湖北省十堰市2011年中考数学试卷与答案-解析版

合集下载

2011年湖北省武汉市中考数学试题及答案

2011年湖北省武汉市中考数学试题及答案

2011年湖北省武汉市中考数学试题第Ⅰ卷(选择题,共36分)一、选择题(共12小题,每小题3分,共36分)下列各题中均有四个备选答案,其中有且只有一个正确,请在答题卡上将正确答案的代号涂黑.1.有理数-3的相反数是A.3.B.-3.C.31 D.31-. 2.函数2-=x y 中自变量x 的取值范围是A.x≥0.B.x≥-2.C.x≥2.D.x≤-2.3.如图,数轴上表示的是某不等式组的解集,则这个不等式组可能是A.x+1>0,x-3>0.B.x+1>0,3-x>0.C.x+1<0,x-3>0.D.x+1<0,3-x>0.4.下列事件中,为必然事件的是A.购买一张彩票,中奖.B.打开电视,正在播放广告.C.抛掷一枚硬币,正面向上.D.一个袋中只装有5个黑球,从中摸出一个球是黑球.5.若x 1,x 2是一元二次方程x 2+4x+3=0的两个根,则x 1x 2的值是A.4.B.3.C.-4.D.-3.6.据报道,2011年全国普通高等学校招生计划约675万人.数6750000用科学计数法表示为A.675×104.B.67.5×105.C.6.75×106.D.0.675×107.7.如图,在梯形ABCD 中,AB ∥DC ,AD=DC=CB ,若∠ABD =25°,则∠BAD 的大小是A.40°.B.45°.C.50°.D.60°.8.右图是某物体的直观图,它的俯视图是9.在直角坐标系中,我们把横、纵坐标都是整数的点叫做整点.且规定,正方形的内部不包含边界上的点.观察如图所示的中心在原点、一边平行于x 轴的正方形:边长为1的正方形内部有1个整点,边长为2的正方形内部有1个整点,边长为3的正方形内部有9个整点,…则边长为8的正方形内部的整点的个数为A.64.B.49.C.36.D.25.10.如图,铁路MN 和公路PQ 在点O 处交汇,∠QON=30°.公路PQ 上A 处距离O 点240米.如果火车行驶时,周围200米以内会受到噪音的影响.那么火车在铁路MN 上沿ON 方向以72千米/时的速度行驶时,A 处受噪音影响的时间为A.12秒.B.16秒.C.20秒.D.24秒.11.为广泛开展阳光健身活动,2010年红星中学投入维修场地、安装设施、购置器材及其它项目的资金共38万元.图1、图2分别反映的是2010年投入资金分配和2008年以来购置器材投入资金的年增长率的具体数据.根据以上信息,下列判断:① 在2010年总投入中购置器材的资金最多;② ②2009年购置器材投入资金比2010年购置器材投入资金多8%;③ ③若2011年购置器材投入资金的年增长率与2010年购置器材投入资金的年增长率相同,则2011年购置器材的投入是38×38%×(1+32%)万元. 其中正确判断的个数是A.0.B.1.C.2.D.3.12.如图,在菱形ABCD 中,AB=BD ,点E ,F 分别在AB ,AD 上,且AE=DF.连接BF 与DE 相交于点G ,连接CG 与BD 相交于点H.下列结论:①△AED ≌△DFB ;②S 四边形 B C D G = 43 CG 2; ③若AF=2DF ,则BG=6GF.其中正确的结论A. 只有①②.B.只有①③.C.只有②③.D.①②③.第Ⅱ卷(非选择题,共84分)二、填空题(共4小题,每小题3分,共12分).下列各题不需要写出解答过程,请将结果直接填写在答题卡指定的位置.13.sin30°的值为_____.14.某次数学测验中,五位同学的分数分别是:89,91,105,105,110.这组数据的中位数是_____,众数是_____,平均数是_____.15.一个装有进水管和出水管的容器,从某时刻起只打开进水管进水,经过一段时间,再打开出水管放水.至12分钟时,关停进水管.在打开进水管到关停进水管这段时间内,容器内的水量y (单位:升)与时间x (单位:分钟)之间的函数关系如图所示.关停进水管后,经过_____分钟,容器中的水恰好放完.16.如图,□ABCD 的顶点A ,B 的坐标分别是A (-1,0),B(0,-2),顶点C ,D 在双曲线y=xk 上,边AD 交y 轴于点E ,且四边形BCDE 的面积是△ABE 面积的5倍,则k=_____.三、解答题(共9小题,共72分)下列各题需要在答题卡指定位置写出文字说明、证明过程、演算步骤或画出图形.17.(本题满分6分)解方程:x 2+3x+1=0.18.(本题满分6分)先化简,再求值:)4(22xx x x x -÷-,其中x=3. 19.(本题满分6分)如图,D ,E ,分 别 是 AB ,AC 上 的 点 ,且AB=AC ,AD=AE.求证∠B=∠C.20.(本题满分7分)经过某十字路口的汽车,它可能继续直行,也可能向左转或向右转.如果这三种可能性大小相同,现有两辆汽车经过这个十字路口.(1)试用树形图或列表法中的一种列举出这两辆汽车行驶方向所有可能的结果;(2)求至少有一辆汽车向左转的概率.21.(本题满分7分)在平面直角坐标系中,△ABC 的顶点坐标是A (-7,1),B (1,1),C (1,7).线段DE 的端点坐标是D (7,-1),E (-1,-7).(1)试说明如何平移线段AC ,使其与线段ED 重合;(2)将△ABC 绕坐标原点O 逆时针旋转,使AC 的对应边为DE ,请直接写出点B 的对应点F 的坐标;(3)画出(2)中的△DEF ,并和△ABC 同时绕坐标原点O逆时针旋转90°,画出旋转后的图形.22.(本题满分8分)如图,PA 为⊙O 的切线,A 为切点.过A 作OP 的垂线AB ,垂足为点C ,交⊙O 于点 B.延长BO 与⊙O 交于点D ,与PA 的延长线交于点E.(1)求证:PB 为⊙O 的切线;(2)若tan ∠ABE=21,求sinE 的值.23.(本题满分10分)星光中学课外活动小组准备围建一个矩形生物苗圃园.其中一边靠墙,另外三边用长为30米的篱笆围成.已知墙长为18米(如图所示),设这个苗圃园垂直于墙的一边的长为x 米.(1)若平行于墙的一边的长为y 米,直接写出y 与x 之间的函数关系式及其自变量x 的取值范围;(2)垂直于墙的一边的长为多少米时,这个苗圃园的面积最大,并求出这个最大值;(3)当这个苗圃园的面积不小于88平方米时,试结合函数图像,直接写出x 的取值范围.24.(本题满分10分)(1)如图1,在△ABC 中,点D ,E ,Q 分别在AB ,AC ,BC 上,且DE ∥BC ,AQ 交DE 于点P.求证:QCPE BQ DP . (2) 如图,在△ABC 中,∠BAC=90°,正方形DEFG 的四个顶点在△ABC 的边上,连接AG ,AF 分别交DE 于M ,N 两点.①如图2,若AB=AC=1,直接写出MN 的长;②如图3,求证MN 2=DM·EN.25.(本题满分12分)如图1,抛物线y=ax 2+bx+3经过A (-3,0),B (-1,0)两点.(1)求抛物线的解析式;(2)设抛物线的顶点为M ,直线y=-2x+9与y 轴交于点C ,与直线OM 交于点D.现将抛物线平移,保持顶点在直线OD 上.若平移的抛物线与射线CD (含端点C )只有一个公共点,求它的顶点横坐标的值或取值范围;(3)如图2,将抛物线平移,当顶点至原点时,过Q (0,3)作不平行于x 轴的直线交抛物线于E ,F 两点.问在y 轴的负半轴上是否存在点P ,使△PEF 的内心在y 轴上.若存在,求出点P 的坐标;若不存在,请说明理由.2011年湖北省武汉市中考数学答案一、选择题1.A2.C3.B4.D5.B6.C7.C8.A9.B 10.B 11.C 12.D二、填空题13.1/214.105;105;10015.816.12三、解答题17.(本题6分)解:∵a=1,b=3,c=1∴△=b 2-4ac=9-4³1³1=5>0∴x=-3±25 ∴x 1=-3+ 25,x 2=-3-25 18.(本题6分)解:原式=x(x-2)/x÷(x+2)(x -2)/x=x(x-2)/x² x/(x+2)(x-2)= x/(x+2)∴当x=3时,原式=3/519.(本题6分)解:证明:在△ABE 和△ACD 中,AB =AC ∠A=∠A AE =AD∴△ABE≌△ACD∴∠B=∠C20.(本题7分)解法1:(1)根据题意,可以画出如下的“树形图”:∴这两辆汽车行驶方向共有9种可能的结果(2)由(1)中“树形图”知,至少有一辆汽车向左转的结果有5种,且所有结果的可能性相等∴P(至少有一辆汽车向左转)=5/9解法2:根据题意,可以列出如下的表格:以下同解法1(略)21.(本题7分)(1)将线段AC 先向右平移6个单位,再向下平移8个单位.(其它平移方式也可)(2)F (-1,-1)(3)画出如图所示的正确图形22.(本题8分)(1)证明:连接OA∵PA为⊙O的切线,∴∠PAO=90°∵OA=OB,OP⊥AB于C∴BC=CA,PB=PA∴△PBO≌△PAO∴∠PBO=∠PAO=90°∴PB为⊙O的切线(2)解法1:连接AD,∵BD是直径,∠BAD=90°由(1)知∠BCO=90°∴AD∥OP∴△ADE∽△POE∴EA/EP=AD/OP 由AD∥OC得AD=2OC ∵tan∠ABE=1/2 ∴OC/BC=1/2,设OC=t,则BC=2t,AD=2t由△PBC∽△BOC,得PC=2BC=4t,OP=5t ∴EA/EP=AD/OP=2/5,可设EA=2m,EP=5m,则PA=3m∵PA=PB∴PB=3m∴sinE=PB/EP=3/5(2)解法2:连接AD,则∠BAD=90°由(1)知∠BCO=90°∵由AD∥OC,∴AD=2OC ∵tan∠ABE=1/2,∴OC/BC=1/2,设OC=t,BC=2t,AB=4t由△PBC∽△BOC,得PC=2BC=4t,∴PA=PB=25t 过A作AF⊥PB于F,则AF²PB=AB²PC∴AF=558t 进而由勾股定理得PF=556t∴sinE=sin∠FAP=PF/PA=3/523.(本题10分)解:(1)y=30-2x(6≤x<15)(2)设矩形苗圃园的面积为S则S=xy=x(30-2x)=-2x2+30x ∴S=-2(x-7.5)2+112.5由(1)知,6≤x<15∴当x=7.5时,S最大值=112.5即当矩形苗圃园垂直于墙的边长为7.5米时,这个苗圃园的面积最大,最大值为112.5(3)6≤x≤1124.(本题10分)(1)证明:在△ABQ中,由于DP∥BQ,∴△ADP∽△ABQ,∴DP/BQ=AP/AQ.同理在△ACQ中,EP/CQ=AP/AQ.∴DP/BQ=EP/CQ.(2)929.(3)证明:∵∠B+∠C=90°,∠CEF+∠C=90°.∴∠B=∠CEF,又∵∠BGD=∠EFC,∴△BGD∽△EFC.……3分∴DG/CF=BG/EF,∴DG²EF=CF²BG又∵DG=GF=EF,∴GF2=CF²BG由(1)得DM/BG=MN/GF=EN/CF∴(MN/GF)2=(DM/BG)²(EN/CF)∴MN2=DM²EN25.(1)抛物线y=ax2+bx+3经过A(-3,0),B(-1,0)两点∴9a -3b+3=0 且a-b+3=0解得a =1b =4∴抛物线的解析式为y=x 2+4x+3(2)由(1)配方得y=(x+2)2-1∴抛物线的顶点M (-2,,1)∴直线OD 的解析式为y=21x 于是设平移的抛物线的顶点坐标为(h ,21 h ),∴平移的抛物线解析式为y=(x-h )2+21h.①当抛物线经过点C 时,∵C(0,9),∴h 2+21h=9, 解得h=41451-±. ∴ 当 4145-1-≤h<41451-+ 时,平移的抛物线与射线CD 只有一个公共点.②当抛物线与直线CD 只有一个公共点时,由方程组y=(x-h )2+21h,y=-2x+9. 得 x 2+(-2h+2)x+h 2+21h-9=0,∴△=(-2h+2)2-4(h 2+21h-9)=0, 解得h=4.此时抛物线y=(x-4)2+2与射线CD 唯一的公共点为(3,3),符合题意.综上:平移的抛物线与射线CD 只有一个公共点时,顶点横坐标的值或取值范围是 h=4或 4145-1-≤h<41451-+. (3)方法1将抛物线平移,当顶点至原点时,其解析式为y=x 2,设EF 的解析式为y=kx+3(k≠0).假设存在满足题设条件的点P (0,t ),如图,过P作GH∥x 轴,分别过E ,F 作GH 的垂线,垂足为G ,H.∵△PEF的内心在y 轴上,∴∠GEP=∠EPQ=∠QPF=∠HFP ,∴△GEP∽△HFP,...............9分∴GP /PH=GE/HF,∴-x E /x F =(y E -t)/(y F -t)=(kx E +3-t)/(kx F +3-t)∴2kx E ²x F =(t-3)(x E +x F )由y=x 2,y=-kx+3.得x 2-kx-3=0.∴x E +x F =k,x E ²x F =-3.∴2k (-3)=(t-3)k,∵k≠0,∴t=-3.∴y 轴的负半轴上存在点P (0,-3),使△PEF 的内心在y 轴上.方法 2 设EF 的解析式为y=kx+3(k≠0),点E ,F的坐标分别为(m,m 2)(n,n 2)由方法1知:mn=-3.作点E 关于y 轴的对称点R (-m,m 2),作直线FR 交y 轴于点P ,由对称性知∠EPQ=∠FPQ,∴点P 就是所求的点.由F,R的坐标,可得直线FR 的解析式为y=(n-m )x+mn.当x=0,y=mn=-3,∴P (0,-3).∴y 轴的负半轴上存在点P (0,-3),使△PEF 的内心在y 轴上.武汉市光谷三初 冉瑞洪整理。

湖北省十堰市中考数学真题试题(解析版)

