高二物理康普顿效应
高中物理第2章波粒二象性第3节康普顿效应及其解释第4节光的波粒二象性课件粤教版选修3-5
光的波粒二象性
[先填空] 1.光的波粒二象性的本质 (1)光的干涉和衍射实验表明,光是一种电磁波,具有波动性. (2光) 电效应和康普顿效应则表明,光在与物体相互作用时,是以一个个 光子的形式出现的,具有粒子性. (3)光既有粒子性,又有波动性,单独使用波或粒子的解释都无法完整地描 述光所有的性质,这种性质称为波粒二象性.
知 识 点 一
第三节 康普顿效应及其解释
学
业
பைடு நூலகம்
分
第四节 光的波粒二象性
层 测
评
知 识 点 二
康普顿效应及其解释
[先填空] 1.康普顿效应:用光照射物体时,散射出来的光的波长会 变长的现象,称 为康普顿效应. 2.光子的动量:p=hλ
1.康普顿提出的理论与实验结果相符,从而进一步说明了光具有粒子性. 2.产生光电效应或康普顿效应取决于入射光的波长:当波长较短的 X 射线 或 γ 射线入射时,产生康普顿效应;当波长较长的可见光或紫外线入射时,主要 产生光电效应.
2.概率波 在光的干涉实验中,每个光子按照一定的概率落在感光片的某一点上.概 率大的地方落下的光子多,形成亮纹;概率小的地方落下的光子少,形成暗纹.所 以,干涉条纹是光子落在感光片上各点的概率分布的反映.这种概率分布就好 像波干涉时强度的分布.从这个意义上讲,有人把对光的描述说成是概率波.
1.光既有波动性又有粒子性,二者是统一的. 2.光表现为波动性,只是光的波动性显著,粒子性不显著而已. 3.光表现为粒子性,只是光的粒子性显著,波动性不显著而已.
高二物理鲁科版选修35课件:5.15.2 光电效应 康普顿效应
探究一
探究二
●名师精讲●
(1)光子说对康普顿效应的解释: 假定 X 射线光子与电子发生完全弹性碰撞,这种碰撞跟台球比赛中的 两球碰撞很相似。按照爱因斯坦的光子说,一个 X 射线光子不仅具有能量 E=hν,而且还有动量,如图所示。这个光子与静止的电子发生弹性斜碰,光子 把部分能量转移给了电子,能量由 hν 减小为 hν',因此频率减小,波长增大。 同时,光子还使电子获得一定的动量。
10-9s 内发生光电效应。 2.光电效应的理论解释 (1)看似连续的光实际上是由个数有限、分立于空间各点的光子组成的,
每个光子的能量为 hν。 (2)hν=W+12mv2 称为爱因斯坦光电效应方程。
思考你对光电效应中的“光”是怎样认识的?
提示:这里的光,可以是可见光,也可以是紫外线、X 光等。
3.光电效应的应用 光电开关、光电成像和光电池都是光电效应的应用。
第5章 波与粒子
第1节 光电效应 第2节 康普顿效应
情境导入
用弧光灯照射连在验电器 上的锌板,验电器的金属 箔会张开一个角度;早晚 霞的颜色都是橘红色的。 你想知道上述现象的原因 吗?
课程目标
1.知道什么是光电效应,通过实验了解光电效 应实验现象。 2.理解爱因斯坦光子说,并能够用它解释光电效应 实验现象。 3.理解爱因斯坦光电方程,并能运用它来解决一些 简单问题。 4.了解康普顿效应的实验现象,了解光子理论对康 普顿效应的解释。 5.认识到光电效应证明了光子是具有能量的量子, 而康普顿效应进一步证明光子还具有动量,能像 实物粒子一样发生弹性碰撞,真正具有粒子的特 性。 6.认识光具有的波粒二象性,了解玻恩的概率波理 论对光的波粒二象性的解释。
高中物理第2章第3节康普顿效应及其解释第4节光的波粒二象性课件粤教版选修3
B [光是一种电磁波,不是机械波,故 A 选项错误;光的衍射 现象,说明光具有波动性,可以携带信息,故 B 选项正确,C、D 选 项错误.]
3.康普顿效应证实了光子不仅具有能量,而且具有动量.如图 所示给出了光子与静止电子碰撞后,电子的运动方向,则碰后光子 ()
C [光子与电子碰撞过程中,能量守恒,动量也守恒,因光子 撞击电子的过程中光子将一部分能量传递给电子,光子的能量减少, 由 E=hλc可知,光子的波长增大,即 λ′>λ,故 C 正确.]
对光的波粒二象性的理解
1.光的粒子性的含义 粒子的含义是“不连续”“一份一份”的,光的粒子即光子, 不同于宏观概念的粒子,但也具有动量和能量. (1)当光同物质发生作用时,表现出粒子的性质. (2)少量或个别光子易显示出光的粒子性. (3)频率高,波长短的光,粒子性特征显著.
二、光的波粒二象性 2.概率波 在光的干涉实验中,每个光子按照一定的概率落在感光片的某 一点上.概率大的地方落下的 光子多 ,形成 亮纹 ;概率小的地方 落下的 光子少 ,形成 暗纹.所以,干涉条纹是光子落在感光片上各 点的 概率 分布的反映.这种 概率 分布就好像波干涉时强度的分 布.从这个意义上讲,有人把对光的描述说成是概率波.
