数字信号处理和滤波器设计

合集下载

数字信号处理滤波器设计

数字信号处理滤波器设计
系统函数包括:无限长单位脉冲响应的系统函数和有限长单位脉 冲响应的系统函数,可根据容限选择IIR或FIR滤波器。
逼近——在滤波器设计中逼近是一个重要的环节。逼近就是给定所要求 的滤波器性能后,去寻找一个物理可实现的系统函数,使它的频率特性 尽可能近似所要求的滤波器特性,也就是指对理想特性进行逼近,最后
脉冲响应不变法让数字滤波器的脉冲响应和模拟滤波器
的脉冲响应在采样点上完全一样。即: hn ha nT
单位脉冲响应不变法的设计思想:使 数字滤波器从时域去模仿模拟滤波器。
H a s L1 ha t 采样 ha nT hn Z变换 Hz
2.脉冲响应不变法设计的系统的频率响应
E
H e jwi H d e jwi
2 最小
i 1
第二步:进行迭代运算,确定最优系数
N
ai z i
H z
i0 N
1 bi z i
i 1
DF的传递函数
通过改变 Hz的系数 ai、 bi,分别计算均方误差E , 经过多次迭代运算,寻找一组系数 ai、 bi,使得均方误差
利用模拟滤波器设计数字滤波器, 首先利用模拟滤波器的现成结果, 在S平面设计出符合要求的模拟滤波
器的传递函数H a s ,再通过一定的
映射关系,得到数字滤波器的传递
函数 Hz 。
二. 最常用的几种模拟原型低通滤波器的逼近方法
在进行IIR 数字滤波器的设计时, 要逼近模拟原型低通滤波器, 模拟低通滤波器通常仅考虑幅频特性,习惯上以幅度平方函数来表示 模特性。
即要求
② 是因果稳定的映射
指 H a s 的因果稳定性通过映射后, Hz 仍应保持因果
稳定。
§4.2 脉冲响应不变法

数字信号处理中的滤波器设计原理

数字信号处理中的滤波器设计原理

数字信号处理中的滤波器设计原理在数字信号处理中,滤波器是一种用于处理信号的重要工具。

它可以通过选择性地改变信号的频率特性,滤除不需要的频率成分或增强感兴趣的频率成分。

滤波器的设计原理可以分为两个方面:频域设计和时域设计。

一、频域设计频域设计是一种以频率响应为初始条件的设计方法。

其基本思想是通过指定理想频率响应来设计滤波器,并将其转化为滤波器的参数。

常见的频域设计方法包括理想滤波器设计、窗函数法设计和频率抽取法设计。

1. 理想滤波器设计理想滤波器设计方法是基于理想滤波器具有理想的频率响应特性,如理想低通滤波器、理想高通滤波器或理想带通滤波器等。

设计过程中,我们首先指定滤波器的理想响应,然后通过傅里叶变换将其转化为时间域中的脉冲响应,最终得到频率响应为指定理想响应的滤波器。

2. 窗函数法设计窗函数法是一种将指定的理想滤波器响应与某种窗函数相乘的设计方法。

常见的窗函数有矩形窗、汉宁窗、汉明窗等。

通过将理想滤波器响应与窗函数相乘,可以获得更实际可行的设计结果。

3. 频率抽取法设计频率抽取法是一种通过对滤波器的选择性抽取来设计的方法。

在该方法中,我们通常先设计一个频域连续的滤波器,然后通过采样抽取的方式,将频域上的滤波器转化为时域上的滤波器。

二、时域设计时域设计是一种以时域响应为初始条件的设计方法。

其基本思想是通过直接设计或优选设计时域的脉冲响应,进而得到所需的滤波器。

常用的时域设计方法包括有限脉冲响应(FIR)滤波器设计和无限脉冲响应(IIR)滤波器设计。

1. FIR滤波器设计FIR滤波器是一种具有有限长度的脉冲响应的滤波器。

在设计FIR滤波器时,我们可以通过多种方法,如频率采样法、窗函数法、最小二乘法等来优化滤波器的设计参数。

2. IIR滤波器设计IIR滤波器具有无限长度的脉冲响应,其设计涉及到环节函数的设计。

常见的IIR滤波器设计方法有巴特沃斯滤波器、切比雪夫滤波器和椭圆滤波器等。

综上所述,数字信号处理中的滤波器设计原理可以基于频域设计和时域设计。

数字信号处理基础与数字滤波器设计原理

数字信号处理基础与数字滤波器设计原理

数字信号处理基础与数字滤波器设计原理数字信号处理(Digital Signal Processing,简称DSP)是指对数字信号进行各种算法操作和处理的一种技术方法。

数字滤波器是数字信号处理的重要组成部分,它可以对信号进行滤波、去噪、增强等处理,广泛应用于通信系统、音频处理、图像处理等领域。

本文将介绍数字信号处理的基础知识以及数字滤波器的设计原理。

一、数字信号处理基础数字信号是以离散时间和离散幅度为特点的信号。

与之相对的是模拟信号,模拟信号是连续时间和连续幅度的信号。

数字信号处理主要涉及到离散时间信号的采样、量化和离散化。

其中,采样是指将连续时间信号在一定时间间隔内进行离散采样,量化是指将连续幅度信号离散化为一系列的数字值。

数字信号处理的基础操作包括信号的变换、滤波和频谱分析等。

信号的变换可以将信号从时域转换到频域,常用的变换方法包括傅里叶变换、离散傅里叶变换和小波变换等。

滤波是对信号中某些特定频率成分的增强或抑制,常用的滤波方法有低通滤波、高通滤波、带通滤波和带阻滤波等。

频谱分析可以用于分析信号的频率特性,了解信号中包含的频率成分。

二、数字滤波器的基本概念数字滤波器是数字信号处理中最常用的工具之一,它可以从输入信号中选择性地提取或抑制某些频率成分。

根据滤波器的特性,可以将其分为无限长冲激响应(Infinite Impulse Response,IIR)滤波器和有限长冲激响应(Finite Impulse Response,FIR)滤波器。

无限长冲激响应滤波器是一种递归滤波器,其输出是输入信号与滤波器的冲激响应的卷积运算结果。

无限长冲激响应滤波器具有宽带特性和较好的频率响应,但在实际应用中会引入稳定性问题。

有限长冲激响应滤波器是一种非递归滤波器,其输出仅与输入信号和滤波器的系数有关,不涉及历史输入。

有限长冲激响应滤波器的稳定性较好,容易实现,并且可以通过调整滤波器的系数来实现不同的滤波效果。

三、数字滤波器设计原理数字滤波器的设计过程主要包括滤波器类型的选择、滤波器规格的确定和滤波器参数的计算。

数字信号处理中的滤波器设计及其应用

数字信号处理中的滤波器设计及其应用

数字信号处理中的滤波器设计及其应用数字信号处理中的滤波器是一种用于处理数字信号的工具,它能够从信号中去除杂音、干扰等不需要的部分,使信号变得更加清晰、准确。

在数据通信、音频处理、图像处理等各种领域都有着广泛的应用。

本文将探讨数字信号处理中的滤波器设计及其应用。

一、滤波器的分类根据滤波器能否传递直流分量,可以将滤波器分为直流通、低通、高通、带通和带阻五种类型。

1.直流通滤波器:直流通滤波器不会滤除信号中的直流分量,只是将信号波形的幅值进行调整。

它主要用于直流电源滤波、电池充电电路等。

2.低通滤波器:低通滤波器可以通过滤除信号中的高频分量来保留低频分量,其截止频率通常指代3dB的频率,低于该频率的信号通过的幅度保持不变,而高于该频率的信号则被削弱。