湖北省十堰市中考数学真题试题(解析版)

湖北省十堰市2013年中考数学试卷一、选择题(本题共10个小题,每小题3分,满分30分)下面每小题给出的四个选项中,只有一个是正确的,请把正确选项的字母填在后面的括号里。

﹣2.(3分)(2013•十堰)如图,AB∥CD,CE平分∠BCD,∠DCE=18°,则∠B等于()4.(3分)(2013•十堰)用两块完全相同的长方体摆放成如图所示的几何体,这个几何体的左视图是()5.(3分)(2013•十堰)已知关于x的一元二次方程x2+2x﹣a=0有两个相等的实数根,则a6.(3分)(2013•十堰)如图,将△ABC沿直线DE折叠后,使得点B与点A重合.已知AC=5cm,△ADC的周长为17cm,则BC的长为()7.(3分)(2013•十堰)如图,梯形ABCD中,AD∥BC,AB=DC=3,AD=5,∠C=60°,则下底BC的长为()∴cos60°===8.(3分)(2013•十堰)如图,是一组按照某种规律摆放成的图案,则图5中三角形的个数是()9.(3分)(2013•十堰)张师傅驾车从甲地到乙地,两地相距500千米,汽车出发前油箱有油25升,途中加油若干升,加油前、后汽车都以100千米/小时的速度匀速行驶,已知油箱中剩余油量y(升)与行驶时间t(小时)之间的关系如图所示.以下说法错误的是(),解得,所以汽车加油后还可行驶:30÷8=310.(3分)(2013•十堰)如图,二次函数y=ax2+bx+c(a≠0)的图象的顶点在第一象限,且过点(0,1)和(﹣1,0).下列结论:①ab<0,②b2>4a,③0<a+b+c<2,④0<b<1,⑤当x>﹣1时,y>0,其中正确结论的个数是()轴右侧,∴x=﹣>二、填空题(共6小题,每小题3分,满分18分)11.(3分)(2013•十堰)我国南海面积约为350万平方千米,“350万”这个数用科学记数法表示为 3.5×106.12.(3分)(2013•十堰)计算:+(﹣1)﹣1+(﹣2)0= 2..13.(3分)(2013•十堰)某次能力测试中,10人的成绩统计如表,则这10人成绩的平均数×(5×3+4×1+3×2+2×2+1×2)14.(3分)(2013•十堰)如图,▱ABCD中,∠ABC=60°,E、F分别在CD和BC的延长线上,AE∥BD,EF⊥BC,EF=,则AB的长是 1 .,15.(3分)(2013•十堰)如图,在小山的东侧A点有一个热气球,由于受西风的影响,以30米/分的速度沿与地面成75°角的方向飞行,25分钟后到达C处,此时热气球上的人测得小山西侧B点的俯角为30°,则小山东西两侧A、B两点间的距离为750米.(米)(米).16.(3分)(2013•十堰)如图,正三角形ABC的边长是2,分别以点B,C为圆心,以r为半径作两条弧,设两弧与边BC围成的阴影部分面积为S,当≤r<2时,S的取值范围是﹣1≤S<﹣.DG==﹣×1×﹣﹣时,DG=﹣==﹣﹣的取值范围是:﹣1≤S<﹣故答案为:﹣1≤S<﹣三、解答题(共9小题,满分72分)17.(6分)(2013•十堰)化简:.×++18.(6分)(2013•十堰)如图,点D,E在△ABC的边BC上,AB=AC,BD=CE.求证:AD=AE.19.(6分)(2013•十堰)甲、乙两名学生练习计算机打字,甲打一篇1000字的文章与乙打一篇900字的文章所用的时间相同.已知甲每分钟比乙每分钟多打5个字.问:甲、乙两人每分钟各打多少字?由题意得,=20.(9分)(2013•十堰)某中学九(1)班为了了解全班学生喜欢球类活动的情况,采取全面调查的方法,从足球、乒乓球、篮球、排球等四个方面调查了全班学生的兴趣爱好,根据调查的结果组建了4个兴趣小组,并绘制成如图所示的两幅不完整的统计图(如图①,②,要求每位学生只能选择一种自己喜欢的球类),请你根据图中提供的信息解答下列问题:(1)九(1)班的学生人数为40 ,并把条形统计图补充完整;(2)扇形统计图中m= 10 ,n= 20 ,表示“足球”的扇形的圆心角是72 度;(3)排球兴趣小组4名学生中有3男1女,现在打算从中随机选出2名学生参加学校的排球队,请用列表或画树状图的方法求选出的2名学生恰好是1男1女的概率.)∵=21.(6分)(2013•十堰)定义:对于实数a,符号[a]表示不大于a的最大整数.例如:[5.7]=5,[5]=5,[﹣π]=﹣4.(1)如果[a]=﹣2,那么a的取值范围是﹣2≤a<﹣1 .(2)如果[]=3,求满足条件的所有正整数x.]]22.(7分)(2013•十堰)某商场计划购进A,B两种新型节能台灯共100盏,这两种台灯的(2)若商场规定B型台灯的进货数量不超过A型台灯数量的3倍,应怎样进货才能使商场在销售完这批台灯时获利最多?此时利润为多少元?23.(10分)(2013•十堰)如图,已知正比例函数y=2x和反比例函数的图象交于点A(m,﹣2).(1)求反比例函数的解析式;(2)观察图象,直接写出正比例函数值大于反比例函数值时自变量x的取值范围;(3)若双曲线上点C(2,n)沿OA方向平移个单位长度得到点B,判断四边形OABC的形状并证明你的结论.y=,y=上,=,,y==,24.(10分)(2013•十堰)如图1,△ABC中,CA=CB,点O在高CH上,OD⊥CA于点D,OE⊥CB 于点E,以O为圆心,OD为半径作⊙O.(1)求证:⊙O与CB相切于点E;(2)如图2,若⊙O过点H,且AC=5,AB=6,连接EH,求△BHE的面积和tan∠BH E的值.∴AH=BH==4=,即=EF==BH•EF=×3×=,BF==﹣,=225.(12分)(2013•十堰)已知抛物线y=x2﹣2x+c与x轴交于A.B两点,与y轴交于C点,抛物线的顶点为D点,点A的坐标为(﹣1,0).(1)求D点的坐标;(2)如图1,连接AC,BD并延长交于点E,求∠E的度数;(3)如图2,已知点P(﹣4,0),点Q在x轴下方的抛物线上,直线PQ交线段AC于点M,当∠PMA=∠E时,求点Q的坐标.上,得到﹣m CD==xmm﹣)或(﹣,﹣。

2011年中考数学试题及解析171套试题试卷_121

2011年中考数学试题及解析171套试题试卷_121

湖北省黄石市2011年初中毕业生学业考试一、仔细选一选(每小题3分,共30分)的值为( )A.2B. -2C. 2±D. 不存在2.黄石市2011年6月份某日一天的温差为11℃,最高气温为t ℃,则最低气温可表示为( )A. (11+t)℃B. (11-t)℃C. (t-11)℃D. (-t-11)℃ 3.双曲线21k y x -=的图像经过第二、四象限,则k 的取值范围是( ) A.12k > B. 12k < C. 12k = D. 不存在4. 有如下图形:①函数1y x =+的图形;②函数1y x=的图像;③一段弧;④平行四边形,其中一定是轴对称图形的有( )A.1个B.2个C.3个D.4个 5.如图(1)所示的几何体的俯视图是( )6.2010年12月份,某市总工会组织该市各单位参加“迎新春长跑活动”,将报名的男运动员分成3组:青年组,中年组,老年组。

各组人数所占比例如图(2)所示,已知青年组有120人,则中年组与老年组人数分别是( )A.30,10B.60,20C.50,30D.60,107.将一个有45°角的三角板的直角顶点放在一张宽为3cm 的纸带边沿上,另一个顶点在纸带的另一边沿上,测得三角板的一边与纸带的一边所在的直线成30°角,如图(3),则三角板的最大边的长为( ) A. 3cm B. 6cmC.cmD. cm8.平面上不重合的两点确定一条直线,不同三点最多可确定3条直线,若平面上不同的n 个点最多可确定21条直线,则n 的值为( )A. 5B. 6C. 7D. 89.设一元二次方程(1)(2)(0)x x m m --=>的两根分别为,αβ,且αβ<,则,αβ满足( )A. 12αβ<<<B. 12αβ<<<C. 12αβ<<<D. 1α<且 2β>10.已知梯形ABCD 的四个顶点的坐标分别为(1,0)A -,(5,0)B ,(2,2)C ,(0,2)D ,直线2y kx =+将梯形分成面积相等的两部分,则k 的值为( ) A. 23-B.29-C. 47-D. 27- 二、认真填一填(每小题3分,共18分) 228x -A B CD 图(1) 中年人 30%老年人 10%青年人 60%30° 图(3) 图(2)12.为响应“红歌唱响中国”活动,某乡镇举行了一场“红歌”歌咏比赛,组委会规定:任何一名参赛选手的成绩x表(一)根据表(一)提供的信息得到n = .13.有甲、乙两张纸条,甲纸条的宽是乙纸条宽的2倍,如图(4)。

2011年湖北省襄阳中考数学试题(word版答案扫描)

2011年湖北省襄阳中考数学试题(word版答案扫描)

2011年襄阳市初中毕业、升学统一考试数学试题一、选择题 本大题共12各小题 每小题3分 共36分 在每小题给出的四个选项中 只有一项是符合题目要求的,请将其序号填涂在答题卡上相应位置!1. 2-的倒数是A .2-B .2C .12-D .122. 下列运算正确的是 A .2a a a -= B .236()a a -=-C .632x x x ÷=D .222()x y x y +=+3. 若x y 、为实数,且110x y ++-=,则2011()x y的值是 A .0 B .1 C .1- D .2011-4. 如图1,CD ∥AB ,∠1=120°,∠2=80°,则∠E 的度数是A .40°B .60°C .80°D .120°5. 下列图形是中心对称图形而不是轴对称图形的是6 下列说法正确的是A .0()2π是无理数 B .33是有理数 C .4是无理数 D .38-是有理数7.下列事件中.属于必然事件的是A .抛掷一枚1元硬币落地后.有国徽的一面向上B .打开电视任选一频道,正在播放襄阳新闻C .到一条绕段两端点距离相等的点在该线段的垂直平分线上D .某种彩票的中奖率是l 0%,则购买该种彩票100张一定中奖8.由—些相同的小立方块搭成的几何体的三视图如图2所示.则搭成该几何体的小立方块有A .3块B .4块C .6块D .9块9.在△ABC 中,∠C=90°.AC=3cm .BC=4cm ,若⊙A .⊙B 的半径分别为1cm ,4cm . 则⊙A 与⊙B 的位置关系是A .外切B .内切C .相交D .外离10.若顺次连接四边形ABCD 各边的中点所得四边形是菱形.则四边形ABCD 一定是A .茭形B .对角线互相垂直的四边形C .矩形D .对角线相等的四边形11.2011年春我市发生了严重干旱.市政府号召居民节约用水.为了解居民用水情况. 在某小区随机抽查了l0户家庭的月用水量.结果如下表;月用水量(吨)5 6 7 户数 2 6 2则关于这l0户家庭的月用水量,下列说法错误的是A .众数是6B .极差是2C .平均数是6D .方差是412.已知函数2(3)21y k x x =-++的图象与x 轴有交点.则k 的取值范围是A .k<4B .k ≤4C .k<4且k ≠3D .k ≤4且k ≠3二、填空题:(本大题共5个小题.每小题3分.共l5分)'把答案填在答题卡的对应位置的横线上.13.为了推进全民医疗保险工作.截止2011年5月31日.今年中央财政已累计下拨医疗卫生补助佥1346亿元.这个金额用科学记数法表示为_______________元.14.在207国道襄阳段改造工程中,需沿AC 方向开山修路(如图3所示),为了加快施工进度,要在小山的另一边同时施工.从AC 上的一点B 取∠ABD=140°,BD=1000m ,∠D=50°.为了使开挖点E 在直线AC 上.那么DE=_______________m 。

2011年湖北省黄冈市中考数学试卷答案及详细解析

2011年湖北省黄冈市中考数学试卷答案及详细解析

2011年湖北省黄冈市中考数学试卷答案及详细解析一、填空题(共8小题,每小题3分,满分24分)1、(2011•随州)﹣错误!未找到引用源。

的倒数是﹣2.2、(2011•随州)分解因式:8a2﹣2=2(2a+1)(2a﹣1).3、(2011•随州)要使式子错误!未找到引用源。

有意义,则a的取值范围为a≥﹣2且a≠0.4、如图:点A在双曲线错误!未找到引用源。

上,AB丄x轴于B,且△AOB的面积S△AOB=2,则k=﹣4.5、(2011•鄂州)如图:矩形ABCD的对角线AC=10,BC=8,则图中五个小矩形的周长之和为28.解答:解:由勾股定理,得AB=错误!未找到引用源。

=6,将五个小矩形的所有上边平移至AD,所有下边平移至BC,所有左边平移至AB,所有右边平移至CD,∴五个小矩形的周长之和=2(AB+CD)=2×(6+8)6、(2011•鄂州)如图,在△ABC中E是BC上的一点,EC=2BE,点D是AC的中点,设△ABC,△ADF,△BEF的面积分别为S△ABC,S△ADF,S△BEF,且S△ABC=12,则S△ADF﹣S△BEF=2.考点:三角形的面积。

分析:S△ADF﹣S△BEF=S△ABD﹣S△ABE,所以求出三角形ABD的面积和三角形ABE的面积即可,因为EC=2BE,点D是AC的中点,且S△ABC=12,就可以求出三角形ABD的面积和三角形ABE的面积.解答:解:∵点D是AC的中点,S△ABC=12,∴S△ABD=错误!未找到引用源。

