竖曲线要素及竖曲线起终点里程桩号的计算
竖曲线运算步骤及公式讲解
1 / 2
竖曲线上高程计算
已知:①第一坡度:i 1(上坡为“+”,下坡为“-”)
②第二坡度:i 2(上坡为“+”,下坡为“-”)
③变坡点桩号:S Z
④变坡点高程:H Z
⑤竖曲线的切线长度:T
⑥待求点桩号:S
计算过程:
1、切线上任意点与竖曲线间的竖距h 通过推导可得:
==PQ h )()(2112li y l x R y y A A q p ---=-R
l 22= 2、竖曲线曲线长: L = R ω
3.竖曲线切线长: T= T A =T B ≈ L/2 =
2
ωR 4、竖曲线的外距: E =R T 22
5. 竖曲线上任意点至相应切线的距离:R
x y 22
= 式中:x —为竖曲任意点至竖曲线起点(终点)的距离, m ;
R —为竖曲线的半径,m 。
竖曲线计算的目的是确定设计纵坡上指定桩号的路基设计标高,其计算步骤
如下:
(1)计算竖曲线的基本要素:竖曲线长:L ;切线长:T ;外距:E 。
(2)计算竖曲线起终点的桩号: 竖曲线起点的桩号 = 变坡点的桩号-T
(3)计算竖曲线上任意点切线标高及改正值:
切线标高 = 变坡点的标高±(x T -)⨯i ;改正值:y=R
x 22 (4)计算竖曲线上任意点设计标高
某桩号在凹形竖曲线的设计标高 = 该桩号在切线上的设计标高 + y
某桩号在凸形竖曲线的设计标高 = 该桩号在切线上的设计标高- y
-----精心整理,希望对您有所帮助!。
最新《道路勘测设计》-章课后习题及答案
《道路勘测设计》-章课后习题及答案------------------------------------------作者xxxx------------------------------------------日期xxxx第二章 平面设计2-5.设某二级公路设计速度为80km/h ,路拱横坡为2%。
⑴试求不设超高的圆曲线半径及设置超高(% 8 i h =)的极限最小半径(μ值分别取0。
035和0。
15)。
⑵当采用极限最小半径时,缓和曲线长度应为多少(路面宽B = 9 m ,超高渐变率取1/150)? 解:⑴不设超高时:)(h V R i 1272+=μ=0.02)]-(0.035[127802⨯=3359。
58 m, 教材P 36表2-1中,规定取2500m。
设超高时:)(h V R i 1272+=μ=0.8)](0.15[127802+⨯=219。
1 m, 教材P36表2—1中,规定取250m 。
⑵当采用极限最小半径时,以内侧边缘为旋转轴,由公式计算可得:缓和曲线长度:=∆=pi B L '150/1%2%89)(+⨯=135 m 2-6 某丘陵区公路,设计速度为40km/h,路线转角"38'04954︒=α,4JD 到5JD 的距离D=267。
71m 。
由于地形限制,选定=4R 110m,4s L =70m ,试定5JD 的圆曲线半径5R 和缓和曲线长5s L .解:由测量的公式可计算出各曲线要素:πδπβ︒•=︒•=-==1806,18022402m ,240000200032R l R l R l l R l p , R T l R L m p R T -=+︒-=+•+=2q 2180)2(,2tan)(00,πβαα解得:p=1。
86 m , q = 35 m , =4T 157.24 m , 则=5T 267。
71-157。
24 = 110.49 m考虑5JD 可能的曲线长以及相邻两个曲线指标平衡的因素,拟定5s L =60 m,则有:522460p R = ,30260m ==,"28'20695︒=α 解得=5R 115。
纵断面设计——竖曲线设计
纵断面设计——竖曲线设计纵断面上相邻两条纵坡线相交的转折处,为了行车平顺用一段曲线来缓和,这条连接两纵坡线的曲线叫竖曲线。
竖曲线的形状,通常采用平曲线或二次抛物线两种。
在设计和计算上为方便一般采用二次抛物线形式。
纵断面上相邻两条纵坡线相交形成转坡点,其相交角用转坡角表示。
当竖曲线转坡点在曲线上方时为凸形竖曲线,反之为凹形竖曲线。
一、竖曲线如图所示,设相邻两纵坡坡度分别为i1 和i2,则相邻两坡度的代数差即转坡角为ω= i1-i2 ,其中i1、i2为本身之值,当上坡时取正值,下坡时取负值。
当i1- i2为正值时,则为凸形竖曲线。
当i1 - i2 为负值时,则为凹形竖曲线。
(一)竖曲线基本方程式我国采用的是二次抛物线形作为竖曲线的常用形式。
其基本方程为:若取抛物线参数为竖曲线的半径,则有:(二)竖曲线要素计算公式竖曲线计算图示1、切线上任意点与竖曲线间的竖距通过推导可得:2、竖曲线曲线长:L = Rω3、竖曲线切线长:T= TA =TB ≈ L/2 =4、竖曲线的外距:E =⑤竖曲线上任意点至相应切线的距离:式中:x —为竖曲任意点至竖曲线起点(终点)的距离, m;R—为竖曲线的半径,m。
二、竖曲线的最小半径(一)竖曲线最小半径的确定1.凸形竖曲线极限最小半径确定考虑因素(1)缓和冲击汽车行驶在竖曲线上时,产生径向离心力,使汽车在凸形竖曲线上重量减小,所以确定竖曲线半径时,对离心力要加以控制。
(2)经行时间不宜过短当竖曲线两端直线坡段的坡度差很小时,即使竖曲线半径较大,竖曲线长度也有可能较短,此时汽车在竖曲线段倏忽而过,冲击增大,乘客不适;从视觉上考虑也会感到线形突然转折。
因此,汽车在凸形竖曲线上行驶的时间不能太短,通常控制汽车在凸形竖曲线上行驶时间不得小于3秒钟。