λ
二、光的波粒二象性
1.光的波粒二象性的本质 (1)光的 干涉 和 衍射 实验表明,光是一种电磁波,具有波动性. (2) 光电效应 和 康普顿效应 则表明,光在与物体相互作用时, 是以一个个 光子 的形式出现的,具有粒子性. (3)光既有 粒子性 ,又有 波动性 ,单独使用波或粒子的解释都 无法完整地描述光所有的 性质 ,这种性质称为波粒二象性.
康普顿效应及其解释
康普顿效应
[例1]
频率为ν的光子,具有的能量为hν,将这个光
子打在处于静止状态的电子上,光子将偏离原来的运动方 向,这种现象称为光的散射。散射后的光子 A.虽改变原来的运动方向,但频率保持不变 B.光子将从电子处获得能量,因而频率将增大 C.散射后的光子运动方向将与电子运动方向在一条 直线上,但方向相反 D.由于电子受到碰撞,散射后的光子频率低于入射 光的频率 ( )
对康普顿效应的理解
1.康普顿效应现象 用 X 射线照射物体时, 散射出来的 X 射线的波长会变长 的现象称为康普顿效应。 2.康普顿效应的经典解释 单色电磁波作用于比波长尺寸小的带电粒子上时,引起 受迫振动,向各方向辐射同频率的电磁波。 经典理论解释频率不变的一般散射可以,但对康普顿效 应不能作出合理解释。
考向一 考向二
第三节
康普顿效应及其解释
1.用X射线照射物体时,一部分散射出来的X射线 的波长会 变长 ,这个现象称为康普顿效应。 2.按照经典电磁理论,散射前后光的频率 不变 , 因而散射光的波长与入射光的波长 相等 ,不应该出现 波长 变长 的散射光。 3.光子不仅具有能量,其表达式为 ε=hν ,还具
3.康普顿效应的光子理论解释 X射线为一些ε=hν的光子,与自由电子发生完全弹性 碰撞,电子获得一部分能量,散射的光子能量减少,频率 减小,波长变长。
(1)光的散射是光在介质中与物质微粒的相互作 用,使光的传播方向发生改变的现象。 (2)散射光中也有与入射光有相同波长的射线,这 是由于光子与原子碰撞,原子质量很大,光子碰撞 后,能量不变,故散射光频率不变。
[答案]
D
根据光子理论运用能量守恒和动量守恒解释康普顿 效应。理论与实验符合得很好,不仅有力的验证了光子 理论,而且也证实了微观领域的现象也严格遵循能量守 恒和动量守恒。 对康普顿现象的理解,可以类比实物粒子的弹性碰 撞,在散射过程中要遵守动量守恒和能量守恒。
高二物理竞赛课件:康普顿效应(共14张PPT)
0
(1
cos )
2m0c2h(
0
)
解得:
0
c
c
0
h (1 cos )
m0c
c(1cos )
实验规律
c
h m0c
6.63 1034 9.11031 3108 m =
2.4310-3nm 等于实验值
康普顿公式 h (1 cos) 2h sin2
m0c
m0c 2
康普顿波长
C
h m0c
n n 2
2
f
i
n f 1,2,3,4,,
ni nf 1, nf 2, nf 3,
里德伯常量 R 1.0973731534 107 m1
氢原子光谱规律启发人们对原
二 实验结果
散射出现了≠0的现象,
称为康普顿散射。
散射曲线的三个特点:
90o
1、除原波长0外,出现了移 向长波方面的新的散射波长。
2、新波长 随散射角 的增
大而增大。
135o
3、当散射角增大时,原波长
的谱线强度降低,而新波长的谱
线强度升高。
0.709 0.749 波长(Ao )
实验表明: 新散射波长 > 入射波长0
波长的偏移 = 0 只与散射角 有关,和
散射物质无关。
实验规律:
c (1
cos
)
2c
sin2
2
c = 2.4110-2Å = 2.4110-3nm(实验值)
c 称为电子的康普顿波长
只有当入射波长0与c可比拟时,康普顿效应才
显著,因此要用X射线才能观察到。
三 经典理论的困难 经典电磁理论预言,散射辐射具有和入射辐射
康普顿效应及其解释
第 二 章
第 三 节
师之说
知识点
考之向 梦之旅
考向一 考向二
第三节
康普顿效应及其解释
1.用X射线照射物体时,一部分散射出来的X射线 的波长会 变长 ,这个现象称为康普顿效应。 2.按照经典电磁理论,散射前后光的频率 不变 , 因而散射光的波长与入射光的波长 相等 ,不应该出现 波长 变长 的散射光。 3.光子不仅具有能量,其表达式为 ε=hν ,还具
康普顿效应
[例1]
频率为ν的光子,具有的能量为hν,将这个光
子打在处于静止状态的电子上,光子将偏离原来的运动方 向,这种现象称为光的散射。散射后的光子 A.虽改变原来的运动方向,但频率保持不变 B.光子将从电子处获得能量,因而频率将增大 C.散射后的光子运动方向将与电子运动方向在一条 直线上,但方向相反 D.由于电子受到碰撞,散射后的光子频率低于入射 光的频率 ( )
答案:5.68×10-16 J
1.89×1Байду номын сангаас-24 kg· m/s
梦之旅见课时跟踪检测(九)
光子的动量和波长是多少?在电磁波谱中它属于何种射线?
