搅拌机设计流程

合集下载

浅谈混凝土搅拌站的整体设计及生产工艺流程

浅谈混凝土搅拌站的整体设计及生产工艺流程
种 , 4斗为 典 型 , 适 应 各 种级 配 的骨 料 贮 存 。 料 斗容 量 一 般 取 决 以 能 贮 于站 的生 产 能 力 , 料 斗 放 料 采 用气 动 控制 r 开 启 方 式 。 贮 J
6 配 料 及 卸 料 系统
此 系 统 是 将 混 凝 土 所 需 的各 种 物 料 ( 料 、 料 、 、 加剂 等 ) 骨 粉 水 外 , 骨料 计 量 按 汁量 方 式 区 分 , 砂 、 独 立计 量 和 累积 计 量 两 种 。 有 石 独 按 照 配 比 , 过 精 确 地 计 量 后 送 人 搅 拌 机 内 。目前 , 拌站 配料 的 汁量 通 搅 立计 量 是 在 每 个 贮 料 斗 下 设 置 称 量 斗 , 完成 计 量 后 开 肩 计 量 斗 气 动 用 电 子称 重 计 量 , 般 称 量 斗 采 用 三 点 式 . 计 量 槽 皮 带 机 采用 四 点 一 带 门, 骨料 落 到 下 方 的 水 平 皮 带 机 , 由水 平 胶 带 机 输 出 。 累积 计 量 是 在 水 式 , 量 斗 称 量值 较 小 ( 液 态 外 加 剂 ) 也 可 采 用 点 式 照 计 量 称 如 时 依
要】 混凝土搅拌站是用于生产 混凝土 的成套设备 , 适用于水电、 场、 机 公路 、 梁等 中小型规模的工程和商品混凝土生产, 桥 本文主要介
绍 混 凝 土 搅 拌 站 的 整 体设 计 及 生产 _ T 的流 程 -艺
【 关键词】 混凝土搅拌站; 骨料 ; 粉料 ; 配料 ; 搅拌机
人 们 对 于 混凝 土 的认 识 , 于 2 始 O世 纪 初 , 随着 人们 对 于 混凝 的 应 接 力 的 方 式 实 现 . 接续 螺 旋 设 置 两个 进 料 【 。 _ = I 用 也 越 来 越 多 ,能 够 大 量 生 产 各 种 类 型 混 凝 土 的 搅 拌 站 也 应 运 而生 。 下 面 简 单谈 淡混 凝 土搅 拌 站 的整 体 设 计 及 生 产 工 艺 流程 。 混 凝 土 搅 拌 站 是 由 骨 料 配 料 、 料送 料 、 料 料 、 料 给 料 、 骨 粉 粉 水

自动喂料搅拌机方案e--课程设计自动喂料搅拌机--课程设计

自动喂料搅拌机方案e--课程设计自动喂料搅拌机--课程设计

自动喂料搅拌机方案e--课程设计自动喂料搅拌机--课程设计方案概述:本方案的目标是设计一种自动喂料搅拌机,能够根据预设的配方自动将原料加入搅拌机中,并进行搅拌,最终产生所需的混合物。

本方案将包括硬件设计和软件编程两个部分。

硬件设计方案:1. 主控制器:选择一款适合的单片机或开发板作为主控制器,用于控制整个系统的运行。

主控制器需要有足够的输入输出接口,以便与其他模块进行通信。

2. 传感器模块:通过使用重量传感器或压力传感器,可以实时测量料斗中的原料重量或容器中的液体体积。

3. 执行机构:设计一个能够自动开关料斗或输送带的装置,用于控制原料的投放。

可以使用电磁阀、气缸或电机等执行机构。

4. 运动控制模块:用于控制搅拌机的运动,可以选择合适的电机和驱动器,通过控制电机的速度和方向来实现搅拌。

5. 人机界面:设计一个用户友好的人机界面,可以通过触摸屏或按键来设置配方、启动和停止搅拌机,并显示当前操作状态和混合物状态。

软件编程方案:1. 界面设计:使用合适的界面设计软件,设计一个直观的用户界面,可以输入和显示配方信息,并提供启动和停止按钮。

2. 系统控制:编写控制程序,根据用户设置的配方信息,控制传感器模块实时监测原料的重量或液体的体积,并根据设定的规则自动投放原料和启动搅拌机。

3. 数据存储和处理:使用合适的数据库或文件系统,将每次操作的配方信息、搅拌时间、原料投放量等数据进行存储和处理,便于后续的统计和分析。

4. 异常处理:编写异常处理程序,监测系统运行中可能出现的异常情况,例如原料不足、运动控制故障等,及时进行报警和处理。

5. 调试和优化:对系统进行测试和调试,检查各个模块的功能是否正常,优化程序的性能和稳定性。

以上是一个初步的自动喂料搅拌机设计方案,具体的实施方案需要根据具体要求和条件进行调整和优化。

在实施过程中,需要合理安排时间和资源,进行设计、制造、调试和测试等工作,最终完成一个稳定、高效的自动喂料搅拌机系统。

搅拌机设计流程

搅拌机设计流程

摘要搅拌机是搅拌设备的心脏。

在搅拌机设计及使用过程中,合理的选取搅拌机的结构,运动和工作参数,直接关系到混凝土等材料的搅拌质量和搅拌效率。

论文对搅拌臂的排列、搅拌叶片的安装角、拌筒长宽比、搅拌机转速和搅拌时间等主要参数的选取进行分析与试验研究。

通过归纳,给出了双卧轴搅拌机的主要参数,包括搅拌臂排列、叶片安装角、拌筒长宽比、搅拌线速度等;给出了评价搅拌机参数合理与否的准则;给出了搅拌臂排列的基本原则.论文通过试验研究,建议用叶片推动的物料量与该搅拌机的公称容量的比值rl,来综合评定搅拌臂的个数,叶片面积和其他参数匹配的合理性,并作为设计时的参考;双卧轴搅拌机的叶片的安装角范围为3l一45,对国内广泛使用的宽短型双卧轴搅拌机叶片安装角度推荐为45;对目前国内外普遍使用的双卧轴搅拌机,它的长宽比的选择范围为0.7-1.3,推荐使用值为小于1;搅拌机的转速主要受搅拌过程中混合料不发生离析现象所限制,对目前常用的双卧轴搅拌机,推荐的叶片线速度为1.4m/s—1.7m/s/;合理的搅拌时间是保证搅拌质量符合要求条件下的最短搅拌时间,它受充盈率等多种因素影响,合理的搅拌时间应通过试拌来确定。

[关键词]:搅拌机、主要参数、合理性、实验研究第1章前言1.1国内外研究现状及发展趋势19世纪40年代,在德、美、俄等国家出现了以蒸气机为动力源的白落式搅拌机,其搅拌腔由多面体状的木制筒构成,一直到19世纪80年代,才开始用铁或钢件代替木板,但形状仍然为多面体。

