点附近,即使合成的波形所含谐波次数足够多,也任存在约9%的偏差,这就是吉布斯现象(Gibbs )。
2.连续时间信号傅里叶变换的数值计算 由傅里叶变换的公式:()()lim()j tj n n F j f t edt f n e ωωττωττ∞∞---∞→=-∞==∑⎰当()f t 为时限信号时,上式中的n 取值可以认为是有限项N,则有:()(),0k Nj n n F k f n e k N ωτττ-==≤≤∑,其中2k k N πωτ=3.系统的频率特性连续LTI 系统的频率特性称为频率响应特性,是指在正弦信号激励作用下稳态响应随激励信号频率的变化而变化的情况,表示为()()()Y H X ωωω=三、实验内容与方法 1.周期信号的分解【例1】用正弦信号的叠加近似合成一个频率为50Hz 的方波。
MA TLAB 程序如下: clear all; fs=10000; t=[0:1/fs:0.1]; f0=50;sum=0; subplot(211) for n=1:2:9plot(t,4/pi*1/n*sin(2*pi*n*f0*t),’k ’); hold on; endtitle(‘信号叠加前’); subplot(212) for n=1:2:9;sum=sum+4/pi*1/n*sin(2*pi*n*f0*t);endplot(t,sum,’k ’); title(‘信号叠加后’); 产生的波形如图所示:00.010.020.030.040.050.060.070.080.090.1-2-1012信号叠加前00.010.020.030.040.050.060.070.080.090.1-2-1012信号叠加后2.傅里叶变换和逆变换的实现求傅里叶变换,可以调用fourier 函数,调用格式为F=fourier(f,u,v),是关于u 的函数f 的傅里叶变换,返回函数F 是关于v 的函数。
线性系统频域分析实验报告
线性系统频域分析实验报告实验三、线性系统的频域分析法一,实验目的1,掌握matlab绘制波特图以及奈奎斯特图的方法。
2,学会从波特图以及奈奎斯特图判定系统的稳定性。
3,学会从波特图上求系统的稳定裕度。
4,了解k值变化时对波特图幅频和相频曲线的影响。
5,掌握matalab绘制系统零极点分布图的方法。
6,学会从系统的零极点分布图判断系统的稳定性。
二,实验原理1,从奈奎斯特图判定系统是否稳定的原理奈式稳定判据:反馈控制系统稳定的充分必要条件是半闭合曲线ΓGH不穿过(-1,0j)点,且逆时针包围临界点(-1,0j)点的圈数R 等于开环传递函数正实部极点数P具体方法是,先观察系统传递函数得出系统是否在s平面的右半开平面由极点,得出P的值,在观察曲线从(-1,0j)点右侧穿越的次数,其中自上而下为正穿越,自下而上为负穿越,完整的一次穿越记为N 半次穿越记为0.5N,R=2N=2(N+ -N-) 而Z=P-R,观察Z是否为零,Z 为零则系统是稳定的,Z不为零时则系统是不稳定的。
2,从波特图判定系统是否稳定的原理。
从奈奎斯特稳定判定我们可以知道,要判定系统是否稳定就要观察曲线穿越(-1,0j)点次数,对应在波特图中,当取w=wc时,要满足A(wc)=|G(jwc)H(jwc)|=1 L(wc)=20logA(wc)=0 因此wc为分界点,对应到相频曲线上,观察在w<wc时曲线穿越-180度的次数。
然后计算方法和上面相同,既可以判定系统的稳定性。
3,根据系统的零极点分布判断系统稳定性的原理< p=""> 三,实验内容A、设单位负反馈系统的开环传递函数为K(S+1)/S(S+2)(S^2+17S+4000) 其中K=1000(1)绘制波特图。
(2)观察绘制出的bode 图,分析系统的稳定性,并在图上求稳定裕度;(3)绘制K=2000 时系统的bode 图,分析曲线的改变情况,并分析K 值变化时,对系统幅频响应和相频响应的影响。
实验三线性系统的频域分析报告
自动控制理论上机实验报告学院:机电工程学院班级:13 级电信一班姓名:学号:实验三 线性系统的频域分析一、实验目的1.掌握用 MATLAB 语句绘制各种频域曲线。
2.掌握控制系统的频域分析方法。
二、基础知识及 MATLAB 函数频域分析法是应用频域特性研究控制系统的一种经典方法。
它是通过研究系 统对正弦信号下的稳态和动态响应特性来分析系统的。
采用这种方法可直观的表 达出系统的频率特性,分析方法比较简单,物理概念明确。
1.频率曲线主要包括三种 :Nyquist 图、 Bode 图和 Nichols 图。
1) Nyquist 图的绘制与分析MATLAB 中绘制系统 Nyquist 图的函数调用格式为 :nyquist(num,den) 频率响应 w 的范围由软件自动设定 nyquist(num,den,w) [Re,Im]= nyquist(num,den)量,不作图例 4-1: 已知系统的开环传递函数为 G(s) 图,并判断系统的稳定性。
num=[2 6]; den=[1 2 5 2]; [z,p,k]=tf2zp(num,den); pnyquist(num,den)极点的显示结果及绘制的 Nyquist 图如图 4-1 所示。
由于系统的开环右根数 P=0,系统的 Nyquist 曲线没有逆时针包围 (-1 ,j0 )点,所 以闭环系统稳定。
p =-0.7666 + 1.9227i -0.7666 - 1.9227i -0.4668频率响应 w 的范围由人工设定返回奈氏曲线的实部和虚部向2s 63 2,试绘制 Nyquist s 2s 5s 2图 4-1 开环极点的显示结果及 Nyquist 图若上例要求绘制(10 2,103 )间的Nyquist 图,则对应的MATLAB语句为: num=[2 6];den=[1 2 5 2];w=logspace(-1,1,100); 即在10-1和101之间,产生100 个等距离的点nyquist(num,den,w)2) Bode图的绘制与分析系统的Bode 图又称为系统频率特性的对数坐标图。