[解析] 由题意知光子的动量p=mc=0.91×10
-30
×3×
108 kg· m· s-1=2.73×10-22 kg· m· s-1。 光子的波长 6.63×10-34 J· s h λ= p= =0.002 4 nm 2.73×10-22 kg· m· s- 1 因电磁波谱中γ射线的波长在1 nm以下,所以该光子在 电磁波谱中属于γ射线。 [答案] 2.73×10-22 kg· m/s
3.康普顿效应的光子理论解释 X射线为一些ε=hν的光子,与自由电子发生完全弹性 碰撞,电子获得一部分能量,散射的光子能量减少,频率 减小,波长变长。
高二物理配套课件2.3、4 康普顿效应及其解释 光的波粒二象性(粤教版选修3-5)
定,因此说光是一种概率波.
其他微观粒子的概率波 对于电子、实物粒子等其他微观粒子,同样具有波粒二象 性,所以与它们相联系的物质波也是概率波. 也就是说,单个粒子位置是不确定的,具有偶然性;大量 粒子运动具有必然性,遵循统计规律.概率波将波动性和 粒子性统一在一起.
康普顿效应
【典例1】 白天的天空各处都是亮的,是大气分子对太阳光 散射的结果.美国物理学家康普顿由于在这方面的研究而
布.可见,光的波动性不是光子之间的相互作用引起的.
光波是一种概率波 在双缝干涉实验中,光子通过双缝后,对某一个光子而 言,不能肯定它落在哪一点,但屏上各处明暗条纹的不同 亮度,说明光子落在各处的可能性即概率是不相同的.光 子落在明条纹处的概率大,落在暗条纹处的概率小. 这就是说光子在空间出现的概率可以通过波动的规律来确
三、对概率波的理解
正确理解光的波动性 光的干涉现象不是光子之间的相互作用使它表现出波动性 的,在双缝干涉实验中,使光源 S非常弱,以致前一个光 子到达屏后才发射第二个光子.这样就排除了光子之间的 相互作用的可能性.实验结果表明,尽管单个光子的落点 不 可 预 知 ,但 长时间曝光之后仍然得到了干涉条纹分
第三节 康普顿效应及其解释 第四节 光的波粒二象性
1.了解康普顿效应及其解释. 2.知道光的波粒二象性及其本质. 3.知道概率波.
一、康普顿效应及其解释
康普顿效应 (1) 光的散射:光在介质中与物体微粒的相互作用,使光 的传播方向 被散射 的光现象. (2) 康 普 顿 效 应 : 在 光 的 散 射 中 , 部 分 散 射 光 的 波 长 变长 ,波长的改变与散射角有关.
h (3)光子的能量为E= hν ,光子的动量为P= λ
.
康普顿对散射光波长变化的解释
高中物理课件第三节 康普顿效应及其解释 第四节 光的波粒二象性
方向;通过碰撞,光子将一部分能量转移给电子,能量
减少,由ε=hν知,频率变小,再根据c=λν知,波长变 长. 答案:1 变长
知识点2 对光的波粒二象性的认识与理解
光具有粒子性,又有波动性,单独使用波或粒子的解
释都无法完整地描述光的所有性质,有人就把这种性质称为 波粒二象性. 大量(多数)光子行为易表现为波动性,个别(少数)光子 行为易表现出粒子性;波长较长的,易表现为波动性;波长 较短的,易表现为粒子性;光在传播的过程中,易表现为波 动性;在与其他物质相互作用时,易表现为粒子性.光是波
第二章
第三节
波粒二象性
康普顿效应及其解释 光的波粒二象性
第四节
栏 目 链 接
1.了解什么是康普顿效应. 2.知道光子是具有动量的,并了解光子动量的表 达式. 3.了解康普顿应用光的电磁理论解释遇到的困难, 了解康普顿是如何解释康普顿效应的.
栏 链 接
4.知道光既具有波动性又有粒子性.
5.了解光是一种概率波.
栏 目 链 接
显而易见,在经典物理学中,波和粒子是两种不同的 研究对象,具有非常不同的表现.那么,为什么光和微观 粒子既表现有波动性又表现有粒子性的双重属性呢?让我
栏 目 链 接
们一起去探索经典的粒子和经典的波吧!
栏 目 链 接
1.用 X 射线照射物体时,一部分散射出来的 X 射线的
变长 波长会________ ,这个现象称为康普顿效应. 不变 ,因而 2.按照经典电磁理论,散射前后光的频率______ 相等 ,不应该出现波长 散射光的波长与入射光的波长 ________ 变长 的散射光. ________
例2 下列说法正确的是(
)
A.有的光是波,有的光是粒子
康普顿效应的内容和物理意义
康普顿效应的内容和物理意义1.效应描述:康普顿效应描述了X射线或γ射线通过物质时与物质中的自由电子发生非弹性散射的过程。
在这个过程中,光子(射线)与自由电子相互作用,并失去一部分能量和动量。
2.散射角及波长变化:康普顿效应的一个重要结果是确定了X射线或γ射线经过散射后的散射角和波长的变化。
散射角和波长的变化与散射体的质量有关,散射角的增大导致波长的增大。
3.散射截面:康普顿效应还研究了散射截面的大小。
散射截面是描述散射过程发生的概率的物理量。
康普顿散射截面与入射光子能量、散射角和电子自由程等参数相关。
4.能量和动量守恒:康普顿效应表明,在光子与自由电子碰撞的非弹性散射过程中,能量和动量是守恒的。
散射后的光子能量减少,由此推断散射前后的光子具有不同的波长。
同时,散射角的增大导致动量的变化。
1.量子性质的证明:康普顿效应是证明光的粒子性的重要实验证据之一、在这个效应中,光子(射线)与自由电子发生碰撞,表明光也具有具体的粒子特征。