低通滤波器主要用于音频处理、语音识别等。

3.高通滤波器:高通滤波器与低通滤波器相反,它滤除低频分量,只保留高频分量。

其截止频率也指代3dB的频率,高于该频率的信号通过的幅度保持不变。

高通滤波器主要用于图像处理、视频处理等。

4.带通滤波器:带通滤波器可以通过滤除一定频率范围内的信号,使得出现在该频率范围内的信号通过,而其他的信号则被削弱。

带通滤波器主要应用于频率选择性接收和频率选择性信号处理。

5.带阻滤波器:带阻滤波器可以通过滤除一定频率范围内的信号,使得不在该频率范围内的信号通过,而其他的信号则被削弱。

带阻滤波器主要应用于频率选择性抑制和降噪。

二、滤波器设计方法滤波器的设计需要考虑其所需的滤波器类型、截止频率、通/阻带宽度等参数。

现有的设计方法主要有两种:频域设计和时域设计。

1.频域设计:频域设计是一种基于频谱分析的滤波器设计方法,其核心是利用傅里叶变换将时域信号转换为频域信号,进而根据所需的滤波器类型和参数进行滤波器设计。

常见的频域设计方法包括理想滤波器设计、布特沃斯滤波器设计、切比雪夫滤波器设计等。

理想滤波器设计基于理想低通、高通、带通或带阻滤波器的理论,将所需的滤波器类型变换为频率响应函数进行滤波器设计。

数字信号处理实验数字巴特沃思滤波器的设计

数字信号处理实验数字巴特沃思滤波器的设计

数字信号处理实验数字巴特沃思滤波器的设计数字信号处理技术是现代通信、音频、图像等领域中不可或缺的一门技术。

数字信号处理的核心是数字滤波器设计,本文将介绍一种常用的数字滤波器——数字巴特沃斯滤波器的设计方法。

一、数字滤波器简介数字滤波器是将连续时间信号转换成离散时间信号,实现对离散时间信号的滤波处理,具有实时性好、精度高、可重复性强等优点。

数字滤波器有两种类型:有限冲激响应(FIR)滤波器和无限冲激响应(IIR)滤波器。

二、数字巴特沃斯滤波器数字巴特沃斯滤波器是一种常用的IIR滤波器,其主要特点是具有平坦的通/阻带,通/阻带边缘陡峭。

因此在实际应用中,数字巴特沃斯滤波器应用较为广泛。

数字巴特沃斯滤波器的设计方法一般包括以下步骤:确定滤波器类型、确定通/阻带的截止频率、确定滤波器的阶数、计算滤波器的系数。

1、确定滤波器类型在实际应用中,数字巴特沃斯滤波器有四种类型:低通、高通、带通和带阻滤波器,应根据实际需求选择。

2、确定通/阻带的截止频率通常情况下,固定本例中采用的是低通滤波器,需要确定的就是通带和阻带的截止频率。

对于低通滤波器,通带截止频率ωc应该比信号频率fs的一半小,阻带截止频率ωs 应该比ωc大一些,通常ωs/ωc取0.5~0.7比较好。

滤波器的阶数一般是与滤波器的性能相关的。

阶数越高,性能越好,但同时计算量也会更大。

在实际应用中,一般取4~8的阶数即可。

4、计算滤波器的系数根据上述参数计算滤波器的系数,这里介绍两种常用的方法:一种是脉冲响应不变法(Impulse Invariant Method),另一种是双线性变换法(Bilinear Transformation)。

脉冲响应不变法是一种较为简单的设计方法,但由于其数字滤波器与连续时间滤波器之间的不同,可能会引入一定程度的失真。

双线性变换法可以使二阶系统和一阶系统的增益分别为1和0dB,这是一种比较理想的设计方法。

四、实验步骤本实验采用Matlab软件进行数字滤波器的设计,具体步骤如下:1、打开Matlab软件,新建一个.m文件;2、输入需要滤波的数字信号,此处可以使用Matlab自带的signal工具箱中的一些模拟信号;4、使用filter函数实现数字滤波器对信号的滤波过程;5、通过比较信号的频谱图,评估滤波器的性能。

数字信号处理实验报告-FIR滤波器的设计与实现

数字信号处理实验报告-FIR滤波器的设计与实现

数字信号处理实验报告-FIR滤波器的设计与实现在数字信号处理中,滤波技术被广泛应用于时域处理和频率域处理中,其作用是将设计信号减弱或抑制被一些不需要的信号。

根据滤波器的非线性抑制特性,基于FIR(Finite Impulse Response)滤波器的优点是稳定,易设计,可以得到较强的抑制滤波效果。

本实验分别通过MATLAB编程设计、实现、仿真以及分析了一阶低通滤波器和平坦通带滤波器。

实验步骤:第一步:设计一阶低通滤波器,通过此滤波器对波型进行滤波处理,分析其对各种频率成分的抑制效果。

为此,采用零极点线性相关算法设计滤波器,根据低通滤波器的特性,设计的低通滤波器的阶次为n=10,截止频率为0.2π,可以使设计的滤波器被称为一阶低通滤波器。

第二步:设计平坦通带滤波器。

仿真证明,采用兩個FIR濾波器組合而成的阻礙-提升系統可以實現自定義的總三值響應的設計,得到了自定義的總三值響應函數。

实验结果:1、通过MATLAB编程,设计完成了一阶低通滤波器,并通过实验仿真得到了一阶低通滤波器的频率响应曲线,证明了设计的滤波器具有良好的低通性能,截止频率为0.2π。

在该频率以下,可以有效抑制波形上的噪声。

2、设计完成平坦通带滤波器,同样分析其频率响应曲线。

从实验结果可以看出,此滤波器在此频率段内的通带性能良好,通带范围内的信号透过滤波器后,损耗较小,滞后较小,可以满足各种实际要求。

结论:本实验经过实验操作,设计的一阶低通滤波器和平坦通带滤波器具有良好的滤波特性,均已达到预期的设计目标,证明了利用非线性抑制特性实现FIR滤波处理具有较强的抑制滤波效果。

