平行四边形易错题
四上数学,平行四边形和梯形易错题
1.两个完全一样的三角形都能拼成一个(平行四边)形。
2.两条直线相交,可以组成(四)个角,如果其中一个角是直角,那
么其他三个角都是(直角)。
3.两条平行线之间可以画(无数)条垂线,所有垂线的长度都(相等)。
4.两条直线相交,组成(4)个角,如果其中一个角是90°,另外三个
角都是(90)°。
5.平行四边形有两组对边分别(平行),梯形只有(一组)对边平行。
6.(等腰)梯形是轴对称图形,有(1)条对称轴。
7.平行四边形和梯形都是(四边)形。
8.从直线外一点到这条直线所画的垂直线段的长度叫作(直线外一点)到(直线)的距离。
★判断题
1.在同一平面内,两条不相交的线是平行线。
(×)
2.两条直线相交,我们就说这两条直线互相垂直。
(×)
3.有一组对边平行的四边形叫做梯形。
(√)
4.梯形的四条边都相等。
(×)
5.梯形和平行四边形都具有稳定性。
(×)
6.有一组对边平行的四边形叫做梯形。
(√)
7.过平行四边形的一个顶点向一对边能画无数条高。
(×)
8.长方形是特殊的平行四边形,正方形又是特殊的长方形。
(√)
9.两个一样的梯形可以拼成一个平行四边形。
(√)。
第六章--平行四边形易错题(最新北师大版)
第六章平行四边形1.平行四边形判定:(1)两组对边分别平行的四边形是平行四边形;(2)两组对边分别相等的四边形是平行四边形;(3)一组对边平行且相等的四边形是平行四边形;(4)两组对角分别相等的四边形是平行四边形;(5)对角线互相平分的四边形是平行四边形;2.三角形中位线(1)定义:三角形两边中点的连线叫三角形的中位线;(2)性质:中位线平行于第三边且等于第三边的一半;推论:过一边中点平行于另一边的直线必平分第三边.中点四边形:顺次连接四边形个边中点构成的新四边形,新四边形一定是平行四边形.3.多边形【如:n边形有n个顶点、n条边、n个内角】(1)多边形内角和公式:(n-2).180°(2)所有多边形的外角和都是360°(3)对角线:从一个顶点可以引3-n条对角线;总共有2)3(-nn条对角线.★正多边形:每条边都相等,每个内角都相等镶嵌(密铺):即用整数个全等的图形将一点围成360°(可以有多种图形组合)平行四边形1.平行四边形具有而非平行四边形的图形不具有的性质是()A.内角和与外角和都是360°B.不稳定性C.对角线互相平分D.最多有三个钝角2. 在下列命题中,结论正确的是()A.平行四边形的邻角相等B.平行四边形的对边平行且相等C.平行四边形的对角互补D.沿平行四边形的一条对角线对折,这条对角线两旁的图形能够完全重合3.下列条件中不能确定四边形ABCD是平行四边形的是()A.AB=CD, AD∥BC B.AB=CD,AB∥CD C.AB∥CD,AD∥BC D.AB=CD,AD=BC4.下列说法:①平行四边形的任意一条对角线把平行四边形分成两个全等三角形.②平行四边形的面积等于三角形的面积的2倍.③平行四边形的两条对角线把平行四边形分成四个面积相等的小三角形.④平行四边形对角线的交点到一组对边的距离相等,其中正确的个数有()A.1个B.2个C.3个D.4个5.下列命题中错误的命题是()A.(-3)2的平方根是±3 B.平行四边形是中心对称图形C.单项式5x2y与-5xy2是同类项D.近似数3.14×103有三个有效数字6. 已知平行四边形一边长为10,一条对角线长为6,则它的另一条对角线α的取值范围为()A.4<α<16 B.14<α<26 C.12<α<20 D.以上答案都不正确7. 如图①,在▱ABCD中,AB=8,AD=6,∠DAB=30°,点E,F在AC上,且AE=EF=FC,则△BEF的面积为()A.8 B.4 C.6 D.12图①图②图③8. 在▱ABCD中,AD=2,AE平分∠DAB交CD于点E,BF平分∠ABC交CD于点F.若EF=1,则▱ABCD的周长为_______.如图,E是▱ABCD的边AD的中点,CE与BA的延长线交于点F,若∠FCD=∠D,则下列结论不成立的是()A.AD=CF B.BF=CF C.AF=CD D.DE=EF9.如图,过三角形内一点分别作三边的平行线,如果三角形的周长为6cm,则图中三个阴影三角形的周长和为()A.6cm B.8cm C.9cm D.10cm10已知(如图④)△ABC的面积为36,将△ABC沿BC的方向平移到△A′B′C的位置,使B′和C 重合,连接AC′交A′C于D,则△C′DC的面积为()A.6 B.9 C.12 D.18 图④图⑤11.如图⑤,在▱ABCD中,EF∥AB,GH∥AD,EF与GH交于点O,则该图中的平行四边形的个数共有()A.7个B.8个C.9个D.11个12.如图⑥,E,F是四边形ABCD的对角线AC上两点,AF=CE,DF=BE,DF∥BE.求证:(1)△AFD≌△CEB;(2)四边形ABCD是平行四边形.图⑥图⑦图⑧13.如图⑦,已知△ABC是等边三角形,D、E分别在边BC、AC上,且CD=CE,连接DE并延长至点F,使EF=AE,连接AF、BE和CF.(1)请在图中找出一对全等三角形,用符号“≌”表示,并加以证明;(2)判断四边形ABDF是怎样的四边形,并说明理由;(3)若AB=6,BD=2DC,求四边形ABEF的面积.14.已知:如图⑧,在正方形ABCD中,G是CD上一点,延长BC到E,使CE=CG,连接BG并延长交DE于F.(1)求证:△BCG≌△DCE;(2)将△DCE绕点D顺时针旋转90°得到△DAE′,判断四边形E′BGD是什么特殊四边形,并说明理由.15.如图⑨,在△ABC中,D是BC边的中点,F、E分别是AD及其延长线上的点,CF∥BE.(1)求证:△BDE≌△CDF;(2)请连接BF,CE,试判断四边形BECF是何种特殊四边形,并说明理由.图⑨图⑩图1116.如图⑩,在Rt△OAB中,∠OAB=90°,OA=AB=6,将△OAB绕点O沿逆时针方向旋转90°得到△OA1B1(1)线段OA1的长是______,∠AOB1的度数是______;(2)连接AA1,求证:四边形OAA1B1是平行四边形;(3)求四边形OAA1B1的面积.17.如图11,在△ABC中,点D,E分别是AB,AC边的中点,若把△ADE绕着点E顺时针旋转180°得到△CFE.(1)请指出图中哪些线段与线段CF相等;(2)试判断四边形DBCF是怎样的四边形,证明你的结论.18.已知点P是矩形ABCD边AB上的任意一点(与点A、B不重合).(1)如图①,现将△PBC沿PC翻折得到△PEC;再在AD上取一点F,将△PAF沿PF翻折得到△PGF,并使得射线PE、PG重合,试问FG与CE的位置关系如何,请说明理由;(2)在(1)中,如图②,连接FC,取FC的中点H,连接GH、EH,请你探索线段GH和线段EH的大小关系,并说明你的理由;(3)如图③,分别在AD、BC上取点F、C′,使得∠APF=∠BPC′,与(1)中的操作相类似,即将△PAF沿PF翻折得到△PFG,并将△PBC′沿PC′翻折得到△PEC′,连接FC′,取FC′的中点H,连接GH、EH,试问(2)中的结论还成立吗?请说明理由.三角形中位线◆若两个三角形的两条中位线对应相等且两条中位线与一对应边的夹角相等,则这两个三角形的关系是() A、全等 B、周长相等 C、不全等 D、不确定1.已知三角形三边之比为2:3:4,且此三角形的三条中位线围成的三角形的周长是9,则原三角形的最长边是______.2. 如图①,在四边形ABCD中,P是对角线BD的中点,E,F分别是AB,CD的中点,AD=BC,∠PEF=18°,则∠PFE的度数是_____度.图①图②3. 如图②,将Rt△ABC绕点C按顺时针方向旋转90°到△A′B′C的位置,已知斜边AB=10cm,BC=6cm,设A′B′的中点是M,连接AM,则AM= ____cm.4. 顺次连接四边形各边中点所得的四边形是_____.5. 已知(图③):平行四边形ABCD中,对角线AC、BD相交于点O,BD=2AD,E,F,G分别是OC,OD,AB的中点.求证:(1)BE⊥AC;(2)EG=EF.图③图④图⑤6.已知:如图④,在△ABC中,中线BE,CD交于点O,F,G分别是OB,OC的中点.求证:四边形DFGE是平行四边形.7.如图,四边形ABCD为平行四边形,E为AD上的一点,连接EB并延长,使BF=BE,连接EC 并延长,使CG=CE,连接FG.H为FG的中点,连接DH.(1)求证:四边形AFHD为平行四边形;(2)若CB=CE,∠BAE=60°,∠DCE=20°,求∠CBE的度数多边形1.已知一个多边形的内角和等于它的外角和,则这个多边形是()A.三角形 B.四边形 C.五边形D.六边形2.一个多边形的内角和为540°,则其对角线的条数是()A. 3条 B. 5条 C. 6条 D. 12条3.当一个多边形的边数增加1时,它的内角和增加___°,外角和增加______°.4.如果一个正多边形的内角等于它的外角和的5倍,那么这个正多边形的一个内角是___°.5. 一个n边形的每个外角都等于36°,则n=_____.6.一个多边形截取一个角后,形成另一个多边形的内角和是1620°,则原来多边形的边数是()A.10 B.11 C.12 D.以上都有可能镶嵌(密铺)1.只用下列图形中的一种,能够进行平面镶嵌的是()A.正十边形B.正八边形C.正六边形D.正五边形2.下列图形中,单独选用一种图形不能进行平面镶嵌的是()A.正三角形B.正六边形C.正方形D.正五边形。
平行四边形、三角形、梯形易错题
一、等底等高的平行四边形,面积是三角形,梯形的两倍等底等面积的平行四边形,高是三角形的一半等高等面积的平行四边形,底是三角形的一半1.一个三角形和一个平行四边形等底等高,平行四边形的面积是36平方米,则三角形的面积是()平方米。
如果三角形的面积是是20平方米,那么平行四边形的面积是()平方米。
2.一个平行四边形和一个三角形面积相等,高也相等,平行四边形的底是6米,三角形的底是()米。
3.一个三角形的面积比它等底等高的平行四边形的面积少12平方米,平行四边形的面积是()平方米,三角形的面积是()平方米。
4.三角形和平行四边形的底相等,面积也相等,三角形的高是6厘米,则平时四边形的高是()厘米。
5.一个梯形和一个平行四边形的高相等,梯形的上底和下底的和等于平行四边形底的2倍,梯形的面积()平行四边形的面积。
(填大于、小于或等于)。
6.在一个面积为12平方厘米的平行四边形里画一个最大的三角形,三角形的面积为()平方厘米。
7.一个平行四边形的底是8分米,高是6分米,与它等底等高的三角形面积是()平方分米。
8.把一个三角形的底扩大4倍,面积()。
9.把梯形的高缩小2倍,则面积()。
10.把一个三角形的底扩大8倍,高缩小两倍,则它的面积()。
二、已知三角形和梯形的面积,要先把它们乘以2,而平行四边形则可以直接除。
1.一个占地2平方千米的平行四边形茶园,底为4000米,高为多少米?2.一个梯形西瓜地的面积是42平方米,上底是5米,下底是9米,这块西瓜地的高是多少米?3.快乐农庄的草莓园是一个占地面积为6公顷的三角形,已知底是300米,则高是多少米?4.把一个长20厘米、宽12厘米的长方形拉成一个平行四边形,如果面积减少60平方厘米,那么拉成的平行四边形的高是多少?5.一个梯形的上底是10厘米,如果把上底延长5厘米就成了一个面积为120平方厘米的平行四边形,原来梯形的高是多少?一、在下列方格纸中分别画一个面积为12平方厘米的平行四边形、三角形、梯形二、画一个与下列三角形面积相等的平行四边形和梯形三、在下图中画出与所给三角形面积相等的平行四边形和三角形各一个。
有关平行四边形的易错题
有关平行四边形的易错题1. 平行四边形ABCD中,已知AB = 5cm,AD = 8cm,且角BAD = 60°。
求BC的长。
解析:由于平行四边形的对边长度相等,且对角线互相平分,所以BD = AC = 8cm。
由题目中的角度关系可知角ADC = 180°- 60° = 120°。
利用余弦定理可以求出BC的长度:BC² = AC² + AB² - 2(AC)(AB)cos ADC = 8² + 5² - 2(8)(5)cos 120° = 64 + 25 - 80(-0.5) = 89 + 40 = 129。
所以,BC ≈ √129 ≈ 11.4cm。
2. 平行四边形ABCD中,已知角BAD = 120°,BC = 7cm,且DC = 13cm。
求AD的长。
解析:由于平行四边形的对边长度相等,所以AB = DC =13cm。
由题目中的角度关系可知角ADC = 180° - 120° = 60°。
利用余弦定理可以求出AD的长度:AD² = AB² + DC² -2(AB)(DC)cos ADC = 13² + 13² - 2(13)(13)cos 60° = 169 + 169 - 338(0.5) = 338 - 169 = 169。
所以,AD = √169 = 13cm。
3. 平行四边形ABCD中,已知角BAD = 40°,AD = 6cm,且BC = 5cm。
求平行四边形的面积。
解析:由题目中的角度关系可知角ADC = 180° - 40° = 140°。
利用正弦定理可以求出BD的长度:BD/sin ADC = AD/sin BAD,即BD/sin 140° = 6/sin 40°。
平行四边形易错题精选
易1.已知平行四 形的面 是144cm 2,相 两 上的高分8cm 和 9cm , 个平行四形的周 _______2. 分 将以下条件中的哪两个条件 合。
能够判断四 形ABCD 是平行四 形? ① AB ∥ CD ② AD ∥ BC ③ AB=CD④ AD =BC⑤∠ A= ∠ C⑥∠ B=∠ D3. 如 ,在ABCD 中, E , F 分 AD , CD 的中点,分EF , EB , FB ,AC , AF , CE, 中与△ABE面 相等的三角形(不包含△ ABE )共有的个数().A . 3 个B. 4 个C. 5 个D . 6 个 4. 如 7,将 n 个 都 1cm 的正方形按如 7 所示 放,点 A 、 A 、⋯、 A 分 是正方形的 角 的中点,n 个12n的正方形重叠部分的面 和 ( )A . 1 cm 2B . ncm 2C .n 1cm 2D . ( 1) n cm 2444 4A 2A 3 A 1A 4(图第718)5.如 ,矩形 ABCD 中,AB=3 ,BC=4 ,若将矩形折叠, 使 C 点和 A 点重合, 折痕 EF=_____ .6.如 ,以三角形的一条中位 和第三 上的中 角 的四 形是( )A .梯形B .平行四 形C .菱形D .矩形AEFA DEFCBBDC第 5第 6 第 87. 一个等腰梯形的周 是 80cm?,?假如它的中位 与腰 相等, ?它的高是 12cm , 个梯形的面_________。
8. 如 1,梯形 ABCD 中, AB ∥CD, EF 是中位 , EF 分 交 AC 、 BD 于 M 、 N ,若 AB=8,CD=6,MN = _______.9.三角形的周 a ,分 它的三个 点作其 的平行 , 三条直 成的三角形的周 ________10.如 , 伯家小院子的四棵小E 、F 、G 、H 幸亏其梯形院子 ABCD 各 的中点上,若在四 形 EFGH 种上小草, 草地的形状是() A .平行四 形B .矩形C .正方形D .菱形11、如 ,在 △ ABD 中,∠ ADB = 90°,C 是 BD 上一点,若 E 、 F 分 是 AC 、AB 的中点,△ DEF 的面3.5, △ ABC 的面.A H DE GBCF第 10第 1112.点 P 是矩形 ABCD 的边 AD 上的一个动点,矩形的两条边AB、 BC 的长分别为 3 和 4,那么点 P 到矩形的两条对角线AC 和 BD 的距离之和是 ( )13.在平面直角坐标系中,点 A 、B 、C 的坐标分别是A( - 2,5),B( - 3,- 1),C(1 ,- 1),在第一象限内找一点D,使四边形ABCD 是平行四边形,那么点 D 的坐标是14.(1) 菱形 ABCD的周长为 16cm,∠ ABC=60° ,E 是 AB 的中点 , 点 P 是 BD上的一动点 , 那么AP+PE的最小值等于15.在边长为 2cm 正方形 ABCD中,点 Q为 BC边上的中点,点 P 为对角线 AC上的一动点,连结 PB, PQ,则△ PBQ周长的最小值为 ___________.16. 如图, P 是正方形内一点,假如△ABP 为等边三角形,DP 的延伸线交BC 于 G,那么∠PCD= ________. ∠ BPG =________.第 16 题第18题第20题17.在△ ABC中, D、 E 分别是 AB、 AC的中点, P 是 BC上随意一点,那么△PDE的面积是△ABC面积的()18.如图,在△ ABC中,M是BC边的中点,AD均分∠ BAC,BD⊥ AD于点D,若AB=12,AC=30,则 MD的长为()19.已知菱形ABCD 的边长为4,∠ A = 60°,假如点P 是菱形内一点,且PB=PD= 2那么 AP 的长为.20.如图,点 E 是正方形 ABCD对角线 AC上一点, AF BE 于点 F,交 BD于点 G,则下述结论中不建立的是()B'yA.AG=BEB. △ABG≌△ BCEC.AE=DGD. ∠ AGD=∠ DAG A'D CEOFA BO xCAB第 20 题第 21 题(第 22 题)21. 将矩形纸片ABCD按如图 1-5 所示的方式折叠,获得菱形AECF.若 AB= 6,则 BC的长为_________.22.如图,将△ ABC 绕点 C( 0,-1)旋转 180°获得△ ABC,设点 A 的坐标为( a, b)则点 A 的坐标为()23. 点 A, B,C 的坐标分别为( 0,- 1),( 0,2),( 3,0),从下边四个点 M ( 3,3), N( 3,-3), P(- 3, 1), Q(- 3, 0)中选择一个点,以 A ,B , C 与该点为极点的四边形不是中心对称图形,则该点是()A .M B.N C.P D.Q24.在平行四边形 ABCD中,点 A1、 A2、 A3、A4和 C1、C2、C3、 C4分别 AB和 CD的五均分点 , 点 B1、 B2和 D1、D2分别是 BC和 DA的三均分点 , 已知四边形A4 B 2 C 4 D 2的积为 1, 则平行四边形ABCD面积为()。
平行四边形易错题
平行四边形易错题1.多边形若一个多边形的内角和为900°,则这个多边形的边数是()A.5B.6C.7D.8易错点:多边形内外角公式不清口诀:要求内角和,划成n-2个三角形解析:(n-2)×180=900 答案:C下面我们举一反三练习,此题可变为下列形式,该如何解?例1:一个多边形的内角和比它的外角和的3倍少180°,求这个多边形的边数.例2:一个多边形的内角和等于外角和的一半,那么这个多边形是 ( )A.三角形 B.四边形 C.五边形 D.六边形2.平行四边形下列说法正确的是 ( )A.有两组对边分别平行的图形是平行四边形B.平行四边形的对角线相等C.平行四边形的对角互补,邻角相等D.平行四边形的对边平行且相等易错点:平行四边形相关定理记忆混乱口诀:掌握定理是王道解析:根据平行四边形的性质和判定定理解题,易错为A选项,应为四边形。
下面我们举一反三练习,此题可变为下列形式,该如何解?例1:已知平行四边形周长为28cm,相邻两边的差是4cm ,则两边的长分别为( ) A.4cm、10cm B.5cm、9cm C.6cm、8cm D.5cm、7cm例2:在 ABCD中,∠A:∠B:∠C=2:3:2,则∠D等于 ( ).A. 36°B. 108°C. 72° D.60°3.中心对称如图是香港的区徽图案,则这个图形( ).A. 是轴对称图形B. 是中心对称图形C. 既是轴对称图形,又是中心对称图形D.既不是轴对称图形,也不是中心对称图形易错点:不知旋转180°和原图形重合口诀:将试卷倒过来即可解析:B下面我们举一反三练习,此题可变为下列形式,该如何解?例1:如图,□ABCD中,AC.BD为对角线,BC=6,Array BC边上的高为4,则阴影部分的面积为().A.3 B.6 C.12 D.24例2:在平面直角坐标系中,已知点A(x-1,2x-y)与点B(2x+y,6)关于原点对称,则x,y的值分别是.4.三角形中位线如图,在四边形ABCD中,AB∥CD,AD=BC,∠DAB=∠CBA,对角线交于点0,∠ACD=60°,点P,Q,S分别是OA,BC,OD的中点,判断△SPQ的形状,并说明理由.易错点:不会运用中位线的性质口诀:看到两个中点就可考虑中位线下面我们举一反三练习,此题可变为下列形式,该如何解?例1:已知如图,在△ABC 中,中线BE ,CD 交于点0,F ,G 分别是OB ,OC 的中点,求证:四边形DFGE 是平行四边形.例2.如图,O 为ABCD 的对角线交点,E 为AB 的中点,DE 交AC 于点F ,若SABCD=12,则S △DOF 的值为( ).A. lB. 32C. 2 D .945.平行四边形性质如图,在四边形ABCD 中,AB=DC ,AD=BC ,点E 在BC 上,点F 在AD 上,AF=CE ,EF 与对角线BD 相交于点O ,求证:O 是BD 的中点.易错点:平行四边形性质掌握不好口诀:对边对角均相等,对角线互相平分,还有中心对称和底乘高。