1888年法国申请登记了第一个用于修筑战前公路的混凝土搅拌机专利。

20世纪初,圆柱形的拌筒自落式搅拌机才开始普及,其工作原理如图1.2所示.形状的改进避免了混凝土在拌筒内壁上的凝固沉积,提高了搅拌质量和效率。

1903年德国在斯太尔伯格建造了世界上第一座水泥混凝土的预拌工厂。

1908年,在美国出现了第一台内燃机驱动的搅拌机,随后电动机则成为主要动力源。

从1913年,美国开始大量生产预拌混凝土,到1 950年,亚洲大陆的日本开始用搅拌机生产预拌混凝土。

自动喂料搅拌机课程设计说明书机械原理课程设计

自动喂料搅拌机课程设计说明书机械原理课程设计

机械原理课程设计说明书设计题目自动喂料搅拌机基本系数方案C系机电院专业机械设计班14-2设计者张国忠指导教师兰海鹏2012年5月29日目录、机器的工作原理及外形图 ..... 错误! 未定义书签、要求数据 ............ 错误! 未定义书签三、设计要求 (2)四、机器运动系统简图 (3)五、过程循环方式 (4)六、四杆机构尺寸设定 (4)七、凸轮机构尺寸设定 (6)八、机械传动计算 (7)九、齿轮设计 (8)十、飞轮转动惯量的确定 (10)十一、心得体会 (10)十二、参考文献 (10)自动喂料搅拌机方案设计(方案C)设计用于化学工业和食品工业的自动喂料搅拌机。

无聊的搅拌动作:电动机通过减速装置带动容器绕垂直轴缓慢整周转动;同时,固连在容器内半勺点E沿图1虚线所示轨迹运动,将容器中拌料均匀搅动。

物料的喂料动作:物料呈粉状或粒状定时从漏斗中漏出,输料持续一段时间后漏斗自动关闭。

一.数据:半勺E的搅拌轨迹数据(表1)自动喂料搅拌机运动分析(表2)自动喂料搅拌机动态静力分析及飞轮转动惯量数据(表3)二.设计要求(1) 机器应包括齿轮(或蜗杆蜗轮)机构、连杆机构、凸轮机构三种以上机构。

(2) 设计机器的运动系统简图、运动循环图。

(3) 设计实现搅料拌勺点E轨迹的机构,一般可米用铰链四杆机构。

该机构的两个固定铰链A、D的坐标值已在表2给出(在进行传动比计算后确定机构的确切位置时,由于传动比限制,D点的坐标允许略有变动)。

(4) 对平面连杆机构进行运动分析,求出机构从动件在点E的位移(轨迹)、速度、加速的;求机构的角位移,角速度,角加速度;绘制机构运动线图。

(5) 对连杆机构进行动态静力分析•曲柄1的质量与转动惯量略去不计,平面连杆机构从动件2、3的质量m、m及其转动惯量J s2J s3以及阻力曲线F Q参见表3。

根据F Qmin、F Qmax和拌勺工作深度h绘制阻力线图,拌勺所受阻力方向始终与点E 速度方向相反。

混凝土搅拌机搅拌部分设计

混凝土搅拌机搅拌部分设计

混凝土搅拌机搅拌部分设计混凝土搅拌机是一种常用于工程施工中的机械设备,主要用于将水泥、砂、石料等原料进行搅拌,形成均匀的混凝土。

搅拌部分是混凝土搅拌机的核心部件,其设计合理与否直接影响到混凝土搅拌机的工作效率和搅拌质量。

下面将从搅拌部分的结构设计、材料选择和动力系统等方面对混凝土搅拌机搅拌部分的设计进行详细阐述。

混凝土搅拌机搅拌部分的结构设计是影响其搅拌效果和维修保养的重要因素之一、一般情况下,搅拌部分由搅拌系统、传动系统和搅拌筒组成。

搅拌系统主要包括搅拌轴、搅拌叶片和搅拌桨等,其设计要保证能够充分混合原料,并提供足够的搅拌力。

搅拌轴应尽量设置可调节的转速,以满足不同类型混凝土的搅拌要求。

搅拌叶片和搅拌桨的形状和角度也需要经过仔细的计算和优化,以保证混凝土能够快速而均匀地进行搅拌。

材料的选择是混凝土搅拌机搅拌部分设计的关键。

由于混凝土搅拌机在工作过程中受到较大的力和摩擦,因此需要选择高强度、耐磨损的材料作为搅拌叶片和搅拌桨的制造材料。

常用的材料有高铬合金铸铁、高锰钢等,这些材料具有良好的耐磨性和抗冲击性能,能够有效延长搅拌部件的使用寿命。

动力系统是混凝土搅拌机搅拌部分的重要组成部分,其设计要合理、可靠,能够提供足够的动力供给。

一般情况下,混凝土搅拌机的动力系统采用电动机或柴油发动机,其选择要根据实际施工情况和工作环境来确定。

电动机一般适用于城市建筑施工等环境,柴油发动机适用于无电力供应的工地。

在动力系统的设计中,还需要考虑到机械传动部分的选型和合理配置,以提高传动效率和减少能量损失。

除了以上提到的几个方面,混凝土搅拌机搅拌部分的设计还需要考虑到结构的简化和操作的便捷性。

混凝土搅拌机的搅拌部分应尽可能简化结构,减少零部件的数量和重量,以降低成本和提高施工效率。

此外,搅拌部分的设计还应考虑到操作人员的安全和方便性,例如设置操作平台和安全防护设施等,以提供良好的工作环境。

综上所述,混凝土搅拌机搅拌部分的设计是一项复杂而重要的任务。

搅拌机设计

搅拌机设计

第一节 罐体的尺寸确定及结构选型 (一)筒体及封头型式选择圆柱形筒体,采用标准椭圆形封头 (二)确定内筒体和封头的直径发酵罐类设备长径比取值范围是 1.7~2.5,综合考虑罐体长径比对搅拌功率、传热以及物料特性的影响选取/ 2.5i H D =根据工艺要求,装料系数0.7η=,罐体全容积39V m =,罐体公称容积(操作时盛装物料的容积)390.7 6.3g V V m η=•=⨯=。

初算筒体直径iii D H D H D V 442ππ=≈34ηπi gi D H V D ≈即m D i 66.17.05.214.33.643≈⨯⨯⨯=圆整到公称直径系列,去mm DN 1700=。

封头取与内筒体相同内经,封头直边高度mm h 402=, (三)确定内筒体高度H当mm h mm DN 40,17002==时,查《化工设备机械基础》表16-6得封头的容积30.734v m =224(90.734)3.643.14 1.74i V vH m D π--===⨯,取 3.7H m = 核算/i H D 与η/ 3.7/1.7 2.18i H D ==,该值处于1.7~2.5之间,故合理。

226.30.69'1.7 3.70.73444g gi V V V D H vηππ====+⨯⨯+该值接近0.7,故也是合理的。

(四)选取夹套直径表1 夹套直径与内通体直径的关系由表1,取10017001001800j i D D mm =+=+=。

夹套封头也采用标准椭圆形,并与夹套筒体取相同直径 (六)校核传热面积工艺要求传热面积为211m ,查《化工设备机械基础》表16-6得内筒体封头表面积23.34,3.7i A m m =高筒体表面积为21 3.7 3.14 1.7 3.719.75i A D m π=⨯=⨯⨯=总传热面积为3.1419.7523.0911A =+=>故满足工艺要求。

第二节 内筒体及夹套的壁厚计算 (一)选择材料,确定设计压力按照《钢制压力容器》(15098GB -)规定,决定选用0189Cr Ni 高合金钢板,该板材在150C 一下的许用应力由《过程设备设计》附表1D 查取,[]103t MPa σ=,常温屈服极限137s MPa σ=。