本实验既有助于深入理解FIR滤波器的设计原理,也为其他应用系统的设计和开发提供了指导,进而提高信号的处理水平和质量。

fir数字滤波器设计与软件实现数字信号处理实验原理

fir数字滤波器设计与软件实现数字信号处理实验原理

fir数字滤波器设计与软件实现数字信号处理实验原理FIR数字滤波器设计的基本原理是从理想滤波器的频率响应出发,寻找一个系统函数,使其频率响应尽可能逼近滤波器要求的理想频率响应。

为了实现这一目标,通常会采用窗函数法进行设计。

这种方法的基本思想是,将理想滤波器的无限长单位脉冲响应截断为有限长因果序列,并用合适的窗函数进行加权,从而得到FIR滤波器的单位脉冲响应。

在选择窗函数时,需要考虑其频率响应和幅度响应。

常见的窗函数包括矩形窗、三角形窗、汉宁窗、汉明窗、布莱克曼窗和凯泽窗等。

每种窗函数都有其特定的特性,如主瓣宽度、旁瓣衰减等。

根据实际需求,可以选择合适的窗函数以优化滤波器的性能。

在软件实现上,可以使用各种编程语言和信号处理库进行FIR滤波器的设计和实现。

例如,在MATLAB中,可以使用内置的`fir1`函数来设计FIR滤波器。

该函数可以根据指定的滤波器长度N和采样频率Fs,自动选择合适的窗函数并计算滤波器的系数。

然后,可以使用快速卷积函数`fftfilt`对输入信号进行滤波处理。

此外,还可以使用等波纹最佳逼近法来设计FIR数字滤波器。

这种方法的目标是找到一个最接近理想滤波器频率响应的实数序列,使得在所有可能的实
数序列中,该序列的误差平方和最小。

通过优化算法,可以找到这个最优序列,从而得到性能更优的FIR滤波器。

总的来说,FIR数字滤波器设计与软件实现数字信号处理实验原理是基于对理想滤波器频率响应的逼近和优化,通过选择合适的窗函数和算法,实现信号的滤波处理。

数字信号处理实验FIR数字滤波器的设计

数字信号处理实验FIR数字滤波器的设计

数字信号处理实验:FIR数字滤波器的设计1. 引言数字滤波器是数字信号处理的关键技术之一,用于对数字信号进行滤波、降噪、调频等操作。

FIR (Finite Impulse Response) 数字滤波器是一种常见的数字滤波器,具有线性相应和有限的脉冲响应特性。

本实验旨在通过设计一个FIR数字滤波器来了解其基本原理和设计过程。

2. FIR数字滤波器的基本原理FIR数字滤波器通过对输入信号的每一个样本值与滤波器的冲激响应(滤波器的系数)进行线性加权累加,来实现对信号的滤波。

其数学表达式可以表示为:y(n) = b0 * x(n) + b1 * x(n-1) + b2 * x(n-2) + ... + bN * x(n-N)其中,y(n)表示滤波器的输出,x(n)表示滤波器的输入信号,b0~bN表示滤波器的系数。

FIR数字滤波器的脉冲响应为有限长度的序列,故称为有限冲激响应滤波器。

3. FIR数字滤波器的设计步骤FIR数字滤波器的设计主要包括以下几个步骤:步骤1: 确定滤波器的阶数和截止频率滤波器的阶数决定了滤波器的复杂度和性能,而截止频率决定了滤波器的通带和阻带特性。

根据实际需求,确定滤波器的阶数和截止频率。

步骤2: 选择滤波器的窗函数窗函数是FIR滤波器设计中常用的一种方法,可以通过选择不同的窗函数来实现不同的滤波器特性。

常用的窗函数有矩形窗、汉宁窗、汉明窗等。

根据实际需求,选择合适的窗函数。

步骤3: 计算滤波器的系数根据选择的窗函数和滤波器的阶数,使用相应的公式或算法计算滤波器的系数。

常见的计算方法有频率采样法、窗函数法、最小二乘法等。

步骤4: 实现滤波器根据计算得到的滤波器系数,可以使用编程语言或专用软件来实现滤波器。

步骤5: 评估滤波器性能通过输入测试信号,观察滤波器的输出结果,评估滤波器的性能和滤波效果。

常见评估指标有滤波器的幅频响应、相频响应、群延迟等。

4. 实验步骤本实验将以Matlab软件为例,演示FIR数字滤波器的设计步骤。

数字信号处理名词解析及滤波器原理和设计

数字信号处理名词解析及滤波器原理和设计

论述计算题(40分)1、试分析DFT与DTFT及Z变换之间的关系,并详细阐述用DFT计算线性卷积的方法和步骤。

FT(傅里叶变换)是对纯虚数变换的情况,是拉普拉斯变换的特殊情况,即傅里叶变换是S仅在虚轴上取值的拉普拉斯变换。

Z变换是离散化的拉普拉斯变换(即拉普拉斯变换对应的是连续信号,而Z变换对应的是离散信号),是离散时间傅里叶变换(DTFT)的一种拓展形式,所以Z变换和拉普拉斯变换类似。

DFT(离散傅里叶变换)是傅里叶变换的离散形式,也即将x(t)进行傅里叶变换后进行离散采样得的函数X[jw]DTFT(离散时间傅里叶变换)为将x(t)先进行离散采样处理得到离散时间系列x[n],然后再对x[n]进行傅里叶变换。

可以看作是将()jwX e在频域展开为傅立叶级数,傅立叶系数即是x[n]。

DTFT是Z变换的特殊情况,只有绝对可和的离散信号才有DTFT,所以Z变换用于那些不满足绝对可和的信号,如T j Tz eσ+Ω=(T 是采样间隔),当σ=0时,就是DTFT。

此时其时域是离散的,而频域依然是连续的。

图像上,对应的是z平面的单位圆。

用DFT计算线性卷积:线性卷积:一个离散序列通过一个离散的线性时不变系统,它的输出即为y[k],即在时域上,输出信号等于输入信号和系统的单位脉冲响应h[k] 的卷积。

即:y[][]*[]k x k h k=y[k]利用DFT 的循环卷积特性,可由DFT 计算线性卷积:比如若系列x[k]的长度为N,系列h[k]的长度为M,则L>=N+M-1点的循环卷积等于x[k]与h[k]的线性卷积。

即:x[k]*h[k]=x1[k] h1[k]DFT实现具体过程为:1. 首先将两序列在尾部补零,延拓成长度为L=M+N -1的序列2. 将两序列进行循环卷积,卷积后的结果即为线性卷积的结果 即:其中乘法总次数为:23log 2LL L ⨯+ 结论:线性卷积可以完全使用DFT 实现,而DFT 可以使用其快速算法FFT 大大降低计算量。