(3)满足视距的要求汽车行驶在凸形竖曲线上,如果竖曲线半径太小,会阻挡司机的视线。
为了行车安全,对凸形竖曲线的最小半径和最小长度应加以限制。
道路曲线高程计算公式
高速公路的一些线路坐标、高程计算公式(缓和曲线、竖曲线、圆曲线、匝道) 一、缓和曲线上的点坐标计算已知:①缓和曲线上任一点离ZH点的长度:l②圆曲线的半径:R③缓和曲线的长度:l0④转向角系数:K(1或-1)⑤过ZH点的切线方位角:α⑥点ZH的坐标:xZ,yZ计算过程:说明:当曲线为左转向时,K=1,为右转向时,K=-1,公式中n的取值如下:当计算第二缓和曲线上的点坐标时,则:l为到点HZ的长度α为过点HZ的切线方位角再加上180°K值与计算第一缓和曲线时相反xZ,yZ为点HZ的坐标切线角计算公式:二、圆曲线上的点坐标计算已知:①圆曲线上任一点离ZH点的长度:l②圆曲线的半径:R③缓和曲线的长度:l0④转向角系数:K(1或-1)⑤过ZH点的切线方位角:α⑥点ZH的坐标:xZ,yZ计算过程:说明:当曲线为左转向时,K=1,为右转向时,K=-1,公式中n的取值如下:当只知道HZ点的坐标时,则:l为到点HZ的长度α为过点HZ的切线方位角再加上180°K值与知道ZH点坐标时相反xZ,yZ为点HZ的坐标三、曲线要素计算公式公式中各符号说明:l——任意点到起点的曲线长度(或缓曲上任意点到缓曲起点的长度)l1——第一缓和曲线长度l2——第二缓和曲线长度l0——对应的缓和曲线长度R——圆曲线半径R1——曲线起点处的半径R2——曲线终点处的半径P1——曲线起点处的曲率P2——曲线终点处的曲率α——曲线转角值四、竖曲线上高程计算已知:①第一坡度:i1(上坡为“+”,下坡为“-”)②第二坡度:i2(上坡为“+”,下坡为“-”)③变坡点桩号:SZ④变坡点高程:HZ⑤竖曲线的切线长度:T⑥待求点桩号:S计算过程:五、超高缓和过渡段的横坡计算已知:如图,第一横坡:i1第二横坡:i2过渡段长度:L待求处离第二横坡点(过渡段终点)的距离:x 求:待求处的横坡:i解:d=x/Li=(i2-i1)(1-3d2+2d3)+i1六、匝道坐标计算已知:①待求点桩号:K②曲线起点桩号:K0③曲线终点桩号:K1④曲线起点坐标:x0,y0⑤曲线起点切线方位角:α0⑥曲线起点处曲率:P0(左转为“-”,右转为“+”)⑦曲线终点处曲率:P1(左转为“-”,右转为“+”)求:①线路匝道上点的坐标:x,y②待求点的切线方位角:αT计算过程:。
竖曲线
竖曲线是在变坡点处,为了行车平顺的需要而设置的一段曲线。
竖曲线的形状,通常采用圆曲线或二次抛物线两种。
在设计和计算上抛物线比圆曲线更为方便,故一般采用二次抛物线。
在纵坡设计时,由于纵断面上只反映水平距离和竖直高度,因此竖曲线的切线长与弧长是其在水平面上的投影,切线支距是竖直的高程差,相邻两条纵坡线相交角用坡度差表示。
一、竖曲线要素计算如图3-3所示,设变坡处相邻两纵坡度分别为i1和i2,坡度差以ω表示,则坡度差ω为i1和i2的代数差,即ω= i1-i2:当ω>0时,则为凸形竖曲线;当ω<0时,则为凹形竖曲线。
图3-3竖曲线示意图1、竖曲线的基本方程二次抛物线作为竖曲线的基本形式是我国目前常用的一种形式。
如图3-4所示,用二次抛物线作为竖曲线的基本方程:3-4 竖曲线要素示意图竖曲线上任意一点的斜率为:当x=0时:k= i1,则b= i1;当x=L,r=R时:,则:因此,竖曲线的基本方程式为:或 (3-19)2、竖曲线的要素计算曲线长:(3-20)切线长:(3-21)外距:(3-22)曲线上任意一点的竖距(改正值):(3-23)二、竖曲线设计标准竖曲线的设计标准包括竖曲线的最小半径和最小长度。
1、竖曲线设计的限制因素(1)缓和冲击汽车在竖曲线上行驶时会产生径向离心力,在凸形竖曲线上行驶会减重,在凹形竖曲线上行驶会增重,如果这种离心力达到某种程度时,乘客就会有不舒适的感觉,同时对汽车的悬挂系统也有不利影响,故应对径向离心力加速度加以控制。
根据试验得知,离心加速度a限制在0.5~0.7m/s2比较合适。
汽车在竖曲线上行驶时其离心加速度为:(3-24)《标准》中确定竖曲线半径时取a=0.278 m/s2。
或(3-25)(2)行程时间不宜过短汽车从直坡段驶入竖曲线时,如果其竖曲线长度过短,汽车倏忽而过,冲击力大,旅客会感到不舒适,太短的竖曲线长度从视觉上也会感到线形突然转折。
因此,应限制汽车在竖曲线上的行程时间,一般不宜小于3s。
竖曲线
竖曲线1、竖曲线要素计算1.)变坡角δ:相邻两纵坡i1,i2,由于公路纵坡的允许值不大,故可以认为变坡角δ为:δ=△i= i1-i2(若不考虑近似情况,该值δ=arctan (i1)-arctan(i2)。
需要注意的是假设坡度上升为正时,δ计算结果会有正有负,但其绝对值的大小却与变坡角的角度相等。
但若不考虑正负差异,会造成最终的计算结果出错。
)2.)切线长T:(变坡角δ和圆心角大小相等。
)由于δ很小,可认为故(若不考虑近似情况,,δ值的正负号需注意。
)3.)曲线长L的计算由于变坡角δ很小,可认为L=2T(若不考虑近似情况,因为δ等于该弧所对应的圆周角,那么L=R*δ,其中δ应换算成弧度。
注意在利用CASIO计算器计算时的中间、最终结果的角度弧度问题。
)4.)外矢距E的计算由于变坡角δ很小,可认为y坐标与半径方向一致,它是切线上与曲线上的高程差。
从而得(R+y)2=R2+x2展开2Ry=x2-y2又因y2 与x2相比较,y2的值很小,略去y2,则2Ry= x2即当x=T时,y值最大,约等于外矢距E,所以(若不考虑近似情况,y2+2Ry-x2=0,,其中E >0,。