2.波粒二象性:康普顿效应揭示了光的波动性和粒子性的结合。
射线具有波动性,可以用波长来描述;而在散射过程中,光子作为离散的粒子与自由电子相互作用。
3.能量和动量守恒定律的应用:康普顿效应证明了在散射过程中能量和动量的守恒定律的普适性。
能量守恒表明,在散射前后,能量的总量保持不变;动量守恒表明,在散射前后,总动量的大小和方向保持不变。
4.电子衍射和晶体结构分析:康普顿效应也为电子衍射和晶体结构分析提供了重要基础。
康普顿效应揭示了X射线或γ射线与物质中的自由电子散射的机制,为后来发展出的电子衍射技术提供了理论基础。
综上所述,康普顿效应是光的粒子性和波动性的结合体现,以及能量和动量守恒的实验证据。
它的发现和研究为我们理解光子的性质和物质的结构提供了重要的物理基础。
高中物理 第二章 波粒二象性 2.3 康普顿效应及其解释
2.3 康普顿效应及其解释课堂互动三点剖析对康普顿效应的理解(1)经典解释(电磁波的解释)单色电磁波作用于比波长尺寸小的带电粒子上时,引起受迫振动,向各方向辐射同频率的电磁波.经典理论解释频率不变的一般散射可以,但对康普顿效应不能作出合理解释! (2)光子理论解释X 射线为一些E=hν的光子,与自由电子发生完全弹性碰撞,电子获得一部分能量,散射的光子能量减小,频率减小,波长变长.这个过程设动量守恒与能量守恒仍成立,则由电子:p=m 0v;E=2021v m (设电子开始静止,势能忽略);光子:p=h/λ;E=hν=h·λc,由以上几式得:λ-λ0=2sin 220θ-c m h . 其中(h/m 0c )=2.34×10-12m 称为康普顿波长.如图2-3-2图2-3-2各个击破【例题】 在康普顿散射中,入射光子波长为0.03οA ,反冲电子的速度为0.6c,求散射光子的波长及散射角.解析:反冲电子的能量增量为ΔE=mc 2-m 0c 2=2206.01-c m -m 0c 2=0.25 m 0c 2由能量守恒定律,电子增加的能量等于光子损失的能量,故有λλhchc-=0.25m 0c 2散射光子波长λ==-00025.0λλc m h h 1083134103410030.0103101.925.01063.610030.01063.6-----⨯⨯⨯⨯⨯⨯-⨯⨯⨯⨯=4.3×10-12m=0.043οA由康普顿散射公式,Δλ=λ-λ0=2sin 220ϕc m h =2×0.024 3sin 22ϕ可得sin20243.02030.0043.02⨯-=ϕ=0.267 5,散射角为φ=62°17′. 答案:0.043οA 62°17′类题演练证明康普顿散射实验中,波长为λ0的一个光子与质量为m 0的静止电子碰撞后,电子的反冲角θ与光子散射角φ之间的关系为tanθ=100)]2tan()1[(-+ϕλc m h . 解析:将动量守恒式写成分量形式mvsinφ-)(λhsinφ=0① mvcosθ+)(λhcosφ=λh② 及康普顿效应结论:λ-λ0=2sin 220ϕc m h ③由①②得 tanθ=ϕλλϕcos )(sin 0-上式分子为 sinφ=2sin )21cos()21(ϕϕ 分母为 ϕλλλλϕλλcos )(cos )(000--+=- 将③代入 0λλ-cosφ=2sin 200)2(λϕc m h +·2sin 2)2(ϕ=2sin 2)1(200λϕc m h + 所以tanθ=100)]2tan()1[(-+ϕλc m h .。
鲁科版高中物理选修3-5第2讲 康普顿效应.docx
高中物理学习材料(鼎尚**整理制作)第2讲康普顿效应[目标定位] 1.了解康普顿X射线散射实验.2.理解康普顿X射线实验原理.3.掌握康普顿效应的概念,知道光的波粒二象性.课前预习一、康普顿对X射线散射的研究1.光的散射光在介质中与物体微粒的相互作用,使光的传播方向发生改变的现象.2.康普顿效应在光的散射中,部分散射光的波长变长,波长改变的多少与散射角有关.3.康普顿效应的意义康普顿效应表明光子除了具有能量之外,还具有动量,深入揭示了光具有粒子性.二、光的波粒二象性1.光具有波粒二象性:光子既有粒子的特征,又有波的特征.2.发生光电效应或康普顿效应取决于入射光的波长.3.光波是一种概率波.4.光的波动性和粒子性不是均衡表现的,波长较长时,光子的能量和动量很小,波动性比较明显,波长越长,波动性越明显.光在与电子相互作用时表现为粒子性,在传播过程中更多地表现为波动性.课堂讲义一、对康普顿效应的理解1.实验现象:X射线管发出波长为λ0的X射线,通过小孔投射到散射物石墨上.X 射线在石墨上被散射,部分散射光的波长变长,波长改变的多少与散射角有关.2.康普顿效应与经典物理理论的矛盾:按照经典物理理论,入射光引起物质内部带电粒子的受迫振动,振动着的带电粒子从入射光吸收能量,并向四周辐射,这就是散射光.散射光的频率应该等于粒子受迫振动的频率(即入射光的频率).因此散射光的波长与入射光的波长应该相同,不应该出现波长变长的散射光.另外,经典物理理论无法解释波长改变与散射角的关系.3.光子说对康普顿效应的解释:假定X射线光子与电子发生弹性碰撞.(1)光子和电子相碰撞时,光子有一部分能量传给电子,散射光子的能量减少,于是散射光的波长大于入射光的波长.