连续时间信号与系统的频域分析报告
连续时间信号与系统的频域分析报告1. 引言连续时间信号与系统的频域分析是信号与系统理论中的重要分支,通过将信号和系统转换到频域,可以更好地理解和分析信号的频谱特性。
本报告将对连续时间信号与系统的频域分析进行详细介绍,并通过实例进行说明。
2. 连续时间信号的频域表示连续时间信号可以通过傅里叶变换将其转换到频域。
傅里叶变换将信号分解成一系列不同频率的正弦和余弦波的和。
具体来说,对于连续时间信号x(t),其傅里叶变换表示为X(ω),其中ω表示频率。
3. 连续时间系统的频域表示连续时间系统可以通过频域中的频率响应来描述。
频率响应是系统对不同频率输入信号的响应情况。
通过系统函数H(ω)可以计算系统的频率响应。
系统函数是频域中系统输出与输入之比的函数,也可以通过傅里叶变换来表示。
4. 连续时间信号的频域分析频域分析可以帮助我们更好地理解信号的频谱特性。
通过频域分析,我们可以获取信号的频率成分、频谱特性以及信号与系统之间的关系。
常用的频域分析方法包括功率谱密度估计、谱线估计等。
5. 连续时间系统的频域分析频域分析也可以用于系统的性能评估和系统设计。
通过分析系统的频响特性,我们可以了解系统在不同频率下的增益和相位变化情况,进而可以对系统进行优化和设计。
6. 实例分析以音频信号的频域分析为例,我们可以通过对音频信号进行傅里叶变换,将其转换到频域。
通过频域分析,我们可以获取音频信号的频谱图,从而了解音频信号的频率成分和频率能量分布情况。
进一步,我们可以对音频信号进行系统设计和处理,比如对音乐进行均衡、滤波等操作。
7. 结论连续时间信号与系统的频域分析是信号与系统理论中重要的内容,通过对信号和系统进行频域分析,可以更好地理解和分析信号的频谱特性。
频域分析也可以用于系统的性能评估和系统设计,对于音频信号的处理和优化具有重要意义。
总结:通过本报告,我们了解了连续时间信号与系统的频域分析的基本原理和方法。
频域分析可以帮助我们更好地理解信号的频谱特性和系统的频响特性,对系统设计和信号处理具有重要意义。
实验六_信号与系统复频域分析报告
实验六_信号与系统复频域分析报告信号与系统是电子信息类专业学科中非常重要的一门基础课程,主要研究信号和系统的性质、特点、表示以及处理方法。
本实验主要是通过对信号与系统复频域分析来深入了解信号和系统的特性和性质。
实验中,我们使用了MATLAB软件进行了信号与系统复频域分析,主要涉及到以下内容:一、信号在复频域中的表达式设x(t)是一个实数信号,那么它在频域的表达式为:$$X(\omega )=\int _{-\infty }^{\infty }x(t)e^{-j\omega t}dt$$其中,$\omega $是频率,$X(\omega )$是频域中的信号,即信号的频率特性。
对于一个时不变线性系统,它在频域中的表达式为:三、信号与系统的卷积定理在时域中,两个信号$x(t)$和$h(t)$的卷积表示为:$$Y(\omega )=X(\omega )*H(\omega )$$其中,$*$表示频域中的卷积操作。
四、频域的性质频域有许多重要的性质,如频率移位、对称性、线性性、时移性、共轭对称性、能量守恒等等。
这些性质可以为信号的分析和处理提供重要的帮助。
在实验过程中,我们首先使用MATLAB绘制了一个正弦波信号及其频谱图、一个方波信号及其频谱图,以及两个不同的系统频率响应曲线。
然后,我们通过信号和系统的卷积操作,绘制了输入信号和输出信号的波形图及频谱图。
最后,我们通过MATLAB的FFT函数进行了离散频率响应分析,探究了系统的性质和特性。
实验中,我们通过理论知识和MATLAB软件的使用,深入了解了信号与系统的复频域分析。
这对于我们进一步学习和掌握信号与系统的知识,提高我们的理论水平和实践能力具有重要意义。
实验四控制系统的频域分析
自动控制理论实验报告(四)----控制系统的频域分析学院:水利电力学院班级:12级光伏一班姓名:陈春梅学号:1200309027实验四控制系统的频域分析一实验目的1. 利用计算机作出开环系统的波特图2. 观察记录控制系统的开环频率特性3. 控制系统的开环频率特性分析二预习要点1.预习Bode图和Nyquist图的画法;2.映射定理的内容;3.Nyquist稳定性判据内容。
三实验方法1、奈奎斯特图(幅相频率特性图)❑对于频率特性函数G(jw),给出w从负无穷到正无穷的一系列数值,分别求出Im(G(jw))和Re(G(jw))。
以Re(G(jw)) 为横坐标, Im(G(jw)) 为纵坐标绘制成为极坐标频率特性图。
MATLAB提供了函数nyquist()来绘制系统的极坐标图,其用法如下:❑nyquist(a,b,c,d):绘制出系统的一组Nyquist曲线,每条曲线相应于连续状态空间系统[a,b,c,d]的输入/输出组合对。
其中频率范围由函数自动选取,而且在响应快速变化的位置会自动采用更多取样点。
❑nyquist(a,b,c,d,iu):可得到从系统第iu个输入到所有输出的极坐标图。
❑nyquist(num,den):可绘制出以连续时间多项式传递函数表示的系统的极坐标图。
❑nyquist(a,b,c,d,iu,w)或nyquist(num,den,w):可利用指定的角频率矢量绘制出系统的极坐标图。
