2020年武侯区九年级二诊数学
2020年四川省成都市中考数学二诊试卷
中考数学二诊试卷一、选择题(本大题共10小题,共30.0分)1.在,0,-1,π这四个数中,最大的数是()A. B. π C. 0 D. -12.下列汽车标志中,既是轴对称又是中心对称图形的是()A. B.C. D.3.举世瞩目的港珠澳大桥工程总投资约726亿元,用科学记数法表示726亿元正确的是()A. 72.6×109元B. 7.26×1010元C. 0.726×1011元D. 7.26×1011元4.如图是由4个完全相同的小正方体组成的立体图形,则它的俯视图是()A. B. C. D.5.下列运算正确的是()A. x3+x3=2x6B. x8÷x2=x4C. x m•x n=x m+nD. (-x4)5=x206.在“大家跳起来”的乡村学校舞蹈比赛中,某校10名学生参赛成绩统计如图所示.对于这10名学生的参赛成绩,下列说法中错误的是()A. 众数是90B. 中位数是90C. 平均数是90D. 极差是157.由于国家出台对房屋的限购令,某市2017年3月平均房价为每平方米15500元,连续两年降价后,2019年同期平均房价为每平方米12000元,设这两年平均房价年平均下跌的百分率为x,根据题意,下面所列方程正确的是()A. 15500(1+x)2=12000B. 15500(1-x)2=12000C. 12000(1+x)2=15500D. 12000(1-x)2=155008.如图,菱形ABCD中,∠B=60°,AB=5,则以AC为边长的正方形ACEF的周长为()A. 16B. 20C. 12D. 249.如图,AB、AC都是圆O的弦,OM⊥AB,ON⊥AC,垂足分别为M、N,如果MN=,那么BC=()A. 3B.C.D.10.如图为二次函数y=ax2+bx+c的图象,则下列说法中错误的是()A. abc>0B. 2a+b=1C. 4a+2b+c<0D. 对于任意x均有ax2+bx≥a+b二、填空题(本大题共9小题,共36.0分)11.函数y=中自变量x的取值范围是______.12.如图,∠1=80°,∠2=80°,∠3=84°,则∠4=______.13.观察下列等式(式子中“!”是一种数学运算符号,n是正整数):1!=1,2!=2×1,3!=3×2×1,4!=4×3×2×1,…计算=______.14.如图,在平面直角坐标系中,以O为圆心,适当长为半径画弧,交x轴于点M,交y轴于点N,再分别以点M,N为圆心,大于MN的长为半径画弧,两弧在第二象限交于点P,若点P的坐标为(3a,4a+5),则a的值为______.15.若x1,x2是方程x2-2x-4=0的两个不相等的实数根,则代数式的值2x12-2x1+x22-3为______.16.数学学霸甲、乙两人在一次解方程组比赛中,甲求关于x、y的方程组的正确解与乙求关于x、y的方程组的正确的解相同,则的值为______.17.直线y=x+3与两坐标轴交于A、B两点,以AB为斜边在第二象限内作等腰Rt△ABC,反比例函数y=(x<0)的图象过点C,则m=______.18.如图,将正方形沿图中虚线(其中x<y)剪成①②③④四块图形,用这四块图形恰能拼成一个矩形(非正方形).则的值为______.19.将一张圆形纸片,进行了如下连续操作(1)将圆形纸片左右对折,折痕为AB,如图(2)所示(2)将圆形纸片上下折叠,使A、B两点重合,折痕CD与AB相交于M,如图(3)所示(3)将圆形纸片沿EF折叠,使B、M两点重合,折痕EF与AB相交于N,如图(4)所示(4)连结AE、AF,如图(5)所示,则S△AEF:=______.三、计算题(本大题共1小题,共6.0分)20.先化简,再求值:,其中a=-2,b=2四、解答题(本大题共8小题,共72.0分)21.(1)计算:-22++|tan60°-2|+(π-)0(2)解不等式组:,并把解集在数轴上表示出来.22.如图,大楼AB高18米,远处有一塔CD,某人在楼底B处测得塔顶的仰角为38.5°,爬到楼顶A处测得塔顶的仰角为22°,求塔高CD及大楼与塔之间的距离BD的长(参考数据:sin22°≈0.37,cos22°≈0.93,tan22°≈0.40,sin38.5≈0.62,cos38.5°≈0.78,tan38.5°≈0.80)23.某校的一个数学兴趣小组在本校学生中开展主题为“交通规则知多少”的专题调查活动,采取随机抽样的方式进行问卷调查,问卷调查的结果分为“非常了解”、“比较了解”、“基本了解”、“不太了解”四个等级,分别记作A、B、C、D;并根据调查结果绘制成如图所示的扇形统计图和条形统计图(未完成),请结合图中所给信息解答下列问题:(1)本次被调查的学生共有______人;(2)将扇形统计图和条形统计图补充完整;(3)在“非常了解”的调查结果里,初一年级学生共有4人,其中3男1女,在这4人中,打算随机选出2位进行采访,请你用列表法或树状图的方法求出所选两位同学恰好都是男同学的概率?24.已知:如图,在平面直角坐标系中,一次函数y=ax+b(a≠0)的图象与反比例函数y=(k≠0)的图象交于一、三象限内的A、B两点,与x轴交于C点,点A的坐标为(4,m),点B的坐标为(n,﹣4),tan∠BOC=(1)求该反比例函数和一次函数的解析式;(2)在x轴上有一点E,使得△BCE的面积是△BCO的面积的一半,求出点E的坐标25.如图,在△ABC中,BC为⊙O的直径,AB交⊙O于点D,DE⊥AC,垂足为点E,延长DE交BC的延长线于点F,若∠A=∠ABC(1)求证:BD=AD;(2)求证:DF是⊙O的切线;(3)若⊙O的半径为6,sin∠F=,求DE的长.26.为迎接中国森博会,某商家计划从厂家采购A,B两种产品共20件,产品的采购单价(元/件)是采购数量(件)的一次函数,下表提供了部分采购数据.(1)设A产品的采购数量为x(件),采购单价为y1(元/件),求y1与x的关系式;(2)经商家与厂家协商,采购A产品的数量不少于B产品数量的,且A产品采购单价不低于1200元,求该商家共有几种进货方案;(3)该商家分别以1760元/件和1700元/件的销售单价售出A,B两种产品,且全部售完,在(2)的条件下,求采购A种产品多少件时总利润最大,并求最大利润.27.在正方形ABCD中,对角线AC、BD交于点O,动点P在线段BC上(不含点B),∠BPE=∠ACB,PE交BO于点E,过点B作BF⊥PE,垂足为F,交AC于点G.(1)当点P与点C重合时(如图①),求证:△BOG≌△POE;(2)通过观察、测量、猜想:=______,并结合图②证明你的猜想;(3)把正方形ABCD改为菱形,其他条件不变(如图③),若∠ACB=α,求的值.(用含α的式子表示)28.如图,在△OAB中,AO=AB,∠OAB=90°,点B坐标为(10,0).过原点O的抛物线,又过点A和G,点G坐标为(7,0).(1)求抛物线的解析式;(2)边OB上一动点T(t,0),(T不与点O、B重合)过点T作OA、AB的垂线,垂足分别为C、D.设△TCD的面积为S,求S的表达式(用t表示),并求S 的最大值;(3)已知M(2,0),过点M作MK⊥OA,垂足为K,作MN⊥OB,交点OA于N.在线段OA上是否存在一点Q,使得Rt△KMN绕点Q旋转180°后,点M、K恰好落在(1)所求抛物线上?若存在请求出点Q和抛物线上与M、K对应的点的坐标,若不存在请说明理由.答案和解析1.【答案】B【解析】解:∵,最大的数是π,故选:B.题中只有2个正数,比较两个正数的大小,找到最大的数即可.考查实数的比较;用到的知识点为:0大于一切负数;正数大于0;注意应熟记常见无理数的约值.2.【答案】A【解析】解:A、既是轴对称又是中心对称的图形,故本选项正确;B、是轴对称,不是中心对称的图形,故本选项错误;C、是轴对称,不是中心对称的图形,故本选项错误;D、是轴对称,不是中心对称的图形,故本选项错误.故选:A.根据中心对称图形和轴对称图形的概念对各选项分析判断即可得解.本题考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.3.【答案】B【解析】解:726亿=72600 000 000,用科学记数法表示时n=10,∴72600 000000=7.26×1010.故选:B.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.【答案】C【解析】解:根据题意,从上面看原图形可得到,故选:C.直接从上往下看,看到平面图形就是俯视图,选择正确选项即可.本题主要考查了简单组合体的三视图的知识,俯视图是从上往下看得到的平面图形.5.【答案】C【解析】解:A、x3+x3=2x3,故本选项错误;B、x8÷x2=x6,故本选项错误;C、x m•x n=x m+n,故本选项正确;D、(-x4)5=-x20,故本选项错误.故选:C.根据同底数幂的除法,底数不变指数相减;合并同类项,系数相加字母和字母的指数不变;幂的乘方,底数不变指数相乘,对各选项计算后利用排除法求解.本题考查同底数幂的除法,合并同类项,幂的乘方.题目比较简单,解题需细心.6.【答案】C【解析】解:∵90出现了5次,出现的次数最多,∴众数是90;故A正确;∵共有10个数,∴中位数是第5、6个数的平均数,∴中位数是(90+90)÷2=90;故B正确;∵平均数是(80×1+85×2+90×5+95×2)÷10=89;故C错误;极差是:95-80=15;故D正确.综上所述,C选项符合题意,故选:C.根据众数、中位数、平均数、极差的定义和统计图中提供的数据分别列出算式,求出答案.此题考查了折线统计图,用到的知识点是众数、中位数、平均数、极差,关键是能从统计图中获得有关数据,求出众数、中位数、平均数、极差.7.【答案】B【解析】解:设这两年平均房价年平均下降率为x,根据题意得:15500(1-x)2=12000.故选:B.首先根据题意可得2019年的房价=2018年的房价×(1-下降率),2018年的房价=2017年的房价×(1-下降率),由此可得方程15500(1-x)2=12000.此题主要考查了由实际问题抽象出一元二次方程,关键是掌握增长率问题的计算公式:若变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1±x)2=b.8.【答案】B【解析】解:∵∠B=60°,AB=BC,∴△ABC是等边三角形,∴AC=AB=5,∴正方形ACEF的边长为5,∴正方形ACEF的周长为20,故选:B.据已知可求得△ABC是等边三角形,从而得到AC=AB,从而求出正方形ACEF的边长,进而可求出其周长.本题考查菱形与正方形的性质,属于基础题,对于此类题意含有60°角的题目一般要考虑等边三角形的应用.9.【答案】C【解析】解:∵OM⊥AB,ON⊥AC,OM过O,ON过O,∴AN=CN,AM=BM,∴BC=2MN,∵MN=,∴BC=2,故选:C.根据垂径定理得出AN=CN,AM=BM,根据三角形的中位线性质得出BC=2MN,即可得出答案.本题考查了垂径定理和三角形的中位线性质,能熟记知识点的内容是解此题的关键,注意:垂直于弦的直径平分弦.10.【答案】B【解析】解:A.∵函数图象开口朝上,∴a>0对称轴为x=1,即=1,∴b<0,又函数与y轴的交点在负半轴,故c<0.因此abc>0,故A正确;B.由函数对称轴为-=1,得2a+b=0.故B错误;C.当x=2时,由图知:y=ax2+bx+c=4a+2b+c<0.故C正确;D.由函数图象,当x=1时,函数y=a+b+c取得最小值,∴ax2+bx+c≥a+b+c即ax2+bx≥a+b.故选:B.本题根据二次函数的图象与系数的关系逐一判断,可得出答案.本题考查二次函数图象与系数的关系,理解清楚二次函数的基本性质对于此类题尤为重要,另外要善于从函数图象中读取信息.11.【答案】x≤5且x≠1【解析】解:根据题意得,所以x≤5且x≠1.故答案为x≤5且x≠1.利用分式有意义的条件和二次根式有意义的条件得到,然后解不等式即可.本题考查了函数自变量的取值范围:自变量的取值范围必须使含有自变量的表达式都有意义.12.【答案】96°【解析】解:∵∠1=80°,∠2=80°,∴∠1=∠2,∴a∥b,∴∠3+∠4=180°,∵∠3=84°,∴∠4=96°.故答案为:96°.直接利用平行线的判定方法得出a∥b,再利用平行线的性质得出答案.此题主要考查了平行线的判定与性质,正确掌握平行线的性质是解题关键.13.【答案】n2-n【解析】解:原式==n(n-1)=n2-n,故答案为n2-n,.根据题目给出的运算法则,代入分式计算即可.本题考查了分式的运算,读懂题意按照题目中的运算法则解题是关键.14.【答案】-【解析】解:由作法得OP平分∠MON,即点P在第二象限的角平分线上,所以3a+4a+5=0,所以a=-.故答案为-.根据基本作图可判断OP平分∠MON,则利用第二象限的角平分线上点的坐标特征得到3a+4a+5=0,然后解关于a的方程即可.本题考查了作图-基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).15.【答案】13【解析】解:∵x1,x2是方程x2-2x-4=0的实数根∴x12-2x1-4=0,x22-2x2-4=0,∴x12=2x1+4,x22=2x2+4,∴2x12-2x1+x22-3=2(2x1+4)-2x1+2x2+4-3=2(x1+x2)+9,∵x1+x2=2,∴2x12-2x1+x22-3=2×2+9=13.故答案为13.先利用一元二次方程根的定义得到x12=2x1+4,x22=2x2+4,则2x12-2x1+x22-3可化为2(x1+x2)+9,然后根据根与系数的关系得到x1+x2=2,从而利用整体代入的方法可计算出代数式的值.本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=-,x1x2=.16.【答案】2【解析】解:联立得:,解得:,代入得:,解得:,则原式=1+1=2.故答案为:2联立不含a与b的方程求出x与y的值,进而确定出a与b的值,代入原式计算即可求出值.此题考查了二元一次方程组的解,以及解二元一次方程组,熟练掌握运算法则是解本题的关键.17.【答案】-【解析】解:如图,过C点作CD⊥x轴于D,CE⊥y轴于E,∵y=x+3,∴令x=0,得y=3;令y=0,得x+3=0,解得x=-6,∴A点坐标为(-6,0),B点坐标为(0,3),在Rt△OAB中,OA=6,OB=3,∴AB==3,∵△ACB为等腰直角三角形,∴∠ACB=90°,CA=CB=AB=,而∠DCE=90°,∴∠ACD=∠BCE,∴Rt△ACD≌Rt△BCE,∴CD=CE,∴四边形CDOE为正方形,∴正方形CDOE的面积=四边形CAOB的面积=S△CAB+S△OAB=CA•CB+OA•OB=××+×6×3=,∴CD=CE=,∴C点坐标为(-,),把C(-,)代入y=,得m=-×=-.故答案为-.过C点作CD⊥x轴于D,CE⊥y轴于E,先确定A点坐标为(-6,0),B点坐标为(0,3),再利用勾股定理计算出AB=3,然后根据等腰三角形的性质得到∠ACB=90°,CA=CB=AB=,由于∠DCE=90°,根据等角的余角相等得到∠ACD=∠BCE,易证得Rt△ACD≌Rt△BCE,则CD=CE,得到四边形CDOE为正方形,并且正方形CDOE的面积=四边形CAOB的面积,再计算出四边形CAOB的面积=S△CAB+S△OAB=CA•CB+OA•OB=,则CD=CE=,可确定C点坐标为(-,),然后把C点坐标代入反比例函数解析式即可得到m的值.本题考查了反比例函数图象上点的坐标特征;运用待定系数法确定反比例函数的解析式;直线与坐标轴的交点坐标求法;等腰直角三角形和正方形的性质;全等三角形的判定与性质;勾股定理等知识.综合性较强,有一定难度.求出C点坐标是解题的关键.18.【答案】【解析】解:由拼图前后的面积相等得:[(x+y)+y]y=(x+y)2,可得:x2+xy-y2=0,解得:x==y(负值不合题意,舍去),则x=y,故==.故答案为:.已知中的①和②,③和④形状大小分别完全相同,结合图中数据可知①④能拼成一个直角三角形,②③能拼成一个直角三角形,并且这两个直角三角形形状大小相同,利用这两个直角三角形即可拼成矩形;利用拼图前后的面积相等,可列:[(x+y)+y]y=(x+y)2,整理即可得到答案.本题主要考查了图形的剪拼,培养了学生动手能力,题型由正方形变成矩形,逆向思维,难点是求x的值.19.【答案】3:2π【解析】解:∵纸片上下折叠A、B两点重合,∴∠BMD=90°,∵纸片沿EF折叠,B、M两点重合,∴∠BNF=90°,∴∠BMD=∠BNF=90°,∴CD∥EF,根据垂径定理,BM垂直平分EF,又∵纸片沿EF折叠,B、M两点重合,∴BN=MN,∴BM、EF互相垂直平分,连接ME,如图所示:则ME=MB=2MN,∴∠MEN=30°,∴∠EMN=90°-30°=60°,又∵AM=ME(都是半径),∴∠AEM=∠EAM,∴∠AEM=∠EMN=×60°=30°,∴∠AEF=∠AEM+∠MEN=30°+30°=60°,同理可求∠AFE=60°,∴∠EAF=60°,∴△AEF是等边三角形,设圆的半径为r,则MN=r,EN=r,∴EF=2EN=r,AN=r+r=r,∴S△AEF:S圆=(×r×r):πr2=3:2π;故答案为:3:2π.由折叠的性质可得∠BMD=∠BNF=90°,证得CD∥EF,再根据垂径定理可得BM垂直平分EF,再求出BN=MN,从而得到BM、EF互相垂直平分,连接ME,求出∠MEN=30°,再求出∠EMN=60°,根据等边对等角求出∠AEM=∠EAM,由三角形的外角性质求出∠AEM=30°,得到∠AEF=60°,同理求出∠AFE=60°,判定△AEF是等边三角形,设圆的半径为r,求出MN=r,EN=r,然后求出AN、EF,再根据三角形的面积公式与圆的公式列式整理即可得出结果.本题三角形综合题目,主要考查了翻折变换的性质,平行线的判定,垂径定理,等边三角形的判定与性质,三角形面积公式以及圆的面积公式等知识;理解折叠的方法,证明△AEF是等边三角形是解题关键.20.【答案】解:原式=÷=•=,当a=-2,b=2时,原式==.【解析】根据分式的运算法则即可求出答案.本题考查分式的运算,解题的关键是熟练运用分式的运算法则,本题属于基础题型.21.【答案】解:(1)原式=-4+2+2-+1=-1;(2),由①得,x≥-2,由②得,x<3,所以,不等式组的解集为:-2≤x<3,在数轴上表示如下:.【解析】(1)分别根据整数指数幂、根式的化简、绝对值的性质、0指数幂及特殊角的三角函数值计算出各数,再根据实数混合运算的法则进行计算即可;(2)分别求出各不等式的解集,再求出其公共解集,并在数轴上表示出来即可.本题考查了一元一次不等式组的解法,在数轴上表示不等式组的解集,需要把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.22.【答案】解:过点A作AE⊥CD于点E,由题意可知:∠CAE=22°,∠CBD=38.5°,ED=AB=18米,设大楼与塔之间的距离BD的长为x米,则AE=BD=x,∵在Rt△BCD中,tan∠CBD=,∴CD=BD tan 38.5°≈0.8x,∵在Rt△ACE中,tan∠CAE=,∴CE=AE tan 22°≈0.4x,∵CD-CE=DE,∴0.8x-0.4x=18,∴x=45,即BD=45(米),CD=0.8×45=36(米),答:塔高CD是36米,大楼与塔之间的距离BD的长为45米.【解析】过点A作AE⊥CD于点E,由题意可知:∠CAE=22°,∠CBD=38.5°,ED=AB=16米,设大楼与塔之间的距离BD的长为x米,则AE=BD=x,分别在Rt△BCD中和Rt△ACE 中,用x表示出CD和CE=AE,利用CD-CE=DE得到有关x的方程求得x的值即可.本题考查的是解直角三角形的应用-仰角俯角问题,解答此题的关键是作出辅助线,构造出直角三角形,利用直角三角形的性质进行解答.23.【答案】100【解析】解:(1)根据题意得:30÷30%=100人;故答案为:100;(2)D等级人数为100×10%=10(人),C等级人数为100-(30+40+10)=20(人),B等级百分比为×100%=40%,C等级百分比为×100%=20%,如图(3)列表如下:∵共有12种等可能的结果数,其中恰好都是男同学的结果数有6种,∴P(都是男同学)==.(1)由A等级人数及其所占百分比可得总人数;(2)总人数乘以D对应百分比求得其人数,继而由各等级人数之和等于总人数求出C的人数,利用百分比的概念求出B、C的百分比,从而补全图形;(3)列表得出所有等可能结果,找到符合条件的结果数,利用概率公式求解可得.此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.24.【答案】解:(1)作BD⊥x轴于D,垂足为D,∵B(n,-4),∴BD=4,在Rt△OBD中,,即,故OD=10,∴B(-10,-4),∴k=x B y B=40,∴反比例函数的解析式为;当x=4时,y=10,∴A(4,10)B(-10,-4)代入y=ax+b中,∴,解得,∴一次函数的解析式为y=x+6;(2)由y=x+6得C(-6,0),即OC=6,∵,,∴,即|x E-x C|=3,∴x E+6=±3,解得x E=-3或x E=-9,∴点E的坐标为(-3,0)或(-9,0).【解析】(1)作BD⊥x轴于D,可得BD=4,根据正切的定义求出OD,得出点B的坐标,运用待定系数法即可得出反比例函数的解析式;再根据反比例函数的解析式求出点A的坐标,由A、B两点的坐标即可求出一次函数的解析式;(2)由y=x+6得C(-6,0),即OC=6,再根据△BCE的面积是△BCO的面积的一半以及三角形的面积公式即可求出点E的坐标.本题考查了反比例函数与一次函数的交点问题:求反比例函数与一次函数的交点坐标,把两个函数关系式联立成方程组求解,若方程组有解则两者有交点,方程组无解,则两者无交点.25.【答案】(1)证明:∵BC为⊙O的直径,∴∠BDC=90°,即CD⊥AB,∵∠A=∠ABC,∴AC=BC,∴BD=AD;(2)证明:∵∠A=∠B,∠AED=∠BDC=90°,∴∠ADE=∠DCO,∵OC=OD,∴∠DCO=∠CDO,∴∠CDO=∠ADE,∵∠ADE+∠CDE=90°,∴∠CDO+∠CDE=90°,∴∠ODF=90°,∴DF是⊙O的切线;(3)在Rt△DOF中,∵sin∠F==,∴OF=10,CF=10-6=4,DF==8,∵∠DEA=∠ODF=90°,∴OD∥AC,∴△CEF∽△ODF,∴=,∴=,解得:DE=4.8.【解析】(1)根据圆周角定理得到∠BDC=90°,根据等腰三角形的判定定理即可得到结论;(2)根据等腰三角形的性质得到∠DCO=∠CDO,求得∠CDO=∠ADE,于是得到结论;(3)根据三角函数的定义得到OF=10,CF=10-6=4,DF==8,根据相似三角形的性质即可得到结论.本题考查了切线的判定和性质,相似三角形的判定和性质,解直角三角形,圆周角定理,熟练掌握切线的判定和性质定理是解题的关键.26.【答案】解:(1)设y1与x的关系式y1=kx+b,由表知,解得k=-20,b=1500,即y1=-20x+1500(0<x≤20,x为整数),(2)根据题意可得,解得11≤x≤15,∵x为整数,∴x可取的值为:11,12,13,14,15,∴该商家共有5种进货方案;(3)解法一:y2=-10(20-x)+1300=10x+1100,令总利润为W,则W=(1760-y1)x+(20-x)×[1700-(10x+1100)]=30x2-540x+12000,=30(x-9)2+9570,∵a=30>0,∴当x≥9时,W随x的增大而增大,∵11≤x≤15,∴当x=15时,W最大=10650;解法二:根据题意可得B产品的采购单价可表示为:y2=-10(20-x)+1300=10x+1100,则A、B两种产品的每件利润可分别表示为:1760-y1=20x+260,1700-y2=-10x+600,则当20x+260>-10x+600时,A产品的利润高于B产品的利润,即x>=11时,A产品越多,总利润越高,∵11≤x≤15,∴当x=15时,总利润最高,此时的总利润为(20×15+260)×15+(-10×15+600)×5=10650.答:采购A种产品15件时总利润最大,最大利润为10650元.【解析】(1)设y1与x的关系式y1=kx+b,由表列出k和b的二元一次方程,求出k和b的值,函数关系式即可求出;(2)首先根据题意求出x的取值范围,结合x为整数,即可判断出商家的几种进货方案;(3)令总利润为W,根据利润=售价-成本列出W与x的函数关系式W=30x2-540x+12000,把一般式写成顶点坐标式,求出二次函数的最值即可.本题主要考查二次函数的应用的知识点,解答本题的关键是明确销售单价与销售件数之间的函数关系式,会表达单件的利润及总利润,此题难度一般.27.【答案】(1)证明:∵四边形ABCD是正方形,P与C重合,∴OB=OP,∠BOC=∠BOG=90°,∵PF⊥BG,∠PFB=90°,∴∠GBO=90°-∠BGO,∠EPO=90°-∠BGO,∴∠GBO=∠EPO,在△BOG和△POE中,,∴△BOG≌△POE(ASA);(2)证明:如图2,过P作PM∥AC交BG于M,交BO于N,∴∠PNE=∠BOC=90°,∠BPN=∠OCB.∵∠OBC=∠OCB=45°,∴∠NBP=∠NPB.∴NB=NP.∵∠MBN=90°-∠BMN,∠NPE=90°-∠BMN,∴∠MBN=∠NPE,在△BMN和△PEN中,,∴△BMN≌△PEN(ASA),∴BM=PE.∵∠BPE=∠ACB,∠BPN=∠ACB,∴∠BPF=∠MPF.∵PF⊥BM,∴∠BFP=∠MFP=90°.在△BPF和△MPF中,,∴△BPF≌△MPF(ASA).∴BF=MF.即BF=BM.∴BF=PE.即;故答案为;(3)解:如图3,过P作PM∥AC交BG于点M,交BO于点N,∴∠BPN=∠ACB=α,∠PNE=∠BOC=90°.由(2)同理可得BF=BM,∠MBN=∠EPN,∴△BMN∽△PEN,∴.在Rt△BNP中,tanα=,∴=tanα.即=tanα.∴tanα.【解析】(1)由四边形ABCD是正方形,P与C重合,易证得OB=OP,∠BOC=∠BOG=90°,由同角的余角相等,证得∠GBO=∠EPO,则可利用ASA证得:△BOG≌△POE;(2)首先过P作PM∥AC交BG于M,交BO于N,易证得△BMN≌△PEN(ASA),△BPF≌△MPF(ASA),即可得BM=PE,BF=BM.则可求得的值;(3)首先过P作PM∥AC交BG于点M,交BO于点N,由(2)同理可得:BF=BM,∠MBN=∠EPN,继而可证得:△BMN∽△PEN,然后由相似三角形的对应边成比例,求得.此题考查了正方形的性质、菱形的性质、相似三角形的判定与性质、全等三角形的判定与性质以及三角函数的定义等知识.此题综合性很强,难度较大,注意准确作出辅助线是解此题的关键,注意数形结合思想的应用.28.【答案】解(1)∵△OAB是等腰直角三角形,OB=10,∴点A的坐标为(5,5),设抛物线的解析式为y=ax2+bx,把点A(5,5)和点G(7,0).代入上式,得,解得:,抛物线的解析式为;(2)∵∠OAB=90°,TC⊥OA,TD⊥AB,∴四边形ACTD为矩形,又∵△OAB为等腰直角三角形,∴△OCT、△TDB均为等腰直角三角形,∵OT=t,OB=10,∴CT=,TD=,∴,∵,∴当t=5 时,S 的最大值为;(3)存在.∵△OMK是等腰直角三角形,点M(2,0),MK⊥OA,∴点K的坐标为(1,1),设Rt△KMN旋转后对应三角形是Rt△K′M′N′由题意可知,K'与A重合∴点K'的坐标为(5,5),∵Q点在OA上,且是KA的中点,∴Q点的坐标为(3,3),又∵Rt△KMN≌Rt△K′M′N′,且MK∥M′K′∴点M'坐标为(4,6),把x=4 代入得,∴点M'(4,6)在抛物线上,∴点Q的坐标是(3,3),抛物线上与M、K对应的点的坐标分别是M′(4,6)、K′(5,5).【解析】(1)根据△OAB是等腰直角三角形,OB=10,得出点A的坐标,再设抛物线的解析式为y=ax2+bx,把点A和G代入求出a,b的值,即可求出抛物线的解析式;(2))根据∠OAB=90°,TC⊥OA,TD⊥AB,得出四边形ACTD为矩形,再根据△OAB 为等腰直角三角形,得出△OCT、△TDB均为等腰直角三角形,再根据OT=t,OB=10,得出CT和TD的值,即可求出S的表达式和S的最大值;(3)根据△OMK是等腰直角三角形,点M(2,0),MK⊥OA,得出点K的坐标,设出Rt△KMN旋转后对应三角形是Rt△K'M'N',由题意可知,K'与A重合,得出K'和Q点的坐标,再根据Rt△KMN≌Rt△K'M'N',MK∥M'K',得出点M'坐标,即可求出解析式,从而得出它们的对应点的坐标.此题考查了二次函数与一次函数的综合知识,解题的关键是要注意数形结合思想的应用;此题属于中考中的压轴题,难度较大,知识点考查的较多而且联系密切,需要学生认真审题.第21页,共21页。