数字信号处理第五章-IIR数字滤波器的设计

数字信号处理第五章-IIR数字滤波器的设计
24
2、由模平方函数确定系统函数
模拟滤波器幅度响应常用幅度平方函数表示:
| H ( j) |2 H ( j)H *( j)
由于冲击响应h(t)为实函数,H ( j) H *( j)
| H ( j) |2 H ( j)H ( j) H (s)H (s) |s j
H (s)是模拟滤波器的系统函数,是s的有理分式;
分别对应:通带波纹和阻带衰减(阻带波纹)
(4种函数)
只介绍前两种
31
32
33
无论N多大,所 有特性曲线均通 过该点
特性曲线单调减小,N越大,减小越慢 阻
特性曲线单调减小,N越大,减小越快
34
20Nlog2:频率增加一倍,衰减6NdB
35
另外:
36
无论N多大,所 有特性曲线均通 过Ωc点: 衰减3dB, Ωc 为 3dB带宽
8
根据
(线性相位滤波器)
非线性相位滤波器
9
问题:
理想滤波器的幅度特性中,频带之间存 在突变,单位冲击响应是非因果的;
只能用逼近的方法来尽量接近实际的要 求。
滤波器的性能要求以频率响应的幅度特 性的允许误差来表征,如下图:
10
p
11
低通滤波器的频率响应包括:
通带:在通带内,以幅度响应的误差δp逼近 于1;
20
3、数字滤波器设计的基本方法
利用模拟理论进行设计 先按照给定的技术指标设计出模拟滤波 器的系统函数H(s),然后经过一定的变 换得到数字滤波器的系统函数H(z),这实 际上是S平面到Z平面的映射过程: 从时域出发,脉冲响应不变法 从频域出发,双线性变换法 适合于设计幅度特性较规则的滤波器, 如低通、高通等。
由于系统稳定, H(s)的极点一定落在s的左半 平面,所以左半平面的极点一定属于H(s),右 半平面的极点一定属于H(-s)。

数字信号处理数字滤波器的原理和设计方法

数字信号处理数字滤波器的原理和设计方法
n0
H (e j ) H g ( )e j ( )
第三十四当页前,34共页,一共百16六1页十,一星期页日。。
式中,Hg(ω)称为幅度特性,θ(ω)称为相位特性。注意,这里 Hg(ω) 不 同 于 |H(ejω)|,Hg(ω) 为 ω 的 实 函 数 , 可 能 取 负 值 , 而 |H(ejω)|总是正值。H(ejω)线性相位是指θ(ω)是ω的线性函数, 即
y(n)
H(k)
FFT
h(n)
用循环卷积计算线性卷积
第三十三页,共一当前百33页六,共十161一页,页星期。日。
4.线性相位FIR数字滤波器的网络结构
本节主要介绍FIR滤波器具有线性相位的条件及幅度特性
以及零点、网络结构的特点。 1. 线性相位条件
对于长度为N的h(n),传输函数为
N 1
H (e j ) h(n)e jn
y(n)=ay(n-1)+x(n) 其单位脉冲响应h(n)=anu(n)。
IIR系统的特点:
(1)h(n)为无限长的序列 (2)结构中一般含有反馈环路,为递归结构
(3)系统函数H(z)有a系数
第十二页,共一当前百12页六,共十161一页,页星期。日。
4.3 无限长脉冲响应基本网络结构
1.直接型 对N阶差分方程重写如下:
M
N
y(n)bix(ni)aiy(ni)
i0
i1
第十当前三1页3页,,共共一16百1页六,十星一期页日。。
M
H ( z )
Y (z) X (z)
i0 N
1
bi z i ai z i
i1
M
H 1 ( z ) bi z i , H 2 ( z )
1

数字信号处理实验报告四IIR数字滤波器设计及软件实现

数字信号处理实验报告四IIR数字滤波器设计及软件实现

数字信号处理实验报告四IIR数字滤波器设计及软件实现实验目的:本实验的目的是了解IIR数字滤波器的设计原理和实现方法,通过MATLAB软件进行数字滤波器设计和信号处理实验。