人教中考数学复习平行四边形专项易错题含答案
一、平行四边形真题与模拟题分类汇编(难题易错题)1.如图,矩形ABCD 中,AB =6,BC =4,过对角线BD 中点O 的直线分别交AB ,CD 边于点E ,F .(1)求证:四边形BEDF 是平行四边形;(2)当四边形BEDF 是菱形时,求EF 的长.【答案】(1)证明见解析;(2)133. 【解析】 分析:(1)根据平行四边形ABCD 的性质,判定△BOE ≌△DOF (ASA ),得出四边形BEDF 的对角线互相平分,进而得出结论;(2)在Rt △ADE 中,由勾股定理得出方程,解方程求出BE ,由勾股定理求出BD ,得出OB ,再由勾股定理求出EO ,即可得出EF 的长.详解:(1)证明:∵四边形ABCD 是矩形,O 是BD 的中点,∴∠A=90°,AD=BC=4,AB ∥DC ,OB=OD ,∴∠OBE=∠ODF ,在△BOE 和△DOF 中,OBE ODF OB ODBOE DOF ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△BOE ≌△DOF (ASA ),∴EO=FO ,∴四边形BEDF 是平行四边形;(2)当四边形BEDF 是菱形时,BD ⊥EF ,设BE=x ,则 DE=x ,AE=6-x ,在Rt △ADE 中,DE 2=AD 2+AE 2,∴x 2=42+(6-x )2,解得:x=133, ∵22AD AB +13 ∴OB=1213 ∵BD ⊥EF ,∴EO=22BE OB=2133,∴EF=2EO=4133.点睛:本题主要考查了矩形的性质,菱形的性质、勾股定理、全等三角形的判定与性质,熟练掌握矩形的性质和勾股定理,证明三角形全等是解决问的关键2.如图,在菱形ABCD中,AB=4,∠BAD=120°,△AEF为正三角形,E、F在菱形的边BC,CD上.(1)证明:BE=CF.(2)当点E,F分别在边BC,CD上移动时(△AEF保持为正三角形),请探究四边形AECF的面积是否发生变化?若不变,求出这个定值;如果变化,求出其最大值.(3)在(2)的情况下,请探究△CEF的面积是否发生变化?若不变,求出这个定值;如果变化,求出其最大值.【答案】(1)见解析;(2)33)见解析【解析】试题分析:(1)先求证AB=AC,进而求证△ABC、△ACD为等边三角形,得∠4=60°,AC=AB进而求证△ABE≌△ACF,即可求得BE=CF;(2)根据△ABE≌△ACF可得S△ABE=S△ACF,故根据S四边形AECF=S△AEC+S△ACF=S△AEC+S△ABE=S△ABC即可解题;(3)当正三角形AEF的边AE与BC垂直时,边AE最短.△AEF的面积会随着AE的变化而变化,且当AE最短时,正三角形AEF的面积会最小,又根据S△CEF=S四边形AECF-S△AEF,则△CEF的面积就会最大.试题解析:(1)证明:连接AC,∵∠1+∠2=60°,∠3+∠2=60°,∴∠1=∠3,∵∠BAD=120°,∴∠ABC=∠ADC=60°∵四边形ABCD是菱形,∴AB=BC=CD=AD,∴△ABC、△ACD为等边三角形∴∠4=60°,AC=AB,∴在△ABE和△ACF中,,∴△ABE≌△ACF.(ASA)∴BE=CF.(2)解:由(1)得△ABE≌△ACF,则S△ABE=S△ACF.故S四边形AECF=S△AEC+S△ACF=S△AEC+S△ABE=S△ABC,是定值.作AH⊥BC于H点,则BH=2,S四边形AECF=S△ABC===;(3)解:由“垂线段最短”可知,当正三角形AEF的边AE与BC垂直时,边AE最短.故△AEF的面积会随着AE的变化而变化,且当AE最短时,正三角形AEF的面积会最小,又S△CEF=S四边形AECF﹣S△AEF,则△CEF的面积就会最大.由(2)得,S△CEF=S四边形AECF﹣S△AEF=﹣=.点睛:本题考查了菱形每一条对角线平分一组对角的性质,考查了全等三角形的证明和全等三角形对应边相等的性质,考查了三角形面积的计算,本题中求证△ABE≌△ACF是解题的关键.3.如图,在平行四边形ABCD中,AD⊥DB,垂足为点D,将平行四边形ABCD折叠,使点B落在点D的位置,点C落在点G的位置,折痕为EF,EF交对角线BD于点P.(1)连结CG,请判断四边形DBCG的形状,并说明理由;(2)若AE=BD,求∠EDF的度数.【答案】(1)四边形BCGD是矩形,理由详见解析;(2)∠EDF=120°.【解析】【分析】(1)根据平行四边形的性质和折叠性质以及矩形的判定解答即可;(2)根据折叠的性质以及直角三角形的性质和等边三角形的判定与性质解答即可.【详解】解:(1)四边形BCGD是矩形,理由如下,∵四边形ABCD是平行四边形,∴BC∥AD,即BC∥DG,由折叠可知,BC=DG,∴四边形BCGD是平行四边形,∵AD⊥BD,∴∠CBD=90°,∴四边形BCGD是矩形;(2)由折叠可知:EF垂直平分BD,∴BD⊥EF,DP=BP,∵AD⊥BD,∴EF∥AD∥BC,∴AE PD1==BE BP∴AE=BE,∴DE是Rt△ADB斜边上的中线,∴DE=AE=BE,∵AE=BD,∴DE=BD=BE,∴△DBE是等边三角形,∴∠EDB=∠DBE=60°,∵AB∥DC,∴∠DBC=∠DBE=60°,∴∠EDF=120°.【点睛】本题考查了平行四边形的性质,折叠性质,等边三角形的性质和判定,主要考查学生运用定理进行推理和计算的能力,题目综合性比较强,有一定的难度4.如图1,已知正方形ABCD的边CD在正方形DEFG的边DE上,连接AE,GC.(1)试猜想AE与GC有怎样的关系(直接写出结论即可);(2)将正方形DEFG绕点D按顺时针方向旋转,使点E落在BC边上,如图2,连接AE和CG.你认为(1)中的结论是否还成立?若成立,给出证明;若不成立,请说明理由.(3)在(2)中,若E是BC的中点,且BC=2,则C,F两点间的距离为.【答案】(1) AE=CG,AE⊥GC;(2)成立,证明见解析;2.【解析】【分析】(1)观察图形,AE、CG的位置关系可能是垂直,下面着手证明.由于四边形ABCD、DEFG都是正方形,易证得△ADE≌△CDG,则∠1=∠2,由于∠2、∠3互余,所以∠1、∠3互余,由此可得AE⊥GC.(2)题(1)的结论仍然成立,参照(1)题的解题方法,可证△ADE≌△CDG,得∠5=∠4,由于∠4、∠7互余,而∠5、∠6互余,那么∠6=∠7;由图知∠AEB=∠CEH=90°﹣∠6,即∠7+∠CEH=90°,由此得证.(3)如图3中,作CM⊥DG于G,GN⊥CD于N,CH⊥FG于H,则四边形CMGH是矩形,可得CM=GH,CH=GM.想办法求出CH,HF,再利用勾股定理即可解决问题.【详解】(1)AE=CG,AE⊥GC;证明:延长GC交AE于点H,在正方形ABCD与正方形DEFG中,AD=DC,∠ADE=∠CDG=90°,DE=DG,∴△ADE≌△CDG(SAS),∴AE,CG,∠1=∠2∵∠2+∠3=90°,∴∠1+∠3=90°,∴∠AHG=180°﹣(∠1+∠3)=180°﹣90°=90°,∴AE⊥GC.(2)答:成立;证明:延长AE和GC相交于点H,在正方形ABCD和正方形DEFG中,AD=DC,DE=DG,∠ADC=∠DCB=∠B=∠BAD=∠EDG=90°,∴∠1=∠2=90°﹣∠3;∴△ADE≌△CDG(SAS),∴AE=CG,∠5=∠4;又∵∠5+∠6=90°,∠4+∠7=180°﹣∠DCE=180°﹣90°=90°,∴∠6=∠7,又∵∠6+∠AEB=90°,∠AEB=∠CEH,∴∠CEH+∠7=90°,∴∠EHC=90°,∴AE⊥GC.(3)如图3中,作CM⊥DG于G,GN⊥CD于N,CH⊥FG于H,则四边形CMGH是矩形,可得CM=GH,CH=GM.∵BE =CE =1,AB =CD =2,∴AE =DE =CG ═DG =FG 5∵DE =DG ,∠DCE =∠GND ,∠EDC =∠DGN ,∴△DCE ≌△GND(AAS),∴GCD =2,∵S △DCG =12•CD•NG =12•DG•CM , ∴2×25, ∴CM =GH 45, ∴MG =CH 22CG CM -355, ∴FH =FG ﹣FG 5, ∴CF 22FH CH +22535()()55+2. 2.【点睛】 本题属于四边形综合题,考查了正方形的性质,全等三角形的判定和性质,解直角三角形等知识,解题的关键是正确寻找全等三角形解决问题,属于中考压轴题.5.(1)(问题发现)如图1,在Rt △ABC 中,AB =AC =2,∠BAC =90°,点D 为BC 的中点,以CD 为一边作正方形CDEF ,点E 恰好与点A 重合,则线段BE 与AF 的数量关系为(2)(拓展研究)在(1)的条件下,如果正方形CDEF 绕点C 旋转,连接BE ,CE ,AF ,线段BE 与AF 的数量关系有无变化?请仅就图2的情形给出证明;(3)(问题发现)当正方形CDEF 旋转到B ,E ,F 三点共线时候,直接写出线段AF 的长.【答案】(1)2AF ;(2)无变化;(3)AF 313.【解析】试题分析:(1)先利用等腰直角三角形的性质得出2 ,再得出BE=AB=2,即可得出结论;(2)先利用三角函数得出22CA CB =,同理得出22CF CE =,夹角相等即可得出△ACF ∽△BCE ,进而得出结论;(3)分两种情况计算,当点E 在线段BF 上时,如图2,先利用勾股定理求出2,6,即可得出62,借助(2)得出的结论,当点E 在线段BF 的延长线上,同前一种情况一样即可得出结论.试题解析:(1)在Rt △ABC 中,AB=AC=2,根据勾股定理得,22,点D 为BC 的中点,∴AD=122, ∵四边形CDEF 是正方形,∴2,∵BE=AB=2,∴2AF ,故答案为2AF ;(2)无变化;如图2,在Rt △ABC 中,AB=AC=2,∴∠ABC=∠ACB=45°,∴sin ∠ABC=2CA CB = 在正方形CDEF 中,∠FEC=12∠FED=45°, 在Rt △CEF 中,sin ∠FEC=2CF CE = ∴CF CA CE CB=, ∵∠FCE=∠ACB=45°,∴∠FCE ﹣∠ACE=∠ACB ﹣∠ACE ,∴∠FCA=∠ECB ,∴△ACF ∽△BCE ,∴BE CB AF CA=2∴2AF , ∴线段BE 与AF 的数量关系无变化;(3)当点E 在线段AF 上时,如图2,由(1)知,CF=EF=CD=2,在Rt△BCF中,CF=2,BC=22,根据勾股定理得,BF=6,∴BE=BF﹣EF=6﹣2,由(2)知,BE=2AF,∴AF=3﹣1,当点E在线段BF的延长线上时,如图3,在Rt△ABC中,AB=AC=2,∴∠ABC=∠ACB=45°,∴sin∠ABC=2 CACB=,在正方形CDEF中,∠FEC=12∠FED=45°,在Rt△CEF中,sin∠FEC=2CFCE=,∴CF CACE CB=,∵∠FCE=∠ACB=45°,∴∠FCB+∠ACB=∠FCB+∠FCE,∴∠FCA=∠ECB,∴△ACF∽△BCE,∴BE CBAF CA= =2,∴BE=2AF,由(1)知,CF=EF=CD=2,在Rt△BCF中,CF=2,BC=22,根据勾股定理得,BF=6,∴BE=BF+EF=6+2,由(2)知,BE=2AF,∴AF=3+1.即:当正方形CDEF旋转到B,E,F三点共线时候,线段AF的长为3﹣1或3+1.6.如图,已知矩形ABCD中,E是AD上一点,F是AB上的一点,EF⊥EC,且EF=EC.(1)求证:△AEF≌△DCE.(2)若DE=4cm,矩形ABCD的周长为32cm,求AE的长.【答案】(1)证明见解析;(2)6cm.【解析】分析:(1)根据EF⊥CE,求证∠AEF=∠ECD.再利用AAS即可求证△AEF≌△DCE.(2)利用全等三角形的性质,对应边相等,再根据矩形ABCD的周长为32cm,即可求得AE的长.详解:(1)证明:∵EF⊥CE,∴∠FEC=90°,∴∠AEF+∠DEC=90°,而∠ECD+∠DEC=90°,∴∠AEF=∠ECD.在Rt△AEF和Rt△DEC中,∠FAE=∠EDC=90°,∠AEF=∠ECD,EF=EC.∴△AEF≌△DCE.(2)解:∵△AEF≌△DCE.AE=CD.AD=AE+4.∵矩形ABCD的周长为32cm,∴2(AE+AE+4)=32.解得,AE=6(cm).答:AE的长为6cm.点睛:此题主要考查学生对全等三角形的判定与性质和矩形的性质等知识点的理解和掌握,难易程度适中,是一道很典型的题目.7.猜想与证明:如图1,摆放矩形纸片ABCD与矩形纸片ECGF,使B、C、G三点在一条直线上,CE在边CD上,连接AF,若M为AF的中点,连接DM、ME,试猜想DM与ME的关系,并证明你的结论.拓展与延伸:(1)若将”猜想与证明“中的纸片换成正方形纸片ABCD与正方形纸片ECGF,其他条件不变,则DM和ME的关系为.(2)如图2摆放正方形纸片ABCD与正方形纸片ECGF,使点F在边CD上,点M仍为AF 的中点,试证明(1)中的结论仍然成立.【答案】猜想:DM=ME,证明见解析;(2)成立,证明见解析.【解析】试题分析:延长EM交AD于点H,根据ABCD和CEFG为矩形得到AD∥EF,得到△FME和△AMH全等,得到HM=EM,根据Rt△HDE得到HM=DE,则可以得到答案;(1)、延长EM交AD于点H,根据ABCD和CEFG为矩形得到AD∥EF,得到△FME和△AMH全等,得到HM=EM,根据Rt△HDE得到HM=DE,则可以得到答案;(2)、连接AE,根据正方形的性质得出∠FCE=45°,∠FCA=45°,根据RT△ADF中AM=MF得出DM=AM=MF,根据RT△AEF中AM=MF得出AM=MF=ME,从而说明DM=ME.试题解析:如图1,延长EM交AD于点H,∵四边形ABCD和CEFG是矩形,∴AD∥EF,∴∠EFM=∠HAM,又∵∠FME=∠AMH,FM=AM,在△FME和△AMH中,∴△FME≌△AMH(ASA)∴HM=EM,在RT△HDE中,HM=DE,∴DM=HM=ME,∴DM=ME.(1)、如图1,延长EM交AD于点H,∵四边形ABCD和CEFG是矩形,∴AD∥EF,∴∠EFM=∠HAM,又∵∠FME=∠AMH,FM=AM,在△FME和△AMH中,∴△FME≌△AMH(ASA)∴HM=EM,在RT△HDE中,HM=EM∴DM=HM=ME,∴DM=ME,(2)、如图2,连接AE,∵四边形ABCD和ECGF是正方形,∴∠FCE=45°,∠FCA=45°,∴AE和EC在同一条直线上,在RT△ADF中,AM=MF,∴DM=AM=MF,在RT△AEF中,AM=MF,∴AM=MF=ME,∴DM=ME.考点:(1)、三角形全等的性质;(2)、矩形的性质.8.问题探究(1)如图①,已知正方形ABCD的边长为4.点M和N分别是边BC、CD上两点,且BM =CN,连接AM和BN,交于点P.猜想AM与BN的位置关系,并证明你的结论.(2)如图②,已知正方形ABCD的边长为4.点M和N分别从点B、C同时出发,以相同的速度沿BC、CD方向向终点C和D运动.连接AM和BN,交于点P,求△APB周长的最大值;问题解决(3)如图③,AC为边长为23的菱形ABCD的对角线,∠ABC=60°.点M和N分别从点B、C同时出发,以相同的速度沿BC、CA向终点C和A运动.连接AM和BN,交于点P.求△APB周长的最大值.【答案】(1)AM⊥BN,证明见解析;(2)△APB周长的最大值4+42;(3)△PAB的周长最大值=23+4.【解析】试题分析:根据全等三角形的判定SAS证明△ABM≌△BCN,即可证得AM⊥BN;(2)如图②,以AB为斜边向外作等腰直角△AEB,∠AEB=90°,作EF⊥PA于E,作EG⊥PB于G,连接EP,证明PA+PB=2EF,求出EF的最大值即可;(3)如图③,延长DA到K,使得AK=AB,则△ABK是等边三角形,连接PK,取PH=PB,证明PA+PB=PK,求出PK的最大值即可.试题解析:(1)结论:AM⊥BN.理由:如图①中,∵四边形ABCD是正方形,∴AB=BC,∠ABM=∠BCN=90°,∵BM=CN,∴△ABM≌△BCN,∴∠BAM=∠CBN,∵∠CBN+∠ABN=90°,∴∠ABN+∠BAM=90°,∴∠APB=90°,∴AM⊥BN.(2)如图②中,以AB为斜边向外作等腰直角三角形△AEB,∠AEB=90°,作EF⊥PA于E,作EG⊥PB于G,连接EP.∵∠EFP=∠FPG=∠G=90°,∴四边形EFPG是矩形,∴∠FEG=∠AEB=90°,∴∠AEF=∠BEG,∵EA=EB,∠EFA=∠G=90°,∴△AEF≌△BEG,∴EF=EG,AF=BG,∴四边形EFPG是正方形,∴PA+PB=PF+AF+PG﹣BG=2PF=2EF,∵EF≤AE,∴EF的最大值=AE=2,∴△APB周长的最大值=4+4.(3)如图③中,延长DA到K,使得AK=AB,则△ABK是等边三角形,连接PK,取PH=PB.∵AB=BC,∠ABM=∠BCN,BM=CN,∴△ABM≌△BCN,∴∠BAM=∠CBN,∴∠A PN=∠BAM+∠ABP=∠CBN+∠ABN=60°,∴∠APB=120°,∵∠AKB=60°,∴∠AKB+∠APB=180°,∴A、K、B、P四点共圆,∴∠BPH=∠KAB=60°,∵PH=PB,∴△PBH是等边三角形,∴∠KBA=∠HBP,BH=BP,∴∠KBH=∠ABP,∵BK=BA,∴△KBH≌△ABP,∴HK=AP,∴PA+PB=KH+PH=PK,∴PK的值最大时,△APB的周长最大,∴当PK是△ABK外接圆的直径时,PK的值最大,最大值为4,∴△PAB的周长最大值=2+4.9.如图,在正方形ABCD中,点E在CD上,AF⊥AE交CB的延长线于F.求证:AE=AF.【答案】见解析【解析】【分析】根据同角的余角相等证得∠BAF=∠DAE,再利用正方形的性质可得AB=AD,∠ABF=∠ADE=90°,根据ASA判定△ABF≌△ADE,根据全等三角形的性质即可证得AF=AE.【详解】∵AF⊥AE,∴∠BAF+∠BAE=90°,又∵∠DAE+∠BAE=90°,∴∠BAF=∠DAE,∵四边形ABCD是正方形,∴AB=AD,∠ABF=∠ADE=90°,在△ABF和△ADE中,,∴△ABF≌△ADE(ASA),∴AF=AE.【点睛】本题主要考查了正方形的性质、全等三角形的判定和性质等知识点,证明△ABF≌△ADE是解决本题的关键.10.如图,正方形ABCO的边OA、OC在坐标轴上,点B坐标为(3,3).将正方形ABCO 绕点A顺时针旋转角度α(0°<α<90°),得到正方形ADEF,ED交线段OC于点G,ED的延长线交线段BC于点P,连AP、AG.(1)求证:△AOG≌△ADG;(2)求∠PAG的度数;并判断线段OG、PG、BP之间的数量关系,说明理由;(3)当∠1=∠2时,求直线PE的解析式;(4)在(3)的条件下,直线PE上是否存在点M,使以M、A、G为顶点的三角形是等腰三角形?若存在,请直接写出M点坐标;若不存在,请说明理由.【答案】(1)见解析(2)∠PAG =45°,PG=OG+BP.理由见解析(3)y=x﹣3.(4)、.【解析】试题分析:(1)由AO=AD,AG=AG,根据斜边和一条直角边对应相等的两个直角三角形全等,判断出△AOG≌△ADG即可.(2)首先根据三角形全等的判定方法,判断出△ADP≌△ABP,再结合△AOG≌△ADG,可得∠DAP=∠BAP,∠1=∠DAG;然后根据∠1+∠DAG+∠DAP+∠BAP=90°,求出∠PAG的度数;最后判断出线段OG、PG、BP之间的数量关系即可.(3)首先根据△AOG≌△ADG,判断出∠AGO=∠AGD;然后根据∠1+∠AGO=90°,∠2+∠PGC=90°,判断出当∠1=∠2时,∠AGO=∠AGD=∠PGC,而∠AGO+∠AGD+∠PGC=180°,求出∠1=∠2=30°;最后确定出P、G两点坐标,即可判断出直线PE的解析式.(4)根据题意,分两种情况:①当点M在x轴的负半轴上时;②当点M在EP的延长线上时;根据以M、A、G为顶点的三角形是等腰三角形,求出M点坐标是多少即可.试题解析:(1)在Rt△AOG和Rt△ADG中,(HL)∴△AOG≌△ADG.(2)在Rt△ADP和Rt△ABP中,∴△ADP≌△ABP,则∠DAP=∠BAP;∵△AOG≌△ADG,∴∠1=∠DAG;又∵∠1+∠DAG+∠DAP+∠BAP=90°,∴2∠DAG+2∠DAP=90°,∴∠DAG+∠DAP=45°,∵∠PAG=∠DAG+∠DAP,∴∠PAG=45°;∵△AOG≌△ADG,∴DG=OG,∵△ADP≌△ABP,∴DP=BP,∴PG=DG+DP=OG+BP.(3)解:∵△AOG≌△ADG,∴∠AGO=∠AGD,又∵∠1+∠AGO=90°,∠2+∠PGC=90°,∠1=∠2,∴∠AGO=∠PGC,又∵∠AGO=∠AGD,∴∠AGO=∠AGD=∠PGC,又∵∠AGO+∠AGD+∠PGC=180°,∴∠AGO=∠AGD=∠PGC=180°÷3=60°,∴∠1=∠2=90°﹣60°=30°;在Rt△AOG中,∵AO=3,∴OG=AOtan30°=3×=,∴G点坐标为(,0),CG=3﹣,在Rt△PCG中,PC===3(﹣1),∴P点坐标为:(3,3﹣3 ),设直线PE的解析式为:y=kx+b,则,解得:,∴直线PE的解析式为y=x﹣3.(4)①如图1,当点M在x轴的负半轴上时,,∵AG=MG,点A坐标为(0,3),∴点M坐标为(0,﹣3).②如图2,当点M在EP的延长线上时,,由(3),可得∠AGO=∠PGC=60°,∴EP与AB的交点M,满足AG=MG,∵A点的横坐标是0,G点横坐标为,∴M的横坐标是2,纵坐标是3,∴点M坐标为(2,3).综上,可得点M坐标为(0,﹣3)或(2,3).考点:几何变换综合题.。