基于PLC的搅拌机控制系统的设计

基于PLC的搅拌机控制系统的设计

基于PLC的搅拌机控制系统的设计搅拌机是一种常见的工业设备,它用于混合和搅拌各种物料,包括粉末、液体、颗粒等。

传统的搅拌机控制系统通常采用传感器和继电器进行控制,但这种方式存在一些问题,例如控制精度低、响应时间长、可靠性差等。

为了提高搅拌机的控制性能和可靠性,我们可以采用基于PLC的控制系统。

PLC是可编程逻辑控制器的缩写,它是一种专用的计算机控制设备,具有高速、高可靠性、易于编程和配置的特点。

基于PLC的控制系统可以通过将传感器和执行器与PLC连接,实现对搅拌机的精确控制。

搅拌机控制系统的设计需要以下几个步骤:1.确定控制需求:根据搅拌机的工作要求,确定需要控制的参数,例如转速、时间、温度等。

2.选择传感器和执行器:根据控制需求选择合适的传感器和执行器。

例如,可以使用旋转编码器或霍尔传感器测量搅拌机的转速,使用温度传感器测量搅拌机的温度。

3.设计控制逻辑:根据控制需求和传感器的反馈信号,设计PLC的控制逻辑。

例如,可以使用PID控制算法来控制搅拌机的转速,根据传感器测量的实际转速和设定值,调整搅拌机的驱动器。

4.编程PLC:根据设计的控制逻辑,使用PLC编程软件编写PLC程序。

PLC程序主要包括输入输出的配置、控制逻辑的实现和报警功能的设置。

6.性能优化:根据测试结果和用户反馈,对控制系统进行性能优化。

例如,可以调整PID控制算法的参数,优化控制精度和响应时间。

1.高可靠性:PLC具有高可靠性和抗干扰能力,能够稳定地工作在恶劣的工业环境下。

2.高精度控制:PLC的计算和控制速度快,能够实现对搅拌机的高精度控制,提高产品质量。

3.易于配置和扩展:PLC具有模块化的设计,可以根据需求进行灵活配置和扩展。

4.易于维护和诊断:PLC的编程和配置工具友好易用,能够快速诊断和修复故障。

总结:基于PLC的搅拌机控制系统能够提高搅拌机的控制性能和可靠性,增加生产效率和产品质量。

设计和实施这样的控制系统需要仔细考虑搅拌机的工作要求、选择合适的传感器和执行器、设计控制逻辑、编程PLC、调试和测试,并进行性能优化。

搅拌机设计

搅拌机设计

搅拌机设计搅拌机是一种广泛用于化工、食品、医药、冶金等领域的机械设备。

它主要作用是通过搅拌将混合物中的各种成分均匀混合,从而达到一定目的。

搅拌机的种类繁多,根据用途不同可以分为多种类型,如搅拌缸、搅拌桶、搅拌器等。

本文将重点介绍基于单臂搅拌桶的搅拌机设计。

1. 设计思路单臂搅拌桶搅拌机是搅拌机的一种,其主要结构由搅拌器和桶体组成。

搅拌器作为搅拌桶的核心部分,即负责将搅拌桶内的混合物材料进行均匀混合的部分。

其设计思路主要是根据不同的混合物特性和工艺要求,确定搅拌器的型号、参数、功率等技术指标,采用相应的结构设计、加工工艺和制造工艺来满足混合物材料的混合要求。

2. 设计要素2.1 搅拌器型号搅拌器型号是搅拌机设计中的一个重要因素。

它的选择应该根据混合物的物理和化学特性以及混合要求来决定。

常用的搅拌器类型有桨叶式、桶槽式、锥桶式、螺旋搅拌器等。

2.2 搅拌器参数搅拌器参数是指搅拌器的尺寸、转速、角度、形状等具体参数。

其取值应该在满足混合物材料粘度、密度、粒径等要求的前提下,尽量使搅拌效果更加均匀和充分。

搅拌器设计中应注意到需求和制造技术方案。

2.3 搅拌器功率搅拌器的功率是指搅拌器所需的电力功率。

其取值应该在满足混合物材料的混合要求的前提下,尽量降低能耗,减少搅拌机的能源浪费。

3. 设计流程搅拌机的设计流程通常涉及多个环节,包括参数选取、结构设计、加工制造、安装调试等。

下面将具体介绍搅拌机的设计流程。

3.1 参数选取参数选取阶段是搅拌机设计的第一阶段,也是最基础的阶段。

在这个阶段,设计人员需要确定搅拌器的型号、参数、功率等技术指标。

具体的方法通常是通过实验和理论计算相结合。

3.2 结构设计结构设计阶段是搅拌机设计的关键环节,也是最复杂的环节。

在这个阶段,设计人员需要根据参数要求和制造工艺对搅拌器的结构进行设计,包括搅拌器的尺寸、形状、传动方式、速度控制方式等方面。

3.3 加工制造加工制造阶段是搅拌机设计的另一关键环节,也是最重要的环节。

机械食品搅拌机毕业设计

机械食品搅拌机毕业设计

机械食品搅拌机毕业设计机械食品搅拌机毕业设计在现代社会中,随着人们对食品质量和口感要求的提高,食品加工行业也在不断发展。

机械食品搅拌机作为食品加工过程中的重要设备,对于食品的搅拌、混合、均匀等工艺起着至关重要的作用。

本文将从设计需求、设计原理、设计方案以及设计过程等方面,探讨机械食品搅拌机的毕业设计。

一、设计需求机械食品搅拌机的设计需求主要包括以下几个方面:1. 提高生产效率:食品加工行业对生产效率的要求越来越高,因此,机械食品搅拌机需要具备高效、快速的搅拌能力,以提高生产效率。

2. 保证食品质量:食品安全和质量是消费者关注的重点,机械食品搅拌机需要具备良好的搅拌效果,确保食品的均匀性和口感。

3. 提升操作便捷性:机械食品搅拌机的设计需要考虑操作的简便性,以方便工作人员进行操作和维护。

二、设计原理机械食品搅拌机的设计原理主要包括以下几个方面:1. 动力系统:机械食品搅拌机需要搭载适当的动力系统,如电动机或液压系统,以提供搅拌所需的动力。

2. 搅拌机构:搅拌机构是机械食品搅拌机的核心部件,其设计需要考虑到食品的特性和搅拌的效果。

常见的搅拌机构包括搅拌叶片、搅拌桨等。

3. 控制系统:机械食品搅拌机的控制系统需要能够精确控制搅拌的时间、速度和力度,以满足不同食品加工的需求。

三、设计方案基于以上的设计需求和设计原理,可以提出以下设计方案:1. 选择适当的动力系统:根据搅拌机的规模和工作条件,选择合适的电动机或液压系统,以提供稳定的动力输出。

2. 优化搅拌机构:设计合理的搅拌叶片和搅拌桨,以提高搅拌效果和均匀度。

可以采用不同形状和角度的叶片组合,以适应不同的食品加工需求。

3. 引入智能控制系统:采用先进的控制技术,实现对搅拌时间、速度和力度的精确控制。

可以加入传感器和自动化控制系统,提高操作的便捷性和搅拌的准确性。

四、设计过程机械食品搅拌机的设计过程可以分为以下几个步骤:1. 需求分析:明确设计需求,包括搅拌机的工作条件、搅拌效果和控制要求等。

搅拌机设计(最终版)

搅拌机设计(最终版)