一、实验原理IIR数字滤波器是一种使用有限数量的输入样本和前一次输出值的滤波器。

它通常由差分方程和差分方程的系数表示。

IIR滤波器的特点是递归结构,故其频率响应是无限长的,也就是说它的频率响应在整个频率范围内都是存在的,而不像FIR滤波器那样只有在截止频率处才有响应。

根据设计要求选择合适的滤波器类型和滤波器结构,然后通过对滤波器的模型进行参数化,设计出满足滤波要求的IIR滤波器。

常见的IIR滤波器设计方法有模拟滤波器设计方法和数字滤波器设计方法。

在本实验中,我们主要使用数字滤波器设计方法,即离散时间滤波器设计方法。

二、实验内容(一)设计IIR数字滤波器的步骤:1.确定滤波器类型:根据滤波要求选择合适的滤波器类型,如低通滤波器、高通滤波器、带通滤波器、带阻滤波器等。

2.确定滤波器的阶数:根据滤波要求确定滤波器的阶数。

阶数越高,滤波器的频率响应越陡峭,但计算复杂度也越高。

3. 设计滤波器原型:根据滤波要求,设计滤波器的原型。

可以选择Butterworth滤波器、Chebyshev滤波器、Elliptic滤波器等作为原型。

4.选择滤波器结构:根据计算机实现条件和算法复杂度,选择合适的滤波器结构。

常见的滤波器结构有直接形式I、直接形式II、级联形式等。

5.参数化滤波器模型:根据原型滤波器的差分方程,选择合适的参数化方法。

常见的参数化方法有差分方程法、极点/零点法、增益法等。

6.根据参数化的滤波器模型,计算出所有的滤波器系数。

(二)用MATLAB软件实现IIR数字滤波器设计:1.打开MATLAB软件,并创建新的脚本文件。

2. 在脚本文件中,使用MATLAB提供的滤波器设计函数,如butter、cheby1、ellip等,选择合适的滤波器类型进行设计。

数字信号处理与统计滤波器设计

数字信号处理与统计滤波器设计

数字信号处理与统计滤波器设计数字信号处理(DSP)是一种通过将连续信号转换为离散形式,并使用数字算法对其进行处理的技术。

在数字信号处理中,滤波器是一个关键的组成部分,用于去除噪声、降低信号失真以及分离不同频率的信号成分。

而统计滤波器设计则结合了统计学和信号处理的方法,通过对信号的统计特性进行建模和分析来设计滤波器,以达到更好的信号处理效果。

一、数字信号处理概述数字信号处理是一种基于数学和信号理论的技术,它通过将连续信号转换为离散形式,然后使用数字算法对其进行处理和分析。

相比于模拟信号处理,数字信号处理具有更高的灵活性和可靠性,并且可以轻松地实现复杂的算法和功能。

数字信号处理广泛应用于通信、音频处理、图像处理、雷达系统等领域。

二、滤波器的作用滤波器是数字信号处理中常用的工具,它可以去除信号中的噪声和干扰,同时保留感兴趣的信号成分。

滤波器可以根据其频率响应的特性来进行分类,常见的滤波器类型包括低通滤波器、高通滤波器、带通滤波器和带阻滤波器等。

通过选择不同类型的滤波器,可以根据信号的需求来实现滤波处理。

三、统计滤波器设计原理统计滤波器设计是一种结合了统计学和信号处理的方法,其设计原理基于对信号的统计特性进行建模和分析。

统计滤波器通常使用一些统计学工具和方法,如平均值、方差、自相关函数、互相关函数等来描述和分析信号的特征。

通过对信号的统计特性进行建模,可以设计出更适合信号处理的滤波器。

四、统计滤波器设计步骤(1)信号建模:通过对信号的观测数据进行统计分析,建立信号的数学模型。

可以利用统计学方法估计信号的概率分布、自相关函数、功率谱密度等统计特性。

(2)滤波器设计:根据信号的数学模型和所需滤波器的频率响应特性,设计合适的滤波器结构和参数。

可以使用传统的滤波器设计方法,如FIR滤波器设计、IIR滤波器设计等。

(3)滤波器性能评估:对设计的滤波器进行性能评估,可以使用一些指标如滤波器的频率响应、群延迟、幅度响应等来评估滤波器的效果。

数字信号处理中的频域特性与滤波器设计

数字信号处理中的频域特性与滤波器设计

数字信号处理中的频域特性与滤波器设计随着科技的不断发展,数字信号处理已经成为了现代通信、网络传输、声音和图像处理等方面不可缺少的一种技术手段。

数字信号处理主要包括时域处理和频域处理。

其中频域处理是指将信号在频域中进行分析和处理的过程。

而在频域处理中,频域特性和滤波器设计则是两个非常重要的话题。

一、频域特性在数字信号处理中,频域特性指的是信号在频域中的表现形式。

频率可以被看作是信号在时间轴上的周期性表现,可以为我们提供信号的很多实用信息。

例如,当我们获取到一个音频信号时,我们可以通过分析其频率来识别出信号中的不同音调,从而更好地理解信号。

信号的频域特性通常被用于信号分析、滤波器设计和系统设计等方面。

其中一个非常重要的频域概念是频域表示。

信号的频域表示是指将信号变换到频域中的过程。

在数字信号处理中,最常用的频域表示方法是傅里叶变换。

傅里叶变换是将一个信号从时间域转换到频域的过程。

例如,当我们需要分析一个音频信号时,我们可以通过进行傅里叶变换,将信号从时间域转换到频域,然后分析其频域特性,从而更好地理解信号的内容和特性。

在频域处理中,我们还需要了解一个重要的概念——频域滤波。

频率滤波是一种常用的信号处理技术,可以被用于去除信号中的噪声或者强调信号的某些频率成分。

常用的频域滤波方法包括低通滤波、高通滤波和带通滤波等。

其中低通滤波器可以通过去除高频成分来去除信号中的高频噪声,使信号更加平滑;高通滤波器可以通过去除低频成分来去除信号中的低频噪声,从而使信号更加锐利;带通滤波器可以通过去除特定的高或低频成分,来强调信号中某些频率的成分。

二、滤波器设计在数字信号处理中,滤波器设计是一件非常重要的工作。

滤波器通常用于去除信号中的噪声或强化信号的特定频率成分等。

通常,滤波器可以被分为时域滤波器和频域滤波器两种。

1.时域滤波器时域滤波器是指直接对时域信号进行滤波的一类滤波器。

时域滤波器的设计通常分为有限冲击响应(FIR)滤波器和无限冲击响应(IIR)滤波器两类。

DSP滤波算法设计与实现

DSP滤波算法设计与实现

DSP滤波算法设计与实现DSP(Digital Signal Processing,数字信号处理)滤波算法在信号处理领域中起到了至关重要的作用。

滤波算法可以对信号进行分析、处理和改善,去除噪音、增强信号等。

本文将介绍DSP滤波算法的设计和实现原理,以及常见的滤波器类型和应用场景。

一、滤波算法设计原理1. 数字滤波器的基本原理数字滤波器将离散时间的输入信号转换为输出信号,其基本原理是通过对输入信号进行离散化和加权求和的过程来实现。

滤波器的核心是滤波器系数的选择和滤波器结构的设计。

2. 滤波器设计方法常用的数字滤波器设计方法包括频率抽样法、模拟滤波器转换法、窗函数法和优化算法等。

频率抽样法根据滤波器的频率响应特性进行设计,模拟滤波器转换法则是将模拟滤波器的设计方法应用于数字滤波器设计。

窗函数法通过选择适当的窗函数对滤波器的频率响应进行修正。

优化算法通过数学优化模型对滤波器进行设计。

二、常见的滤波器类型1. FIR滤波器FIR(Finite Impulse Response,有限冲激响应)滤波器是一种常见的数字滤波器类型。

它的特点是只有有限个非零响应值,不存在反馈路径。

FIR滤波器具有线性相位和稳定性,适用于广义线性相位要求的应用领域。

2. IIR滤波器IIR(Infinite Impulse Response,无限冲激响应)滤波器是另一种常见的数字滤波器类型。

它的特点是存在反馈路径,具有无限长的冲激响应。

IIR滤波器具有较小的滤波器阶数,可以实现较小的延迟,适用于实时性要求较高的应用领域。

三、滤波器的应用场景1. 语音信号处理在语音信号处理中,滤波器可以用于降噪、语音增强、语音识别等任务。

通过采用合适的滤波器设计和优化算法,可以提高语音信号的清晰度和可理解性。

2. 图像处理在图像处理中,滤波器可以用于图像去噪、边缘检测、图像增强等任务。

通过采用适当的滤波器类型和参数设置,可以去除图像中的噪音,提高图像的质量和细节。

数字信号处理模拟滤波器转换为数字滤波器的设计与实现实验报告

数字信号处理模拟滤波器转换为数字滤波器的设计与实现实验报告

数字信号处理模拟滤波器转换为数字滤波器的设计与实现实验报告数字信号处理模拟滤波器转换为数字滤波器的设计与实现实验报告数字信号处理在现代通信、音频、视频以及图像处理等领域具有广泛的应用。

滤波器是数字信号处理中最重要的一种基础工具,是对数字信号进行调整的一种方法。

在数字信号处理中,滤波器的作用是对数字信号进行滤波,去除不需要的频谱成分,保留需要的频率成分。

而模拟滤波器与数字滤波器的转换则是数字信号处理中的重要技术之一。

本实验旨在通过模拟滤波器转换为数字滤波器的设计与实现过程,深入了解数字信号处理工作原理,提高学生的实际操作能力,培养学生的创新思维和技术技能。

实验步骤:一、实验器材准备1. PC机2. DSP开发板3. 麦克风、音箱等设备4. MATLAB软件二、实验准备1. 使用MATLAB软件对滤波器进行设计,并将设计结果保存为数字滤波器系数。