2020年四川省成都市中考数学二诊试卷
中考数学二诊试卷题号一二三总分得分一、选择题(本大题共10小题,共30.0分)1.代数式3x2可以表示为()A. x2+x2+x2B. x2•x2•x2C. x+x+xD. x•x•x2.据统计,2018年我国快递业务量达到了507亿件,比上年增长26.6%.预计2019年我国快递业务量将超过600亿件.把数据“507亿”用科学记数法可表示为()A. 507×108B. 50.7×109C. 5.07×109D. 5.07×10103.如图,一个几何体由4个相同的正方体拼成,下列判断正确的是()A. 三个视图面积一样大B. 主视图面积最大C. 左视图面积最大D. 俯视图面积最大4.在平面直角坐标系中,点M(-2,3)在()A. 第一象限B. 第二象限C. 第三象限D. 第四象限5.如图,直线AB∥EF,点C是直线AB上一点,点D是直线AB外一点,若∠BCD=95°,∠CDE=25°,则∠DEF的度数是()A. 120°B. 110°C. 100°D. 70°6.在下列函数的图象中,经过坐标原点的是()A. y=3B. y=3-xC. y=3xD. y=x2-37.下列两个三角形中,一定全等的是()A. 两个等腰三角形B. 两个等腰直角三角形C. 两个等边三角形D. 两个周长相等的等边三角形8.已知七名选手参加演讲比赛,所得分数各不同.其中一名选手想知道自己能否进入前四名,他除了知道他本人的分数外,还要知道七名选手分数的()A. 中位数B. 众数C. 平均数D. 方差9.平行四边形一定具有的性质是()A. 邻边相等B. 邻角相等C. 对角相等D. 对角线相等10.如图,在三角形ABC中,分别以点A、B为圆心,大于AB长为半径画弧,两弧相交于点M、N,作直线MN交AB于点O,连接CO,则下列判断不正确的是()A. AO=BOB. MN⊥ABC. AN=BND. AB=2CO二、填空题(本大题共9小题,共36.0分)11.分式方程=的解为______.12.已知关于x的一元二次方程x2+2x-a=0有两个相等的实数根,则a的值是______.13.已知扇形的半径为6,圆心角为150°,则此扇形的面积是______.(结果保留π)14.如图,把边长为6的正三角形剪去三个三角形得到一个正六边形,这个正六边形的面积为______.15.一元二次方程x2-3x-4=0的两根的平方和等于______.16.如图,已知点A、B、C、D、E、F是边长为1的正六边形的顶点,连接任意两点均可得到一条线段,在连接两点所得的所有线段中任取一条线段,取得长度为的线段的概率为______.17.设a1、a2、a3…是一列正整数,其中a1表示第一个数,a2表示第二个数,依此类推,a n表示第n个数(n是正整数),已知a1=1,4a n=(a n+1-1)2-(a n-1)2,则a2019等于______.18.如图,在直角坐标系xOy中,以点O为圆心,半径为2的圆与反比例函数y=(k>0)的图象交于点A、B两点,若的长为π,则k的值为______.19.如图,在△ABC中,∠C=90°,AC=8,BC=6,D是AB的中点,点E在边AC上,将△ADE沿DE翻折,使得点A落在点A'处,当A'E⊥AC时,A'B=______.三、解答题(本大题共9小题,共72.0分)20.(1)计算:0+(-7+5)÷(-2)-2+2cos45°(2)先化简,再求值:,其中x=+121.解不等式组:,并求出它的最小整数解22.体育老师随机抽取了部分同学参加体能测试,并按测试成绩分成A、B、C、D四个等级,已知有60%的同学获得A等级.根据测试成绩,体育绘制了如下条形统计图(不完整)(1)请将条形统计图补充完整,并在图中标注相应数据;(2)体育老师从C、D两个等级的同学中随机选择2名同学进行体训,求事件“2名同学中至少有一名同学是C等级”发生的概率.(树状图或列表法)23.如图,在某一路段,规定汽车限速行驶,交通警察在此限速路段的道路上设置了监测区,其中点C、D为监测点,已知点C、D、B在同一直线上,且AC⊥BC,CD=400米,tan∠ADC=2,∠ABC=35°(1)求道路AB段的长(结果精确到1米)(2)如果道路AB的限速为60千米/时,一辆汽车通过AB段的时间为90秒,请你判断该车是否是超速,并说明理由;参考数据:sin35°≈0.5736,cos35°≈0.8192,tan35°≈0.700224.如图,直线y=x+2与反比例函数y=(k>0,x>0)的图象交于点A(2,m),与y轴交于点B.(1)求m、k的值;(2)连接OA,将△AOB沿射线BA方向平移,平移后A、O、B的对应点分别为A'、O'、B',当点O'恰好落在反比例函数y=(k>0)的图象上时,求点O'的坐标;(3)设点P的坐标为(0,n)且0<n<4,过点P作平行于x轴的直线与直线y=x+2和反比例函数y=(k>0)的图象分别交于点C,D,当C、D间距离小于或等于4时,直接写出n的取值范围.25.如图,在△ABC中,已知AB=AC=5,sin B=,点P为BC边上一动点,过点P作射线PE,交射线BA于点D,∠BPD=∠BAC,以点P为圆心,PC长为半径作⊙P交射线PD于点E,连接CE.(1)当⊙P与AB相切时,⊙P的半径为______(2)当点D在BA的延长线上,且BD=n(5<n<)时,求线段CE的长(用含n的代数式表示);(3)如果⊙O经过B、C、E三点且OP=,请直接写出线段AD的长.26.某种商品的进价为40元/件,以获利不低于25%的价格销售时,商品的销售单价y(元/件)与销售数量x(件)(x是正整数)之间的关系如下表:x(件)…5101520…y(元/件)…75706560…(1)由题意知商品的最低销售单价是______元,当销售单价不低于最低销售单价时,y是x的一次函数.求出y与x的函数关系式及x的取值范围;(2)在(1)的条件下,当销售单价为多少元时,所获销售利润最大,最大利润是多少元?27.如图1,四边形ABCD的对角线AC、BD相交于点O,OB=OD,OC=OA+AB,AD=m,BC=n,∠1+∠2=∠3(1)请写出∠BAD与∠3的数量关系;(2)求m:n的值;(3)如图2,将△ACD沿CD翻折,得到△A'CD,连接BA',与CD相交于点P,若CD=,请直接写出线段PC的长.28.如图1,图形ABCD是由两个二次函数y1=kx2+m(k<0)与y2=ax2+b(a>0)的部分图象围成的封闭图形.已知A(1,0)、B(0,1)、D(0,-3).(1)直接写出这两个二次函数的表达式;(2)判断图形ABCD是否存在内接正方形(正方形的四个顶点在图形ABCD上),并说明理由;(3)如图2,连接BC,CD,AD,在坐标平面内,求使得△BDC与△ADE相似(其中点C与点E是对应顶点)的点E的坐标答案和解析1.【答案】A【解析】解:3x2可以表示为x2+x2+x2,故选项A符合题意;x2•x2•x2=x6,故选项B不合题意;x+x+x=3x,故选项C不合题意;x•x•x=x3,故选项D不合题意.故选:A.根据幂的意义解答即可.本题主要考查了幂的乘方的意义,熟练掌握幂的运算法则是解答本题的关键.2.【答案】D【解析】解:把数据“507亿”用科学记数法可表示为507×108=5.07×1010.故选:D.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.此题主要考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.【答案】B【解析】解:该几何体的主视图是:主视图的面积是4;该几何体的左视图是:左视图的面积是2;该几何体的俯视图是:俯视图的面积是3;故选:B.根据从正面看得到的图形是主视图,从左边看得到的图形是左视图,从上边看得到的图形是俯视图,可得答案.本题考查了简单组合体的三视图,从正面看得到的图形是主视图,从左边看得到的图形是左视图,从上边看得到的图形是俯视图.4.【答案】B【解析】解:∵-2<0,3>0,∴(-2,3)在第二象限,故选:B.横坐标小于0,纵坐标大于0,则这点在第二象限.本题考查了点的坐标,四个象限内坐标的符号:第一象限:+,+;第二象限:-,+;第三象限:-,-;第四象限:+,-;是基础知识要熟练掌握.5.【答案】A【解析】解:延长FE交DC于点N,∵直线AB∥EF,∴∠BCD=∠DNF=95°,∵∠CDE=25°,∴∠DEF=95°+25°=120°.故选:A.直接延长FE交DC于点N,利用平行线的性质得出∠BCD=∠DNF=95°,再利用三角形外角的性质得出答案.此题主要考查了平行线的性质以及三角形的外角,正确掌握平行线的性质是解题关键.6.【答案】C【解析】解:A、直线y=3平行x轴,不经过原点,故本选项错误;B、当x=0时,y=3≠0,即不经过原点,故本选项错误;C、当x=0时,y=0,即经过原点,故本选项正确;D、当x=0时,y=-3≠0,即不经过原点,故本选项错误;故选:C.把(0,0)分别代入函数解析式进行检验即可.本题考查的是一次函数图象上点的坐标特点,二次函数图象上点的坐标特征,熟知函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.7.【答案】D【解析】解:∵两个等腰三角形不一定全等,∴选项A不正确;∵两个等腰直角三角形一定相似,不一定全等,∴选项B不正确;∵两个等边三角形一定相似,不一定全等,∴选项C不正确;∵两个周长相等的等边三角形的边长相等,∴两个周长相等的等边三角形一定全等,∴选项D正确;故选:D.由全等三角形的判定方法得出A、B、C不正确,D正确,即可得出结论.本题考查了全等三角形的判定方法、等边三角形的性质、等腰直角三角形的性质、等腰三角形的性质;熟记全等三角形的判定方法是解决问题的关键.8.【答案】A【解析】解:由于总共有7个人,且他们的分数互不相同,第4的成绩是中位数,要判断是否进入前4名,故应知道中位数的多少.故选:A.7人成绩的中位数是第4名的成绩.参赛选手要想知道自己是否能进入前4名,只需要了解自己的成绩以及全部成绩的中位数,比较即可.此题主要考查统计的有关知识,主要包括平均数、中位数、众数、方差的意义.9.【答案】C【解析】解:A、平行四边形的邻边不相等,故此选项错误;B、平行四边形邻角互补,故此选项错误;C、平行四边形的对角相等,故此选项正确;D、平行四边形的对角线不相等,故此选项错误;故选:C.直接利用平行四边形的性质分别分析得出答案.此题主要考查了平行四边形的性质,正确把握相关性质是解题关键.10.【答案】D【解析】解:由作法得MN垂直平分AB,∴OA=OB,MN⊥AB,AN=BN,当∠ACB=90°时,OC=AB.故选:D.利用基本作图得到MN垂直平分AB,根据线段垂直平分线的性质得到OA=OB,MN⊥AB,AN=BN,可对A、B、C进行判断;由于当∠ACB=90°时,OC=AB,则可对D进行判断.本题考查了作图-基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).也考查了线段垂直平分线的性质.11.【答案】x=3【解析】解:去分母得:3(x-1)=2x,去括号得:3x-3=2x,解得:x=3,经检验x=3是分式方程的解.分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.12.【答案】-1【解析】【分析】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2-4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根. 根据判别式的意义得到△=22-4×(-a)=0,然后解一次方程即可.【解答】解:根据题意得△=22-4×(-a)=0,解得a=-1.故答案为-1.13.【答案】15π【解析】解:扇形的面积==15π,故答案为:15π.把已知数据代入扇形面积公式计算,得到答案.本题考查的是扇形面积计算,掌握扇形面积公式:S=是解题的关键.14.【答案】6【解析】解:∵六边形DFHKGE是正六边形,∴∠EDF=∠DFH=∠FHK=∠KGE=∠GED=120°,DE=DF,∴∠ADE=∠AED=60°,∴△ADE是等边三角形,∴AD=DE=AE,同理:BH=BF=FH,∴AD=DF=BF=2,∴S正六边形DFHKGE=6S△ADE=6××22=6,故答案为:6.先求出△ADE是等边三角形,再证明AD=DF=BF=2,即可求出S正六边形DFHKGE=6S△ADE.本题主要考查的是正多边形和圆,熟知等边三角形的性质及正六边形的性质是解题的关键.15.【答案】17【解析】解:一元二次方程x2-3x+2=0的两根为x1,x2,∵a=1,b=-3,c=-4,x1+x2=-=3,x1x2=-4则x12+x22=(x1+x2)2-2x1x2=32-2×(-4)=17.故答案为:17找出一元二次方程中的a,b及c的值,利用根与系数的关系求出两根之和与两根之积,然后把所求的两根的平方和配方变形为两根之和与两根之积的形式,把求出的两根之和与两根之积的值代入即可求出值.此题考查了根与系数的关系,熟练运用两根之和与两根之积的式子是解本题的关键.16.【答案】【解析】解:连接AF,EF,AE,过点F作FN⊥AE于点N,∵点A,B,C,D,E,F是边长为1的正六边形的顶点,∴AF=EF=1,∠AFE=120°,∴∠FAE=30°,∴AN=,∴AE=,同理可得:AC=,故从任意一点,连接两点所得的所有线段一共有15种,任取一条线段,取到长度为的线段有6种情况,则在连接两点所得的所有线段中任取一条线段,取到长度为的线段的概率为:.故答案为:.利用正六边形的性质以及勾股定理得出AE的长,进而利用概率公式求出即可.此题主要考查了正多边形和圆以及几何概率,正确利用正六边形的性质得出AE的长是解题关键.17.【答案】4037【解析】解:∵4a n=(a n+1-1)2-(a n-1)2,∴(a n+1-1)2=(a n-1)2+4a n=(a n+1)2,∵a1,a2,a3……是一列正整数,∴a n+1-1=a n+1,∴a n+1=a n+2,∵a1=1,∴a2=3,a3=5,a4=7,a5=9,…,∴a n=2n-1,∴a2019=4037.故答案为4037.由4a n=(a n+1-1)2-(a n-1)2,可得(a n+1-1)2=(a n-1)2+4a n=(a n+1)2,根据a1,a2,a3……是一列正整数,得出a n+1=a n+2,根据a1=1,分别求出a2=3,a3=5,a4=7,a5=9,进而发现规律a n=2n-1,即可求出a2018=4035本题是一道找规律的题目,要求学生通过计算,分析、归纳发现其中的规律,并应用发现的规律解决问题.解决本题的难点在于得出式子a n+1=a n+2.18.【答案】【解析】解:连接OA、OB,∵的长为π,OA=OB=2,∴=π,解得n=30°,即∠AOB=30°,过点A作AC⊥x轴,过点B作BD⊥y轴,∵点A、B均在反比例函数y=的图象上,OB=OA,∴点A和点B关于y=x对称,∴BD=AC,OD=OC,∴△AOC≌△BOD,∴∠AOC=═30°,设A(a,b),则OC=a=OA•cos30°=2×=,AC=b=OA×sin30°=2×=1,∴k=ab=×1=.故答案为.连接OA、OB,由弧长公式求出∠AOB的度数,过点A作AC⊥x轴,过点B作BD⊥y轴,由OB=OA可知点A和点B关于y=x对称,从而得出BD=AC,OD=OC,故△AOC≌△BOD,由此可求出∠AOC的度数,再设A(a,b),根据锐角三角函数的定义即可求出a、b的值.本题考查的是反比例函数综合题反比例函数图象上点的坐标特征,根据题意作出辅助线构造出直角三角形,根据直角三角函数求得A的坐标是解题的关键.19.【答案】或7【解析】解:分两种情况:①如图1,过D作DG⊥BC与G,交A′E与F,过B作BH⊥A′E与H,∵D为AB的中点,∴BD=AB=AD,∵∠C=90,AC=8,BC=6,∴AB=10,∴BD=AD=5,sin∠ABC=,∴,∴DG=4,由翻折得:∠DA′E=∠A,A′D=AD=5,∴sin∠DA′E=sin∠A=,∴,∴DF=3,∴FG=4-3=1,∵A′E⊥AC,BC⊥AC,∴A′E∥BC,∴∠HFG+∠DGB=180°,∵∠DGB=90°,∴∠HFG=90°,∵∠EHB=90°,∴四边形HFGB是矩形,∴BH=FG=1,同理得:A′E=AE=8-1=7,∴A′H=A′E-EH=7-6=1,在Rt△AHB中,由勾股定理得:A′B==;②如图2,过D作MN∥AC,交BC与于N,过A′作A′F∥AC,交BC的延长线于F,延长A′E交直线DN于M,∵A′E⊥AC,∴A′M⊥MN,A′E⊥A′F,∴∠M=∠MA′F=90°,∵∠ACB=90°,∴∠F=∠ACB=90°,∴四边形MA′FN是矩形,∴MN=A′F,FN=A′M,由翻折得:A′D=AD=5,Rt△A′MD中,∴DM=3,A′M=4,∴FN=A′M=4,Rt△BDN中,∵BD=5,∴DN=4,BN=3,∴A′F=MN=DM+DN=3+4=7,BF=BN+FN=3+4=7,Rt△ABF中,由勾股定理得:A′B==7;综上所述,A′B的长为或7.故答案为:或7.分两种情况:①如图1,作辅助线,构建矩形,先由勾股定理求斜边AB=10,由中点的定义求出AD 和BD的长,证明四边形HFGB是矩形,根据同角的三角函数列式可以求DG和DF的长,并由翻折的性质得:∠DA′E=∠A,A′D=AD=5,由矩形性质和勾股定理可以得出结论:A′B=;②如图2,作辅助线,构建矩形A′MNF,同理可以求出A′B的长.本题考查了翻折变换的性质、勾股定理、矩形的性质、三角函数及解直角三角形的有关知识,作辅助线构建矩形是本题的关键,明确翻折前后的对应角和边相等,在证明中利用同角的三角函数列比例式比证明相似列比例式计算简单.20.【答案】解:(1)原式=1+(-2)÷+2×=1+(-8)+=-7+;(2)原式==,当x=+1时,原式==.【解析】(1)先计算零指数幂、负指数幂和三角函数,然后计算加减法;(2)把分式化简后,再把分式中x值代入求出分式的值.本题考查了分式的混合运算,熟练分解因式是解题的关键.21.【答案】解:解不等式①得:x≥1,解不等式②得:x>2,∴不等式组的解集是x>2,∴最小整数解是3.【解析】先求出每个不等式的解集,再找出不等式组的解集,最后求出最小整数解即可.本题考查了解一元一次不等式(组),不等式组的整数解的应用,主要考查学生能否根据不等式的解集找出不等式组的解集.22.【答案】解:(1)被调查的学生人数为15÷60%=25(人),则C等级人数为25-15-6-2=2(人),补全图形如下:(2)画树状图如下:由树状图知,共有12种等可能结果,其中2名同学中至少有一名同学是C等级的有10种结果,∴2名同学中至少有一名同学是C等级的概率为=.【解析】(1)由A等级人数及其所占百分比求出总人数,总人数减去A、B、D人数求出C等级人数,从而补全图形;(2)画树状图列出所有等可能结果,从中找到符合条件的结果数,再根据概率公式求解可得.本题考查了列表法与树状图法:通过列表法或树状图法展示所有等可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式求出事件A或B的概率.23.【答案】解:(1)在Rt△ACD中,AC=CD•tan∠ADC=400×2=800,在Rt△ABC中,AB==≈1395;(2)车速为:≈15.5m/s=55.8km/h<60km/h,∴该汽车没有超速.【解析】(1)根据锐角三角函数的定义即可求出答案.(2)求出汽车的实际车速即可判断.本题考查解直角三角形,解题的关键是熟练运用锐角三角函数的定义,本题属于中等题型.24.【答案】解:(1)∵直线y=x+2过点A(2,m),∴m=2+2=4,∴点A的坐标为(2,4).将A(2,4)代入y=,得:4=,∴k=8.(2)∵△AOB沿射线BA方向平移,直线AB的解析式为y=x+2,∴直线OO′的解析式为y=x.联立直线OO′及反比例函数解析式成方程组,得:,解得:,(舍去),∴点O′的坐标为(2,2).(3)∵点P的坐标为(0,n),∴点C的坐标为(n-2,n),点D的坐标为(,n).∵CD=-(n-2)≤4,n>0,∴n2+2n-8≥0,解得:n≥2或n≤-4(舍去),又∵0<n<4,∴2≤n<4.【解析】(1)利用一次函数图象上点的坐标特征可求出m的值,进而可得出点A的坐标,再利用待定系数法即可求出k值;(2)由直线AB的解析式可得出直线OO′的解析式为y=x,联立直线OO′及反比例函数解析式成方程组,通过解方程组即可得出点O'的坐标(取正值);(3)由点P的坐标,可得出点C,D的坐标,结合CD≤4即可得出关于n的一元二次不等式,再结合0<n<4即可求出n的取值范围.本题考查了一次函数图象上点的坐标特征、待定系数法反比例函数解析式、反比例函数图象上点的坐标特征、解一元二次不等式以及反比例函数与一次函数的交点问题,解题的关键是:(1)利用一次函数图象上点的坐标特征及待定系数法,求出m,k的值;(2)联立直线与反比例函数解析式成方程组,通过解方程组求出点O'的坐标;(3)由CD 的范围,找出关于n的一元二次不等式.25.【答案】3【解析】解:(1)如图1,设⊙P与AB相切时,切点为点H,连接PH,则PH⊥AB,设⊙P的半径为r,sin B=,则cos B=BC=2AB cosB=10×=8,则PB=8-r,sin B===,解得:r=3,故答案为3;(2)∵AB=AC,∠BPD=∠BAC,∴△PBD、△ABC均为底角为α的等腰三角形,即sinα=sin B=,过点P作PN⊥EC,则PC=PE,∠EPN=∠CPN=α,∵BD=n,则BP==,(BD=BP),PC=BC-BP=8-,EC=2CN=2×PC sinα=2×(8-)×=-;(3)作EC和BC的中垂线PN、AM交于点O,①当点M在BP上时,OP=,在Rt△OPM中,PM=OP cos∠MPO=cosα=1,则BP=4+1=5,而BD=BP,则BD=8,AD=BD-AB=8-5=3;②当点M在CP上时,同理可得:BP=4-1=3,则BD=,则AD=;故AD=3或.(1)BC=2AB cosB=10×=8,则PB=8-r,sin B===,即可求解;(2)BP==,(BD=BP),PC=BC-BP=8-,EC=2CN,即可求解;(3)分点M在BP上、点M在CP上两种情况分别求解.本题考查的是圆的综合运用,涉及到解直角三角形、等腰三角形的性质、中垂线性质等,其中(3),要注意分类求解,避免遗漏.26.【答案】50【解析】解:(1)40(1+25%)=50(元),故答案为:50;设y=kx+b,根据题意得:,解得:k=-1,b=80,∴y=-x+80,根据题意得:,且x为正整数,∴0<x≤30,x为正整数,∴y=-x+80(0≤x≤30,且x为正整数)(2)设所获利润为P元,根据题意得:P=(y-40)•x=(-x+80-40)x=-(x-20)2+400,即P是x的二次函数,∵a=-1<0,∴P有最大值,∴当x=20时,P最大值=400,此时y=60,∴当销售单价为60元时,所获利润最大,最大利润为400元.(1)由40(1+25%)即可得出最低销售单价;根据题意由待定系数法求出y与x的函数关系式和x的取值范围;(2)设所获利润为P元,由题意得出P是x的二次函数,即可得出结果.本题考查了二次函数的应用、用待定系数法求一次函数的解析式、二次函数的最值问题;由题意求出一次函数和二次函数的解析式是解决问题的关键.27.【答案】解:(1)如图1中,在△ABD中,∵∠BAD+∠1+∠2=180°,又∵∠1+∠2=∠3,∴∠BAD+∠3=180°,故答案为∠BAD+∠3=180°.(2)如图1中,作DE∥AB交AC于E.∴∠DEA=∠BAE,∠1=∠ODE,∵OB=OD,∴△OAB≌△OED(AAS),∴AB=DE,OA=OE,设AB=DE=CE=x,OA=OE=y,∵∠EDA+∠DAB=180°,∠BAD+∠3=180°,∴∠EDA=∠3,∵∠DEA=∠CAB,∴△EAD∽△ABC,∴===,∴=,∴4y2+2xy-x2=0,∴()2+-1=0,∴=(负根已经舍弃),∴=.(3)如图2中,作DE∥AB交AC于E.由(1)可知,DE=CE,∠DCA=∠DCA′,∴∠EDC=∠ECD=∠DCA′,∴DE∥CA′∥AB,∴∠ABC+∠A′CB=180°,由(2)知,∠EDA=∠ACB,∠DEA=∠BAE,∴△EAD∽△ABC,∴∠DAE=∠ABC=∠DA′C,∴∠DA′C+∠A′CB=180°,∴A′D∥BC,∴△PA′D∽△PBC,∴==,∴=,即=,∵CD=,∴PC=1.【解析】(1)利用三角形的内角和定理以及等量代换即可解决问题.(2)证明△OAB≌△OED(AAS),推出AB=DE,OA=OE,设AB=DE=CE=x,OA=OE=y,证明△EAD∽△ABC,可得===,推出=,可得4y2+2xy-x2=0,求出的值即可解决问题.(3)如图2中,作DE∥AB交AC于E.证明A′D∥BC,推出△PA′D∽△PBC,推出==即可解决问题.本题属于四边形综合题,考查了相似三角形的判定和性质,三角形内角和定理,平行线的判定和性质等知识,解题的关键是正确寻找相似三角形解决问题,学会利用参数构建方程解决问题,属于中考压轴题.28.【答案】解:(1)∵点A(1,0),B(0,1)在二次函数y1=kx2+m(k<0)的图象上,∴,∴,∴二次函数解析式为y1=-x2+1,∵点A(1,0),D(0,-3)在二次函数y2=ax2+b(a>0)的图象上,∴,∴,∴二次函数y2=3x2-3;(2)设M(m,-m2+1)为第一象限内的图形ABCD上一点,M'(m,3m2-3)为第四象限的图形上一点,∴MM'=(1-m2)-(3m2-3)=4-4m2,由抛物线的对称性知,若有内接正方形,∴2m=4-4m2,∴m=或m=(舍),∵0<<1,∴MM'=∴存在内接正方形,此时其边长为;(3)在Rt△AOD中,OA=1,OD=3,∴AD==,同理:CD=,在Rt△BOC中,OB=OC=1,∴BC==,①如图1,当△DBC∽△DAE时,∵∠CDB=∠ADO,∴在y轴上存在E,由,∴,∴DE=,∵D(0,-3),∴E(0,-),由对称性知,在直线DA右侧还存在一点E'使得△DBC∽△DAE',连接EE'交DA于F点,作E'M⊥OD于M,连接E'D,∵E,E'关于DA对称,∴DF垂直平分线EE',∴△DEF∽△DAO,∴,∴,∴DF=,EF=,∵S△DEE'=DE•E'M=EF×DF=,∴E'M=,∵DE'=DE=,在Rt△DE'M中,DM==2,∴OM=1,∴E'(,-1),②如图2,当△DBC∽△ADE时,有∠BDC=∠DAE,,∴,∴AE=,当E在直线AD左侧时,设AE交y轴于P,作EQ⊥AC于Q,∵∠BDC=∠DAE=∠ODA,∴PD=PA,设PD=n,∴PO=3-n,PA=n,在Rt△AOP中,PA2=OA2+OP2,∴n2=(3-n)2+1,∴n=,∴PA=,PO=,∵AE=,∴PE=,在AEQ中,OP∥EQ,∴,∴OQ=,∵,∴QE=2,∴E(-,-2),当E'在直线DA右侧时,根据勾股定理得,AE==,∴AE'=∵∠DAE'=∠BDC,∠BDC=∠BDA,∴∠BDA=∠DAE',∴AE'∥OD,∴E'(1,-),综上,使得△BDC与△ADE相似(其中点C与E是对应顶点)的点E的坐标有4个,即:(0,-)或(,-1)或(1,-)或(-,-2).【解析】(1)利用待定系数法即可得出结论;(2)先确定出MM'=(1-m2)-(3m2-3)=4-4m2,进而建立方程2m=4-4m2,即可得出结论;(3)先利用勾股定理求出AD=,同理:CD=,BC=,再分两种情况:①如图1,当△DBC∽△DAE时,得出,进而求出DE=,即可得出E(0,-),再判断出△DEF∽△DAO,得出,求出DF=,EF=,再用面积法求出E'M=,即可得出结论;②如图2,当△DBC∽△ADE时,得出,求出AE=,当E在直线AD左侧时,先利用勾股定理求出PA=,PO=,进而得出PE=,再判断出即可得出点E坐标,当E'在直线DA右侧时,即可得出结论.此题是二次函数综合题,主要考查了待定系数法,勾股定理,相似三角形的判定和性质,对称性,正确作出辅助线和用分类讨论的思想是解本题的关键.。
四川省成都市四县市2020年中考数学二诊试卷