搅拌机设计(最终版)设计搅拌机需要考虑的因素很多,包括设计的目的、材料、操作方式、维护和清洁等等。

在本文中,我们将深入探讨所有这些因素,并提出一个合适的搅拌机设计。

首先,搅拌机的设计目的是什么?搅拌机最基本的目的就是将不同的物质混合在一起。

这种混合可以是均匀的混合,也可以是将一个物质转化为另一个物质的反应过程。

在考虑搅拌机的材料时,需要考虑使用哪种材料才能不仅满足混合的需求,同时又可以安全地处理任何材料。

一些普通的材料,如不锈钢和塑料,都可以用于搅拌机的制造。

而选用的材料也应具有一定的硬度和较高的耐久性,这些技术体现在搅拌器的叶片之上。

处理不同的物质需要不同的操作方式。

例如,在混合固体和液体时,搅拌器需要以不同的速度旋转,以实现合适的混合效果。

因此,搅拌机需要具有可调速度的控制机制。

调速控制机制通常如此设计:搅拌机的电机可以根据需要转速自动调整。

这个过程又可以被人为控制来实现想要的混合效果。

当需要老爷车搅拌机维护或清洁时,搅拌器必须具有易于拆卸和清洗的部件。

另外,清洗时还需要注意一些细节。

例如,可以在不拆卸搅拌器的情况下将其放置在沸腾的热水中,以杀死许多细菌和病毒。

此外,搅拌机的外观和尺寸也需要根据使用的场合和设计风格来决定。

如果是家庭用途,那么搅拌机应该能够轻松地放在厨房的各个角落里。

而如果是工业用途,搅拌机则应使用更大的尺寸,使其能够容纳更多的物质并达到理想的混合效果。

最后,搅拌机的效能除了看使用者设计之外,其制造商也应当为搅拌机配备一些辅助功能,例如定时器和自动停止功能。

定时器可以使搅拌机在预定的时间内自动停止,而自动停止功能可以在混合完成后自动停止搅拌机。

综上所述,设计一个合适的搅拌机需要考虑的因素很多,但是这些因素的考虑都将决定搅拌机是否能够在实际应用场景中获得成功。

我们希望这篇文章对您有所帮助,欢迎您随时联系我们以获得更多信息。

机械原理课程设计-搅拌机

机械原理课程设计-搅拌机

湖南科技大学机械原理课程设计题目题号:搅拌机学院:机电工程学院专业班级:机三学生姓名:刘丁丁2021-6-7一设计题目:设计一用单相电动机作动力源的搅拌机给定数据要求〔1〕机构运动简图设计数据〔2〕机构动态静力分析设计数据二应完成的工作1 速度、加速度和机构受力分析图2 设计说明书1份。

目录摘要 (5)第一章搅拌机多用处和设计要求 (7)2.1机械简介 (7)2.2机构用处 (7)2.3技术方法 (7)第二章机构简介与设计 (8)3.1 机构简介 (8)3.2 机构简图 (8)3.3设计数据 (9)3.4速度、加速度析 (10)第三章静力分析 (12)结论 (17)心得体会 (18)致谢 (19)参考文献 (20)摘要老式搅拌机体积庞大,构造复杂,本钱高,效率低。

先进的搅拌技术设备,是降低消费本钱,进步成品质量做了很大的改良。

该机采用单相电动机做动力源,可在光大的农村使用,不用担忧需要较高的的动力电压的问题。

文中较详细的介绍了搅拌机的传动系统和执行机构,并对曲柄摇杆进展了详细的速度和加速度分析。

本机在满足消费需要的同时,改变了以往的复杂设计形式,大大缩短了消费周期,降低了本钱价格,进步了效率。

第一章搅拌机的用处和设计要求2.1 机构设计目的1〕改良现有的搅拌机形式,使搅拌机更加容易消费使用;2〕使机构的构造更加简单,更容易拆卸安装;3〕使用简单,使用者更容易掌握操作流程;4〕更好的使同学把所学的东西应用到实际的生活中去。

2.2 机构用处搅拌机是一种对物料进展混合均匀的机器,该机可代替人工在不方便或完成不了时使用,具有消费效率高,构造简单,稳定可靠,容易操作等特点。

搅拌机是用于对物料进展混合所用。

它能使物料在进展加热或在其他行业中能足够的进展混合,到达两种或两种以上的物料在搅拌下混合的非常均匀。

到达人们满意的程度。

该机构也可用在进展农药的混合。

2.3 课题研究的内容及拟采取的技术、方法本课题是对搅拌机的成型机的设计。

立式搅拌机设计方案与原理解析

立式搅拌机设计方案与原理解析

立式搅拌机设计方案与原理解析一、搅拌机的设计方案在设计立式搅拌机时,需要考虑以下几个方面的因素:1. 动力系统:搅拌机的动力系统应能够提供足够的动力以满足搅拌过程的需求。

可以选择电动机、柴油机或气动驱动系统。

根据搅拌物料的性质和工艺要求,选择适当的转速和功率。

2. 结构设计:搅拌机的结构设计应合理、稳固。

它应包括主轴、搅拌叶片和容器。

主轴要具备足够的强度和刚度,可选择合适的材料,并考虑磨损、腐蚀和疲劳等因素。

搅拌叶片的设计应考虑到搅拌物料的性质和流体力学原理,以实现高效搅拌。

3. 控制系统:搅拌机的控制系统应确保操作简便、稳定可靠。

可以通过采用自动控制系统、变频调速装置或反馈控制系统来实现对搅拌机的控制。

4. 安全保护措施:为了确保操作人员的安全和设备的正常运行,搅拌机应配置相应的安全保护装置,如过载保护装置、漏电保护装置和温度监测装置等。

二、搅拌机的工作原理解析立式搅拌机通过搅拌叶片的旋转运动产生剪切力、挤压力和离心力,将搅拌物料进行混合、分散和加工。

工作过程中,搅拌机主要利用以下原理实现搅拌效果:1. 剪切力:当搅拌叶片旋转时,其与搅拌物料之间产生剪切力。

这种剪切力可将颗粒或液体剪切成细小的碎片,使之更容易混合和反应。

2. 挤压力:由于搅拌叶片旋转时在搅拌物料中产生的压力差异,会引起搅拌物料的挤压现象。

这种挤压作用有助于均匀分布物料中的粒子、溶解气体和悬浮液体,实现更完全的混合效果。

3. 离心力:由于搅拌叶片的旋转,在搅拌过程中会产生离心力。

离心力可将物料从静止状态带到搅拌过程中,从而实现流体的混合和悬浮物料的均匀分布。

此外,搅拌机还可利用涡流效应、击打效应和螺旋混合效应等原理实现更复杂的混合效果。

涡流效应是指物料在搅拌叶片周围形成的涡流区,增加了物料的混合程度;击打效应是指搅拌叶片对物料的撞击和打击作用,能够使颗粒分离和混合;螺旋混合效应是指搅拌叶片的螺旋状设计,使得物料在搅拌过程中具有自然的螺旋流动,从而实现更均匀的混合。

自动喂料搅拌机课程设计

自动喂料搅拌机课程设计

机械原理课程设计自动喂料搅拌机小组成员目录一、设计题目(包括设计条件、要求)二、功能分析三、机构选用四、方案评价(要求二种方案,多者不限)五、机构组合(绘制机械运动简图)六、机械系统运动循环图八、机构几何尺寸计算和运动分析九、运用三维动画验证机构运动设计的合理性(部分机构)十、设计总结十一、主要参考文献。

一.设计题目设计用于化学工业和食品工业的自动喂料搅拌机。

物料的搅拌动作为:电动机通过减速装置带动容器绕垂直轴缓慢整周转动;同时,固连在容器内拌勺点E沿图1虚线所示轨迹运动,将容器中拌料均匀搅动。

物料的喂料动作为:物料呈粉状或粒状定时从漏斗中漏出,输料持续一段时间后漏斗自动关闭。

喂料机的开启、关闭动作应与搅拌机同步。

物料搅拌好以后的输出可不考虑。

工作时假定拌料对拌勺的压力与深度成正比,即产生的阻力呈线性变化,如图1示。

图1 喂料搅拌机外形及阻力线图二. 功能分解该机器是为了完成自动喂料搅拌功能,需实现以下的运动功能要求:(1)呈粉状或粒状的物料定时从漏斗中漏出输料一段时间后漏斗自动关闭。