)2、竖曲线的测设算例:已知:某竖曲线半径R=2000米,相邻坡段的坡度i1=-2.95%,i2=-5.0628%,变坡点里程桩号为K0+760,其高程为428.312米。
(设计给出T=21.128,E=0.112。
)求:K0+730、K0+740、K0+750、K0+760、K0+770、K0+780、K0+790的线路坡度高程和设计高程。
解:步骤一:由已知条件知δ= i1-i2=-0.0295+0.050628=0.021128弧度(若不考虑近似情况δ=(arctan(i1)-arctan(i2))=1°12′30.82″=0.0210940493155弧度)1、)切线长=1000*(-0.0295+0.050628)=21.128米(若不考虑近似情况,=21.0942米)2、)曲线长L=2T=21.128*2=42.256米(若不考虑近似情况L=R*δ=2000*(arctan(i1)-arctan(i2))=2000*1°12′30.82″*π/180°=42.1867米)3、)外矢距=21.128^2/4000=0.1116米(若代入T=21.0942,计算结果=0.1112)(若不考虑近似情况 =0.1112米,其中T=21.0942。
竖曲线高程计算公式推导过程及计算流程
竖曲线⾼程计算公式推导过程及计算流程竖曲线⾼程计算公式推导及计算流程1. 竖曲线介绍竖曲线是指在纵断⾯内,两个坡线之间为了延长⾏车视距或者减⼩⾏车的冲击⼒,⽽设计的⼀段曲线。
⼀般可以⽤圆曲线和抛物线来充当竖曲线。
由于圆曲线的计算量较⼤,所以,通常采⽤抛物线作为竖曲线,以减少计算量。
2. 竖曲线⾼程计算流程竖曲线计算的⽬的是确定设计纵坡上指定桩号的路基设计标⾼,其计算步骤如下:a. 计算竖曲线的基本要素:竖曲线长L ;切线长T ;外失距Eb. 计算竖曲线起终点的桩号:竖曲线起点的桩号=变坡点的桩号-Tc. 计算竖曲线上任意点切线标⾼及改正值:切线标⾼=变坡点的标⾼±(x T -)?i 改正值:221x Ry =d. 计算竖曲线上任意点设计标⾼某桩号在凹形竖曲线的设计标⾼ = 该桩号在切线上的设计标⾼+ y 某桩号在凸形竖曲线的设计标⾼ = 该桩号在切线上的设计标⾼-y3. 竖曲线⾼程计算公式推导已知条件:第⼀条直线的坡度为1i ,下坡为负值,第⼀条直线的坡度为2i ,上坡为正值,变坡点的⾥程为K ,⾼程为H ,竖曲线的切线长为B A T T T ==, 待求点的⾥程为X K 曲线半径R竖曲线特点:抛物线的对称轴始终保持竖直,即:X 轴沿⽔平⽅向,Y 轴沿竖直⽅向,从⽽保证了X 代表平距,Y 代表⾼程。
抛物线与相邻两条坡度线相切,抛物线变坡点两侧⼀般不对称,但两切线长相等。
竖曲线⾼程改正数计算公式推导设抛物线⽅程为:()021≠++=a c bx ax y设直线⽅程为:()02≠+=k b kx y由图可知,抛物线与直线都经过坐标系222Y O X 的原点2O ,所以可得:00==b c ;分别对21y y 、求导可得:b ax y +=2'1k y ='2当0=x 时,由图可得:b i y ==1'1k i y ==1'2当L x =时,由图可得:12'12i aL i y +==由上式可得:RL L i i a 212212==-=ω所以抛物线⽅程为:x i x Ry 12121+=直线⽅程为:x i y 12=对于竖曲线上任意⼀点P ,到其切线上Q 点处的竖直距离,即⾼程改正数y 为:21122121X RX i X i X R y y y P Q =-+=-= 竖曲线曲线元素推导竖曲线元素有切线长T 、外失距E 和竖曲线长L 三个元素,推导过程如下:由图可知:2tan ω=R T 由于转⾓ω很⼩,所以可近似认为22tan ωω=,因此可得:2ωR T = 由图易得:ωR L =将切线长T 带⼊到221x Ry =中可得外失距RT E 22=4. 曲线⾼程计算⽰例已知:某条道路变坡点桩号为K25+460.00,⾼程为780.72.m ,i1=0.8%,i2=5%,竖曲线半径为5000m 。
道路勘测设计课程设计步骤
、设计说明1、工程概况设计公路为某一级公路。
本路段为山岭区,地势稍陡。
路段主线长(起讫桩号为K0+—K1+), 路基宽,设计行车速度为80km/小时。
2、技术标准(1)平面设计技术标准:%圆曲线半径:一般值:400m,极限值:250m不设超高最小半径:缓和曲线最小长度:70m平曲线间插直线长度:同向平曲线间插直线长度应大于6V(480m)为宜,反向平曲线间插直线长度应大于2V(160m)为宜。
(2 )纵断面设计指标最大坡度:5%最小坡长:200m不同纵坡度最大坡长注:当纵坡坡度小于或等于3%时,最大坡长没有限制竖曲线最小半径和最小长度(3 )路基横断面技术指标: 行车道宽度:4X =15m硬路肩宽度:2X =5m 土路肩宽度:2x =中间带宽度:中央分隔带2m+路缘带x 2=3m 路基总宽度:视距保证:停车视距:110m会车视距:220m超车视距:550m不同圆曲线半径的超高值双车道加宽值注:当圆曲线半径大于600m时,可不设超咼。
本路段超高和加宽值为:R=700m处,不采用超高和加宽;R=360m处,采用超高,不采用加宽。
路拱应采用双向路拱坡度,由路中央向两侧倾斜,取2%, 土路肩横坡度取用3%。
二、选线与定线1、选线原则(1 )在道路设计的各个阶段,应运用各种先进手段对路线方案作深入、细致的研究,在多方案论证、比选的基础上,选定最优路线方案。