2020年四川省成都市四县市中考数学二诊试卷一、选择题1.在检测排球质量时,将质量超过标准的克数记为正数,不足的克数记为负数,下面是检测过的四个排球,在其上方标注了检测结果,其中质量最接近标准的一个是()A.B.C.D.2.如图,是由6个相同的小正方体组成的几何体,那么该几何体的俯视图是()A.B.C.D.3.110年前,中国首条自行设计和建造的铁路,京张铁路落成;110年后,在同样的地方,世界首条智能高铁京张高铁正式运行,中国速度,一直在路上,2019年底,中国高铁里程将突破3.5万公里,全世界超过的高铁轨道铺设在中国.为你骄傲,中国高铁!请将3.5万公里中的数“3.5万”用科学记数法表示为()A.3.5×101B.0.35×105C.35×103D.3.5×1044.如图,已知直线m∥n,将一块含45°角的直角三角板ABC,按如图所示方式放置,其中斜边AC与直线m交于点D.若∠2=25°,则∠1的度数为()A.25°B.45°C.70°D.75°5.下列运算错误的是()A.b2•b3=b5B.(a﹣b)(b+a)=a2﹣b2C.a5+b5=a10D.(﹣a2b)2=b2a46.在平面直角坐标系中,将函数y=﹣2x的图象沿y轴负方向平移4个单位长度,则平移后的图象与x轴的交点坐标为()A.(2,0)B.(﹣2,0)C.(﹣4,0)D.(0,﹣4)7.疫情期间,为调查某校学生体温的情况,张老师随机调查了50名学生,结果如表:体温(单位:℃)36.236.336.536.736.8人数8107x12则这50名学生体温的众数和中位数分别是()℃A.36.7,36.6B.36.8,36.7C.36.8,36.5D.36.7,36.5 8.若关于x的一元二次方程ax2﹣2x+1=0有实数根,则实数a的取值范围是()A.a<1B.a≤1C.a≥1D.a≤1且a≠0 9.如图,四边形ABCD内接于半径为3的⊙O,CD是直径,若∠ABC=110°,则扇形AOD 的面积为()A.πB.πC.πD.2π10.二次函数y=﹣x2+ax+b的图象如图所示,对称轴为直线x=2,下列结论不正确的是()A.a=4B.当x>2.5时,y随x的增大而减小C.当x=﹣1时,b>5D.当b=8时,函数最大值为10二、填空题(每小题4分,共16分)11.已知实数a,b互为相反数,且|a+2b|=1,b<0,则b=.12.已知正多边形的一个外角为72°,则该正多边形的内角和为.13.一次函数y1=kx+b的图象与反比例函数y2=﹣的图象相交于A(﹣1,3),B(m,﹣3)两点,请先画出图象,然后根据图象写出当y1<y2时,x的取值范围为.14.如图:已知锐角∠AOC,依次按照以下顺序操作画图:(1)在射线OA上取一点B,以点O为圆心,OB长为半径作,交射线OC于点D,连接BD;(2)分别以点B,D为圆心,BD长为半径作弧,交于点M,N;(3)连接ON,MN.根据以上作图过程及所作图形可知下列结论:①OC平分∠AON;②MN∥BD;③MN=3BD;④若∠AOC=30°,则MN=ON.其中正确结论的序号是.三、解答题(本大题共6小题,共54分,答题应写出文字说明、证明过程或演算步骤)15.(1)计算:(π﹣2020)0﹣+4sin60°﹣|3﹣|;(2)解方程:(x+2)(x﹣3)=(x+2).16.先化简,再求值:÷(x+2﹣),其中x=.17.成都市为了扎实推进精准扶贫工作,出台了民生兜底、医保脱贫、教育救助、产业扶持、养老托管和易地搬迁这六种帮扶措施,每户贫困户都享受了2到5种帮扶措施,现把享受了2种、3种、4种和5种帮扶措施的贫困户分别称为A,B,C,D类贫困户,为检查帮扶措施是否落实,随机抽取了若干贫困户进行调查,现将收集的数据绘制成如图两幅不完整的统计图.请根据图中信息,回答下列问题:(1)本次抽样调查了多少户贫困户?(2)成都市共有9100户贫困户,请估计至少得到4种帮扶措施的大约有多少户?(3)2020年是精准扶贫攻关年,为更好地做好工作,现准备从D类贫困户中的甲、乙、丙、丁四户中随机选取两户进行试点帮扶,请用树状图或列表法求出恰好选中乙和丙的概率.18.小颖“综合与实践”小组学习了三角函数后,开展了测量本校旗杆高度的实践活动.他们制订了测量方案,并利用课余时间完成了实地测量.他们在该旗杆底部所在的平地上,选取两个不同测点,分别测量了该旗杆顶端的仰角以及这两个测点之间的距离.为了减小测量误差,小组在测量仰角的度数以及两个测点之间的距离时,都分别测量了两次并取它们的平均值作为测量结果,如表是不完整测量数据.课题测量旗杆的高度成员组长:小颖,组员:小明,小刚,小英测量工具测量角度的仪器,皮尺等测量示意图说明:线段GH表示学校旗杆,测量角度的仪器的高度AC=BD=1.62m,测点A,B与H在同一水平直线上,A,B之间的距离可以直接测得,且点G,H,A,B,C,D都在同一竖直平面内,点C,D,E在同一条直线上,点E在GH上.测量数据测量项目第一次第二次平均值∠GCE的度数30.6°31.4°31°∠GDE的度数36.8°37.2°37°A,B之间的距离10.1m10.5m m ……(1)任务一:完成表格中两次测点A,B之间的距离的平均值.(2)任务二:根据以上测量结果,请你帮助该“综合与实践”小组求出学校旗杆GH的高度.(精确到0.1m)(参考数据:sin31°≈0.51,cos31°≈0.86,tan31°≈0.60,sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)19.如图所示,一次函数y=﹣x﹣6与x轴,y轴分别交于点A,B将直线AB沿y轴正方向平移与反比例函数y=(x>0)的图象分别交于点C,D,连接BC交x轴于点E,连接AC,已知BE=3CE,且S△ABE=27.(1)求直线AC和反比例函数的解析式;(2)连接AD,求△ACD的面积.20.如图,在⊙O的内接△ABC中,∠CAB=90°,AB=2AC,过点A作BC的垂线m交⊙O于另一点D,垂足为H,点E为上异于A,B的一个动点,射线BE交直线m于点F,连接AE,连接DE交BC于点G.(1)求证:△FED∽△AEB;(2)若=,AC=2,连接CE,求AE的长;(3)在点E运动过程中,若BG=CG,求tan∠CBF的值.一、填空题(每小题4分,共20分)21.已知正实数m,n满足m2=5,n3=11,则m n.(填“>”“<”或“=”)22.如图所示,已知线段AC=1,经过点A作AB⊥AC,使AB=AC,连接BC,在BC上截取BE=AB,在CA上截取CD=CE,则的值是.23.若关于x的分式方程﹣=1的解为正数,且关于y的一元一次不等式组的解集为无解,则符合条件的所有整数a的和为.24.如图,在平面直角坐标系xOy中,直线y=﹣x﹣2与x轴,y轴分别交于点D,C.点G,H是线段CD上的两个动点,且∠GOH=45°,过点G作GA⊥x轴于A,过点H作HB⊥y轴于B,延长AG,BH交于点E,则过点E的反比例函数y=的解析式为.25.如图,在矩形ABCD中,AB=9,AD=6,点O为对角线AC的中点,点E在DC的延长线上且CE=1.5,连接OE,过点O作OF⊥OE交CB延长线于点F,连接FE并延长交AC的延长线于点G,则=.二、解答题(本大题共3小题,共30分.其中26题8分,27题10分,28题12分)26.大邑县某汽车出租公司有若干辆同一型号的货车对外出租,每辆货车的日租金实行淡季、旺季两种价格标准,旺季每辆货车的日租金比淡季上涨25%.据统计,淡季该公司平均每天有10辆货车未出租,日租金总收入为3200元;旺季所有的货车每天能全部租出,日租金总收入为6000元.(1)求该出租公司这批对外出租的货车共有多少辆?(2)经市场调查发现,在旺季如果每辆货车的日租金每上涨20元,每天租出去的货车就会减少1辆,不考虑其它因素,该出租公司的日租金总收入最高是多少元?当日租金总收入最高时,每天出租货车多少辆?27.如图,已知正方形ABCD的顶点D关于射线CP的对称点G落在正方形内,连接BG 并延长交边AD于点E,交射线CP于点F.连接DF,AF,CG.(1)试判断DF与BF的位置关系,并说明理由;(2)若CF=4,DF=2,求AE的长;(3)若∠ADF=2∠FAD,求tan∠FAD的值.28.如图,一次函数y=x﹣2的图象与x轴交于点A,与y轴交于点B,点D的坐标为(﹣1,0),二次函数y=ax2+bx+c(a≠0)的图象经过A,B,D三点.(1)求二次函数的解析式;(2)如图1,已知点G(1,m)在抛物线上,作射线AG,点H为线段AB上一点,过点H作HE⊥y轴于点E,过点H作HF⊥AG于点F,过点H作HM∥y轴交AG于点P,交抛物线于点M,当HE•HF的值最大时,求HM的长;(3)在(2)的条件下,连接BM,若点N为抛物线上一点,且满足∠BMN=∠BAO,求点N的坐标.参考答案一、选择题(每小题3分,共30分。
2020年成都市武侯区九年级二诊试卷
2020年武侯区二诊试题A卷一、选择题(每题2分,共30分)1.下列估测数据,符合生活实际的是()A.人体正常体温约为37℃B.人的步行速度约为10m/sC.一个鸡置的质量约为250gD.一台空调额定功率是50W2.中国高铁、移动支付.共享单车、“蛟龙号”潜求器……当今中国,科技进步使生活更加便捷。
下列说法中正确的是()A.“复兴”号高速列车因为速度很大所以惯性很大B.“蛟龙号”潜水器在海面下下潜过程中受到的浮力逐渐增大C.共享单车坐垫设计得较宽,目的是为了增大压强D.用手机进行移动支付时,利用了电磁被传递信息3.生活中有许多光现象,下列说法中正确的是()A.凸透镜所成的实像一定是放大的B.黑板反光是由光的镜面反射引起的C.远视眼可用凹透镜制成的眼镜来矫正D.汽车夜间行驶时.应打开驾驶室内照明灯4.关于核能、地热能、潮沙能的说法,正确的是()A.核燃料、地热能和潮汐能等都是可再生能源B.核能是清洁型能源,对人类不会造成任何危害C.目前枝电站获得核能的途径是核裂变的可控链式反应D.地球上的核能、地热能和潮汐能都是来自太阳5.如图所示。
将悬挂的乒乓球轻轻接触正在发声的音叉,乒兵球多次被弹开.关于此实验,下列说法中错误的是()A.音叉发出声音的音调越高,乒乓球被弹开得越远B.音文发出声音的响度越大,乒乓球被弹开得越远C本实检可以证明声音是由于物体的振动而产生的D.乒乓球被弹开的越远,说明音叉振动幅度越大6.甲、乙两列火车并排停在站台上,小强坐在甲车中向乙车观望,突然,他觉得自己的列车开始缓缓地前进了,但是.“驶过”了乙车的车尾才发现,实际上他乘坐的列车还停在站台上。
下列说法中正确的是()A.小强感觉自己乘坐的列车前进了是以站台为参照物B.小强先后有不同的感觉,是因为他选择的参照物不同而造成的C.小强发现自己乘坐的列车还停在站台上是以乙车的车尾为参照物D.小强发现自己乘尘的列车还停在站台上是以乙车上的乘容为参照物7.如图所示的实例中。
2020年四川省成都市中考数学二诊试卷(含答案)
四川省成都市中考数学二诊试卷一、选择题(本大题共10个小题,每小题3分,共30分,每小题均有四个选项,其中只有一项符合题目要求,答案涂在答题卡上)1.(3分)如果a与互为相反数,则a等于()A.B.C.2 D.﹣22.(3分)如图所示的几何体是由6 个完全相同的小立方块搭成,则这个几何体的左视图是()A.B.C.D.3.(3分)从成都经川南到贵阳的成贵客运专线正在建设中,这项工程总投资约780亿元,预计2019 年12月建成通车,届时成都到贵阳只要3 小时,这段铁路被称为“世界第一条山区高速铁路”.将数据780亿用科学记数法表示为()A.78×109 B.7.8×108C.7.8×1010D.7.8×10114.(3分)下列计算正确的是()A.(﹣2a2)3=﹣6a6B.a3+a3=2a3C.a6÷a3=a2D.a3•a3=a95.(3分)在平面直角坐标系中,若直线y=2x+k﹣1经过第一、二、三象限,则k的取值范围是()A.k>1B.k>2C.k<1D.k<2<6.(3分)如图,直线a∥b,直线c与直线a、b分别相交于点A、B,过A作AC⊥b,垂足为C,若∠1=48°,则∠2的度数为()[A.58°B.52°C.48°D.42°7.(3分)武侯区部分学校已经开展“分享学习”数学课堂教学,在刚刚结束的3 月份的月考中,某班7 个共学小组的数学平均成绩分别为130 分、128 分、126 分、130 分、127 分、129 分、131 分,则这组数据的众数和中位数分别是()A.131分,130分B.130分,126分C.128分,128分D.130分,129分8.(3分)关于x的一元二次方程2x2﹣3x=﹣5的根的情况,下列说法正确的是()A.有两个不相等的实数根B.有两个相等的实数根C.没有实数根 D.不能确定9.(3分)如图,在4×4的正方形网格中,每个小正方形的边长都为1,△AOB 的三个顶点都在格点上,现将△AOB绕点O逆时针旋转90°后得到对应的△COD,则点A经过的路径弧AC的长为()A.B.π C.2πD.3π10.(3分)如图,抛物线y=ax2+bx+c(a≠0)与x 轴的一个交点坐标为(3,0),对称轴为直线x=﹣1,则下列说法正确的是()A.a<0 B.b2﹣4ac<0C.a+b+c=0 D.y随x的增大而增大二、填空题(本大题共4个小题,每小题4分,共16分,答案写在答题卡上)11.(4分)49的算术平方根是.12.(4分)已知2a+b=2,2a﹣b=﹣4,则4a2﹣b2=.13.(4分)如图,在△ABC中,D为AB的中点,E为AC上一点,连接DE,若AB=12,AE=8,∠ABC=∠AED,则AC=.14.(4分)如图,将矩形纸片ABCD沿直线AF翻折,使点B恰好落在CD边的中点E处,点F在BC边上,若CD=6,则AD=.三、解答题(本大题共6个小题,共54分,解答过程写在答题卡上)15.(12分)(1)计算:(2)求不等式组的整数解.16.(6分)先化简,再求值:,其中.17.(8分)为了减轻二环高架上汽车的噪音污染,成都市政府计划在高架上的一些路段的护栏上方增加隔音屏.如图,工程人员在高架上的车道M 处测得某居民楼顶的仰角∠ABC的度数是20°,仪器BM 的高是0.8m,点M 到护栏的距离MD 的长为11m,求需要安装的隔音屏的顶部到桥面的距离ED 的长(结果保留到0.1m,参考数据:sin20°≈0.34,cos20°≈0.94,tan20°≈0.36)18.(8分)为了弘扬中国传统文化,“中国诗词大会”第三季已在中央电视台播出.某校为了解九年级学生对“中国诗词大会”的知晓情况,对九年级部分学生进行随机抽样调查,并将调查结果绘制成如下两幅不完整的统计图,请根据统计图的信息,解答下列问题:(1)求在本次抽样调查中,“基本了解”中国诗词大会的学生人数;(2)根据调查结果,发现“很了解”的学生中有三名同学的诗词功底非常深厚,其中有两名女生和一名男生.现准备从这三名同学中随机选取两人代表学校参加“武侯区诗词大会”比赛,请用画树状图或列表的方法,求恰好选取一名男生和一名女生的概率.19.(10分)如图,一次函数y=kx+b的图象与反比例函数的图象相交于A (n,3),B(3,﹣2)两点,过A作AC⊥x轴于点C,连接OA.(1)分别求出一次函数与反比例函数的表达式;=2S△AOC,求点M的坐(2)若直线AB上有一点M,连接MC,且满足S△AMC标.20.(10分)如图,AB为⊙O的直径,C为⊙O上一点,连接CB,过C作CD ⊥AB于点D,过C作∠BCE,使∠BCE=∠BCD,其中CE交AB的延长线于点E.(1)求证:CE是⊙O的切线;(2)如图2,点F在⊙O上,且满足∠FCE=2∠ABC,连接AF并延长交EC的延长线于点G.ⅰ)试探究线段CF与CD之间满足的数量关系;ⅱ)若CD=4,tan∠BCE=,求线段FG的长.一、填空题(本大题共5个小题,每小题4分,共20分,答案写在答题卡上)21.(4分)若a为实数,则代数式a2+4a﹣6的最小值为.22.(4分)对于实数m,n 定义运算“※”:m※n=mn(m+n),例如:4※2=4×2(4+2)=48,若x1、x2是关于x 的一元二次方程x2﹣5x+3=0的两个实数根,则x1※x2=.23.(4分)如图,有A、B、C三类长方形(或正方形)卡片(a>b),其中甲同学持有A、B类卡片各一张,乙同学持有B、C类卡片各一张,丙同学持有A、C类卡片各一张,现随机选取两位同学手中的卡片共四张进行拼图,则能拼成一个正方形的概率是.24.(4分)如图,在平面直角坐标系中,平行四边形ABOC的边OB在x轴上,过点C(3,4)的双曲线与AB交于点D,且AC=2AD,则点D的坐标为.25.(4分)如图,有一块矩形木板ABCD,AB=13dm,BC=8dm,工人师傅在该木板上锯下一块宽为xdm的矩形木板MBCN,并将其拼接在剩下的矩形木板AMND的正下方,其中M′、B′、C′、N′分别与M、B、C、N对应.现在这个新的组合木板上画圆,要使这个圆最大,则x的取值范围是,且最大圆的面积是dm2.二、解答题(本大题共3个小题,共30分,解答过程写在答题卡上)26.(8分)成都市中心城区“小游园,微绿地”规划已经实施,武侯区某街道有一块矩形空地进入规划试点.如图,已知该矩形空地长为90m,宽为60m,按照规划将预留总面积为4536m2的四个小矩形区域(阴影部分)种植花草,并在花草周围修建三条横向通道和三条纵向通道,各通道的宽度相等.(1)求各通道的宽度;(2)现有一工程队承接了对这4536m2的区域(阴影部分)进行种植花草的绿化任务,该工程队先按照原计划进行施工,在完成了536m2的绿化任务后,将工作效率提高25%,结果提前2天完成任务,求该工程队原计划每天完成多少平方米的绿化任务?27.(10分)如图,已知△ABC是等边三角形,点D、E分别在AC、AB上,且CD=AE,BD与CE相交于点P.(1)求证:△ACE≌△CBD;(2)如图2,将△CPD沿直线CP翻折得到对应的△CPM,过C作CG∥AB,交射线PM于点G,PG与BC相交于点F,连接BG.ⅰ)试判断四边形ABGC的形状,并说明理由;ⅱ)若四边形ABGC的面积为,PF=1,求CE的长.28.(12分)在平面直角坐标系中,抛物线y=﹣6x+4的顶点A在直线y=kx ﹣2上.(1)求直线的函数表达式;(2)现将抛物线沿该直线方向进行平移,平移后的抛物线的顶点为A′,与直线的另一交点为B′,与x轴的右交点为C(点C不与点A′重合),连接B′C、A′C.ⅰ)如图,在平移过程中,当点B′在第四象限且△A′B′C的面积为60时,求平移的距离AA′的长;ⅱ)在平移过程中,当△A′B′C是以A′B′为一条直角边的直角三角形时,求出所有满足条件的点A′的坐标.参考答案与试题解析一、选择题1.B.2.B.3.C.4.B.5.A6.D7.D8.C9.A10.C.二、填空题11.712.﹣813.9.14.3.三、解答题15.解:(1)原式=3﹣1+2×+2﹣=2++2﹣=4;(2)解不等式2(x﹣3)≤﹣2,得:x≤2,解不等式>x﹣1,得:x>﹣1,则不等式组的解集为﹣1<x≤2,所以不等式组的整数解为0、1、2.16.解:====,当a=+1时,原式=.17.解:由题意:CD=BM=0.8m,BC=MD=11m,在Rt△ECB中,EC=BC•tan20°=11×0.36≈3.96(m),∴ED=CD+EC=3.96+0.8≈4.8(m),答:需要安装的隔音屏的顶部到桥面的距离ED 的长4.8m.18.解:(1)∵调查的总人数为12÷20%=60(人),∴“基本了解”中国诗词大会的学生人数m=60﹣24﹣12﹣6=18(人);(2)列表:共有6种等可能的结果,其中恰好选取一名男生和一名女生的情况有4种,∴P(恰为一名男生和一名女生)==.19.解:(1)将点B(3,﹣2)代入,得:m=3×(﹣2)=6,则反比例函数解析式为y=﹣.∵反比例函数的图象过A(n,3),∴3=﹣,∴n=﹣2,∴A(﹣2,3),将点A(﹣2,3)、B(3,﹣2)代入y=kx+b,得:,解得:,则一次函数解析式为y=﹣x+1;(2)设点M的坐标为(m,﹣m+1),过M作ME⊥AC于E.∵y=﹣,∴S△AOC=×|﹣6|=3,∴S△AMC =2S△AOC=6,∴AC•ME=×3×|m+2|=6,解得m=2或﹣6.当m=2时,﹣m+1=﹣1;当m=﹣6时,﹣m+1=7,∴点M的坐标为(2,﹣1)或(﹣6,7).20.(本小题满分10分)(1)证明:如图1,连接OC,∵OB=OC,∴∠OBC=∠OCB,(1分)∵CD⊥AB,∴∠OBC+∠BCD=90°,(2分)∵∠BCE=∠BCD,∴∠OCB+∠BCE=90°,即OC⊥CE,∴CE是⊙O的切线;(3分)(2)解:i)线段CF与CD之间满足的数量关系是:CF=2CD,(4分)理由如下:如图2,过O作OH⊥CF于点H,∴CF=2CH,∵∠FCE=2∠ABC=2∠OCB,且∠BCD=∠BCE,∴∠OCH=∠OCD,∵OC为公共边,∴△COH≌△COD(AAS),∴CH=CD,∴CF=2CD;(6分)ii)∵∠BCD=∠BCE,tan∠BCE=,∴tan∠BCD=.∵CD=4,∴BD=CD•tan∠1=2,∴BC==2,由i)得:CF=2CD=8,设OC=OB=x,则OD=x﹣2,在Rt△ODC中,OC2=OD2+CD2,∴x2=(x﹣2)2+42,解得:x=5,即OB=5,∵OC⊥GE,∴∠OCF+∠FCG=90°,∵∠OCD+∠COD=90°,∠FCO=∠OCD,∴∠GCF=∠COB,∵四边形ABCF为⊙O的内接四边形,∴∠GFC=∠ABC,∴△GFC∽△CBO,∴,∴=,∴FG=.(10分)一、填空题21.解:原式=a2+4a+4﹣10=(a+2)2﹣10,因为(a+2)2≥0,所以(a+2)2﹣10≥﹣10,则代数式a2+4a﹣6的最小值是﹣10.故答案是:﹣10.22.解:由题意可知:△>0,∴x1+x2=5,x1x2=3∴原式=x1x2(x1+x2)=3×5=15故答案为:1523.解:由题可得,随机选取两位同学,可能的结果如下:甲乙、甲丙、乙丙,∵a2+2ab+b2=(a+b)2,∴选择乙丙手中的卡片共四张进行拼图,则能拼成一个边长为(a+b)的正方形,∴能拼成一个正方形的概率为,故答案为:.24.解:作CF⊥OB,垂足为F,作DE⊥OB,垂足为E,连接CD并延长交x 轴于M设反比例函数的解析式是y=,把C点的坐标(3,4)代入得:k=12即y=,∵ABOC是平行四边形∴AC∥OB,OC∥AB,AC=OB,AB=OC ∵C(3,4)∴OF=3,CF=4∴OC=,即AB=5设AC=2a,则AD=a,OB=2a (a>0)∴BD=5﹣a,∵OC∥AB∴∠COF=∠DBE且∠CFO=∠DEB∴△CFO∽△BDE∴∴DE=,BE=∴OE=∴D(,)∵点D是y=图象上一点∴×=12∴a=∴D(7,)故答案为(7,).25.解:如图,设⊙O与AB相切于点H,交CD与E,连接OH,延长HO交CD于F,设⊙O的半径为r.在Rt△OEF中,当点E与N′重合时,⊙O的面积最大,此时EF=4,,则有:r2=(8﹣r)2+42,∴r=5.∴⊙O的最大面积为25π,由题意:,∴2≤x≤3,故答案为2≤x≤3,25π.二、解答题26.解:(1)设各通道的宽度为x米,根据题意得:(90﹣3x)(60﹣3x)=4536,解得:x1=2,x2=48(不合题意,舍去).答:各通道的宽度为2米.(2)设该工程队原计划每天完成y平方米的绿化任务,根据题意得:﹣=2,解得:y=400,经检验,y=400是原方程的解,且符合题意.答:该工程队原计划每天完成400平方米的绿化任务.27.(1)证明:∵△ABC是等边三角形,∴∠A=∠ACB=60°,AC=BC,(2分)∵AE=CD,∴△ACE≌△CBD;(3分)(2)解:i)四边形ABGC为菱形,理由是:∵△ACE≌△CBD,∴∠ACE=∠CBD,∴∠DPC=∠PCB+∠CBD=∠PCB+∠ACE=∠ACB=60°,由翻折得:CD=CM,∠CDP=∠CMP,∠MPC=∠DPC=60°,∴∠DCF+∠DPF=60°+2×60°=180°,∴∠CDP+∠CFP=360°﹣180°=180°,∴∠CMP+∠CMF=180°∴∠CMF=∠CFP,∴CF=CM=CD,(4分)∵∠CFM+∠CFG=180°,∠CDP+∠CFM=180°,∴∠CDP=∠CFG,∵CG∥AB,∴∠GCF=∠CBA=60°=∠BCD,∴△CDB≌△CFG,(5分)∴CG=CB,∴CG=AB,∵CG∥AB,CG=AB=AC,∴四边形ABGC是菱形;(6分)ii)过C作CH⊥AB于H,设菱形ABGC的边长为a,∵△ABC是等边三角形,∴AH=BH=a,∴CH=AH•sin60°=a=,∵菱形ABGC的面积为6,∴AB•CH=6,即a a=6,∴a=2,(7分)∴BG=2,∵四边形ABGC是菱形,∴AC∥BG,∴∠GBC=∠ACB=60°,∵∠GPB=180°﹣∠CPD﹣∠CPM=60°,∴∠GBC=∠GPB,∵∠BGF=∠BGF,∴△BGF∽△PGB,(8分)∴,即BG2=FG•PG,∵PF=1,BG=2,∴,∴FG=3或﹣4(舍),(9分)∵△CDB≌△CFG,△ACE≌△CBD,∴FG=BD,BD=CE,∴CE=FG=3.(10分)28.解:(1)∵y=﹣6x+4=(x﹣6)2﹣14,∴点A的坐标为(6,﹣14).∵点A在直线y=kx﹣2上,∴﹣14=6k﹣2,解得:k=﹣2,∴直线的函数表达式为y=﹣2x﹣2.(2)设点A′的坐标为(m,﹣2m﹣2),则平移后抛物线的函数表达式为y=(x ﹣m)2﹣2m﹣2.当y=0时,有﹣2x﹣2=0,解得:x=﹣1,∵平移后的抛物线与x轴的右交点为C(点C不与点A′重合),∴m>﹣1.(i)联立直线与抛物线的表达式成方程组,,解得:,,∴点B′的坐标为(m﹣4,﹣2m+6).当y=0时,有(x﹣m)2﹣2m﹣2=0,解得:x1=m﹣2,x2=m+2,∴点C的坐标为(m+2,0).过点C作CD∥y轴,交直线A′B′于点D,如图所示.当x=m+2时,y=﹣2x﹣2=﹣2m﹣4﹣2,∴点D的坐标为(m+2,﹣2m﹣4﹣2),∴CD=2m+2+4.∴S△A′B′C =S△B′CD﹣S△A′CD=CD•[m+2﹣(m﹣4)]﹣CD•(m+2﹣m)=2CD=2(2m+2+4)=60.设t=,则有t2+2t﹣15=0,解得:t1=﹣5(舍去),t2=3,∴m=8,∴点A′的坐标为(8,﹣18),∴AA′==2.(ii)∵A′(m,﹣2m﹣2),B′(m﹣4,﹣2m+6),C(m+2,0),∴A′B′2=(m﹣4﹣m)2+[﹣2m+6﹣(﹣2m﹣2)]2=80,A′C2=(m+2﹣m)2+[0﹣(﹣2m﹣2)]2=4m2+12m+8,B′C2=[m+2﹣(m﹣4)]2+[0﹣(﹣2m+6)]2=4m2﹣20m+56+16.当∠A′B′C=90°时,有A′C2=A′B′2+B′C2,即4m2+12m+8=80+4m2﹣20m+56+16,整理得:32m﹣128﹣16=0.设a=,则有2a2﹣a﹣10=0,解得:a1=﹣2(舍去),a2=,∴m=,∴点A′的坐标为(,﹣);当∠B′A′C=90°时,有B′C2=A′B′2+A′C2,即4m2﹣20m+56+16=80+4m2+12m+8,整理得:32m+32﹣16=0.设a=,则有2a2﹣a=0,解得:a3=0(舍去),a4=,∴m=﹣,∴点A′的坐标为(﹣,﹣).综上所述:在平移过程中,当△A′B′C是以A′B′为一条直角边的直角三角形时,点A′的坐标为(,﹣)或(﹣,﹣).。
成都市武侯区2022-2023学年度下期九年级数学二诊试题答案