因此需要设计相应的摆动从动件凸轮机构来实现。

(2)容器在电动机的带动下通过减速装置绕垂直轴转动。

因此需要设计适当的齿轮机构来实现。

(3)固连在容器内拌勺按照规定的轨迹运动,将容器中拌料均匀搅动。

因此需要合适的四杆机构来实现。

通过对这三个机构的运动功能作进一步分析,可知道他们应该分别实现以下基本运动:(1)摆动从动件凸轮机构的基本运动有:运动形式的变换,运动停歇,运动方向交替变换。

(2)齿轮机构的运动形式有:运动缩小,齿轮回转运动,运动轴线变换。

(3)四杆机构的运动形式有:连杆的的回转运动。

三.机构选用四.方案评价根据拌勺E的搅拌轨迹、搅拌机的运动分析和动态静力分析及飞轮转动惯量产生A、B两种方案,如下表表1拌勺E的搅拌轨迹数据表2自动喂料搅拌机运动分析数据表3自动喂料搅拌机动态静力分析及飞轮转动惯量数据方案评价:一.机构的复杂性紧凑性方案A中蜗杆头数z1=1 蜗轮齿数z2=240 轮系齿数z1=z2`=17 z2=34 z3=85方案B中蜗轮头数z1=1 蜗轮齿数z2=160 轮齿系数z1=17 z2`=24 z2=102 z3=72所以方案B的齿轮比方案A的齿轮紧凑二.运动平稳性从表3可看出A方案所受的阻力小于B方案,A中最大力与最小力之差较小所以运动过程A较平稳三.从效率来看由表2可看出A方案电动机转速大于B方案的电动机转速,且A方案每次搅拌时间较少所以A方案的效率更高四经济性可行性从效率、平稳性来看A方案的经济性和可行性更高所以综合来看,A方案较好五、机构组合(绘制机械运动简图)图1为蜗轮蜗杆减速机构简图图1图2为摆动从动件盘形凸轮机构简图(控制进料)图2图3为铰链四杆机构简图图3图4为机构组合图(其中四杆机构和凸轮机构之间有轮系连接如图5所示)图4图5为连接四杆机构和凸轮机构的轮系六、机械系统运动循环图凸轮基0 90 180 270 360 圆转角七.机构几何尺寸计算和运动分析1.容器旋转功能中蜗轮蜗杆的参数2.轮系传动系统的数据分析A方案曲柄的转速6r/min 每次搅拌90秒即转9周蜗杆齿数z1=1 涡轮齿数z2=240蜗轮蜗杆减速传动比i=ω发动机/ω蜗轮=z2/z1=1440/6=240/1物料装入时间为50秒凸轮近休止程为π所以凸轮基圆周期为100秒即转速为0.6r/min所以传动比i=ω1/ω凸轮=6/0.6=10/1所以用轮系传动ω1/ω凸轮=(z2z3)/(z1z4)=(34*85)/(17*17)=10/1 B方案曲柄的转速9r/min 每次搅拌100秒即转15周蜗杆齿数z1=1 涡轮齿数z2=160蜗轮蜗杆减速传动比i=ω发动机/ω蜗轮=z2/z1=1440/9=160/1物料装入时间为60秒凸轮近休止程为π所以凸轮基圆周期为120秒即转速为0.5r/min所以传动比i=ω1/ω凸轮=9/0.5=18/1所以用轮系传动ω1/ω凸轮=(z2z3)/(z1z4)=(102*72)/(17*24)=18/1八、运用三维动画验证机构运动设计的合理性(部分机构)见文件《部分三维动画》九.设计总结该设计机构主要包括三方面的运动:1.电动机带动容器旋转2.摆动从动件盘形凸轮机构执行进料口的开启和闭合 3.铰链四杆机构执行搅拌运动。

搅拌机的设计

搅拌机的设计

摘要搅拌设备使用历史悠久,应用范围广,大量应用于化工、石化、轻工、医药、食品、采矿、造纸、冶金等行业中。

搅拌设备可以从各种不同角度进行分类,如按照搅拌装置的安装形式简单分为立式和卧式,其中卧式主要是指搅拌容器轴线与搅拌器回转轴线都处于水平位置。

本课题在国内外搅拌器的研究与发展的基础上,设计了一种新的带有搅拌和振动排料功能的卧式搅拌器结构设计方案以进行用于食品工业的面粉搅拌操作.该卧式搅拌器具有两条传动系统,第一条主传动系统采用V带和齿轮传动实现搅拌操作,第二条传动系统采用多楔带和凸轮组合传动实现搅拌箱体的振动运动.本文对卧式搅拌器的基本结构、基本尺寸进行了详细设计,并利用PRO/ENGINEER对搅拌器结构进行三维建模和运动仿真,以便更直观地展现设计思想和进行结构分析;然后,对设计零件进行了分析校核,保证搅拌器的可靠运行。

关键词:卧式搅拌器;混合设备;面粉加工;食品工业ABSTRACTMixing equipment has been used long time ago, and applied widely in the traditional processing industry such as chemical,petrochemical,light industry, medical industry,food, mining, papermaking,metallurgy and so on. Mixing equipment can be classified by many means。

Horizontal type and vertical type can be classified according to the shaft seal’s fixing method。

Of the two type,the horizontal type means both the tank's axes and the shaft's spin axis are horizontal。

混凝土搅拌机毕业设计设计

混凝土搅拌机毕业设计设计

混凝土搅拌机毕业设计设计题目:混凝土搅拌机的设计与优化一、引言混凝土是建筑施工过程中常用的材料之一,用于制作建筑物的基础、地板、梁柱等构件。

混凝土搅拌机是混凝土施工过程中必不可缺的设备,用于将水泥、砂子、骨料和掺合料等物料充分搅拌均匀,制成混凝土。

二、问题分析目前市场上已有多种不同型号的混凝土搅拌机,但存在一些不足之处,如能耗高、搅拌效率低、可靠性差等问题。

因此,本设计旨在设计一种新型的混凝土搅拌机,以解决现有搅拌机存在的问题并提高其性能。

三、设计内容1.混凝土搅拌机的整体结构设计:包括搅拌筒、传动装置、电机等部分的布局和连接方式。

设计应考虑到搅拌筒的稳定性、传动效率和整机结构的紧凑性。

2.动力系统设计:选择合适的电机功率、转速和传动装置,以提供足够的动力输出和搅拌效率。

3.混拌系统设计:包括选择适当的搅拌筒形状和布局,以及优化搅拌叶片的数量和形状,以提高搅拌效果和均匀度。

4.操作控制系统设计:设计人性化的操作界面和控制方式,方便操作人员进行控制和监测搅拌过程中的各项参数。

5.安全保护系统设计:设计可靠的安全保护装置,如过载保护、漏电保护等,以确保操作人员的安全。

四、设计优化方法1.仿真模拟:使用计算机辅助设计软件对搅拌机进行仿真模拟,分析不同参数对搅拌效果和能耗的影响,优化设计方案。

2.实验验证:在实验室中进行多组不同参数条件下的实验,通过测量搅拌效果和能耗等指标,验证设计方案的合理性和优越性。

3.参考经验:借鉴已有的混凝土搅拌机设计和应用经验,结合自身设计要求和条件,选择合适的设计方案。

五、设计成果与预期效益通过本设计,预期可以得到一种新型的混凝土搅拌机,具有以下特点和优势:1.搅拌效率高:通过优化搅拌系统设计,提高搅拌效果和混凝土均匀度,提高施工效率。