(2)路线设计应在保证行车安全、舒适、迅速的前提下,做到工程量小、造价低、运营费用省、效益好,并有利于施工和养护。
在工程量增加不大时,应尽可能的采用较高的技术指标。
不轻易采用极限指标,也不应为了采用较高指标而使得工程量过分增大。
2、选线过程:选择的路线如平面图所示,选择此路线的原因:优点:(1)此路线过垭口,线形较好;(2)此路线经过了此路线经过地区地形较好,施工条件较好。
(3)此路线填挖工程量小,节省成本。
缺点:(1)此路线平曲线较多,对行车不利;(2)路程相对较长。
道路曲线计算公式
高速公路线路(缓和曲线、竖曲线、圆曲线、匝道)坐标计算公式时间:2009-12-27 21:40:34 来源:本站作者:未知我要投稿我要收藏投稿指南高速公路的一些线路坐标、高程计算公式(缓和曲线、竖曲线、圆曲线、匝道)一、缓和曲线上的点坐标计算已知:①缓和曲线上任一点离ZH点的长度:l②圆曲线的半径:R③缓和曲线的长度:l0④转向角系数:K(1或-1)⑤过ZH点的切线方位角:α⑥点ZH的坐标:x Z,y Z计算过程:说明:当曲线为左转向时,K=1,为右转向时,K=-1,公式中n的取值如下:当计算第二缓和曲线上的点坐标时,则:l为到点HZ的长度α为过点HZ的切线方位角再加上180°K值与计算第一缓和曲线时相反x Z,y Z为点HZ的坐标切线角计算公式:二、圆曲线上的点坐标计算已知:①圆曲线上任一点离ZH点的长度:l②圆曲线的半径:R③缓和曲线的长度:l0④转向角系数:K(1或-1)⑤过ZH点的切线方位角:α⑥点ZH的坐标:x Z,y Z计算过程:说明:当曲线为左转向时,K=1,为右转向时,K=-1,公式中n的取值如下:当只知道HZ点的坐标时,则:l为到点HZ的长度α为过点HZ的切线方位角再加上180°K值与知道ZH点坐标时相反x Z,y Z为点HZ的坐标三、曲线要素计算公式公式中各符号说明:l——任意点到起点的曲线长度(或缓曲上任意点到缓曲起点的长度)l1——第一缓和曲线长度l2——第二缓和曲线长度l0——对应的缓和曲线长度R——圆曲线半径R1——曲线起点处的半径R2——曲线终点处的半径P1——曲线起点处的曲率P2——曲线终点处的曲率α——曲线转角值四、竖曲线上高程计算已知:①第一坡度:i1(上坡为“+”,下坡为“-”)②第二坡度:i2(上坡为“+”,下坡为“-”)③变坡点桩号:S Z④变坡点高程:H Z⑤竖曲线的切线长度:T⑥待求点桩号:S计算过程:五、超高缓和过渡段的横坡计算已知:如图,第一横坡:i1第二横坡:i2过渡段长度:L待求处离第二横坡点(过渡段终点)的距离:x求:待求处的横坡:i解:d=x/Li=(i2-i1)(1-3d2+2d3)+i1六、匝道坐标计算已知:①待求点桩号:K②曲线起点桩号:K0③曲线终点桩号:K1④曲线起点坐标:x0,y0⑤曲线起点切线方位角:α0⑥曲线起点处曲率:P0(左转为“-”,右转为“+”)⑦曲线终点处曲率:P1(左转为“-”,右转为“+”)求:①线路匝道上点的坐标:x,y②待求点的切线方位角:αT计算过程:注:sgn(x)函数是取符号函数,当x<0时sgn(x)=-1,当x>0时sgn(x)=1,当x=0时sgn(x)=0。
勘测设计计算题问题详解
道路勘测设计计算题答案3-9.某条道路变坡点桩号为K25+460.00 ,高程为780.72 m i 1 = 0.8%, i 2= 5%,竖曲线半径5000m(1) 判断凸、凹性;(2) 计算竖曲线要素;(3) 计算曲线起点、K25+400.00、K25+460.00、K25+500.00、终点的高程。
解:(1) J — i2J = 5%- 0.8% = 4.2% ■ 0,二为凹形竖曲线。
(2) 曲线长:L 二R Y:- 5000 4.2% = 210 m;L 1切线长:T 210 105m;2 2竖曲线外距:E = T 105 1.10252R 2 汉5000(3) ①曲线起点:桩号:K25+460.00-T=K25+355.00 m高程:780.72-T X 0.8%=779.88 m②K25+400.00横距:x1= 400 一355 = 45mX2452竖距:h1=. —m = 0.2025 m12R 2 x 5000切线高程:780.72 一T 一X j 打=780.24 m设计高程:780.24 0.2025 = 780.4425m③K25+460.00外距:E = T I05 1.1025 m2R 2 x 5000切线高程:780.72 m设计高程:780.72 E 二781.8225 m④K25+500.00横距:x2= 500 - 355 = 145m竖距:-21452h22(x2T) 4.2%(145 105) = 0.4225 m22R 2 5000切线高程:780.72 x2-T i2= 782.72 m 设计高程:782.72 0.4225 二783.1425m⑤终点桩号:K25+460.00+105二K25+565.00高程:780.72+105 X 5%=785.97m此题结束3-10某城市I级主干道,其纵坡分别为i^ -2.5%,i^ 1.5%,变坡点桩号为K1+520.00,高程为429.00m。
(整理)高速公路各线形计算公式