2022~2023学年度下期二诊试题参考答案九年级数学A 卷(共100分)第Ⅰ卷(选择题,共32分)一、选择题(每小题4分,共32分)第Ⅱ卷(非选择题,共68分)二、填空题(每小题4分,共20分) 9. 10.311.412.(6,0) 13..三、解答题(本大题共5小题,共48分) 14.(本小题满分12分,每题6分)解:(1)原式==(2)由方程①,得x =2y +4. ③ 将③代入②,得+3y =15. 解得y =1.将y =1代入③,得x =6.∴原方程组的解为15.(本小题满分8分)解:(1)本次调查的总人数为(人).∴.(2)扇形统计图中“C ”对应的扇形圆心角的度数为.(3)方法一:列表如下:······5分······6分(2)x x -0a <12112+122(24)+y 61.,=⎧⎨=⎩x y 410%40÷=40418513=---=m 13360=11740⨯︒︒A 1 A 2B 1 B 2A 1 (A 1,A 2)(A 1,B 1) (A 1,B 2) A 2 (A 2,A 1) (A 2,B 1)(A 2,B 2) B 1 (B 1,A 1) (B 1,A 2) (B 1,B 2)B 2(B 2,A 1)(B 2,A 2)(B 2,B 1)由上表可知共有12种等可能性结果,其中恰好选到一名男生和一名女生的结果有8种.∴82()==123选到一名男生和一名女生P . 方法二:画树状图如下:结果:(A 1,A 2)(A 1,B 1)(A 1,B 2)(A 2,A 1)(A 2,B 1)(A 2,B 2)(B 1,A 1 1A 2)(B 1,B 2 2 1 2 2 2 1)由上可知共有12种等可能性结果,其中恰好选到一名男生和一名女生的结果有8种.∴82()==123选到一名男生和一名女生P .16.(本小题满分8分)解:设AB 的高度为x 米.∵在Rt △ABC 中,∠ACB =45°,AB =x 米, ∴BC =x (米).∴BD =BC +CD = x +43(米). ∵在Rt △ABD 中,∠ADB =31°, ∴tan31°.即.解得x ≈64.5(米). 所以,体育馆AB 的高度约为64.5米.17.(本小题满分10分) 证明:(1)连接OD .∵AB 为⊙O 的直径,∴∠ACD+∠DCB =∠ACB =90°. ∵∠ACD =∠ADF ,∠DCB =∠OAD , ∴∠ADF+∠OAD =90°. ∵OA=OD ,∴∠OAD =∠ODA . ∴∠ADF+∠ODA =90°.即∠FDO =90°. ∴DF 是⊙O 的切线.解:(2)方法一:∵DF ∥AB ,∴∠EAD =∠ADF .∵∠ADF =∠ACD ,∴∠EAD =∠ACD . 又∵∠ADE =∠CDA ,∴△DAE ∽△DCA .==tan tan 45AB xACB ∠AB BD =⋅0.60(+43)x x ≈开始A 1B 2 B 1 A 2 B 2B 1A 2B 2 B 1A 1B 2A 2A 1B 1A 2A 1∴.∴.∵DE,∴=+CD CE DE∴.∴∵∠ODF =90°,DF ∥AB ,∴∠AOD =90°.设OA=OD= r .在Rt △AOD 中,.∴. 即⊙O 的半径为3.方法二:设AE =x ,⊙O 的半径为r . ∴=-=-OE OA AE rx . ∵∠ODF =90°,DF ∥AB ,∴∠AOD =90°.在Rt △OED 中,222+=OE OD DE .即① ∵∠B =∠ADC ,∠DAB =∠DCB ,∴△DAE ∽△BCE .∴.∴ ②由①和②,得∴.∴.即⊙O 的半径为3.18.(本小题满分10分)解:(1)∵A (1,4)在反比例函数的图象上, ∴. ∴.∴反比例函数的表达式为.∵B (,)在反比例函数的图象上,∴. ∴点B 的坐标为(,).∵一次函数的图象经过点A (1,4),B (,),∴ 解得∴一次函数的表达式为.(2)i)过点P 作x 轴的垂线交直线AB 于点C .设点P 的坐标为(,),则点C 的坐标为(,).∴.DE ADAD DC=2AD DE DC =⋅CE 218AD =AD =22218+==r r AD 3=r ()222-+=r x r AE DECE BE=DE CE AE BE ⋅=⋅()2=⋅-x r x 29r =3r =my x=41m =4m =4y x =4-n 4y x=414n ==--4-1-y kx b =+4-1-4,14.k b k b =+⎧⎨-=-+⎩1,3.k b =⎧⎨=⎩3y x =+a 4aa 3a +=+ABP ACP BCP S S S △△△111=()()222⋅⋅-+⋅⋅-A C C B CP x x CP x x 1=()2⋅⋅-A B CP x x 14(3)(14)2=⋅+-⋅+a a 5151022a a=+-ll∴. 解得或(舍去).∴点P 的坐标为(,).ii) 能相似,理由如下:∵l ∥BP , ∴∠BAQ =∠ABP .①当△BAQ ∽△ABP 时. 可得∠ABQ =∠BAP . ∴BQ ∥AP .设:. ∵过点B (,),P (,),∴1111144.,-=-+⎧⎨-=-+⎩k b k b 解得∴:.设:. ∵过点A (1,4), ∴.∴. ∴:. ∵直线AP 过点A (1,4),P (,), ∴:. 设:.∵过点B (,),∴. ∴:.由 得∴点Q 的坐标为(,).②当△QAB ∽△ABP 时. ∴. ∵A (1,4),B (,),P (,),∴由两点之间的距离公式,可得∴由①知:. 设点Q 的坐标为(,).∴解得或(舍去). ∴点Q 的坐标为(,).综上所述,点Q 的坐标为(,)或(,).B 卷(共50分)一、填空题(本大题共5个小题,每小题4分,共20分)19.1x -. 20.2.7cm 2. 21.12.22. 23.253010h t t =-++;40L 5≤≤.515101522a a+-=1a =-4a =1-4-BP l 11=+y k x b 4-1-1-4-1115.,=-⎧⎨=-⎩k b BP l 5y x =--AQ l 2=-+y x b 241=-+b 25=b AQ l 5y x =-+1-4-AP l 4y x =BQ l 34y x b =+4-1-315b =BQ l 415y x =+4155,,=+⎧⎨=-+⎩y x y x 27.,=-⎧⎨=⎩x y 2-7AQ ABAB BP=4-1-1-4-AB =BP =3=AQ AQ l 5y x =-+t 5-+t =AQ 3223=-t 283=t 223-3732-7223-373二、解答题(本大题共3个小题,共30分) 24.(本小题满分8分)解:(1)根据题意,得1202xx -≥. 解得40x ≥.又∵120x ≤, ∴40120x ≤≤. (2)方法一:设购买这批垃圾分装桶共需费用y 元,由题意,得 ()400100120=+-y x x 30012000x =+.∵300>0,∴y 的值随x 值的增大而增大.∴当40x =时,300401200024000y =⨯+=最小.答:该企业最少需要花费24000元. 方法二:∵B 型垃圾分装桶的单价比A 型垃圾分装桶的单价更少,∴购买A 型垃圾分装桶越少,该企业所支出的费用就越少.∴当购买A 型垃圾分装桶40个,B 型垃圾分装桶80个时,费用最少,且最少费用为:400401008024000⨯+⨯=(元).答:该企业最少需要花费24000元.25.(本小题满分10分)解:(1)∵直线131+-=x y 分别与x 轴,y 轴相交于A ,B 两点,∴令1103x -+=解得3=x ∴点A 的坐标为(3,0) .将A (3,0)代入抛物线的函数表达式, 得9330m +-=,解得2-=m .∴抛物线的函数表达式为223y x x =--.∴2223(1)4y x x x =--=--. ∴顶点C 的坐标为(1),-4.(2)∵直线131+-=x y 与y 轴相交于B 点,∴B (0,1).作点B 关于x 轴的对称点'B ,则'(0,-1)B . 连接'B C ,'B A .∴'∠=∠BAO B AO . 222''10=+=B A OA OB . ∵ A (3,0),B (0,1),'(0,-1)B , ∴由两点间的距离公式,得∴222'(01)(14)10=-+-+=B C ,222(31)(04)=-+-AC ∴222''+=B C B A AC,''=B C B A .∴△'AB C 是等腰直角三角形.∴''45∠=∠=︒B AC B CA .∴2''45-∠=∠-∠-∠=∠=︒∠BAO BAC BAO OAB B AC BAC .(3)方法一:∵直线)1(-=-=x k k kx y l :, ∴直线l 经过定点)01(,M .①过点M 作MD ∥'B A ,交抛物线于1P ,1Q 两点,交CA 的延长线于点D. 此时有'45∠=∠=︒MDA B AC . 设直线':B A l 11y k x b =+.∵直线'B A 经过点'(0,-1)B ,A (3,0),∴直线':B A l 113y x =-. ······8分 ∵1P 1Q ∥'AB ,∴13k =.∴直线11:PQ l 1133y kx k x =-=-. 由2113323y x y x x ⎧=-⎪⎨⎪=--⎩,,得11x y ⎧=⎪⎪⎨⎪=⎪⎩(舍去)22x y ⎧=⎪⎪⎨⎪=⎪⎩,∴点1Q 的坐标为. ②过点M 作MF ∥'B C 交抛物线于2Q 点,交AC 于点F . 此时有'45MFA B CA ∠=∠=︒. 设直线':B C l 22y k x b =+.∵直线'B C 经过点'(0,-1)B ,C (1),-4 , ∴直线':B C l 31y x =--. ∵2MQ ∥'B C ,∴3k =-. ∴直线2:MQ l 33y kx k x =-=-+.由23323y x y x x =-+⎧⎨=--⎩,, 得11312.x y =-⎧⎨=⎩,(舍去)2223.x y =⎧⎨=-⎩, ∴点2Q 的坐标为)32(-,. 综上所述,点Q 的坐标为)32(-,,)18145161457(++,.方法二:∵直线)1(-=-=x k k kx y l :, ∴直线l 经过定点)01(,M . ①过点M 作MG ⊥AC 于点G ,直线MQ 1交CA 于点D. 此时有45∠=∠=︒MDG DMG .∴GM =GD .过点G 作GF ⊥x 轴于点F ,过点D 作DE ⊥FG 于点E . ∴∠DEG =∠GFM =90°,∠DGE +∠MGF =∠FMG +∠MGF =90°. ∴∠DGE =∠FMG ∴△DEG ≌△GFM ∴MF =GE ,GF =DE 设直线:AC l 11y k x b =+. ∵直线AC 经过点A (3,0),(1C ,∴直线:AC l 26y x =-.∵MG ⊥AC ,∴设直线:MG l 112=-+y x c .∵直线MG 经过点(1,0)M ,∴直线:MGl 1122y x =-+.由261122,,=-=-+⎧⎪⎨⎪⎩y x y x 得1354.5,==-⎧⎪⎪⎨⎪⎪⎩x y ∴点G 的坐标为134(,)55-. ∴85MF GE ==,45DE GF ==.∴点D 的坐标为912(,)55-.∴直线:MD l 33+-=x y .B 'OP 1F (G )O P ED CB AF GO PED CB A 图1 由23323y x y x x =-+⎧⎨=--⎩,, 得11312.x y =-⎧⎨=⎩,(舍去)2223.x y =⎧⎨=-⎩, ∴点1Q 的坐标为)32(-,. ②过点M 作MH ⊥1MQ ,交直线AC 于点H∵∠HMD =90°,∠MDH =45°,∴∠MHD =45°. ∴点2Q 即为所求的点.∵直线1:MQ l 33+-=x y , MH ⊥1MQ ,∴13k =.∴直线:MH l 1133y kx k x =-=-.由2113323y x y x x ⎧=-⎪⎨⎪=--⎩,,得11x y ⎧=⎪⎪⎨⎪=⎪⎩(舍去)22x y ⎧=⎪⎪⎨⎪⎪⎩∴点2Q 的坐标为.综上所述,点Q 的坐标为)32(-,,)18145161457(++,. 26.(本小题满分12分)解:(1)由翻折可知∠APE =∠OPE . ∵FG 平分∠PFC ,∴PFG CFG ∠=∠.∵AD ∥BC ,∴APF CFP ∠=∠.∴EPF PFG ∠=∠.∴PE ∥FG .(2)方法一:由翻折可知EA =EO ,∠EOP =90°.∵E ,O ,D 三点在同一条直线上, ∴∠DOF =∠EOF =∠C =90°. 又∵DF =DF ,OFG CFG ∠=∠. ∴△DOF ≌△DCF .∴DO =DC=AB .∵E 是AB 中点,∴设EA EB EO a ===.∴OD =CD =AB =2a .∴DE =OE +OD =3a .在Rt △ADE 中,222AD AE DE +=.∴AD =.∵AD nAB =,∴2na =.∴n =方法二:由折叠可知EA =EO =EB ,∠EOF =90°. 连接EF . ∵E ,O ,D 三点在同一条直线上, ∴∠DOF =∠EOF =∠C =90°. 又∵DF =DF ,OFG CFG ∠=∠, ∴△DOF ≌△DCF .∴FO =FC ,∠OFD =∠CFD . 同理可得△EBF ≌△EOF .∴FB =FO =FC ,∠BFE =∠OFE . ∴90OFE DFO ∠+∠=.∵90BFE DFC FDC DFC ∠+∠=∠+∠=,∴BFE FDC ∠=∠.图2 F(G )O P E D CB AG D C OA B EPF G D C OA B EP F又∵90B C ∠=∠=,∴△BEF ∽△FCD . ∴BE BF CF CD=. 设AE =BE =a ,FB =FC=x . ∴2a xx a=.解得x =.∴n BC AB ==(3)设AE =OE =BE =a .∵n =2,∴AD =2AB =4a .①若点G 在AD 上,当∠OPG =90°时. 此时∠APO =90°.∵∠A =∠POE =∠APO =90°,∴四边形AEOP 为矩形.∵AE =OE ,∴矩形AEOP 为正方形.∴AP =AE =a .∴3DP AD AP a =-=.∴3DPAP =.②若点G 在AD 上,当∠POG =90°时. 此时E ,O ,G 三点在同一条直线上.过G 作GH ⊥BC 于点H .由(2)可知tanOP AE AGE OG ∠==,OG =2a .∴tan 2AP OP OG OGP a ==⋅∠==.∴4DP AD AP a =-=.∴1DPAP =-. ③若点G 在CD 上,显然∠POG 不能为直角,当∠OPG =90°时. ∵FG 是角平分线,∴∠PFG =∠CFG .又∵DF =DF ,90FCG FPG ∠=∠=︒, ∴△GPF ≌△GCF .连接EF .∵EF =EF ,EB =EO ,90B EOF ∠=∠=︒, ∴△EBF ≌△EOF .∴BF=OF .设EB=EA=EO=a ,BF=OF=k . ∴4FC FP a k ==-.∴42PO PA a k ==-.∵∠BEF =∠OEF ,∠PEA =∠PEO ,∴∠PEF =∠OEF +∠PEO =90°.∵OE ⊥PF ,∴∠EOF =∠POE =90°,∠OEF +∠EFO =90°. ∴∠EFO =∠PEO .∴△POE ∽△EOF .∴2OE OF OP =⋅.∴2(42)a k a k =-.解得2k a =±.∵当2k a =+时,G 在AD 边上.∴2BF a a =-. ∴2AP PO a ==.∴2DP AD AP a =-=. ∴3DP AP=- 综上所述,DPAP的值为3,1-,3-.H G DCOA B E PF。
2022年四川省成都市武侯区中考二诊 数学 试题(学生版+解析版)
【答案】
【解析】
【分析】根据二次根式有意义 条件列出不等式,解不等式即可求解.
【详解】解:∵要使 有意义,
∴ ,
解得 .
故答案为: .
【点睛】本题主要考查了二次根式有意义的条件,一元一次不等式的解法,根据二次根式有意义的条件列出不等式是解答关键.
10.如图,已知 , , ,则 的度数为______.
(1)如图1,若 .
①当 ,且 时,求 的度数;
②试探究线段AD与CE之间满足的数量关系,并说明理由;
(2)如图2,若 ,当 时,求 的值.
31.【阅读理解】定义:在平面直角坐标系 中,点P为抛物线C的顶点,直线l与抛物线C分别相交于M,N两点(其中点M在点N的右侧),与抛物线C的对称轴相交于点Q,若记 ,则称 是直线l与抛物线C的“截积”.
(2)点P是反比例函数 的图象上一点,连接PA,PB,若 的面积为4,求点P的坐标;
(3)在(2)的条件下,取位于A点下方的点P,将线段PA绕点P逆时针旋转90°得到线段PC,连接BC,点M是反比例函数 的图象上一点,连接MB,若 ,求满足条件的点M的坐标.
B卷
一、填空题(本大题共5个小题,答案写在答题卡上)
(3)设抛物线C的函数表达式为 ,若 , ,且点P在点Q的下方,求a的值.
四川省成都市2021—2022学年武侯区二诊数学试题
A卷
一、选择题(本大题共小8题)
1.比 大3的数是()
A. B.0C.1D.5
【1题答案】
【答案】C
【解析】
【分析】运用有理数运算中的加法法则:异号两数相加,取绝对值较大的数的符号,并把绝对值相减.
【10题答案】
【答案】50°
【解析】
四川省成都市武侯区2020年九年级第二次诊断性检测试题(无答案)
成都市武侯区2020年九年级第二次诊断性检测试题全卷分为A卷和B卷两部分,A卷满分100分,B卷满分50分;考试时间120分钟。
A卷(共100分)第I卷(选择题,共24分)一、基础知识(每小题3分,共12分)1.下面加点字注音有误的一项是A.黎.明( lí)笑窝.(wō) 雕梁画栋.(dòng)B.灌溉. ( g ài) 喷薄.(bó) 喃.喃自语(nán)C.星宿. (sù) 真挚.(zhì) 一气呵.成(hē)D.绰.号( chuò) 礼聘.(pìn) 朝朝暮暮.(mù)2.下列语句中书写正确的一项是A.范进笑了一声道:“噫!好了!我中了!”说着,往后跌倒,牙关咬紧,不醒人事。
B.你站在桥上看风景,看风景的人在楼上看你。
明月妆饰了你的窗子,你妆饰了别人的梦。
C.李太白《送孟浩然之广陵》的诗句包含着朋友惜别的惆怅,使人联想到依依惜别的情景。
D.圆规很不平,显出鄙夷的神色,仿佛痴笑法国人不知道拿破仑,美国人不知道华盛顿似的。
3.下列语句中加点的成语使用有误的一项是()A.滴水穿石,告诉我们做事情应该持之以恒....,这是大自然带给我们的宝贵启示。
B.世界卫生组织称赞中国的各项防疫措施是行之有效....的,应该向全世界大力推广。
C.清明节,人们纷纷到陵园祭扫,缅怀先烈的丰功伟绩....,以此寄托对逝者的哀思。
D.随着疫情防控形势渐好,师生们满心喜悦地重返校园,在学习中共享天伦之乐....。
4.下列语句中没有语病的一项是( )A.省政府要求各地重视防火安全工作,切实做到早处置、早预警、早排查,确保群众安全。
B.由于一场突如其来的疫情,让全国学生熟悉并适应了“网课”这种居家学习的全新模式。
C.成都凭借自身良好的硬件条件和丰富的赛事经验,成功获得了 2021年世界大运会举办权。
D.武侯区教育局统一安排的优质在线课程,极大地激发了学生的学习兴趣和学习效率。
四川省成都市2019-2020学年中考二诊数学试题含解析
4.下列四个图形中,是中心对称图形的是()
A. B. C. D.
5.已知电流I(安培)、电压U(伏特)、电阻R(欧姆)之间的关系为 ,当电压为定值时,I关于R的函数图象是()
A. B. C. D.
6.下列计算正确的是( )
A.( )2=±8B. + =6 C.(﹣ )0=0D.(x﹣2y)﹣3=
A.25°B.30°C.35°D.55°
2.若一个函数的图象是经过原点的直线,并且这条直线过点(-3,2a)和点(8a,-3),则a的值为()
A. B. C. D.±
3.如图,在等腰直角三角形ABC中,∠C=90°,D为BC的中点,将△ABC折叠,使点A与点D重合,EF为折痕,则sin∠BED的值是()
22.(8分)某商场要经营一种新上市的文具,进价为20元,试营销阶段发现:当销售单价是25元时,每天的销售量为250件,销售单价每上涨1元,每天的销售量就减少10件写出商场销售这种文具,每天所得的销售利润 (元)与销售单价 (元)之间的函数关系式;求销售单价为多少元时,该文具每天的销售利润最大;商场的营销部结合上述情况,提出了A、B两种营销方案
(2)先化简,再求值:( )+ ,其中a=﹣2+ .
20.(6分)某景区在同一线路上顺次有三个景点A,B,C,甲、乙两名游客从景点A出发,甲步行到景点C;乙花20分钟时间排队后乘观光车先到景点B,在B处停留一段时间后,再步行到景点C.甲、乙两人离景点A的路程s(米)关于时间t(分钟)的函数图象如图所示.甲的速度是______米/分钟;当20≤t≤30时,求乙离景点A的路程s与t的函数表达式;乙出发后多长时间与甲在途中相遇?若当甲到达景点C时,乙与景点C的路程为360米,则乙从景点B步行到景点C的速度是多少?
初2020届成都市某区某校中考数学九年级二诊数学试卷(含答案)
初2020届成都市某区某校中考数学九年级二诊数学试卷(考试时间:120分钟满分:150分)A卷(共100分)一、选择题(每小题3分,共30分。
下列各小题给出的四个选项中,只有一个符合题目要求)1.在检测排球质量时,将质量超过标准的克数记为正数,不足的克数记为负数,下面是检测过的四个排球,在其上方标注了检测结果,其中质量最接近标准的一个是()A.B.C.D.2.如图,是由6个相同的小正方体组成的几何体,那么该几何体的俯视图是()A.B.C.D.3.110年前,中国首条自行设计和建造的铁路,京张铁路落成;110年后,在同样的地方,世界首条智能高铁京张高铁正式运行,中国速度,一直在路上,2019年底,中国高铁里程将突破3.5万公里,全世界超过的高铁轨道铺设在中国.为你骄傲,中国高铁!请将3.5万公里中的数“3.5万”用科学记数法表示为()A.3.5×101B.0.35×105C.35×103D.3.5×1044.如图,已知直线m∥n,将一块含45°角的直角三角板ABC,按如图所示方式放置,其中斜边AC与直线m交于点D.若∠2=25°,则∠1的度数为()A.25°B.45°C.70°D.75°5.下列运算错误的是()A.b2•b3=b5B.(a﹣b)(b+a)=a2﹣b2C.a5+b5=a10D.(﹣a2b)2=b2a46.在平面直角坐标系中,将函数y=﹣2x的图象沿y轴负方向平移4个单位长度,则平移后的图象与x轴的交点坐标为()A.(2,0)B.(﹣2,0)C.(﹣4,0)D.(0,﹣4)7.疫情期间,为调查某校学生体温的情况,张老师随机调查了50名学生,结果如表:体温(单位:℃)36.2 36.3 36.5 36.7 36.8人数8 10 7 x 12则这50名学生体温的众数和中位数分别是()℃A.36.7,36.6 B.36.8,36.7 C.36.8,36.5 D.36.7,36.58.若关于x的一元二次方程ax2﹣2x+1=0有实数根,则实数a的取值范围是()A.a<1 B.a≤1 C.a≥1 D.a≤1且a≠09.如图,四边形ABCD内接于半径为3的⊙O,CD是直径,若∠ABC=110°,则扇形AOD的面积为()A.πB.πC.πD.2π10.二次函数y=﹣x2+ax+b的图象如图所示,对称轴为直线x=2,下列结论不正确的是()A.a=4B.当x>2.5时,y随x的增大而减小C.当x=﹣1时,b>5D.当b=8时,函数最大值为10二、填空题(每小题4分,共16分)11.已知实数a,b互为相反数,且|a+2b|=1,b<0,则b=.12.已知正多边形的一个外角为72°,则该正多边形的内角和为.13.一次函数y1=kx+b的图象与反比例函数y2=﹣的图象相交于A(﹣1,3),B(m,﹣3)两点,请先画出图象,然后根据图象写出当y1<y2时,x的取值范围为.14.如图:已知锐角∠AOC,依次按照以下顺序操作画图:(1)在射线OA上取一点B,以点O为圆心,OB长为半径作,交射线OC于点D,连接BD;(2)分别以点B,D为圆心,BD长为半径作弧,交于点M,N;(3)连接ON,MN.根据以上作图过程及所作图形可知下列结论:①OC平分∠AON;②MN∥BD;③MN=3BD;④若∠AOC=30°,则MN=ON.其中正确结论的序号是.三、解答题(本大题共6小题,共54分,答题应写出文字说明、证明过程或演算步骤)15.(12分)(1)计算:(π﹣2020)0﹣+4sin60°﹣|3﹣|;(2)解方程:(x+2)(x﹣3)=(x+2).16.(6分)先化简,再求值:÷(x+2﹣),其中x=.17.(8分)成都市为了扎实推进精准扶贫工作,出台了民生兜底、医保脱贫、教育救助、产业扶持、养老托管和易地搬迁这六种帮扶措施,每户贫困户都享受了2到5种帮扶措施,现把享受了2种、3种、4种和5种帮扶措施的贫困户分别称为A,B,C,D类贫困户,为检查帮扶措施是否落实,随机抽取了若干贫困户进行调查,现将收集的数据绘制成如图两幅不完整的统计图.请根据图中信息,回答下列问题:(1)本次抽样调查了多少户贫困户?(2)成都市共有9100户贫困户,请估计至少得到4种帮扶措施的大约有多少户?(3)2020年是精准扶贫攻关年,为更好地做好工作,现准备从D类贫困户中的甲、乙、丙、丁四户中随机选取两户进行试点帮扶,请用树状图或列表法求出恰好选中乙和丙的概率.18.(8分)小颖“综合与实践”小组学习了三角函数后,开展了测量本校旗杆高度的实践活动.他们制订了测量方案,并利用课余时间完成了实地测量.他们在该旗杆底部所在的平地上,选取两个不同测点,分别测量了该旗杆顶端的仰角以及这两个测点之间的距离.为了减小测量误差,小组在测量仰角的度数以及两个测点之间的距离时,都分别测量了两次并取它们的平均值作为测量结果,如表是不完整测量数据.课题测量旗杆的高度成员组长:小颖,组员:小明,小刚,小英测量工具测量角度的仪器,皮尺等测量示意图说明:线段GH表示学校旗杆,测量角度的仪器的高度AC =BD=1.62m,测点A,B与H在同一水平直线上,A,B之间的距离可以直接测得,且点G,H,A,B,C,D都在同一竖直平面内,点C,D,E在同一条直线上,点E在GH上.测量数据测量项目第一次第二次平均值∠GCE的度数30.6°31.4°31°∠GDE的度数36.8°37.2°37°A,B之间的距离10.1m 10.5m m……(1)任务一:完成表格中两次测点A,B之间的距离的平均值.(2)任务二:根据以上测量结果,请你帮助该“综合与实践”小组求出学校旗杆GH的高度.(精确到0.1m)(参考数据:sin31°≈0.51,cos31°≈0.86,tan31°≈0.60,sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)19.(10分)如图所示,一次函数y=﹣x﹣6与x轴,y轴分别交于点A,B将直线AB沿y轴正方向平移与反比例函数y=(x>0)的图象分别交于点C,D,连接BC交x轴于点E,连接AC,已知BE=3CE,且S△ABE=27.(1)求直线AC和反比例函数的解析式;(2)连接AD,求△ACD的面积.20.(10分)如图,在⊙O的内接△ABC中,∠CAB=90°,AB=2AC,过点A作BC的垂线m交⊙O于另一点D,垂足为H,点E为上异于A,B的一个动点,射线BE交直线m于点F,连接AE,连接DE交BC于点G.(1)求证:△FED∽△AEB;(2)若=,AC=2,连接CE,求AE的长;(3)在点E运动过程中,若BG=CG,求tan∠CBF的值.B卷(50分)一、填空题(每小题4分,共20分)21.已知正实数m,n满足m2=5,n3=11,则m n.(填“>”“<”或“=”)22.如图所示,已知线段AC=1,经过点A作AB⊥AC,使AB=AC,连接BC,在BC上截取BE=AB,在CA 上截取CD=CE,则的值是.23.若关于x的分式方程﹣=1的解为正数,且关于y的一元一次不等式组的解集为无解,则符合条件的所有整数a的和为.24.如图,在平面直角坐标系xOy中,直线y=﹣x﹣2与x轴,y轴分别交于点D,C.点G,H是线段CD 上的两个动点,且∠GOH=45°,过点G作GA⊥x轴于A,过点H作HB⊥y轴于B,延长AG,BH交于点E,则过点E的反比例函数y=的解析式为.25.如图,在矩形ABCD中,AB=9,AD=6,点O为对角线AC的中点,点E在DC的延长线上且CE=1.5,连接OE,过点O作OF⊥OE交CB延长线于点F,连接FE并延长交AC的延长线于点G,则=.二、解答题(本大题共3小题,共30分.其中26题8分,27题10分,28题12分)26.(8分)大邑县某汽车出租公司有若干辆同一型号的货车对外出租,每辆货车的日租金实行淡季、旺季两种价格标准,旺季每辆货车的日租金比淡季上涨25%.据统计,淡季该公司平均每天有10辆货车未出租,日租金总收入为3200元;旺季所有的货车每天能全部租出,日租金总收入为6000元.(1)求该出租公司这批对外出租的货车共有多少辆?(2)经市场调查发现,在旺季如果每辆货车的日租金每上涨20元,每天租出去的货车就会减少1辆,不考虑其它因素,该出租公司的日租金总收入最高是多少元?当日租金总收入最高时,每天出租货车多少辆?27.(10分)如图,已知正方形ABCD的顶点D关于射线CP的对称点G落在正方形内,连接BG并延长交边AD于点E,交射线CP于点F.连接DF,AF,CG.(1)试判断DF与BF的位置关系,并说明理由;(2)若CF=4,DF=2,求AE的长;(3)若∠ADF=2∠FAD,求tan∠FAD的值.28.(12分)如图,一次函数y=x﹣2的图象与x轴交于点A,与y轴交于点B,点D的坐标为(﹣1,0),二次函数y=ax2+bx+c(a≠0)的图象经过A,B,D三点.(1)求二次函数的解析式;(2)如图1,已知点G(1,m)在抛物线上,作射线AG,点H为线段AB上一点,过点H作HE⊥y轴于点E,过点H作HF⊥AG于点F,过点H作HM∥y轴交AG于点P,交抛物线于点M,当HE•HF的值最大时,求HM 的长;(3)在(2)的条件下,连接BM,若点N为抛物线上一点,且满足∠BMN=∠BAO,求点N的坐标.参考答案与试题解析一、选择题1.【解答】解:|+0.5|=0.5,|﹣0.3|=0.3,|+0.2|=0.2,|﹣0.6|=0.6,∵0.2<0.3<0.5<0.6,∴C选项的排球最接近标准质量,故选:C.2.【解答】解:从上面看易得底层是2个正方形,上层是3个正方形,左齐,故选:A.3.【解答】解:3.5万=35000=3.5×104,故选:D.4.【解答】解:如图所示:设BC与直线m交于点E,则∠BED=∠2+∠C=25°+45°=70°,又∵m∥n,∴∠1=∠BED=70°,故选:C.5.【解答】解:A、b2•b3=b5,运算正确,不合题意;B、(a﹣b)(b+a)=a2﹣b2,运算正确,不合题意;C、a5+b5=2a5,原式计算错误,符合题意;D、(﹣a2b)2=b2a4,运算正确,不合题意;故选:C.6.【解答】解:由“上加下减”的原则可知,将函数y=﹣2x的图象沿y轴负方向平移4个单位长度所得函数的解析式为y=﹣2x﹣4,∵此时与x轴相交,则y=0,∴﹣2x﹣4=0,即x=﹣2,∴点坐标为(﹣2,0),7.