(2)因为碰撞中交换的能量与碰撞的角度有关,所以波长改变与散射角有关.例1白天的天空到处都是亮的,是大气分子对太阳光散射的结果.美国物理学家康普顿由于在这方面的研究而荣获了1927年的诺贝尔物理学奖.假设一个运动的光子和一个静止的自由电子碰撞以后,电子向某一个方向运动,光子沿另一方向散射出去,则这个散射光子跟原来的光子相比()A.频率变大B.速度变小C.光子能量变大D.波长变长答案 D解析光子与自由电子碰撞时,遵守动量守恒和能量守恒,自由电子碰撞前静止,碰撞后动量、能量均增加,所以光子的动量、能量减小,由λ=hp,E=hν可知光子频率变小,波长变长,故D正确.由于光子速度是不变的,故B错误.针对训练1康普顿效应证实了光子不仅具有能量,也具有动量.入射光和电子的作用可以看成弹性碰撞,则当光子与电子碰撞时,光子的一些能量转移给了电子,如图1给出了光子与静止电子碰撞后,电子的运动方向,则碰撞过程中动量________(选填“守恒”或“不守恒”),能量________(选填“守恒”或“不守恒”),碰后光子可能沿________(选填“1”“2”或“3”)方向运动,并且波长________(选填“不变”、“变小”或“变长”).图1答案守恒守恒1变长解析光子与电子碰撞过程满足动量守恒和能量守恒,所以碰撞之后光子和电子的总动量的方向与光子碰前的方向一致,由矢量合成知识可知碰后光子的方向可能沿1方向,不可能沿2或3方向;通过碰撞,光子将一部分能量转移给电子,能量减少,由E=hν知,频率变小,再根据c=λν知,波长变长.二、对光的波粒二象性的理解实验基础表现说明光的波动性光的干涉和衍射1.大量光子产生的效果显示出波动性2.频率较低的光在传播时,表现出波的性质1.光的波动性是光子本身的一种属性,不是光子之间相互作用产生的2.光的波动性不同于宏观概念的波光的粒子性光电效应、康普顿效应1.当光同物质发生作用时,这种作用是“一份一份”进行的,表现出粒子性2.少量或个别光子容易显示出光的粒子性1.粒子的含义是“不连续”、“一份一份”的2.光子不同于宏观概念的粒子说明对于不同频率的光,频率越高,光的粒子性越强;频率越低,光的波动性越强例2下列关于光的波粒二象性的理解正确的是()A.大量光子的行为往往表现出波动性,个别光子的行为往往表现出粒子性B.光在传播时是波,而与物质相互作用时就转变成粒子C.高频光是粒子,低频光是波D.波粒二象性是光的根本属性,有时它的波动性显著,有时它的粒子性显著答案AD解析光的波粒二象性指光有时候表现出的粒子性较明显,有时候表现出的波动性较明显,D正确;大量光子的行为往往表现出波动性,个别光子的行为往往表现出粒子性,A正确;光在传播时波动性显著,光与物质相互作用时粒子性显著,B错误;频率高的光粒子性显著,频率低的光波动性显著,C错误.针对训练2下列有关光的波粒二象性的说法中,正确的是()A.有的光是波,有的光是粒子B.光子与电子是同样的一种粒子C.光的波长越长,其波动性越显著;波长越短,其粒子性越显著D.大量光子的行为往往显示出粒子性答案 C解析一切光都具有波粒二象性,光的有些行为(如干涉、衍射)表现出波动性,光的有些行为(如光电效应)表现出粒子性,所以,不能说有的光是波,有的光是粒子.虽然光子与电子都是微观粒子,都具有波粒二象性,但电子是实物粒子,有静止质量,光子不是实物粒子,没有静止质量;电子是以实物形式存在的物质,光子是以场形式存在的物质,所以,不能说光子与电子是同样的一种粒子.光的波粒二象性的理论和实验表明,大量光子的行为表现出波动性,个别光子的行为表现出粒子性.光的波长越长,衍射性越好,即波动性越显著,光的波长越短,其光子能量越大,个别或少数光子的作用就足以引起光接收装置的反应,所以其粒子性就很显著.综上所述,本题正确答案为选项C.对点练习对康普顿效应的理解1.关于康普顿效应,下列说法正确的是()A.康普顿在研究X射线散射时,发现散射光的波长发生了变化,为波动说提供了依据B.X射线散射时,波长改变的多少与散射角有关C.发生散射时,波长较短的X射线或γ射线入射时,产生康普顿效应D.爱因斯坦的光子说能够解释康普顿效应,所以康普顿效应支持粒子说答案BCD解析美国物理学家康普顿在研究X射线散射时,发现散射光波长发生了变化,这种现象用波动说无法解释,用光子说却可以解释,A错;波长改变的多少与散射角有关,B对;当波长较短时发生康普顿效应,较长时发生光电效应,C、D 对.2.康普顿假设电子是自由电子,当光子与电子相互作用时,其过程可看成弹性碰撞,既遵守________守恒定律,又遵守________守恒定律,在碰撞中光子将能量________的一部分传递给电子,光子的能量减少,波长变长.康普顿提出的理论与实验结果相符,从而进一步说明光具有________性.答案能量动量hν粒子对光的波粒二象性的理解3.关于光的波粒二象性,下列说法中不正确的是()A.波粒二象性指光有时表现为波动性,有时表现为粒子性B.光波频率越高,粒子性越明显C.能量越大的光子其波动性越显著D.个别光子易表现出粒子性,大量光子易表现出波动性E.光的波粒二象性应理解为,在某种场合下光的粒子性表现明显,在另外某种场合下光的波动性表现明显答案 C解析光的波粒二象性指光有时候表现出的粒子性较明显,有时候表现出的波动性较明显,或者说在某种场合下光的粒子性表现明显,在另外某种场合下光的波动性表现明显;个别光子易表现出粒子性,大量光子易表现出波动性,A、D、E 说法正确.