2.能耗低:通过合理选择传动装置和优化搅拌叶片等措施,降低搅拌机的能耗。

3.结构紧凑:设计整体结构紧凑,占地面积小,方便施工现场使用。

4.操作便捷:设计人性化的操作界面和控制方式,方便操作人员进行控制和监测。

立式搅拌机设计指南

立式搅拌机设计指南

立式搅拌机设计指南立式搅拌机广泛应用于化工、食品、医药等行业,在溶解、混合、搅拌等工艺中扮演着重要角色。

为了确保立式搅拌机的高效运行和安全可靠性,本文将提供立式搅拌机设计的详细指南。

一、工作原理:立式搅拌机的工作原理是通过搅拌机底部安装的旋转叶轮将搅拌物料带动起来,并将其分散、混合和循环。

搅拌机的电机通过传动装置将动力传输给旋转叶轮,从而产生强大的搅拌力。

二、结构设计:1. 主体结构:立式搅拌机的主体结构通常由机座、搅拌器、传动装置和控制系统组成。

机座的设计应考虑到稳定性和坚固性,同时便于操作和维护。

搅拌器的设计要考虑到材料的选择和形状的设计,以实现最佳的搅拌效果。

传动装置的设计应选择合适的传动比例,以确保搅拌机的高效运行。

2. 叶轮设计:立式搅拌机的叶轮设计应考虑到材料的选择和叶片的形状。

叶片的形状和数量将直接影响到搅拌的效果和能耗。

设计时应采用合理的几何形状和间距,以确保搅拌作业的均匀性和高效性。

3. 传动装置:立式搅拌机的传动装置通常是由电机、减速器和轴承组成。

电机的选择要考虑到工作负荷的要求和电机的功率。

减速器的选型应根据叶轮的转速和扭矩要求进行选择。

轴承的选择要考虑到工作环境的要求和轴承的承载能力。

三、安全设计:1. 隔离和保护:立式搅拌机的运转过程中可能会产生噪音和振动,因此应对机器进行有效的隔离和保护。

合理的隔离和保护措施可以降低噪音和振动对操作人员和周围环境的影响。

2. 安全设施:立式搅拌机应配备安全设施,如急停按钮、过载保护装置和漏电保护装置等。

这些设施可以及时保护操作人员的安全,并确保设备的稳定运行。

3. 操作人员培训:为了保证立式搅拌机的安全运行,应对操作人员进行必要的培训,使其了解设备的使用方法、操作规程和安全注意事项。

操作人员应具备必要的理论知识和实际操作经验,以提高设备的安全性和运行效率。

四、维护保养:1. 定期检查:立式搅拌机的各个部件和连接点应定期进行检查,以确保其正常运行并及时发现问题。

一份搅拌机的设计说明书

一份搅拌机的设计说明书

1.2设计规定1.2.1重要任务1.2.2知识规定1.2.3能力培养规定1.2.4综合素质规定1.2.5设计成果规定旳叶片强迫物料按预定轨迹产生剪切、挤压、翻滚和抛出等强制搅拌作用,使物料在剧烈旳相对运动中得到匀质搅拌。

强制式搅拌机工作原理如图1-2,与自落式搅拌机相比,强制式搅拌机搅拌作用强烈,搅拌质量好,搅拌效率高,但拌筒和叶片磨损大,功耗增大。

此种搅拌机适于拌制干硬性、轻骨料混凝土以及特种混凝土和专用混凝土,多用于施工现场旳混凝土搅拌站和预拌混凝土搅拌楼。

根据构造特征不同,重要有立轴涡浆式搅拌机、立轴行星式搅拌机、立轴对流式搅拌机、单卧轴搅拌机和双卧轴搅拌机等。

图1-1 自落式搅拌机工作原理示意图图1-2 强制式搅拌机工作原理示意图随着技术旳发展,强制式搅拌机在德国旳BHS公司和ELBA公司、美国旳JOHNSON公司和REX WORKS公司、意大利旳SICOMA公司和SIMEN公司、日本旳日工株式会社和光洋株式会社等公司发展迅速,目前已形成系列产品。

例如德国旳EMC系列、EMS系列搅拌站和UBM系列、EMT系列搅拌楼,意大利旳MAO系列搅拌站、MSO系列大型搅拌基地等。

国内混凝土搅拌设备旳生产从20世纪50年代开始。

1952年,天津工程机械厂和上海建筑机械厂试制出国内第一代混凝土搅拌机,进料容量为400L和1000L。

20世纪70年代未至80年代初,国内为适应建筑业商品混凝2.3核心部件旳构造设计2.3.1搅拌构造图2-1 搅拌机旳拌筒示意图1.判定长宽比合理与否旳原则常用搅拌机旳拌筒呈圆筒形,如图2-1所示。

它旳重要几何参数可用直角坐标系旳3个坐标(x ,y ,z)来描述。

文献【2】中运用扩散方程对搅拌过程进行了综合模拟,得到了搅拌过程优化旳目旳函数--≈-≈1,0,00,1,00,0,1ttt式中,搅拌旳平均时间t旳角标表达拌筒三维坐标及其顺序。

该式旳物理意义是:合理旳搅拌机参数应保证在满足给定旳均匀度指标旳前提下,在拌筒内各个方向旳搅拌时间相接近。

机械原理课程设计之搅拌机

机械原理课程设计之搅拌机
• 适用于粉末、颗粒和粘 稠物料的混合
螺旋搅拌器
• 高效混合效果,适用于 多种材料的混合
• 常用于食品、化工和制 药等行业
飞刀搅拌器
• 快速切割和搅拌材料, 研磨效果好
• 常用于制备鱼饲料、果 酱等产品
搅拌机的应用领域
食品工业 制药工业 建材工业
化工工业 冶金工业 环保工业
搅拌机设计案例及效果
工业级搅拌机
1
容量
搅拌机的容量应根据生产需求和材料特性来确定,既满足搅拌效果,又提高生产 效率。
2
结构
搅拌机的结构设计要考虑到机械强度、稳定性、易于清洁和维护等因素。
3
控制系统
先进的控制系统能够实现搅拌过程的自动化控制和监测,提高生产的稳定性和一 致性。
常见的搅拌机类型
搅拌桶
• 容量大,适用于混合大 批量原料
搅拌机和搅拌器
常常与搅拌机混淆,实际上采用 的是切割和研磨的工作原理。
搅拌机的工作原理
传动系统
电动马达或传动机构通过动力传递给搅拌器或搅拌杆,使其产生旋转运动。
材Байду номын сангаас混合
旋转的搅拌器与材料接触,通过剪切、牵引和混合等动作,将材料均匀混合。
加热或冷却
某些搅拌机还具备加热或冷却功能,可根据需要对材料进行温度调控。
食品搅拌机
通过合理的结构设计和控制系统, 实现了高效、稳定和安全的生产 调配。
专为食品加工而设计,能够满足 食品行业对卫生和品质的要求。
实验室搅拌机
小型搅拌机,适用于实验室研究 和小批量样品的混合。
搅拌过程中的物理原理
1 牛顿流体力学
根据牛顿流体力学定律,搅拌过程中的力学行为可以通过简化的数学模型进行描述。