【数学】数学平行四边形的专项培优 易错 难题练习题(含答案)含答案解析
一、平行四边形真题与模拟题分类汇编(难题易错题)1.如图1,四边形ABCD是正方形,G是CD边上的一个动点(点G与C、D不重合),以CG为一边在正方形ABCD外作正方形CEFG,连接BG,DE.(1)①猜想图1中线段BG、线段DE的长度关系及所在直线的位置关系,不必证明;②将图1中的正方形CEFG绕着点C按顺时针方向旋转任意角度α,得到如图2情形.请你通过观察、测量等方法判断①中得到的结论是否仍然成立,并证明你的判断.(2)将原题中正方形改为矩形(如图3、4),且AB=a,BC=b,CE=ka,CG=kb (a≠b,k>0),第(1)题①中得到的结论哪些成立,哪些不成立?若成立,以图4为例简要说明理由.(3)在第(2)题图4中,连接DG、BE,且a=3,b=2,k=12,求BE2+DG2的值.【答案】(1)①BG⊥DE,BG=DE;②BG⊥DE,证明见解析;(2)BG⊥DE,证明见解析;(3)16.25.【解析】分析:(1)①根据正方形的性质,显然三角形BCG顺时针旋转90°即可得到三角形DCE,从而判断两条直线之间的关系;②结合正方形的性质,根据SAS仍然能够判定△BCG≌△DCE,从而证明结论;(2)根据两条对应边的比相等,且夹角相等可以判定上述两个三角形相似,从而可以得到(1)中的位置关系仍然成立;(3)连接BE、DG.根据勾股定理即可把BE2+DG2转换为两个矩形的长、宽平方和.详解:(1)①BG⊥DE,BG=DE;②∵四边形ABCD和四边形CEFG是正方形,∴BC=DC,CG=CE,∠BCD=∠ECG=90°,∴∠BCG=∠DCE,∴△BCG≌△DCE,∴BG=DE,∠CBG=∠CDE,又∵∠CBG+∠BHC=90°,∴∠CDE+∠DHG=90°,∴BG⊥DE.(2)∵AB=a,BC=b,CE=ka,CG=kb,∴BC CG b==,DC CE a又∵∠BCG=∠DCE,∴△BCG∽△DCE,∴∠CBG=∠CDE,又∵∠CBG+∠BHC=90°,∴∠CDE+∠DHG=90°,∴BG⊥DE.(3)连接BE、DG.根据题意,得AB=3,BC=2,CE=1.5,CG=1,∵BG⊥DE,∠BCD=∠ECG=90°∴BE2+DG2=BO2+OE2+DO2+OG2=BC2+CD2+CE2+CG2=9+4+2.25+1=16.25.点睛:此题综合运用了全等三角形的判定和性质、相似三角形的判定和性质以及勾股定理.2.在△ABC中,AB=BC,点O是AC的中点,点P是AC上的一个动点(点P不与点A,O,C重合).过点A,点C作直线BP的垂线,垂足分别为点E和点F,连接OE,OF.(1)如图1,请直接写出线段OE与OF的数量关系;(2)如图2,当∠ABC=90°时,请判断线段OE与OF之间的数量关系和位置关系,并说明理由(3)若|CF﹣AE|=2,3△POF为等腰三角形时,请直接写出线段OP的长.【答案】(1)OF =OE;(2)OF⊥EK,OF=OE,理由见解析;(3)OP的长为62或233.【解析】【分析】(1)如图1中,延长EO交CF于K,证明△AOE≌△COK,从而可得OE=OK,再根据直角三角形斜边中线等于斜边一半即可得OF=OE;(2)如图2中,延长EO交CF于K,由已知证明△ABE≌△BCF,△AOE≌△COK,继而可证得△EFK是等腰直角三角形,由等腰直角三角形的性质即可得OF⊥EK,OF=OE;(3)分点P在AO上与CO上两种情况分别画图进行解答即可得.【详解】(1)如图1中,延长EO交CF于K,∵AE⊥BE,CF⊥BE,∴AE∥CK,∴∠EAO=∠KCO,∵OA=OC,∠AOE=∠COK,∴△AOE≌△COK,∴OE=OK,∵△EFK是直角三角形,∴OF=12EK=OE;(2)如图2中,延长EO交CF于K,∵∠ABC=∠AEB=∠CFB=90°,∴∠ABE+∠BAE=90°,∠ABE+∠CBF=90°,∴∠BAE=∠CBF,∵AB=BC,∴△ABE≌△BCF,∴BE=CF,AE=BF,∵△AOE≌△COK,∴AE=CK,OE=OK,∴FK=EF,∴△EFK是等腰直角三角形,∴OF⊥EK,OF=OE;(3)如图3中,点P在线段AO上,延长EO交CF于K,作PH⊥OF于H,∵|CF﹣AE|=2,EF=23,AE=CK,∴FK=2,在Rt△EFK中,tan∠FEK=3,∴∠FEK=30°,∠EKF=60°,∴EK=2FK=4,OF=12EK=2,∵△OPF是等腰三角形,观察图形可知,只有OF=FP=2,在Rt△PHF中,PH=12PF=1,HF=3,OH=2﹣3,∴OP=()2212362+-=-.如图4中,点P在线段OC上,当PO=PF时,∠POF=∠PFO=30°,∴∠BOP=90°,∴323综上所述:OP6223.【点睛】本题考查了全等三角形的判定与性质、直角三角形斜边中线等于斜边一半、等腰直角三角形的判定与性质、解直角三角形等,综合性较强,正确添加辅助线是解题的关键.3.如图所示,矩形ABCD中,点E在CB的延长线上,使CE=AC,连接AE,点F是AE的中点,连接BF、DF,求证:BF⊥DF.【答案】见解析.【解析】【分析】延长BF,交DA的延长线于点M,连接BD,进而求证△AFM≌△EFB,得AM=BE,FB=FM,即可求得BC+BE=AD+AM,进而求得BD=BM,根据等腰三角形三线合一的性质即可求证BF⊥DF.【详解】延长BF,交DA的延长线于点M,连接BD.∵四边形ABCD是矩形,∴MD∥BC,∴∠AMF=∠EBF,∠E=∠MAF,又FA=FE,∴△AFM≌△EFB,∴AM=BE,FB=FM.∵矩形ABCD中,∴AC=BD,AD=BC,∴BC+BE=AD+AM,即CE=MD.∵CE=AC,∴AC=CE= BD =DM.∵FB=FM,∴BF⊥DF.【点睛】本题考查了矩形的性质,全等三角形的判定和对应边相等的性质,等腰三角形三线合一的性质,本题中求证DB=DM是解题的关键.4.如图,在正方形ABCD中,对角线AC与BD交于点O,在Rt△PFE中,∠EPF=90°,点E、F分别在边AD、AB上.(1)如图1,若点P与点O重合:①求证:AF=DE;②若正方形的边长为3,当∠DOE=15°时,求线段EF的长;(2)如图2,若Rt△PFE的顶点P在线段OB上移动(不与点O、B重合),当BD=3BP 时,证明:PE=2PF.【答案】(1)①证明见解析,②22;(2)证明见解析.【解析】【分析】(1)①根据正方形的性质和旋转的性质即可证得:△AOF ≌△DOE 根据全等三角形的性质证明; ②作OG ⊥AB 于G ,根据余弦的概念求出OF 的长,根据勾股定理求值即可;(2)首先过点P 作HP ⊥BD 交AB 于点H ,根据相似三角形的判定和性质求出PE 与PF 的数量关系.【详解】(1)①证明:∵四边形ABCD 是正方形,∴OA=OD ,∠OAF=∠ODE=45°,∠AOD=90°,∴∠AOE+∠DOE=90°,∵∠EPF=90°,∴∠AOF+∠AOE=90°,∴∠DOE=∠AOF ,在△AOF 和△DOE 中,OAF ODE OA ODAOF DOE ===∠∠⎧⎪⎨⎪∠∠⎩, ∴△AOF ≌△DOE ,∴AF=DE ;②解:过点O 作OG ⊥AB 于G ,∵正方形的边长为3∴OG=123∵∠DOE=15°,△AOF ≌△DOE ,∴∠AOF=15°,∴∠FOG=45°-15°=30°,∴OF=OG cos DOG ∠=2, ∴EF=22=22OF OE +;(2)证明:如图2,过点P 作HP ⊥BD 交AB 于点H ,则△HPB 为等腰直角三角形,∠HPD=90°,∴HP=BP ,∵BD=3BP ,∴PD=2BP ,∴PD=2HP ,又∵∠HPF+∠HPE=90°,∠DPE+∠HPE=90°,∴∠HPF=∠DPE ,又∵∠BHP=∠EDP=45°,∴△PHF ∽△PDE ,∴12PF PH PE PD ==, ∴PE=2PF .【点睛】 此题属于四边形的综合题.考查了正方形的性质、全等三角形的判定与性质、相似三角形的判定与性质以及勾股定理.注意准确作出辅助线是解此题的关键.5.如图,已知矩形ABCD 中,E 是AD 上一点,F 是AB 上的一点,EF ⊥EC ,且EF =EC . (1)求证:△AEF ≌△DCE .(2)若DE =4cm ,矩形ABCD 的周长为32cm ,求AE 的长.【答案】(1)证明见解析;(2)6cm.【解析】分析:(1)根据EF⊥CE,求证∠AEF=∠ECD.再利用AAS即可求证△AEF≌△DCE.(2)利用全等三角形的性质,对应边相等,再根据矩形ABCD的周长为32cm,即可求得AE的长.详解:(1)证明:∵EF⊥CE,∴∠FEC=90°,∴∠AEF+∠DEC=90°,而∠ECD+∠DEC=90°,∴∠AEF=∠ECD.在Rt△AEF和Rt△DEC中,∠FAE=∠EDC=90°,∠AEF=∠ECD,EF=EC.∴△AEF≌△DCE.(2)解:∵△AEF≌△DCE.AE=CD.AD=AE+4.∵矩形ABCD的周长为32cm,∴2(AE+AE+4)=32.解得,AE=6(cm).答:AE的长为6cm.点睛:此题主要考查学生对全等三角形的判定与性质和矩形的性质等知识点的理解和掌握,难易程度适中,是一道很典型的题目.6.如图,在正方形ABCD中,点G在对角线BD上(不与点B,D重合),GE⊥DC于点E,GF⊥BC于点F,连结AG.(1)写出线段AG,GE,GF长度之间的数量关系,并说明理由;(2)若正方形ABCD的边长为1,∠AGF=105°,求线段BG的长.【答案】(1)AG2=GE2+GF2(2)【解析】试题分析:(1)结论:AG2=GE2+GF2.只要证明GA=GC,四边形EGFC是矩形,推出GE=CF,在Rt△GFC中,利用勾股定理即可证明;(2)作BN⊥AG于N,在BN上截取一点M,使得AM=BM.设AN=x.易证AM=BM=2x,MN=x,在Rt△ABN中,根据AB2=AN2+BN2,可得1=x2+(2x+x)2,解得x=,推出BN=,再根据BG=BN÷cos30°即可解决问题.试题解析:(1)结论:AG2=GE2+GF2.理由:连接CG.∵四边形ABCD是正方形,∴A、C关于对角线BD对称,∵点G在BD上,∴GA=GC,∵GE⊥DC于点E,GF⊥BC于点F,∴∠GEC=∠ECF=∠CFG=90°,∴四边形EGFC是矩形,∴CF=GE,在Rt△GFC中,∵CG2=GF2+CF2,∴AG2=GF2+GE2.(2)作BN⊥AG于N,在BN上截取一点M,使得AM=BM.设AN=x.∵∠AGF=105°,∠FBG=∠FGB=∠ABG=45°,∴∠AGB=60°,∠GBN=30°,∠ABM=∠MAB=15°,∴∠AMN=30°,∴AM=BM=2x,MN=x,在Rt△ABN中,∵AB2=AN2+BN2,∴1=x2+(2x+x)2,解得x=,∴BN=,∴BG=BN÷cos30°=.考点:1、正方形的性质,2、矩形的判定和性质,3、勾股定理,4、直角三角形30度的性质7.问题探究(1)如图①,已知正方形ABCD的边长为4.点M和N分别是边BC、CD上两点,且BM =CN,连接AM和BN,交于点P.猜想AM与BN的位置关系,并证明你的结论.(2)如图②,已知正方形ABCD的边长为4.点M和N分别从点B、C同时出发,以相同的速度沿BC、CD方向向终点C和D运动.连接AM和BN,交于点P,求△APB周长的最大值;问题解决(3)如图③,AC为边长为23的菱形ABCD的对角线,∠ABC=60°.点M和N分别从点B、C同时出发,以相同的速度沿BC、CA向终点C和A运动.连接AM和BN,交于点P.求△APB周长的最大值.【答案】(1)AM⊥BN,证明见解析;(2)△APB周长的最大值4+42;(3)△PAB的周长最大值=23+4.【解析】试题分析:根据全等三角形的判定SAS证明△ABM≌△BCN,即可证得AM⊥BN;(2)如图②,以AB为斜边向外作等腰直角△AEB,∠AEB=90°,作EF⊥PA于E,作EG⊥PB于G,连接EP,证明PA+PB=2EF,求出EF的最大值即可;(3)如图③,延长DA到K,使得AK=AB,则△ABK是等边三角形,连接PK,取PH=PB,证明PA+PB=PK,求出PK的最大值即可.试题解析:(1)结论:AM⊥BN.理由:如图①中,∵四边形ABCD是正方形,∴AB=BC,∠ABM=∠BCN=90°,∵BM=CN,∴△ABM≌△BCN,∴∠BAM=∠CBN,∵∠CBN+∠ABN=90°,∴∠ABN+∠BAM=90°,∴∠APB=90°,∴AM⊥BN.(2)如图②中,以AB为斜边向外作等腰直角三角形△AEB,∠AEB=90°,作EF⊥PA于E,作EG⊥PB于G,连接EP.∵∠EFP=∠FPG=∠G=90°,∴四边形EFPG是矩形,∴∠FEG=∠AEB=90°,∴∠AEF=∠BEG,∵EA=EB,∠EFA=∠G=90°,∴△AEF≌△BEG,∴EF=EG,AF=BG,∴四边形EFPG是正方形,∴PA+PB=PF+AF+PG﹣BG=2PF=2EF,∵EF≤AE,∴EF的最大值=AE=2,∴△APB周长的最大值=4+4.(3)如图③中,延长DA到K,使得AK=AB,则△ABK是等边三角形,连接PK,取PH=PB.∵AB=BC,∠ABM=∠BCN,BM=CN,∴△ABM≌△BCN,∴∠BAM=∠CBN,∴∠A PN=∠BAM+∠ABP=∠CBN+∠ABN=60°,∴∠APB=120°,∵∠AKB=60°,∴∠AKB+∠APB=180°,∴A、K、B、P四点共圆,∴∠BPH=∠KAB=60°,∵PH=PB,∴△PBH是等边三角形,∴∠KBA=∠HBP,BH=BP,∴∠KBH=∠ABP,∵BK=BA,∴△KBH≌△ABP,∴HK=AP,∴PA+PB=KH+PH=PK,∴PK的值最大时,△APB的周长最大,∴当PK是△ABK外接圆的直径时,PK的值最大,最大值为4,∴△PAB的周长最大值=2+4.8.如图,抛物线y=mx2+2mx+n经过A(﹣3,0),C(0,﹣32)两点,与x轴交于另一点B.(1)求经过A,B,C三点的抛物线的解析式;(2)过点C作CE∥x轴交抛物线于点E,写出点E的坐标,并求AC、BE的交点F的坐标(3)若抛物线的顶点为D,连结DC、DE,四边形CDEF是否为菱形?若是,请证明;若不是,请说明理由.【答案】(1)y=12x2+x﹣32;(2)F点坐标为(﹣1,﹣1);(3)四边形CDEF是菱形.证明见解析【解析】【分析】将A、C点的坐标代入抛物线的解析式中,通过联立方程组求得该抛物线的解析式;根据(1)题所得的抛物线的解析式,可确定抛物线的对称轴方程以及B、C点的坐标,由CE∥x轴,可知C、E关于对称轴对称。
《易错题》小学数学四年级上册第五单元平行四边形和梯形 单元测试(含答案解析)
《易错题》小学数学四年级上册第五单元平行四边形和梯形单元测试(含答案解析)一、选择题1.平行四边形的高有()条。
A. 1B. 2C. 4D. 无数2.下图中直线m和n互相平行,线段AB和CD的关系是()。
A. 互相平行B. 互相垂直C. 相交3.上午9时,钟面上的时针和分针()。
A. 互相平行B. 互相垂直C. 互相平行或相交D. 不能确定4.在桌面上把两根小棒都摆成和第三根小棒垂直,那么这两根小棒()。
A. 互相平行B. 互相垂直C. 相交5.把一张长方形的纸对折再对折,打开后两条折痕()A. 互相平行B. 互相垂直C. 可能互相平行,也可能互相垂直6.军军家通往一条大道有3条不同的路,这3条路的长度分别为56米、87米、54米,其中有一条小路与大道是垂直的,那么这条路的长度应是()米。
A. 54米B. 56米C. 87米7.从平行四边形的一个顶点可以画这个平行四边形的()条高.A. 1B. 2C. 无数条8.下图里,AB、AC、AD、AE四条线段中,它们的长度为4厘米、5厘米、6厘米、7厘米。
线段()一定长4厘米。
A. ABB. ACC. AD9.一个平行四边形(长方形外)相邻两边的长度分别是8厘米、5厘米,那么8厘米这条边上的高可能是()厘米。
A. 4厘米B. 5厘米C. 6厘米D. 7厘米10.学校拉门里有许多小平行四边形,这是应用了平行四边形()的性质。
A. 容易变形B. 对边相等C. 稳定性D. 互相对称11.下列图形中,线段PQ的长表示点P到直线MN的距离是()A. B.C. D.12.把一个长方形框架拉成一个平行四边形,这个平行四边形的周长比原长方形的周长()。
A. 大B. 小C. 一样大二、填空题13.用两个完全一样的梯形拼出一个平行四边形,梯形的上底是5cm,下底是10cm,高是2cm,这个平行四边形的底长________cm。
14.小聪和小明都用两根长6厘米和两根长4厘米的小棒摆了一个平行四边形,他们摆的图形的________一定相等。
“平行四边形”易错题
“平行四边形”易错题作者:***来源:《中学生数理化·八年级数学人教版》2015年第03期1.点A,B,C是平面内不在同一条直线上的三点,点D是同一平面内的任意一点,若A,B,C,D四点恰好能构成一个平行四边形,则在这个平面内符合这样条件的点D有().A.1个B.2个C.3个D.4个2.已知四边形ABCD是平行四边形,现从①AB=BC,②∠ABC=90。