【解答】解:由表格可得,36.7℃的学生有:50﹣8﹣10﹣7﹣12=13(人),这50名学生体温的众数是36.7,中位数是(36.5+36.7)÷2=36.6,故选:A.8.【解答】解:∵关于x的一元二次方程ax2﹣2x+1=0有实数根,∴a≠0,且△=(﹣2)2﹣4a×1≥0,解得:a≤1且a≠0,故选:D.9.【解答】解:∵∠ABC=110°,∴优弧ADC所对的圆心角的度数为110°×2=220°,∵CD是直径,∴∠COD=180°,∵∠COD+∠AOD=220°,∴∠AOD=40°,∵⊙O的半径为3,∴扇形AOD的面积为=π,故选:B.10.【解答】解:∵二次函数y=﹣x2+ax+b∴对称轴为直线x=﹣=2∴a=4,故结论A正确;∵对称轴为直线x=2且图象开口向下,∴当x>2.5时,y随x的增大而减小,故结论B正确;当x=﹣1时,由图象知此时y>0即﹣1﹣4+b>0∴b>5,故结论C正确;当b=8时,y=﹣x2+4x+8=﹣(x﹣2)2+12∴函数有最大值12,故结论D不正确;二、填空题(每小题4分,共16分)11.【解答】解:∵实数a,b互为相反数,∴a+b=0,∴|a+2b|=|a+b+b|=|b|=1,∵b<0,∴b=﹣1.故答案为:﹣1.12.【解答】解:多边形的边数为:360°÷72°=5,正多边形的内角和的度数是:(5﹣2)•180°=540°.故答案为:540°.13.【解答】解:∵一次函数y1=kx+b的图象与反比例函数y2=﹣的图象相交于A(﹣1,3),B(m,﹣3)两点,∴m=1,∴B(1,﹣3),∴一次函数y1=﹣3x,图象如图所示:根据图象可知:当y1<y2时,x的取值范围为﹣1<x<0或x>1.故答案为:﹣1<x<0或x>1.14.【解答】解:由作图可知:=,∴∠AOC=∠DON,即OC平分∠AON,故①正确.∵=,∴∠BDM=∠DMN,∴BD∥MN,故②正确,∵==,∴BM=BD=DN,∵BM+BD+DN>MN,∴MN<3BD,故③错误,若∠AOC=30°,则∠MON=90°,∴△MON是等腰直角三角形,∴MN=ON,故④正确.故答案为①②④.三、解答题(本大题共6小题,共54分,答题应写出文字说明、证明过程或演算步骤)15.【解答】解:(1)(π﹣2020)0﹣+4sin60°﹣|3﹣|=1﹣3+4×﹣(2﹣3)=1﹣3+2﹣2+3=1;(2)(x+2)(x﹣3)=(x+2)(x+2)(x﹣3)﹣(x+2)=0,(x+2)(x﹣3﹣1)=0,(x+2)(x﹣4)=0,则x+2=0或x﹣4=0,解得:x1=﹣2,x2=4.16.【解答】解:原式=÷(﹣)=÷=•=,当x=时,原式==.17.【解答】解:(1)本次抽样调查的总户数为260÷52%=500(户);(2)抽查B类贫困户所占本次抽样调查的总户数的百分数为:×100%=8%,抽查C类贫困户所占本次抽样调查的总户数的百分数为:1﹣52%﹣16%﹣8%=24%,估计至少得到4项帮扶措施的大约有9100×(24%+16%)=3640(户);(3)画树状图如下:由树状图知共有12种等可能结果,其中恰好选中乙和丙的有2种结果,所以恰好选中乙和丙的概率为=.18.【解答】解:(1)任务一:两次测点A,B之间的距离的平均值==10.3m,故答案为10.3;(2)由题意可得四边形EDBH和四边形CDBA是矩形,∴CD=AB=10.3m,EH=BD=16.2m,在Rt△GED中,tan∠GDE=,∴DE=,同理:CE=,∴CD=CE﹣DE,∴CD=﹣,又∵CD=10.3m,∠GCE=31°,∠GDE=37°,tan31°≈0.60,tan37°≈0.75,∴,∴GE=30.90,∴GH=GE+EH=30.90+1.62≈32.5(m),答:学校旗杆GH的高度约为32.5m.19.【解答】解:(1)在y=﹣x﹣6中,当x=0时,y=﹣6;当y=0时,x=﹣6.∴A(﹣6,0),B(0,﹣6),∴OB=OA=6,又S△ABE=27,∴OB×AE=27,∴AE=9,OE=3.过C作CN⊥x轴于N,则CN∥OB,又∵BE=3CE,∴===,∴EN=1,CN=2,ON=4,∴C(4,2).∴反比例函数的解析式为y=.设直线AC的解析式为y=kx+b(k≠0),将A(﹣6,0),C(4,2)代入得:,解得:.∴直线AC的解析式为y=x+;(2)根据题意设直线CD的解析式为y=﹣x+b1,将点C(4,2)代入得:﹣4+b1=2,∴b1=6.∴直线CD的解析式为y=﹣x+6.将直线CD和反比例函数解析式联立得:,解得:,,∴D(2,4).过D作DM∥y轴交AC于M,则M(2,1.6),∴S△ACD=S△ADM+S△CDM=DM•|x M﹣x A|+DM•|x C﹣x M|=DM•|x C﹣x A|=×(4﹣1.6)×|4﹣(﹣6)|=12.20.【解答】解:(1)∵⊙O的内接△ABC中,∠CAB=90°,∴BC是⊙O的直径,∵点E为上异于A,B的一个动点,∴∠CEB=90°,∴∠ECB+∠EBC=90°,∵过点A作BC的垂线m交⊙O于另一点D,垂足为H,∴∠FHB=90°,∴∠FBH+∠HFB=90°,∴∠HFB=∠ECB,∵∠EAB=∠ECB,∴∠EAB=∠HFB,∵∠FBA=∠ADE,∴△FED∽△AEB;(2)∵∠CAB=90°,AB=2AC,AC=2,∴AB=4,根据勾股定理得,BC=2,∵AD⊥BC,BC是⊙O的切线,∴DH=AH===,在Rt△AHB中,根据勾股定理得,BH==,∵,BC是⊙O的直径,∴BE=CE,∠ECB=∠EBC=45°,∵BC=2,∠BEC=90°,∴BE=CE=,∵∠FHB=90°,∠EBC=45°,BH=,∴FH=BH=,BF=,∴EF=BF﹣BE=,FD=FH+DH=,∵△FED∽△AEB,∴,∴,∴AE=;(3)如图,过点G作GT⊥CE于T,∵∠CEB=90°,∴TG∥EB,∴,∠CGT=∠CBF,∴tan∠CBF=tan∠CGT=,∵,∴∠CED=∠ABC,∴tan∠CED=tan∠ABC,∴,∵,BG=CG,∴ET=CT,,∴,∴tan∠CBF=tan∠CGT=.一、填空题(每小题4分,共20分)21.【解答】解:∵m2=5,n3=11,∴(m2)3=53=125,(n3)2=112=121,∴(m2)3>(n2)3,即m6>n6,∴m>n,故答案为:>.22.【解答】解:设CD=a,则CE=a,∵AC=1,AB=AC,∴AB=,∵BE=AB,∴BE=,∴AB=a+,在Rt△ABC中,AC2+BA2=BC2,∴,解得,a=﹣或a=﹣(舍去),∴AD=1﹣a=,∴=.故答案为:.23.【解答】解:分式方程﹣=1的解为x=且x≠,∵关于x的分式方程﹣=1的解为正数,∴>0且≠1,∴a>0且a≠2.,解不等式①得:y>3;解不等式②得:y<a.∵关于y的一元一次不等式组的解集为无解,∴a≤3.∴0<a≤3且a≠2.∵a为整数,∴a=1、3,整数a的和为:1+3=4.故答案为4.24.【解答】解:如图,过点G作GP⊥GO,交OH的延长线于点P,过点P作PN⊥AE,交AE延长线于N,设点A(﹣a,0)∴AO=a,∵直线y=﹣x﹣2与x轴,y轴分别交于点D,C,∴点D(﹣2,0),∠ADC=45°,∴DO=2,AD=2﹣a,∵AE⊥OD,∴∠ADG=∠AGD=45°,∴AD=AG=2﹣a,∵GP⊥GO,∠GOH=45°,∴∠GPO=∠GOP=45°,∴GP=GO,∵∠AGO+∠AOG=90°,∠AGO+∠NGP=90°,∴∠AOG=∠NGP,又∵∠GNP=∠GAO=90°,GO=GP,∴△GAO≌△PNG(AAS),∴NP=AG=2﹣a,AO=GN=a,∴AN=2,∴点P(2﹣2a,﹣2),∴直线OP解析式为:y=x,联立方程组∴∴点H的纵坐标为,∴点E(﹣a,)∵反比例函数y=的图象过点E,∴k=﹣a×(=2,∴反比例函数解析式为:y=,故答案为:y=.25.【解答】解:作OM⊥CD于M,ON⊥BC于N,∵四边形ABCD为矩形,∴∠D=90°,∠ABC=90°,∴OM∥AD,ON∥AB,∵点O为AC的中点,∴OM=AD=6,ON=AB=4.5,CM=4.5,CN=3,∵CE=1.5,∴ME=CM+CE=6,在Rt△OME中,OE==3,∵∠MON=90°,∠EOF=90°,∴∠MOE=∠NOF,又∠OME=∠ONF,∴△OME∽△ONF,∴=,即=,解得,FN=9,∴FC=FN+NC=12,∵∠FOE=∠FCE=90°,∴F、O、C、E四点共圆,∴∠GFC=∠GOE,又∠G=∠G,∴△GFC∽△GOE,∴===,故答案为:.二、解答题(本大题共3小题,共30分.其中26题8分,27题10分,28题12分)26.【解答】解:(1)该出租公司这批对外出租的货车共有x辆,根据题意得,×(1+25%)=,解得:x=30,经检验:x=30是分式方程的解,且符合题意,答:该出租公司这批对外出租的货车共有30辆;(2)设旺季每辆货车的日租金上涨a元时,则每天出租货车(30﹣)辆,该出租公司的日租金总收入为W元,根据题意得,W=(30﹣)×(+x)=﹣x2+20x+6000,=﹣(x﹣200)2+8000,∵﹣<0,∴当x=200时,W有最大值为8000元,此时30﹣=20;答:该出租公司的日租金总收入最高是8000元,当日租金总收入最高时,每天出租货车20辆.27.【解答】解:(1)DF⊥BF,理由如下:∵点D关于射线CP的对称点G,∴CD=CG,DF=FG,又∵CF=CF,∴△CDF≌△CGF(SSS),∴∠CDF=∠CGF,∵CD=CB,∴∠CGB=∠CBG,∵∠CGB+∠CGF=180°,∴∠CBG+∠CDF=180°,∵∠CDF+∠DFB+∠CBF+∠DCB=360°,∴180°+90°+∠DFB=360°,∴∠DFB=90°,∴DF⊥BF;(2)如图,过点C作CH⊥BF于H,∵△CDF≌△CGF,∠DFB=90°,∴∠CFD=∠CFG=45°,DF=FG=2,∵CH⊥BF,∴∠CFH=∠FCH=45°,∴CH=FH,∴CF=CH=4,∴CH=FH=4,∴GH=FH﹣FG=2,∴CG===2,∴CD=CG=BC=AB=2,∵CB=CG,CH⊥BG,∴BH=GH=2,∵AD∥BC,∴∠AEB=∠CBH,又∵∠DAB=∠CHB=90°,∴△AEB∽△HBC,∴,∴=,∴AE=;(3)连接BD,过点F作FM⊥AD于M,作∠AFN=∠FAD,交AD于N,∵四边形ABCD是正方形,∴∠ABD=∠ADB=45°,∵∠DFB=∠DAB=90°,∴点D,点F,点A,点B四点共圆,∴∠DBF=∠DAF,∠FDA=∠FBA,∵∠ABD=∠FBD+∠FBA=∠FDA+∠DAF=45°,∠ADF=2∠FAD,∴∠FDA=30°,∠FAD=15°,∵∠AFN=∠FAD=15°,∴∠FNM=30°,又∵FM⊥AD,∴NM=FM,FN=2MF=AN,∴AM=AN+MN=(2+)FM,∴tan∠FAD===2﹣.28.【解答】解:(1)在y=x﹣2中,当x=0时,y=﹣2,当y=0时,x=4,∴A(4,0),B(0,﹣2),∵二次函数经过D(﹣1,0),B(4,0),∴可以假设二次函数的解析式为y=a(x+1)(x﹣4),把A(0,﹣2)代入得到a=,∴二次函数的解析式为y=x2﹣x﹣2.(2)如图1中,设H(x0,x0﹣2),且(0≤x0≤4),∵HE⊥y轴于E,∴HE=x0,∵G(1,m)在抛物线上,∴G(1,﹣3),∵A(4,0),∴直线AG的解析式为y=x﹣4,∵HM∥y轴交AG于P,∴P(x0,x0﹣4),则PH=(x0﹣2)﹣(x0﹣4)=﹣x0+2,由直线AG都是解析式y=x﹣4,HM∥y轴交AG于P,可得∠HPF=45°,∵HF⊥AG于F,∴HF=(﹣x0+2),∴HE•HF=(﹣x0+2)x0=﹣x02+x0=﹣(x0﹣2)2+,∵﹣<0,0≤x0≤4,∴当x0=2时,HE•HF的值最大,此时H(2,﹣1),M(2,﹣3),∴HM=﹣1﹣(﹣3)=2.(3)如图2中,过点B作BT⊥MN于T.∵∠BMN=∠BAO,∴tan∠BMN=tan∠BAO==,∴=,又∵B(0,﹣2),M(2,﹣3),可得BM=,BT=1,MT=2,设T(m,n),则,解得或,∴T(0,﹣3)或(,﹣),∵M(2,﹣3),∴直线MN的解析式为y=﹣3或y=﹣x﹣,联立得或,分别解方程组可得或或或,舍弃第二,第四组解,∴满足条件的点N的坐标为(1,﹣3)或(﹣,)。
新课标人教版2020届初三二诊考试数学试题(含答案)
新课标人教版2020届初三二诊考试数学试题满分:120分 考试时间:120分钟.(含答案)A 卷(共100分) 第Ⅰ卷(选择题 共36分)一、选择题:本大题共12个小题,每小题3分,共36分.在每个小题给出的四个选项中,只有一项是正确的,请把正确选项的字母填涂在答题卡上相应的位置. 1.64的值是( )A .4B .4±C .8D .8±2.新建成的北京大兴国际机场的航站楼建筑面积约1 400 000米2,数据1 400 000用科学记数法应表示为( ) A .80.1410⨯ B .71.410⨯C .61.410⨯D .51410⨯ 3.下列运算正确的是( )A .23a a a +=B .235a b ab +=C .()239a a =D .32a a a ÷=4.如图所示,BD 是△ABC 的角平分线,DE ∥BC ,交AB 于点E ,∠A =45°,∠BDC =60°,则∠C 的度数为( ) A .100° B .105° C .110° D .115°5.如图的几何体由六个相同的小正方体搭成,它的左视图是( )6.使代数式433x x +-+有意义的整数x 有( )A .5个B .4个C .3个D .2个 7.如图,在平面直角坐标系中,四边形OABC 为菱形,O (0,0), A (4,0),∠AOC =60°,则对角线交点E 的坐标为( )A .(2,3)B .(3,2)C .(3,3)D .(3,3)8.某超市销售A ,B ,C ,D 四种矿泉水,它们的单价依次是5元、3元、2元、1元.某天的销售情况如图所示,则这天销售的矿泉水的平均 单价是( ) A .1.95元 B .2.15元C .2.25元D .2.75元9.如图,已知A 点坐标为(5,0),直线(0)y x b b =+≥与y 轴交于点B ,连接AB ,∠75α=︒,则b 的值为( )A .3B .53C .4D .5310.如图,直线AB 与半径为2的⊙O 相切于点C ,D 是⊙O 上一点,且∠EDC =30°,弦EF ∥AB ,则EF 的长度为( )A .2B .23C .3D .2211.如图,在等边△ABC 中,D 为BC 边上一点,E 为AC 边上一点,且∠ADE =60°,BD =4,CE =43,则△ABC 的面积为( )A .83B .15C .93D .12312.如图,在正方形ABCD 中,E 、F 分别是边BC 、CD 的中点,AE 交BF 于点H ,CG ∥AE 交BF 于点G .下列结论:①sin cos HBE HEB ∠=∠;②CG BF BC CF ⋅=⋅;③BH =FG ;④22BC BGCF GF=.其中正确的序号是( ) A .①②③ B .②③④ C .①③④D .①②④第Ⅱ卷(非选择题 共64分)二、填空题:本大题共6个小题,每小题3分,共18分.将正确答案直接填在答题卡相应位置上. 13.分解因式:2123x -=______________.14.在一只不透明的口袋中放入只有颜色不同的白球6个,黑球4个,黄球n 个,搅匀后随机从中摸取一个恰好是黄球的概率为13,则放入的黄球总数n =_________.15.如图,小菲同学要用纸板制作一个高3cm ,底面周长是8πcm 的圆锥形漏斗模型,若不计接缝和损耗,则她所需纸板的面积是__________.16.已知关于x 的方程22(21)20x k x k +++-=的两实数根的平方和等于11,则k 的值为________.E D CBAABCEOxy10%15%55%20%D C B AAB Oxy αy=x+bD E F OABCDE H ABCDEFG17.已知2510m m --=,则22125m m m -+=__________. 18.如图,矩形AOCB 的两边OC 、OA 分别位于x 轴、y 轴上,点B 的 坐标为B (203-,5),D 是AB 边上的一点.将△ADO 沿直线OD 翻折,使A 点恰好落在对角线OB 上的点E 处,若点E 在一反比例 函数的图象上,那么该函数的解析式为___________. 三、本大题共6个小题,共46分. 19.(6分)计算:131212cos303-⎛⎫--++ ⎪︒⎝⎭.20.(6分)已知关于x 、y 的方程组326x y x y a -=⎧⎨+=⎩的解满足3x y +<,求实数a 的取值范围.21.(8分)如图,在对Rt △OAB 依次进行位似、轴对称 和平移变换后得到△O ′A ′B ′.(1)在坐标纸上画出这几次变换相应的图形; (2)设P (x ,y )为△OAB 边上任一点,依次写出这几次变换后点P 对应点的坐标.22.(8分)某中学依山而建,校门A 处有一坡度i =5∶12的斜坡AB ,长度为13米,在坡顶B 处看教学楼CF 的楼顶C 的仰角∠CBF =45°, 离B 点4米远的E 处有一花台,在E 处仰望C 的仰角∠CEF =60°, CF 的延长线交校门处的水平面于点D .求DC 的长.23.(9分)我某市积极开展“阳光体育进校园”活动,各校学生坚持每天锻炼一小时,某校根据实际,决定主要开设A :乒乓球,B :篮球,C :跑步,D :跳绳四种运动项目.为了解学生最喜欢哪一种项目,随机抽取了部分学生进行调查,并将调查结果绘制成如下统计图.请你结合图中信息解答下列问题:(1)求样本中最喜欢B 项目的人数的百分比和所在扇形图中的圆心角的度数. (2)请把统计图补充完整.(3)已知该校有1200人,请根据样本估计全校最喜欢乒乓球的人数是多少?24.某校将喜迎国庆歌咏比赛,需在文具店购买国旗图案贴纸和小红旗发给学生作演出道具.已知每袋贴纸有50张,每袋小红旗有20面,贴纸和小红旗需整袋购买,每袋贴纸价格比每袋小红旗价格少5元,用150元购买贴纸所得袋数与用200元购买小红旗所得袋数相同. (1)求每袋国旗图案贴纸和每袋小红旗的价格各是多少元.(2)如果给每位演出学生分发国旗图案贴纸2张,小红旗1面,设购买国旗图案贴纸a 袋(a 为正整数),那么购买小红旗多少袋能恰好配套?请用含a 的代数式表示.(3)在文具店累计购物超过800元后,超出800元的部分可享受8折优惠.学校按(2)中的配套方案购买,共支付w 元,求w 关于a 的函数关系式.现全校有1200名学生参加演出,需要购买国旗图案贴纸和小红旗各多少袋?所需总费用为多少元?B 卷(共20分)25.(9分)如图,在正方形ABCD 中,E 是DC 边上一点,(与D 、C 不重合),连接AE ,将△ADE沿AE 所在的直线折叠得到△AFE ,延长EF 交BC 于G ,连接AG ,作GH ⊥AG ,与AE 的延长线交于点H ,连接CH . (1)求证:AG =GH ; (2)求证:CH 平分∠DCM .26.(11分)如图,抛物线26y ax bx =++经过点(2,0)A -,(4,0)B 两点,与y 轴交于点C .点D 是抛物线上一个动点,设点D 的横坐标为(14)m m <<.连接AC ,BC ,DB ,DC . (1)求抛物线的函数表达式;(2)BCD △的面积等于AOC △的面积的34时,求m 的值; (3)在(2)的条件下,若点M 是x 轴上的一个动点,点N 是抛物线上一动点,试判断是否存在这样的点M ,使得以点B ,D ,M ,N 为顶点的四边形是平行四边形.若存在,请直接写出点M 的坐标;若不存在,请说明理由.xyBAODE CyxO'A'B'ABO HG FE D C B A M实验初中2020届初三二诊考试数学试题参考答案满分:120分 考试时间:120分钟.A 卷(共100分) 第Ⅰ卷(选择题 共36分)一、选择题:本大题共12个小题,每小题3分,共36分.在每个小题给出的四个选项中,只有一项是正确的,请把正确选项的字母填涂在答题卡上相应的位置. 1.64的值是( C )A .4B .4±C .8D .8±2.新建成的北京大兴国际机场的航站楼建筑面积约1 400 000米2,数据1 400 000用科学记数法应表示为( C ) A .80.1410⨯ B .71.410⨯C .61.410⨯D .51410⨯ 3.下列运算正确的是( D )A .23a a a +=B .235a b ab +=C .()239a a =D .32a a a ÷=4.如图所示,BD 是△ABC 的角平分线,DE ∥BC ,交AB 于点E ,∠A =45°,∠BDC =60°,则∠C 的度数为( B ) A .100° B .105° C .110° D .115°5.如图的几何体由六个相同的小正方体搭成,它的左视图是( D )6.使代数式433x x +-+有意义的整数x 有( B )A .5个B .4个C .3个D .2个 7.如图,在平面直角坐标系中,四边形OABC 为菱形,O (0,0), A (4,0),∠AOC =60°,则对角线交点E 的坐标为( D )A .(2,3)B .(3,2)C .(3,3)D .(3,3)8.某超市销售A ,B ,C ,D 四种矿泉水,它们的单价依次是5元、3元、2元、1元.某天的销售情况如图所示,则这天销售的矿泉水的平均 单价是( C ) A .1.95元 B .2.15元C .2.25元D .2.75元9.如图,已知A 点坐标为(5,0),直线(0)y x b b =+≥与y 轴交于点B ,连接AB ,∠75α=︒,则b 的值为( B )A .3B .53C .4D .5310.如图,直线AB 与半径为2的⊙O 相切于点C ,D 是⊙O 上一点,且∠EDC =30°,弦EF ∥AB ,则EF 的长度为( A )A .23B .3C .2D .2211.如图,在等边△ABC 中,D 为BC 边上一点,E 为AC 边上一点,且∠ADE =60°,BD =4,CE =43,则△ABC 的面积为( C )A .83B .15C .93D .12312.如图,在正方形ABCD 中,E 、F 分别是边BC 、CD 的中点,AE 交BF 于点H ,CG ∥AE 交BF 于点G .下列结论:①sin cos HBE HEB ∠=∠;②CG BF BC CF ⋅=⋅;③BH =FG ;④22BC BGCF GF=.其中正确的序号是( D ) A .①②③ B .②③④ C .①③④D .①②④第Ⅱ卷(非选择题 共64分)二、填空题:本大题共6个小题,每小题3分,共18分.将正确答案直接填在答题卡相应位置上. 13.分解因式:2123x -=_()()32121x x +-_____________.14.在一只不透明的口袋中放入只有颜色不同的白球6个,黑球4个,黄球n 个,搅匀后随机从中摸取一个恰好是黄球的概率为13,则放入的黄球总数n =____5_____.15.如图,小菲同学要用纸板制作一个高3cm ,底面周长是8πcm 的圆锥形漏斗模型,若不计接缝和损耗,则她所需纸板的面积是__20πcm 2________.16.已知关于x 的方程22(21)20x k x k +++-=的两实数根的平方和等于11,则k 的值为___1_____.E D CBAABCEOxy10%15%55%20%D C B AAB Oxy αy=x+bD E F OABCDE HABCDEFG17.已知2510m m --=,则22125m m m -+=_28_________. 18.如图,矩形AOCB 的两边OC 、OA 分别位于x 轴、y 轴上,点B 的 坐标为B (203-,5),D 是AB 边上的一点.将△ADO 沿直线OD 翻折,使A 点恰好落在对角线OB 上的点E 处,若点E 在一反比例 函数的图象上,那么该函数的解析式为___12y x=-________. 三、本大题共6个小题,共46分. 19.(6分)计算:131212cos303-⎛⎫--++ ⎪︒⎝⎭.20.(6分)已知关于x 、y 的方程组326x y x y a -=⎧⎨+=⎩的解满足3x y +<,求实数a 的取值范围.解:略21.(8分)如图,在对Rt △OAB 依次进行位似、轴对称和平移变换后得到△O ′A ′B ′.(1)在坐标纸上画出这几次变换相应的图形; (2)设P (x ,y )为△OAB 边上任一点,依次写出这几次变换后点P 对应点的坐标. 解:略22.(8分)某中学依山而建,校门A 处有一坡度i =5∶12的斜坡AB ,长度为13米,在坡顶B 处看教学楼CF 的楼顶C 的仰角∠CBF =45°, 离B 点4米远的E 处有一花台,在E 处仰望C 的仰角∠CEF =60°, CF 的延长线交校门处的水平面于点D .求DC 的长. 解:略.23.(9分)我某市积极开展“阳光体育进校园”活动,各校学生坚持每天锻炼一小时,某校根据实际,决定主要开设A :乒乓球,B :篮球,C :跑步,D :跳绳四种运动项目.为了解学生最喜欢哪一种项目,随机抽取了部分学生进行调查,并将调查结果绘制成如下统计图.请你结合图中信息解答下列问题:(1)求样本中最喜欢B 项目的人数的百分比和所在扇形图中的圆心角的度数. (2)请把统计图补充完整.(3)已知该校有1200人,请根据样本估计全校最喜欢乒乓球的人数是多少? 解:略.24.某校将喜迎国庆歌咏比赛,需在文具店购买国旗图案贴纸和小红旗发给学生作演出道具.已知每袋贴纸有50张,每袋小红旗有20面,贴纸和小红旗需整袋购买,每袋贴纸价格比每袋小红旗价格少5元,用150元购买贴纸所得袋数与用200元购买小红旗所得袋数相同. (1)求每袋国旗图案贴纸和每袋小红旗的价格各是多少元.(2)如果给每位演出学生分发国旗图案贴纸2张,小红旗1面,设购买国旗图案贴纸a 袋(a 为正整数),那么购买小红旗多少袋能恰好配套?请用含a 的代数式表示.(3)在文具店累计购物超过800元后,超出800元的部分可享受8折优惠.学校按(2)中的配套方案购买,共支付w 元,求w 关于a 的函数关系式.现全校有1200名学生参加演出,需要购买国旗图案贴纸和小红旗各多少袋?所需总费用为多少元? 解:(1)每袋国旗图案贴纸的价格为15元,每袋小红旗的价格为20元.(2)购买小红旗54a 袋能恰好配套.(3)40(20)32160(20)a a w a a ⎧=⎨+>⎩≤;需要购买国旗图案贴纸48袋,小红旗60袋,所需总费用为1696元.B 卷(共20分)25.(9分)如图,在正方形ABCD 中,E 是DC 边上一点,(与D 、C 不重合),连接AE ,将△ADE沿AE 所在的直线折叠得到△AFE ,延长EF 交BC 于G ,连接AG ,作GH ⊥AG ,与AE 的延长线交于点H ,连接CH . (1)求证:AG =GH ;(2)求证:CH 平分∠DCM . 解:略.26.(11分)如图,抛物线26y ax bx =++经过点(2,0)A -,(4,0)B 两点,与y 轴交于点C .点D 是抛物线上一个动点,设点D 的横坐标为(14)m m <<.连接AC ,BC ,DB ,DC . (1)求抛物线的函数表达式;(2)BCD △的面积等于AOC △的面积的34时,求m 的值; (3)在(2)的条件下,若点M 是x 轴上的一个动点,点N 是抛物线上一动点,试判断是否存在这样的点M ,使得以点B ,D ,M ,N 为顶点的四边形是平行四边形.若存在,请直接写出点M 的坐标;若不存在,请说明理由.解:(1)233642y x x =-++;(2)m 的值为3;(3)存在,点M 为(8,0),(0,0),(14,0)或(14-,0)xyBAODE CyxO'A'B'AB O HGFE D CBAM。
2020年四川省成都市中考数学二诊试卷