光的频率越高,能量越大,粒子性相对波动性越明显,B说法正确,C说法错误.当堂训练(时间:60分钟)题组一对康普顿效应的理解1.光电效应和康普顿效应都包含有电子与光子的相互作用过程,对此下列说法正确的是()A.两种效应中电子与光子组成的系统都服从动量守恒定律和能量守恒定律B.两种效应都相当于电子与光子的弹性碰撞过程C.两种效应都属于吸收光子的过程D.光电效应是吸收光子的过程,而康普顿效应相当于光子和电子弹性碰撞的过程答案 D解析光电效应吸收光子放出电子,其过程能量守恒,但动量不守恒,康普顿效应相当于光子与电子弹性碰撞的过程,并且遵守动量守恒定律和能量守恒定律,两种效应都说明光具有粒子性,故D正确.2.科学研究证明,光子有能量也有动量,当光子与电子碰撞时,光子的一些能量转移给了电子.假设光子与电子碰撞前的波长为λ,碰撞后的波长为λ′,则碰撞过程中()A.能量守恒,动量守恒,且λ=λ′B.能量不守恒,动量不守恒,且λ=λ′C.能量守恒,动量守恒,且λ<λ′D.能量守恒,动量守恒,且λ>λ′答案 C解析能量守恒和动量守恒是自然界的普遍规律,适用于宏观世界也适用于微观世界.光子与电子碰撞时遵循这两个守恒定律.光子与电子碰撞前光子的能量E=hν=h cλ,当光子与电子碰撞时,光子的一些能量转移给了电子,光子的能量E′=hν′=h cλ′,由E >E′,可知λ<λ′,选项C正确.3.康普顿散射的主要特征是()A.散射光的波长与入射光的波长全然不同B.散射光的波长有些与入射光的相同,但有些变短了,散射角的大小与散射波长无关C.散射光的波长有些与入射光的相同,但也有变长的,也有变短的D.散射光的波长有些与入射光的相同,有些散射光的波长比入射光的波长长些,且散射光波长的改变量与散射角的大小有关答案 D解析光子和电子相碰撞,光子有一部分能量传给电子,散射光子的能量减少,于是散射光的波长大于入射光的波长.散射角不同,能量减少情况不同,散射光的波长也有所不同.也有一部分光子与整个散射物的原子交换能量,由于光子质量远小于原子质量,碰撞前后光子能量几乎不变,波长不变.故只有D正确.4.频率为ν的光子,具有的能量为hν,将这个光子打在处于静止状态的电子上,光子将偏离原来的运动方向,这种现象称为光的散射,散射后的光子() A.虽改变原来的运动方向,但频率保持不变B.光子将从电子处获得能量,因而频率将增大C.散射后的光子运动方向将与电子运动方向在一条直线上,但方向相反D.由于电子受到碰撞,散射后的光子频率低于入射光的频率答案 D解析光子与静止的电子碰撞的过程遵守动量守恒和能量守恒,由于电子获得一部分能量,则光子的能量减小,即频率降低,所以选项D正确.题组二对光的波粒二象性的理解5.说明光具有粒子性的现象是()A.光电效应B.光的干涉C.光的衍射D.康普顿效应答案AD6.人类对光的本性的认识经历了曲折的过程.下列关于光的本性的陈述符合科学规律或历史事实的是()A.牛顿的“微粒说”与爱因斯坦的“光子说”本质上是一样的B.光的双缝干涉实验显示了光具有波动性C.麦克斯韦预言了光是一种电磁波D.光具有波粒二象性答案BCD解析牛顿的“微粒说”认为光是一种物质微粒,爱因斯坦的“光子说”认为光是一份一份不连续的能量,显然A错;干涉、衍射是波的特性,光能发生干涉说明光具有波动性,B正确;麦克斯韦根据光的传播不需要介质,以及电磁波在真空中的传播速度与光速近似相等认为光是一种电磁波,后来赫兹用实验证实了光的电磁说,C正确;光具有波动性与粒子性,称为光的波粒二象性,D正确.7.关于光的波动性与粒子性,以下说法正确的是()A.爱因斯坦的光子说否定了光的电磁说B.光电效应现象说明了光的粒子性C.光波不同于机械波,它是一种概率波D.光的波动性和粒子性是相互矛盾的,无法统一答案BC解析爱因斯坦的光子说并没有否定电磁说,只是在一定条件下光是体现粒子性的,A错;光电效应说明光具有粒子性,说明光的能量是一份一份的,B对;光波在少量的情况下体现粒子性,大量的情况下体现波动性,所以C对;光的波动性和粒子性不是孤立的,而是有机的统一体,D错.8.下列现象能说明光具有波粒二象性的是()A.光的色散和光的干涉B.光的干涉和光的衍射C.光的反射和光电效应D.泊松亮斑和光电效应答案 D解析光的色散、光的反射可以从波动性和粒子性两方面分别予以理解,故A、C选项错误.光的干涉、衍射现象只说明光的波动性,B选项错误.泊松亮斑能说明光具有波动性,光电效应也说明光具有粒子性,故D选项正确.9.关于光的波粒二象性,正确的说法是()A.光的频率越高,光子的能量越大,粒子性越显著B.光的波长越长,光的能量越小,波动性越显著C.频率高的光子不具有波动性,波长较长的光子不具有粒子性D.个别光子产生的效果往往显示粒子性,大量光子产生的效果往往显示波动性答案ABD解析光具有波粒二象性,但在不同情况下表现不同,频率越高,波长越短,粒子性越强,反之波动性明显,个别光子易显示粒子性,大量光子显示波动性,故选项A、B、D正确.10.牛顿为了说明光的性质,提出了光的微粒说,如今人们对光的性质已有了进一步的认识,如图1所示四个示意图所表示的实验,能说明光的性质的是()图1A.①②B.②③C.③④D.②④答案 B解析题图②为光的双孔干涉实验,可证明光的波动性;题图③为光电效应实验,可说明光的粒子性,故正确选项为B.题图①是α粒子散射实验;题图④是三种放射线在电场中偏转的实验.11.如图2所示,从点光源S发出的一细束白光以一定的角度入射到三棱镜的表面,经过三棱镜的折射后发生色散现象,在光屏ab间形成一条彩色光带.下面的说法中正确的是()图2A.a侧是红色光,b侧是紫色光B.a侧的光比b侧的光粒子性显著些C.a侧的光比b侧的光波动性显著些D.a侧的光的动量比b侧光的动量大答案BD解析由几何光学知识可得,a侧光为紫光,b侧光为红光,紫光频率比红光大,故粒子性比红光显著.紫光的波长比红光小,由p=hλ得,紫光的动量大.。