,③AC=BD,④AC⊥BD四个条件中,选两个作为补充条件,使得四边形ABCD是正方形.下列四种选法中错误的是().A.①②B.②③C.①③D.②④3.如图1,四边形ABCD是正方形场地,点E在DC的延长线上,AE与BC相交于点F.甲、乙、丙三名同学同时从点A出发,甲沿着A→B→F→C的路径行走至C,乙沿着A→F→E→C→D的路径行走至D,丙沿着A→F→C→D的路径行走至D.若三名同学行走的速度相同,则他们到达各自目的地的先后顺序是().A.甲乙丙B.丙甲乙C.乙丙甲D.甲丙乙4.如图2.在矩形ABCD中,AD=2AB.点M,N分别在边AD,BC上,连接BM,DN.若四边形MBND是菱形,则等于().5.将n个边长都为2的正方形按图3所示进行摆放,点A1,A2.…,An分别是正方形的中心,则这n个正方形重叠部分的面积之和是().6.如图4,两个连接在一起的菱形的边长都是1 cm. -只电子甲虫从点A开始按ABCDAEFGAB-的顺序沿菱形的边循环爬行,当电子甲虫爬行2015cm时,则它的位置是().A.点GB.点FC.点AD.点C7.如图5,在矩形ABCD中,AD=,∠BAD的平分线交BC于点E,DH⊥AE于点H.连接BH并延长,交CD于点F连接DE交BF于点0.现有下列结论:①∠AED=∠CED;②OE=OD;③BH=FH;④BC-CF=2EH;⑤AB=FH.其中正确的结论有().A.5个B.4个C.3个D.2个8.如图6,四边形ABCD中,AC=a,BD=b,且AC⊥BD.顺次连接四边形ABCD各边中点,得到四边形A1B1C1D1再顺次连接四边形A1B1C1D1各边中点,得到四边形A2B2C2D2……如此进行下去,得到四边形AnBnCnDn.现有下列结论:①四边形A4B4C4D4是菱形;②四边形A3B3C3D3是矩形;③四边形A787C7D7的周长为;④四边形AnBnCnDn 的面积为其中正确的结论是().A.①②③B.②③④C.①③④D.①②③④二、细心填一填9.已知正方形ABCD的边长为2.以CD为边作等边△CDE,则△ABE的面积为_____.10.将四根木条钉成的长方形木框(如图7)变形为平行四边形ABCD的形状(如图8),并使其面积为长方形面积的一半(木条宽度忽略不计).则这个平行四边形的最小内角的度数为.11.在平行四边形ABCD中,AE平分∠BAD交BC边于点E.若点E将BC边分成长为3和4的两部分,则平行四边形ABCD的周长为_____.12.如图9,在由6个边长为1的小正方形及其部分对角线构成的图形中,若从A点到B点只能沿图中的线段走,那么从A点到B点的最短路程的走法共有_____种,最短路程是_____.13.如图10,在边长为2的菱形ABCD中.∠A=60°.M是AD边的中点,N是AB边上的一个动点.将△AMN沿MN所在的直线翻折,得到△A'MN.连接A'C.则A'C长的最小值是_____.14.如图11,在平面直角坐标系中,点A和点B分别在x轴和y轴的正半轴上,OA=OB=a.以线段AB为边在第一象限作正方形ABCD. CD的延长线交x轴于点E,再以CE为边作第2个正方形ECGF……依此方法作下去,则第2015个正方形的边长是_____.参考答案及点拨1.C点拨:如图12,符合条件的点D有3个.2.B3.D4.C点拨:设MD=x,则AM=AD-x=2AB-x.BM=5.D点拨:由题意可得一个阴影部分的面积等于正方形面积的,即为6.A7.B点拨:易知△ABE是等腰直角三角形,根据等腰直角三角形的性质可得从而得到AE=AD,则∠AED=∠ADE=∠CED.从而①正确.易证(角角边),得BE=HD,AB=AH.所以∠OHE=∠AHB=67.5°,而=67.5°,故得OH=OE.再通过计算可知∠ODH=∠OHD=22.5°,得OH=OD.所以OE=OD.(②正确.易证(角边角),可得到BH=FH.所以③正确.因EH=EC=BC-BE=BC-CD=BC-CF-DF,故BC-CF=EH+DF=2EH.故④正确.因AB=AH,∠BAE=45°,所以△ABH不是等边三角形.故AB≠BH,则AB≠FH.⑤错误.8.A9.点拨:如图13,本题有两种情形.点E到CD的距离为∴点E到AB边的距离为10. 30°点拨:过点A作AE⊥BC于点E,当高点拨:最短路程的走法共有3种,如图14所示,最短路程为:13.点拨:如图15,因为MA’=MA=1是定值,MC也为定值,故当A'C的长取最小值时,点A'必在CM上.过点M作ME⊥CD,交CD的延长线于E.由题设条件可知MD=1.∠EMD=30°.14. 点拨:因OA=OB=a,故第1个正方形的边长∴第2个正方形的边长CE=CD+DE=2AB.由此可知,后一个正方形的边长等于前一个正方形的边长的2倍.。
《易错题》初中八年级数学下册第十八章《平行四边形》经典题(专题培优)
一、选择题1.如图,在ABC ∆中,D 是AB 上一点,,AD AC AE CD =⊥于点E ,点F 是BC 的中点,若10BD =,则EF 的长为( )A .8B .6C .5D .4 2.已知正方形ABCD 中,对角线4AC =,这个正方形的面积是( ) A .8 B .16 C .82 D .162 3.如图,E 是直线CD 上的一点,且12CE CD =.已知ABCD 的面积为252cm ,则ACE △的面积为( )A .52B .26C .13D .394.如图,将菱形纸片ABCD 折叠,使点A 恰好落在菱形的对称中心O 处,折痕为EF .若菱形ABCD 的边长为4,120B ∠=︒,则EF 的值是( )A 3B .2C .23D .45.下列命题为假命题的是( )A .直角三角形斜边上的中线等于斜边的一半.B .两边及其一边的对角对应相等的两个三角形全等.C .等边三角形一边上的高线与这边上的中线互相重合.D .到线段两端点距离相等的点在这条线段的垂直平分线上.6.如图,在ABC 中,90A ∠=,D 是AB 的中点,过点D 作BC 的平行线,交AC于点E ,作BC 的垂线交BC 于点F ,若AB CE =,且DFE △的面积为1,则BC 的长为( )A .25B .5C .45D .107.如图,已知正方形1234A A A A 的边长为1,延长12A A 到1B ,使得1212B A A A =,延长23A A 到2B ,使得2323B A A A =,以同样的方式得到34,B B ,连接1234,,,B B B B ,得到第2个正方形1234B B B B ,再以同样方式得到第3个正方形1234C C C C ,……,则第2020个正方形的边长为( )A .2020B .2019(5)C .2020(5)D .202058.在矩形ABCD 中,对角线AC 、BD 相交于点O ,AE 平分BAD ∠交BC 于点E ,15CAE ∠=︒.连接OE ,则下面的结论:①DOC 是等边三角形;②BOE △是等腰三角形;③2BC AB =;④150∠=︒AOE ;⑤AOE COE S S =,其中正确的结论有( )A .2个B .3个C .4个D .5个9.如图,在正方形 ABCD 内有一个四边形AECF ,AE EF ⊥, CF EF ⊥且8AE CF ==,12EF =,则图中阴影分的面积为( )A .100B .104C .152D .30410.下列命题中,正确的命题是( )A .菱形的对角线互相平分且相等B .顺次联结菱形各边的中点所得的四边形是矩形C .矩形的对角线互相垂直平分D .顺次连结矩形各边的中点所得的四边形是正方形11.如图,在平行四边形ABCD 中,DE 平分∠ADC ,AD =6,BE =2,则平行四边形ABCD 的周长是( )A .60B .30C .20D .1612.如图,已知在正方形ABCD 中,E 是BC 上一点,将正方形的边CD 沿DE 折叠到DF ,延长EF 交AB 于点G ,连接DG .现有如下4个结论:①AG =GF ;②AG 与EC 一定不相等;③45GDE ∠=︒;④BGE △的周长是一个定值.其中正确的个数为( )A .1B .2C .3D .413.如图,在平行四边形ABCD 中,DE 平分ADC ∠,6AD =,2BE =,则平行四边形ABCD 的周长是( )A .16B .14C .20D .2414.如图,Rt Rt ABC BAD △≌△,BC 、AD 交于点E ,M 为斜边的中点,若CMD α∠=,AEB β∠=.则α和β之间的数量关系为( )A .2180βα-=︒B .60βα-=︒C .180αβ+=︒D .2βα=15.如图在ABCD 中,对角线,AC BD 相交于点O ,AOD △与AOB 的周长相差3,8AB =,那么AD 为( )A .5B .8C .11或5D .11或14二、填空题16.菱形的周长为20cm ,一条对角线长为8cm ,则菱形的面积为______cm 2. 17.我国古代伟大的数学家刘徽将勾股形(古人称直角三角形为勾股形)分割成个正方形和两对全等的直角三角形,得到一个恒等式,后人借助这种分割方法所得的图形证明了勾股定理,如图所示的图形就用了这种分割方法若5AE =,正方形ODCE 的边长为1,则BD 等于___________.18.在Rt ABC 中,∠C =90°,点D 是AB 边的中点,若AB =8,则CD =______. 19.如图,在长方形纸片ABCD 中,12AB =,5BC =,点E 在AB 上,将DAE △沿DE 折叠,使点A 落在对角线BD 上的点A '处,则AE 的长为______.20.在平面直角坐标系xOy 中,OABC 的三个顶点的坐标分别为()()()0,0,3,0,4,3O A B ,则其第四个顶点C 的坐标为______.21.如图,将两个边长为1的小正方形,沿对角线剪开,重新拼成一个大正方形,则大正方形的边长是______.22.如图,AC 是ABCD 的对角线,点E 在AC 上,AD AE BE ==,102D =︒,则BAC ∠的度数是______.23.如图,在矩形ABCD 中,AD =2.将∠A 向内翻折,点A 落在BC 上,记为A ',折痕为DE .若将∠B 沿EA '向内翻折,点B 恰好落在DE 上,记为B ',则AB =_______.24.如图,矩形ABCD 全等于矩形BEFG ,点C 在BG 上,连接DF ,点H 为DF 的中点,若20AB =,12BC =,则CH 的长为__________.25.如图,已知正方形ABCD 的边长为2,延长BC 至E 点,使CE BC =,连结AE 交CD 于点F ,连结BF 并延长与线段DE 交于点G ,则FG 的长是____.26.如图,正方形ABCD 的顶点B 在直线l 上,作AE l ⊥于E ,连结CE ,若4BE =,3AE =,则BCE 的面积________.三、解答题27.如图,六个完全相同的小长方形拼成了一个大长方形,A 、B 是如图所示小长方形的顶点,请在大长方形中按下列要求完成画图:(1)请你仅用无刻度直尺在图1中画一个等腰Rt ABC △,其中90ABC ∠=︒; (2)请你仅用无刻度直尺在图2作出线段AB 的垂直平分线.28.如图,四边形ABCD ,//BC AD ,P 为CD 上一点,PA 平分BAD ∠且BP AP ⊥. (1)若80BAD ︒∠=,求ABP ∠的度数;(2)求证:=+BA BC AD ;(3)设3BP a =,4AP a =,过点P 作一条直线,分别与AD ,BC 所在直线交于点E 点F .若AB EF =,求AE 的长(用含a 的代数式表示).29.下面是小明设计的“在一个平行四边形内作菱形”的尺规作图过程.已知:四边形ABCD 是平行四边形,且,AB BC <求作:菱形ABEF ,使点E 在BC 上,点F 在AD 上.作法:①作BAD ∠的角平分线,交BC 于点E ;②以A 为圆心,AB 长为半径作弧,交AD 于点F ;③连接EF .则四边形ABEF 为所求作的菱形.根据小明设计的尺规作图过程(1)使用直尺和圆规,补全图形(保留作图痕迹);(2)求证四边形ABEF 为菱形.30.如图,四边形ABCD 的对角线AC 、BD 相交于点O ,∠ACB =∠ADB =90°,M 为边AB 的中点,连接MC ,MD .(1)求证:MC =MD :(2)若△MCD 是等边三角形,求∠AOB 的度数.。
四年级 平行四边形和梯形 易错题
平行四边形和梯形易错题
一.选择题(共6小题)
1.两条平行线间可以画()条垂线.
A.1 B.2 C.3 D.无数
2.如果在纸上画甲乙两条直线都与第三条直线相交成直角,那么甲乙两条直线就() A.互相平行B.相交C.互相垂直
3.图中,AB与CD相交成直角,正确的表述是()
A.AB是垂线B.CD是垂线
C.AB和CD都是垂线D.CD是AB的垂线
4.如果同一平面内两条直线都垂直于同一条直线,那么这两条直线()
A.平行B.互相垂直C.互相平行D.相交
5.把一张正方形的纸对折两次,形成的折痕()
A.一定平行B.一定垂直
C.可能平行也可能垂直
6.图中共有()个平行四边形.
A.3 B.4 C.5 D.6
二.填空题(共2小题)
7.当梯形的上底逐渐缩小到一点时,梯形就转化成;当梯形的上底增大到与下底相等
时,梯形就转化成.
8.从直线外一点到这条直线所画的最短,它的叫做这点到直线的.。
八年级数学下册18.2特殊的平行四边形易错题
八年级数学下册18.2特殊的平行四边形易错题1、下列图形中,是轴对称图形的是()答案C 解析考点:轴对称图形.分析:根据轴对称图形与中心对称图形的概念求解.解答:解:A、B、D都不是轴对称图形,只有C是轴对称图形.故选C.点评:掌握好轴对称的概念.轴对称的关键是寻找对称轴,两边图象折叠后可重合.2、1. 下列说法不正确的是答案D 解析3、如图,在矩形ABCD中,AB=11cm,BC=6cm,点E、F分别在AB、CD上,将矩形ABCD沿EF折叠,使点答案B 解析考点:翻折变换(折叠问题).分析:延长A′E交CD于点G,由题意知GE=EH,FH=GF,则阴影部分的周长与原矩形的周长相等.解答:解:延长A′E 交CD于点G,由题意知,GE=EH,FH=GF,四边形EHD′A′≌四边形EGDA∴阴影部分的周长=矩形的周长=(11+6)×2=34cm.故选B.4、对左下方的几何体变换位置或视角,则可以得到的几何体是()答案B 解析5、用四舍五入法按要求对0.05049分别取近似值,其中错误的是()A.0.1(精确到0.1)B.0.05(精确答案C 解析6、如图,在数轴上点A和点B之间的整数是; 答案?2 解析7、下列函数不属于二次函数的是( ;)答案解析8、计算结果是A.0B.1C.-1D.x 答案C 解析9、一个平行四边形绕着对角线的交点旋转90°能够与本身重合,则该平行四边形为(;答案C 解析考点:旋转的性质;正方形的判定.分析:根据题意,该四边形的对角线互相垂直平分且相等.解答:解:因为平行四边形对角线互相平分,绕着它的对角线的交点旋转90°,能够与它本身重合,说明对角线互相垂直平分且相等,所以该四边形是正方形.故选C.点评:此题考查了平行四边形的性质及与特殊四边形的关系,属基础题.解题时要根据旋转的性质解答.10、、若,则二次函数的图象的顶点在答案D 解析11、图中的两个三角形是位似图形,它们的位似中心是();A.答案A 解析12、﹣5的相反数是()A.﹣5B.5C.﹣D.答案B 解析13、;(2011浙江丽水,7,3分)计算–的结果为(答案C 解析14、右图是某同学对二氧化碳部分知识构建的网络图(部分反应条件和部分生成物省略)。
平行四边形单元 易错题难题质量专项训练
一、选择题1.如图,矩形ABCD 中,AB=5,AD=4,M 是边CD 上一点,将△ADM 沿直线AM 对折,得△ANM ,连BN ,若DM=1,则△ABN 的面积是( )A .B .C .D .2.如图,菱形ABCD 的边,8AB =,60B ∠=,P 是AB 上一点,3BP =,Q 是CD 边上一动点,将梯形APQD 沿直线PQ 折叠,A 的对应点'A .当'CA 的长度最小时,'C Q 的长为( )A .5B .7C .8D .132 3.如图,矩形ABCD 中,AB =2,对角线AC 、BD 交于点O ,∠AOD =120°,E 为BD 上任意点,P 为AE 中点,则PO +PB 的最小值为 ( )A .3B .13+C .7D .34.如图,在四边形ABCD 中,AB ∥CD ,∠C =90°,AB =8,AD =CD =5,点M 为BC 上异于B 、C 的一定点,点N 为AB 上的一动点,E 、F 分别为DM 、MN 的中点,当N 从A 到B 的运动过程中,线段EF 扫过图形的面积为 ( )A .4B .4.5C .5D .65.如图所示,在周长是10cm 的ABCD 中,AB AD ≠,AC 、BD 相交于点O ,点E 在AD 边上,且OE BD ⊥,是ABE △的周长是( )A .2cmB .3cmC .4cmD .5cm6.如图,在平面直角坐标系中,A 点坐标为(8,0),点P 从点O 出发以1个单位长度/秒的速度沿y 轴正半轴方向运动,同时,点Q 从点A 出发以1个单位长度/秒的速度沿x 轴负半轴方向运动,设点P 、Q 运动的时间为(08)t t <<秒.以PQ 为斜边,向第一象限内作等腰Rt PBQ ∆,连接OB .下列四个说法:①8OP OQ +=;②B 点坐标为(4,4);③四边形PBQO 的面积为16;④PQ OB >.其中正确的说法个数有( )A .4B .3C .2D .17.如图,在平行四边形ABCD 中,过点A 作AG BC ⊥于G ,作AH CD ⊥于H ,且45GAH ∠=︒,2AG =,3AH =,则平行四边形的面积是( )A .62B .122C .6D .128.如图,矩形纸片,,ABCD AB a BC b ==,满足12b a b <<,将此矩形纸片按下面顺序折叠,则图4中MN 的长为(用含,a b 的代数式表示)( )A .2b a -B .22b a -C .32b a +D .12b a + 9.如图,正方形ABCD 中,AB=12,点E 在边CD 上,且BG=CG ,将△ADE 沿AE 对折至△AFE,延长EF交边BC于点G,连接AG、CF,下列结论:①△ABG≌△AFG;②∠EAG=45°;③CE=2DE;④AG∥CF;⑤S△FGC=725.其中正确结论的个数是()A.2个B.3个C.4个D.5个10.已知菱形ABCD的面积为83,对角线AC的长为43,∠BCD=60°,M为BC的中点,若P为对角线AC上一动点,则PB+PM的最小值为()A.3B.2 C.23D.4二、填空题11.已知:点B是线段AC上一点,分别以AB,BC为边在AC的同侧作等边ABD△和等边BCE,点M,N分别是AD,CE的中点,连接MN.若AC=6,设BC=2,则线段MN的长是__________.12.如图,正方形ABCD中,DAC的平分线交DC于点E,若P,Q分别是AD和AE上的动点,则DQ+PQ能取得最小值4时,此正方形的边长为______________.13.如图,在平行四边形ABCD中,对角线AC,BD相交于点O,AB=OB,点E,F分别是OA ,OD 的中点,连接EF ,EM ⊥BC 于点M ,EM 交BD 于点N ,若∠CEF =45°,FN =5,则线段BC 的长为_____.14.如图,在Rt △ABC 中,∠BAC=90°,AB=5,AC=12,P 为边BC 上一动点(P 不与B 、C 重合),PE ⊥AB 于E ,PF ⊥AC 于F ,M 为EF 中点,则AM 的取值范围是__.15.菱形OBCD 在平面直角坐标系中的位置如图所示,顶点B (23,0),∠DOB =60°,点P 是对角线OC 上一个动点,E (0,-1),则EP 十BP 的最小值为__________.16.已知:如图,在长方形ABCD 中,4AB =,6AD =.延长BC 到点E ,使2CE =,连接DE ,动点P 从点B 出发,以每秒2个单位的速度沿BC CD DA --向终点A 运动,设点P 的运动时间为t 秒,当t 的值为_____秒时,ABP ∆和DCE ∆全等.17.如图,矩形ABCD 的面积为36,BE 平分ABD ∠,交AD 于E ,沿BE 将ABE ∆折叠,点A 的对应点刚好落在矩形两条对角线的交点F 处.则ABE ∆的面积为________.18.如图,点E 、F 分别在平行四边形ABCD 边BC 和AD 上(E 、F 都不与两端点重合),连结AE 、DE 、BF 、CF ,其中AE 和BF 交于点G ,DE 和CF 交于点H .令AF n BC=,EC m BC=.若m n =,则图中有_______个平行四边形(不添加别的辅助线);若1m n +=,且四边形ABCD 的面积为28,则四边形FGEH 的面积为_______.19.在菱形ABCD 中,M 是AD 的中点,AB =4,N 是对角线AC 上一动点,△DMN 的周长最小是2+23,则BD 的长为___________.20.如图,在Rt △ABC 中,∠ACB =90°,AC =8,BC =6,点D 为平面内动点,且满足AD =4,连接BD ,取BD 的中点E ,连接CE ,则CE 的最大值为_____.三、解答题21.在四边形ABCD 中,90A B C D ∠∠∠∠====,10AB CD ==,8BC AD ==.()1P 为边BC 上一点,将ABP 沿直线AP 翻折至AEP 的位置(点B 落在点E 处)①如图1,当点E 落在CD 边上时,利用尺规作图,在图1中作出满足条件的图形(不写作法,保留作图痕迹,用2B 铅笔加粗加黑).并直接写出此时DE =______;②如图2,若点P 为BC 边的中点,连接CE ,则CE 与AP 有何位置关系?请说明理由; ()2点Q 为射线DC 上的一个动点,将ADQ 沿AQ 翻折,点D 恰好落在直线BQ 上的点'D 处,则DQ =______; 22.如图,点E 为▱ABCD 的边AD 上的一点,连接EB 并延长,使BF =BE ,连接EC 并延长,使CG =CE ,连接FG .H 为FG 的中点,连接DH ,AF .(1)若∠BAE =70°,∠DCE =20°,求∠DEC 的度数;(2)求证:四边形AFHD 为平行四边形;(3)连接EH ,交BC 于点O ,若OC =OH ,求证:EF ⊥EG .23.