中考数学二诊试卷题号一二三四总分得分一、选择题(本大题共10小题,共30.0分)1.《九章算术》中注有“今两算得失相反,要令正负以名之”,意思是:今有两数若其意义相反,则分别叫做正数与负数,若收入60元记作+60元,则-20元表示()A. 收入20元B. 收入40元C. 支付40元D. 支出20元2.已知一个几何体如图所示,则该几何体的左视图是()A. B. C. D.3.金堂县毗河城区河道整治工程长度为6.3km,起于毗河三桥,止于毗河与中河汇口处,机械清淤量为64万方,人工清淤量为0.5万方,沿线土方开挖3.5万方;该工程于2018年12月5日开工,预计竣工日期为2019年4月30日,则64万用科学记数法表示为()A. 0.64×106B. 6.4×106C. 64×103D. 6.4×1054.下列计算错误的是()A. a2÷a0•a2=a4B. a2÷(a0 •a2)=1C. (a+b)2•(a+b)3 =a5+b5D. (a+b)•(a-b)=a2-b25.若代数式有意义,则实数x的取值范围是()A. x≠1B. x≥0C. x>0D. x≥0且x≠16.如图,AB∥CD,射线AE平分∠CAB.若∠ACD=100°,则∠CEA的度数为()A. 35°B. 40°C. 70°D. 80°7.某同学统计了4月份某天全国8个城市的空气质量指数,并绘制了折线统计图(如图),则这8个城市的空气质量指数的中位数是()A. 57B. 40C. 73D. 658.关于x的一元二次方程式x2-ax-2=0,下列结论一定正确的是()A. 该方程有两个相等的实数根B. 该方程有两个不相等的实数根C. 该方程没有实数根D. 无法确定9.将抛物线向右平移3个单位,再向下平移2个单位,得到抛物线解析式为()A. B.C. D.10.如图,正方形ABCD的正三角形AEF都内接于⊙O,则∠DAF的度数是()A. 45°B. 30°C. 15°D. 10°二、填空题(本大题共9小题,共36.0分)11.因式分解:xy2-9x=______.12.已知关于x的方程的增根是2,则a=______.13.如图,直线y=mx和y=nx+2交于点(1,m),则不等式mx<nx+2的解集为______.14.如图,在Rt△ABC中,∠BAC=90°,AB=1,tan C=,以点A为圆心,AB长为半径作弧交AC于D,分别以B、D为圆心,以大于BD长为半径作弧,两弧交于点E,射线AE与BC于F,过点F作FG⊥AC于G,则FG的长为______.15.已知有理数a,b,c在数轴上的位置如图所示,简化:|a+b+c|-=______.16.已知实数m满足x2-3x+1=0,则代数式的值等于______.17.现有7张下面分别标有数字-2,-1,0,1,2,3,4的不透明卡片,它们除数字不同外其余全部相同.现将它们背面朝上,洗匀后从中任取一张,将该卡片上的数字记为m,则使得关于x的二次函数y=x2-2x+m-2与x轴有交点,且交于x的分式方程有解的概率为______.18.如图,在△ABC中,∠B=90°,AB=BC,∠BCM是△ABC的外角,∠BAC、∠BCM的平分线交于点D,AD与BC交于点E,若BE=2,则AE•DE=______.19.如图,在平面直接坐标系中,将反比例函数的图象绕坐标原点O逆时针旋转45°得到的曲线l,过点的直线与曲线l相交于点C、D,则sin∠COD=______.三、计算题(本大题共2小题,共12.0分)20.化简:21.如图,在Rt△ABC中,∠ABC=90°,以CB为半径作⊙C,交AC于点D,交AC的延长线于点E,连接BD,BE.(1)求证:△ABD∽△AEB;(2)当=时,求tan E;(3)在(2)的条件下,作∠BAC的平分线,与BE交于点F,若AF=2,求⊙C的半径.四、解答题(本大题共7小题,共56.0分)22.(1)计算:(2)解不等式组:并求出它的整数解.23.为了减轻二环高架上汽车的噪音污染,成都市政府计划在高架上的一些路段的护栏上方增加隔音屏.如图,工程人员在高架上的车道M处测得某居民楼顶的仰角∠ABC的度数是20°,仪器BM的高是0.8m,点M到护栏的距离MD的长为11m,求需要安装的隔音屏的顶部到桥面的距离ED的长(结果保留到0.1m,参考数据:sin20°≈0.34,cos20°≈0.94,tan20°≈0.36)24.结合书香成都全民阅读活动,金堂在全县中小学推广普及中华经典诵读,让孩子掌握国学经典作品“读、诵、吟”等基本方法,培养中华经典诵读活动的爱好者、传播者,营造浓郁的文化氛围.2018年9月某初中学校开展了国学金典诵读活动,林老师对各年级同学的获奖情况进行了统计,并绘制了如下两幅不完整的统计图,请结合图中相关数据解答下列问题:(1)请将条形统计图补全;(2)获得一等奖的同学中有1名来自七年级,有2名来自八年级,其他同学均来自九年级,现准备从获得一等奖的同学中任选两人参加县级国学经典诵读大赛,请用列表或画树状图的方法求所选出的两人中既有七年级又有八年级同学的概率.25.如图,直线y1=﹣x+4与双曲线y=(k≠0)交于A、B两点,点A的坐标为(1,m),经过点A直线y2=x+b与x轴交于点C.(1)求反比例函数的表达式以及点C的坐标;(2)点P是x轴上一动点,连接AP,若△ACP是△AOB的面积的一半,求此时点P的坐标.26.为了迎接“五•一”小长假的购物高峰.某服装专卖店老板小王准备购进甲、乙两种夏季服装.其中甲种服装每件的成本价比乙种服装的成本价多20元,甲种服装每件的售价为240元比乙种服装的售价多80元.小王用4000元购进甲种服装的数量与用3200元购进乙种服装的数量相同.(1)甲种服装每件的成本是多少元?(2)要使购进的甲、乙两种服装共200件的总利润(利润=售价-进价)不少于21100元,且不超过21700元,问小王有几种进货方案?27.在矩形ABCD中,G为AD上一点,连接BG,CG,过作CE⊥BG于点E,连接ED交GC于点F.(1)如图1,若点G为AD的中点,则线段BG与CG有何数量关系?请说理由.(2)如图2,若点E恰好为BG的中点,且AB=3,AG=k(0<k<3)求的值(用含k的代数式表示);(3)在(2)有条件下,若M、N分别为GC、EC上的任意两点,连接NF、NM,当k=时,求NF+NM的最小值.28.如图,在平面直角坐标系中,已知抛物线y=ax2+bx+c(a<0)经过点A(-1,0)、B(4,0)与y轴交于点C,tan∠ABC=.(1)求抛物线的解析式;(2)点M在第一象限的抛物线上,ME平行y轴交直线BC于点E,连接AC、CE,当ME取值最大值时,求△ACE的面积.(3)在y轴负半轴上取点D(0,-1),连接BD,在抛物线上是否存在点N,使∠BAN=∠ACO-∠OBD?若存在,请求出点N的坐标;若不存在,请说明理由.答案和解析1.【答案】D【解析】解:根据题意,收入60元记作+60元,则-20元表示支出20元.故选:D.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.本题考查了正数和负数,解题关键是理解“正”和“负”的相对性,确定一对具有相反意义的量.2.【答案】D【解析】解:观察图形可知,该几何体的左视图是.故选:D.利用左视图的观察角度,进而得出视图.此题主要考查了简单几何体的三视图,正确把握观察角度是解题关键.3.【答案】D【解析】解:64万=6.4×105.故选:D.用科学记数法表示较大的数时,一般形式为a×10n,其中1≤|a|<10,n为整数,据此判断即可.此题主要考查了用科学记数法表示较大的数,一般形式为a×10-n,其中1≤|a|<10,确定a与n的值是解题的关键.4.【答案】C【解析】解:A、a2÷a0•a2=a4,正确,不合题意;B、a2÷(a0•a2)=1,正确,不合题意;C、(a+b)2•(a+b)3=(a+b)5,错误,符合题意;D、(a+b)•(a-b)=a2-b2,正确,不合题意;故选:C.直接利用整式的混合运算法则以及同底数幂的乘除运算法则分别计算得出答案.此题主要考查了整式的混合运算以及同底数幂的乘除运算,正确掌握相关运算法则是解题关键.5.【答案】D【解析】解:根据题意得:,解得:x≥0且x≠1.故选:D.根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,可以求出x的范围.本题考查的知识点为:分式有意义,分母不为0;二次根式的被开方数是非负数.6.【答案】B【解析】解:∵AB∥CD,∠ACD=100°,∴∠BAC=180°-100°=80°,又∵射线AE平分∠CAB,∴∠BAE=∠BAC=40°,∵AB∥CD,∴∠AEC=∠BAE=40°,故选:B.依据平行线的性质以及角平分线的定义,即可得到∠CEA的度数.本题主要考查了平行线的性质,解题时注意:两直线平行,内错角相等.7.【答案】A【解析】解:把这些数从小到大排列为:29,36,40,57,57,73,77,81,最中间两个数的平均数是:(57+57)÷2=57,∴这8个城市的空气质量指数的中位数是:57,故选:A.根据中位数的定义先把这些数从小到大排列,再找出最中间两个数的平均数,即可得出答案.本题考查了中位数.中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数),叫做这组数据的中位数.如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.8.【答案】B【解析】解:因为△=(-a)2-4×1×(-2)=a2+8>0,所以方程有两个不相等的实数根.故选:B.计算判别式得到△=a2+8,利用非负数的性质得到△>0,从而可判断方程根的情况.本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2-4ac有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.9.【答案】C【解析】解:∵抛物线的顶点坐标为(-1,0),∴向右平移3个单位,再向下平移2个单位后的顶点坐标是(2,-2)∴所得抛物线解析式是.故选:C.求出原抛物线的顶点坐标,再根据向左平移横坐标间,向下平移纵坐标减求出平移后的抛物线的顶点坐标,然后利用顶点式解析式写出即可.本题考查了二次函数图象与几何变换,利用顶点的变化确定抛物线解析式的变化更简便.10.【答案】C【解析】解:连接AC,BD,∵∠BAD=∠ADC=90°,∴AC,BD是⊙O的直径,∵△AEF是等边三角形,∴AO平分∠FAE,∴∠FAO=30°,∠DAO=45°,∴∠DAF=15°,故选:C.连接AC,BD,根据圆周角定理得到AC,BD是⊙O的直径,得到∠FAO=30°,∠DAO=45°,于是得到结论.本题考查了三角形的外接圆和外心,等边三角形的性质,正方形的性质,要熟练掌握,解答此题的关键是要明确正多边形的有关概念.11.【答案】x(y+3)(y-3)【解析】解:原式=x(y2-9)=x(y+3)(y-3).故答案为:x(y+3)(y-3).首先提取公因式x,进而利用平方差公式分解因式得出答案.此题主要考查了提取公因式法以及公式法分解因式,熟练应用公式分解因式是解题关键.12.【答案】2【解析】解:方程两边都乘x(x-2),得2x-(x+a)=0,∵原方程增根为x=2,∴把x=2代入整式方程,得a=2,故答案为:2.增根是分式方程化为整式方程后产生的使分式方程的分母为0的根.把增根代入化为整式方程的方程即可求出a的值.本题考查了分式方程的增根,增根确定后可按如下步骤进行:①化分式方程为整式方程;②把增根代入整式方程即可求得相关字母的值.13.【答案】x<1【解析】解:∵直线y=mx和y=nx+2交于点(1,m),∴不等式mx<nx+2的解集是x<1,故答案为:x<1.根据两直线的交点坐标和函数的图象即可求出答案.本题考查了对一次函数与一元一次不等式的应用,主要考查学生的观察图形的能力和理解能力,题目比较好,但是一道比较容易出错的题目.14.【答案】【解析】解:如图过点F作FH⊥AB于点H,由作图知AD=AB=1,AE平分∠BAC,∴FG=FH,又∵∠BAC=∠AGF=90°,∴四边形AGFH是正方形,设AG=x,则AH=FH=GF=x,∵tan C=,∴AC==,则CG=-x,∵∠CGF=∠CAB=90°,∴FG∥BA,∴△CFG∽△CBA,∴=,即=,解得x=,∴FG=,故答案为:.作FH⊥AB,由作图知AD=AB=1,AE平分∠BAC,据此得FG=FH,设AG=x,证四边形AGFH是正方形得AH=FH=GF=x,再证△CFG∽△CBA得=,据此求解可得.本题主要考查作图-复杂作图,解题的关键是掌握正方形的判定与性质、相似三角形的判定与性质、角平分线的尺规作图与性质等知识点.15.【答案】-a-2c【解析】解:由数轴知a<b<0<c,且|a|>|c|>|b|,则a+b+c<0,b-c<0,所以原式=-(a+b+c)+(b-c)=-a-b-c+b-c=-a-2c,故答案为:-a-2c.由数轴得出a<b<0<c且|a|>|c|>|b|,据此可得a+b+c<0,b-c<0,再根据绝对值的性质和二次根式的性质化简可得.本题主要考查二次根式的性质与化简,解题的关键是根据数轴判断出a+b+c、b-c的取值情况及二次根式的性质.16.【答案】7【解析】解:∵实数m满足x2-3x+1=0,∴m2-3m+1=0,∴除以m得:m-3+=0,∴m+=3,∴=(m+)2-2•m•=32-2=7.先求出m+的值,再根据完全平方公式进行变形,最后代入求出即可.本题考查了分式的混合运算和求值,一元二次方程的解,能够求出m+的值是解此题的关键.17.【答案】【解析】解:∵关于x的二次函数y=x2-2x+m-2与x轴有交点,∴△=b2-4ac=4-4(m-2)≥0,解得m≤3,∴m=-2,-1,0,1,2,3,解分式方程得x=,当m≠2且m≠1时,方程有解,∴m=-2,-1,0,3,故使得关于x的二次函数y=x2-2x+m-2与x轴有交点,且交于x的分式方程有解的概率为,故答案为.先根据根的判别式求出m的取值范围,求出m的所有值,然后根据分式方程有根,求出不满足条件的m的值,从而求出m的值,最后用概率公式计算即可.本题考查了概率公式:随机事件A的概率P(A)=事件A可能出现的结果数÷所有可能出现的结果数.18.【答案】8+8【解析】解:作EF⊥AC于F,如图所示:∵AD是∠BAC的平分线,∠B=90°,EF⊥AC于F,∴FE=BE=2,∵AB=BC,∴∠BAC=∠ACB=45°,∴∠BCM=135°,△CEF是等腰直角三角形,∴FC=FE=2,CE=FE=2,∴AB=BC=BE+CE=2+2,∴AE===2,∵∠BAC、∠BCM的平分线交于点D,∴∠CAE=∠BAC=22.5°,∠DCE=∠BCM=67.5°,∵∠DEC=∠CAE+∠ACB=67.5°=∠DCE,∴DE=DC,∠CDE=45°,作EM⊥CD于M,则∠MED=45°,∴∠CEM=67.5°-45°=22.5°,作∠ECN=∠CEM=22.5°,则CN=EN,∠CNM=45°,则△MDE和△MCN是等腰直角三角形,∴ME=MD,MC=MN,设MC=MN=x,则EN=CN=x,∴MD=ME=x+x,在Rt△MCE中,由勾股定理得:x2+(x+x)2=(2)2,解得:x=,∴DE=DC=(2+)x=(2+),∴AE•DE=2•(2+)=2(2+)•=8+8;故答案为:8+8.作EF⊥AC于F,由角平分线的性质得出FE=BE=2,证出△CEF是等腰直角三角形,得出FC=FE=2,CE=FE=2,AB=BC=BE+CE=2+2,由勾股定理得出AE==2,证出DE=DC,∠CDE=45°,作EM⊥CD于M,则∠MED=45°,作∠ECN=∠CEM=22.5°,则CN=EN,∠CNM=45°,则△MDE和△MCN是等腰直角三角形,得出ME=MD,MC=MN,设MC=MN=x,则EN=CN=x,MD=ME=x+x,在Rt△MCE 中,由勾股定理得出方程,解得:x=,得出DE=DC=(2+)x=(2+),即可得出答案.本题考查了角平分线的性质、等腰直角三角形的判定与性质、勾股定理等知识;熟练掌握等腰直角三角形的判定与性质是解题的关键..19.【答案】.【解析】解:∵,∴OA⊥OB,建立如图新的坐标系,OB为x′轴,OA为y′轴.在新的坐标系中,A(0,2),B(4,0),∴直线AB解析式为y′=-x′+2,由,解得或,∴C(1,),D(3,),∴S△OCD=S△OBC-S△OBD=•4•-•4•=2,∵C(1,),D(3,),∴OC==,OD==,作CE⊥OD于E,∵S△OCD=OD•CE=2,∴CE=,∴sin∠COD==,故答案为.由题意点,可知OA⊥OB,建立如图新的坐标系(OB为x′轴,OA为y′轴,利用方程组求出C、D的坐标,根据勾股定理求得OC、OD的长,根据S△OCD=S△OBC-S△OBD计算求得△OCD的面积,根据三角形面积公式求得CE的长,然后解直角三角形即可求得sin∠COD的值.本题考查坐标与图形的性质、反比例函数的性质等知识,解题的关键是学会建立新的坐标系解决问题,属于中考填空题中的压轴题.20.【答案】解:原式=•=•=x-2.【解析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分即可得到结果.此题考查了分式的混合运算,熟练掌握运算法则是解本题的关键.21.【答案】解:(1)∵∠ABC=90°,∴∠ABD=90°-∠DBC,由题意知:DE是直径,∴∠DBE=90°,∴∠E=90°-∠BDE,∵BC=CD,∴∠DBC=∠BDE,∴∠ABD=∠E,∵∠A=∠A,∴△ABD∽△AEB;(2)∵AB:BC=4:3,∴设AB=4,BC=3,∴AC==5,∵BC=CD=3,∴AD=AC-CD=5-3=2,由(1)可知:△ABD∽△AEB,∴==,∴AB2=AD•AE,∴42=2AE,∴AE=8,在Rt△DBE中tan E====;(3)过点F作FM⊥AE于点M,∵AB:BC=4:3,∴设AB=4x,BC=3x,∴由(2)可知;AE=8x,AD=2x,∴DE=AE-AD=6x,∵AF平分∠BAC,∴=,∴==,∵tan E=,∴cos E=,sin E=,∴=,∴BE=,∴EF=BE=,∴sin E==,∴MF=,∵tan E=,∴ME=2MF=,∴AM=AE-ME=,∵AF2=AM2+MF2,∴4=+,∴x=,∴⊙C的半径为:3x=.另解:由上述知tan∠FAM==,∵BC=DC=CE,=,∴AD:DM:ME=2:3:3,∵tan∠E==,设FM=a,则AM=3a,ME=2a,∴AE=5a,∴DC=AE=a,由勾股定理可知:AF=a,∵AF=2,∴a=,∴DC=【解析】(1)要证明△ABD∽△AEB,已经有一组对应角是公共角,只需要再找出另一组对应角相等即可.(2)由于AB:BC=4:3,可设AB=4,BC=3,求出AC的值,再利用(1)中结论可得AB2=AD•AE,进而求出AE的值,所以tan E==.(3)设AB=4x,BC=3x,由于已知AF的值,构造直角三角形后利用勾股定理列方程求出x的值,即可知道半径3x的值.此题属于圆的综合题,涉及了相似三角形判定与性质、三角函数值的知识,综合性较强,解答本题需要我们熟练各部分的内容,对学生的综合能力要求较高,一定要注意将所学知识贯穿起来.22.【答案】解:(1)原式=3-2×-1+2-=3-2-1+2-=2-;(2)∵解不等式①得:x>-2,解不等式②得:x≤3,∴不等式组的解集是-2<x≤3,∴不等式组的整数解是-1,0,1,2,3.【解析】(1)先根据负整数指数幂,二次根式的性质,特殊角的三角函数值,零指数幂,绝对值进行计算,再求出即可;(2)先求出每个不等式的解集,再求出不等式组的解集即可.本题考查了负整数指数幂,二次根式的性质,特殊角的三角函数值,零指数幂,绝对值,解一元一次不等式组,不等式组的整数解等知识点,能熟练地运用知识点进行计算是解此题的关键.23.【答案】解:由题意:CD=BM=0.8m,BC=MD=11m,在Rt△ECB中,EC=BC•tan20°=11×0.36≈3.96(m),∴ED=CD+EC=3.96+0.8≈4.8(m),答:需要安装的隔音屏的顶部到桥面的距离ED的长4.8m.【解析】在Rt△BCE中,求出EC即可解决问题;本题考查了解直角三角形-仰角俯角问题.要求学生能借助仰角构造直角三角形并解直角三角形.24.【答案】解:(1)本次抽查的人数为:10÷25%=40,一等奖人数为:40-8-6-12-10=4,补全的条形统计图如右图所示;(2)由(1)可知获得一等奖的4人,则七年级1人,八年级2人,九年级1人,所选出的两人中既有七年级又有八年级同学的概率是.【解析】(1)根据参与奖的人数和百分比可以求得本次抽查的人数,从而可以求得获得一等奖的人数,进而可以将条形统计图补充完整;(2)根据(1)中的结果,可以画出相应的树状图,从而可以求得所选出的两人中既有七年级又有八年级同学的概率.本题考查列表法与树状图法、扇形统计图、条形统计图,解答本题的关键是明确题意,利用数形结合的思想解答,25.【答案】解:(1)把A(1,m)代入y1=-x+4得,m=-1+4=3,∴A(1,3),∵点A在双曲线y=(k≠0)上,∴k=1×3=3,∴反比例函数的表达式为y=,∵直线y2=x+b经过点A,∴b=2,∴直线y2=x+2,令y2=0,求得x=-2,∴C(-2,0);(2)连接OA、OB,分别作AM⊥x轴于M,BN⊥x轴于N,由题意得,解得或,∴A(1,3),B(3,1),∴AM=3,BN=1,MN=2,∴S△AOB=S△AOM+S梯形AMNB-S△BON=S梯形AMNB==4,设P(x,0),∴CP=|x+2|,∴S△ACP==S△AOB,∴|x+2|=,则x=±-2,∴x=-或-∴P点为(-,0)或(-,0).【解析】(1)根据一次函数图象上点的坐标特征求得A的坐标,然后根据待定系数法求得反比例函数的解析式以及直线y2的解析式,由直线y2的解析式即可求得C的坐标;(2)连接OA、OB,分别作AM⊥x轴于M,BN⊥x轴于N,首先联立方程,求得交点A、B的坐标,从而求得AM=3,BN=1,MN=2,求得△AOB的面积,设P(x,0),根据题意得出|x+2|=,从而求得P的坐标.本题考查了一次函数和反比例函数的交点问题,一次函数图象上点的坐标特征,待定系数法求反比例函数的解析式以及三角形面积等,求得△AOB的面积是解题的关键.26.【答案】解:(1)设甲种服装每件的成本是x元,则乙服装成本价为(x-20)元/件,则=.解得x =100经检验,x=100是原方程的根,且符合题意.答:甲种服装每件的成本是100元;(2)设甲种服装购进m件,则乙种服装购进(200-m)件,则21100≤(240-100)m+(160+80)(200-m)≤21700解之得:85≤m≤95.因为m是正整数,所以m可以取85、86、87、88、89、90、91、92、93、94、95.所以进货方案有11种.【解析】(1)设甲种服装每件的成本是x元,则乙服装成本价为(x-20)元/件,根据“用4000元购进甲种服装的数量与用3200元购进乙种服装的数量相同”列分式方程求解即可;(2)设甲种服装购进m件,则乙种服装购进(200-m)件,然后根据购进这200件服装的费用不少于21100元,且不超过21700元,列出不等式组解答即可.本题考查了分式方程的应用、不等式组的应用,分析题意,找到合适的等量关系是解决问题的关键.27.【答案】解:(1)结论:GB=GC.理由:∵四边形ABCD是矩形,∵AB=DC,∠A=∠CDG=90°,∵GA=GD,∴△BAG≌△CDG(SAS),∴BG=CG.(2)解:在矩形ABCD中,∵∠A=∠ABC=90°,∵CE⊥BG,∴∠CEB=90°,∴∠A=∠CEB,∴∠AGB+∠ABG=∠ABG+∠GBC=90°,∴∠AGB=∠GBC,∴△ABG∽△ECB;∴=,∵BG=,E为BG的中点,∴BE=,∴BC=,如图1,过G作GH⊥GD交DE于H∴GD=BC-AG=,∵∠BEC=∠ADC=90°,∴G,E.C,D四点共圆,∴∠GDH=∠GCE=∠BCE=∠ABG,∴△AGB∽△GHD,∴=,∴GH=,∴==,∴==;(3)当k=时,=,如图2,过F作FJ⊥BC于J交CE于N,反向延长交AD于H,则FH⊥AD,过N作NM⊥PC于M,∴NF+NM的最小值即为FJ的长,∴==,∴=,∵HJ=CD=AB=3,∴FJ=,即NF+NM的最小值是.【解析】(1)结论:GB=GC.证明△BAG≌△CDG即可.(2)根据相似三角形的性质得到=,得到BP=,过P作GH⊥GD交DE于H,推出G,E.C,D四点共圆,根据圆周角定理得到∠GDH=∠GCE=∠BCE=∠ABG,根据相似三角形的想知道的=,即可得到结论.(3)把k=代入==,过F作FJ⊥BC于J交CE于N,反向延长交AD于H,则FH⊥AD,过N作NM⊥PC于M,根据线段公理得到NF+NM的最小值即为FJ的长,即可得到结论.本题属于相似形综合题,考查了相似三角形的判定和性质,四点共圆,勾股定理,最短距离问题,正确的作出辅助线构造相似三角形是解题的关键,属于中考压轴题.28.【答案】解:(1)∵B(4,0),∴OB=4,∵tan∠ABC===,∴OC=2,∴C(0,2),设y=a(x-1)(x-4),把C(0,2)代入求得a=-,∴抛物线的解析式为y=-(x-1)(x-4)=-x2+x+2;(2)设直线BC的解析式为y=kx+2,把B(4,0)代入求得k=-,∴直线BC解析式为y=-x+2,设M(m,-m2+m+2),则E(m,-m+2),∴ME=-m2+2m,∴当m=2时,ME取得最大值2,∴E(2,1),∴S△ACE=S△ABC-S△ABE=×5×(2-1)=;(3)作C′(0,-2)与C关于x轴对称,连接BC′,过点D作DE⊥BC′于点E,∴∠ABC=∠ABC′,∵=,∠AOC=∠BOC=90°,∴△AOC∽△COB,∴∠ABC=∠ACO,∴∠ABC′=∠ACO,即∠BAN=∠ACO-∠OBD=∠DBC′,由题意得DC′=1、DB=,BC′=2,∵S△DBC′==,∴DE=,∴BE=,∴tan∠DBC′=tan∠BAN=,设N(n,-n2+n+2),且n>0,∴tan∠BAN===,①当2n+2=9×(-n2+n+2)时,n1=,n2=-1(舍去);②当2n+2=-9×(-n2+n+2)时,n1=,n2=-1(舍去);∴N点的坐标为(,)或(,-).【解析】(1)由tan∠ABC=、OB=4得出C的坐标,再利用待定系数法求解可得;(2)先气促胡直线BC解析式为y=-x+2,设M(m,-m2+m+2),知E(m,-m+2),从而得ME=-m2+2m,据此知当m=2时,ME取得最大值2,再利用割补法求解可得;(3)作C′(0,-2)与C关于x轴对称,连接BC′,过点D作DE⊥BC′,证∠ABC′=∠ACO,得∠BAN=∠ACO-∠OBD=∠DBC′,结合DC′=1、DB=,BC′=2知S△DBC′==,从而求得DE=,BE=,据此知tan∠DBC′=tan∠BAN=,设N(n,-n2+n+2),且n>0,由=求出n的值,从而得出答案.本题是二次函数的综合问题,解题的关键是掌握待定系数法求函数解析式、二次函数的性质的运用、相似三角形的判定与性质等知识点.。
2020年成都市武侯区九年级二诊试卷
2020年武侯区二诊试题A卷一、选择题(每题2分,共30分)1.下列估测数据,符合生活实际的是()A.人体正常体温约为37℃B.人的步行速度约为10m/sC.一个鸡置的质量约为250gD.一台空调额定功率是50W2.中国高铁、移动支付.共享单车、“蛟龙号”潜求器……当今中国,科技进步使生活更加便捷。
下列说法中正确的是()A.“复兴”号高速列车因为速度很大所以惯性很大B.“蛟龙号”潜水器在海面下下潜过程中受到的浮力逐渐增大C.共享单车坐垫设计得较宽,目的是为了增大压强D.用手机进行移动支付时,利用了电磁被传递信息3.生活中有许多光现象,下列说法中正确的是()A.凸透镜所成的实像一定是放大的B.黑板反光是由光的镜面反射引起的C.远视眼可用凹透镜制成的眼镜来矫正D.汽车夜间行驶时.应打开驾驶室内照明灯4.关于核能、地热能、潮沙能的说法,正确的是()A.核燃料、地热能和潮汐能等都是可再生能源B.核能是清洁型能源,对人类不会造成任何危害C.目前枝电站获得核能的途径是核裂变的可控链式反应D.地球上的核能、地热能和潮汐能都是来自太阳5.如图所示。
将悬挂的乒乓球轻轻接触正在发声的音叉,乒兵球多次被弹开.关于此实验,下列说法中错误的是()A.音叉发出声音的音调越高,乒乓球被弹开得越远B.音文发出声音的响度越大,乒乓球被弹开得越远C本实检可以证明声音是由于物体的振动而产生的D.乒乓球被弹开的越远,说明音叉振动幅度越大6.甲、乙两列火车并排停在站台上,小强坐在甲车中向乙车观望,突然,他觉得自己的列车开始缓缓地前进了,但是.“驶过”了乙车的车尾才发现,实际上他乘坐的列车还停在站台上。
下列说法中正确的是()A.小强感觉自己乘坐的列车前进了是以站台为参照物B.小强先后有不同的感觉,是因为他选择的参照物不同而造成的C.小强发现自己乘坐的列车还停在站台上是以乙车的车尾为参照物D.小强发现自己乘尘的列车还停在站台上是以乙车上的乘容为参照物7.如图所示的实例中。
成都市武侯区中考数学二诊试卷含答案解析