高中物理第二章波粒二象性第三节康普顿效应及其解释第
例2 (多选)对光的认识,以下说法中正确的是
√A.个别光子的行为表现出粒子性,大量光子的行为表现出波动性
B.高频光是粒子,低频光是波 C.光表现出波动性时,就不具有粒子性了;光表现出粒子性时,就不再
具有波动性了
√D.光的波粒二象性应理解为:在某种场合下光的波动性表现得明显,在 另外某种场合下,光的粒子性表现得明显
把描述粒子性的 能量ε和 动量p,与描述波动性的 频率ν 、波长λ 紧 密 联
系在一起.
即学即用
判断下列说法的正误. (1)光的干涉、衍射、偏振现象说明光具有波动性.( √ ) (2)光子数量越大,其粒子性越明显.( × ) (3)光具有粒子性,但光子又不同于宏观观念的粒子.( √ ) (4)光在传播过程中,有的光是波,有的光是粒子.( × )
答案
知识梳理 1.光的散射 光在介质中与物质微粒相互作用,因而传播方向发生改变,这种现象叫 做光的散射. 2.康普顿效应 美国物理学家康普顿在研究石墨对X射线的散射时,发现在散射的X射线 中,除了与入射波长λ0相同的成分外,还有波长 大于λ0的成分,这个现象 称为康普顿效应.
3.康普顿效应的意义 康普顿效应表明光子除了具有能量之外,还具有动量,深入揭示了光的 粒子性 的一面. 4.光子的动量 h (1)表达式:p= λ . (2)说明:在康普顿效应中,入射光子与物质中电子碰撞时,把一部分动 量转移给电子,光子的动量变小.因此,有些光子散射后波长变大.
三、概率波
导学探究
双缝干涉实验中(如图1甲所示),在只能是一个一个地通过狭缝.
曝光时间短时,可看到感光片上出现一些无规则分布的亮点,如图乙所
示.曝光时间足够长,有大量光子通过狭缝,感光片上出现了规则的干涉
条纹,如图丁所示.
康普顿效应 光的波粒二象性-高二物理备课高效互动课件(人教2019选择性必修第三册)
(多选)如图所示为金属A和B的遏止电压Uc和入射光频率ν的关系
图像,由图可知
A.金属A的逸出功大于金属B的逸出功
B.金属A的截止频率小于金属B的截止频率
√
C.图线的斜率为普朗克常量
√
D.如果用频率为5.5×1014Hz的入射光照射两种金属,从金属A逸出的
光电子的最大初动能较大
一、光电效应方程Ek=hν-W0的应用
A.1×1014 Hz
B.8×1014 Hz
C.2×1015 Hz
D.8×1015 Hz
√
设单色光的最低频率为ν0,由Ek=hν-W0知
E k =hν1-W 0,0=hν0-W 0,又知 ν1=
c
λ
c E
整理得 ν0= - k ,解得 ν0≈8×1014 Hz
λ h
课堂练习
2、美国物理学家康普顿在研究石墨对X射线的散射时,用X光对静止
√
课堂练习
3、科学研究证明,光子既有能量也有动量,当光子与电子碰撞时,光
子的一些能量转移给了电子.假设光子与电子碰撞前的波长为 λ ,碰撞
后的波长为λ′,则碰撞过程中
A.能量守恒,动量守恒,且λ=λ′
B.能量不守恒,动量不守恒,且λ=λ′
C.能量守恒,动量守恒,且λ<λ′
D.能量守恒,动量守恒,且λ>λ′
例4
(多选)如图所示为用某金属研究光电效应规律得到的光电流随电
压变化的关系图像,用单色光1和单色光2分别照射该金属时,逸出的
光电子的最大初动能分别为Ek1和Ek2,普朗克常量为h,则下列说法正
确的是
A.Ek1>Ek2
√
C.增大单色光1的强度,其遏止电压不变
√
高二物理竞赛:康普顿效应和波尔的氢原子理论课件
1 e2
2
40 rn2 m rn2
rn n2(m0he22 )
第一玻尔轨道半径
•能量量子化和原子能级
L
mrn
n
h
2
r1
0 h2 me2
0
0.53 A
En
1 2
m
2 n
e2
4 0 rn
rn
n2
(
0 h2 me 2
)
En
1 n2
me4
( 802h2
)
(n 1,2,3,)
11
基态能级 激发态能级
布喇开系(远红外)
~
1 RH (42
1 n2
)
n=5,6, …
7
普芳德系(远红外)
~
1 RH (52
1 n2 )
n=5,6, …
广义巴耳末公式
~
1 RH ( k 2
1 n2
)
k=1,2, … n =k+1, k+2, k+3, …
各谱线的波数 v~ (或频率)都可以用两个正
整数k和n的函数之差来表示:
1
min
1 R 22
1.097 107 / 4
o
min 3464 A
14
例(1)将一个氢原子从基态激发到n=4的激发态需要
多少能量?(2)处于n=4的激发态的氢原子可发出多
少条谱线?其中多少条可见光谱线,其光波波长各多
少?