❑当不带返回参数时,直接在屏幕上绘制出系统的极坐标图(图上用箭头表示w的变化方向,负无穷到正无穷)。
当带输出变量[re,im,w]引用函数时,可得到系统频率特性函数的实部re和虚部im及角频率点w矢量(为正的部分)。
可以用plot(re,im)绘制出对应w从负无穷到零变化的部分。
2、对数频率特性图(波特图)对数频率特性图包括了对数幅频特性图和对数相频特性图。
横坐标为频率w,采用对数分度,单位为弧度/秒;纵坐标均匀分度,分别为幅值函数20lgA(w),以dB表示;相角,以度表示。
控制系统的频域分析实验报告
控制系统的频域分析实验报告
摘要:
本实验旨在通过频域分析的方法来研究和评估控制系统的特性和性能。
在实验中,我们采用了频域分析的基本工具——Bode图和Nyquist图,通过对控制系统的幅频特性和相频特性进行分析,得出了系统的稳定性、干扰抑制能力和稳态性精度等方面的结论。
实验结果表明,频域分析是评估和优化控制系统的一种有效方法。
一、引言
频域分析是控制系统分析中常用的一种方法,通过对系统的频率响应进行研究,可以揭示系统的动态特性和性能,为控制系统的设计和优化提供指导。
在本实验中,我们将利用频域分析方法对一个具体的控制系统进行分析,通过实验验证频域分析的有效性。
二、实验装置和方法
实验所用控制系统包括一个控制对象(如电动机或水流系统)和一个控制器(如PID控制器)。
在实验中,我们将通过改变输入信号的频率来研究系统的频率响应。
实验步骤如下:
1. 连接实验装置,确保控制系统可正常工作。
2. 设计和设置适当的输入信号,包括常值信号、正弦信号和随
机信号等。
3. 改变输入信号的频率,记录系统的输出信号。
4. 利用实验记录的数据,绘制系统的幅频特性曲线和相频特性
曲线。
三、实验结果与讨论
根据实验记录的数据,我们绘制了控制系统的幅频特性曲线和
相频特性曲线,并对实验结果进行了分析和讨论。
1. 幅频特性分析
幅频特性曲线描述了控制系统对不同频率输入信号的增益特性。
在幅频特性曲线中,频率越高,输出信号的幅值越低,说明系统对
高频信号具有抑制作用。
控制系统的频域分析实验报告
课程名称: 控制理论乙 指导老师: 成绩: 实验名称: 控制系统的频域分析 实验类型: 同组学生姓名: 一、实验目的和要求(必填) 二、实验内容和原理(必填) 三、主要仪器设备(必填) 四、操作方法和实验步骤 五、实验数据记录和处理 六、实验结果与分析(必填) 七、讨论、心得一、实验目的和要求用计算机辅助分析的方法,掌握频率分析法的三种方法,即Bode 图、Nyquist 曲线、Nichols 图。
二、实验内容和原理 1. 实验内容(1)一系统开环传递函数为)2)(5)(1(50)(-++=s s s s H绘制系统的bode 图,判断闭环系统的稳定性,并画出闭环系统的单位冲击响应。
(2)一多环系统)10625.0)(125.0)(185.0(7.16)(+++=s s s ss G其结构如图所示试绘制Nyquist 频率曲线和Nichols 图,并判断稳定性。
2. 实验原理(1)Bode(波特)图设已知系统的传递函数模型:11211121)(+-+-+⋅⋅⋅+++⋅⋅⋅++=n n n m m m a s a s a b s b s b s H 则系统的频率响应可直接求出:11211121)()()()()(+-+-+⋅⋅⋅+++⋅⋅⋅++=n n n m m m a j a j a b j b j b j H ωωωωω MATLAB 中,可利用bode 和dbode 绘制连续和离散系统的Bode 图。
(2)Nyquist(奈奎斯特)曲线Nyquist 曲线是根据开环频率特性在复平面上绘制幅相轨迹,根据开环的Nyquist 线,可判断闭环系统的稳定性。
反馈控制系统稳定的充要条件是,Nyquist曲线按逆时针包围临界点(-1,j0)p圈,为开环传递函数位于右半s一平面的极点数。
在MA TLAB中,可利用函数nyquist和dnyquist绘出连续和离散系统的乃氏曲线。
(3)Nicho1s(尼柯尔斯)图根据闭环频率特性的幅值和相位可作出Nichols图,从而可直接得到闭环系统的频率特性。
系统频域分析实验报告
一、实验目的1. 掌握频域分析的基本原理和方法;2. 熟悉MATLAB在频域分析中的应用;3. 分析不同系统的频域特性,评估系统性能;4. 理解频率响应与系统稳定性之间的关系。
二、实验原理频域分析是一种研究系统对信号频率响应特性的方法。
它将时域信号转换为频域信号,通过分析系统对不同频率信号的响应来评估系统的性能。
频域分析方法主要包括傅里叶变换、拉普拉斯变换和Z变换等。
三、实验仪器与软件1. 实验仪器:计算机、MATLAB软件;2. 实验软件:MATLAB R2018a。
四、实验内容1. 信号的产生与处理(1)产生一个连续时间信号f(t) = cos(2π×50t) + sin(2π×100t);(2)使用MATLAB的fourier函数进行傅里叶变换,得到频谱函数F(w);(3)使用MATLAB的ifourier函数进行傅里叶逆变换,得到时域信号f(t)。
2. 系统的频率响应分析(1)定义一个典型二阶系统G(s) = (s+2)/(s^2+2s+2);(2)使用MATLAB的bode函数绘制系统G(s)的Bode图;(3)分析Bode图,评估系统的稳定性、带宽和相位裕度;(4)使用MATLAB的nyquist函数绘制系统G(s)的Nyquist图;(5)分析Nyquist图,评估系统的稳定性。
3. 离散时间系统的频率响应分析(1)定义一个离散时间系统H(z) = (z-0.5)/(z-0.75);(2)使用MATLAB的zplane函数绘制系统H(z)的Z平面图;(3)分析Z平面图,评估系统的稳定性。