高速公路的一些线路坐标、高程计算公式(缓和曲线、竖曲线、圆曲线、匝道)一、缓和曲线上的点坐标计算已知:①缓和曲线上任一点离ZH点的长度:l②圆曲线的半径:R③缓和曲线的长度:l0④转向角系数:K(1或-1)⑤过ZH点的切线方位角:α⑥点ZH的坐标:x Z,y Z计算过程:说明:当曲线为左转向时,K=1,为右转向时,K=-1,公式中n的取值如下:当计算第二缓和曲线上的点坐标时,则:l为到点HZ的长度α为过点HZ的切线方位角再加上180°K值与计算第一缓和曲线时相反x Z,y Z为点HZ的坐标切线角计算公式:二、圆曲线上的点坐标计算已知:①圆曲线上任一点离ZH点的长度:l②圆曲线的半径:R③缓和曲线的长度:l0④转向角系数:K(1或-1)⑤过ZH点的切线方位角:α⑥点ZH的坐标:x Z,y Z计算过程:说明:当曲线为左转向时,K=1,为右转向时,K=-1,公式中n的取值如下:当只知道HZ点的坐标时,则:l为到点HZ的长度α为过点HZ的切线方位角再加上180°K值与知道ZH点坐标时相反x Z,y Z为点HZ的坐标三、曲线要素计算公式公式中各符号说明:l——任意点到起点的曲线长度(或缓曲上任意点到缓曲起点的长度)l1——第一缓和曲线长度l2——第二缓和曲线长度l0——对应的缓和曲线长度R——圆曲线半径R1——曲线起点处的半径R2——曲线终点处的半径P1——曲线起点处的曲率P2——曲线终点处的曲率α——曲线转角值四、竖曲线上高程计算已知:①第一坡度:i1(上坡为“+”,下坡为“-”)②第二坡度:i2(上坡为“+”,下坡为“-”)③变坡点桩号:S Z④变坡点高程:H Z⑤竖曲线的切线长度:T⑥待求点桩号:S计算过程:五、超高缓和过渡段的横坡计算已知:如图,第一横坡:i1第二横坡:i2过渡段长度:L待求处离第二横坡点(过渡段终点)的距离:x 求:待求处的横坡:i解:d=x/Li=(i2-i1)(1-3d2+2d3)+i1六、匝道坐标计算已知:①待求点桩号:K②曲线起点桩号:K0③曲线终点桩号:K1④曲线起点坐标:x0,y0⑤曲线起点切线方位角:α0⑥曲线起点处曲率:P0(左转为“-”,右转为“+”)⑦曲线终点处曲率:P1(左转为“-”,右转为“+”)求:①线路匝道上点的坐标:x,y②待求点的切线方位角:αT计算过程:注:sgn(x)函数是取符号函数,当x<0时sgn(x)=-1,当x>0时sgn(x)=1,当x=0时sgn(x)=0。
2022期中勘测参考答案
2022道路勘测设计期中考试参考答案一、某二级公路,设计速度取V=80km/h ,试计算(40分):1.按下式计算该级公路圆曲线的极限最小半径、一般最小半径、不设超高的最小半径,上述三种最小半径的超高率ih 及横向力系数µ分别取8%及0.12、7%及0.06、-1.5%及0.035。
(10分) 注:)(1272h i V R ±=μ 解:极限最小半径:m R 969.251)%812.0(127802min 极限=+= 一般最小半径: m R 644.387)%706.0(127802min 一般=+= 不设超高的最小半径:m R 685.2519)%5.1035.0(127802min 不设超高=−= (m 250=极限R ,m 400=一般R ,m 2500=不设R )2.该二级公路2JD 到3JD 的间距为522.34m ,,034=左3' α如下图所示,取2JD 的圆曲线半径m ,缓和曲线m 。
试计算: (1)若3JD 设置大于不设超高的最小半径,并取03=S L ,将3JD 与2JD 设计为S 形曲线,试计算3JD 半径3R ,并依据下表判定是否满足小偏角曲线长度要求。
(15分)(1)解:①计算JD 2的切线长度2JD :α2=30°R 2=1000m L S2=120m 3422268824RL R L p s s −==1202/(24×1000)- 1204/(2688×10003)= 0.600m 2322402R L L q s s−==120/2-1203/(240×10002)=59.993m T 2=(R+p)tan(α/2)+q = (1000+0.600)tan(30°/2)+59.993=328.103m②计算3JD 的半径3R3JD :0343' =左α 03=S L 将3JD 与2JD 设计为S 形曲线,则3JD 的切线长为:T 3=522.34-T 2=522.34-328.103=194.237m由3T 反算3Rm T R 662.4943033929.0237.1942304tan 237.1942tan ,333==︒==⋅α R3>R 不设超高min =2500m ,符合要求。
竖曲线、缓和曲线计算公式
第三节竖曲线纵断面上两个坡段的转折处,为方便行车,用一段曲线来缓和,称为竖曲线。
可采用抛物线或圆曲线。
一、竖曲线要素的计算公式相邻坡段的坡度为i1和i2,代数差为ω=i2 -i1ω为正时,是凹曲线;ω为负,是凸曲线。
1.二次抛物线基本方程:或ω:坡度差(%);L:竖曲线长度;R:竖曲线半径2.竖曲线诸要素计算公式竖曲线长度或竖曲线半径R: (前提:ω很小)L=Rω竖曲线切线长:T=L/2=Rω/2竖曲线上任一点竖距h:竖曲线外距:二、竖曲线最小半径(三个因素)1.缓和冲击对离心加速度加以控制。
ν(m/s)根据经验,a=0.5~0.7m/s2比较合适。
我国取a=0.278,则Rmin=V2/3.6 或Lmin=V2ω/3.62.行驶时间不过短 3s的行程Lmin=V.t/3.6=V/1.23.满足视距的要求分别对凸凹曲线计算。
(一)凸形竖曲线最小半径和最小长度按视距满足要求计算1.当L<ST时,Lmin = 2ST - 4/ω2.当L≥ST时,ST为停车视距。
以上两个公式,第二个公式计算值大,作为有效控制。
按缓和冲击、时间行程和视距要求(视距为最不利情况)计算各行车速度时的最小半径和最小长度,见表4-13。
表中:(1)一般最小半径为极限最小半径的1.5~2倍;(2)竖曲线最小长度为3s行程的长度。