×12=6.∵EC=2BE,S△ABC=12,∴S△ABE=错误!未找到引用源。

×12=4,∴S△ADF﹣S△BEF=S△ABD﹣S△ABE=6﹣4=2.7、(2011•鄂州)若关于x,y的二元一次方程组错误!未找到引用源。

的解满足x+y<2,则a的取值范围为a<4.解答:解:错误!未找到引用源。

①﹣③×3,解得y=1﹣错误!未找到引用源。

湖北省十堰市2011年中考数学试题及详解答案

湖北省十堰市2011年中考数学试题及详解答案

湖北省十堰市2011年中考数学试题及详解答案注意事项:本试卷分为试题卷和答题卡两部分,考试时间为120分钟,满分120分.一、仔细选一选(本题有10个小题,每小题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的,请把正确选项的字母填在答题卷中相应的格子内.注意可以用多种不同的方法选取正确答案.1.(2010.十堰)-3的绝对值是( C ) A .13B .-13C .3D .-32.(2010.十堰)下列运算中正确的是( D )A .a 3a 2=a 6B .(a 3)4= a 7C .a 6 ÷ a 3 = a 2D .a 5 + a 5 =2 a 53.(2010.十堰))据人民网5月20日电报道:中国森林生态系统年涵养水源量4947.66亿立方米,相当于12个三峡水库2009年蓄水至175米水位后库容量,将4947.66亿用科学记数法表示为( C ) A .4.94766×1013 B .4.94766×1012 C .4.94766×1011D .4.94766×10104.(2010.十堰)若一个几何体的三视图如图所示,则这个几何体是( A )A .三棱柱B .四棱柱C .五棱柱D .长方体5.(2010.十堰)某电脑公司试销同一价位的品牌电脑,一周内销售情况如下表所示:要了解哪种品牌最畅销,公司经理最关心的是上述数据找( B ) A .平均数 B .众数 C .中位数 D .方差6.(2010.十堰)如图,将△ABC 绕点C 顺时针方向旋转40°得△A ’CB ’,若AC ⊥A ’B ’,则∠BAC 等于( A )A .50°B .60°C .70°D .80°7.(2010.十堰)如图,已知梯形ABCD 的中位线为EF ,且△AEF 的面主视图 俯视图 左视图(第4题)(第6题)AA ′CBB ′积为6cm 2,则梯形ABCD 的面积为( C )A .12 cm 2B .18 cm 2C .24 cm 2D .30 cm 2 8.(2010.十堰)下列命题中,正确命题的序号是( D )①一组对边平行且相等的四边形是平行四边形 ②一组邻边相等的平行四边形是正方形 ③对角线相等的四边形是矩形 ④对角互补的四边形内接于圆A .①②B .②③C .③④D .①④ 9.(2010.十堰)方程x 2+2x -1=0的根可看成函数y=x+2与函数1y x=的图象交点的横坐标,用此方法可推断方程x 3+x -1=0的实根x 所在范围为( C )A . 102x -<< B .102x << C .112x << D .312x << 10.(2010.十堰)如图,点C 、D 是以线段AB 为公共弦的两条圆弧的中点,AB=4,点E 、F 分别是线段CD ,AB 上的动点,设AF=x ,AE 2-FE 2=y ,则能表示y 与x 的函数关系的图象是( C )A D BCE F (第7题)二、认真填一填(本题有6个小题,每小题3分,共18分)11.(2010.十堰)分解因式:a 2-4b 2= (a+2b )(a -2b ) . 12.(2010.十堰)函数3y x =-的自变量x 的取值范围是 x ≥2且x ≠3 .13.(2010湖北十堰,13,3分)如图,直线l 1∥l 2被直线l 3所截,∠1=∠2=35°,∠P=90°,则∠3= 55° .14.(2010.十堰)在平面直角坐标系中,若点P 的坐标(m ,n ),则点P关于原点O 对称的点P ’的坐标为(-m ,-n ).(第10题)C DE FABl 1l 2 l 3 3 12P(第13题)15.(2010.十堰) 下图是根据某中学为地震灾区玉树捐款的情况而制作的统计图,已知该校在校学生3000人,请根据统计图计算该校共捐款37770元.16.(2010.十堰)如图,n+1个上底、两腰长皆为1,下底长为2的等腰梯形的下底均在同一直线上,设四边形P 1M 1N 1N 2面积为S 1,四边形P 2M 2N 2N 3的面积为S 2,……,四边形P n M n N n N n+1的面积记为S n ,通过逐一计算S 1,S 2,…,可得S n =4312143⋅+-n .三、全面答一答(本题有9个小题,满分72分)本大题解答应写出文字说明,证明过程或推理步骤,如果觉得有的题目有点困难,那么把自己能写的解答写出一部分也可以. 17.(2010.十堰)(本小题满分7分)计算:30(2)|5|2)2sin30-+--+︒ 解:原式=-8 + 5-1+ 2×12 =-3.初一 32% 初二 33%初三35%(图1) 人数统计(图2)(第15题) (第16题)N 1N 2N 3N 4N 518.(2010.十堰)(本小题满分7分) 先化间,再求值:211(1)(2)11x x x -÷+-+-,其中x =解:原式=⋅+-+111x x (x+1)(x -1)+(x -2) =x (x -1)+(x -2) =x 2-2当x= 6 时,原式=( 6 )2-2=4.19.(2010.十堰)(本小题满分7分)如图,△ABC 中,AB =AC ,BD ⊥AC ,CE ⊥AB . 求证:BD =CE .证明:∵BD ⊥AC ,CE ⊥AB ∴∠ADB=∠AEC=90°在△ABD 和△AEC 中,∠ADB=∠AEC=90°,∠A=∠A ,AB=AC ∴△ABD ≌△AEC ∴BD =CE .20.(2010.十堰)(本小题满分8分)某乡镇中学数学活动小组,为测量数学楼后面的山高AB ,用了如下的方法.如图所示,在教学楼底CABCDE(第19题)处测得山顶A 的仰角为60°,在教学楼顶D 处,测得山顶A 的仰角为45°.已知教学楼高CD =12米,求山高AB .(参考数据 3 =1.73,2 =1.41,精确到0.1米,化简后再代入参考数据运算)解:过D 作DE ⊥AB 于E ,而AB ⊥BC ,DC ⊥BC ,故四边形DEBC 为矩形,则CD=BE ,∠ADE=45°,∠ACB=60°.设AB=h 米,在Rt △ABC 中,BC=h ·cot60°=h ·tan30°=33h 在Rt △AED 中,AE=DE ·tan45°=BC ·tan45°=33h 又AB -AE=BE=CD=12 ∴h -33h=12 ∴h=43112-=36183336+=-=18+6×1.73=18+10.38≈28.4(米)答:山高AB 是28.4米.21.(2010.十堰)(本小题满分8分)暑假快到了,老家在十堰的大学生张明与王艳打算留在上海,为世博会做义工.学校争取到6个义工名A额,分别安排在中国馆园区3个名额,世博轴园区2个名额,演义中心园区1个名额. 学校把分别标号为1、2、3、4、5、6的六个质地大小均相同的小球,放在不透明的袋子里,并规定标号1、2、3的到中国馆,标号4、5到世博轴,标号6的到演艺中心,让张明、王艳各摸1个.(1)求张明到中国馆做义工的概率;(2)求张明、王艳各自在世博轴、演艺中心做义工的概率(两人不同在一个园区内).解:(1)如表所示,张明、王艳各摸一球可能出现的结果有6×5=30个,它们出现的可能性相等,张明到中国馆的结果有15个,∴P (张明到中国馆做义务)=115 .(2)张明、王艳各自在世博轴、演艺中心的结果共4个,其概率P=152304 . 22.(2010.十堰)(本小题满分8分)如图所示,直线AB 与反比例函数图像相交于A ,B 两点,已知A (1,4). (1)求反比例函数的解析式;(2)连结OA ,OB ,当△AOB 的面积为152 时,求直线AB 的解析式. 解:(1)设反比例函数解析式为y= kx , ∵点A (1,4)在反比例函数的图象上∴4=1k,∴k =4(2)设直线AB 的解析式为y=ax+b (即b=4-a.联立⎪⎩⎪⎨⎧+==bax y xy 4,得ax 2 +bx -4=0,即ax 2 +(4-a )x -4=0, 方法1:(x -1)(ax+4)= 0,解得x 1=1或x=a4-, 设直线AB 交y 轴于点C ,则C (0,b ),即C (0,4-a ) 由S △AOB =S △AOC +S △BOC =2154)4(211)4(21=⨯-⋅+⨯-⋅aa a ,整理得 a 2+15a -16=0,∴a=1或a=-16(舍去) ∴b=4-1=3 ∴ 直线AB 的解析式为y=x+3方法2:由S △AOB = 12 |OC|·|x 2-x 1|=152而|x 2-x 1|=212214)(x x x x -+=⎪⎭⎫ ⎝⎛-⋅-⎪⎭⎫ ⎝⎛-a a a 4442=a a 4+=a a 4+(a>0), |OC|=b=4-a ,可得215)4)(4(21=+-a a a ,解得a=1或a=-16(舍去). 23.(2010.十堰)(本小题满分8分)如图所示,某地区对某种药品的需求量y 1(万件),供应量y 2(万件)与价格x (元/件)分别近似满足下列函数关系式:y 1=-x + 70,y 2=2x -38,需求量为0时,即停止供应.当y 1=y 2时,该药品的价格称为稳定价格,需求量称为稳定需求量.(1)求该药品的稳定价格与稳定需求量.(2)价格在什么范围内,该药品的需求量低于供应量?(3)由于该地区突发疫情,政府部门决定对药品供应方提供价格补贴来提高供货价格,以利提高供应量.根据调查统计,需将稳定需求量增加6万件,政府应对每件药品提供多少元补贴,才能使供应量等于需求量.解:(1)由题可得⎩⎨⎧-=+-=3827021x y x y ,当y 1=y 2时,即-x+70=2x -38 ∴3x=108,∴x=36当x=36时,y 1=y 2=34,所以该药品的稳定价格为36元/件,稳定需求量为34万件.(2)令y 1=0,得x=70,由图象可知,当药品每件价格在大于36元小于70元时,该药品的需求量低于供应量.(3)设政府对该药品每件价格补贴a 元,则有⎩⎨⎧-+=++-=+38)(263470634a x x ,解得⎩⎨⎧==930a x 所以政府部门对该药品每件应补贴9元.24.(2010.十堰)(本小题满分9分)如图,已知⊙O 1与⊙O 2都过点A ,AO 1是⊙O 2的切线,⊙O 1交O 1O 2于点B ,连结AB 并延长交⊙O 2于点C ,连结O 2C . (1)求证:O 2C ⊥O 1O 2;(2)证明:AB ·BC =2O 2B ·BO 1;(3)如果AB ·BC =12,O 2C =4,求AO 1的长.元/件)解:(1)∵AO 1是⊙O 2的切线,∴O 1A ⊥AO 2 ∴∠O 2AB+∠BAO 1=90° 又O 2A=O 2C ,O 1A=O 1B ,∴∠O 2CB=∠O 2AB ,∠O 2BC=∠ABO 1=∠BAO 1 ∴∠O 2CB+∠O 2BC=∠O 2AB+∠BAO 1=90°,∴O 2C ⊥O 2B ,即O 2C ⊥O 1O 2 (2)延长O 2O 1交⊙O 1于点D ,连结∵BD 是⊙O 1直径,∴∠BAD=90° 又由(1)可知∠BO 2C=90°∴∠BAD=∠BO 2C ,又∠ABD=∠O 2BC ∴△O 2BC ∽△ABD ∴BDBCAB B O =2 ∴AB ·BC=O 2B ·BD 又BD=2BO 1 ∴AB ·BC=2O 2B ·BO 1(3)由(2)证可知∠D=∠C=∠O 2AB ,即∠D=∠O 2AB ,又∠AO 2B=∠DO 2A∴△AO 2B ∽△DO 2A ∴AO BO DO AO 2222=∴AO 22=O 2B ·O 2D ∵O 2C=O 2A∴O2C2=O2B·O2D ①又由(2)AB·BC=O2B·BD ②由①-②得,O2C2-AB·BC= O2B2即42-12=O1B2∴O2B=2,又O2B·BD=AB·BC=12∴BD=6,∴2AO1=BD=6 ∴AO1=325.(2010.十堰)(本小题满分10分)已知关于x的方程mx2-(3m-1)x+2m -2=0(1)求证:无论m取任何实数时,方程恒有实数根.(2)若关于x的二次函数y= mx2-(3m-1)x+2m-2的图象与x轴两交点间的距离为2时,求抛物线的解析式.(3)在直角坐标系xoy中,画出(2)中的函数图象,结合图象回答问题:当直线y=x+b与(2)中的函数图象只有两个交点时,求b的取值范围.【答案】解:(1)分两种情况讨论:①当m=0时,方程为x-2=0,∴x=2 方程有实数根②当m≠0时,则一元二次方程的根的判别式△=[-(3m-1)]2-4m(2m-2)=m2+2m+1=(m+1)2≥0不论m为何实数,△≥0成立,∴方程恒有实数根综合①②,可知m取任何实数,方程mx2-(3m-1)x+2m-2=0恒有实数根.(2)设x1,x2为抛物线y= mx2-(3m-1)x+2m-2与x轴交点的横坐标.则有x 1+x 2=m m 23-,x 1·x 2=mm 22- 由|x 1-x 2|=212214)(x x x x -+=m m m m )22(4132--⎪⎭⎫⎝⎛-=22)1(m m +=m m 1+, 由| x 1-x 2|=2得mm 1+=2,∴ m m 1+=2或mm 1+=-2 ∴m=1或m=31-∴所求抛物线的解析式为:y 1=x 2-2x 或y 2=31-x 2+2x -83即y 1= x (x -2)或y 2=31-(x -2)(x -4)其图象如右图所示. (3)在(2)的条件下,直线y=x+b 与抛物线y 1,y 2组成的图象只有两个交点,结合图象,求b 的取值范围.⎩⎨⎧+=-=bx y xx y 221,当y 1=y 时,得x 2-3x -b=0,△=9+4b=0,解得b=-94 ;同理⎪⎩⎪⎨⎧+=-+-=bx y x x y 3823122,可得△=9-4(8+3b )=0,得b=-2312 .观察函数图象可知当b<-94 或b>-2312 时,直线y=x+b 与(2)中的图象只有两个交点.由⎪⎩⎪⎨⎧-+-=-=3823122221x x y x x y当y 1=y 2时,有x=2或x=1 当x=1时,y=-1所以过两抛物线交点(1,-1),(2,0)的直线y=x -2, 综上所述可知:当b<-94 或b>-2312 或b=-2时,直线y=x+b 与(2)中的图象只有两个交点.。