五、实验结果与分析1. 信号的产生与处理通过MATLAB产生的连续时间信号f(t)如图1所示,其频谱函数F(w)如图2所示。
图1 连续时间信号f(t)图2 频谱函数F(w)2. 系统的频率响应分析Bode图如图3所示,Nyquist图如图4所示。
图3 系统G(s)的Bode图图4 系统G(s)的Nyquist图从Bode图中可以看出,系统的带宽约为100Hz,相位裕度约为60°。
系统频域分析实验报告
系统频域分析实验报告1. 引言系统频域分析是一种用于研究线性时不变系统的方法,通过对系统的输入和输出信号在频域上的分析,可以得到系统的频率响应特性。
本实验旨在通过实际测量和分析,了解系统频域分析的基本原理和方法。
2. 实验设备和原理2.1 实验设备本实验所用设备包括: - 函数发生器 - 数字示波器 - 电阻、电容和电感等被测元件 - 电缆和连接线等连接配件2.2 实验原理系统频域分析是基于傅里叶变换的原理,通过将时域上的信号转换到频域上进行分析。
在本实验中,我们将使用函数发生器产生不同频率和幅度的正弦信号作为输入信号,通过被测系统输出的信号,使用数字示波器进行采集和分析。
3. 实验步骤3.1 连接实验设备将函数发生器的输出端与被测系统的输入端相连,将被测系统的输出端与数字示波器的输入端相连,确保连接正确可靠。
3.2 设置函数发生器调整函数发生器的频率、幅度和波形等参数,以产生不同频率和幅度的正弦信号作为输入信号。
3.3 采集数据使用数字示波器对被测系统的输出信号进行采集和记录。
可以选择适当的采样频率和采样时间,确保得到足够的数据点。
3.4 数据分析使用计算机软件或编程语言,对采集到的数据进行频域分析。
可以使用离散傅里叶变换(DFT)等方法,将时域上的信号转换到频域上,得到信号的频谱图。
3.5 分析结果根据得到的频谱图,可以分析出被测系统的频率响应特性。
可以通过找到频率响应曲线的极值点、截止频率等特征,来判断系统的性能和特点。
4. 实验结果和讨论4.1 频谱图展示根据采集到的数据和进行频域分析的结果,绘制出被测系统的频谱图。
4.2 频率响应特性分析根据频谱图的分析结果,可以得到被测系统的频率响应特性。
比如,可以观察到系统在不同频率下的增益特性、相位特性等。
4.3 讨论实验误差在实际实验中,可能存在各种误差的影响。
可以对实验误差进行分析和讨论,比如测量误差、系统本身的非线性特性等。
5. 结论通过本实验,我们了解了系统频域分析的基本原理和方法。
连续时间信号与系统的频域分析实验报告
《信号与系统》课程实验报告一•实验原理 1傅里叶变换实验原理如下:傅里叶变换的调用格式F=fourier(f):返回关于 W 的函数;F=fourier(f , v):返回关于符号对象V 的函数,而不是W 的函数。
傅里叶逆变换的调用格式f=ifourier(F):它是符号函数F 的fourier 逆变换,返回关于X 的函数; f=ifourier(f,u):返回关于U 的函数。
2、连续时间信号的频谱图实验原理如下: 符号算法求解如下:ft=sym('4*cos(2*pi*6*t)*(heaviside(t+1∕4)-heaviside(t-1∕4))'); FW=SimPlify(fourier(ft))subplot(121)ezplot(ft,[-0.5 0.5]),grid Onsubplot(122) ezplot(abs(Fw),[-24*pi 24*pi]),grid On波形图如下所示:当信号不能用解析式表达时,无法用换,则用MATLAB 的数值计算连续信号的傅里叶变换。
实验步骤或实验方案MATLAB 符号算法求傅里叶变F(j )f(t)ejt dt 叫nf (n )e若信号是时限的,或当时间大于某个给定值时,信号已衰减的很厉 害,可以近似地看成时限信号,设 n 的取值为N ,有4 CO$(12 I )■) (he 如引日环-IMh heaviside(t IeIXW Sin(WM ⅛)yabS(W i -144 >2)3、 用MATLAB 分析LTl 系统的频率特性当系统的频率响应H (jw )是jw 的有理多项式时,有H(S )B(W) b M (jW)Mb Mi (jW)MIL b ι(jw) b oH (jW)NN 1A(W)a N (jw)a ” ι(jw) L α(jw) a °freqs 函数可直接计算系统的频率响应的数值解,其调用格式为H=freqs(b,a,w)其中,a 和b 分别是H(jw)的分母和分子多项式的系数向量,W 定义 了系统频率响应的频率范围,P 为频率取样间隔。
频域特性分析实验报告
一、实验目的1. 理解频域分析在信号与系统分析中的重要性。
2. 掌握使用MATLAB进行频域分析的基本方法。
3. 通过实验,分析典型信号和系统的频域特性。
4. 熟悉并运用傅里叶变换、拉普拉斯变换等频域分析方法。
二、实验原理频域分析是信号与系统分析的重要方法之一,它将时域信号转换到频域进行分析,从而揭示信号的频率组成和系统对信号的频率响应特性。
主要分析方法包括傅里叶变换、拉普拉斯变换等。
三、实验步骤1. 实验一:傅里叶变换(1)选择一个典型信号,如正弦波、方波等。
(2)使用MATLAB的傅里叶变换函数进行变换。
(3)观察并分析信号的频谱图,包括频率、幅度等特性。
2. 实验二:拉普拉斯变换(1)选择一个典型信号,如指数函数、指数衰减函数等。
(2)使用MATLAB的拉普拉斯变换函数进行变换。
(3)观察并分析信号的复频域特性,包括极点、零点等。
3. 实验三:系统频率响应分析(1)设计一个典型系统,如滤波器、控制器等。