(二)凹曲线最小半径和长度1.夜间行车前灯照射距离要求:1)L<ST2) L≥STL<ST Lmin = 2ST - 26.92/ω (4-14)L≥STω /26.92 (4-15)3s时间行程为有效控制。
例:设ω=2%=0.02;则L=ωR竖曲线最小长度L=V/1.2速度V=120km/h V=40km/h 一般最小半径R凸17000 700一般最小半径R凹6000 700 L凸340 14L凹120 14 例题4-3ω=-0.09 凸形;L=Rω=2000*0.09=180mT=L/2=90mE=T2/2R=2.03m起点桩号=k5+030 - T =K4+940起始高程=427.68 - 5%*90=423.18m桩号k5+000处:x1=k5+000-k4+940=60m切线高程=423.18+60*0.05=426.18m h1=x21/2R=602/2*2000=0.90m设计高程=426.18 - 0.90=425.28m 桩号k5+100处:x2=k5+100-k4+940=160m切线高程=423.18+160*0.05=431.18m h2=x22/2R=1602/2*2000=6.40m设计高程=431.18 - 6.40=424.78m第一节平面线形概述一、路线路线指路的中心线;路线在水平面上的投影叫路线的平面;路线设计:确定路线空间位置和各部分几何尺寸的工作;可分为平面设计、纵断面设计、横断面设计。
道路工程习题课2014
45道路工程习题课 第2章道路平面设计一. 含缓和曲线的平曲线几何要素计算公式1.已知平原区某二级公路有一弯道,偏角α右=13°38′42″=13.645°,半径R=800m ,JD=K5+136.53。
假的缓和曲线长度为70,计算曲线主点里程桩号。
或者试计算 : 1)平曲线要素2)主点ZH ,HY ,QZ ,YH ,HZ 点的桩号解:(1)计算平曲线的几何要素:=(800+0.255)*0.1196+34.998=95.710+34.998=130.708J=2T-L=2×130.708-260.514=0.902(2)主点里程桩号计算:以交点里程桩号为起算点:JD=K5+136.53ZH = JD – T = K5+136.53 -130.708 = K5+5.822HY = ZH + Ls = K5+5.822 +70 = K5+75.822QZ = ZH + L/2= K5+5.822 +260.514/2 =K5+136.079HZ = ZH + L = K5+5.822 +260.514=K5+266.336YH = HZ – Ls = K5+266.336–70=K5+196.336[公式提示] 有缓和曲线的平曲线几何要素计算公式q=L S /2- L S 3/(240R 2)22700.2552424800Ls p R ===⨯3322707034.99822402240800Ls Ls q R =-=-=⨯13.64580070260.514180180L R Ls ππα=+=⨯⨯+=()sec (8000.255)sec 800 5.85722E R p R αα=+-=+-=()tan 130.7082T R P q α=++=p=L S 2/24R —L S 4/(2688R 3)= L S 2/24R β0=28.6479L S /R T=(R +P)tg a/2+qL=(a -2β0)πR/180+2L S= 180L R Ls πα=+E=(R +P)sec a/2-RJ=2T -L2.圆曲线几何要素计算公式(不含缓和曲线) 曲线主点里程桩号计算计算基点为交点里程桩号,记为JD ,ZY=JD-TYZ=ZY+LQZ=ZY+L/2JD=QZ+D/2 (桩号计算校核)2.某二级公路设计速度为60km/小时,已知JD4交点桩号为K0+750.00, 偏角α右=13°30′,该处的平面线形为单圆曲线,圆曲线半径为600m,试计算该圆曲线的几何元素及曲线主点桩的桩号?解: 圆曲线几何要素计算:已知R=600m, α右=13°30′=13.5°, 则 T=Rtan(a/2)=600×tan(13.5/2)=71.015(m)ππ13.5600L αR=141.372()180180m ⨯⨯==α13.5E R(sec 1)=600(sec 1)=4.188(m)22=-⨯- D=2T-L =2×71.015-141.372=0.658(m)曲线主点桩号计算:ZY=JD-T= K0+750.000-71.015= K0+678.985YZ=ZY+L= K0+678.985 +141.372= K0+820.357QZ=ZY+L/2= K0+678.985+70.866= K0+749.671桩号计算校核 JD 桩号=QZ+D/2= K0+749.671+(0.658/2)= K0+750.00= JD 桩号αT Rtg2πL αR=0.01745αR 180αE R(sec 1)22T L D ===-=-3.与横向力计算公式与因素根据汽车行驶在曲线上力的平衡式计算曲线半径:当设超高时: 式中:V ——计算行车速度,(km/h );μ——横向力系数;i h ——超高横坡度;i 1——路面横坡度。
竖曲线计算公式(一看就学会)
竖曲线计算公式(一看就学会)
纵断面上两个坡段的转折处,为方便行车,用一段曲线来缓和,称为竖曲线。可采用抛物线或 圆曲线。 一、竖曲线要素的计算公式