2011年湖北省武汉市中考数学试题及答-推荐下载

2011年湖北省武汉市中考数学试题及答-推荐下载

2011年湖北省武汉市中考数学试题第Ⅰ卷(选择题,共36分)一、选择题(共12小题,每小题3分,共36分)下列各题中均有四个备选答案,其中有且只有一个正确,请在答题卡上将正确答案的代号涂黑.1.有理数-3的相反数是 A.3. B.-3.C.D..3131-2.函数 中自变量x 的取值范围是2-=x y A.x ≥0.B.x ≥-2.C.x ≥2.D.x ≤-2.3.如图,数轴上表示的是某不等式组的解集,则这个不等式组可能是A.x+1>0,x-3>0.B.x+1>0,3-x>0.C.x+1<0,x-3>0.D.x+1<0,3-x>0. 4.下列事件中,为必然事件的是 A.购买一张彩票,中奖.B.打开电视,正在播放广告.C.抛掷一枚硬币,正面向上.D.一个袋中只装有5个黑球,从中摸出一个球是黑球.5.若x 1,x 2是一元二次方程x 2+4x+3=0的两个根,则x 1x 2的值是 A.4. B.3. C.-4. D.-3.6.据报道,2011年全国普通高等学校招生计划约675万人.数6750000用科学计数法表示为 A.675×104. B.67.5×105. C.6.75×106. D.0.675×107. 7.如图,在梯形ABCD 中,AB ∥DC ,AD=DC=CB ,若∠ABD =25°,则∠BAD 的大小是A.40°.B.45°.C.50°.D.60°.8.右图是某物体的直观图,它的俯视图是9.在直角坐标系中,我们把横、纵坐标都是整数的点叫做整点.且规定,正方形的内部不包含边界上的点.观察如图所示的中心在原点、一边平行于x 轴的正方形:边长为1的正方形内部有1个整点,边长为2的正方形内部有1个整点,边长为3的正方形内部有9个整点,…则边长为8的正方形内部的整点的个数为A.64.B.49.C.36.D.25.10.如图,铁路MN 和公路PQ 在点O 处交汇,∠QON=30°.公路PQ 上A 处距离O 点240米.如果火车行驶时,周围200米以内会受到噪音的影响.那么火车在铁路MN 上沿ON 方向以72千米/时的速度行驶时,A 处受噪音影响的时间为A.12秒.B.16秒.C.20秒.D.24秒.11.为广泛开展阳光健身活动,2010年红星中学投入维修场地、安装设施、购置器材及其它项目的资金共38万元.图1、图2分别反映的是2010年投入资金分配和2008年以来购置器材投入资金的年增长率的具体数据.根据以上信息,下列判断:①在2010年总投入中购置器材的资金最多;②②2009年购置器材投入资金比2010年购置器材投入资金多8%;③③若2011年购置器材投入资金的年增长率与2010年购置器材投入资金的年增长率相同,则2011年购置器材的投入是38×38%×(1+32%)万元. 其中正确判断的个数是 A.0. B.1. C.2. D.3.12.如图,在菱形ABCD 中,AB=BD ,点E ,F 分别在AB ,AD 上,且AE=DF.连接BF 与DE 相交于点G ,连接CG 与BD 相交于点H.下列结论:①△AED ≌△DFB ;②S四边形 B C D G =CG 2;43③若AF=2DF ,则BG=6GF.其中正确的结论A.只有①②.B.只有①③.C.只有②③.D.①②③.第Ⅱ卷(非选择题,共84分)二、填空题(共4小题,每小题3分,共12分).下列各题不需要写出解答过程,请将结果直接填写在答题卡指定的位置.13.sin30°的值为_____.14.某次数学测验中,五位同学的分数分别是:89,91,105,105,110.这组数据的中位数是_____,众数是_____,平均数是_____.15.一个装有进水管和出水管的容器,从某时刻起只打开进水管进水,经过一段时间,再打开出水管放水.至12分钟时,关停进水管.在打开进水管到关停进水管这段时间内,容器内的水量y (单位:升)与时间x (单位:分钟)之间的函数关系如图所示.关停进水管后,经过_____分钟,容器中的水恰好放完.16.如图,□ABCD 的顶点A ,B 的坐标分别是A (-1,0),B (0,-2),顶点C ,D 在双曲线y=上,边AD 交y 轴于点E ,且四边形xkBCDE 的面积是△ABE 面积的5倍,则k=_____.三、解答题(共9小题,共72分)下列各题需要在答题卡指定位置写出文字说明、证明过程、演算步骤或画出图形.17.(本题满分6分)解方程:x 2+3x+1=0.18.(本题满分6分)先化简,再求值:,其中x=3.)4(22xx x x x -÷- 19.(本题满分6分)如图,D ,E ,分 别 是 AB ,AC 上 的 点 ,且AB=AC ,AD=AE.求证∠B=∠C.20.(本题满分7分)经过某十字路口的汽车,它可能继续直行,也可能向左转或向右转.如果这三种可能性大小相同,现有两辆汽车经过这个十字路口.(1)试用树形图或列表法中的一种列举出这两辆汽车行驶方向所有可能的结果;(2)求至少有一辆汽车向左转的概率.21.(本题满分7分)在平面直角坐标系中,△ABC 的顶点坐标是A (-7,1),B (1,1),C (1,7).线段DE 的端点坐标是D (7,-1),E (-1,-7).(1)试说明如何平移线段AC ,使其与线段ED 重合;(2)将△ABC 绕坐标原点O 逆时针旋转,使AC 的对应边为DE ,请直接写出点B 的对应点F 的坐标;(3)画出(2)中的△DEF ,并和△ABC 同时绕坐标原点O 逆时针旋转90°,画出旋转后的图形.22.(本题满分8分)如图,PA 为⊙O 的切线,A 为切点.过A 作OP 的垂线AB ,垂足为点C ,交⊙O 于点B.延长BO 与⊙O 交于点D ,与PA 的延长线交于点E.(1)求证:PB 为⊙O 的切线;(2)若tan ∠ABE=,求sinE的值.2123.(本题满分10分)星光中学课外活动小组准备围建一个矩形生物苗圃园.其中一边靠墙,另外三边用长为30米的篱笆围成.已知墙长为18米(如图所示),设这个苗圃园垂直于墙的一边的长为x米.(1)若平行于墙的一边的长为y米,直接写出y与x之间的函数关系式及其自变量x的取值范围;(2)垂直于墙的一边的长为多少米时,这个苗圃园的面积最大,并求出这个最大值;(3)当这个苗圃园的面积不小于88平方米时,试结合函数图像,直接写出x 的取值范围.24.(本题满分10分)(1)如图1,在△ABC中,点D,E,Q分别在AB,AC,BC上,且DE∥BC,AQ交DE于点P.求证:.QCPEBQDP(2)如图,在△ABC中,∠BAC=90°,正方形DEFG的四个顶点在△ABC的边上,连接AG,AF分别交DE于M,N两点.①如图2,若AB=AC=1,直接写出MN的长;②如图3,求证MN2=DM·EN.25.(本题满分12分)如图1,抛物线y=ax2+bx+3经过A(-3,0),B(-1,0)两点.(1)求抛物线的解析式;(2)设抛物线的顶点为M,直线y=-2x+9与y轴交于点C,与直线OM交于点 D.现将抛物线平移,保持顶点在直线OD上.若平移的抛物线与射线CD(含端点C)只有一个公共点,求它的顶点横坐标的值或取值范围;(3)如图2,将抛物线平移,当顶点至原点时,过Q(0,3)作不平行于x轴的直线交抛物线于E,F两点.问在y轴的负半轴上是否存在点P,使△PEF的内心在y轴上.若存在,求出点P的坐标;若不存在,请说明理由.卷试资料试卷2011年湖北省武汉市中考数学答案一、选择题1.A2.C3.B4.D5.B6.C7.C8.A9.B 10.B 11.C 12.D 二、填空题13.1/214.105;105;10015.8 16.12三、解答题17.(本题6分)解:∵a=1,b=3,c=1∴△=b 2-4ac=9-4×1×1=5>0∴x=-3±25∴x 1=-3+,x 2=-3-252518.(本题6分)解:原式=x(x-2)/x÷(x+2)(x-2)/x=x(x-2)/x· x/(x+2)(x-2)= x/(x+2) ∴当x=3时,原式=3/5 19.(本题6分)解:证明:在△ABE 和△ACD 中,AB =AC ∠A =∠A AE =AD∴△ABE ≌△ACD ∴∠B=∠C20.(本题7分)解法1:(1)根据题意,可以画出如下的“树形图”: ∴这两辆汽车行驶方向共有9种可能的结果(2)由(1)中“树形图”知,至少有一辆汽车向左转的结果有5种,且所有结果的可能性相等∴P (至少有一辆汽车向左转)=5/9解法2:根据题意,可以列出如下的表格:左直右左(左,左)(左,直)(左,右)直(直,左)(直,直)(直,右)右(右,左)(右,直)(右,右)以下同解法1(略)21.(本题7分)(1)将线段AC 先向右平移6个单位,再向下平移8个单位.(其它平移方式也可)(2)F (-1,-1)(3)画出如图所示的正确图形22.(本题8分)(1)证明:连接OA ∵PA 为⊙O 的切线,∴∠PAO=90°∵OA =OB ,OP ⊥AB 于C ∴BC =CA ,PB =PA∴△PBO ≌△PAO∴∠PBO =∠PAO =90° ∴PB 为⊙O 的切线(2)解法1:连接AD ,∵BD 是直径,∠BAD =90° 由(1)知∠BCO =90°∴AD ∥OP∴△ADE ∽△POE ∴EA/EP =AD/OP 由AD ∥OC 得AD =2OC ∵tan ∠ABE=1/2 ∴OC/BC=1/2,设OC =t,则BC =2t,AD=2t 由△PBC ∽△BOC ,得PC =2BC =4t ,OP =5t∴EA/EP=AD/OP=2/5,可设EA =2m,EP=5m,则PA=3m∵PA=PB ∴PB=3m ∴sinE=PB/EP=3/5(2)解法2:连接AD ,则∠BAD =90°由(1)知∠BCO =90°∵由AD ∥OC ,∴AD =2OC ∵tan ∠ABE=1/2,∴OC/BC=1/2,设OC =t ,BC =2t ,AB=4t 由△PBC ∽△BOC ,得PC =2BC =4t ,∴PA =PB =2t 过A 作AF ⊥PB 于F ,则AF·PB=AB·PC5 ∴AF=t 进而由勾股定理得PF =t 558556 ∴sinE=sin ∠FAP=PF/PA=3/523.(本题10分)解:(1)y=30-2x(6≤x<15)(2)设矩形苗圃园的面积为S 则S=xy=x(30-2x)=-2x 2+30x ∴S=-2(x-7.5)2+112.5由(1)知,6≤x<15∴当x=7.5时,S 最大值=112.5 即当矩形苗圃园垂直于墙的边长为7.5米时,这个苗圃园的面积最大,最大值为112.5(3)6≤x ≤1124.(本题10分)(1)证明:在△ABQ 中,由于DP ∥BQ ,∴△ADP ∽△ABQ , ∴DP/BQ =AP/AQ.同理在△ACQ 中,EP/CQ =AP/AQ.∴DP/BQ =EP/CQ.(2)92 9.(3)证明:∵∠B+∠C=90°,∠CEF+∠C=90°.∴∠B=∠CEF ,又∵∠BGD=∠EFC ,∴△BGD ∽△EFC.……3分∴DG/CF =BG/EF ,∴DG·EF =CF·BG 又∵DG =GF =EF ,∴GF 2=CF·BG由(1)得DM/BG =MN/GF =EN/CF ∴(MN/GF )2=(DM/BG)·(EN/CF) ∴MN 2=DM·EN25.(1)抛物线y=ax 2+bx+3经过A (-3,0),B (-1,0)两点 ∴9a-3b+3=0 且a-b+3=0 解得a =1b =4∴抛物线的解析式为y=x 2+4x+3(2)由(1)配方得y=(x+2)2-1∴抛物线的顶点M (-2,,1)∴直线OD 的解析式为y=x 21于是设平移的抛物线的顶点坐标为(h ,h ),∴平移的抛物线解析式21为y=(x-h )2+h.①当抛物线经过点C 时,∵C (0,9),∴h 2+h=9,2121解得h=. ∴ 当 ≤h<41451-±4145-1-41451-+ 时,平移的抛物线与射线CD 只有一个公共点. ②当抛物线与直线CD 只有一个公共点时,由方程组y=(x-h )2+h,y=-2x+9.21得 x 2+(-2h+2)x+h 2+h-9=0,∴△=(-2h+2)2-4(h 2+h-9)=0,2121解得h=4.此时抛物线y=(x-4)2+2与射线CD 唯一的公共点为(3,3),符合题意.综上:平移的抛物线与射线CD 只有一个公共点时,顶点横坐标的值或取值范围是 h=4或≤h<.4145-1-41451-+ (3)方法1将抛物线平移,当顶点至原点时,其解析式为y=x 2,设EF 的解析式为y=kx+3(k ≠0). 假设存在满足题设条件的点P (0,t ),如图,过P 作GH ∥x 轴,分别过E ,F 作GH 的垂线,垂足为G ,H.∵△PEF 的内心在y 轴上,∴∠GEP=∠EPQ=∠QPF=∠HFP ,∴△GEP ∽△、管路敷设技术。

2011中考数学湖北襄阳-解析版

2011中考数学湖北襄阳-解析版

湖北省襄阳市2011年中考数学试卷—解析版一、选择题:(本大题共12个小题,每小题3分,共36分)1、(2011•襄阳)﹣2的倒数是()A、﹣2B、2C、﹣D、考点:倒数。

专题:计算题。

分析:根据倒数的定义:乘积是1的两数互为倒数.一般地,a•=1 (a≠0),就说a(a≠0)的倒数是.解答:解:﹣2的倒数是﹣,故选C.点评:此题主要考查倒数的概念及性质.倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.2、(2011•襄阳)下列运算正确的是()A、a﹣2a=aB、(﹣a2)3=﹣a6C、x6÷x3=x2D、(x+y)2=x2+y2考点:同底数幂的除法;合并同类项;幂的乘方与积的乘方;完全平方公式。