四川省成都市武侯区中考数学二诊试卷一、选择题(本大题共10个小题,每小题3分,共30分)1.在实数,6,﹣,2.5中,无理数是()A.B.6 C.﹣D.2.52.如图,其左视图是矩形的几何体是()A. B.C.D.3.成都市元宵节灯展参观人数约为47万人,将47万用科学记数法表示为4.7×10n,那么n的值为()A.3 B.4 C.5 D.64.下列运算正确的是()A.x4+x4=x8B.(x﹣y)2=x2﹣y2C.x3•x4=x7D.(2x2)3=2x65.在下面四个图形中,既是轴对称图形又是中心对称图形的有()A.1个B.2个C.3个D.4个6.计算3﹣2的结果正确的是()A.B.﹣C.9 D.﹣97.3月,成都市某区一周天气质量报告中某项污染指标的数据是:60,60,100,90,90,70,90,则下列关于这组数据表述正确的是()A.众数是60 B.中位数是100 C.平均数是78 D.极差是408.关于x的一元二次方程x2+3x=0的根的说法正确的是()A.没有实数根B.只有一个实数根C.有两个相等的实数根D.有两个不相等的实数根9.如图,正比例函数y=﹣x与反比例函数y=﹣的图象相交于A、B两点,分别过A、B 两点作y轴的垂线,垂足分别为C、D,连接AD,BC,则四边形ACBD的面积为()A.2 B.4 C.6 D.810.如图,在扇形AOB中,AC为弦,∠AOB=140°,∠CAO=60°,OA=6,则的长为()A.πB.πC.2πD.2π二、填空题(本大题共4个小题,每小题4分,共16分)11.代数式在实数范围内有意义,则x的取值范围是.12.分解因式:2x2﹣8x+8=.13.二次函数y=3x2﹣6x+2的图象的对称轴为,顶点坐标为.14.如图,A为某旅游景区的最佳观景点,游客可从B处乘坐缆车先到达小观景平台DE观景,然后再由E处继续乘坐缆车到达A处,返程时从A处乘坐升降电梯直接到达C处,已知:AC⊥BC于C,DE∥BC,AC=200.4米,BD=100米,∠α=30°,∠β=70°,则AE的长度约为米.(参考数据:sin70≈0.94,cos70°≈0.34,tan70°≈2.25).三、解答题(本大题共6个小题,共54分)15.(12分)(1)计算: +(﹣1)2﹣4cos30°﹣||(2)解不等式组,并将它的解集在下面的数轴上表示出来.16.(6分)先化简,再求值:(1﹣)÷,其中a=.17.(8分)在如图所示的平面直角坐标系中,△ABC的三个顶点都在小正方形的顶点处,请结合图完成下列各题:(1)填空:tan∠ABC=;AB=(结果保留根号).(2)将△ABC绕原点O旋转180°,画出旋转对应的△A′B′C′,并求直线A′C′的函数表达式.18.(8分)如图,在菱形ABCD中,E、F分别是AB和BC上的点,且BE=BF.(1)求证:△ADE≌△CDF;(2)若∠A=40°,∠DEF=65°,求∠DFC的度数.19.(10分)全面二孩政策定于1月1日正式实施,武侯区某年级组队该年级部分学生进行了随机问卷调查,其中一个问题是“你爸妈如果给你添一个弟弟(或妹妹),你的态度是什么?”共有如下四个选项(要求仅选择一个选项):A.非常愿意B.愿意C.不愿意D.无所谓如图是根据调查结果绘制的两幅不完整的统计图,请结合图中信息解答以下问题:(1)试问本次问卷调查一共调查了多少名学生?并补全条形统计图;(2)若该年级共有300名学生,请你估计全年级可能有多少名学生支持(即态度为“非常愿意”和“愿意”)爸妈给自己添一个弟弟(或妹妹)?(3)在年级活动课上,老师决定从本次调查回答“非常愿意”的同学中随机选取2名同学来谈谈他们的想法,而本次调查回答“非常满意”的这些同学中只有一名男同学,请用画树状图或列表的方法求选取到两名同学中刚好有这位男同学的概率.20.(10分)如图1,△ABC内接于⊙O,∠BAC的平分线AD交⊙O于点D,交BC于点E,过点D作DF∥BC,交AB的延长线于点F.(1)求证:△BDE∽∠ADB;(2)试判断直线DF与⊙O的位置关系,并说明理由;(3)如图2,条件不变,若BC恰好是⊙O的直径,且AB=6,AC=8,求DF的长.四、填空题21.若实数m满足=m+1,且0<m<,则m的值为.22.若关于x的分式方程=﹣有增根,则k的值为.23.在平面直角坐标系中,横坐标,纵坐标都为正数的点称为整点,正方形边长的整点称为边整点,如图,第一个正方形有4个边整点,第二个正方形有8个边整点,第三个正方形有12个边整点,…,按此规律继续作下去,若从内向外共作了5个这样的正方形,那么其边整点的个数共有个,这些边整点落在函数y=的图象上的概率是.24.如图1,有一张矩形纸片ABCD,已知AB=10,AD=12,现将纸片进行如下操作:现将纸片沿折痕BF进行折叠,使点A落在BC边上的点E处,点F在AD上(如图2);然后将纸片沿折痕DH进行第二次折叠,使点C落在第一次的折痕BF上的点G处,点H在BC 上(如图3),给出四个结论:①AF的长为10;②△BGH的周长为18;③=;④GH的长为5,其中正确的结论有.(写出所有正确结论的番号)25.如图,线段AB=16,以AB为直径的半圆上有一点C,连接BC并延长到点D,使DC=2BC,连接OD、AC交于点E,当∠B=2∠D时,线段OE的长为.五、解答题(本大题共3个小题,共30分)26.(8分)成都地铁规划到将通车13条线路,近几年正是成都地铁加紧建设和密集开通的几年,市场对建材的需求量有所提高,根据市场调查分析可预测:水泥生产销售后所获得的利润y1(万元)与资金量x(万元)满足正比例关系y1=20x;钢材生产销售的后所获得的利润y2(万元)与资金量x(万元)满足函数关系的图象如图所示(其中OA是抛物线的一部分,A为抛物线的顶点,AB∥x轴).(1)直接写出当0<x<30及x>30时,y2与x之间的函数关系式;(2)某建材经销公司计划100万元用于生产销售水泥和钢材两种材料,若设钢材部分的资金量为t(万元),生长销售完这两种材料后获得的总利润为W(万元).①求W与t之间的函数关系式;②若要求钢材部分的资金量不得少于45万元,那么当钢材部分的资金量为多少万元时,获得的总利润最大?最大总利润是多少?27.(10分)如图,在矩形ABCD中,P为AD上一点,连接BP,CP,过C作CE⊥BP 于点E,连接ED交PC于点F.(1)求证:△ABP∽△ECB;(2)若点E恰好为BP的中点,且AB=3,AP=k(0<k<3).①求的值(用含k的代数式表示);②若M、N分别为PC,EC上的任意两点,连接NF,NM,当k=时,求NF+NM的最小值.28.(12分)如图,在平面直角坐标系中,点O为坐标原点,抛物线y=ax2﹣10ax+16a(a ≠0)交x轴于A、B两点,抛物线的顶点为D,对称轴与x轴交于点H,且AB=2DH.(1)求a的值;(2)点P是对称轴右侧抛物线上的点,连接PD,PQ⊥x轴于点Q,点N是线段PQ上的点,过点N作NF⊥DH于点F,NE⊥PD交直线DH于点E,求线段EF的长;(3)在(2)的条件下,连接DN、DQ、PB,当DN=2QN(NQ>3),2∠NDQ+∠DNQ=90°时,作NC⊥PB交对称轴左侧的抛物线于点C,求点C的坐标.四川省成都市武侯区中考数学二诊试卷参考答案与试题解析一、选择题(本大题共10个小题,每小题3分,共30分)1.在实数,6,﹣,2.5中,无理数是()A.B.6 C.﹣D.2.5【考点】无理数.【分析】根据无理数的概念及其三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数,结合选项解答即可.【解答】解:在实数,6,﹣,2.5中,有理数为6,﹣,2.5,无理数为,故选A.【点评】本题考查了无理数的概念,解答本题的关键是掌握无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数.2.如图,其左视图是矩形的几何体是()A. B.C.D.【考点】简单几何体的三视图.【分析】直接利用已知几何体分别得出其左视图即可.【解答】解:A、其左视图为三角形,故此选项错误;B、其左视图为矩形,故此选项正确;C、其左视图为三角形,故此选项错误;D、其左视图为圆,故此选项错误.故选:B.【点评】此题主要考查了简单几何体的三视图,正确掌握左视图的定义是解题关键.3.成都市元宵节灯展参观人数约为47万人,将47万用科学记数法表示为4.7×10n,那么n的值为()A.3 B.4 C.5 D.6【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将470000用科学记数法表示为:4.7×105,所以n=5.故选:C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.下列运算正确的是()A.x4+x4=x8B.(x﹣y)2=x2﹣y2C.x3•x4=x7D.(2x2)3=2x6【考点】幂的乘方与积的乘方;合并同类项;同底数幂的乘法;完全平方公式.【分析】直接利用合并同类项法则以及积的乘方运算法则、同底数幂的乘法运算法则、完全平方公式分别化简求出答案.【解答】解:A、x4+x4=2x4,故此选项错误;B、(x﹣y)2=x2﹣2xy+y2,故此选项错误;C、x3•x4=x7,故此选项正确;D、(2x2)3=8x6,故此选项错误;故选:C.【点评】此题主要考查了合并同类项以及积的乘方运算、同底数幂的乘法运算、完全平方公式等知识,熟练掌握相关法则是解题关键.5.在下面四个图形中,既是轴对称图形又是中心对称图形的有()A.1个B.2个C.3个D.4个【考点】中心对称图形;轴对称图形.【分析】直接利用中心对称图形以及轴对称图形的定义分别分析得出答案.【解答】解:圆既是轴对称图形又是中心对称图形,故正确;等腰三角形是轴对称图形不是中心对称图形,故错误;正方形既是轴对称图形又是中心对称图形,故正确;正六边形既是轴对称图形又是中心对称图形,故正确;故选:C.【点评】此题主要考查了中心对称图形以及轴对称图形,正确把握相关定义是解题关键.6.计算3﹣2的结果正确的是()A.B.﹣C.9 D.﹣9【考点】负整数指数幂.【分析】根据负整数指数幂与正整数指数幂互为倒数,可得答案.【解答】解:原式==,故选:A.【点评】本题考查了负整数指数幂,利用负整数指数幂与正整数指数幂互为倒数是解题关键.7.3月,成都市某区一周天气质量报告中某项污染指标的数据是:60,60,100,90,90,70,90,则下列关于这组数据表述正确的是()A.众数是60 B.中位数是100 C.平均数是78 D.极差是40【考点】极差;算术平均数;中位数;众数.【分析】根据众数、平均数、中位数、极差的概念求解.【解答】解:这组数据按照从小到大的顺序排列为:60,60,70,90,90,90,100,故众数为90,故A选项错误;则中位数为:90,故B选项错误;平均数为:(60+60+70+90+90+90+100)=80,故C选项错误;极差为:100﹣60=40,故选项D正确.故选:D.【点评】本题考查了众数、平均数和中位数、极差的概念,正确掌握各知识点的概念是解答本题的关键.8.关于x的一元二次方程x2+3x=0的根的说法正确的是()A.没有实数根B.只有一个实数根C.有两个相等的实数根D.有两个不相等的实数根【考点】根的判别式.【分析】利用一元二次方程根的判别式,得出△>0时,方程有两个不相等的实数根,当△=0时,方程有两个相等的实数根,当△<0时,方程没有实数根.确定住a,b,c的值,代入公式判断出△的符号.【解答】解:∵△=b2﹣4ac=3 2﹣4×1×0=9>0,∴方程有两个不相等的实数根,故选D.【点评】此题主要考查了一元二次方程根的判别式,根的判别式的应用在中考中是热点问题,特别注意运算的正确性.9.如图,正比例函数y=﹣x与反比例函数y=﹣的图象相交于A、B两点,分别过A、B 两点作y轴的垂线,垂足分别为C、D,连接AD,BC,则四边形ACBD的面积为()A.2 B.4 C.6 D.8【考点】反比例函数与一次函数的交点问题;一元二次方程的解.【分析】将正比例函数解析式代入反比例函数解析式中可得出关于x的一元二次方程,解方程即可求出点A、B的横坐标,由此即可得出点A、B的坐标,由点A、B的坐标即可得出线段AC、BD、OC、OD的长度,再通过分割图形利用三角形的面积公式即可得出结论.【解答】解:将正比例函数y=﹣x代入到反比例函数y=﹣中得:﹣x=﹣,整理得:x2=2,解得:x=±,∴点A的坐标为(﹣,)、点B的坐标为(,﹣),∴AC=BD=,OC=OD=.=•CD•(AC+BD)=×2×2=4.S四边形ACBD故选B.【点评】本题考查了反比例函数与一次函数的交点问题、一元二次方程的解以及三角形的面积公式,解题的关键是求出点A、B的坐标.本题属于基础题,难度不大,解决该题型题目时,将正比例函数解析式代入反比例函数解析式中,求出交点的坐标是关键.10.如图,在扇形AOB中,AC为弦,∠AOB=140°,∠CAO=60°,OA=6,则的长为()A.πB.πC.2πD.2π【考点】弧长的计算.【分析】首先判定三角形为等边三角形,再利用弧长公式计算.【解答】解:连接OC,∵OA=OC,∠CAO=60°,∴△OAC是等边三角形,∴∠COB=80°,∵OA=6,∴的长,故选B【点评】此题主要考查了学生对等边三角形的判定和弧长公式,关键是得到△OAC是等边三角形.二、填空题(本大题共4个小题,每小题4分,共16分)11.代数式在实数范围内有意义,则x的取值范围是x≥3.【考点】二次根式有意义的条件.【分析】直接利用二次根式的定义得出x﹣3≥0,进而求出答案.【解答】解:∵代数式在实数范围内有意义,∴x﹣3≥0,解得:x≥3,∴x的取值范围是:x≥3.故答案为:x≥3.【点评】此题主要考查了二次根式有意义的条件,正确得出x﹣3的取值范围是解题关键.12.分解因式:2x2﹣8x+8=2(x﹣2)2.【考点】提公因式法与公式法的综合运用.【分析】先提公因式2,再用完全平方公式进行因式分解即可.【解答】解:原式=2(x2﹣4x+4)=2(x﹣2)2.故答案为2(x﹣2)2.【点评】本题考查了提公因式法与公式法的综合运用,是基础知识要熟练掌握.13.二次函数y=3x2﹣6x+2的图象的对称轴为直线x=1,顶点坐标为(1,﹣1).【考点】二次函数的性质.【分析】直接利用配方法求出函数的对称轴和顶点坐标即可.【解答】解:y=3x2﹣6x+2=3(x2﹣2x)+2=3(x﹣1)2﹣1.故二次函数y=3x2﹣6x+2的图象的对称轴为:直线x=1,顶点坐标为:(1,﹣1).故答案为:直线x=1,(1,﹣1).【点评】此题主要考查了二次函数的性质,正确进行配方运算是解题关键.14.如图,A为某旅游景区的最佳观景点,游客可从B处乘坐缆车先到达小观景平台DE观景,然后再由E处继续乘坐缆车到达A处,返程时从A处乘坐升降电梯直接到达C处,已知:AC⊥BC于C,DE∥BC,AC=200.4米,BD=100米,∠α=30°,∠β=70°,则AE的长度约为160米.(参考数据:sin70≈0.94,cos70°≈0.34,tan70°≈2.25).【考点】解直角三角形的应用.【分析】在Rt△BFD中,根据正弦的定义求出DF的长,得到CG的长,进一步得到AG,再在Rt△AGE中,根据正弦的定义求出AE的长,即可得到答案.【解答】解:如图,作DF⊥BC,在Rt△BFD中,∵sin∠DBF=,∴DF=100×=50米,∴GC=DF=50米,∴AG=AC﹣GC=200.4﹣50=150.4米,在Rt△AGE中,∵sin∠AEG=,∴AE===160米.故答案为:160.【点评】本题考查的是解直角三角形的应用,掌握锐角三角函数的概念和坡角的概念是解题的关键,解答时注意:正确作出辅助线构造直角三角形准确运用锐角三角函数的概念列出算式.三、解答题(本大题共6个小题,共54分)15.(12分)(•武侯区模拟)(1)计算: +(﹣1)2﹣4cos30°﹣||(2)解不等式组,并将它的解集在下面的数轴上表示出来.【考点】实数的运算;在数轴上表示不等式的解集;解一元一次不等式组;特殊角的三角函数值.【分析】(1)分别利用有理数的乘方运算法则结合特殊角的三角函数值和绝对值的性质、二次根式的性质以及立方根的性质分别化简求出答案;(2)分别解不等式,进而得出不等式组的解集即可.【解答】解:(1)+(﹣1)2﹣4cos30°﹣||=2+1﹣4×﹣3=﹣2;(2)解不等式①得:x≥﹣1,解不等式②得:x<2,故不等式组的解集为:﹣1≤x<2,.【点评】此题主要考查了有理数的乘方运算、特殊角的三角函数值和绝对值的性质、二次根式的性质以及立方根的性质、不等式组的解法等知识,正确把握相关性质是解题关键.16.先化简,再求值:(1﹣)÷,其中a=.【考点】分式的化简求值.【分析】原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,把a的值代入计算即可求出值.【解答】解:原式=•=,当a=+1时,原式=.【点评】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.17.在如图所示的平面直角坐标系中,△ABC的三个顶点都在小正方形的顶点处,请结合图完成下列各题:(1)填空:tan∠ABC=;AB=(结果保留根号).(2)将△ABC绕原点O旋转180°,画出旋转对应的△A′B′C′,并求直线A′C′的函数表达式.【考点】作图-旋转变换.【分析】(1)把∠ABC放到格点直角三角形中,利用正切的定义求它的正切值,然后利用勾股定理计算AB的长;(2)利用关于原点对称的点的坐标特征写出A′、B′、C′点的坐标,然后描点即可得到△A′B′C′,再利用待定系数法求直线A′C′的函数表达式.【解答】解:(1)tan∠ABC=;AB==;故答案为,;(2)如图,A′(1,﹣4),B′(3,﹣1),C′(2,﹣1),△A′B′C′为所作;设直线A′C′的函数表达式为y=kx+b,把A′(1,﹣4),C′(2,﹣1)代入得,解得,所以直线A′C′的函数表达式为y=3x﹣7.【点评】本题考查了作图﹣旋转变换:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.也考查了待定系数法求一次函数解析式.18.如图,在菱形ABCD中,E、F分别是AB和BC上的点,且BE=BF.(1)求证:△ADE≌△CDF;(2)若∠A=40°,∠DEF=65°,求∠DFC的度数.【考点】菱形的性质;全等三角形的判定与性质.【分析】(1)根据菱形的性质和全等三角形的判定方法“SAS”即可证明△ADE≌△CDF;(2)根据△ADE≌△CDF,得到DE=DF,再求出∠EDB=∠FDB=25°,根据四边形ABCD 是菱形,∠A=40°,求出∠ADB=70°,∠ADE=45°,再根据三角形的内角和为180°,即可解答.【解答】解:(1)∵四边形ABCD是菱形,∴∠A=∠C,AB=CB,AD=DC,∵BE=BF,∴AE=CF,在△ADE和△CDF中,∴△ADE≌△CDF;(2)∵△ADE≌△CDF,∴DE=DF,∵∠DEF=65°,∴∠EDB=∠FDB=25°,∵四边形ABCD是菱形,∴AB=AD,∵∠A=40°,∴∠ADB=70°,∴∠ADE=70°﹣25°=45°,∴∠DFC=180°﹣40°﹣45°=95°.【点评】本题主要考查菱形的性质,同时综合利用全等三角形的判定方法及等腰三角形的性质,解决本题的关键是熟记菱形的性质.19.(10分)(•武侯区模拟)全面二孩政策定于1月1日正式实施,武侯区某年级组队该年级部分学生进行了随机问卷调查,其中一个问题是“你爸妈如果给你添一个弟弟(或妹妹),你的态度是什么?”共有如下四个选项(要求仅选择一个选项):A.非常愿意B.愿意C.不愿意D.无所谓如图是根据调查结果绘制的两幅不完整的统计图,请结合图中信息解答以下问题:(1)试问本次问卷调查一共调查了多少名学生?并补全条形统计图;(2)若该年级共有300名学生,请你估计全年级可能有多少名学生支持(即态度为“非常愿意”和“愿意”)爸妈给自己添一个弟弟(或妹妹)?(3)在年级活动课上,老师决定从本次调查回答“非常愿意”的同学中随机选取2名同学来谈谈他们的想法,而本次调查回答“非常满意”的这些同学中只有一名男同学,请用画树状图或列表的方法求选取到两名同学中刚好有这位男同学的概率.【考点】列表法与树状图法;用样本估计总体;扇形统计图;条形统计图.【分析】(1)用选D的人数除以它所占的百分比即可得到调查的总人数,再用总人数乘以选B所占的百分比得到选B的人数,然后用总人数分别减去选B、C、D的人数得到选A 的人数,再补全条形统计图;(2)利用样本估计总体,用300乘以样本中选A和选B所占的百分比可估计全年级支持的学生数;(3)“非常愿意”的四名同学分别用1、2、3、4表示,其中1表示男同学,画树状图展示所有12种等可能的结果数,再找出选取到两名同学中刚好有这位男同学的结果数,然后根据概率公式计算.【解答】解:(1)20÷50%=40(名),所以本次问卷调查一共调查了40名学生,选B的人数=40×30%=12(人),选A的人数=40﹣12﹣20﹣4=4(人)补全条形统计图为:(2)300×=120,所以估计全年级可能有120名学生支持;(3)“非常愿意”的四名同学分别用1、2、3、4表示,其中1表示男同学,画树状图为:共有12种等可能的结果数,其中选取到两名同学中刚好有这位男同学的结果数为6,所以选取到两名同学中刚好有这位男同学的概率==.【点评】本题考查了列表法与树状图法:通过列表法或树状图法展示所有等可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式求出事件A或B的概率.也考查了统计图.20.(10分)(•武侯区模拟)如图1,△ABC内接于⊙O,∠BAC的平分线AD交⊙O于点D,交BC于点E,过点D作DF∥BC,交AB的延长线于点F.(1)求证:△BDE∽∠ADB;(2)试判断直线DF与⊙O的位置关系,并说明理由;(3)如图2,条件不变,若BC恰好是⊙O的直径,且AB=6,AC=8,求DF的长.【考点】圆的综合题.【分析】(1)由AD平分∠BAC,易得∠BAD=∠CAD=∠CBD,又由∠BDE是公共角,即可证得:△BDE∽∠ADB;(2)首先连接OD,由AD平分∠BAC,可得=,由垂径定理,即可判定OD⊥BC,又由BC∥DF,证得结论;(3)首先过点B作BH⊥AD于点H,连接OD,易证得△BDH∽△BCA,然后由相似三角形的对应边成比例,求得BH的长,继而求得AD的长,然后证得△FDB∽△FAD,又由相似的性质,求得答案.【解答】(1)证明:∵AD平分∠BAC,∴∠BAD=∠DAC,∵∠DAC=∠DBC,∴∠DBC=∠BAD,∵∠BDE=∠ADB,∴△BDE∽∠ADB;(2)相切.理由:如图1,连接OD,∵∠BAD=∠DAC,∴=,∴OD⊥BC,∵DF∥BC,∴OD⊥DF,∴DF与⊙O相切;(3)如图2,过点B作BH⊥AD于点H,连接OD,则∠BHD=90°,∵BC是直径,∴∠BAC=90°,∴∠BHD=∠BAC,∵∠BDH=∠C,∴△BDH∽△BCA,∴=,∵AB=6,AC=8,∴BC==10,∴OB=OD=5,∴BD==5,∴=,∴BH=3,∴DH==4,AH==3,∴AD=AH+DH=7,∵DF与⊙O相切,∴∠FDB=∠FAD,∵∠F=∠F,∴△FDB∽△FAD,∴===,∴AF=DF,BF=DF,∴AB=AF﹣BF=DF﹣DF=6,解得:DF=.【点评】此题属于圆的综合题.考查了切线的判定与性质、圆周角定理、垂径定理、弦切角定理、相似三角形的判定与性质以及勾股定理等知识.注意准确作出辅助线是解此题的关键.四、填空题21.若实数m满足=m+1,且0<m<,则m的值为.【考点】二次根式的性质与化简.【分析】直接利用二次根式的性质化简进而得出关于m的等式即可得出答案.【解答】解:∵=m+1,且0<m<,∴2﹣m=m+1,解得:m=.故答案为:.【点评】此题主要考查了二次根式的性质与化简,正确开平方是解题关键.22.若关于x的分式方程=﹣有增根,则k的值为或﹣.【考点】分式方程的增根.【分析】分式方程去分母转化为整式方程,由分式方程有增根,得到最简公分母为0求出x 的值,代入整式方程求出k的值即可.【解答】解:去分母得:5x﹣5=x+2k﹣6x,由分式方程有增根,得到x(x﹣1)=0,解得:x=0或x=1,把x=0代入整式方程得:k=﹣;把x=1代入整式方程得:k=,则k的值为或﹣.故答案为:或﹣【点评】此题考查了分式方程的增根,增根确定后可按如下步骤进行:①化分式方程为整式方程;②把增根代入整式方程即可求得相关字母的值.23.在平面直角坐标系中,横坐标,纵坐标都为正数的点称为整点,正方形边长的整点称为边整点,如图,第一个正方形有4个边整点,第二个正方形有8个边整点,第三个正方形有12个边整点,…,按此规律继续作下去,若从内向外共作了5个这样的正方形,那么其边整点的个数共有60个,这些边整点落在函数y=的图象上的概率是.【考点】列表法与树状图法.【分析】利用整点的个数与正方形的序号数的关系可得到第四个正方形有4×4个边整点,第五个正方形有5×4个边整点,则可计算出其边整点的个数为60个,然后根据反比例函数图象上点的坐标特征可确定这些边整点落在函数y=的图象上的个数,再利用概率公式求解.【解答】解:第一个正方形有1×4个边整点,第二个正方形有2×4个边整点,第三个正方形有3×4个边整点,第四个正方形有4×4个边整点,第五个正方形有5×4个边整点,所以其边整点的个数共有4+8+12+16+20=60个,这些边整点落在函数y=的图象上的有(1,4),(4,1),(2,2),(﹣1,﹣4),(﹣4,﹣1),(﹣2,﹣2),所以些边整点落在函数y=的图象上的概率==.故答案为60,.【点评】本题考查了列表法与树状图法:通过列表法或树状图法展示所有等可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式求出事件A或B的概率.也考查了解决规律型问题的方法和反比例函数图象上点的坐标特征.24.如图1,有一张矩形纸片ABCD,已知AB=10,AD=12,现将纸片进行如下操作:现将纸片沿折痕BF进行折叠,使点A落在BC边上的点E处,点F在AD上(如图2);然后将纸片沿折痕DH进行第二次折叠,使点C落在第一次的折痕BF上的点G处,点H在BC 上(如图3),给出四个结论:①AF的长为10;②△BGH的周长为18;③=;④GH的长为5,其中正确的结论有①③④.(写出所有正确结论的番号)【考点】四边形综合题.【分析】过G点作MN∥AB,交AD、BC于点M、N,可知四边形ABEF为正方形,可求得AF的长,可判断①,且△BNG和△FMG为等腰三角形,设BN=x,则可表示出GN、MG、MD,利用折叠的性质可得到CD=DG,在Rt△MDG中,利用勾股定理可求得x,再利用△MGD∽△NHG,可求得NH、GH和HC,则可求得BH,容易判断②③④,可得出答案.【解答】解:如图,过点G作MN∥AB,分别交AD、BC于点M、N,∵四边形ABCD为矩形,∴AB=CD=10,BC=AD=12,由折叠可得AB=BE,且∠A=∠ABE=∠BEF=90°,∴四边形ABEF为正方形,∴AF=AB=10,故①正确;∵MN∥AB,∴△BNG和△FMG为等腰直角三角形,且MN=AB=10,设BN=x,则GN=AM=x,MG=MN﹣GN=10﹣x,MD=AD﹣AM=12﹣x,又由折叠的可知DG=DC=10,在Rt△MDG中,由勾股定理可得MD2+MG2=GD2,即(12﹣x)2+(10﹣x)2=102,解得x=4,∴GN=BN=4,MG=6,MD=8,又∠DGH=∠C=∠GMD=90°,∴∠NGH+∠MGD=∠MGD+∠MDG=90°,∴∠NGH=∠MDG,且∠DMG=∠GNH,∴△MGD∽△NHG,∴==,即==,∴NH=3,GH=CH=5,∴BH=BC﹣HC=12﹣5=7,故④正确;又△BNG和△FMG为等腰直角三角形,且BN=4,MG=6,∴BG=4,GF=6,∴△BGF的周长=BG+GH+BH=4+5+7=12+4,==,故②不正确;③正确;综上可知正确的为①③④,故答案为:①③④.【点评】本题为四边形的综合应用,涉及知识点有矩形的性质、正方形的判定和性质、等腰直角三角形的性质、相似三角形的判定和性质、折叠的性质及方程思想等.过G点作AB的平行线,构造等腰直角三角形,利用方程思想在Rt△GMD中得到方程,求得BN的长度是解题的关键.本题考查知识点较多,综合性质较强,难度较大.25.如图,线段AB=16,以AB为直径的半圆上有一点C,连接BC并延长到点D,使DC=2BC,连接OD、AC交于点E,当∠B=2∠D时,线段OE的长为.【考点】相似三角形的判定与性质;圆周角定理.。
2020年四川省成都市中考数学二诊试卷