相邻坡段的坡度为i1和i2,代数差为ω=i2 -i1 ω为正时,是凹曲线;ω为负,是凸曲线。 2.竖曲线诸要素计算公式 竖曲线长度或竖曲线半径R: (前提:ω很小) L=Rω 竖曲线切线长:T=L/2=Rω/2 竖曲线上任一点竖距h:
竖曲线外距:
例题4-3 ω=-0.09 凸形; L=Rω=2000*0.09=180m T=L/2=90m E=T2/2R=2.03m 起点桩号=k5+030 - T =K4+940 起始高程=427.68 - 5%*90=423.18m 桩号k5+000处:
x1=k5+000-k4+940=60m 切线高程=423.18+60*0.05=426.18m h1=x21/2R=602/2*2000=0.90m 设计高程=426.18 - 0.90=425.28m 桩号k5+100处: x2=k5+100-k4+940=160m 切线高程=423.18+1.40m 设计高程=431.18 - 6.40=424.78m
竖曲线要素计算
[转]缓和曲线、竖曲线、圆曲线、匝道(计算公式)来源:王维超的日志一、缓和曲线上的点坐标计算已知:①缓和曲线上任一点离ZH点的长度:l②圆曲线的半径:R③缓和曲线的长度:l0④转向角系数:K(1或-1)⑤过ZH点的切线方位角:α⑥点ZH的坐标:xZ,yZ计算过程:说明:当曲线为左转向时,K=1,为右转向时,K=-1,公式中n的取值如下:当计算第二缓和曲线上的点坐标时,则:l为到点HZ的长度α为过点HZ的切线方位角再加上180°K值与计算第一缓和曲线时相反xZ,yZ为点HZ的坐标切线角计算公式:二、圆曲线上的点坐标计算已知:①圆曲线上任一点离ZH点的长度:l②圆曲线的半径:R③缓和曲线的长度:l0④转向角系数:K(1或-1)⑤过ZH点的切线方位角:α⑥点ZH的坐标:xZ,yZ计算过程:说明:当曲线为左转向时,K=1,为右转向时,K=-1,公式中n的取值如下:当只知道HZ点的坐标时,则:l为到点HZ的长度α为过点HZ的切线方位角再加上180°K值与知道ZH点坐标时相反xZ,yZ为点HZ的坐标三、曲线要素计算公式公式中各符号说明:l——任意点到起点的曲线长度(或缓曲上任意点到缓曲起点的长度)l1——第一缓和曲线长度l2——第二缓和曲线长度l0——对应的缓和曲线长度R——圆曲线半径R1——曲线起点处的半径R2——曲线终点处的半径P1——曲线起点处的曲率P2——曲线终点处的曲率α——曲线转角值四、竖曲线上高程计算已知:①第一坡度:i1(上坡为“+”,下坡为“-”)②第二坡度:i2(上坡为“+”,下坡为“-”)③变坡点桩号:SZ④变坡点高程:HZ⑤竖曲线的切线长度:T⑥待求点桩号:S计算过程:五、超高缓和过渡段的横坡计算已知:如图,第一横坡:i1第二横坡:i2过渡段长度:L待求处离第二横坡点(过渡段终点)的距离:x 求:待求处的横坡:i解:d=x/Li=(i2-i1)(1-3d2+2d3)+i1六、匝道坐标计算已知:①待求点桩号:K②曲线起点桩号:K0③曲线终点桩号:K1④曲线起点坐标:x0,y0⑤曲线起点切线方位角:α0⑥曲线起点处曲率:P0(左转为“-”,右转为“+”)⑦曲线终点处曲率:P1(左转为“-”,右转为“+”)求:①线路匝道上点的坐标:xy②待求点的切线方位角:αT计算过程:注:sgn(x)函数是取符号函数,当x0时sgn(x)=1,当x=0时sgn(。
平曲线要素计算公式-(2)
第三节 竖曲线 (2)曲线主点桩号计算: ZH(桩号)=JD(桩号)-T HY(桩号)=ZH(桩号)+l s QZ(桩号)=HZ(桩号)-L/2 YH(桩号)=HY(桩号)+L y HZ(桩30-3 336629-3 4028)-(3 )(227-3 2sec )(26-3 225-32ls 180)2(m 18024)-(3 2)(23)-(3 9022)-(3 23842421)-(3 )( 240234202300034223m R l R l y m R ll x m L T J m R p R E m l L L R l R L m q tg p R T R l m R l R l p m R l l q ss s s s Y s sss ss-=-=-=-⋅+=-=+⋅⋅-=+⋅⋅=+⋅+=︒⋅︒=-=-=απβααπαπβ纵断面上两个坡段的转折处,为方便行车,用一段曲线来缓和,称为竖曲线。
可采用抛物线或圆曲线。
一、竖曲线要素的计算公式相邻坡段的坡度为i1和i2,代数差为ω=i2 -i1ω为正时,是凹曲线;ω为负,是凸曲线。
2.竖曲线诸要素计算公式竖曲线长度或竖曲线半径R: (前提:ω很小)L=Rω竖曲线切线长:T=L/2=Rω/2竖曲线上任一点竖距h:竖曲线外距:[例1]、某山岭区二级公路,变坡点桩号为K5+030.00,高程为427.68m,i1=+5%,i2=-4%,竖曲线半径R=2000m。
试计算竖曲线诸要素以及桩号为K5+000.00和K5+100.00处的设计高程。
解:1.计算竖曲线要素ω= |i2-i1|= |-0.04-0.05| =0.09,为凸型。