2. 在DSP开发板上搭建数字滤波器实验平台,包括接口板、麦克风、音箱等设备。

三、实验操作流程1. 设计数字滤波器:使用MATLAB软件,根据给定的滤波器要求,进行频域滤波器设计,并将设计结果保存为数字滤波器系数。

2. 转换数字信号:使用音频处理器将模拟信号转换为数字信号。

3. 数字滤波器的实验平台搭建:将DSP开发板接口板、麦克风、音箱等设备接好。

4. 数字信号的滤波:将转换得到的数字信号输入DSP开发板,并使用MATLAB中的dsp模块设计加权数字信号滤波器,对数字信号进行滤波处理。

5. 滤波效果测试:比较滤波前后的数字信号频谱图,观察滤波后的效果,评估数字滤波器的性能和可靠性。

实验结果:通过以上实验步骤,我们成功地实现了模拟滤波器转换为数字滤波器的设计与实现。

通过对数字信号进行滤波处理,我们有效地去除了不需要的频谱成分,保留了我们需要的频率成分,并得出了滤波效果的频谱图。

该实验具有一定的理论价值和实践意义,可以使学生更深入地理解数字信号处理的工作原理,提高其实际操作能力。

数字信号处理中的滤波器设计与信号修复方法

数字信号处理中的滤波器设计与信号修复方法

数字信号处理中的滤波器设计与信号修复方法数字信号处理(Digital Signal Processing,DSP)是一种将连续时间信号转换为离散时间信号,并对其进行处理与分析的技术。

在数字信号处理中,滤波器设计与信号修复是关键的技术之一。

本文将介绍在数字信号处理中滤波器的设计原理和常用的信号修复方法。

一、滤波器设计滤波器是数字信号处理中常用的工具,用于改变信号的特性。

滤波器的设计旨在剔除或改变信号中的某些频率分量,或者在特定频率范围内增强信号的能量。

常见的滤波器类型包括低通滤波器、高通滤波器、带通滤波器和带阻滤波器。

滤波器的设计可以基于时域方法或频域方法。

在时域方法中,常用的设计方法有有限脉冲响应(FIR)滤波器和无限脉冲响应(IIR)滤波器。

FIR滤波器具有线性相位和稳定性的优点,但在滤波器阶数较高时,计算开销较大。

IIR滤波器具有较低的阶数和更快的运算速度,但容易出现稳定性问题。

频域方法中,最常用的设计方法是基于数字滤波器设计工具箱(Digital Filter Design Toolbox)的最优设计技术,如最小最大化抑制(minimum-maximum suppression)和最小均方差(minimum mean square error)方法。