如图,在ABC ∆中,BD 平分ABC ∠交AC 于点D ,EF 垂直平分BD ,分别交AB ,BC ,BD 于点E ,F ,G ,连接DE ,DF .(1)求证:四边形BEDF 是菱形;(2)若15BDE ∠=︒,45C ∠=︒,2DE =,求CF 的长;(3)在(2)的条件下,求四边形BEDF 的面积.24.如图1,AC 是平行四边形ABCD 的对角线,E 、H 分别为边BA 和边BC 延长线上的点,连接EH 交AD 、CD 于点F 、G ,且//EH AC .(1)求证:AEF CGH ∆≅∆(2)若ACD ∆是等腰直角三角形,90ACD ∠=,F 是AD 的中点,8AD =,求BE 的长:(3)在(2)的条件下,连接BD ,如图2,求证:22222()AC BD AB BC +=+25.如图,正方形ABCO 的边OA 、OC 在坐标轴上,点B 坐标为(6,6),将正方形ABCO 绕点C 逆时针旋转角度α(0°<α<90°),得到正方形CDEF ,ED 交线段AB 于点G ,ED 的延长线交线段OA 于点H ,连结CH 、CG .(1)求证:CG 平分∠DCB ;(2)在正方形ABCO 绕点C 逆时针旋转的过程中,求线段HG 、OH 、BG 之间的数量关系;(3)连结BD 、DA 、AE 、EB ,在旋转的过程中,四边形AEBD 是否能在点G 满足一定的条件下成为矩形?若能,试求出直线DE 的解析式;若不能,请说明理由.26.如图,点A 、F 、C 、D 在同一直线上,点B 和点E 分别在直线AD 的两侧,且AB =DE ,∠A =∠D ,AF =DC .(1)求证:四边形BCEF 是平行四边形;(2)若∠DEF =90°,DE =8,EF =6,当AF 为 时,四边形BCEF 是菱形.27.如图,在长方形ABCD 中,8,6AB AD ==. 动点P Q 、分别从点、D A 同时出发向点C B 、运动,点P 的运动速度为每秒2个单位,点Q 的运动速度为每秒1个单位,当点P 运动到点C 时,两个点都停止运动,设运动的时间为()t s .(1)请用含t 的式子表示线段PC BQ 、的长,则PC ________,BQ =________. (2)在运动过程中,若存在某时刻使得BPQ ∆是等腰三角形,求相应t 的值.28.(1)问题探究:如图①,在四边形ABCD 中,AB ∥CD ,E 是BC 的中点,AE 是∠BAD 的平分线,则线段AB ,AD ,DC 之间的等量关系为 ;(2)方法迁移:如图②,在四边形ABCD 中,AB ∥CD ,AF 与DC 的延长线交于点F ,E 是BC 的中点,AE 是∠BAF 的平分线,试探究线段AB ,AF ,CF 之间的等量关系,并证明你的(3)联想拓展:如图③,AB ∥CF ,E 是BC 的中点,点D 在线段AE 上,∠EDF =∠BAE ,试探究线段AB ,DF ,CF 之间的数量关系,并证明你的结论.29.如图1,在正方形ABCD 中,E ,F ,G ,H 分别为边AB ,BC ,CD ,DA 上的点,HA=EB=FC=GD ,连接EG ,FH ,交点为O .(1)如图2,连接EF ,FG ,GH ,HE ,试判断四边形EFGH 的形状,并证明你的结论;(2)将正方形ABCD 沿线段EG ,HF 剪开,再把得到的四个四边形按图3的方式拼接成一个四边形.若正方形ABCD 的边长为3cm ,HA=EB=FC=GD=1cm ,则图3中阴影部分的面积为 cm 2.30.如图,ABCD 的对角线,AC BD 相交于点,,6,10O AB AC AB cm BC cm ⊥==,点P 从点A 出发,沿AD 方向以每秒1cm 的速度向终点D 运动,连接PO ,并延长交BC 于点Q .设点P 的运动时间为t 秒.(1)求BQ 的长(用含t 的代数式表示);(2)当四边形ABQP 是平行四边形时,求t 的值;(3)当325t =时,点O 是否在线段AP 的垂直平分线上?请说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题1.D【解析】【分析】延长MN交AB延长线于点Q,由矩形的性质得出∠DMA=∠MAQ,由折叠性质得出∠DMA=∠AMQ,AN=AD=4,MN=MD=1,得出∠MAQ=∠AMQ,证出MQ=AQ,设NQ=x,则AQ=MQ=1+x,证出∠ANQ=90°,在Rt△ANQ中,由勾股定理得出方程,解方程求出NQ=7.5,AQ=8.5,即可求出△ABN的面积.【详解】解:延长MN交AB延长线于点Q,∵四边形ABCD是矩形,∴AB∥DC,∴∠DMA=∠MAQ,由折叠性质得:△ANM≌△ADM,∴∠DMA=∠AMQ,AN=AD=4,MN=MD=1,∴∠MAQ=∠AMQ,∴MQ=AQ,设NQ=x,则AQ=MQ=1+x,∵∠ANM=90°,∴∠ANQ=90°,在Rt△ANQ中,由勾股定理得:AQ2=AN2+NQ2,∴(x+1)2=42+x2,解得:x=7.5,∴NQ=7.5,AQ=8.5,∵AB=5,AQ=8.5,∴S△NAB=S△NAQ=×AN•NQ=××4×7.5=;故选:D.【点睛】本题考查折叠的性质勾股定理等知识;本题综合性强,难度较大,熟练掌握矩形和折叠的性质是解题的关键.2.B解析:B【解析】【分析】作CH AB ⊥于H ,如图,根据菱形的性质可判断ABC ∆为等边三角形,则343CH AB ==,4AH BH ==,再利用7CP =勾股定理计算出,再根据折叠的性质得点'A 在以点P 为圆心,PA 为半径的弧上,利用点与圆的位置关系得到当点'A 在PC 上时,'CA 的值最小,然后证明CQ CP =即可.【详解】解:作CH AB ⊥于H ,如图,菱形ABCD 的边8AB =,60B ∠=,ABC ∆∴为等边三角形,3432CH AB ∴==,4AH BH ==, 3PB =,1HP ∴=,在Rt CHP ∆中,32(43)17CP =+=,梯形APQD 沿直线PQ 折叠,A 的对应点'A ,∴点'A 在以点P 为圆心,PA 为半径的弧上,∴当点'A 在PC 上时,'CA 的值最小,APQ CPQ ∴∠=∠,而//CD AB ,APQ CQP ∴∠=∠,CQP CPQ ∴∠=∠,7CQ CP ∴==.故选:B .【点睛】考查了菱形的性质:菱形具有平行四边形的一切性质;菱形的四条边都相等;菱形的两条对角线互相垂直,并且每一条对角线平分一组对角.也考查了折叠的性质.解决本题的关键是确定A′在PC 上时CA′的长度最小.3.C解析:C【分析】设M 、N 分别为AB 、AD 的中点,则MN 为△ABD 的中位线,点P 在MN 上,作点O 关于MN 的对称点'O ,连接'BO ,则'BO 即为PO +PB 的最小值,易证△ABO 为等边三角形,过点A 作AH ⊥BO 于H ,求出AH OO =',然后利用勾股定理求出BO 即可.【详解】解:如图,设M 、N 分别为AB 、AD 的中点,则MN 为△ABD 的中位线,∵P 为AE 中点,∴点P 在MN 上,作点O 关于MN 的对称点'O ,连接'BO ,∴OP OP =',∴PO +PB =BP O P BO +='',∵四边形ABCD 是矩形,∠AOD =120°,∴OA =OB ,∠AOB =60°,∴△AOB 为等边三角形,∴AB =BO =4,过点A 作AH ⊥BO 于H , ∴2221=3AH =-,∵MN ∥BD ,点H 关于MN 的对称点为A ,点O 关于MN 的对称点为'O , ∴3AH OO =='OO BD ⊥', ∴2222+=2+(3)=7BO BO OO =''即PO +PB 7故选:C .【点睛】本题考查了利用轴对称求最短路径,矩形的性质,三角形中位线定理,等边三角形的判定及性质,勾股定理的应用,通过作辅助线,得出'BO 为PO +PB 的最小值是解题关键.4.A解析:A【分析】取MB 的中点P ,连接FP ,EP ,DN ,由中位线的性质,可得当N 从A 到B 的运动过程中,点F 在FP 所在的直线上运动,即:线段EF 扫过图形为∆EFP ,求出当点N 与点A 重合时,FP 的值,以及FP 上的高,进而即可求解.【详解】取MB 的中点P ,连接FP ,EP ,DN ,∵FP 是∆MNB 的中位线,EF 是∆DMN 的中位线,∴FP ∥BN ,FP=12BN ,EF ∥DN ,EF=12DN , ∴当N 从A 到B 的运动过程中,点F 在FP 所在的直线上运动,即:线段EF 扫过图形为∆EFP .∴当点N 与点A 重合时,FP=12BN =12BA =4, 过点D 作DQ ⊥AB 于点Q ,∵AB ∥CD ,∠C =90°,AB =8,AD =CD =5,∴AQ=8-5=3,∴DQ=2222534AD AQ -=-=,∴当点N 与点Q 重合时,EF=11222DN DQ ==,EF ∥DQ ,即:EF ⊥AB ,即:EF ⊥FP , ∴∆EFP 中,FP 上的高=2, ∴当N 从A 到B 的运动过程中,线段EF 扫过图形的面积=12×4×2=4. 故选A .【点睛】本题主要考查中位线的性质定理,勾股定理以及三角形的面积公式,添加合适的辅助线,构造三角形以及三角形的中位线,是解题的关键.5.D解析:D【分析】根据平行四边形的性质求出AB+AD=5cm,根据线段的垂直平分线求出BE=DE,求出ABE ∆的周长等于AB+AD ,代入求出即可.【详解】∵10ABCD C cm =∴=5AB AD cm +∵在ABCD 中,OB=OD ,OE BD ⊥∴EB=ED∴AEB CAB AE BE AB AE BE AB AD =++=++=+ ∴5AEB C cm =故选:D .【点睛】本题主要考查的知识点是平行四边形对边相等的这条性质,结合线段的垂直平分线的性质来进行计算是解题的关键.6.B解析:B【分析】根据题意,有OP=AQ ,即可得到8OP OQ OA +==,①正确;当4t =时,OP=OQ=4,此时四边形PBQO 是正方形,则PB=QB=OP=OQ=4,即点B 坐标为(4,4),②正确;四边形PBQO 的面积为:4416⨯=,在P 、Q 运动过程面积没有发生变化,故③正确;由正方形PBQO 的性质,则此时对角线PQ=OB ,故④错误;即可得到答案.【详解】解:根据题意,点P 与点Q 同时以1个单位长度/秒的速度运动,∴OP=AQ ,∵OQ+AQ=OA=8,∴OQ+OP=8,①正确;由题意,点P 与点Q 运动时,点B 的位置没有变化,四边形PBQO 的面积没有变化, 当4t =时,如图:则AQ=OP=4,∴OQ=844-=,∴点B 的坐标为:(4,4),②正确;此时四边形PBQO 是正方形,则PB=QB=OP=OQ=4,∴四边形PBQO 的面积为:4416⨯=,③正确;∵四边形PBQO 是正方形,∴PQ=OB ,即当4t =时,PQ=OB ,故④错误;∴正确的有:①②③,共三个;故选择:B.【点睛】本题考查了正方形的判定和性质,等腰直角三角形的性质,以及坐标与图形,解题的关键是根据点P 、Q 的运动情况,进行讨论分析来解题.7.A解析:A【分析】设B x ∠=,先根据平行四边形的性质可得,180,D B x BAD x AB CD ∠=∠=∠=︒-=,再根据直角三角形的两锐角互余、角的和差可得45x =︒,然后根据等腰直角三角形的判定与性质、勾股定理可得AB =CD =,最后利用平行四边形的面积公式即可得.【详解】设B x ∠=,四边形ABCD 是平行四边形,,180180,D B x BAD B x AB CD ∴∠=∠=∠=︒-∠=︒-=,,AG BC AH CD ⊥⊥,9090,9090BAG B x DAH D x ∴∠=︒-∠=︒-∠=︒-∠=︒-,又180,45BAG DAH BAD GAH x GAH ∠+︒-∠+∠=∠∠=︒=,909100458x x x ︒-+︒-=∴︒+︒-,解得45x =︒,即45B ∠=︒,Rt ABG ∴是等腰直角三角形,2,BG AG AB ∴====CD ∴=,∴平行四边形ABCD 的面积是3AH CD ⋅=⨯=,故选:A .【点睛】本题考查了平行四边形的性质、直角三角形的两锐角互余、等腰直角三角形的判定与性质、勾股定理等知识点,熟练掌握平行四边形的性质是解题关键.8.B解析:B【分析】如图3中,由折叠的性质可得PQ =BC =b ,A 1F =a ﹣12b ,△PEQ 是等腰直角三角形,进而可得△MNE 是等腰直角三角形,然后根据等腰直角三角形的性质可得EG =12MN ,而12EG EF A F =-,进一步即可求得答案.【详解】解:如图3中,由折叠的性质可得PQ =BC =b ,A 1F =a ﹣12b ,∠EPQ =11904522APQ ∠=⨯︒=︒,∠EQP =11904522DQP ∠=⨯︒=︒, ∴∠PEQ =90°,∴△PEQ 是等腰直角三角形,如图4,∵MN ∥PQ ,∴△MNE 是等腰直角三角形,∵EG ⊥MN , ∴EG=MG=NG =12MN , ∵12EG EF A F =-=a ﹣2(a ﹣12b )=b ﹣a , ∴MN =2EG =22b a -.故选:B .【点睛】本题考查了矩形的性质、折叠的性质以及等腰直角三角形的判定与性质,正确理解题意、熟练掌握等腰直角三角形的判定和性质是解题的关键.9.D解析:D【分析】根据翻折变换的性质和正方形的性质可证Rt △ABG ≌Rt △AFG ;根据角的和差关系求得∠GAF =45°;在直角△ECG 中,根据勾股定理可证CE =2DE ;通过证明∠AGB =∠AGF =∠GFC =∠GCF ,由平行线的判定可得AG ∥CF ;求出S △ECG ,由S △FCG =35GCE S ∆即可得出结论.【详解】①正确.理由:∵AB =AD =AF ,AG =AG ,∠B =∠AFG =90°,∴Rt △ABG ≌Rt △AFG (HL );②正确.理由:∵∠BAG =∠FAG ,∠DAE =∠FAE .又∵∠BAD =90°,∴∠EAG =45°;③正确.理由:设DE =x ,则EF =x ,EC =12-x .在直角△ECG 中,根据勾股定理,得:(12﹣x )2+62=(x +6)2,解得:x =4,∴DE =x =4,CE =12-x =8,∴CE =2DE ;④正确.理由:∵CG=BG,BG=GF,∴CG=GF,∴∠GFC=∠GCF.又∵Rt△ABG≌Rt△AFG,∴∠AGB=∠AGF,∠AGB+∠AGF=2∠AGB=∠GFC+∠GCF=2∠GFC=2∠GCF,∴∠AGB=∠AGF=∠GFC=∠GCF,∴AG∥CF;⑤正确.理由:∵S△ECG=12GC•CE=12×6×8=24.∵S△FCG=35GCES∆=3245⨯=725.故选D.【点睛】本题考查了翻折变换的性质和正方形的性质,全等三角形的判定与性质,勾股定理,平行线的判定,三角形的面积计算等知识.此题综合性较强,难度较大,解题的关键是注意数形结合思想与方程思想的应用.10.C解析:C【分析】作点B关于对角线AC的对称点,该对称点与D重合,连接DM,则PB与PM之和的最小值为DM的长;由菱形的面积可求出BD=4,由题意可证△BCD是等边三角形,由等边三角形的性质可得DM⊥BC,CM=BM=2,由勾股定理可求DM=23.【详解】解:作点B关于对角线AC的对称点,该对称点与D重合,连接DM,则PB与PM之和的最小值为DM的长;∵菱形ABCD的面积为3,对角线AC长为3,∴BD=4,∵BC=CD,∠BCD=60°,∴△BCD 是等边三角形,∴BD=BC=4,∵M 是BC 的中点,∴DM ⊥BC ,CM=BM=2,在Rt △CDM 中,CM=2,CD=4,∴=故选:C .【点睛】本题考查了轴对称-最短路线问题,菱形的性质,等边三角形的性质,直角三角形勾股定理;掌握利用轴对称求最短距离,将PB 与PM 之和的最小值转化为线段DM 的长是解题的关键.二、填空题11【分析】如图(见解析),先根据等边三角形的性质、平行四边形的判定与性质可得//,4ME AB ME AB ==,再根据平行线的性质可得60FEM C ∠=∠=︒,然后利用直角三角形的性质、勾股定理可得2,EF MF ==,从而可得3FN =,最后在Rt FMN 中,利用勾股定理即可得.【详解】如图,连接ME ,过点M 作MF CE ⊥,交CE 延长线于点F ,ABD △和BCE 都是等边三角形,2BC =,60,2,A CBE C BE CE AD A C B B ∴∠=∠=∠=︒====,//AD BE ∴,6AC =,624AD AB ∴==-=,点M ,N 分别是AD ,CE 的中点,112,122AM AD EN CE ∴====, AM BE ∴=,∴四边形ABEM 是平行四边形,//,4ME AB ME AB ∴==,60FEM C ∴∠=∠=︒,在Rt EFM △中,906030EMF ∠=︒-︒=︒,12,2EF ME MF ∴==== 123FN EN EF ∴=+=+=,则在Rt FMN 中,22223(23)21MN FN MF =+=+=,故答案为:21.【点睛】本题考查了等边三角形的性质、勾股定理、平行四边形的判定与性质、直角三角形的性质等知识点,通过作辅助线,构造直角三角形和平行四边形是解题关键.12.42【分析】作P 点关于线段AE 的对称点P ',根据轴对称将DQ PQ +转换成DP ',然后当DP AC '⊥的时候DP '是最小的,得到DP '长,最后求出正方形边长DC .【详解】∵AE 是DAC ∠的角平分线,∴P 点关于线段AE 的对称点一定在线段AC 上,记为P '由轴对称可以得到PQ P Q '=,∴DQ PQ DQ P Q DP ''+=+=,如图,当DP AC '⊥的时候DP '是最小的,也就是DQ PQ +取最小值4,∴4DP '=,由正方形的性质P '是AC 的中点,且DP P C ''=,在Rt DCP '中,2222443242DC DP P C ''=+=+==.故答案是:42.【点睛】本题考查轴对称的最短路径问题,解题的关键是能够分析出DQ PQ +取最小值的状态,并将它转换成DP '去求解.13.5设EF =x ,根据三角形的中位线定理表示AD =2x ,AD ∥EF ,可得∠CAD =∠CEF =45°,证明△EMC 是等腰直角三角形,则∠CEM =45°,证明△ENF ≌△MNB ,则EN =MN =12x ,BN =FN =5,最后利用勾股定理计算x 的值,可得BC 的长.【详解】解:设EF =x ,∵点E 、点F 分别是OA 、OD 的中点,∴EF 是△OAD 的中位线,∴AD =2x ,AD ∥EF , ∴∠CAD =∠CEF =45°,∵四边形ABCD 是平行四边形,∴AD ∥BC ,AD =BC =2x ,∴∠ACB =∠CAD =45°,∵EM ⊥BC ,∴∠EMC =90°,∴△EMC 是等腰直角三角形,∴∠CEM =45°,连接BE ,∵AB =OB ,AE =OE∴BE ⊥AO∴∠BEM =45°,∴BM =EM =MC =x ,∴BM =FE ,易得△ENF ≌△MNB ,∴EN =MN =12x ,BN =FN =5, Rt △BNM 中,由勾股定理得:BN2=BM2+MN2, 即22215()2x x =+解得,x =5∴BC =2x =5故答案为:5本题考查了平行四边形的性质、等腰直角三角形的判定和性质、全等三角形的判定与性质、勾股定理;解决问题的关键是设未知数,利用方程思想解决问题.14.3013≤AM<6【分析】由勾股定理得BC=13从而得到点A到BC的距离, M为EF中点,所以AM=12EF,继而求得AM的范围.【详解】因为∠BAC=90°,AB=5,AC=12,所以由勾股定理得BC=13,则点A到BC的距离为AC512BC13AB⨯⨯==6013,所以AM的最小值为6013÷2=3013,因为M为EF中点,所以AM=12EF,当E越接近A,F越接近C时,EF越大,所以EF<AC,则AM<6,所以3013≤AM<6,故答案为3013≤AM<6.15【分析】先根据菱形的性质可得OC垂直平分BD,从而可得=DP BP,再根据两点之间线段最短可得EP BP+的最小值为DE,然后利用等边三角形的判定与性质求出点D的坐标,最后利用两点之间的距离公式即可得.【详解】如图,连接BP、DP、EP、DE、BD,过点D作DA OB⊥于点A,(23,0)B,OB∴=四边形ABCD是菱形,OC∴垂直平分BD,OB OD==点P是对角线OC上的点,DP BP∴=,EP BP EP DP∴+=+,由两点之间线段最短可知,EP DP +的最小值为DE ,即EP BP +的最小值为DE , ,60OB OD DOB =∠=︒,BOD ∴是等边三角形,DA OB ⊥, 132OA OB ∴==,2222(23)(3)3AD OD OA =-=-=, (3,3)D ∴,又(0,1)E -,22(30)(31)19DE ∴=-++=,即EP BP +的最小值为19,故答案为:19.