(2)使用MATLAB的系统函数和频率响应函数进行频率响应分析。
(3)观察并分析系统的幅频响应、相频响应等特性。
四、实验结果与分析1. 实验一:傅里叶变换以正弦波为例,进行傅里叶变换实验。
- 正弦波时域波形如图1所示。
- 正弦波的频谱图如图2所示。
图1:正弦波时域波形图2:正弦波频谱图从图2可以看出,正弦波的频谱只有一个频率成分,即正弦波本身的频率。
2. 实验二:拉普拉斯变换以指数函数为例,进行拉普拉斯变换实验。
- 指数函数时域波形如图3所示。
- 指数函数的复频域特性如图4所示。
图3:指数函数时域波形图4:指数函数复频域特性从图4可以看出,指数函数的拉普拉斯变换具有一个极点,表示信号在复频域中的位置。
3. 实验三:系统频率响应分析以一阶低通滤波器为例,进行频率响应分析实验。
- 滤波器的传递函数为:H(s) = 1 / (1 + s)- 使用MATLAB的系统函数和频率响应函数进行频率响应分析。
信号_频域分析实验报告(3篇)
第1篇一、实验目的1. 理解信号的频域分析方法及其在信号处理中的应用。
2. 掌握傅里叶变换的基本原理和计算方法。
3. 学习使用MATLAB进行信号的频域分析。
4. 分析不同信号在频域中的特性,理解频域分析在实际问题中的应用。
二、实验原理频域分析是信号处理中一种重要的分析方法,它将信号从时域转换到频域,从而揭示信号的频率结构。
傅里叶变换是频域分析的核心工具,它可以将任何信号分解为不同频率的正弦波和余弦波的线性组合。
三、实验内容及步骤1. 信号生成与傅里叶变换- 使用MATLAB生成一个简单的正弦波信号,频率为50Hz,采样频率为1000Hz。
- 对生成的正弦波信号进行傅里叶变换,得到其频谱图。
2. 频谱分析- 分析正弦波信号的频谱图,观察其频率成分和幅度分布。
- 改变正弦波信号的频率和幅度,观察频谱图的变化,验证傅里叶变换的性质。
3. 信号叠加- 将两个不同频率的正弦波信号叠加,生成一个复合信号。
- 对复合信号进行傅里叶变换,分析其频谱图,验证频谱叠加原理。
4. 窗函数- 使用不同类型的窗函数(如矩形窗、汉宁窗、汉明窗等)对信号进行截取,观察窗函数对频谱的影响。
- 分析不同窗函数的频率分辨率和旁瓣抑制能力。
5. 信号滤波- 设计一个低通滤波器,对信号进行滤波处理,观察滤波器对信号频谱的影响。
- 分析滤波器对信号时域和频域特性的影响。
6. MATLAB工具箱- 使用MATLAB信号处理工具箱中的函数,如`fft`、`ifft`、`filter`等,进行信号的频域分析。
- 学习MATLAB工具箱中的函数调用方法和参数设置。
四、实验结果与分析1. 正弦波信号的频谱分析实验结果显示,正弦波信号的频谱图只有一个峰值,位于50Hz处,说明信号只包含一个频率成分。
2. 信号叠加的频谱分析实验结果显示,复合信号的频谱图包含两个峰值,分别对应两个正弦波信号的频率。
验证了频谱叠加原理。
3. 窗函数对频谱的影响实验结果显示,不同类型的窗函数对频谱的影响不同。
连续系统的时域、频域分析报告
学生实验报告实验课程:信号与系统E D A 实验地点:东1教414学院:专业:学号 :姓名 :2.信号卷积,根据PPT 中的实验2.2和2.3内容完成课堂练习,写出程序及运行结果。
用Matlab 实现卷积运算)(*)(t h t f ,其中)()()],2()([2)(t e t h t t t f tεεε-=--=,)2()(2t h t h =;对比说明信号)(t f 分别输入系统)(和)(2t h t h 时的输出有什么区别并分析原因。
>> p=0.01;nf=0:p:4;f=2*(heaviside(nf)-heaviside(nf-2)); nh=0:p:6;h=exp(-nh).*(nh>0); y=conv(f,h); t=0:length(y)-1;subplot(3,1,1),stairs(nf,f);title('f(t)');axis([0 6 0 2.1]); subplot(3,1,2),plot(nh,h);title('h(t)');axis([0 6 0 1.1]); subplot(3,1,3),plot(0.01*t,y); title('y(t)=f(t)*h(t)');>> p=0.01;nf=0:p:4;f=2*(heaviside(nf)-heaviside(nf-2));nh=0:p:6;h=exp(-2*nh).*(2*nh>0);y=conv(f,h);t=0:length(y)-1;subplot(3,1,1),stairs(nf,f);title('f(t)');axis([0 6 0 2.1]); subplot(3,1,2),plot(nh,h);title('h(t)');axis([0 6 0 1.1]); subplot(3,1,3),plot(0.01*t,y); title('y(t)=f(t)*h(t)');区别:h (t )横轴缩短一半 y (t )纵轴横轴缩短一半原因:t 扩大2倍 横轴缩短 其卷积缩小到原来的4倍 故纵轴缩小2倍3.系统的冲激响应和阶跃响应分析已知二阶系统方程)(1)(1)()('''t LC t u LC t u L R t u c c δ=++,(1)F C H L R 3/1,1,4==Ω=(2)F C H L R 1,1,2==Ω=(3)F C H L R 1,1,1==Ω=(4)FC H L R 1,1,0==Ω=,根据不同情况下的实验结果分析系统参数变化时系统输出有什么变化规律。
实验六、系统的频域分析