面包搅拌机制造工序

面包搅拌机制造工序

面包搅拌机制造工序你知道面包搅拌机是怎么做出来的吗?好吧,不说你也许真的不知道。

做面包搅拌机,就像做一道复杂的大菜一样,得经过好多步骤,但一旦知道了它的流程,你就会觉得,哎呀,这东西怎么这么有趣!咱们从头说起。

想象一下,面包搅拌机一开始其实就是一堆零件,金属的、塑料的、还有那些转轴、传动装置,怎么看都像是机械拼图。

工程师们就像厨师一样,把这些零件按照巧妙的顺序“调配”在一起,哇,这个过程真得有点像做美食,每一步都得精心设计,随便一个小差错,可能面包搅拌机就“变味”了。

咱得准备好主机。

别小看这个主机,它其实是面包搅拌机的“心脏”。

没它,其他的零件就像没有骨架的肉体,根本无法运转。

你看,主机可得有个大致的框架,得结实耐用,还要能承受重负载。

做主机的时候,工人们得先把金属部件一一组装好,注意呀,这个过程可不是随便扔几个螺丝就行。

每一块金属板都得打磨得光滑平整,像大厨把蔬菜切得整整齐齐一样,做得不仔细的话,搅拌机就无法顺利运行,谁也不想让它在工作的时候“出岔子”。

接着就轮到搅拌部分了,这可是重头戏。

搅拌器是面包机里最“调皮”的部件,它得把面粉和水等各种原料都混合得均匀,才能做出松软的面包。

设计师必须考虑到搅拌器的形状,材料以及与其他部件的配合,简直像是工艺品一样精细。

搅拌器的刀片或者叶片要做到既坚固又灵活,不然一搅拌就会卡住,或者根本搅拌不好。

每个零件都得像乐器一样调调好,太软了不行,太硬了也不行,得找到最合适的“口感”。

除了这些“硬核”部件,面包搅拌机里还有一堆小配件。

比如,传动系统。

这可是面包搅拌机的“动力来源”,它就像汽车发动机里的传动装置一样,负责将电机产生的动力传递到搅拌器。

这个小家伙一旦出问题,面包搅拌机可就“失业”了。

所以,每一个零件都得精心装配,保证力量能顺畅地传递。

如果传动系统出了问题,搅拌器就没力气动弹,那时候你能做面包?呵呵,估计只能做梦了。

然后呢,还有一个特别重要的部分——控制面板。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

摘要搅拌机是搅拌设备的心脏。

在搅拌机设计及使用过程中,合理的选取搅拌机的结构,运动和工作参数,直接关系到混凝土等材料的搅拌质量和搅拌效率。

论文对搅拌臂的排列、搅拌叶片的安装角、拌筒长宽比、搅拌机转速和搅拌时间等主要参数的选取进行分析与试验研究。

通过归纳,给出了双卧轴搅拌机的主要参数,包括搅拌臂排列、叶片安装角、拌筒长宽比、搅拌线速度等;给出了评价搅拌机参数合理与否的准则;给出了搅拌臂排列的基本原则。

论文通过试验研究,建议用叶片推动的物料量与该搅拌机的公称容量的比值rl,来综合评定搅拌臂的个数,叶片面积和其他参数匹配的合理性,并作为设计时的参考;双卧轴搅拌机的叶片的安装角范围为3l一45,对国内广泛使用的宽短型双卧轴搅拌机叶片安装角度推荐为45;对目前国内外普遍使用的双卧轴搅拌机,它的长宽比的选择范围为0.7—1.3,推荐使用值为小于1;搅拌机的转速主要受搅拌过程中混合料不发生离析现象所限制,对目前常用的双卧轴搅拌机,推荐的叶片线速度为1.4m /s-1.7m/s/;合理的搅拌时间是保证搅拌质量符合要求条件下的最短搅拌时间,它受充盈率等多种因素影响,合理的搅拌时间应通过试拌来确定。

[关键词]:搅拌机、主要参数、合理性、实验研究第1章前言1.1国内外研究现状及发展趋势19世纪40年代,在德、美、俄等国家出现了以蒸气机为动力源的白落式搅拌机,其搅拌腔由多面体状的木制筒构成,一直到19世纪80年代,才开始用铁或钢件代替木板,但形状仍然为多面体。

1888年法国申请登记了第一个用于修筑战前公路的混凝土搅拌机专利。

20世纪初,圆柱形的拌筒自落式搅拌机才开始普及,其工作原理如图1.2所示。

形状的改进避免了混凝土在拌筒内壁上的凝固沉积,提高了搅拌质量和效率。

1903年德国在斯太尔伯格建造了世界上第一座水泥混凝土的预拌工厂。

1908年,在美国出现了第一台内燃机驱动的搅拌机,随后电动机则成为主要动力源。

从1913年,美国开始大量生产预拌混凝土,到1 950年,亚洲大陆的日本开始用搅拌机生产预拌混凝土。

在这期间,仍然以各种有叶片或无叶片的自落式搅拌机的发明与应用为主⋯。

自落式搅拌机依靠被拌筒提升到一定高度的物料的自落完成搅拌。

工作时,随着拌筒的转动,物料被搅拌筒内壁固定的叶片提升到一定高度后,依靠自重下落。

由于各物料颗粒下落的高度、时问、速度、落点和滚动距离不同,从而物料各颗粒相互穿插、渗透、扩散,最后达到均匀混合。

自落式搅拌机结构简单,可靠性高,维护简单,功率消耗小,拌筒和叶片磨损轻,但搅拌强度不高,生产效率低,搅拌质量不易保证。

此种搅拌机适于拌制普通塑性混凝土,广泛应用于中小型建筑工地。

按拌筒形状和卸料方式的不同,有鼓筒式搅拌机、双锥反转出料搅拌机、双锥倾翻出料搅拌机和对开式搅拌机等,其中鼓简式搅拌机技术性能落后,已于1987年被我国建设部列为淘汰产品。

随着多种商品混凝土的广泛使用以及建筑规模的大型化、复杂化和高层化对混凝土质量、产量不断提出的更高要求,有力地促进了混凝土搅拌设备在使用性能和技术水平方面的提高与发展。

各国研究人员开始从混凝土搅拌机的结构形式、传动方式、搅拌腔衬板材料以及搅拌生产工艺等方面进行改进和探索。

20世纪40年代后期,德国ELBA公司最先发明了强制式搅拌机,和自落式搅拌机的工作原理不同,强制式搅拌机利用旋转的叶片强迫物料按预定轨迹产生剪切、挤压、翻滚和抛出等强制搅拌作用,使物料在剧烈的相对运动中得到匀质搅拌。

强制式搅拌机工作原理如图1.3,与自落式搅拌机相比,强制式搅拌机搅拌作用强烈,搅拌质量好,搅拌效率高,但拌筒和叶片磨损大,功耗增大。

此种搅拌机适于拌制干硬性、轻骨料混凝土以及特种混凝土和专用混凝土,多用于施工现场的混凝土搅拌站和预拌混凝土搅拌楼。

根据构造特征不同,主要有立轴涡浆式搅拌机、立轴行星式搅拌机、立轴对流式搅拌机、单卧轴搅拌机和双卧轴搅拌机等。

图1.2 自落式搅拌机工作原理示意图图1.3强制式搅拌机工作原理示意图随着技术的发展,强制式搅拌机在德国的BHS公司和ELBA公司、美国的JOHNSON 公司和REX WORKS公司、意大利的SICOMA公司和SIMEN公司、日本的日工株式会社和光洋株式会社等企业发展迅速,目前已形成系列产品。