【点睛】本题考查了菱形的性质、等边三角形的判定与性质、两点之间的距离公式等知识点,根据两点之间线段最短得出EP BP +的最小值为DE 是解题关键.16.1或7.【分析】存在2种情况满足条件,一种是点P 在BC 上,只需要BP=CE 即可得全等;另一种是点P 在AD 上,只需要AP=CE 即可得全等【详解】设点P 的运动时间为t 秒,当点P 在线段BC 上时,则2BP t =,∵四边形ABCD 为长方形,∴AB CD =,90B DCE ∠=∠=︒,此时有ABP DCE ∆∆≌,∴BP CE =,即22t =,解得1t =;当点P 在线段AD 上时,则2BC CD DP t ++=,∵4AB =,6AD =,∴6BC =,4CD =,∴()()6462162AP BC CD DA BC CD DP t t =++-++=++-=-,∴162AP t =-,此时有ABP CDE ∆∆≌,∴AP CE =,即1622t -=,解得7t =;综上可知当t 为1秒或7秒时,ABP ∆和CDE ∆全等.故答案为:1或7.【点睛】本题考查动点问题,解题关键是根据矩形的性质可得,要证三角形的全等,只需要还得到一条直角边相等即可17.6【分析】先证明△AEB ≌△FEB ≌△DEF ,从而可知S △ABE =13S △DAB ,即可求得△ABE 的面积. 【详解】解:由折叠的性质可知:△AEB ≌△FEB∴∠EFB=∠EAB=90°∵ABCD 为矩形∴DF=FB∴EF 垂直平分DB∴ED=EB在△DEF 和△BEF 中DF=BF EF=EF ED=EB∴△DEF ≌△BEF∴△AEB ≌△FEB ≌△DEF ∴13666AEB FEB DEF ABCD S S S S ∆∆∆====⨯=矩形. 故答案为6.【点睛】本题主要考查的是折叠的性质、矩形的性质、线段垂直平分线的性质和判定、全等三角形的判定和性质,证得△AEB ≌△FEB ≌△DEF 是解题的关键.18.7【分析】①若m n =,则AF EC =,先根据平行四边形的性质得出//,AD BC AD BC =,再根据平行四边形的判定(一组对边平行且相等或两组对边分别平行)即可得;②先根据平行四边形的性质与判定得出四边形ABEF 、四边形CDFE 都是平行四边形,从而可得11,44EFG ABEF EFH CDFE S S S S ∆∆==,再根据28ABCD ABEF CDFE S S S =+= 和1144EFG EFH ABEF CDFE FGEH S S S S S ∆∆=+=+四边形即可得出答案.【详解】 四边形ABCD 是平行四边形//,AD BC AD BC ∴= ,,AF EC n m BC BC m n === AF EC ∴=AD AF BC EC ∴-=-,即DF BE =∴四边形AECF 、四边形BEDF 都是平行四边形//,//AE CF BF DE ∴∴四边形EGFH 是平行四边形综上,图中共有4个平行四边形如图,连接EF1,,AF EC n m BC B n Cm ==+= AF EC BC AD ∴+==AF DF AD +=EC DF ∴=AF BE ∴=∴四边形ABEF 、四边形CDFE 都是平行四边形11,44EFG ABEF EFH CDFE S S S S ∆∆∴== 28ABCD ABEF CDFE S S S =+=1144EFG EFH ABEF CDFE FGEH S S S S S ∆∆∴=+=+四边形1()4ABEF CDFE S S =+12874=⨯= 故答案为:4;7.【点睛】本题考查了平行四边形的判定与性质,熟记平行四边形的判定与性质是解题关键. 19.4【分析】根据题意,当B 、N 、M 三点在同一条直线时,△DMN 的周长最小为:BM+DM=2+23,由DM=122AD =,则BM=23,利用勾股定理的逆定理,得到∠AMB=90°,则得到△ABD 为等边三角形,即可得到BD 的长度.【详解】解:如图:连接BD ,BM ,则AC 垂直平分BD ,则BN=DN ,当B 、N 、M 三点在同一条直线时,△DMN 的周长最小为:BM+DM=2+3 ∵AD=AB=4,M 是AD 的中点,∴AM=DM=122AD =, ∴BM=3∵2222223)16AM BM AB +=+==,∴△ABM 是直角三角形,即∠AMB=90°;∵BM 是△ABD 的中线,∴△ABD 是等边三角形,∴BD=AB=AD=4.故答案为:4.【点睛】本题考查了菱形的性质,等边三角形的判定和性质,勾股定理的逆定理,以及三线合一定理.解题的关键是熟练掌握所学的知识,正确得到△ABD 是等边三角形. 20.【分析】作AB 的中点E ,连接EM 、CE ,根据直角三角形斜边上的中线等于斜边的一半以及三角形的中位线定理求得CE 和EM 的长,然后确定CM 的范围.【详解】解:作AB 的中点M ,连接EM 、CM .在Rt △ABC 中,AB 22AC BC +2286+10,∵M 是直角△ABC 斜边AB 上的中点,∴CM =12AB =5. ∵E 是BD 的中点,M 是AB 的中点,∴ME =12AD =2.∴5﹣2≤CE ≤5+2,即3≤CE ≤7.∴最大值为7,故答案为:7.【点睛】本题考查了三角形的中位线定理,勾股定理,直角三角形斜边中线的性质等知识,掌握基本性质定理是解题的关键.三、解答题21.(1)①6;②结论://P EC A ;(2)为4和16.【分析】()1①如图1中,以A 为圆心AB 为半径画弧交CD 于E ,作EAB ∠的平分线交BC 于点P ,点P 即为所求.理由勾股定理可得DE .②如图2中,结论:EC//PA.只要证明PA BE ⊥,EC BE ⊥即可解决问题. ()2分两种情形分别求解即可解决问题.【详解】解:()1①如图1中,以A 为圆心AB 为半径画弧交CD 于E ,作EAB ∠的平分线交BC 于点P ,点P 即为所求.在Rt ADE 中,90D ∠=,10AE AB ==,8AD =,22221086DE AE AD ∴-=-=,故答案为6.②如图2中,结论://P EC A .理由:由翻折不变性可知:AE AB =,PE PB =,PA ∴垂直平分线段BE ,即PA BE ⊥,PB PC PE ==,90BEC ∠∴=,EC BE ∴⊥,//EC PA ∴.()2①如图31-中,当点Q 在线段CD 上时,设DQ QD'x ==.在Rt AD'B 中,AD'AD 8==,AB 10=,AD'B 90∠=,22BD'AB AD'6∴=-=, 在Rt BQC 中,222CQ BC BQ +=, 222(10x)8(x 6)∴-+=+,x 4∴=,DQ 4∴=.②如图32-中,当点Q 在线段DC 的延长线上时,DQ //AB ,DQA QAB ∠∠∴=,DQA AQB ∠∠=,QAB AQB ∠∠∴=,AB BQ 10∴==,在Rt BCQ 中,CQ BQ 6==,DQ DC CQ 16∴=+=,综上所述,满足条件的DQ 的值为4或16.故答案为4和16.【点睛】本题属于几何变换综合题,考查了矩形的性质,翻折变换,勾股定理等知识,解题的关键是学会利用参数构建方程解决问题,学会用分类讨论的思想思考问题,属于中考压轴题.22.(1)50°;(2)见解析;(3)见解析【分析】(1)由平行四边形的性质和平行线的判定和性质得出答案即可;(2)由平行四边形的性质得出AD =BC ,AD ∥BC ;证明BC 是△EFG 的中位线,得出BC ∥FG ,BC =12FG ,证出AD ∥FH ,AD ∥FH ,由平行四边形的判定方法即可得出结论; (3)连接EH ,CH ,根据三角形的中位线定理以及平行四边形的判定和性质即可得到结论.【详解】明:(1)∵四边形ABCD 是平行四边形,∴∠BAE =∠BCD =70°,AD ∥BC ,∵∠DCE =20°,∵AB ∥CD ,∴∠CDE =180°﹣∠BAE =110°,∴∠DEC =180°﹣∠DCE ﹣∠CDE =50°;(2)∵四边形ABCD 是平行四边形,∴AD =BC ,AD ∥BC ,∠BAE =∠BCD ,∵BF=BE,CG=CE,∴BC是△EFG的中位线,∴BC∥FG,BC=12 FG,∵H为FG的中点,∴FH=12 FG,∴BC∥FH,BC=FH,∴AD∥FH,AD∥FH,∴四边形AFHD是平行四边形;(3)连接EH,CH,∵CE=CG,FH=HG,∴CH=12EF,CH∥EF,∵EB=BF=12 EF,∴BE=CH,∴四边形EBHC是平行四边形,∴OB=OC,OE=OH,∵OC=OH,∴OE=OB=OC=12 BC,∴△BCE是直角三角形,∴∠FEG=90°,∴EF⊥EG.【点睛】本题考查了平行四边形的判定与性质、三角形中位线定理、等腰三角形的性质以及三角形内角和定理;熟练掌握平行四边形的性质,并能进行推理计算是解决问题的关键.23.(1)见解析;(23;(3)2【分析】(1)由线段垂直平分线的性质可得BE=DE,BF=DF,可得∠EBD=∠EDB,∠FBD=∠FDB,由角平分线的性质可得∠EBD=∠BDF=∠EDB=∠DBF,可证BE∥DF,DE∥BF,可得四边形DEBF是平行四边形,即可得结论;(2)由菱形的性质和外角性质可得∠DFC=30°,由直角三角形的性质可求CF的长;(3)过点D作BC的垂线,垂足为H,根据菱形的性质得出∠DFH=∠ABC=30°,从而得到DH的长度,再利用底乘高得出结果.【详解】解:证明:(1)∵BD平分∠ABC,∴∠ABD=∠DBC,∵EF垂直平分BD,∴BE=DE,BF=DF,∵∠EBD=∠EDB,∠FBD=∠FDB,∴∠EBD=∠BDF,∠EDB=∠DBF,∴BE∥DF,DE∥BF,∴四边形DEBF是平行四边形,且BE=DE,∴四边形BEDF是菱形;(2)过点D作DH⊥BC于点H,∵四边形BEDF是菱形,∴BF=DF=DE=2,∴∠FBD=∠FDB=∠BDE=15°,∴∠DFH=30°,且DH⊥BC,∴DH=12DF=1,33,∵∠C=45°,DH⊥BC,∴∠C=∠CDH=45°,∴DH=CH=1,∴3+1;(3)过点D作BC的垂线,垂足为H,∵四边形BEDF是菱形,∠BDE=15°,∴∠DBF=∠BDF=∠ABD=15°,∴∠DFH=∠ABC=30°,∵DE=DF=2,∴DH=1,∴菱形BEDF的面积=BF×DH=2×1=2.【点睛】本题考查了菱形的判定和性质,线段垂直平分线的性质,直角三角形的性质等知识,掌握菱形的判定方法是本题的关键.24.(1)证明见解析;(2)62BE =(3)证明见解析.【分析】(1)根据平行四边形的对边平行,结合平行线的性质可证明∠E=∠CGH ,∠H=∠AFE ,再证明四边形ACGE 是平行四边形即可证明AE=CG ,由此可利用“AAS”可证明全等; (2)证明△AEF ≌△DGF (AAS )可得△DGF ≌△CGH ,所以可得12AEDG CG CD ,再结合等腰直角三角形的性质即可求得CD ,由此可得结论;(3)利用等腰直角三角形的性质和平行四边形的性质结合勾股定理分别把22AC BD +和22AB BC +用2CD 表示即可得出结论. 【详解】解:(1)证明:∵四边形ABCD 为平行四边形,∴AB//CD ,AD//BC ,∴∠E=∠EGD ,∠H=∠DFG ,∵∠CGH=∠EGD ,∠DFG=∠AFE ,∴∠E=∠CGH ,∠H=∠AFE ,∵//EH AC ,AB//CD ,∴四边形ACGE 是平行四边形,∴AE=CG ,∴△AEF ≌△CGH (AAS );(2)∵四边形ABCD 为平行四边形,∴AB//CD ,AB=CD ,∴∠E=∠EGD ,∠D=∠EAF ,∵F 是AD 的中点,∴AF=FD ,∴△AEF ≌△DGF (AAS );由(1)得△AEF ≌△CGH (AAS ); ∴△DGF ≌△CGH,∴12AE DG CG CD , ∵ACD ∆是等腰直角三角形,90ACD ∠=,8AD =,∴2422AB CD AD ,∴22AE =, ∴62BE AB BE =+=;(3)如下图,∵四边形ABCD 为平行四边形,∴CD=AB ,AD=BC ,AC=2OC ,BD=2OD ,∵ACD ∆是等腰直角三角形,90ACD ∠=,AC=CD ,∴222222244()AC BD AC OD AC OC CD ++++==2222222(2)446AC A OC CD AC D C CD C ++=++==,且222222223CD AD CD AC CD C AB BC D =+=+++=,∴22222()AC BD AB BC +=+【点睛】本题考查平行四边形的性质和判定,勾股定理,全等三角形的性质和判定,等腰直角三角形的性质.(1)中解题关键是利用证明四边形ACGE 是平行四边形证明AE=CG ;(2)得出DG CG =是解题关键;(3)中能正确识图,完成线段之间的代换是解题关键.25.(1)见解析;(2) HG =OH +BG ;(3)能成矩形,y 3342x =-. 【分析】(1)根据旋转和正方形的性质可得出CD =CB ,∠CDG =∠CBG =90,根据全等直角三角形的判定定理(HL )即可证出Rt △CDG ≌Rt △CBG ,即∠DCG =∠BCG ,由此即可得出CG 平分∠DCB ;(2)由(1)的Rt △CDG ≌Rt △CBG 可得出BG =DG ,根据全等直角三角形的判定定理(HL )即可证出Rt △CHO ≌Rt △CHD ,即OH =HD ,再根据线段间的关系即可得出HG =HD +DG =OH +BG ;(3)根据(2)的结论即可找出当G 点为AB 中点时,四边形AEBD 为矩形,再根据正方形的性质以及点B 的坐标可得出点G 的坐标,设H 点的坐标为(x ,0),由此可得出HO =x ,根据勾股定理即可求出x 的值,即可得出点H 的坐标,结合点H 、G 的坐标利用待定系数法即可求出直线DE 的解析式.【详解】。
期末复习 《平行四边形》常考题与易错题精选(50题)(原卷版)
期末复习- 《平行四边形》常考题与易错题精选(50题)一.平行线之间的距离(共3小题)1.如图,一把带有60°角的三角尺放在两条平行线间,已知量得平行线间的距离为12cm,三角尺最短边和平行线成45°角,则三角尺斜边的长度为( )A.12cm B.12cm C.24cm D.24cm2.下列说法中,正确的是( )A.在同一平面内,两条不重合的直线的位置关系是平行或垂直B.在平面内经过一点有且只有一条直线与已知直线垂直C.如果两条直线被第三条直线所截,那么内错角相等D.两条平行线间的距离是指从一条直线上的一点到另一条直线的垂线段3.如图,直线AB、CD被直线EF所截并分别交于点G、H,AB∥CD,GO⊥CD于点O,∠EGB=45°.(1)求证:∠GHO=45°.(2)若HO=5cm,求直线AB与直线CD的距离.二.三角形中位线定理(共6小题)4.如图,△ABC中,D,E分别是AB,AC边上的中点,点F在DE上,且∠AFB=90°,若AB=10,BC =16,则EF的长为( )A.3B.5C.6D.85.如图所示,已知△ABC的周长为1,连接△ABC三边的中点构成第二个三角形,再连接第二个三角形三边的中点构成第三个三角形,…依此类推,第2006个三角形的周长为( )A.B.C.D.6.如图,梯形ABCD中,AB∥CD,点E、F、G分别是BD、AC、DC的中点.已知两底差是6,两腰和是12,则△EFG的周长是( )A.8B.9C.10D.127.如图,在△ABC中,AB=6cm,AC=10cm,AD平分∠BAC,BD⊥AD于点D,BD的延长线交AC于点F,E为BC的中点,求DE的长.8.如图,等边△ABC的边长是4,D、E分别为AB、AC的中点,延长BC至点F,使CF=BC,连接CD 和EF.(1)求证:DE=CF;(2)求EF的长.9.如图,在四边形ABCD中,P是对角线BD的中点,E、F分别是AB、CD的中点,AD=BC,∠PEF=20°,求∠PFE的度数.三.平行四边形的性质(共7小题)10.如图,在平面直角坐标系中▱OABC的顶点O,A,B的坐标分别是(0,0),(5,0),(2,3),则点C的坐标是( )A.(﹣2,2)B.(﹣2,3)C.(﹣3,3)D.(﹣3,2)11.如图,在平行四边形ABCD中,过点B作BE⊥CD交CD延长线于点E,若∠A=40°,则∠EBC的度数为( )A.40°B.50°C.60°D.70°12.如图,四边形ABCD是平行四边形,O是对角线AC与BD的交点,AB⊥AC,若AB=8,AC=12,则BD的长是( )A.20B.21C.22D.2313.已知:如图,四边形ABCD是平行四边形,P,Q是对角线BD上的两个点,且BP=DQ.求证:PA=QC.14.已知:如图,E,F是平行四边形ABCD的对角线AC上两点,AF=CE,求证:DF=BE,DF∥BE.15.如图,在▱ABCD中,E是BC边上一点,连接AB、AC、ED.若AE=AB,求证:AC=DE.16.如图,在平行四边形ABCD中,对角线AC,BD相交于点O,过点A作AE⊥BD,垂足为点E,过点C 作CF⊥BD,垂足为点F.(1)求证:AE=CF;(2)若∠AOE=70°,∠EAD=3∠EAO,求∠BCA的度数.四.平行四边形的判定(共5小题)17.如图,下列条件不能判定四边形ABCD是平行四边形的是( )A.AB∥CD,AD=BC B.AB=CD,AD=BCC.∠ABC=∠ADC,∠BAD=∠BCD D.AO=CO,BO=DO18.四边形ABCD的对角线AC、BD交于点O,下列条件不能判定四边形ABCD为平行四边形的是( )A.∠BAD=∠BCD,∠ABC=∠ADC B.∠ABC=∠ADC,AB∥CDC.AB∥CD,OB=OD D.AB=CD,OA=OC19.如图,在四边形ABCD中,点E、F分别是对角线AC上任意两点,且满足AF=CE,连接DF,BE、若DF=BE,DF∥BE.求证:(1)△AFD≌△CEB;(2)四边形ABCD是平行四边形.20.如图,四边形ABCD中AC、BD相交于点O,延长AD至点E,连接EO并延长交CB的延长线于点F,∠E=∠F,AD=BC.(1)求证:O是线段AC的中点:(2)连接AF、EC,证明四边形AFCE是平行四边形.21.如图,AD是△ABC边BC上的中线,AE∥BC,BE交AD于点F,F是BE的中点,连接CE.求证:四边形ADCE是平行四边形.五.平行四边形的判定与性质(共4小题)22.如图,四边形ABCD的对角线AC、BD相交于点O,AO=CO,EF过点O且与AD、BC分别相交于点E、F,OE=OF(1)求证:四边形ABCD是平行四边形;(2)连接AF,若EF⊥AC,△ABF周长是15,求四边形ABCD的周长.23.如图,△ABC中,D是AB边上任意一点,F是AC中点,过点C作CE∥AB交DF的延长线于点E,连接AE,CD.(1)求证:四边形ADCE是平行四边形;(2)若∠B=30°,∠CAB=45°,,求AB的长.24.如图所示,点E在四边形ABCD的边AD上,连接CE,并延长CE交BA的延长线于点F,已知AE=DE,FE=CE.(1)求证:△AEF≌△DEC;(2)若AD∥BC,求证:四边形ABCD为平行四边形.25.如图,已知在平行四边形ABCD中,∠BAD的角平分线AE交CD于点F,交BC的延长线于点E.(1)求证:BE=CD;(2)若BF恰好平分∠ABE,连接AC、DE,求证:四边形ACED是平行四边形.六.菱形的性质(共2小题)26.如图,菱形ABCD的对角线AC、BD相交于点O,若AC=16,BD=8,则菱形ABCD的边长为( )A.4B.C.8D.1027.如图,在菱形ABCD中,对角线AC,BD相交于点O,点E,F分别是AB,AO的中点,连接EF,若OA=3,EF=2,则菱形ABCD的边长为( )A.2B.2.5C.3D.5七.菱形的判定(共3小题)28.下列说法错误的是( )A.一组对边平行且相等的四边形是平行四边形B.两条对角线互相垂直的四边形是菱形C.三角形的中位线平行于三角形的第三边,并且等于第三边的一半D.直角三角形斜边上的中线等于斜边的一半29.如图,已知△ABC中,D是AC的中点,过点D作DE⊥AC交BC于点E,过点A作AF∥BC交DE于点F,连接AE,CF.求证:四边形AECF是菱形.30.在Rt△ABC中,∠BAC=90°,D是BC的中点,E是AD的中点,过点A作AF∥BC交BE的延长线于点F,连接CF.(1)求证:AF=BD.