实验六、系统的频域分析1实验目的1)学会利用MATLAB 对连续系统进行频域分析;2)学会利用MATLAB 分析离散系统函数的零极点分布与时域特性的关系;3)学会利用MATLAB 进行离散系统的频率特性分析。
2实验原理及实例分析(实验原理见教材的第五章、第六章及第七章)2.1 连续LTI 系统的频率特性例1:已知连续LTI 系统的微分方程为)(7)(13)(5)(8)(10)(t x t x t y t y t y t y +'=+'+''+'''求该系统的频率响应,并用MATLAB 绘出其幅频特性和相频特性图。
解:MATLAB 程序如下:clcclose allclear allb = [13 7];a = [1 10 8 5];w = -3*pi:0.01:3*pi;H = freqs(b,a,w);subplot(211);plot(w,abs(H),'Linewidth',2);grid;xlabel('\omega(rad/s)');title('|H(j\omega)|');subplot(212);plot(w,angle(H),'Linewidth',2);grid;xlabel('\omega(rad/s)');title('\phi(\omega)');程序产生的图形如图1所示。
图1 例1程序产生的波形图2.2连续LTI 系统的频域分析例2:设系统的频率响应为231)(2++-=ωωωj j H ,若输入信号为)10cos(2)cos(5)(t t t f +=,用MATLAB 命令求其稳态响应)(t y ss 。
解:MATLAB 程序如下:clcclose allclear allt = 0:0.01:20;w1 = 1;w2 = 10;H1 = 1 / (-w1^2 + j*3*w1 + 2);H2 = 1 / (-w2^2 + j*3*w2 + 2);f = 5 * cos(t) + 2 * cos(10*t);yss = abs(H1)*cos(w1*t+angle(H1))+abs(H2)*cos(w2*t+angle(H2)); subplot(211);plot(t,f,'Linewidth',2);grid;xlabel('t(sec)');title('f(t)');subplot(212);plot(t,yss,'Linewidth',2);grid;xlabel('t(sec)');title('y_s_s(t)');程序产生的图形如图2所示。
实验三系统的频域分析与根轨迹分析法实验报告
实验三 系统的频域分析与根轨迹分析法一.实验目的(1)了解系统的基于频域分析法的数学模型特点,掌握建立其数学模型的方法。
(2)熟悉MATLAB 的nyquist (),bode (),nichols ()等函数的应用。
(3)掌握系统分析法的频域分析法的根轨迹法,伯德图,奈斯图,尼克尔斯图分析法和Matlab 的应用。
(4)运用MATLAB 语言求取系统参数并进行分析。
二.实验原理(一)频域分析法(二)根轨迹分析法三.涉及的MATLAB 函数四.实验内容与方法(一)验证性实验(二)程序设计实验1.系统的开环传递函数为:)5)(4)1(s 1)s (+++=s s s G (,试用matlab 求: 1)绘制系统的nyquist 图,并判断稳定性。
2)绘制闭环系统的单位冲激响应曲线验证。
3)绘制bode 图求其增益裕量(GM )相位裕量()s (φ)及其对应的频率(wgc ,wpc ) 程序如下num=[1]den=conv([1 0],conv([1 1],conv([1 4],[1 5])))nyquist(num,den)[Gm,Pm,Wcg,Wcp]=margin(num,den)[num1 den1]=cloop(num,den)impulse(num1,den1)bode(num,den)运行结果如下num = 1den = 1 10 29 20 0Gm = 53.9996Pm = 85.8545Wcp = 1.4142Wcg = 0.0499num1 =0 0 0 0 1den1 =1 10 29 20 11)nyquist图如下因为其开环极点都在S平面的左边,所以其为开环稳定系统,而且仅当开环频率特性G(jw)的Nyquist曲线不包围点(-1,j0),所以闭环系统稳定。
2)闭环系统的单位冲激响应曲线如下从位冲激响应曲线可验证系统为衰减振荡后趋向稳定,可验证系统是稳定的。
3)bode图如下由图可知增益裕量Gm=34.6 DB相位裕量Pm=85.9度幅值穿越频率(剪切频率)Wgc=0.0499(r/s )相位穿越频率Wpc=1.41(r/s )2.已知开环系统传递函数)4)1(s )s (++=s s K G (,绘出闭环系统的根轨迹,并从根轨迹图分析其暂态特性。
频域分析综合实验报告
一、实验目的1. 理解和掌握频域分析的基本原理和方法。
2. 熟悉MATLAB在频域分析中的应用。
3. 通过实验,深入理解线性系统在频域中的特性。
4. 培养分析和解决实际问题的能力。
二、实验原理频域分析是研究线性系统的一种重要方法,它将时域信号转换到频域进行分析,从而揭示系统在各个频率分量上的响应特性。
频域分析方法主要包括傅里叶变换、拉普拉斯变换、Z变换等。
1. 傅里叶变换:将时域信号转换到频域的数学方法,适用于连续时间信号。
其逆变换可以将频域信号转换回时域。
2. 拉普拉斯变换:将时域信号转换到复频域的数学方法,适用于连续时间信号。
其逆变换可以将复频域信号转换回时域。
3. Z变换:将时域信号转换到离散时间域的数学方法,适用于离散时间信号。
其逆变换可以将离散时间域信号转换回时域。
三、实验内容及步骤1. 实验一:连续时间信号的频域分析(1)利用MATLAB实现连续时间信号的傅里叶变换和逆变换。