曲线长L=Rω=2000×0.09=180m切线长T=L/2=180/2=90m外距E=T2/2R=902/2×2000=2.03m2.计算设计高程竖曲线起点桩号=(K5+030.00)-90=K4+940.00竖曲线起点高程=427.68-90×0.05=423.18竖曲线终点桩号=(K5+030.00)+90=K5+120.00竖曲线终点高程=427.68-90×0.04=424.08桩号K5+000.00处:横距K5x1=(K5+ 000.00)-(K4+940.00)=60m竖距h1=x12/2R=602/2×2000=0.90m切线高程=427.68-(90-60)×0.05=426.18m423.18+60×0.05=426.18设计高程=426.18-0.90=425.28m桩号K5+100.00处:横距x 2=(K5+120.00)-(K5+100.00)=20m竖距h 2=x 22/2R=202/2×2000=0.1m切线高程=427.68-(90-20)×0.04=424.88m设计高程=424.88-0.1=424.78m横距x 2=(K5+100.00)-(K4+940.00)=160m竖距h 2=x 22/2R=1602/2×2000=6.4m切线高程=423.18+160×0.05=431.18m设计高程=431.18-6.40=424.78m[例2]平原区某二级公路有一弯道,偏角α右=15°28′30″,半径R=600m ,缓和曲线长度Ls=70m , JD=K2+536.48。
道路曲线计算公式
高速公路线路(缓和曲线、竖曲线、圆曲线、匝道)坐标计算公式时间:2009-12-27 21:40:34 来源:本站作者:未知我要投稿我要收藏投稿指南高速公路的一些线路坐标、高程计算公式(缓和曲线、竖曲线、圆曲线、匝道)一、缓和曲线上的点坐标计算已知:①缓和曲线上任一点离ZH点的长度:l②圆曲线的半径:R③缓和曲线的长度:l0④转向角系数:K(1或-1)⑤过ZH点的切线方位角:α⑥点ZH的坐标:x Z,y Z计算过程:说明:当曲线为左转向时,K=1,为右转向时,K=-1,公式中n的取值如下:当计算第二缓和曲线上的点坐标时,则:l为到点HZ的长度α为过点HZ的切线方位角再加上180°K值与计算第一缓和曲线时相反x Z,y Z为点HZ的坐标切线角计算公式:二、圆曲线上的点坐标计算已知:①圆曲线上任一点离ZH点的长度:l②圆曲线的半径:R③缓和曲线的长度:l0④转向角系数:K(1或-1)⑤过ZH点的切线方位角:α⑥点ZH的坐标:x Z,y Z计算过程:说明:当曲线为左转向时,K=1,为右转向时,K=-1,公式中n的取值如下:当只知道HZ点的坐标时,则:l为到点HZ的长度α为过点HZ的切线方位角再加上180°K值与知道ZH点坐标时相反x Z,y Z为点HZ的坐标三、曲线要素计算公式公式中各符号说明:l——任意点到起点的曲线长度(或缓曲上任意点到缓曲起点的长度)l1——第一缓和曲线长度l2——第二缓和曲线长度l0——对应的缓和曲线长度R——圆曲线半径R1——曲线起点处的半径R2——曲线终点处的半径P1——曲线起点处的曲率P2——曲线终点处的曲率α——曲线转角值四、竖曲线上高程计算已知:①第一坡度:i1(上坡为“+”,下坡为“-”)②第二坡度:i2(上坡为“+”,下坡为“-”)③变坡点桩号:S Z④变坡点高程:H Z⑤竖曲线的切线长度:T⑥待求点桩号:S计算过程:五、超高缓和过渡段的横坡计算已知:如图,第一横坡:i1第二横坡:i2过渡段长度:L待求处离第二横坡点(过渡段终点)的距离:x求:待求处的横坡:i解:d=x/Li=(i2-i1)(1-3d2+2d3)+i1六、匝道坐标计算已知:①待求点桩号:K②曲线起点桩号:K0③曲线终点桩号:K1④曲线起点坐标:x0,y0⑤曲线起点切线方位角:α0⑥曲线起点处曲率:P0(左转为“-”,右转为“+”)⑦曲线终点处曲率:P1(左转为“-”,右转为“+”)求:①线路匝道上点的坐标:x,y②待求点的切线方位角:αT计算过程:注:sgn(x)函数是取符号函数,当x<0时sgn(x)=-1,当x>0时sgn(x)=1,当x=0时sgn(x)=0。
曲线要素计算
竖曲线任意点标高计算方法
一、曲线要素的计算
1、转坡角ω=(i1-i2)(上坡取正、下坡取负)
2、竖曲线曲线长 L = ω× R ( R为曲线半径)
3、切线长 T = L ÷ 2
4、外矢距 E = T2 ÷ 2R
二、任意点起始桩号、切线标高、改正值的计算
1、竖曲线起点桩号 = 变坡点里程-切线长竖曲线终点桩号 = 变坡点里程+切线长
2、切线标高 = 变坡点标高(不考虑竖曲线标高)-(变坡点里程-待求点里程)× i1(所求点位于变坡点后乘i2)
3、改正值 = (待求点里程-起点里程)2
÷(2R)(所求点位于变坡点前) = = (待求点里程-终点里程)2÷(2R)(所求点位于变坡点后)
4、待求点设计标高 = (切线点标高-改正值)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
竖曲线起点里程桩号
竖曲线终点里程桩号
竖曲线要素及竖曲线起终点里程桩号的计算
竖曲线半 变坡点桩号 径 R(m) 前纵坡度 I(m) 后纵坡度 J(m) 竖曲线切 线长度T (m) 竖曲线曲 线长度L (m) 竖曲线外 距E(m)
竖曲线起点里程桩号
竖曲线终点里程桩号
竖曲线要素及竖曲线起终点里程桩号的计算
变坡点桩号 竖曲线半 径 R(m) 前纵坡度 I(m) 后纵坡度 J(m) 竖曲线切 线长度T (m) 竖曲线曲 线长度L (m) 竖曲线外 距E(m)
竖曲线起点里程桩号
竖曲线终点里程桩号
竖曲线要素及竖曲线起终点里程桩号的计算
竖曲线半 变坡点桩号 径 R(m) 前纵坡度 I(m) 后纵坡度 J(m) 竖曲线切 线长度T (m) 竖曲线曲 线长度L桩号
竖曲线要素及竖曲线起终点里程桩号的计算
变坡点桩号 竖曲线半 径 R(m) 前纵坡度 I(m) 后纵坡度 J(m) 竖曲线切 线长度T (m) 竖曲线曲 线长度L (m) 竖曲线外 距E(m)