专题:计算题。

分析:A选项中应该是﹣a,不对;B,幂指数的幂指数的乘法,正确;C中同底数幂的除法,底数不变指数相减;D中应为完全平方,错误.解答:解:A,应该得﹣a,故本选项错误;B,幂指数的幂,指数相乘,故本答案正确;C,同底数幂的除法底数不变指数相减,故本选项错误;D,应该是完全平方式,故本选项错误.故选B.点评:本题考查了同底数幂的除法,A选项中应该是﹣a,B,幂指数的幂指数的乘法,C中同底数幂的除法,底数不变指数相减,故错误,D中应为完全平方,错误.本题比较简单.3、(2011•襄阳)若x,y为实数,且|x+1|+=0,则()2011的值是()A、0B、1C、﹣1D、﹣2011考点:非负数的性质:算术平方根;非负数的性质:绝对值;有理数的乘方。

专题:计算题;存在型。

分析:先根据非负数的性质求出x、y的值,再代入()2011进行计算即可.解答:解:∵|x+1|+=0,∴x+1=0,解得x=﹣1;y﹣1=0,解得y=1.∴()2011=(﹣1)2011=﹣1.故选C.点评:本题考查的是非负数的性质,即几个非负数的和为0时,这几个非负数都为0.4、(2011•襄阳)如图,CD∥AB,∠1=120°,∠2=80°,则∠E的度数是()A、40°B、60°C、80°D、120°考点:平行线的性质;三角形的外角性质。

2011湖北十堰中考数学

2011湖北十堰中考数学

第 13 题图 【答案】15 14.(2011 湖北十堰,14,3 分)关于 x,y 的二元一次方程组 ï í 整数 P 的值为 【答案】5 或 7 。
ì ï 5 x + 3 y = 23 的解是正整数,则 ï ï î x+ y = p
15. (2011 湖北十堰,15,3 分)如图,一个半径为 2 2 的圆经过一个半径为 4 的圆的圆心, 则图中阴影部分的面积为 。
第 6 题图 【答案】D 7.(2011 湖北十堰,7,3 分)已知 x-2y=-2,则 3-x+2y 的值是( ) A.0 B.1 C.3 D.5 【答案】D 8. (2011 湖北十堰,8,3 分)现有边长相同的正三角、正方形和正六边形纸片若干张,下 列拼法中不能镶嵌成一个平面图案的是( ) A.正方形和正六边形 B.正三角形和正方形 C.正三角形和正六边形 D.正三角形、正方形和正六边形 【答案】A 9. (2011 湖北十堰,9,3 分)如图,在网格中有一个直角三角形(网格中的每个小正方形 的边长均为 1 个单位长度) ,若以该三角形一边为公共边画一个新三角形与原来的直角三角 形一起组成一个等腰三角形, 要求新三角形与原来的直角三角形除了有一条公共边外, 没有 其它的公共点,新三角形的顶点不一定在格点上,那么符合要求的新三角形有( )
1 1 1 把 x= 代入方程 ax2+bx+c=0,得a 2+b• +c=0 y y y 去分母,得 a+by+cy2=0. 若 c=0, 有 ax2+bx=0,于是方程 ax2+bx+c=0 有一个根为 0,不符合题意。 ∴c≠0, 故所求方程为:cy2+by+a=0(c≠0)
21. (2011 湖北十堰,21,8 分)如图,一架飞机从 A 地飞往 B 地,两地相距 600km.飞行 员为了避开某一区域的雷雨去层,从机场起飞以后,就沿与原来的飞行方向成 300 角的方向 飞行,飞行到中途,再沿与原来的飞行方向成 450 角的方向继续飞行直到终点。这样飞机的 飞行路程比原来的路程控交换机 600km 远了多少? (参考数据: 3 ≈1.73, 2 ≈1.41,要求在结果化简后再代入参考数据运算,结果保留整数)

2011年湖北黄冈中考数学试卷及答案(WORD版)[1]

2011年湖北黄冈中考数学试卷及答案(WORD版)[1]

黄冈市2011年初中毕业生学业水平考试数学试题(考试时间120分钟 满分120分)注意事项:1. 答卷前,考生务必将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条 形码粘贴在答题卡上的指定位置.2. 选择题每小题选出答案后,用 2B 铅笔把答题卡上对应题目的答案标号涂黑•如需改动, 用橡皮擦干净后,再选涂其他答案标号•答在试题卷上无效.3 •非选择题的作答:用 0.5毫米黑色墨水签字笔直接答在答题卡上对应的答题区域内•答 在试题卷上无效.4. 考生必须保持答题卡整洁•考试结束后,请将本试题卷和答题卡一并上交. 一、填空题(共8道题,每小题3分,共24分)11.-的倒数是22. ___________________________________________ 分解因式 8a 2 — 2= • a 的取值范围为k 上,AB 丄x 轴于B ,且△ AOB 的面积 S MOB =2,贝U k=X5. _________________________________________________________________________ 如图:矩形 ABCD 的对角线 AC=10, BC=8,则图中五个小矩形的周长之和为 _______________ .6. 如图,在△ ABC 中E 是BC 上的一点,EC=2BE,点D 是AC 的中点,设△ ABC A ADF 、A BEF 的面积分别为 S A ABC, Sx ADF ,BEF ,且 S A ABC =12,则 S^ADF — S\ BEF = __________ .3x y 1 a7.若关于x , y 的二元一次方程组 的1 Jy B O1 ur x3.要使式子4.如图:点A 在双曲线y第4题图x 3y 3解满足x y v 2,贝U a的取值范围为_________ .& 如图,△ ABC的外角/ ACD的平分线CP的内角/ ABC平分线BP交于点P,若/ BPC=40°,则/CAP= _____________ .、选择题(A, B, C, D四个答案中,有且只有一个是正确的,每小题3分,共21分)9. cos30 ° =1 A.- B.2 C.三D. . 322210.•计算22 2 2(-1)-12A. 2B. -2C. 6D. 1011..卜列说法中①一个角的两边分别垂直于另「一个角的两边,则这两个角相等②数据5,2,7,1,2,4的中位数是3,众数是2③等腰梯形既是中心对称图形,又是轴对称图形④Rt A ABC中,/ C=90。