(2)绘制信号的时域波形图、频谱图、相位图等。
(3)分析信号的频率成分、幅度、相位等特性。
2. 实验二:离散时间信号的频域分析(1)利用MATLAB实现离散时间信号的离散傅里叶变换(DFT)和离散傅里叶逆变换(IDFT)。
(2)绘制信号的时域波形图、频谱图、相位图等。
(3)分析信号的频率成分、幅度、相位等特性。
3. 实验三:线性系统的频域分析(1)利用MATLAB绘制系统的幅频特性曲线、相频特性曲线。
(2)分析系统的截止频率、带宽、稳定性等特性。
(3)比较不同系统的频域特性,分析其对信号处理的影响。
四、实验结果与分析1. 实验一:通过傅里叶变换,将时域信号转换到频域,可以直观地观察到信号的频率成分、幅度、相位等特性。
例如,对于正弦信号,其频谱图显示只有一个频率分量,且幅度和相位保持不变。
2. 实验二:离散傅里叶变换(DFT)是离散时间信号频域分析的重要工具。
通过DFT,可以将离散时间信号分解为多个频率分量,从而分析信号的频率特性。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
系统频域分析课程设计报告Company number【1089WT-1898YT-1W8CB-9UUT-92108】《综合仿真》课程设计报告姓名学号同组成员指导教师时间 11周至14周系统的频域分析【目的】(1) 加深对系统频域分析基本原理和方法的理解。
(2) 加深对信号幅度调制与解调基本原理和方法的理解。
(3) 锻炼学生综合利用所学理论和技术,分析与解决工程实际问题的能力。
【研讨内容】题目1.幅度调制和连续信号的Fourier 变换本题研究莫尔斯码的幅度调制与解调。
本题中信号的形式为)π2sin()()π2sin()()π2cos()()(132211t f t m t f t m t f t m t x ++=其中信号x (t )由文件定义,可用命令Load ctftmod 将文件定义的变量装入系统内存。
运行命令Load ctftmod 后,装入系统的变量有af bf dash dot f1 f2 t x其中bf af : 定义了一个连续系统H (s )的分子多项式和分母多项式。
可利用freqs(bf,af,w)求出该系统的频率响应,也可用sys=tf(bf,af)得到系统的模型,从而用lsim 求出信号通过该系统的响应。
dash dot : 给出了莫尔斯码中的基本信号dash 和dot 的波形 f1 f2: 载波频率 t: 信号x (t )的抽样点x: 信号x (t )的在抽样点上的值信号x (t )含有一段简单的消息。
Agend 007的最后一句话是The future of technology lies in ···还未说出最后一个字,Agend 007就昏倒了。
你(Agend 008)目前的任务就是要破解Agend 007的最后一个字。
该字的信息包含在信号x (t )中。
信号x (t )具有式(1)的形式。
式中的调制频率分别由变量f1和f2给出,信号m 1(t ),m 2(t )和m 3(t )对应于字母表中的单个字母,这个字母表已用国际莫尔斯码进行编码,如下表所示:(1)字母B 可用莫尔斯码表示为b=[dash dot dot dot],画出字母B 莫尔斯码波形;(2) 用freqs(bf,af,w)画出系统的幅度响应;(3) 利用lsim 求出信号dash 通过由sys=tf(bf,af)定义的系统响应,解释你所获得的结果;(4)用解析法推导出下列信号的Fourier 变换)π2cos()π2cos()(21t f t f t m )π2sin()π2cos()(21t f t f t m)π2sin()π2sin()(21t f t f t m(5)利用(4)中的结果,设计一个从x (t )中提取信号m 1(t )的方案,画出m 1(t )的波形并确定其所代表的字母;(6)对信号m 2(t )和m 3(t )重复(5)。
请问Agent 008The future of technology lies in ···题目2.分析实际物理系统的频率响应。
【题目分析】 题目1.幅度调制和连续信号的Fourier 变换 信号的形式为 )π2sin()()π2sin()()π2cos()()(132211t f t m t f t m t f t m t x ++=,其中信号x (t )由文件定义,可用命令Load ctftmod 将文件定义的变量装入系统内存。
运行命令Load ctftmod 后,装入系统的变量有af bf dash dot f1 f2 t xbf af : 定义了一个连续系统H (s )的分子多项式和分母多项式。
可利用freqs(bf,af)求出该系统的频率响应,也可用sys=tf(bf,af)得到系统的模型,从而用lsim 求出信号通过该系统的响应。
各变量的含义 dash dot:给出了莫尔斯码中的基本信号dash和dot的波形。