二、信号修复方法信号修复是数字信号处理中常见的任务,用于去除信号中的噪声或恢复受损的部分。

信号修复的方法可以分为基于统计的方法和基于模型的方法。

1. 基于统计的方法基于统计的信号修复方法主要依赖于信号和噪声之间的统计特性。

常用的方法包括平均和中值滤波。

平均滤波是将信号中每个采样点与其邻域内的相邻采样点进行平均,从而减小噪声对信号的影响。

中值滤波则是将信号中每个采样点与其邻域内的相邻采样点的中值进行替换,以抑制噪声。

另外,经验模态分解(Empirical Mode Decomposition,EMD)是一种用于非线性和非平稳信号修复的方法。

EMD通过将信号分解成一组局部振动模态函数(Intrinsic Mode Functions,IMFs),再对IMFs进行滤波和重构,以修复信号。

数字信号处理中的滤波器设计与时域频域分析方法

数字信号处理中的滤波器设计与时域频域分析方法

数字信号处理中的滤波器设计与时域频域分析方法在数字信号处理中,滤波器设计和时域频域分析是非常重要的方法和技术。

滤波器是一种能够改变信号频谱特性的系统,它可以增强或者抑制信号的某些频率分量。

本文将从滤波器设计和时域频域分析两个方面介绍相关概念和方法。

一、滤波器设计滤波器设计是指根据特定的信号处理需求来设计合适的数字滤波器。

在数字信号处理中,常见的滤波器类型包括低通滤波器、高通滤波器、带通滤波器和带阻滤波器。

1.低通滤波器:低通滤波器可以通过抑制高频成分实现对信号进行平滑处理。

在滤波器的频率响应中,低通滤波器允许通过低频信号,而抑制高频信号。

2.高通滤波器:高通滤波器可以抑制低频成分,使得高频成分能够通过。

在滤波器的频率响应中,高通滤波器允许通过高频信号,而抑制低频信号。

3.带通滤波器:带通滤波器可以通过抑制频谱中的低频和高频成分,保留一个特定频率范围内的分量。

在滤波器的频率响应中,带通滤波器允许通过特定的频率范围内的信号,而抑制其他频率信号。

4.带阻滤波器:带阻滤波器可以抑制特定频率范围内的信号,保留其他频率分量。

在滤波器的频率响应中,带阻滤波器抑制一个特定频率范围内的信号,而允许其他频率信号通过。

滤波器设计的方法主要包括经验法、基于窗函数的设计法和基于优化算法的设计法。

经验法是基于经验和直觉设计滤波器,常用的方法包括巴特沃斯滤波器、切比雪夫滤波器和椭圆滤波器。

窗函数法是通过选择适当的窗函数来设计滤波器,常用的方法包括海明窗、矩形窗和汉宁窗。

优化算法包括最小二乘法、进化算法和遗传算法,这些方法利用数学优化技术来自动选择滤波器参数。

二、时域频域分析方法时域和频域分析是对信号进行特性分析的两种常用方法。

1.时域分析:时域分析是将信号从时域(时间域)进行分析。

时域分析方法包括时域波形分析、自相关分析和互相关分析。

时域波形分析是通过绘制信号的波形图来观察信号的变化情况。

自相关分析是通过计算信号与其自身的相关性来研究信号的周期性和重复性。

数字信号处理中滤波器设计的使用教程

数字信号处理中滤波器设计的使用教程

数字信号处理中滤波器设计的使用教程数字信号处理(DSP)是一门广泛应用于通信、音频、图像、雷达等领域的技术。

滤波是其中一种常见的操作,用于去除或改变信号中的某些成分。

本文将介绍数字信号处理中滤波器的设计与使用方法。

一、滤波器概述滤波器是数字信号处理中的重要组成部分,它通过改变信号的频谱来实现信号的特定处理目标。

常见的滤波器类型包括低通滤波器、高通滤波器、带通滤波器和带阻滤波器。

低通滤波器(Low-pass Filter)用于去除高频噪声并保留低频成分,适用于信号平滑处理。

高通滤波器(High-pass Filter)则相反,保留高频成分并去除低频部分,常用于去除直流偏移和低频噪声。

带通滤波器(Band-pass Filter)通过保留一定范围的频率成分来滤除其他频率的信号,常用于信号频带选择和精确查找特定频率。

带阻滤波器(Band-stop Filter)则是保留某一范围的频率成分并去除其他频率,常用于消除干扰信号或特定频率的噪声。

二、滤波器设计方法滤波器的设计目标是根据具体需求确定滤波器类型,并设计出相应的滤波器参数。

下面将介绍两种常见的设计方法。

1. IIR滤波器设计无限脉冲响应(IIR)滤波器根据系统的差分方程来设计,具有较为复杂的频率响应。

常见的IIR滤波器设计方法包括巴特沃斯(Butterworth)滤波器、切比雪夫(Chebyshev)滤波器和椭圆(Elliptic)滤波器。

(1)巴特沃斯滤波器是一种常见的IIR滤波器,具有近似的平坦频率响应和宽的过渡带宽度。

滤波器的设计包括选择滤波器阶数、截止频率和滤波器类型等参数。

(2)切比雪夫滤波器是一种IIR滤波器,除了具有平坦的频率响应外,还可实现更陡峭的过渡带。

切比雪夫滤波器的设计包括选择滤波器阶数、截止频率、过渡带宽度和纹波等参数。

(3)椭圆滤波器是一种IIR滤波器,具有最陡峭的过渡带和最小的滤波器阶数。

椭圆滤波器的设计包括选择滤波器阶数、截止频率、过渡带宽度、纹波和阻带衰减等参数。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

计算机仿真技术实验指导书河南科技大学电子信息工程学院二〇〇八年二月计算机仿真技术实验指导书MATLAB是一种交互式的以矩阵为基本数据结构的系统。

在生成矩阵对象时,不要求明确的维数说明。

所谓交互式,是指MATLAB的草稿纸编程环境。

与C语言或FORTRON语言作科学数值计算的程序设计相比较,利用MATLAB可节省大量的编程时间。

本实验指导书主要讨论四个实验。

实验一信号与系统的时域分析以及信号合成与分解1. 实验目的(1) 连续时间信号的向量表示法和符号运算表示法,典型离散信号表示;(2) 连续信号和离散信号的时域运算与时域变换;(3) 连续系统和离散系统的卷积,以及冲激响应、阶跃响应、单位响应、零状态响应;(4) 周期信号的傅立叶级数分解与综合(以周期方波为例);2. 实验原理与方法(1) 信号在MATLAB中的表示方法MATLAB用两种方法来表示连续信号,一种是用向量的方法来表示信号,另一种则是符号运算的方法来表示信号。

用适当的MATLAB语句表示出信号后,就可以利用MATLAB的绘图命令绘制出直观的信号时域波形。

向量表示法表示信号的方法是:MATLAB用一个向量表示连续信号的时间范围,另一个向量表示连续信号在该时间范围内的对应样值。

如下列代码p=0.001;t=-pi:p:pi;f=1+cos(t);plot(t,f)title('f(t)=1+cos(t)')xlabel('t')axis([-pi,pi,-0.2,2.4])执行后即可绘制连续信号1+cos(t)的时域波形。

借助于符号运算以及符号绘图函数ezplot,也可以绘制连续信号时域波形。

如下列代码syms tf=sym('1+cos(t)') %定义符号表达式ezplot(f,[-pi,pi]) %绘制符号表达式波形set(gcf,'color','w') %设置当前图形背景颜色为白色执行后即可绘制连续信号1+cos(t)的时域波形。

与连续信号的表示相似,在MATLAB中,离散信号也需要用两个向量来表示,其中一个向量表示离散信号的时间范围,另一个向量表示该离散信号在该时间范围内的对应样值。

但与连续信号表示有所不同的是,表示离散信号时间范围向量的元素必须为整数。

如下列代码n=[-3,-2,-1,0,1,2,3];x=[-3,2,-1,3,1,-2,1];stem(n,x,'filled')set(gcf,'color','w')title('x(n)')xlabel('n')执行后即可绘制离散信号x(n)={ -3,2,-1,3,1,-2,1}的时域波形。

↑n=0(2) 连续信号和离散信号的时域运算与时域变换对连续信号而言,其基本时域变换有反褶、平移、尺度变换、倒相。

利用MATLAB的符号运算功能以及符号绘图函数ezplot,可以直观的观察和分析连续信号的时域运算与时域变换。

如下列代码syms t;f=sym('(t+1)*(heaviside(t+1)-heaviside(t))');f=f+sym('(heaviside(t)-heaviside(t-1))'); %定义信号符号表达式ezplot(f,[-3,3]) %绘制信号波形axis([-3,3,-1.2,1.2])set(gcf,'color','w')title('f(t)')pausef1=subs(f,t,t+1.5); %变量替换ezplot(f1,[-3,3]) %绘制f(t+1.5)波形title('f(t+1.5)')pausef2=subs(f,t,t-1.5);ezplot(f2,[-3,3]) %绘制f(t-1.5)波形title('f(t-1.5)')pausef3=subs(f,t,-t);ezplot(f3,[-3,3]) %绘制f(-t)波形title('f(-t)')pausef4=-f;ezplot(f4,[-3,3]) %绘制-f(t)波形title('-f(t)')pausef5=subs(f,t,(1/2)*t);ezplot(f5,[-3,3]) %绘制f(0.5t)波形title('f(0.5t)')执行后即可实现连续信号的四种基本时域变换。

对离散信号而言,其基本时域变换有反褶、平移、倒相。

其基本原理同连续信号时域变换。

(3) 连续系统和离散系统的卷积,以及冲激响应、阶跃响应、单位响应、零状态响应卷积积分是连续信号与系统分析的有效方法和工具,利用MATLAB求离散序论卷积和的专用函数conv可以实现连续信号卷积积分的快速计算,并绘制出卷积积分信号的时域波形。

其具体步骤如下:将参与卷积积分运算的两个连续信号f1(t)和f2(t)以等时间间隔τ∆进行采样,得到其离散序论f1(nτ∆)和f2(nτ∆);生成与离散序论f1(nτ∆)和f2(nτ∆)相对应的时间向量n1和n2;调用conv函数计算卷积积分)∆的采f=在离散时间点mτtf*t)(2(1)(tf样值f(mτ∆);生成与f(mτ∆)相对应的时间向量n。

如下列代码function [f,t]=ctsconv(f1,f2,t1,t2)%计算连续信号卷积积分实用函数d=input('请输入取样时间间隔d: ');f=conv(f1,f2); %计算序列f1与f2的卷积和ff=f*d; %计算卷积积分信号f(t)离散样值ts=t1(1)+t2(1) %计算序列f非零样值的起点位置l=length(t1)+length(t2)-2; %计算卷积积分f的非零样值的宽度t=ts:d:(ts+l*d) %确定卷积积分f非零样值的时间向量subplot(2,2,1)plot(t1,f1) %在子图1绘制信号f1(t)的时域波形axis([min(t1),max(t1),min(f1)-abs(min(f1)*0.2),max(f1)+max(f1)*0.2])title('f1(t) ')xlabel('t')subplot(2,2,2)plot(t2,f2) %在子图2绘制信号f2(t)的时域波形axis([min(t2),max(t2),min(f2)-min(f2)*0.2,max(f2)+max(f2)*0.2])title('f2(t) ')xlabel('t')subplot(2,2,3)plot(t,f); %在子图3绘制卷积积分f(t)的时域波形axis([min(t),max(t),min(f)-min(f)*0.2,max(f)+max(f)*0.2])p=get(gca, 'position');p(3)=2.4*p(3);set(gca, 'position',p) %将第三个子图的横坐标范围扩为原来的2.4倍title('f(t)=f1(t)*f2(t)')xlabel('t')执行后即可实现连续信号的卷积积分运算。