2011年中考数学考试试题答案

2011年中考数学考试试题答案

1 / 12高中阶段教育学校招生统一考试数 学全卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至2页,第Ⅱ卷3至8页.全卷满分120分,考试时间共120分钟.答题前,请考生务必在答题卡上正确填涂自己的姓名、考号和考试科目,并将试卷密封线内的项目填写清楚;考试结束,将试卷和答题卡一并交回.第Ⅰ卷(选择题 共30分)注意事项:每小题选出的答案不能答在试卷上,须用2B 铅笔在答题卡上把对应题目....的答案标号涂黑.如需改动,用橡皮擦擦净后,再选涂其它答案.一、选择题:(本大题共10个小题,每小题3分,共30分)在每小题给出的四个选项中,只有一个选项符合题意.1. -3的绝对值是( )A. 3B. -3C.13 D. 13- 2. “中国国家馆”作为2010年上海世博会的主题场馆,充分体现了中国文化的精神与气质. 资料表明,在建设过程中使用的一种工艺,需要对中国馆的大台阶进行约5.4×107次加工. 其中5.4×107表示的数为( )A. 5 400 000B. 54 000 000C. 540 000 000D. 5 400 000 000 3. 小明调查了本班同学最喜欢的课外活动项目,并作出如图1所示的扇形统计图,则从图中可以直接看出的信息是( )A. 全班总人数B. 喜欢篮球活动的人数最多C. 喜欢各种课外活动的具体人数D. 喜欢各种课外活动的人数占本班总人数的百分比4. 顺次连接边长为2的等边三角形三边中点所得的三角形的周长为( )A. 1B. 2C. 3D. 45. 用一个平面截一个几何体,得到的截面是四边形,则这个几何体可能是( ) A. 球体 B. 圆柱 C. 圆锥 D. 三棱锥6. 若实数a 、b 满足5a b +=,2210a b ab +=-,则ab 的值是( ) A. -2B. 2图1图22 / 12C. -50D. 507. 如图2,A 为⊙O 上一点,从A 处射出的光线经圆周4次反射后到达F 处. 如果反射前后光线与半径的夹角均为50°,那么∠AOE 的度数是( )A. 30°B. 40°C. 50°D. 80°8. 为缓解考试前的紧张情绪,某校九年级举行了“猪八戒背媳妇”的趣味接力比赛. 比赛要求每位选手在50米跑道上进行折返跑,其中有50米必须“背媳妇”. 假设某同学先跑步后“背媳妇”,且该同学跑步、“背媳妇”均匀速前进,他与起点的距离为s ,所用时间为t ,则s 与t 的函数关系用图象可表示为()A. B. C. D.9. 在同一平面内,如果两个多边形(含内部)有除边界以外的公共点,则称两多边形有“公共部分”.如图3,若正方形ABCD 由9个边长为1的小正方形镶嵌而成,另有一个边长为1的正方形与这9个小正方形中的n 个有“公共部分”,则n 的最大值为( ) A. 4 B. 5 C. 6 D. 710. 如图4,已知点A 1,A 2,…,A 2011在函数2y x =位于第二象限的图象上,点B 1,B 2,…,B 2011在函数2y x =位于第一象限的图象上,点C 1,C 2,…,C 2011在y 轴的正半轴上,若四边形111OA C B 、1222C A C B ,…,2010201120112011C A C B 都是正方形,则正方形2010201120112011C A C B 的边长为( )A. 2010B. 2011C. 20102D. 20112图3图43 / 12高中阶段教育学校招生统一考试数 学第Ⅱ卷(非选择题 共90分)题号 二 三总 分总分人171819202122232425得分注意事项:本卷共6页,用黑色或蓝色钢笔或圆珠笔直接答在试卷上.请注意准确理解题意、明确题目要求,规范地表达、工整地书写解题过程或结果.二、填空题:(本大题共6个小题,每小题3分,共18分)把答案直接填在题中横线上.11. 9的平方根为____________.12. 第16届亚运会将于2010年11月12日至27日在中国广州进行,各类门票现已开始销售. 若部分项目门票的最低价和最高价如图5所示,则这六个项目门票最高价的中位数是____________ .13. 若菱形一边的垂直平分线经过这个菱形的一个顶点,则此菱形较大内角的度数为_______.14. 若关于x 的方程2220x m x m m -+-=无实数根,则实数m 的取值范围是____________.15. 如图6,已知△ABC是等腰直角三角形,CD 是斜边AB 的中线,△ADC 绕点D 旋转一定角度得到△A DC '',A D '交AC 于点E ,DC '交BC 于点F ,连接EF ,若25A E ED '=,则EF A C ''=_________ . 16. 给出下列命题:① 若方程2560x x +-=的两根分别为1x ,2x ,则121156x x +=;② 对于任意实数x 、y ,都有2233()()x y x xy y x y -++=-;③ 如果一列数3,7,11,…满足条件:“以3为第一个数,从第二个数开始每一个数与它前面相邻的数的差为4”,那么99不是这列数中的一个数;④若※表示一种运算,且1※2=1,3※2=7,4※4=8,…,按此规律,则可能有a ※b =3a -b . 其中所有正确命题的序号是__________________ .图6图54 / 12三、解答题:(本大题共9个小题,共72分)解答应写出必要的文字说明、证明过程或演算步骤.17.(本小题满分7分)化简:2162393m m m -÷+--.18.(本小题满分7分)在为迎接“世界环境日”举办的“保护环境、珍爱地球”晚会上,主持人与观众玩一个游戏:取三张完全相同、没有任何标记的卡片,分别写上“物种”、“星球”和“未来”,并将写有文字的一面朝下,随机放置在桌面上,然后依次翻开三张卡片.(1) 用列表法(或树状图)求翻开卡片后第一张是“物种”且第二张是“星球”的概率; (2) 主持人规定:若翻开的第一张卡片是“未来”,观众获胜,否则主持人获胜. 这个规定公平吗?为什么?19.(本小题满分8分)如图7,已知A 、B 、C 是数轴上异于原点O 的三个点,且O 为AB 的中点,B为AC 的中点. 若点B 对应的数是x ,点C 对应的数是2x -3x ,求x 的值.图75 / 1220.(本小题满分8分)已知关于x 的不等式组4(1)23,617x x x ax -+>⎧⎪+⎨-<⎪⎩有且只有三个整数解,求a 的取值范围.21.(本小题满分8分)如图8,已知直线l :y =kx +b 与双曲线C :my x=相交于点A (1,3)、B (32-,-2),点A 关于原点的对称点为P .(1) 求直线l 和双曲线C 对应的函数关系式; (2) 求证:点P 在双曲线C 上;(3) 找一条直线l 1,使△ABP 沿l 1翻折后,点P 能落在双曲线C 上. (指出符合要求的l 1的一个解析式即可,不需说明理由)图86 / 1222.(本小题满分8分)在军事上,常用时钟表示方位角(读数对应的时针方向),如正北为12点方向,北偏西30°为11点方向. 在一次反恐演习中,甲队员在A 处掩护,乙队员从A 处沿12点方向以40米/分的速度前进,2分钟后到达B 处. 这时,甲队员发现在自己的1点方向的C 处有恐怖分子,乙队员发现C 处位于自己的2点方向(如图9). 假设距恐怖分子100米以外为安全位置.(1) 乙队员是否处于安全位置?为什么?(2) 因情况不明,甲队员立即发出指令,要求乙队员沿原路后撤,务必于15秒内到达安全位置. 为此,乙队员至少..应用多快的速度撤离?(结果精确到个位. 参考数据:13 3.6≈0,14 3.74≈.)23.(本小题满分8分)如图10-1,已知AB 是⊙O 的直径,直线l 与⊙O 相切于点B ,直线m 垂直AB 于点C ,交⊙O 于P 、Q 两点. 连结AP ,过O 作OD ∥AP 交l 于点D ,连接AD 与m 交于点M .(1) 如图10-2,当直线m 过点O 时,求证:M 是PO 的中点;(2) 如图10-1,当直线m 不过点O 时,M 是否仍为PC 的中点?证明你的结论.图9图10-1 图10-27 / 1224.(本小题满分9分)如图11,在直角梯形ABCD 中,已知AD ∥BC ,AB =3,AD =1,BC =6,∠A =∠B =90°.设动点P 、Q 、R 在梯形的边上,始终构成以P 为直角顶点的等腰直角三角形,且△PQR 的一边与梯形ABCD 的两底边平行.(1) 当点P 在AB 边上时,在图中画出一个符合条件的△PQR (不必说明画法); (2) 当点P 在BC 边或CD 边上时,求BP 的长.图118 / 1225.(本小题满分9分)如图12,已知直线22y x =+交y 轴于点A ,交x 轴于点B ,直线l :39y x =-+交x 轴于点C .(1) 求经过A 、B 、C 三点的抛物线的函数关系式,并指出此函数的函数值随x 的增大而增大时,x 的取值范围;(2) 若点E 在(1)中的抛物线上,且四边形ABCE 是以BC 为底的梯形,求梯形ABCE 的面积; (3) 在(1)、(2)的条件下,过E 作直线EF ⊥x 轴,垂足为G ,交直线l 于F . 在抛物线上是否存在点H ,使直线l 、直线FH 和x 轴所围成的三角形的面积恰好是梯形ABCE 面积的12?若存在,求点H 的横坐标;若不存在,请说明理由.图12高中阶段教育学校招生统一考试数学试题参考答案及评分意见说明:1. 解答题中各步骤所标记分数为考生解答到这一步应得的累计分数.2. 参考答案一般只给出该题的一种解法,如果考生的解法和参考答案所给解法不同,请参照本答案及评分意见给分.3. 考生的解答可以根据具体问题合理省略非关键步骤.4. 评卷时要坚持每题评阅到底,当考生的解答在某一步出现错误、影响了后继部分时,如果该步以后的解答未改变问题的内容和难度,可视影响程度决定后面部分的给分,但不得超过后继部分应给分数的一半;如果这一步后面的解答有较严重的错误,就不给分;若是几个相对独立的得分点,其中一处错误不影响其他得分点的得分.5. 给分和扣分都以1分为基本单位.6. 正式阅卷前应进行试评,在试评中须认真研究参考答案和评分意见,不能随意拔高或降低给分标准,统一标准后须对全部试评的试卷予以复查,以免阅卷前后期评分标准宽严不同.一、选择题(每小题3分,共10个小题,满分30分):1-5. ABDCB;6-10. ABCCD.二、填空题(每小题3分,共6个小题,满分18分):11.±3;12.800元;13. 120°;14.m<0;15.57;16.①②④.(注:12、13题有无单位“元”或“°”均不扣分. ) 三、解答题(共9个小题,满分72分):17.解:原式=1633(3)(3)2mm m m-+++-····················································3分=1333m m+++···················································································5分=43m+. ··························································································7分18.(1) 解一:列表如下: ············································································································3分∴第一张是“物种”且第二张是“星球”的概率是16. ······························4分解二:树状图如下:9 / 1210 / 12···························· 3分∴ 第一张是“物种”且第二张是“星球”的概率是16. ············································(2) 这个规定不公平. ··········································································5分因为观众获胜的概率是13,主持人获胜的概率是23. ·································7分19.解:由已知,点O 是AB 的中点,点B 对应的数是x ,∴ 点A 对应的实数为-x . ····································································1分 ∵ 点B 是AC 的中点,点C 对应的数是2x -3x , ∴ (2x -3x )-x =x -(-x ). ··········································································4分 整理,得2x -6x =0,解之得 x =0,或x =6. ···············································6分 ∵ 点B 异于原点,故x =0应舍去. ∴ x 的值为6. ·····································7分 20.解:由4(1)23x x -+>得,x >2; ···························································2分由617x ax +-<得,x <a +7. ··································································5分依题意得,不等式组的解集为2<x <a +7. ··················································6分 又 ∵ 此不等式组有且只有三个整数解,故整数解只能是x =3,4,5, ∴ 5<a +7≤6,则-2<a ≤-1. ·································································8分 (注:未取等号扣1分)21. 解:(1) 将点A 、B 的坐标代入y =kx +b ,有31,32().2k b k b =⨯+⎧⎪⎨-=⨯-+⎪⎩ ·············································································2分 解得,2k =,b =1,即直线l 对应的函数关系为y =2x +1. ·····························3分将点A (1,3)(或B )的坐标代入my x =,得m =3,∴ 双曲线C 对应的函数关系为y =3x. ·····················································4分(2) ∵ P 为点A 关于原点的对称点,∴ 点P 的坐标为(-1,-3),符合双曲线C 的函数关系,故点P 在双曲线C 上. ·················································································6分(3) l 1的解析式为y =x ,或y =-x . ·····························································8分 (注:写出一个解析式即得2分.) 22.解:(1) 乙队员不安全. ······················································· 1分易求AB =80米. ∵ ∠BAC =∠C =30°,∴ BC =AB =80米<100米. ·························· 3分 ∴ 乙队员不安全.(2) 过C 点作CD ⊥AB ,垂足为D ,在AB 边上取一点B 1,使CB 1=100. ······················································································ 4分在Rt △CBD 中,∠CBD =60°,BC =80,则BD =40,CD =403. ···· 5分在Rt △1CDB 中,由勾股定理知22112013B D B C CD =-=, ·····················6分11 / 12而20134015-≈2.13米/秒, ·······························································7分 依题意,乙队员至少应以3米/秒的速度撤离. ··········································8分 (注:结果为2米/秒,本步不给分.)23.(1) 证明:连接PD ,∵ 直线m 垂直AB 于点C ,直线l 与⊙O 相切于点B ,AB 为直径,∴ ∠POA =∠DBA =90°.又∵ AP ∥OD ,∴ ∠P AO =∠DOB . ························································1分 又∵ AO =BO ,∴ △APO ≌△ODB . ·······················································2分 ∴ AP =OD ,∴ 四边形APDO 是平行四边形, ·········································3分 ∴ M 是PO 的中点. ···········································································4分(其他解法:证△APO ≌△ODB 后,据中位线定理证12OM BD =;或证△DPO ≌△DBO ,得∠DPO =∠DBO =90°,从而证四边形APDO 是平行四边形等.)(2) M 是PC 的中点. 证明如下:∵AP ∥OD ,∴ ∠P AO =∠DOB ,又 ∠PCA =∠DBO =90°,∴ △APC ∽△ODB ,∴ PC AC BD BO=.①·····················································5分 又易证△ACM ∽△ABD ,∴ AC MC AB BD=. ·················································6分 又∵ AB =2OB ,∴ 2AC MC OB BD =,∴2AC MC OB BD=.② ····································7分 由①②得,2PC MC BD BD=,∴ PC =2MC ,即M 是PC 的中点. ·························8分 24.(1) 如图.(注:答案不唯一,在图中画出符合条件的图形即可) ······················2分(2) ① 当P 在CD 边上时,由题意,PR ∥BC ,设PR =x .可证四边形PRBQ 是正方形,∴ PR =PQ =BQ =x .过D 点作DE ∥AB ,交BC 于E ,易证四边形ABED 是矩形.∴ AD =BE =1,AB =DE =3. ··········································· 3分又 PQ ∥DE ,∴△CPQ ∽△CDE ,PQ CQ DE CE=. ∴ 635x x -=, ························································ 4分 ∴ x =94,即BP =942. ············································ 5分 (注:此时,由于∠C ≠45°,因此斜边RQ 不可能平行于BC . 在答题中未考虑此问题者不扣分.) ② 当P 在BC 边上,依题意可知RQ ∥BC .过Q 作QF ⊥BC ,易证△BRP ≌△FQP ,则PB =PF . ········· 6分易证四边形BFQR 是矩形,设BP =x ,则BP =BR =QF =PF =x ,BF =RQ =2x . ·················· 7分∵ QF ∥DE ,∴ △CQF ∽△CDE ,∴ QF CF DE CE =. ······································8分12 / 12 ∴6235x x -=,∴ x =1811. ···································································9分 (注:此时,直角边不可能与两底平行. 在答题中未考虑此问题者不扣分.)25.(1) ∵ 直线AB 的解析式为22y x =+,∴ 点A 、B 的坐标分别为A (0,2),B (-1,0).又直线l 的解析式为39y x =-+,∴ 点C 的坐标为(3,0). ··························1分 由上,可设经过A 、B 、C 三点的抛物线的解析式为y =a (x +1)(x -3),将点A 的坐标代入,得 a =23-,∴ 抛物线的解析式为224233y x x =-++. ·····2分 ∴ 抛物线的对称轴为x =1.由此可知,函数值随x 的增大而增大时,x 的取值范围是x ≤1. ···················3分 (注:本步结果无等号不扣分.)(2) 过A 作AE ∥BC ,交抛物线于点E . 显然,点A 、E 关于直线x =1对称,∴ 点E 的坐标为E (2,2). ····································································4分故梯形ABCE 的面积为 S =12(2+4)×2=6. ··················································5分 (3) 假设存在符合条件的点H ,作直线FH 交x 轴于M ,由题意知,3CFM S =. 设F (m ,n ),易知m =2,将F (2,n )的坐标代入y =-3x +9中,可求出n =3,则FG =3. ························6分∴ 132CFM S FG CM ==,∴ CM =2. 由C (3,0)知,1M (5,0),2M (1,0), ·······················································7分设FM 的解析式为y =kx +b ,由1M (5,0),F (2,3)得,F 1M 的解析式为y =-x +5,则F 1M 与抛物线的交点H 满足: 25,24 2.33y x y x x =-+⎧⎪⎨=-++⎪⎩整理得,22790x x -+=, ∵ △<0,∴ 不符合题意,舍去. ······················· 8分由2M (1,0),F (2,3)得,F 2M 的解析式为y =3x -3,则F 2M 与抛物线的交点H 满足:233,24 2.33y x y x x =-⎧⎪⎨=-++⎪⎩整理得,225150x x +-=, ∴ 51454x -±=. ··············································································9分 即:H点的横坐标为51454-±.。

2011年湖北省襄阳中考数学试题(word版答案扫描)

2011年湖北省襄阳中考数学试题(word版答案扫描)

2011年襄阳市初中毕业、升学统一考试数学试题一、选择题 本大题共12各小题 每小题3分 共36分 在每小题给出的四个选项中 只有一项是符合题目要求的,请将其序号填涂在答题卡上相应位置!1. 2-的倒数是 A .2- B .2C .12-D .122. 下列运算正确的是 A .2a a a -=B .236()a a -=-C .632x x x ÷= D .222()x y x y +=+3. 若x y 、为实数,且10x ++=,则2011()xy的值是A .0B .1C .1-D .2011-4. 如图1,CD ∥AB ,∠1=120°,∠2=80°,则∠E 的度数是 A .40° B .60°C .80° D .120°5. 下列图形是中心对称图形而不是轴对称图形的是6 下列说法正确的是A .0()2π是无理数B CD7.下列事件中.属于必然事件的是A .抛掷一枚1元硬币落地后.有国徽的一面向上B .打开电视任选一频道,正在播放襄阳新闻C .到一条绕段两端点距离相等的点在该线段的垂直平分线上D .某种彩票的中奖率是l 0%,则购买该种彩票100张一定中奖8.由—些相同的小立方块搭成的几何体的三视图如图2所示.则搭成该几何体的小立方块有A .3块B .4块C .6块D .9块9.在△ABC 中,∠C=90°.AC=3cm .BC=4cm ,若⊙A .⊙B 的半径分别为1cm ,4cm . 则⊙A 与⊙B 的位置关系是A .外切B .内切C .相交D .外离10.若顺次连接四边形ABCD 各边的中点所得四边形是菱形.则四边形ABCD 一定是A .茭形B .对角线互相垂直的四边形C .矩形D .对角线相等的四边形11.2011年春我市发生了严重干旱.市政府号召居民节约用水.为了解居民用水情况.则关于这l0户家庭的月用水量,下列说法错误的是A .众数是6B .极差是2C .平均数是6D .方差是412.已知函数2(3)21y k x x =-++的图象与x 轴有交点.则k 的取值范围是 A .k<4 B .k ≤4 C .k<4且k ≠3 D .k ≤4且k ≠3二、填空题:(本大题共5个小题.每小题3分.共l5分)'把答案填在答题卡的对应位置的横线上.13.为了推进全民医疗保险工作.截止2011年5月31日.今年中央财政已累计下拨医疗卫生补助佥1346亿元.这个金额用科学记数法表示为_______________元.14.在207国道襄阳段改造工程中,需沿AC 方向开山修路(如图3所示),为了加快施工进度,要在小山的另一边同时施工.从AC 上的一点B 取∠ABD=140°,BD=1000m ,∠D=50°.为了使开挖点E 在直线AC 上.那么DE=_______________m 。