中考数学二诊试卷一、选择题(本大题共10小题,共30.0分)1.在,0,-1,π这四个数中,最大的数是()A. B. π C. 0 D. -12.下列汽车标志中,既是轴对称又是中心对称图形的是()A. B.C. D.3.举世瞩目的港珠澳大桥工程总投资约726亿元,用科学记数法表示726亿元正确的是()A. 72.6×109元B. 7.26×1010元C. 0.726×1011元D. 7.26×1011元4.如图是由4个完全相同的小正方体组成的立体图形,则它的俯视图是()A. B. C. D.5.下列运算正确的是()A. x3+x3=2x6B. x8÷x2=x4C. x m•x n=x m+nD. (-x4)5=x206.在“大家跳起来”的乡村学校舞蹈比赛中,某校10名学生参赛成绩统计如图所示.对于这10名学生的参赛成绩,下列说法中错误的是()A. 众数是90B. 中位数是90C. 平均数是90D. 极差是157.由于国家出台对房屋的限购令,某市2017年3月平均房价为每平方米15500元,连续两年降价后,2019年同期平均房价为每平方米12000元,设这两年平均房价年平均下跌的百分率为x,根据题意,下面所列方程正确的是()A. 15500(1+x)2=12000B. 15500(1-x)2=12000C. 12000(1+x)2=15500D. 12000(1-x)2=155008.如图,菱形ABCD中,∠B=60°,AB=5,则以AC为边长的正方形ACEF的周长为()A. 16B. 20C. 12D. 249.如图,AB、AC都是圆O的弦,OM⊥AB,ON⊥AC,垂足分别为M、N,如果MN=,那么BC=()A. 3B.C.D.10.如图为二次函数y=ax2+bx+c的图象,则下列说法中错误的是()A. abc>0B. 2a+b=1C. 4a+2b+c<0D. 对于任意x均有ax2+bx≥a+b二、填空题(本大题共9小题,共36.0分)11.函数y=中自变量x的取值范围是______.12.如图,∠1=80°,∠2=80°,∠3=84°,则∠4=______.13.观察下列等式(式子中“!”是一种数学运算符号,n是正整数):1!=1,2!=2×1,3!=3×2×1,4!=4×3×2×1,…计算=______.14.如图,在平面直角坐标系中,以O为圆心,适当长为半径画弧,交x轴于点M,交y轴于点N,再分别以点M,N为圆心,大于MN的长为半径画弧,两弧在第二象限交于点P,若点P的坐标为(3a,4a+5),则a的值为______.15.若x1,x2是方程x2-2x-4=0的两个不相等的实数根,则代数式的值2x12-2x1+x22-3为______.16.数学学霸甲、乙两人在一次解方程组比赛中,甲求关于x、y的方程组的正确解与乙求关于x、y的方程组的正确的解相同,则的值为______.17.直线y=x+3与两坐标轴交于A、B两点,以AB为斜边在第二象限内作等腰Rt△ABC,反比例函数y=(x<0)的图象过点C,则m=______.18.如图,将正方形沿图中虚线(其中x<y)剪成①②③④四块图形,用这四块图形恰能拼成一个矩形(非正方形).则的值为______.19.将一张圆形纸片,进行了如下连续操作(1)将圆形纸片左右对折,折痕为AB,如图(2)所示(2)将圆形纸片上下折叠,使A、B两点重合,折痕CD与AB相交于M,如图(3)所示(3)将圆形纸片沿EF折叠,使B、M两点重合,折痕EF与AB相交于N,如图(4)所示(4)连结AE、AF,如图(5)所示,则S△AEF:=______.三、计算题(本大题共1小题,共6.0分)20.先化简,再求值:,其中a=-2,b=2四、解答题(本大题共8小题,共72.0分)21.(1)计算:-22++|tan60°-2|+(π-)0(2)解不等式组:,并把解集在数轴上表示出来.22.如图,大楼AB高18米,远处有一塔CD,某人在楼底B处测得塔顶的仰角为38.5°,爬到楼顶A处测得塔顶的仰角为22°,求塔高CD及大楼与塔之间的距离BD的长(参考数据:sin22°≈0.37,cos22°≈0.93,tan22°≈0.40,sin38.5≈0.62,cos38.5°≈0.78,tan38.5°≈0.80)23.某校的一个数学兴趣小组在本校学生中开展主题为“交通规则知多少”的专题调查活动,采取随机抽样的方式进行问卷调查,问卷调查的结果分为“非常了解”、“比较了解”、“基本了解”、“不太了解”四个等级,分别记作A、B、C、D;并根据调查结果绘制成如图所示的扇形统计图和条形统计图(未完成),请结合图中所给信息解答下列问题:(1)本次被调查的学生共有______人;(2)将扇形统计图和条形统计图补充完整;(3)在“非常了解”的调查结果里,初一年级学生共有4人,其中3男1女,在这4人中,打算随机选出2位进行采访,请你用列表法或树状图的方法求出所选两位同学恰好都是男同学的概率?24.已知:如图,在平面直角坐标系中,一次函数y=ax+b(a≠0)的图象与反比例函数y=(k≠0)的图象交于一、三象限内的A、B两点,与x轴交于C点,点A的坐标为(4,m),点B的坐标为(n,﹣4),tan∠BOC=(1)求该反比例函数和一次函数的解析式;(2)在x轴上有一点E,使得△BCE的面积是△BCO的面积的一半,求出点E的坐标25.如图,在△ABC中,BC为⊙O的直径,AB交⊙O于点D,DE⊥AC,垂足为点E,延长DE交BC的延长线于点F,若∠A=∠ABC(1)求证:BD=AD;(2)求证:DF是⊙O的切线;(3)若⊙O的半径为6,sin∠F=,求DE的长.26.为迎接中国森博会,某商家计划从厂家采购A,B两种产品共20件,产品的采购单价(元/件)是采购数量(件)的一次函数,下表提供了部分采购数据.(1)设A产品的采购数量为x(件),采购单价为y1(元/件),求y1与x的关系式;(2)经商家与厂家协商,采购A产品的数量不少于B产品数量的,且A产品采购单价不低于1200元,求该商家共有几种进货方案;(3)该商家分别以1760元/件和1700元/件的销售单价售出A,B两种产品,且全部售完,在(2)的条件下,求采购A种产品多少件时总利润最大,并求最大利润.27.在正方形ABCD中,对角线AC、BD交于点O,动点P在线段BC上(不含点B),∠BPE=∠ACB,PE交BO于点E,过点B作BF⊥PE,垂足为F,交AC于点G.(1)当点P与点C重合时(如图①),求证:△BOG≌△POE;(2)通过观察、测量、猜想:=______,并结合图②证明你的猜想;(3)把正方形ABCD改为菱形,其他条件不变(如图③),若∠ACB=α,求的值.(用含α的式子表示)28.如图,在△OAB中,AO=AB,∠OAB=90°,点B坐标为(10,0).过原点O的抛物线,又过点A和G,点G坐标为(7,0).(1)求抛物线的解析式;(2)边OB上一动点T(t,0),(T不与点O、B重合)过点T作OA、AB的垂线,垂足分别为C、D.设△TCD的面积为S,求S的表达式(用t表示),并求S 的最大值;(3)已知M(2,0),过点M作MK⊥OA,垂足为K,作MN⊥OB,交点OA于N.在线段OA上是否存在一点Q,使得Rt△KMN绕点Q旋转180°后,点M、K恰好落在(1)所求抛物线上?若存在请求出点Q和抛物线上与M、K对应的点的坐标,若不存在请说明理由.答案和解析1.【答案】B【解析】解:∵,最大的数是π,故选:B.题中只有2个正数,比较两个正数的大小,找到最大的数即可.考查实数的比较;用到的知识点为:0大于一切负数;正数大于0;注意应熟记常见无理数的约值.2.【答案】A【解析】解:A、既是轴对称又是中心对称的图形,故本选项正确;B、是轴对称,不是中心对称的图形,故本选项错误;C、是轴对称,不是中心对称的图形,故本选项错误;D、是轴对称,不是中心对称的图形,故本选项错误.故选:A.根据中心对称图形和轴对称图形的概念对各选项分析判断即可得解.本题考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.3.【答案】B【解析】解:726亿=72600 000 000,用科学记数法表示时n=10,∴72600 000000=7.26×1010.故选:B.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.【答案】C【解析】解:根据题意,从上面看原图形可得到,故选:C.直接从上往下看,看到平面图形就是俯视图,选择正确选项即可.本题主要考查了简单组合体的三视图的知识,俯视图是从上往下看得到的平面图形.5.【答案】C【解析】解:A、x3+x3=2x3,故本选项错误;B、x8÷x2=x6,故本选项错误;C、x m•x n=x m+n,故本选项正确;D、(-x4)5=-x20,故本选项错误.故选:C.根据同底数幂的除法,底数不变指数相减;合并同类项,系数相加字母和字母的指数不变;幂的乘方,底数不变指数相乘,对各选项计算后利用排除法求解.本题考查同底数幂的除法,合并同类项,幂的乘方.题目比较简单,解题需细心.6.【答案】C【解析】解:∵90出现了5次,出现的次数最多,∴众数是90;故A正确;∵共有10个数,∴中位数是第5、6个数的平均数,∴中位数是(90+90)÷2=90;故B正确;∵平均数是(80×1+85×2+90×5+95×2)÷10=89;故C错误;极差是:95-80=15;故D正确.综上所述,C选项符合题意,故选:C.根据众数、中位数、平均数、极差的定义和统计图中提供的数据分别列出算式,求出答案.此题考查了折线统计图,用到的知识点是众数、中位数、平均数、极差,关键是能从统计图中获得有关数据,求出众数、中位数、平均数、极差.7.【答案】B【解析】解:设这两年平均房价年平均下降率为x,根据题意得:15500(1-x)2=12000.故选:B.首先根据题意可得2019年的房价=2018年的房价×(1-下降率),2018年的房价=2017年的房价×(1-下降率),由此可得方程15500(1-x)2=12000.此题主要考查了由实际问题抽象出一元二次方程,关键是掌握增长率问题的计算公式:若变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1±x)2=b.8.【答案】B【解析】解:∵∠B=60°,AB=BC,∴△ABC是等边三角形,∴AC=AB=5,∴正方形ACEF的边长为5,∴正方形ACEF的周长为20,故选:B.据已知可求得△ABC是等边三角形,从而得到AC=AB,从而求出正方形ACEF的边长,进而可求出其周长.本题考查菱形与正方形的性质,属于基础题,对于此类题意含有60°角的题目一般要考虑等边三角形的应用.9.【答案】C【解析】解:∵OM⊥AB,ON⊥AC,OM过O,ON过O,∴AN=CN,AM=BM,∴BC=2MN,∵MN=,∴BC=2,故选:C.根据垂径定理得出AN=CN,AM=BM,根据三角形的中位线性质得出BC=2MN,即可得出答案.本题考查了垂径定理和三角形的中位线性质,能熟记知识点的内容是解此题的关键,注意:垂直于弦的直径平分弦.10.【答案】B【解析】解:A.∵函数图象开口朝上,∴a>0对称轴为x=1,即=1,∴b<0,又函数与y轴的交点在负半轴,故c<0.因此abc>0,故A正确;B.由函数对称轴为-=1,得2a+b=0.故B错误;C.当x=2时,由图知:y=ax2+bx+c=4a+2b+c<0.故C正确;D.由函数图象,当x=1时,函数y=a+b+c取得最小值,∴ax2+bx+c≥a+b+c即ax2+bx≥a+b.故选:B.本题根据二次函数的图象与系数的关系逐一判断,可得出答案.本题考查二次函数图象与系数的关系,理解清楚二次函数的基本性质对于此类题尤为重要,另外要善于从函数图象中读取信息.11.【答案】x≤5且x≠1【解析】解:根据题意得,所以x≤5且x≠1.故答案为x≤5且x≠1.利用分式有意义的条件和二次根式有意义的条件得到,然后解不等式即可.本题考查了函数自变量的取值范围:自变量的取值范围必须使含有自变量的表达式都有意义.12.【答案】96°【解析】解:∵∠1=80°,∠2=80°,∴∠1=∠2,∴a∥b,∴∠3+∠4=180°,∵∠3=84°,∴∠4=96°.故答案为:96°.直接利用平行线的判定方法得出a∥b,再利用平行线的性质得出答案.此题主要考查了平行线的判定与性质,正确掌握平行线的性质是解题关键.13.【答案】n2-n【解析】解:原式==n(n-1)=n2-n,故答案为n2-n,.根据题目给出的运算法则,代入分式计算即可.本题考查了分式的运算,读懂题意按照题目中的运算法则解题是关键.14.【答案】-【解析】解:由作法得OP平分∠MON,即点P在第二象限的角平分线上,所以3a+4a+5=0,所以a=-.故答案为-.根据基本作图可判断OP平分∠MON,则利用第二象限的角平分线上点的坐标特征得到3a+4a+5=0,然后解关于a的方程即可.本题考查了作图-基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).15.【答案】13【解析】解:∵x1,x2是方程x2-2x-4=0的实数根∴x12-2x1-4=0,x22-2x2-4=0,∴x12=2x1+4,x22=2x2+4,∴2x12-2x1+x22-3=2(2x1+4)-2x1+2x2+4-3=2(x1+x2)+9,∵x1+x2=2,∴2x12-2x1+x22-3=2×2+9=13.故答案为13.先利用一元二次方程根的定义得到x12=2x1+4,x22=2x2+4,则2x12-2x1+x22-3可化为2(x1+x2)+9,然后根据根与系数的关系得到x1+x2=2,从而利用整体代入的方法可计算出代数式的值.本题考查了根与系数的关系:若x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,x1+x2=-,x1x2=.16.【答案】2【解析】解:联立得:,解得:,代入得:,解得:,则原式=1+1=2.故答案为:2联立不含a与b的方程求出x与y的值,进而确定出a与b的值,代入原式计算即可求出值.此题考查了二元一次方程组的解,以及解二元一次方程组,熟练掌握运算法则是解本题的关键.17.【答案】-【解析】解:如图,过C点作CD⊥x轴于D,CE⊥y轴于E,∵y=x+3,∴令x=0,得y=3;令y=0,得x+3=0,解得x=-6,∴A点坐标为(-6,0),B点坐标为(0,3),在Rt△OAB中,OA=6,OB=3,∴AB==3,∵△ACB为等腰直角三角形,∴∠ACB=90°,CA=CB=AB=,而∠DCE=90°,∴∠ACD=∠BCE,∴Rt△ACD≌Rt△BCE,∴CD=CE,∴四边形CDOE为正方形,∴正方形CDOE的面积=四边形CAOB的面积=S△CAB+S△OAB=CA•CB+OA•OB=××+×6×3=,∴CD=CE=,∴C点坐标为(-,),把C(-,)代入y=,得m=-×=-.故答案为-.过C点作CD⊥x轴于D,CE⊥y轴于E,先确定A点坐标为(-6,0),B点坐标为(0,3),再利用勾股定理计算出AB=3,然后根据等腰三角形的性质得到∠ACB=90°,CA=CB=AB=,由于∠DCE=90°,根据等角的余角相等得到∠ACD=∠BCE,易证得Rt△ACD≌Rt△BCE,则CD=CE,得到四边形CDOE为正方形,并且正方形CDOE的面积=四边形CAOB的面积,再计算出四边形CAOB的面积=S△CAB+S△OAB=CA•CB+OA•OB=,则CD=CE=,可确定C点坐标为(-,),然后把C点坐标代入反比例函数解析式即可得到m的值.本题考查了反比例函数图象上点的坐标特征;运用待定系数法确定反比例函数的解析式;直线与坐标轴的交点坐标求法;等腰直角三角形和正方形的性质;全等三角形的判定与性质;勾股定理等知识.综合性较强,有一定难度.求出C点坐标是解题的关键.18.【答案】【解析】解:由拼图前后的面积相等得:[(x+y)+y]y=(x+y)2,可得:x2+xy-y2=0,解得:x==y(负值不合题意,舍去),则x=y,故==.故答案为:.已知中的①和②,③和④形状大小分别完全相同,结合图中数据可知①④能拼成一个直角三角形,②③能拼成一个直角三角形,并且这两个直角三角形形状大小相同,利用这两个直角三角形即可拼成矩形;利用拼图前后的面积相等,可列:[(x+y)+y]y=(x+y)2,整理即可得到答案.本题主要考查了图形的剪拼,培养了学生动手能力,题型由正方形变成矩形,逆向思维,难点是求x的值.19.【答案】3:2π【解析】解:∵纸片上下折叠A、B两点重合,∴∠BMD=90°,∵纸片沿EF折叠,B、M两点重合,∴∠BNF=90°,∴∠BMD=∠BNF=90°,∴CD∥EF,根据垂径定理,BM垂直平分EF,又∵纸片沿EF折叠,B、M两点重合,∴BN=MN,∴BM、EF互相垂直平分,连接ME,如图所示:则ME=MB=2MN,∴∠MEN=30°,∴∠EMN=90°-30°=60°,又∵AM=ME(都是半径),∴∠AEM=∠EAM,∴∠AEM=∠EMN=×60°=30°,∴∠AEF=∠AEM+∠MEN=30°+30°=60°,同理可求∠AFE=60°,∴∠EAF=60°,∴△AEF是等边三角形,设圆的半径为r,则MN=r,EN=r,∴EF=2EN=r,AN=r+r=r,∴S△AEF:S圆=(×r×r):πr2=3:2π;故答案为:3:2π.由折叠的性质可得∠BMD=∠BNF=90°,证得CD∥EF,再根据垂径定理可得BM垂直平分EF,再求出BN=MN,从而得到BM、EF互相垂直平分,连接ME,求出∠MEN=30°,再求出∠EMN=60°,根据等边对等角求出∠AEM=∠EAM,由三角形的外角性质求出∠AEM=30°,得到∠AEF=60°,同理求出∠AFE=60°,判定△AEF是等边三角形,设圆的半径为r,求出MN=r,EN=r,然后求出AN、EF,再根据三角形的面积公式与圆的公式列式整理即可得出结果.本题三角形综合题目,主要考查了翻折变换的性质,平行线的判定,垂径定理,等边三角形的判定与性质,三角形面积公式以及圆的面积公式等知识;理解折叠的方法,证明△AEF是等边三角形是解题关键.20.【答案】解:原式=÷=•=,当a=-2,b=2时,原式==.【解析】根据分式的运算法则即可求出答案.本题考查分式的运算,解题的关键是熟练运用分式的运算法则,本题属于基础题型.21.【答案】解:(1)原式=-4+2+2-+1=-1;(2),由①得,x≥-2,由②得,x<3,所以,不等式组的解集为:-2≤x<3,在数轴上表示如下:.【解析】(1)分别根据整数指数幂、根式的化简、绝对值的性质、0指数幂及特殊角的三角函数值计算出各数,再根据实数混合运算的法则进行计算即可;(2)分别求出各不等式的解集,再求出其公共解集,并在数轴上表示出来即可.本题考查了一元一次不等式组的解法,在数轴上表示不等式组的解集,需要把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.22.【答案】解:过点A作AE⊥CD于点E,由题意可知:∠CAE=22°,∠CBD=38.5°,ED=AB=18米,设大楼与塔之间的距离BD的长为x米,则AE=BD=x,∵在Rt△BCD中,tan∠CBD=,∴CD=BD tan 38.5°≈0.8x,∵在Rt△ACE中,tan∠CAE=,∴CE=AE tan 22°≈0.4x,∵CD-CE=DE,∴0.8x-0.4x=18,∴x=45,即BD=45(米),CD=0.8×45=36(米),答:塔高CD是36米,大楼与塔之间的距离BD的长为45米.【解析】过点A作AE⊥CD于点E,由题意可知:∠CAE=22°,∠CBD=38.5°,ED=AB=16米,设大楼与塔之间的距离BD的长为x米,则AE=BD=x,分别在Rt△BCD中和Rt△ACE 中,用x表示出CD和CE=AE,利用CD-CE=DE得到有关x的方程求得x的值即可.本题考查的是解直角三角形的应用-仰角俯角问题,解答此题的关键是作出辅助线,构造出直角三角形,利用直角三角形的性质进行解答.23.【答案】100【解析】解:(1)根据题意得:30÷30%=100人;故答案为:100;(2)D等级人数为100×10%=10(人),C等级人数为100-(30+40+10)=20(人),B等级百分比为×100%=40%,C等级百分比为×100%=20%,如图(3)列表如下:∵共有12种等可能的结果数,其中恰好都是男同学的结果数有6种,∴P(都是男同学)==.(1)由A等级人数及其所占百分比可得总人数;(2)总人数乘以D对应百分比求得其人数,继而由各等级人数之和等于总人数求出C的人数,利用百分比的概念求出B、C的百分比,从而补全图形;(3)列表得出所有等可能结果,找到符合条件的结果数,利用概率公式求解可得.此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.24.【答案】解:(1)作BD⊥x轴于D,垂足为D,∵B(n,-4),∴BD=4,在Rt△OBD中,,即,故OD=10,∴B(-10,-4),∴k=x B y B=40,∴反比例函数的解析式为;当x=4时,y=10,∴A(4,10)B(-10,-4)代入y=ax+b中,∴,解得,∴一次函数的解析式为y=x+6;(2)由y=x+6得C(-6,0),即OC=6,∵,,∴,即|x E-x C|=3,∴x E+6=±3,解得x E=-3或x E=-9,∴点E的坐标为(-3,0)或(-9,0).【解析】(1)作BD⊥x轴于D,可得BD=4,根据正切的定义求出OD,得出点B的坐标,运用待定系数法即可得出反比例函数的解析式;再根据反比例函数的解析式求出点A的坐标,由A、B两点的坐标即可求出一次函数的解析式;(2)由y=x+6得C(-6,0),即OC=6,再根据△BCE的面积是△BCO的面积的一半以及三角形的面积公式即可求出点E的坐标.本题考查了反比例函数与一次函数的交点问题:求反比例函数与一次函数的交点坐标,把两个函数关系式联立成方程组求解,若方程组有解则两者有交点,方程组无解,则两者无交点.25.【答案】(1)证明:∵BC为⊙O的直径,∴∠BDC=90°,即CD⊥AB,∵∠A=∠ABC,∴AC=BC,∴BD=AD;(2)证明:∵∠A=∠B,∠AED=∠BDC=90°,∴∠ADE=∠DCO,∵OC=OD,∴∠DCO=∠CDO,∴∠CDO=∠ADE,∵∠ADE+∠CDE=90°,∴∠CDO+∠CDE=90°,∴∠ODF=90°,∴DF是⊙O的切线;(3)在Rt△DOF中,∵sin∠F==,∴OF=10,CF=10-6=4,DF==8,∵∠DEA=∠ODF=90°,∴OD∥AC,∴△CEF∽△ODF,∴=,∴=,解得:DE=4.8.【解析】(1)根据圆周角定理得到∠BDC=90°,根据等腰三角形的判定定理即可得到结论;(2)根据等腰三角形的性质得到∠DCO=∠CDO,求得∠CDO=∠ADE,于是得到结论;(3)根据三角函数的定义得到OF=10,CF=10-6=4,DF==8,根据相似三角形的性质即可得到结论.本题考查了切线的判定和性质,相似三角形的判定和性质,解直角三角形,圆周角定理,熟练掌握切线的判定和性质定理是解题的关键.26.【答案】解:(1)设y1与x的关系式y1=kx+b,由表知,解得k=-20,b=1500,即y1=-20x+1500(0<x≤20,x为整数),(2)根据题意可得,解得11≤x≤15,∵x为整数,∴x可取的值为:11,12,13,14,15,∴该商家共有5种进货方案;(3)解法一:y2=-10(20-x)+1300=10x+1100,令总利润为W,则W=(1760-y1)x+(20-x)×[1700-(10x+1100)]=30x2-540x+12000,=30(x-9)2+9570,∵a=30>0,∴当x≥9时,W随x的增大而增大,∵11≤x≤15,∴当x=15时,W最大=10650;解法二:根据题意可得B产品的采购单价可表示为:y2=-10(20-x)+1300=10x+1100,则A、B两种产品的每件利润可分别表示为:1760-y1=20x+260,1700-y2=-10x+600,则当20x+260>-10x+600时,A产品的利润高于B产品的利润,即x>=11时,A产品越多,总利润越高,∵11≤x≤15,∴当x=15时,总利润最高,此时的总利润为(20×15+260)×15+(-10×15+600)×5=10650.答:采购A种产品15件时总利润最大,最大利润为10650元.【解析】(1)设y1与x的关系式y1=kx+b,由表列出k和b的二元一次方程,求出k和b的值,函数关系式即可求出;(2)首先根据题意求出x的取值范围,结合x为整数,即可判断出商家的几种进货方案;(3)令总利润为W,根据利润=售价-成本列出W与x的函数关系式W=30x2-540x+12000,把一般式写成顶点坐标式,求出二次函数的最值即可.本题主要考查二次函数的应用的知识点,解答本题的关键是明确销售单价与销售件数之间的函数关系式,会表达单件的利润及总利润,此题难度一般.27.【答案】(1)证明:∵四边形ABCD是正方形,P与C重合,∴OB=OP,∠BOC=∠BOG=90°,∵PF⊥BG,∠PFB=90°,∴∠GBO=90°-∠BGO,∠EPO=90°-∠BGO,∴∠GBO=∠EPO,在△BOG和△POE中,,∴△BOG≌△POE(ASA);(2)证明:如图2,过P作PM∥AC交BG于M,交BO于N,∴∠PNE=∠BOC=90°,∠BPN=∠OCB.∵∠OBC=∠OCB=45°,∴∠NBP=∠NPB.∴NB=NP.∵∠MBN=90°-∠BMN,∠NPE=90°-∠BMN,∴∠MBN=∠NPE,在△BMN和△PEN中,,∴△BMN≌△PEN(ASA),∴BM=PE.∵∠BPE=∠ACB,∠BPN=∠ACB,∴∠BPF=∠MPF.∵PF⊥BM,∴∠BFP=∠MFP=90°.在△BPF和△MPF中,,∴△BPF≌△MPF(ASA).∴BF=MF.即BF=BM.∴BF=PE.即;故答案为;(3)解:如图3,过P作PM∥AC交BG于点M,交BO于点N,∴∠BPN=∠ACB=α,∠PNE=∠BOC=90°.由(2)同理可得BF=BM,∠MBN=∠EPN,∴△BMN∽△PEN,∴.在Rt△BNP中,tanα=,∴=tanα.即=tanα.∴tanα.【解析】(1)由四边形ABCD是正方形,P与C重合,易证得OB=OP,∠BOC=∠BOG=90°,由同角的余角相等,证得∠GBO=∠EPO,则可利用ASA证得:△BOG≌△POE;(2)首先过P作PM∥AC交BG于M,交BO于N,易证得△BMN≌△PEN(ASA),△BPF≌△MPF(ASA),即可得BM=PE,BF=BM.则可求得的值;(3)首先过P作PM∥AC交BG于点M,交BO于点N,由(2)同理可得:BF=BM,∠MBN=∠EPN,继而可证得:△BMN∽△PEN,然后由相似三角形的对应边成比例,求得.此题考查了正方形的性质、菱形的性质、相似三角形的判定与性质、全等三角形的判定与性质以及三角函数的定义等知识.此题综合性很强,难度较大,注意准确作出辅助线是解此题的关键,注意数形结合思想的应用.28.【答案】解(1)∵△OAB是等腰直角三角形,OB=10,∴点A的坐标为(5,5),设抛物线的解析式为y=ax2+bx,把点A(5,5)和点G(7,0).代入上式,得,解得:,抛物线的解析式为;(2)∵∠OAB=90°,TC⊥OA,TD⊥AB,∴四边形ACTD为矩形,又∵△OAB为等腰直角三角形,∴△OCT、△TDB均为等腰直角三角形,∵OT=t,OB=10,∴CT=,TD=,∴,∵,∴当t=5 时,S 的最大值为;(3)存在.∵△OMK是等腰直角三角形,点M(2,0),MK⊥OA,∴点K的坐标为(1,1),设Rt△KMN旋转后对应三角形是Rt△K′M′N′由题意可知,K'与A重合∴点K'的坐标为(5,5),∵Q点在OA上,且是KA的中点,∴Q点的坐标为(3,3),又∵Rt△KMN≌Rt△K′M′N′,且MK∥M′K′∴点M'坐标为(4,6),把x=4 代入得,∴点M'(4,6)在抛物线上,∴点Q的坐标是(3,3),抛物线上与M、K对应的点的坐标分别是M′(4,6)、K′(5,5).【解析】(1)根据△OAB是等腰直角三角形,OB=10,得出点A的坐标,再设抛物线的解析式为y=ax2+bx,把点A和G代入求出a,b的值,即可求出抛物线的解析式;(2))根据∠OAB=90°,TC⊥OA,TD⊥AB,得出四边形ACTD为矩形,再根据△OAB 为等腰直角三角形,得出△OCT、△TDB均为等腰直角三角形,再根据OT=t,OB=10,得出CT和TD的值,即可求出S的表达式和S的最大值;(3)根据△OMK是等腰直角三角形,点M(2,0),MK⊥OA,得出点K的坐标,设出Rt△KMN旋转后对应三角形是Rt△K'M'N',由题意可知,K'与A重合,得出K'和Q点的坐标,再根据Rt△KMN≌Rt△K'M'N',MK∥M'K',得出点M'坐标,即可求出解析式,从而得出它们的对应点的坐标.此题考查了二次函数与一次函数的综合知识,解题的关键是要注意数形结合思想的应用;此题属于中考中的压轴题,难度较大,知识点考查的较多而且联系密切,需要学生认真审题.第21页,共21页。
2020届重庆市中考数学二诊试卷(有答案)(加精)
D、为了了解《人民的名义》的收视率,选择抽样调查,故D符合题意;
故选:D.
5.(3分)当a=﹣2,b=3,则a2﹣2b+3的值( )
A.﹣7B.1C.4D.6
【解答】解:当a=﹣2,b=3时,
∴原式=4﹣6+3
=﹣2+3
=1
故选(B)
6.(3分)△ABC与△DEF的相似比为1:3,则△ABC和△DEF的面积比为( )
解得:x≥﹣1且x≠2.
故选:D.
8.(3分)如图,点B、C把弧线AD分成三等分,ED是⊙O的切线,过点B、C分别作半径的垂线段,已知∠E=45°,半径OD=2,则图中阴影部分的面积是( )
A. B. C. D.π
【解答 】解:∵点B、C把弧线AD分成三等分,ED是⊙O的切线,∠E=45°,
∴∠ODE=90°,∠DOC=45°,
故选:B.
3.(3分)下列图案属于轴对称图形的是( )
A. B. C. D.
【解答】解:A、能找出一条对称轴,故A是轴对称图形;
B、不能找出对称轴,故B不是轴对称图形;
C、不能找出对称轴,故C不是轴对称图形;
D 、不能找出对称轴,故D不是轴对称图形.
故选A.
4.(3分)下列调查中,调查方式选择正确的是( )
∴∠BOA=∠BOC=∠COD=45°,
∵OD=2,
∴阴影部分的面积是: ﹣ × × ×2+ ×2×2﹣ = ,
故选C.
9.(3分)估计 ﹣ 的运算结果在( )
A.3和4之间B.4和5之间C.5和6之间D.6和7之间
【解答】解: ,
∵1< <2, ≈1.732