卷积和是离散信号与系统分析的有效方法和工具,利用MATLAB 求离散序论卷积和的专用函数conv 可以实现离散信号卷积和的计算。

(4) 周期信号的傅立叶级数分解与综合周期信号可展开成如下两种正交函数线性组合的无穷级数:三角函数式的傅立里叶级数 {cosn ω1t,…,sinn ω1t}和复指数函数式的傅里叶级数 { e j n ω1t }。

设周期为T 的周期信号f(t)满足狄利赫利条件,则f(t)可以由三角函数的傅里叶级数线性组合表示如下:)sin cos ()(10t n b t n a a t f n n n ωω++=∑∞=其中: ⎰+=Tt t dt t f T a 00)(10⎰+=Tt t n dt t n t f Ta 00)cos()(2ω n=1,2,3,….⎰+=Tt t n dt t n t f T b 00)sin()(2ω n=1,2,3,….借助于MATLAB 的数学运算功能和可视化功能,可以直观的观察和分析周期信号的分解与合成。

3. 实验内容及步骤(1) 认真复习信号与系统的时域分析以及信号合成与分解等有关内容,阅读本实验原理与方法。

(2) 编制实验用程序。

编制基本连续信号如单位阶跃信号、实指数信号、单边指数衰减信号、正弦信号、复指数信号、虚指数信号的可视化程序;编制基本离散序列如单位抽样序列、单位阶跃序列、正弦序列、实指数序列、复指数序列的可视化程序;用square 、sawtooh 、rectplus 、triplus 、sinc 函数生成常见的标准信号; 编写绘制x1(n)={ 2,1,0,1,2} 和 x2(n)={ 1,2,3,4,5,6}的时域波形,并编写绘↑ ↑ n=0 n=0制二者相加和相乘的时域波形。

编写求解连续信号卷积积分并绘制卷积积分信号时域波形实用子程序;编写求解离散信号卷积和并能绘制卷积和信号时域波形的实用子程序;以周期方波为例,编写周期信号的傅立叶级数分解与合成的实用子程序。

4.实验方式及要求每人一台安装有Matlab7.0的计算机,在计算机上编程仿真。

一人一组,独立完成。

5. 思考题脚本文件与函数文件编写上有什么区别?二者用法上有什么区别?6. 实验报告要求(1) 简述实验目的及实验原理。

(2) 按实验步骤附上实验过程中的连续信号以及离散序列的时域波形,并对所得结果进行分析和解释。

(3) 总结实验中的主要结论。

(4) 简要回答思考题。

实验二 信号与系统的频域分析以及信号采样和重构1. 实验目的(1) 周期信号频谱分析;(2) 典型周期信号的频谱分析(以周期方波脉冲和周期三角波脉冲为例); (3) 用FFT 实现周期信号的频谱分析;(4) 信号幅度调制以及傅立叶变换性质的MATLAB 实现; (5) 系统频率响应; (6) 信号的采样与重构; 2. 实验原理与方法 (1) 周期信号频谱分析 由于周期信号可以分解如下:)sin cos ()(10t n b t n a a eF t f n n n tjn n n ωωω++==∑∑∞=∞-∞=则只要求出周期信号傅立叶级数的系数n c (或者n F )及n ϕ,就可以根据他们随角频率ω的变化关系画出信号的幅度频谱和相位频谱。

如下列代码function CTFS_RP% 以周期矩形脉冲信号为例,计算其频谱特性 % Nf :级数分解的谐波次数,由键盘输入 % Nn :输出数据的准确位数 % a0:直流项系数% an :第1,2,3,...次谐波余弦项展开系数 % bn :第1,2,3,...次谐波正弦项展开系数 % tao :周期矩形脉冲信号脉宽,由键盘输入 % T :周期矩形脉冲信号周期,由键盘输入display('Please input the value of T, tao and Nf'); %命令窗口提示用户输入参数 T = input('T = '); tao = input('tao = ');Nf = input('Nf = ');syms t n k x %定义符号变量Nn = 32; %输出数据的位数为32位an = zeros(Nf+1,1); %分配an系数数组bn = zeros(Nf+1,1); %分配bn系数数组phase = zeros(Nf+1,1); %分配相位数组s1 = strcat('Heaviside(t+',num2str(tao/2),')'); %构造u(t+tao/2)s2 = strcat('Heaviside(t-',num2str(tao/2),')'); %构造u(t-tao/2)x = sym(s1) - sym(s2); %构造一个周期的脉冲信号u(t+tao/2)-u(t-tao/2)A0 =2*int(x,t,-T/2,T/2)/T; %求出直流项a0As=2*int(x*cos(2*pi*n*t/T),t,-T/2,T/2)/T; %求出余弦项系数anBs=2*int(x*sin(2*pi*n*t/T),t,-T/2,T/2)/T; %求出正弦项系数bnan(1) = double(vpa(A0,Nn)); %获取参数组A0所对应的ASCII 码数值数组for k=1:Nfan(k+1)=double(vpa(subs(As,n,k),Nn)); %获取参数组As所对应的ASCII 码数值数组bn(k+1)=double(vpa(subs(Bs,n,k),Nn)); %获取参数组Bs所对应的ASCII 码数值数组endcn = sqrt(an.*an+bn.*bn); %计算幅度谱for i = 1:Nf %由于bn=0,相位由an的符号决定为0或piif an(i) >= 0phase(i) = 0;elsephase(i) = pi;endendt = -T*5:0.001:T*5;d = -T*5:T:T*5;xx = pulstran(t,d,'rectpuls',tao); %用pulstran函数生成矩形脉冲信号subplot(311); %将显示窗口分为3个子窗口,并指向第1个子窗口plot(t,xx); %绘制周期矩形脉冲信号axis([-T*5 T*5 0 1.1]); %指定坐标系范围%title('周期矩形脉冲信号','Fontsize',8); %标注标题s1 = strcat('周期矩形脉冲信号 T=',num2str(T),' Tao=',num2str(tao),'t'); xlabel(s1,'Fontsize',8); %x轴标签subplot(312); %指向第2个子窗口k = 0:Nf;stem(k,cn); %绘制幅度谱hold on;plot(k,cn); %绘制幅度谱包络线xlabel('幅度谱 \omega','Fontsize',8);subplot(313); %指向第3个子窗口stem(k,phase); %绘制相位谱xlabel('相位谱 \omega','Fontsize',8);% End绘制周期信号的频谱特性执行后即可实现周期信号频谱分析。

相关文档
最新文档