2011年中考湖北武汉数学试卷及解析

2011年中考湖北武汉数学试卷及解析

2011年湖北省武汉市中考数学试题第Ⅰ卷(选择题,共36分)一、选择题(共12小题,每小题3分,共36分)下列各题中均有四个备选答案,其中有且只有一个正确,请在答题卡上将正确答案的代号涂黑.1.有理数-3的相反数是A.3.B.-3.C.31 D.31-. 2.函数2-=x y 中自变量x 的取值范围是A.x≥0.B.x≥-2.C.x≥2.D.x≤-2.3.如图,数轴上表示的是某不等式组的解集,则这个不等式组可能是A.x+1>0,x-3>0.B.x+1>0,3-x>0.C.x+1<0,x-3>0.D.x+1<0,3-x>0.4.下列事件中,为必然事件的是A.购买一张彩票,中奖.B.打开电视,正在播放广告.C.抛掷一枚硬币,正面向上.D.一个袋中只装有5个黑球,从中摸出一个球是黑球.5.若x 1,x 2是一元二次方程x 2+4x+3=0的两个根,则x 1x 2的值是A.4.B.3.C.-4.D.-3.6.据报道,2011年全国普通高等学校招生计划约675万人.数6750000用科学计数法表示为A.675×104.B.67.5×105.C.6.75×106.D.0.675×107.7.如图,在梯形ABCD 中,AB ∥DC,AD=DC=CB,若∠ABD =25°,则∠BAD 的大小是A.40°.B.45°.C.50°.D.60°.8.右图是某物体的直观图,它的俯视图是9.在直角坐标系中,我们把横、纵坐标都是整数的点叫做整点.且规定,正方形的内部不包含边界上的点.观察如图所示的中心在原点、一边平行于x 轴的正方形:边长为1的正方形内部有1个整点,边长为2的正方形内部有1个整点,边长为3的正方形内部有9个整点,…则边长为8的正方形内部的整点的个数为A.64.B.49.C.36.D.25.10.如图,铁路MN 和公路PQ 在点O 处交汇,∠QON=30°.公路PQ 上A 处距离O 点240米.如果火车行驶时,周围200米以内会受到噪音的影响.那么火车在铁路MN 上沿ON 方向以72千米/时的速度行驶时,A 处受噪音影响的时间为A.12秒.B.16秒.C.20秒.D.24秒.11.为广泛开展阳光健身活动,2010年红星中学投入维修场地、安装设施、购置器材及其它项目的资金共38万元.图1、图2分别反映的是2010年投入资金分配和2008年以来购置器材投入资金的年增长率的具体数据.根据以上信息,下列判断:① 在2010年总投入中购置器材的资金最多;② ②2009年购置器材投入资金比2010年购置器材投入资金多8%;③ ③若2011年购置器材投入资金的年增长率与2010年购置器材投入资金的年增长率相同,则2011年购置器材的投入是38×38%×(1+32%)万元. 其中正确判断的个数是A.0.B.1.C.2.D.3.12.如图,在菱形ABCD 中,AB=BD,点E,F 分别在AB,AD 上,且AE=DF.连接BF 与DE 相交于点G,连接CG 与BD 相交于点H.下列结论:①△AED ≌△DFB ;②S 四边形 B C D G = 43 CG 2; ③若AF=2DF,则BG=6GF.其中正确的结论A. 只有①②.B.只有①③.C.只有②③.D.①②③.第Ⅱ卷(非选择题,共84分)二、填空题(共4小题,每小题3分,共12分).下列各题不需要写出解答过程,请将结果直接填写在答题卡指定的位置.13.sin30°的值为_____.14.某次数学测验中,五位同学的分数分别是:89,91,105,105,110.这组数据的中位数是_____,众数是_____,平均数是_____.15.一个装有进水管和出水管的容器,从某时刻起只打开进水管进水,经过一段时间,再打开出水管放水.至12分钟时,关停进水管.在打开进水管到关停进水管这段时间内,容器内的水量y(单位:升)与时间x(单位:分钟)之间的函数关系如图所示.关停进水管后,经过_____分钟,容器中的水恰好放完.16.如图,□ABCD 的顶点A,B 的坐标分别是A(-1,0),B(0,-2),顶点C,D 在双曲线y=xk 上,边AD 交y 轴于点E,且四边形BCDE 的面积是△ABE 面积的5倍,则k=_____.三、解答题(共9小题,共72分)下列各题需要在答题卡指定位置写出文字说明、证明过程、演算步骤或画出图形.17.(本题满分6分)解方程:x 2+3x+1=0.18.(本题满分6分)先化简,再求值:)4(22xx x x x -÷-,其中x=3. 19.(本题满分6分)如图,D,E,分 别 是 AB,AC 上 的 点 ,且AB=AC,AD=AE.求证∠B=∠C.20.(本题满分7分)经过某十字路口的汽车,它可能继续直行,也可能向左转或向右转.如果这三种可能性大小相同,现有两辆汽车经过这个十字路口.(1)试用树形图或列表法中的一种列举出这两辆汽车行驶方向所有可能的结果;(2)求至少有一辆汽车向左转的概率.21.(本题满分7分)在平面直角坐标系中,△ABC 的顶点坐标是A(-7,1),B(1,1),C(1,7).线段DE 的端点坐标是D(7,-1),E(-1,-7).(1)试说明如何平移线段AC,使其与线段ED 重合;(2)将△ABC 绕坐标原点O 逆时针旋转,使AC 的对应边为DE,请直接写出点B 的对应点F 的坐标;(3)画出(2)中的△DEF,并和△ABC 同时绕坐标原点O 逆时针旋转90°,画出旋转后的图形.22.(本题满分8分)如图,PA 为⊙O 的切线,A 为切点.过A 作OP 的垂线AB,垂足为点C,交⊙O 于点B.延长BO 与⊙O 交于点D,与PA 的延长线交于点E.(1)求证:PB 为⊙O 的切线;(2)若tan ∠ABE=21,求sinE 的值.23.(本题满分10分)星光中学课外活动小组准备围建一个矩形生物苗圃园.其中一边靠墙,另外三边用长为30米的篱笆围成.已知墙长为18米(如图所示),设这个苗圃园垂直于墙的一边的长为x 米.(1)若平行于墙的一边的长为y 米,直接写出y 与x 之间的函数关系式及其自变量x 的取值范围;(2)垂直于墙的一边的长为多少米时,这个苗圃园的面积最大,并求出这个最大值;(3)当这个苗圃园的面积不小于88平方米时,试结合函数图像,直接写出x 的取值范围.24.(本题满分10分)(1)如图1,在△ABC 中,点D,E,Q 分别在AB,AC,BC 上,且DE ∥BC,AQ 交DE 于点P.求证:QCPE BQ DP . (2) 如图,在△ABC 中,∠BAC=90°,正方形DEFG 的四个顶点在△ABC 的边上,连接AG,AF 分别交DE 于M,N 两点.①如图2,若AB=AC=1,直接写出MN 的长;②如图3,求证MN 2=DM·EN.25.(本题满分12分)如图1,抛物线y=ax 2+bx+3经过A(-3,0),B(-1,0)两点.(1)求抛物线的解析式;(2)设抛物线的顶点为M,直线y=-2x+9与y 轴交于点C,与直线OM 交于点D.现将抛物线平移,保持顶点在直线OD 上.若平移的抛物线与射线CD(含端点C)只有一个公共点,求它的顶点横坐标的值或取值范围;(3)如图2,将抛物线平移,当顶点至原点时,过Q(0,3)作不平行于x 轴的直线交抛物线于E,F 两点.问在y 轴的负半轴上是否存在点P,使△PEF 的内心在y 轴上.若存在,求出点P 的坐标;若不存在,请说明理由.2011年湖北省武汉市中考数学答案一、选择题1.A2.C3.B4.D5.B6.C7.C8.A9.B 10.B 11.C 12.D二、填空题13.1/214.105;105;10015.816.12三、解答题 17.(本题6分)解:∵a=1,b=3,c=1∴△=b 2-4ac=9-4×1×1=5>0∴x=-3±25 ∴x 1=-3+ 25,x 2=-3-25 18.(本题6分)解:原式=x(x-2)/x÷(x+2)(x-2)/x=x(x-2)/x· x/(x+2)(x-2)=x/(x+2)∴当x=3时,原式=3/519.(本题6分)解:证明:在△ABE 和△ACD 中,AB =AC ∠A=∠A AE =AD∴△ABE≌△ACD∴∠B=∠C 20.(本题7分)解法1:(1)根据题意,可以画出如下的“树形图”:∴这两辆汽车行驶方向共有9种可能的结果(2)由(1)中“树形图”知,至少有一辆汽车向左转的结果有5种,且所有结果的可能性相等∴P (至少有一辆汽车向左转)=5/9解法2:根据题意,可以列出如下的表格:以下同解法1(略)21.(本题7分)(1)将线段AC 先向右平移6个单位,再向下平移8个单位.(其它平移方式也可)(2)F(-1,-1)左 直 右左 (左,左) (左,直) (左,右)直 (直,左) (直,直) (直,右)右 (右,左) (右,直) (右,右)(3)画出如图所示的正确图形22.(本题8分)(1)证明:连接OA∵PA为⊙O的切线,∴∠PAO=90°∵OA=OB,OP⊥AB于C∴BC=CA,PB=PA∴△PBO≌△PAO∴∠PBO=∠PAO=90°∴PB为⊙O的切线(2)解法1:连接AD,∵BD是直径,∠BAD=90°由(1)知∠BCO=90°∴AD∥OP∴△ADE∽△POE∴EA/EP=AD/OP 由AD∥OC得AD=2OC ∵tan∠ABE=1/2 ∴OC/BC=1/2,设OC=t,则BC=2t,AD=2t由△PBC∽△BOC,得PC=2BC=4t,OP=5t ∴EA/EP=AD/OP=2/5,可设EA=2m,EP=5m,则PA=3m∵PA=PB∴PB=3m∴sinE=PB/EP=3/5(2)解法2:连接AD,则∠BAD=90°由(1)知∠BCO=90°∵由AD∥OC,∴AD=2OC ∵tan∠ABE=1/2,∴OC/BC=1/2,设OC=t,BC=2t,AB=4t由△PBC∽△BOC,得PC=2BC =4t,∴PA=PB=25t 过A作AF⊥PB于F,则AF·PB=AB·PC∴AF=558t 进而由勾股定理得PF=556t∴sinE=sin∠FAP=PF/PA=3/523.(本题10分)解:(1)y=30-2x(6≤x<15)(2)设矩形苗圃园的面积为S则S=xy=x(30-2x)=-2x2+30x ∴S=-2(x-7.5)2+112.5由(1)知,6≤x<15∴当x=7.5时,S最大值=112.5即当矩形苗圃园垂直于墙的边长为7.5米时,这个苗圃园的面积最大,最大值为112.5(3)6≤x≤1124.(本题10分)(1)证明:在△ABQ中,由于DP∥BQ,∴△ADP∽△ABQ, ∴DP/BQ=AP/AQ.同理在△ACQ中,EP/CQ=AP/AQ.∴DP/BQ=EP/CQ.(2)929.(3)证明:∵∠B+∠C=90°,∠CEF+∠C=90°.∴∠B=∠CEF,又∵∠BGD=∠EFC,∴△BGD∽△EFC.……3分∴DG/CF=BG/EF,∴DG·EF=CF·BG又∵DG=GF=EF,∴GF2=CF·BG由(1)得DM/BG=MN/GF=EN/CF∴(MN/GF)2=(DM/BG)·(EN/CF)∴MN2=DM·EN25.(1)抛物线y=ax2+bx+3经过A(-3,0),B(-1,0)两点∴9a-3b+3=0 且a-b+3=0解得a =1b =4∴抛物线的解析式为y=x 2+4x+3(2)由(1)配方得y=(x+2)2-1∴抛物线的顶点M(-2,,1)∴直线OD 的解析式为y=21x 于是设平移的抛物线的顶点坐标为(h,21 h),∴平移的抛物线解析式为y=(x-h)2+21h.①当抛物线经过点C 时,∵C (0,9),∴h 2+21h=9, 解得h=41451-±. ∴ 当 4145-1-≤h<41451-+ 时,平移的抛物线与射线CD 只有一个公共点.②当抛物线与直线CD 只有一个公共点时,由方程组y=(x-h)2+21h,y=-2x+9. 得 x 2+(-2h+2)x+h 2+21h-9=0,∴△=(-2h+2)2-4(h 2+21h-9)=0, 解得h=4.此时抛物线y=(x-4)2+2与射线CD 唯一的公共点为(3,3),符合题意.综上:平移的抛物线与射线CD 只有一个公共点时,顶点横坐标的值或取值范围是 h=4或 4145-1-≤h<41451-+. (3)方法1将抛物线平移,当顶点至原点时,其解析式为y=x 2,设EF 的解析式为y=kx+3(k≠0).假设存在满足题设条件的点P(0,t),如图,过P 作GH∥x 轴,分别过E,F 作GH 的垂线,垂足为G,H.∵△PEF 的内心在y 轴上,∴∠GEP=∠EPQ=∠QPF=∠HFP ,∴△GEP∽△HFP ,...............9分∴GP /PH=GE/HF,∴-x E /x F =(y E -t)/(y F -t)=(kx E +3-t)/(kx F +3-t)∴2kx E ·x F =(t-3)(x E +x F )由y=x 2,y=-kx+3.得x 2-kx-3=0.∴x E +x F =k,x E ·x F =-3.∴2k(-3)=(t-3)k,∵k≠0,∴t=-3.∴y 轴的负半轴上存在点P(0,-3),使△PEF 的内心在y 轴上.方法2 设EF 的解析式为y=kx+3(k≠0),点E,F 的坐标分别为(m,m 2)(n,n 2)由方法1知:mn=-3.作点E 关于y轴的对称点R(-m,m 2),作直线FR 交y 轴于点P,由对称性知∠EPQ=∠FPQ ,∴点P 就是所求的点.由F,R 的坐标,可得直线FR 的解析式为y=(n-m)x+mn.当x=0,y=mn=-3,∴P (0,-3).∴y 轴的负半轴上存在点P(0,-3),使△PEF 的内心在y 轴上.武汉市光谷三初 冉瑞洪整理。

2011年中考数学试题及解析171套试题试卷_112

2011年中考数学试题及解析171套试题试卷_112

湖北省恩施州2011年中考数学试卷一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是满足题目要求的,请将正确选项填涂在答题卷的相应位置).1、(2011•恩施州)﹣2的倒数是()A、2B、C、﹣D、不存在考点:倒数。

专题:常规题型。

分析:根据倒数定义可知,﹣2的倒数是﹣.解答:解:﹣2的倒数是﹣.故选C.点评:主要考查倒数的定义,要求熟练掌握.需要注意的是倒数的性质:负数的倒数还是负数,正数的倒数是正数,0没有倒数.倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.2、(2011•恩施州)下列运算正确的是()A、a6÷a2=a3B、a5﹣a3=a2C、(3a3)2=6a9D、2(a3b)2﹣3(a3b)2=﹣a6b2考点:同底数幂的除法;合并同类项;幂的乘方与积的乘方。

专题:计算题。

分析:根据同底数幂的除法,底数不变指数相减;合并同类项,系数相加字母和字母的指数不变;积的乘方法则:把每一个因式分别乘方,再把所得的幂相乘;幂的乘方,底数不变指数相乘,对各选项计算后利用排除法求解.解答:解:A、a6÷a2=a4,故本选项错误;B、不是同类项,不能合并,故本选项错误;C、(3a3)2=9a6,故本选项错误;D、2(a3b)2﹣3(a3b)2=﹣a6b2,故本选项正确.故选D.点评:本题考查同底数幂的除法,合并同类项,积的乘方法则,幂的乘方很容易混淆,一定要记准法则才能做题.3、(2011•恩施州)将一个直角三角板和一把直尺如图放置,如果∠α=43°,则∠β的度数是()A、43°B、47°C、30°D、60°考点:平行线的性质。