解:(1)
E
E4
E1
E1 42
E1
13.58 42
(13.58)
12.75eV 2 1018 J
1
实验规律
I
高二下学期物理人教版(2019)选择性必修第三册PPT_4.2康普顿效应光的波粒二象性(时)
(教学提 纲)202 0-2021 学年高 二下学 期物理 人教版 (2019 )选择 性必修 第三册 获奖课 件:4. 2康普 顿效应 光的波 粒二象 性(第2 课时) (免费 下载)
123
(教学提 纲)202 0-2021 学年高 二下学 期物理 人教版 (2019 )选择 性必修 第三册 获奖课 件:4. 2康普 顿效应 光的波 粒二象 性(第2 课时) (免费 下载)
解析 光子与自由电子碰撞时,遵守动量守恒定律和能量守恒定律,自 由电子被碰前静止,被碰后动量、能量增加,所以光子的动量、能量减小, 但速度仍为光速,由ε=hν知,频率变小,则波长变长,故选项D正确.
(教学提 纲)202 0-2021 学年高 二下学 期物理 人教版 (2019 )选择 性必修 第三册 获奖课 件:4. 2康普 顿效应 光的波 粒二象 性(第2 课时) (免费 下载)
第四章 2 光电效应
学习目标
1.了解康普顿效应及其意义. 2.了解光的波粒二象性.
内容索引
NEIRONGSUOYIN
知识梳理 重点探究 随堂演练 课时对点练
知识梳理
一、康普顿效应和光子的动量 1.康普顿效应:在研究石墨对X射线的散射时,发现在散射的X射线中,除 了与入射波长λ0相同的成分外,还有波长 大于 λ0的成分,这个现象称为康 普顿效应. 2.康普顿效应的意义:康普顿效应表明光子不仅具有能量而且具有动量. 3.光子的动量
√C.能量越大的光子其波动性越显著
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2014-6-27
2014-6-27
2014-6-27
• 康普顿效应是光子和电子弹性碰撞的结 果 • 若光子和外层电子相碰撞,光子有一部 分能量传给电子,散射光子的能量减少, 于是散射光的波长大于入射光的波长。 • 若光子和束缚很紧的内层电子相碰撞, 光子将与整个原子交换能量,由于光子质 量远小于原子质量,根据碰撞理论,碰 撞前后光子能量几乎不变,波长不变。
2014-6-27
• 光在介质中与物质微粒相互作 用,因而传播方向发生改变,这 种现象叫做光的散射
2014-6-27
2014-6-27
• 1923年康普顿在做 X 射线通过物质散射 的实验时,发现散射 线中除有与入射线波 长相同的射线外,还 有比入射线波长更长 的射线,其波长的改 变量与散射角有关,
X 射线管 光阑
晶体
散射波长
0
j
探 测 器
石墨体 (散射物质)
2014-6-27
X 射线谱仪
波长的偏移只与散射角j 有关,而与散射物质种 类及入射的X射线的波长0 无关,
0 c (1 cos j )
c = 0.0241Å=2.4110-3nm(实验值)
称为电子的Compton波长
了大量 X 射线散射实验。 对证实康普顿效应作出了 重要贡献。
吴有训 (1897-1977)
2014-6-27
E mc h m 2 c P mc
2
E h
h h h 2 c c c
2014-6-27
E h h P
动量能量是描述粒子的, 频率和波长则是用来描述波的
只有当入射波长 0 与 c 可比拟时,康普顿效应才显著
,因此要用X射线才能观察到康普顿散射,用可见光பைடு நூலகம் 察不到康普顿散射。入射波长较长时,主要产生光电
2014-6-27
效应。
2014-6-27
2014-6-27
• 根据电磁波理论,当电磁波通过 物质时,物质中带电粒子将作受 迫振动,过物质时,物质中带电 粒子将作受迫振动,射光频率应 等于入射光频率。 • 无法解释波长改变和散射角的关 系。
2014-6-27
2014-6-27
• 有力地支持了爱因斯坦“光量子”假设 • 首次在实验上证实了“光子具有动量” 的 假设; • 证实了在微观世界的单个碰撞事件中,动量 和能量守恒定律仍然是成立的。
2014-6-27
吴有训对研究康普顿效应的贡献
1923年,参加了发现康普顿效应的研究工作. 1925—1926年,吴有训用银的X射线(0 =5.62nm) 为入射线, 以15种轻重不同的元素为散射物质, 在同一散射角( j 120 )0 测量 各种波长的散射光强度,作