比如德国的EMC系列、EMS系列搅拌站和UBM系列、EMT系列搅拌楼,意大利的MAO系列搅拌站、MSO系列大型搅拌基地等。

我国混凝土搅拌设备的生产从20世纪50年代开始。

1952年,天津工程机械厂和上海建筑机械厂试制出我国第一代混凝土搅拌机,进料容量为400L和1000L。

20世纪70年代未至80年代初,我国为适应建筑业商品混凝土大规模发展的需要,在引进国外样机的基础上,有关院所厂家陆续开发了新一代Jz型双锥自落式搅拌机、.D型单卧轴强制式搅拌机。

其中,JS型双卧轴搅拌机在80年代初研制成功。

80年代末,我国混凝土搅拌产品开发重点转向商品混凝土成套设备,研制出了10多种混凝土搅拌楼(站)。

经过引进吸收、自主开发等几个阶段,到本世纪初,国内混凝土搅拌机技术得到长足发展,在产品规格和生产数量上,都达到了一定规模,出现了一批具有自主知识产权的新技术,逐步形成了一个具有一定规模和竞争能力的行业。

2006年,我国生产装机容量O.5~6m3的搅拌站2100多台,已成为混凝土搅拌设备的生产大国。

1.2国内外搅拌机参数的研究现状对搅拌设备来说,搅拌机构是核心装置,混凝土搅拌质量的好坏,搅拌机生产率的高低以及使用维修费用的多少都与它有关,目前,双卧轴搅拌机是国内的主导机型,因此,国内外对卧轴搅拌机技术进行了比较广泛、深入的研究。

国外对卧轴搅拌机技术的研究起因于对沥青混和料拌和抽样和方法准确度的分析,由于试验中采用的1t间歇式卧轴强制搅拌器,抽取的样品测试数据显示了在搅拌器的一种设计与另一种设计之间,由于桨叶的排列方式不同,有可能成为造成混合料均匀度的明显差别的主要原因。

研究人员分析认为:所用的双轴桨叶式搅拌器中,材料的主要运动是一种在与轴垂直的平面内,围绕着每根轴的不规则转动。

在桨叶相遇或重叠的部位,材料在一根轴之间的区域内相互交换着,材料的辅助运动是与两根轴平行的,从搅拌轴的一个旋转平面到另一旋转平面。

在用来构成辅助运动方面,不同设计方案的搅拌器,变化是很广泛的。

混合料在两根轴之间的区域内运动是不规则的,但是在轴的两侧,物料则围绕着搅拌器内壁在水平面内作某种循环运动,运动的程度都会受到桨叶端面与它们移动方向的夹角的影响。

为了找到在搅拌器其它设计特点保持不变的情况下,由于改变桨叶端面的角度和安装方式而产生的不同方案的辅助运动,以及对被搅拌的混和料均匀度的影响程度,研究人员制造了一套带有可调桨叶的特殊桨臂。

通过央紧作用,将桨叶紧固到桨臂的圆柱部分,并可按任意角度调整,而且可按根右旋或左旋螺距来安装于搅拌轴上。

在一些搅拌器中,将垂直于它们移动方向的平面桨叶,向左和向右交替地转一定角度,使这些桨叶的排列方式不是按照产生一种有规则的辅助运动,所以在搅拌器内材料的输送不是始终如一地从一端到另一端。

当使物料由轴的两端向中心运动时。

物料向中心堆积,有一些物料则从堆积料的顶端溢出,再从两端返回,那旱物料的水平面要低得多。

在另外一些搅拌器中,桨叶的排列可使物料产生有规则的辅助运动。

一轴上的所有桨叶端面都使物料朝一个方向运动,而另一根轴上的所有桨叶端面部使物料朝相反的方向运动。

在桨叶相对于搅拌轴不同的倾斜角度情况下,分别采用两种桨叶排列方式进行试验:①将所有桨叶调至使物料向搅拌器的中心运动:②将一根轴上的所有桨叶都安装成使物料向右运动,而另一根轴上的所有桨叶都安装成使物料向左运动,以便能使物料在平面内围绕着搅拌器产生顺时针方向的循环或旋转运动。

这两种排列方式被称为“向心”方式和“旋转”方式。

试验按18批物料作为一个系列来进行,它覆盖的变化因素包括:三种桨叶角度(15、30和45)、两种桨叶排列方式和三种搅拌时间(1min、2min和4min)。

获得拌和匀质性分析的样品总数为213个。

分别计算出每批混和料样品中粘结料的百分比标准离差和通过给定筛子的物料百分比标准离差,将标准离差转换为离差系数,以便提供不同混和料之间合理有效的比较。

第2章搅拌机主要参数2.1双卧轴搅拌机的主要参数本文以目前广泛使用的双卧轴搅拌机为主,对搅拌装置几何和运动参数的合理取值范围进行分析和试验研究。

搅拌装置参数主要有:搅拌臂的排列、搅拌叶片的安装角、拌筒的长宽比及搅拌线速度等,其结构如图2 1(a)所示,主要参数如图2 1(b)所列:图2.1(a)双卧轴搅拌机结构图2.1双卧轴搅拌机主要参数2.2搅拌机参数选取的准则目前国内外广泛使用的自落式和强制式搅拌机己沿用了50余年。

但在搅拌机设计和使用中,仍采用类比法这样的经验方法,缺乏合理性;由于对搅拌过程的机理研究不够,对如何选择这一参数,说法不一,缺乏科学性;在搅拌过程中,混合料的物理一化学性能都发生了变化,这一过程极其复杂而影响因素又较多,但由于对诸参数综合优化的试验研究不深入,且设计和使用者在选择转速值时缺少依据。

搅拌机是混凝土制备设备的心脏,它必须满足搅拌质量与搅拌效率等性能要求。

搅拌质量就是生产出符合国家标准要求的新拌混凝土;搅拌效率就是在满足搅拌质量的前提下,搅拌时间要尽量短,以提高设备的生产率和设备的利用率,降低生产成本。

百年大计,质量第一。

混凝土是重要的建筑材料,新拌混凝土质量是对搅拌机性能的最基本的要求,也是首要的性能要求。

混凝土质量用其宏观及其微观均匀度来评价,宏观均匀性用拌和物中砂浆密度的相对误差埘<O.8%和粗骨料质量的相对误差AG<5%来衡量,微观均匀性用混凝土强度的平均值豆,标准差盯和离差系数G来衡量。

豆值越高、G值越小,说明混凝土质量越好;反之亦然。

因此,搅拌机械应在保证新拌混凝土质量满足国家标准要求的前提下高效节能的工作,这就是确定搅拌机合理参数的准则。

搅拌机在设计和使用中主要参数的选取准则也可用数学表达式来表示。

对搅拌搅拌过程进行综合模拟,给出了搅拌机参数优化的目标函数:式中,搅拌的平均时间f的角标表示拌缸(或拌筒)三维坐标(x,y,z)或(z,r,由)及其顺序。

该式的物理意义是:合理的搅拌机参数应保证在满足给定的均匀度指标的前提下,在拌缸内各个方向的搅拌时间相接近。

这时选取的搅拌机的主要参数较合理。

可利用实验来调整搅拌机的参数,使其趋于合理。

在不同的搅拌时间,按三维坐标方向测搅拌的均匀度就可知道,在所有方向都达到给定的均匀度的时间。

一般来}兑,在三个方向同时都达到给定的均匀度指标是不可能的,总会有先有后。

应根据实验结果,调整搅拌机结构及相应的参数,使得能够在搅拌室内所有方向上能接近同时达到给定的均匀度。

相关文档
最新文档