f1 f2:载波频率t:信号x(t)的抽样点x:信号x(t)的在抽样点上的值x(t):信号x(t)含有一段简单的消息【仿真程序】〉〉whos〉〉plot(dash)〉〉plot(dot)〉〉b=[dash dot dot dot]〉〉plot(b)〉〉freqs(bf,af,w)〉〉freqs(bf,af)〉〉ydash=lsim(bf,af,dash,t(1:length(dash)));〉〉ydot=lsim(bf,af,dot,t(1:length(dot)));〉〉subplot(2,1,1);〉〉plot(t(1:length(dash)),dash,t(1:length(dash)),ydash,'--');〉〉legend('dash','ydash');〉〉subplot(2,1,2);〉〉plot(t(1:length(dot)),dot,t(1:length(dot)),ydot,'--');〉〉legend('dot','ydash');〉〉m1=lsim(bf,af,x.*cos(2*pi*f1*t),t);〉〉plot(t,m1);〉〉m1=lsim(bf,af,x.*cos(2*pi*f1*t),t);〉〉subplot(3,1,1);〉〉plot(t,m1);〉〉m1=lsim(bf,af,x.*sin(2*pi*f2*t),t);〉〉subplot(3,1,2);〉〉plot(t,m1);〉〉m1=lsim(bf,af,x.*sin(2*pi*f1*t),t);〉〉subplot(3,1,3);〉〉plot(t,m1);【仿真结果】(1)字母B可用莫尔斯码表示为b=[dash dot dot dot],画出字母B莫尔斯码波形;(2) 用freqs(bf,af)画出系统的幅度响应;(3) 利用lsim求出信号dash通过由sys=tf(bf,af)定义的系统响应,解释你所获得的结果;(4)用解析法推导出下列信号的Fourier 变换)π2cos()π2cos()(21t f t f t m ; )π2sin()π2cos()(21t f t f t m ; )π2sin()π2sin()(21t f t f t m ;)]}π2π2([)]π2π2([)]π2π2([)]π2π2([{41)]}π2()π2([*)]π2()π2([*)(21{21)]π2[cos(*)]π2cos()([21)π2cos()π2cos()(2121212122112121f f j M f f j M f f j M f f j M f f f f j M t f F t f t m F dt e t f t f t m t j +++-+++-+--=++-++-==-∞∞-⎰ωωωωωδωδπωδωδπωπππω)]}π2π2([)]π2π2([)]π2π2([)]π2π2([{4)]}π2()π2([*)]π2()π2([*)(21{21)]π2[sin(*)]π2cos()([21)π2sin()π2cos()(2121212122112121f f j M f f j M f f j M f f j M jf f j f f j M t f F t f t m F dt e t f t f t m t j +++-+-+-+---=++--++-==-∞∞-⎰ωωωωωδωδπωδωδπωπππω)]}22πf 12πf M[j(ω)]22πf 12πf M[j(ω)]22πf 12πf M[j(ω)]22πf 12πf {M[j(ω41)]}22πf δ(ω)22πf δ(ωjπ[*)]12πf δ(ω)12πf δ(ωjπ[*M(jω)2π1{2π1t)]2F[sin(2πf *t)]12πf F[m(t)sin(2π1dt jωtt)e 2t)sin(2πf 1f m(t)sin(2π+++-+-+-----=++--++--==-⎰∞∞-(5)利用(4)中的结果,设计一个从x(t)中提取信号m1(t)的方案,画出m1(t)的波形并确定其所代表的字母;(6)对信号m2(t)和m3(t)重复(5)。
请问Agent 008 The future of technology lies in ···【结果分析】字母B可用莫尔斯码表示为b=[dash dot dot dot],画出字母B莫尔斯码波形;用freqs(bf,af)画出系统的幅度响应,并通过图形看出是一个低通滤波器;利用lsim求出信号dash通过由sys=tf(bf,af)定义的系统响应,从信号的波形上看,原信号和输出信号的波形基本一致,输出信号在幅度上有些改变,在时间上有些延迟。
这个结果说明他们都是低频的,fft变换的频率范围在低通滤波器通带之内。
m1=lsim(bf,af,x.*cos(2*pi*f1*t),t);plot(t,m1); %代表字幕为Dm1=lsim(bf,af,x.*sin(2*pi*f2*t),t);plot(t,m1); %代表字幕为Dm1=lsim(bf,af,x.*sin(2*pi*f1*t),t);plot(t,m1); %代表字幕为D【阅读文献】[1] 陈后金,胡健,薛健.信号与系统(第二版)[M].北京:清华大学出版社,北京交通大学出版社,2005[2] 吴大正,信号与系统(第四版)[M].西安:西安交通大学出版社,2006.[3] 郑君里, 应启珩, 杨为理.信号与系统引论[M]. 北京:高等教育出版社, 2009.[4] 梁红,梁洁,陈跃斌,等.信号与系统分析及MATLAB实现[M].电子工业出版社.2002,3.【发现问题】在实现实验开始时,对文件的装载出现问题,最终下载文件后实现文件装载。
在实现过程中发现了多个函数的使用问题,通过上网查询资料,学会了有关lsim 函数,load 命令的使用,plot 命令的使用;freqs(bf,af)的用法;解析法推导信号的Fourier 变换。
通过对matlab 设计仿真,针对运用理论知识对用解析法推导出下列信号的Fourier 变换)π2cos()π2cos()(21t f t f t m ; )π2sin()π2cos()(21t f t f t m ;)π2sin()π2sin()(21t f t f t m 模块进行了系统的针对性的研究分析,并利用lsim 函数对未知信息进行重建,恢复出原始信息。