专题:计算题。

分析:如图,延长BC交刻度尺的一边于D点,利用平行线的性质,对顶角的性质,将已知角与所求角转化到Rt△CDE中,利用内角和定理求解.解答:解:如图,延长BC交刻度尺的一边于D点,∵AB∥DE,∴∠β=∠EDC,又∠CED=∠α=43°,∠ECD=90°,∴∠β=∠EDC=90°﹣∠CED=90°﹣43°=47°,故选B.点评:本题考查了平行线的性质.关键是延长BC,构造两条平行线之间的截线,将问题转化到直角三角形中求解.4、(2011•恩施州)解方程(x﹣1)2﹣5(x﹣1)+4=0时,我们可以将x﹣1看成一个整体,设x﹣1=y,则原方程可化为y2﹣5y+4=0,解得y1=1,y2=4.当y=1时,即x﹣1=1,解得x=2;当y=4时,即x﹣1=4,解得x=5,所以原方程的解为:x1=2,x2=5.则利用这种方法求得方程(2x+5)2﹣4(2x+5)+3=0的解为()A、x1=1,x2=3B、x1=﹣2,x2=3C、x1=﹣3,x2=﹣1D、x1=﹣1,x2=﹣2考点:换元法解一元二次方程。

湖北十堰中考数学试题解析版.doc

湖北十堰中考数学试题解析版.doc

2011年湖北省十堰市中考数学试卷一、选择题:(本题有10个小题.每小题3分,共30分)1、(2011•十堰)下列实数中是无理数的是()A、B、C、D、3.14考点:无理数。

专题:存在型。

分析:根据无理数的概念对各选项进行逐一分析即可.解答:解:A、是开方开不尽的数,故是无理数,故本选项正确;B、=2,2是有理数,故本选项错误;C、是分数,分数是有理数,故本选项错误;D、3.14是小数,小数是有理数,故本选项错误.故选A.点评:此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.2、(2011•十堰)函数y=中自变量x的取值范围是()A、x≥0B、x≥4C、x≤4D、x>4考点:函数自变量的取值范围。

专题:计算题。

分析:根据二次根式的性质,被开方数大于等于0,列不等式求解.解答:解:根据题意得:x﹣4≥0,解得x≥4,则自变量x的取值范围是x≥4.故选B.点评:本题主要考查函数自变量的取值范围的知识点,注意:二次根式的被开方数是非负数.3、(2011•十堰)下面几何体的主视图是()A、B、C、D、考点:简单组合体的三视图。

分析:找到从正面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中.解答:解:从正面看易得第一层有3个正方形,第二层最左边有一个正方形.故选C.点评:本题考查了三视图的知识,主视图是从物体的正面看得到的视图.4、(2011•十堰)据统计,十堰市2011年报名参加9年级学业考试总人数为26537人,则26537用科学记数法表示为(保留两个有效数字)()A、2.6x104B、2.7x104C、2.6x105D、2.7x105考点:科学记数法与有效数字。

分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于26537有位,所以可以确定n=5﹣1=4.有效数字的计算方法是:从左边第一个不是0的数字起,后面所有的数字都是有效数字.用科学记数法表示的数的有效数字只与前面的a有关,与10的多少次方无关.解答:解:26537=2.6537×104≈2.7×104.故选:B.点评:此题主要考查了科学记数法的表示方法,以及用科学记数法表示的数的有效数字的确定方法.5、(2011•十堰)如图,Rt△ABC中,∠ACB=90°,DE过点C,且DE∥AB,若∠ACD=50°,则∠B的度数是()A、50°B、40°C、30°D、25°考点:平行线的性质。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2011年湖北省十堰市中考数学试卷一、选择题:(本题有10个小题.每小题3分,共30分)1、(2011•十堰)下列实数中是无理数的是()A、B、C、D、3.14考点:无理数。

专题:存在型。

分析:根据无理数的概念对各选项进行逐一分析即可.解答:解:A、是开方开不尽的数,故是无理数,故本选项正确;B、=2,2是有理数,故本选项错误;C、是分数,分数是有理数,故本选项错误;D、3.14是小数,小数是有理数,故本选项错误.故选A.点评:此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.2、(2011•十堰)函数y=中自变量x的取值范围是()A、x≥0B、x≥4C、x≤4D、x>4考点:函数自变量的取值范围。

专题:计算题。

分析:根据二次根式的性质,被开方数大于等于0,列不等式求解.解答:解:根据题意得:x﹣4≥0,解得x≥4,则自变量x的取值范围是x≥4.故选B.点评:本题主要考查函数自变量的取值范围的知识点,注意:二次根式的被开方数是非负数.3、(2011•十堰)下面几何体的主视图是()A、B、C、D、考点:简单组合体的三视图。

分析:找到从正面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中.解答:解:从正面看易得第一层有3个正方形,第二层最左边有一个正方形.故选C.点评:本题考查了三视图的知识,主视图是从物体的正面看得到的视图.4、(2011•十堰)据统计,十堰市2011年报名参加9年级学业考试总人数为26537人,则26537用科学记数法表示为(保留两个有效数字)()A、2.6x104B、2.7x104C、2.6x105D、2.7x105考点:科学记数法与有效数字。

分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于26537有位,所以可以确定n=5﹣1=4.有效数字的计算方法是:从左边第一个不是0的数字起,后面所有的数字都是有效数字.用科学记数法表示的数的有效数字只与前面的a有关,与10的多少次方无关.解答:解:26537=2.6537×104≈2.7×104.故选:B.点评:此题主要考查了科学记数法的表示方法,以及用科学记数法表示的数的有效数字的确定方法.5、(2011•十堰)如图,Rt△ABC中,∠ACB=90°,DE过点C,且DE∥AB,若∠ACD=50°,则∠B的度数是()A、50°B、40°C、30°D、25°考点:平行线的性质。

专题:几何图形问题。

分析:首先由平行线的性质得∠A=∠ACD=50°,再由∠A+∠B=90°,求出∠B.解答:解:∵DE∥AB,∴∠A=∠ACD=50°,又∠ACB=90°,∴∠A+∠B=90°,∴∠B=90°﹣50°=40°,故选:B.点评:此题考查的知识点是平行线的性质,关键是由平行线的性质求出∠A.6、(2011•十堰)工人师傅常用角尺平分一个任意角.做法如下:如图,∠AOB是一个任意角,在边OA,OB上分别取OM=ON,移动角尺,使角尺两边相同的刻度分别与M,N重合.过角尺顶点C作射线OC.由此做法得△MOC≌△NOC的依据是()A、AASB、SASC、ASAD、SSS考点:全等三角形的判定;作图—基本作图。

专题:证明题。

分析:利用全等三角形判定定理AAS、SAS、ASA、SSS对△MOC和△NOC进行分析,即可作出正确选择.解答:证明:∵OM=ON,CM=CN,OC为公共边,∴△MOC≌△NOC(SSS).故选D.点评:此题主要考查学生对全等三角形判定定理的理解和掌握,此题难度不大,属于基础题.7、(2011•十堰)已知x﹣2y=﹣2,则3﹣x+2y的值是()A、0B、1C、3D、5考点:代数式求值。

专题:整体思想。

分析:根据题意可利用“整体代入法”把x﹣2y=﹣2代入代数式,直接求出代数式的值.解答:解:∵x﹣2y=﹣2,∴3﹣x+2y=3﹣(x﹣2y)=3﹣(﹣2)=5,故选D.点评:本题既考查了整体的数学思想,同时还隐含了正确运算的能力,比较简单.8、(2011•十堰)现有边长相同的正三角形、正方形和正六边形纸片若干张,下列拼法中不能欲嵌成一个平面图案的是()A、正方形和正六边形B、正三角形和正方形C、正三角形和正六边形D、正三角形、正方形和正六边形考点:平面镶嵌(密铺)。

专题:几何图形问题。

分析:正多边形的组合能否铺满地面,关键是看位于同一顶点处的几个角之和能否为360°.若能,则说明能铺满;反之,则说明不能铺满.解答:解:A、正方形和正六边形内角分别为90°、120°,由于90m+120n=360,得m=4﹣n,显然n取任何正整数时,m不能得正整数,故不能铺满;B、正三角形和正方形内角分别为60°、90°,由于60°×3+90°×2=360°,故能铺满;C、正三角形和正六边形内角分别为60°、120°,由于60°×2+120°×2=360°,故能铺满;D、正三角形、正方形和正六边形内角分别为60°、90°、120°,由于60°+90°+90°+120°=360°,故能铺满.故选A.点评:考查了平面镶嵌(密铺),解决此类题,可以记住几个常用正多边形的内角,及能够用两种正多边形镶嵌的几个组合.9、(2011•十堰)如图,在网格中有一个直角三角形(网格中的毎个小正方形的边长均为1个单位1长度),若以该三角形一边为公共边画一个新三角形与原来的直角三角形一起组成一个等腰三角形,要求新三角形与原来的直角三角形除了有一条公共边外,没有其它的公共点,新三角形的顶点不一定在格点上.那么符合要求的新三角形有()A、4个B、6个C、7个D、9个考点:等腰三角形的判定。

专题:应用题;网格型。

分析:根据题意进行分析可知:以原三角形每条边为底边分别可以画出两个新三角形与原来的直角三角形一起组成一个等腰三角形即有6个,以原直角三角形斜边为腰画出一个新三角形与原来的直角三角形一起组成一个等腰三角形,从而得出结论.解答:解:根据题意可知:以原三角形每条边为底边分别可以画出两个新三角形与原来的直角三角形一起组成一个等腰三角形,故3×2=6,同时,还可以以原直角三角形斜边为腰画出一个新三角形与原来的直角三角形一起组成一个等腰三角形,∴符合要求的新三角形有7个,故选C.点评:本题主要考查了等腰三角形的定义,同时需要认真分析,避免遗漏,难度适中.10、(2011•十堰)如图所示为一个污水净化塔内部,污水从上方入口进入后流经形如等腰直角三角形的净化材枓表面,流向如图中箭头所示,每一次水流流经三角形两腰的机会相同,经过四层净化后流入底部的5个出口中的一个.下列判断:①5个出口的出水量相同;②2号出口的出水量与4号出口的出水量相同;③1,2,3号出水口的出水量之比约为1:4:6;④若净化材枓损耗的速度与流经其表面水的数量成正比,则更换最慢的一个三角形材枓使用的时间约为更换最快的一个三角形材枓使用时间的8倍.其中正确的判断有()个.A、1个B、2个C、3个D、4个考点:可能性的大小。

专题:几何图形问题。

分析:根据出水量假设出第一次分流都为1,可以得出下一次分流的水量,依此类推得出最后得出每个出水管的出水量,进而得出答案.解答:解:根据图示可以得出:①根据图示出水口之间存在不同,故此选项错误;②2号出口的出水量与4号出口的出水量相同;根据第二个出水口的出水量为:[()÷2+]÷2+=,第4个出水口的出水量为:[()÷2+]÷2+=,故此选项正确;③1,2,3号出水口的出水量之比约为1:4:6;根据第一个出水口的出水量为:,第二个出水口的出水量为:[()÷2+]÷2+=,第三个出水口的出水量为:+=,∴1,2,3号出水口的出水量之比约为1:4:6;故此选项正确;④若净化材枓损耗的速度与流经其表面水的数量成正比,则更换最慢的一个三角形材枓使用的时间约为更换最快的一个三角形材枓使用时间的8倍.∵1号与5号出水量为,3号最快为:,故更换最慢的一个三角形材枓使用的时间约为更换最快的一个三角形材枓使用时间的6倍.故此选项正确;故正确的有3个.故选:C.点评:此题主要考查了可能性的大小问题,根据题意分别得出各出水口的出水量是解决问题的关键.二、填空题:(本题有6个小题,每小题3分,共18分)11、(2011•十堰)分解因式:x2﹣2x=x(x﹣2).考点:因式分解-提公因式法。

分析:提取公因式x,整理即可.解答:解:x2﹣2x=x(x﹣2).点评:本题考查了提公因式法分解因式,因式分解的第一步:有公因式的首先提取公因式.12、(2011•十堰)在一个不透明的布袋中,红色、黑色、白色的乒乓球共有20个,除颜色外,形状、大小、质地等完全相同.小明通过多次摸球实验后犮现其中投到红色、黑色球的频率稳定在5%和15%,则口袋中白色球的个数很可能足16个.考点:利用频率估计概率。

专题:计算题。

分析:在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近,可以从比例关系入手,先求得白球的频率,再乘以总球数求解.解答:解:白色球的个数是:20×(1﹣5%﹣15%)=20×80%=16,故答案为:16,点评:此题主要考查了利用频率估计概率,解答此题的关键是要计算出口袋中白色球所占的比例,再计算其个数.13、(2011•十堰)如图,等腰梯形ABCD中,AD∥BC,AB∥DE,BC=8,AB=6,AD=5,则△CDE的周长是15.考点:等腰梯形的性质。

专题:计算题;几何变换。

分析:根据等腰梯形的性质可得到DE将梯形分为一个平行四边形和一个等边三角形,则此时△CDE的周长就不难求得了.解答:解:∵AD∥BC,AB∥DE∴ABED是平行四边形∴DE=CD=AB=6,EB=AD=5∴CE=8﹣5=3∴△CDE的周长是6+6+3=15点评:此题主要考查了等腰梯形的性质和平行四边形的判定及性质.14、(2011•十堰)关于x,y的二元一次方程组的解是正整数,则整数p的值为5或7.考点:解二元一次方程组。

专题:计算题。

分析:首先用含p的代数式分别表示x,y,再根据条件二元一次方程组的解为正整数,得到关于p的不等式组,求出p的取值范围,再根据p为整数确定p的值.解答:解:,②×3得:3x+3y=3p,③,①﹣③得:2x=23﹣3p,x=,②×5得:5x+5y=5p,④,④﹣①得:2y=5p﹣23,y=,∵x,y是正整数,∴,解得:<p<,∵p为整数,∴p=5,6,7,又∵x,y是正整数,∴p=6时,不合题意舍去,∴p=5或7,故答案为:5或7.点评:此题主要考查了解二元一次方程组和解不等式组,要注意的是x,y都为正整数,解出x,y关于p 的式子,最终求出p的范围,即可知道整数p的值.15、(2011•十堰)如图,一个半径为2的圆经过一个半径为4的圆的圆心,则图中阴影部分的面积为8.考点:相交两圆的性质;扇形面积的计算。

相关文档
最新文档