(2)求证:四边形ADCF是菱形.八.菱形的判定与性质(共4小题)31.如图,在四边形ABCD中,AD∥BC,BA=BC,BD平分∠ABC.(1)求证:四边形ABCD是菱形.(2)过点D作DE⊥BD,交BC的延长线于点E,若BC=5,BD=8.①求菱形ABCD的面积.②求四边形ABED的周长.32.如图,在△ABC中,BD平分∠ABC,BD的垂直平分线分别交AB,BD,BC于点E,F,G,连接DE,DG.(1)求证:四边形BGDE是菱形;(2)若∠ABC=30°,∠C=45°,ED=6,求CG的长.33.如图,在四边形ABCD中,AB∥DC,AB=AD,对角线AC、BD交于点O,AC平分∠BAD,过点C 作CE⊥AB交AB延长线于点E,连接OE.(1)求证:四边形ABCD是菱形;(2)若CE=3,∠ADC=120°,求四边形ABCD的面积.34.在平行四边形ABCD中,对角线AC、BD交于点O,过点O作EF⊥BD,交AD于点E,交BC于点F,连接BE、DF.(1)如图1,求证:四边形EBFD是菱形;(2)如图2,∠ABC=90°,AE=EO,请直接写出图中的所有等边三角形.九.矩形的性质(共2小题)35.如图,矩形ABCD的对角线AC,BD交于点O,点E,F分别是OB,OC上的点,且OE=OF,连接AE,DF.求证:∠EAD=∠FDA.36.如图,已知矩形ABCD中,对角线AC、BD相交于点O,过点C作CE∥BD,过点D作DE∥AC,CE 与DE相交于点E.(1)求证:四边形CODE是菱形;(2)若AB=6,∠AOB=60°,求四边形CODE的周长.一十.矩形的判定(共4小题)37.如图,在菱形ABCD中,对角线AC,BD相交于点O,过点B作BE∥AC,且BE=AC,连接EC,求证:四边形BECO是矩形.38.如图,AD是△ABC的中线,AE∥BC,BE交AD于点F,且AF=DF.(1)求证:△AFE≌△DFB;(2)求证:四边形ADCE是平行四边形;(3)当AB、AC之间满足什么条件时,四边形ADCE是矩形.39.如图,菱形ABCD的对角线AC、BD相交于点O,BE∥AC,CE∥DB.求证:四边形OBEC是矩形.40.如图,点C是BE的中点,四边形ABCD是平行四边形.(1)求证:四边形ACED是平行四边形;(2)如果AB=AE,求证:四边形ACED是矩形.一十一.矩形的判定与性质(共4小题)41.在菱形ABCD中,两条对角线相交于点O,F是边CD的中点,连接OF并延长到E,使FE=OF,连接CE,DE.(1)求证:四边形OCED是矩形;(2)求证:OE∥BC.42.如图:在菱形ABCD中,对角线AC、BD交于点O,过点A作AE⊥BC于点E,延长BC至点F,使CF=BE,连接DF.(1)求证:四边形AEFD是矩形;(2)若BF=16,DF=8,求CD的长.43.如图,在四边形ABCD中,AC、BD相交于点O,AD∥BC,∠ADC=∠ABC,OA=OB.(1)如图1,求证:四边形ABCD为矩形;(2)如图2,P是AD边上任意一点,PE⊥BD,PF⊥AC,E、F分别是垂足,若AD=12,AB=5,求PE+PF的值.44.如图,在Rt△ABC中,∠ACB=90°,DE、DF是△ABC的中位线,连接EF、CD.求证:EF=CD.一十二.正方形的性质(共5小题)45.如图,在正方形ABCD中,E,F分别为AB、AD上的点,且AE=AF,点M是EF的中点,连接CM、CF、CE.求证:CM⊥EF.46.如图,在正方形ABCD中,点E,F分别在BC,CD上,且BE=CF.AE与BF交于点O.猜想:AE 与BF的关系,并给出证明.47.如图,在正方形ABCD中,AB=24cm.动点E,F分别在边CD,BC上,点E从点C出发沿CD边以1cm/s的速度向点D运动,同时点F从点C出发沿CB边以2cm/s的速度向点B运动(当点F到达点B 时,点E也随之停止运动),连接EF.问:在AB边上是否存在一点G,使得以B,F,G为顶点的三角形与△CEF全等?若存在,求出两三角形全等时BG的长;若不存在,请说明理由.48.已知四边形ABCD和四边形CEFG都是正方形,且AB>CE,连接BG、DE.求证:(1)BG=DE;(2)BG⊥DE.49.如图,在正方形ABCD中,点P是对角线BD上的一点,点E在AD的延长线上,且PA=PE,PE交CD于点F.(1)证明:PC=PE;(2)求∠CPE的度数.一十三.正方形的判定与性质(共1小题)50.如图,已知四边形ABCD是矩形,点E在对角线AC上,点F在边CD上(点F与点C、D不重合),BE⊥EF,且∠ABE+∠CEF=45°.(1)求证:四边形ABCD是正方形;(2)连接BD,交EF于点Q,求证:DQ•BC=CE•DF.。
《易错题》初中八年级数学下册第十八章《平行四边形》知识点总结(专题培优)
一、选择题1.如图,菱形ABCD 中,50A ∠=︒,则ADB ∠的度数为( )A .65︒B .55︒C .45︒D .25︒A解析:A【分析】 由菱形得到AB=AD ,进而得到∠ADB=∠ABD ,再由三角形内角和定理即可求解.【详解】解:∵四边形ABCD 为菱形,∴AD=AB ,∴∠ADB=∠ABD=(180°-∠A)÷2=(180°-50°)÷2=65°,故选:A .【点睛】本题考查了菱形的性质,菱形的邻边相等,属于基础题,熟练掌握菱形的性质是解决本题的关键.2.如图,在ABC 中,90ACB ∠=︒,点D 在AC 边上且AD BD =,M 是BD 的中点.若16AC =,8BC =,则CM 等于( )A .5B .6C .8D .10A解析:A【分析】 根据直角三角形斜边的中线等于斜边的一半,得出12CM BD =,设CM x =,则2BD AD x ==,再根据勾股定理列方程求解即可得出答案.【详解】 解:90ACB ∠=︒,M 是BD 的中点,12CM BD ∴= 设CM x =,则2BD AD x ==16AC =162CD AC AD x ∴=-=-在Rt BCD △中,根据勾股定理得222BC CD BD +=即()()22281622x x +-=解得:5x =,故选A .【点睛】本题考查了直角三角形斜边的中线性质、勾股定理,熟练掌握性质定理是解题的关键. 3.如图,将菱形纸片ABCD 折叠,使点A 恰好落在菱形的对称中心O 处,折痕为EF .若菱形ABCD 的边长为4,120B ∠=︒,则EF 的值是( )A .3B .2C .23D .4B解析:B【分析】 根据菱形的性质证明△ABD 是等边三角形,求得BD=4,再证明EF 是△ABD 的中位线即可得到结论.【详解】解:连接AC ,BD∵四边形ABCD 是菱形,∴AC BD ⊥,BD 平分∠ABC ,4AB BC CD DA ====∴∠111206022ABD ABC ︒=∠=⨯=︒ ∵AB AD =∴△ABD 是等边三角形, ∴ 4.BD =由折叠的性质得:EF AO ⊥,EF 平分AO ,又∵BD AC ⊥,∴//EF BD∴EF 为△ABD 的中位线, ∴122EF BD == 故选:B .【点睛】 本题考查了折叠性质,菱形性质,主要考查学生综合运用定理进行推理和计算的能力. 4.如图,ABCD 的对角线AC 、BD 交于点O ,顺次连接ABCD 各边中点得到一个新的四边形,如果添加下列四个条件中的一个条件:①AC BD ⊥;②ΔΔABO CBO C C =;③DAO CBO ∠=∠;④DAO BAO ∠=∠,可以使这个新的四边形成为矩形,那么这样的条件个数是( )A .1个B .2个C .3个D .4个C解析:C【分析】 根据顺次连接四边形的中点,得到的四边形形状和四边形的对角线位置、数量关系有关,利用三角形中位线性质可得:当对角线垂直时,所得新四边形是矩形.逐一对四个条件进行判断.【详解】解:顺次连接四边形的中点,得到的四边形形状和四边形的对角线位置、数量关系有关,利用三角形中位线性质可得:当对角线垂直时,所得新四边形是矩形.①,AC BD ⊥∴新的四边形成为矩形,符合条件; ②四边形ABCD 是平行四边形,,AO OC BO DO ∴==.ΔΔ,ABO CBO C C AB BC =∴=.根据等腰三角形的性质可知,BO AC BD AC ⊥∴⊥.所以新的四边形成为矩形,符合条件;③四边形ABCD 是平行四边形,CBO ADO ∠∠∴=.,DAO CBO ADO DAO ∠∠∠∠=∴=.AO OD ∴=.,AC BD ∴=∴四边形ABCD 是矩形,连接各边中点得到的新四边形是菱形,不符合条件;④,DAO BAO BO DO ∠∠==,AO BD ∴⊥,即平行四边形ABCD 的对角线互相垂直,∴新四边形是矩形.符合条件.所以①②④符合条件.故选:C .【点睛】本题考查特殊四边形的判定与性质,掌握矩形、平行四边形的判定与性质是解题的关键. 5.如图,已知正方形1234A A A A 的边长为1,延长12A A 到1B ,使得1212B A A A =,延长23A A 到2B ,使得2323B A A A =,以同样的方式得到34,B B ,连接1234,,,B B B B ,得到第2个正方形1234B B B B ,再以同样方式得到第3个正方形1234C C C C ,……,则第2020个正方形的边长为( )A .2020B .2019(5)C .2020(5)D .20205B解析:B【分析】 结合题意分析每个正方形的边长,从而发现数字的规律求解【详解】解:由题意可得:第1个正方形1234A A A A 的边长为012=1=(5)A A∵1212B A A A =∴112A B =∴第2个正方形1234B B B B 221+2=5由题意,以此类推,215C B =2225C B =∴第3个正方形1234C C C C 222(5)(25)5(5)+==…∴第n 个正方形的边长为15)n -∴第2020个正方形的边长为2019(5)故选:B .【点睛】本题考查勾股定理及图形类规律探索,题目难度不大,正确理解题意求解每个正方形边长的规律是解题关键.6.下列命题中,错误的是( )A .一组对边平行的四边形是梯形;B .两组对边分别相等的四边形是平行四边形;C .对角线相等的平行四边形是矩形;D .一组邻边相等的平行四边形是菱形.A解析:A【分析】根据梯形,平行四边形,矩形,菱形的判定进行判断即可.【详解】解:A 、一组对边平行,另一组对边不平行的四边形是梯形,故错误,符合题意; B 、两组对边分别相等的四边形是平行四边形,正确,不符合题意;C 、对角线相等的平行四边形是矩形,正确,不符合题意;D 、一组邻边相等的平行四边形是菱形,正确,不符合题意;故选:A .【点睛】主要考查梯形,平行四边形,矩形,菱形的判定,注意梯形的定义应从两组对边的不同位置关系分别考虑.7.如图,以AB 为斜边的Rt ABC 和Rt ABD △位于直线AB 的同侧,连接CD .若135,6BAC ABD AB ∠+∠=︒=,则CD 的长为( )A .3B .4C .32D .33C解析:C【分析】 取AB 的中点O ,连结OD ,OC ,根据直角三角形的性质可得OA OD OB OC ===,可得BAC OCA ∠=∠,ABD ODB ∠=∠,OCD ODC ∠=∠,在四边形ABCD 中,根据四边形的内角和为360︒,135BAC ABD ∠+∠=︒,可得出90OCD ODC ∠+∠=︒,由OC OD =,可证得COD ∆是等腰直角三角形,由6AB =,根据勾股定理,即可得出CD 的长.【详解】取AB 的中点O ,连结OD ,OC ,∵Rt ABD ∆和Rt ABC ∆的斜边为AB ,∴12OD AB =,12OC AB =, ∴OA OD OB OC ===, ∴BAC OCA ∠=∠,ABD ODB ∠=∠,OCD ODC ∠=∠,在四边形ABCD 中,360BAC OCA ABD ODB OCD ODC ∠+∠+∠+∠+∠+∠=︒, ∵135BAC ABD ∠+∠=︒,∴90OCD ODC ∠+∠=︒,∵OC OD =,∴45OCD ODC ∠=∠=︒,∴COD ∆是等腰直角三角形,∵6AB =,∴3OC OD ==,∴22223332CD OC OD =+=+=,故选:C.【点睛】本题主要考查了直角三角形斜边上的中线,等腰三角形的性质和以及勾股定理,解题的关键是正确做出辅助线.8.如图,已知在正方形ABCD 中,E 是BC 上一点,将正方形的边CD 沿DE 折叠到DF ,延长EF 交AB 于点G ,连接DG .现有如下4个结论:①AG =GF ;②AG 与EC 一定不相等;③45GDE ∠=︒;④BGE △的周长是一个定值.其中正确的个数为( )A .1B .2C .3D .4C解析:C【分析】 根据HL 证明△ADG ≌△FDG ,根据角的平分线的意义求∠GDE ,根据GE=GF+EF=EC+AG ,确定△BGE 的周长为AB+AC.【详解】根据折叠的意义,得△DEC ≌△DEF ,∴EF=EC ,DF=DC ,∠CDE=∠FDE ,∵DA=DF ,DG=DG ,∴Rt △ADG ≌Rt △FDG ,∴AG=FG ,∠ADG=∠FDG ,∴∠GDE=∠FDG+∠FDE=12(∠ADF+∠CDF)=45°,∵△BGE的周长=BG+BE+GE,GE=GF+EF=EC+AG,∴△BGE的周长=BG+BE+ EC+AG=AB+AC,是定值,∴正确的结论有①③④,故选C.【点睛】本题考查了正方形中的折叠变化,直角三角形的全等及其性质,角的平分线,三角形的周长,熟练掌握折叠的全等性是解题的关键.9.如图,在矩形纸片ABCD中,BC a,将矩形纸片翻折,使点C恰好落在对角线交点O处,折痕为BE,点E在边CD上,则CE的长为()A.12a B.25a C3D3D解析:D【分析】首先证明△OBC是等边三角形,在Rt△EBC中求出CE即可解决问题;【详解】解:∵四边形ABCD是矩形,∴OB=OC,∠BCD=90°,由翻折不变性可知:BC=BO,∴BC=OB=OC,∴△OBC是等边三角形,∴∠OBC=60°,∴∠EBC=∠EBO=30°,∴BE=2CE根据勾股定理得:333a,故选:D.【点睛】本题考查翻折变换,等边三角形的判定和性质等知识,解题的关键是证明△OBC 是等边三角形.10.矩形不一定具有的性质是( )A .对角线互相平分B .是轴对称图形C .对角线相等D .对角线互相垂直参考答案D解析:D【分析】根据矩形的性质即可判断.【详解】解:∵矩形的对角线线段,四个角是直角,对角线互相平分,∴选项A 、B 、C 正确,故选:D .【点睛】本题考查矩形的性质,解题的关键是记住矩形的性质.二、填空题11.如图,在长方形纸片ABCD 中,12AB =,5BC =,点E 在AB 上,将DAE △沿DE 折叠,使点A 落在对角线BD 上的点A '处,则AE 的长为______.【分析】首先利用勾股定理计算出BD 的长再根据折叠可得AD=A′D=5进而得到A′B 的长再设AE=x 则A′E=xBE=12-x 再在Rt △A′EB 中利用勾股定理得出关于x 的方程解出x 的值可得答案【详解】 解析:103【分析】首先利用勾股定理计算出BD 的长,再根据折叠可得AD=A′D=5,进而得到A′B 的长,再设AE=x ,则A′E=x ,BE=12-x ,再在Rt △A′EB 中利用勾股定理得出关于x 的方程,解出x 的值,可得答案.【详解】解:∵AB=12,BC=5,∴AD=5,∴22125+=13,根据折叠可得:AD=A′D=5,∴A′B=13-5=8,设AE=x ,则A′E=x ,BE=12-x ,在Rt △A′EB 中:(12-x )2=x 2+82,解得:x=103. 故答案为:103. 【点睛】本题考查了矩形的性质、勾股定理、折叠的性质等知识点,能根据题意得出关于x 的方程是解此题的关键.12.如图:在ABC ∆中,13,12,AB BC ==点D E 、分别是,AB BC 的中点,连接DE CD 、,如果 2.5,DE =那么ABC ∆的周长是___.30【分析】根据三角形的中位线性质求出AC的长再求出ΔABC 的周长【详解】∵点DE 分别是ABBC 的中点∴DE 是ΔABC 的中位线∴DE=AC ∵DE=25∴AC=5∵AB=13BC=12∴C △ABC=A解析:30【分析】根据三角形的中位线性质,求出AC 的长,再求出ΔABC 的周长.【详解】∵点 D 、 E 分别是 AB 、 BC 的中点,∴DE 是ΔABC 的中位线,∴ DE=12AC , ∵ DE=2.5 ,∴ AC=5 , ∵ AB=13 , BC=12 ,∴ C △ABC =AB+BC+AC=13+12+5=30.故答案为:30.【点睛】本题考查了三角形的中位线性质定理,解题的关键是掌握,三角形的中位线平行于第三边,并且等于第三边的一半.13.己知菱形ABCD 的边长是3,点E 在直线AD 上,DE =1,联结BE 与对角线AC 相交于点M ,则AM MC的值是______.或【分析】首先根据题意作图注意分为E 在线段AD 上与E 在AD 的延长线上然后由菱形的性质可得AD ∥BC 则可证得△MAE ∽△MCB 根据相似三角形的对应边成比例即可求得答案【详解】解:∵菱形ABCD 的边长是 解析:23或43 【分析】 首先根据题意作图,注意分为E 在线段AD 上与E 在AD 的延长线上,然后由菱形的性质可得AD ∥BC ,则可证得△MAE ∽△MCB ,根据相似三角形的对应边成比例即可求得答案.【详解】解:∵菱形ABCD 的边长是3,∴AD=BC=3,AD ∥BC ,如图①:当E 在线段AD 上时,∴AE=AD -DE=3-1=2,∴△MAE ∽△MCB ,∴23MA AE MC BC ==; 如图②,当E 在AD 的延长线上时,∴AE=AD+DE=3+1=4,∴△MAE ∽△MCB ,∴43MA AE MC BC ==. ∴MA MC的值是23或43. 故答案为23或43.【点睛】此题考查了菱形的性质,相似三角形的判定与性质等知识.解题的关键是注意此题分为E 在线段AD 上与E 在AD 的延长线上两种情况,小心不要漏解.14.已知:如图,把长方形纸片ABCD 沿EF 折叠,使D C 、分别落在D C ''、的位置,若65EFB ︒∠=,则AED '∠的度数为_________.【分析】由长方形纸片可得再求解由折叠的性质求解结合平角的定义可得答案【详解】解:长方形纸片由折叠可得:故答案为:【点睛】本题考查的是矩形与折叠平行线的性质简单题解题的关键是理解折叠的性质 解析:50︒【分析】由长方形纸片ABCD ,65EFB ∠=︒可得//,AD BC 再求解,DEF ∠ 由折叠的性质求解,D EF '∠ 结合平角的定义可得答案.【详解】 解: 长方形纸片ABCD ,65EFB ∠=︒,//,AD BC ∴65DEF EFB ∴∠=∠=︒,由折叠可得:65D EF DEF '∠=∠=︒,180180656550.AED D EF DEF ''∴∠=︒-∠-∠=︒-︒-︒=︒故答案为:50.︒【点睛】本题考查的是矩形与折叠,平行线的性质,简单题,解题的关键是理解折叠的性质. 15.在ABCD 中,BE AD ⊥于E ,BF CD ⊥于F ,若60EBF ︒∠=,且3AE =,2DF =,则EC =_______.【分析】由▱ABCD 中BE ⊥ADBF ⊥CD 可得∠D=120°继而求得∠A 与∠BCD 的度数然后由勾股定理求得ABBEBC 的长继而求得答案【详解】解:∵BE ⊥ADBF ⊥CD ∴∠BFD=∠BED=∠BFC 91【分析】由▱ABCD 中,BE ⊥AD ,BF ⊥CD ,可得∠D=120°,继而求得∠A 与∠BCD 的度数,然后由勾股定理求得AB ,BE ,BC 的长,继而求得答案.【详解】解:∵BE ⊥AD ,BF ⊥CD ,∴∠BFD=∠BED=∠BFC=∠BEA=90°,∵∠EBF=60°,∴∠D=120°,∵四边形ABCD 是平行四边形,∴AD ∥BC ,∴∠BCD=∠A=60°,∵在△ABE 中,∠ABE=30°,∴AB=2AE=2×3=6,∴CD=AB=6,BE=2233AB AE -=,∴CF=CD-DF=6-2=4,∵在△BFC 中,∠CBF=30°,∴BC=2CF=2×4=8,∴CE=2291BE BC +=,故答案为:91.【点睛】此题考查了平行四边形的性质、勾股定理以及含30°角的直角三角形的性质.此题难度适合,注意掌握数形结合思想的应用.16.如图,A B 、两点分别位于山脚的两端,小明想测量A B 、两点间的距离,于是想了个主意,先在地上取一个可以直接达到A B 、两点的点C ,找到AC BC 、的中点D 、E ,并且测出DE 的长为15m ,则A B 、两点间的距离为_________m .30【分析】由DE 分别是边ACAB 的中点首先判定DE 是三角形的中位线然后根据三角形的中位线定理求得AB 的长即可【详解】解:∵DE 分别是ACBC 的中点∴DE 是△ABC 的中位线根据三角形的中位线定理得: 解析:30【分析】由D ,E 分别是边AC ,AB 的中点,首先判定DE 是三角形的中位线,然后根据三角形的中位线定理求得AB 的长即可.【详解】解:∵D 、E 分别是AC 、BC 的中点,∴DE 是△ABC 的中位线,根据三角形的中位线定理,得:AB=2DE=30m .故答案为:30.【点睛】本题考查了三角形中位线定理的运用;熟记三角形中位线定理是解决问题的关键. 17.如图在矩形ABCD 中,对角线,AC BD 相交于点O ,若30,2ACB AB ︒∠==,则BD 的长为_______.4【分析】根据30度所对的直角边等于斜边的一半求出AC=4利用矩形的性质得到BD=AC=4即可【详解】在矩形中∵四边形是矩形故答案为:4【点睛】此题考查矩形的性质直角三角形30度角的性质熟记各性质是 解析:4【分析】根据30度所对的直角边等于斜边的一半求出AC=4,利用矩形的性质得到BD=AC=4即可.【详解】在矩形ABCD 中,90ABC ︒∠=,30,2ACB AB ︒∠==,2224AC AB ∴==⨯=,∵四边形ABCD 是矩形,4BD AC ∴==.故答案为:4.【点睛】此题考查矩形的性质,直角三角形30度角的性质,熟记各性质是解题的关键. 18.如图,在平行四边形ABCD 中,∠ABC =135°,AD =42,AB =8,作对角线AC 的垂直平分线EF ,分别交对边AB 、CD 于点E 和点F ,则AE 的长为_____.【分析】连接CE 过点C 作交AB 的延长线于点H设AE=x 则BE=8-xCE=AE=x 在根据勾股定理即可得到x 的值【详解】如图:连接CE 过点C 作交AB 的延长线于点H 平行四边形ABCD 中设AE=x 则BE= 解析:203【分析】连接CE ,过点C 作CH AB ⊥,交AB 的延长线于点H ,设AE=x ,则BE=8-x ,CE=AE=x ,在根据勾股定理,即可得到x 的值.【详解】如图:连接CE ,过点C 作CH AB ⊥,交AB 的延长线于点H ,平行四边形ABCD 中,135,42ABC AD ∠=︒=,45,42CBH BC ∴∠=︒=,90,H ∠=︒45,BCH ∴∠=︒4CH BH ∴==设AE=x ,则BE=8-x ,EF 垂直平分AC ,CE AE x ∴==,在Rt CEH 中,222CH EH EC +=,()222484x x ∴+-+=,解得:203x =, AE ∴的长为203, 故答案为:203. 【点睛】 本题考查了平行四边形的性质,勾股定理以及线段垂直平分线的性质,解决问题的关键是作辅助线构造直角三角形,利用勾股定理求解.19.如图,以Rt ABC 的斜边BC 为边,向外作正方形BCDE ,设正方形的对角线BD 与CE 的交点为O ,连接AO ,若3AC =,6AO =,则AB 的值是__________.【分析】如详解图:作垂足为F 的延长线垂足为G 可证可得四边形AFOG 为正方形BF=CGAF=AG=进而可求得答案【详解】如图所示:作垂足为F 的延长线垂足为G 则四边形AFOG 为矩形四边形BCDE 是正方形 解析:623【分析】如详解图:作OF AB ⊥垂足为F ,OG AG ⊥的延长线,垂足为G ,可证OFB OGC △≌△,可得四边形AFOG 为正方形,BF=CG ,AF=AG=32,进而可求得答案.【详解】如图所示:作OF AB ⊥垂足为F ,OG AG ⊥的延长线,垂足为G ,则四边形AFOG 为矩形,四边形BCDE 是正方形,∴OB=OC ,90BOC ∠=°,9090COG COF BOF COF BOF COG∠+∠=︒∠+∠=︒∴∠=∠,,OFB OGC OB OC OFB OGCOF OG∠=∠=∴∴=△≌△ S ∴四边形AFDG 为正方形63233233233223AO AF AG AC CG AG AC BF CGAB AF BF AG CG =∴===∴=-==∴=+=+=+=故答案为:623.【点睛】本题考查了正方形的性质和判定,全等三角形的性质,关键是构造全等三角形证明. 20.如图,长方形ABCD 中,4=AD ,3AB =,点P 是AB 上一点,1AP =,点E 是BC 上一动点,连接PE ,将BPE 沿PE 折叠,使点B 落在B ',连接DB ',则PB DB ''+的最小值是________.【分析】根据题意可知最小时落在线段PD 上利用勾股定理求出PD 即可【详解】如图连接PD 根据题意可知当落在线段PD 上时最小且最小值为PD 长在中综上可知最小值为故答案为:【点睛】本题考查翻折的性质结合题意 解析:17 【分析】 根据题意可知PB DB ''+最小时,B '落在线段PD 上,利用勾股定理求出PD 即可.【详解】如图,连接PD ,根据题意可知当B '落在线段PD 上时,PB DB ''+最小,且最小值为PD 长.在Rt APD 中,2211617PD AP AD =+=+=.综上可知PB DB ''+最小值为17.17【点睛】本题考查翻折的性质,结合题意根据两点之间线段最短得出当B '落在线段PD 上时,PB DB ''+最小是解答本题的关键.三、解答题21.如图,在ABC 中,D 是AB 的中点,AC =2,BC =2,AB =3,延长AC 到E ,使得CE =CD ,连接BE .(1)求证:∠ACB =90°;(2)求线段BE 的长度.解析:(1)见解析;(2)11 【分析】 (1)利用勾股定理的逆定理判定AC ⊥BC ;(2)在直角△BCE 中,利用勾股定理来求BE 的长度.【详解】证明:(1)∵在△ABC 中,AC =2,BC =22,AB =23,∴AC 2=4,BC 2=8,AB 2=12,∴AC 2+BC 2=AB 2.∴∠ACB =90°;(2)由(1)知,∠ACB =90°,则∠BCE =90°.∵D 是AB 的中点,AB =23,CE =CD ,∴CE =CD =12AB =3. ∴在直角△BCE 中,由勾股定理得:BE =22BC EC +=22(22)(3)+=11.【点睛】本题主要考查了勾股定理,勾股定理的逆定理,直角三角形斜边上的中线.注意:勾股定理应用的前提条件是在直角三角形中.22.如图,四边形ABCD 是矩形,对角线AC 与BD 相交于点O ,∠AOD =60°,AD =2,求AC 的长度.解析:4【分析】根据矩形的性质和等边三角形的性质,可以得到OA 的长,从而可以求得AC 的长.【详解】解:∵四边形ABCD 是矩形,∴OA =OC =OB =OD ,∵∠AOD =60°,AD =2,∴△AOD 是等边三角形,∴OA =OD =2,∴AC =2OA =4,即AC 的长度为4.【点睛】本题考查了矩形的性质,等边三角形的判定与性质,熟记性质并判断出△AOB 是等边三角形是解题的关键.23.已知:如图,在四边形ABCD 中,点G 在边BC 的延长线上,CE 平分BCD ∠、CF 平分GCD ∠,//EF BC 交CD 于点O .(1)求证:OE OF =;(2)若点O 为CD 的中点,求证:四边形DECF 是矩形.解析:(1)见解析;(2)见解析【分析】(1)由角平分线的定义及平行线的性质可证得DCE FEC ∠=∠,EFC DCF ∠=∠,得OE OC =,OF OC =,即可得出结论;(2)先证得四边形DECF 是平行四边形,再利用角平分线的定义可求得90ECF ∠=︒,则可证得四边形DECF 为矩形.【详解】证明:(1)∵CE 平分BCD ∠、CF 平分GCD ∠∴BCE DCE ∠=∠,DCF GCF ∠=∠∵EF ∥BC ,∴BCE FEC ∠=∠,EFC GCF ∠=∠∴DCE FEC ∠=∠,EFC DCF ∠=∠∴OE OC =,OF OC =,∴OE OF =.(2)∵点O 为CD 的中点,∴OD OC =,又OE OF =,∴四边形DECF 是平行四边形∵CE 平分BCD ∠、CF 平分GCD ∠, ∴12DCE BCD ∠=∠,12DCF DCG ∠=∠ ∴()11=9022DCE DCF BCD DCG BCG ∠+∠=∠+∠∠=︒ ∵DCE DCF ECF ∠+∠=∠, ∴90ECF ∠=︒∵四边形DECF 是平行四边形,∴平行四边形DECF 是矩形.【点睛】本题主要考查了矩形的判定、平行四边形的判定与性质、等腰三角形的判定以及平行线的性质等知识,掌握相关性质定理正确推理论证是解题关键.24.(1)如图,已知线段a ,c ,求作Rt ABC ,使得90C ∠=︒,BC a =,AB c =;(2)在Rt ABC 中,斜边AB 边上的中线长为5,7BC =,试比较AC ,BC 的大小. 解析:(1)见解析;(2)BC <AC【分析】(1)画射线BD ,以B 为端点取BC=a ,过点C 作BD 的垂线,再以点B 为圆心,c 为半径画弧,与该垂线交于点A 即可;(2)根据直角三角形的性质得到AB ,利用勾股定理求出AC ,再比较大小即可.【详解】解:(1)如图,△ABC 即为所作;(2)如图,直角三角形ABC 中,∠C=90°,D 为AB 中点,则CD=5,BC=7,∴AB=10,∴22107-51∵7=49<51,∴BC <AC .【点睛】本题考查了尺规作图,直角三角形的性质,勾股定理,实数的大小比较,解题的关键是依据题意作出图形.25.如图,在正方形ABCD 中,点P 是对角线AC 上的一点,点E 在BA 的延长线上,且PB PE =,连结DE .(1)求证:PD PE =.(2)试判断DE 和BP 的数量关系,并说明理由.解析:(1)见解析;(2)2DE BP =,见解析 【分析】(1)根据SAS 证明APD APB ≌△△可得PD=PB ,再结合PD=PE 即可得出结论; (2)证明DPE 是等腰直角三角形即可得出结论.【详解】解:(1)证明:∵四边形ABCD 是正方形,∴AB AD =,∵AC 是正方形ABCD 的对角线,∴=45CAD CAB ∠=∠︒∵AP AP =,∴()APD APB SAS ≌, ∴PD PB =, ∵PB PE =,∴PD PE =. (2)2DE BP =.理由如下:∵由(1)知,APD APB ≌△△,PD PB PE ==,∴设PEB PBE PDA x ∠=∠=∠=︒,∴1802EPB x ∠=︒-︒,∵45DAP ∠=︒,∴18045135DPA BPA x x ∠=∠=︒-︒-=︒-︒,∴1802(135)45APE EPB BPA x x x ∠=∠-∠=︒-︒-︒-︒=︒-︒,∴135(45)90DPE DPA APE x x ∠=∠-∠=︒-︒-︒-︒=︒.∴DPE 是等腰直角三角形,∴22DE DP BP ==. 【点睛】本题是四边形综合题目,考查了正方形的性质,全等三角形的判定与性质,熟记正方形的性质,证明三角形全等是解决问题的关键.26.如图,在AOB 和COD △中,OA OB =, OC OD =,90AOB COD ∠=∠=︒,点C 在边AB 上,点 G 是线段AD 的中点.(1)求ABD ∠的度数;(2)求证:OG 平分AOB ∠.解析:(1)∠ABD=90°;(2)证明见解析.【分析】(1)只需要证明△BOD ≌△AOC ,再根据等腰直角三角形的性质即可得出∠OBD=∠OAB=∠OBA=45°,从而求得ABD ∠的度数;(2)延长BD 与AO 的延长线交于E ,可证明△OBE ≌△OBA ,得出OA=OE ,从而得出OG 为△ADE 的中位线,根据三角形中位线的性质可求得∠AOG=∠E=45°,继而证明结论.【详解】解:(1)∵∠AOB=∠COD=90°,OA OB =,∴∠OBA=∠OAB=45°,∠AOB-∠BOC=∠COD-∠BOC ,即∠AOC=∠BOD ,又∵OA OB =,OC OD =,∴△BOD ≌△AOC (SAS ),∴∠OBD=∠OAB=45°,∴∠ABD=∠OBA+∠OBD=90°;(2)延长BD 与AO 的延长线交于E ,∵∠AOB=90°,∴∠BOE=90°,又∵OB=OB ,∠OBD=∠OBA=45°,∴△OBE ≌△OBA (SAS ),∴∠E=∠OAB=45°,EO=OA ,又∵G 为AD 的中点,∴OG 为△ADE 的中位线,即OG//ED ,∴∠AOG=∠E=45°,即12AOG AOB ∠=∠ , ∴OG 平分AOB ∠.【点睛】本题考查全等三角形的性质和判定,三角形中位线定理,等腰直角三角形的性质.(1)中掌握全等三角形的判定定理,并能结合题意选择合适的定理作为依据证明是解题关键;(2)中正确作出辅助线是解题关键.27.如图,在Rt △ABC 中,∠ACB =90°,D 为AB 的中点,AE //CD ,CE //AB ,连接DE 交AC 于点O .(1)证明:四边形ADCE 为菱形;(2)若∠B =60°,BC =6,求菱形ADCE 的高.解析:(1)见解析;(2)3√3【分析】(1)先证明四边形ADCE 是平行四边形,再由直角三角形斜边上的中线性质得出CD=12AB=AD ,即可得出四边形ADCE 为菱形; (2)过点D 作DF ⊥CE ,垂足为点F ;先证明△BCD 是等边三角形,得出∠BDC=∠BCD=60°,CD=BC=6,再由平行线的性质得出∠DCE=∠BDC=60°,在Rt △CDF 中,求出DF 即可.【详解】解:(1)证明:∵AE ∥CD ,CE ∥AB ,∴四边形ADCE 是平行四边形,∵∠ACB=90°,D 为AB 的中点,∴CD=12AB=AD , ∴四边形ADCE 为菱形;(2)过点D 作DF ⊥CE ,垂足为点F ,如图所示:DF 即为菱形ADCE 的高,∵∠B=60°,CD=BD ,∴△BCD 是等边三角形,∴∠BDC=∠BCD=60°,CD=BC=6,∵CE ∥AB ,∴∠DCE=∠BDC=60°,∴∠CDF=30°,又∵CD=BC=6,∴CF=3,∴在Rt △CDF 中,DF=√CD 2−CF 2=3√3.【点睛】本题考查了平行四边形的判定、菱形的判定、等边三角形的判定与性质、平行线的性质,熟练掌握直角三角形的性质,并能进行推理论证与计算是解决问题的关键.28.已知:如图,在ABCD 中,延长DC 至点E ,使得DC CE =,连接AE ,交边BC 于点F .连接AC ,BE .(1)求证:四边形ABEC 是平行四边形.(2)若2AFC D ∠=∠,求证:四边形ABEC 是矩形.解析:(1)见解析;(2)见解析【分析】(1)根据题意可得到//AB CE ,从而再证明AB CE =即可得出结论;(2)结合(1)的结论可以得到//BC AD ,BCE D ∠=∠,再根据2AFC D ∠=∠推出FEC FCE ∠=∠,从而得到FC FE =即可得出结论.【详解】(1)∵四边形ABCD 是平行四边形,∴//AB CD ,AB CD =,即//AB CE ,∵DC CE =,∴AB CE =,∴四边形ABEC 是平行四边形;(2)∵四边形ABCD 是平行四边形,∴//BC AD ,BCE D ∠=∠,∵四边形ABEC 是平行四边形,又∵AFC FEC BCE ∠=∠+∠,∴当2AFC D ∠=∠时,则有FEC FCE ∠=∠,∴FC FE =,AE BC =,∴四边形ABEC 是矩形.【点睛】本题考查平行四边形的性质与判定,矩形的判定,熟练掌握基本的性质定理以及判定方法是解题关键.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(第
18) A 1
A 2 A 3 A 4
图7 A D
B C E
F 易错题测试
1.已知平行四边形的面积是144cm 2,相邻两边上的高分别为8cm 和9cm ,则这个平行四边形的周长为_______
2. 分别将下列条件中的哪两个条件组合。
可以判定四边形ABCD 是平行四边形? ①AB ∥CD ②AD ∥BC ③AB=CD ④AD =BC ⑤∠A=∠C ⑥∠B=∠D
3.如图,在
ABCD 中,E ,F 分别为AD ,CD 的中点,分
别连结EF ,EB ,FB ,AC ,AF ,CE ,则图中与△ABE 面积相等的三角形(不包括△ABE )共有的个数( ). A .3个 B .4个 C .5个 D .6个 4.如图7,将n 个边长都为1cm 的正方形按如图7所示摆放, 点A 1、A 2、…、A n 分别是正方形的对角线的中点,则n 个这样 的正方形重叠部分的面积和为( )
A .41cm 2
B .4n cm 2
C .41 n cm 2
D .n 4
1( cm 2
5.如图,矩形ABCD 中,AB=3,BC=4,若将矩形折叠,使C 点和A 点重合,则折痕EF=_____.
6.如图,以三角形的一条中位线和第三边上的中线为对角线的四边形是( ) A .梯形 B .平行四边形 C .菱形 D .矩形
7.一个等腰梯形的周长是80cm•,•如果它的中位线与腰长相等,•它的高是12cm ,这个梯形的面积_________。
8.如图1,梯形ABCD 中,AB ∥CD, EF 是中位线,EF 分别交AC 、BD 于M 、N ,若AB=8,CD=6,则MN =_______.
9.三角形的周长为a ,分别过它的三个顶点作其对边的平行线,这三条直线围成的三角形的周长为________
10.如图,杨伯家小院子的四棵小E F G H 、、、刚好在其梯形院子ABCD 各边的中点上,若在四边形EFGH 种上小草,则这块草地的形状是( )A .平行四边形 B .矩形 C .正方形 D .菱形
11、如图,在△ABD 中,∠ADB =90°,C 是BD 上一点,若E 、F 分别是AC 、AB 的中点,△DEF 的面积为3.5,则△ABC 的面积为 .
A D H G C F B
E 第10题 E F
第5题 第6题 第8题 第11题
12.点P 是矩形ABCD 的边AD 上的一个动点,矩形的两条边AB 、BC 的长分别为3和4,那么点P 到矩形的两条对角线AC 和BD 的距离之和是( )
13.在平面直角坐标系中,点A 、B 、C 的坐标分别是A(-2,5),B(-3,-1),C(1,-1),在第一象限内找一点D ,使四边形ABCD 是平行四边形,那么点D
的坐标是 14.(1)菱形ABCD 的周长为16cm,∠ABC=60°,E 是AB 的中点,点P 是BD 上的一动点,那么AP+PE 的最小值等于
15.在边长为2cm 正方形ABCD 中,点Q 为BC 边上的中点,点P 为对角线AC 上的一动点,连接PB ,PQ ,则△PBQ 周长的最小值为___________.
16.如图,P 是正方形内一点,如果△ABP 为等边三角形,DP 的延长线交BC 于G ,那么∠PCD=________.∠BPG =________.
第16题 第18题 第20题 17.在△ABC 中,D 、E 分别是AB 、AC 的中点,P 是BC 上任意一点,那么△PDE 的面积是△ABC 面积的( )
18. 如图,在△ABC 中,M 是BC 边的中点,AD 平分∠BAC ,BD ⊥AD 于点D ,若AB=12,AC=30,则MD 的长为( )
19.已知菱形ABCD 的边长为4,∠A =60°,如果点P 是菱形内一点,且PB =PD =2那
么AP 的长为 . 20.如图,点E 是正方形ABCD 对角线AC 上一点,AF BE 于点F ,交BD 于点G ,则下述结论
中不成立的是( )
A.AG=BE
B.△ABG ≌△BCE
C.AE=DG
D.∠AGD=∠DAG
第20题 第21题
21.将矩形纸片ABCD 按如图1-5所示的方式折叠,得到菱形AECF .若AB =6,则BC 的长为_________.
22.如图,将△ABC 绕点C (0,-1)旋转180°得到△ABC ,设点A 的坐标为),(b a 则点A 的坐标为( )
23.点A ,B ,C 的坐标分别为(0,-1),(0,2),(3,0),从下面四个点M (3,3),N (3,-3),P (-3,1),Q (-3,0)中选择一个点,以A ,B ,C 与该点为顶点的四边形不是中心对称图形,则该点是 ( )
A . M
B . N
C . P
D . Q 24. 在平行四边形ABCD 中,点A 1、A 2、A 3、A 4和C 1、C 2、C 3、C 4分别AB 和CD 的五等分点,点B 1、B 2和D 1、D 2分别是BC 和DA 的三等分点,已知四边形A 4 B 2 C 4 D 2的积为1,则平行四边形ABCD 面积为( )
F O
B
D
C
A
E (第22题)
B'
A'
A
B
C
x
y
O。