ANSYS结构分析指南 断裂力学

合集下载

ANSYS断裂分析

ANSYS断裂分析

基于ANSYS的断裂参数的计算1 引言断裂事故在重型机械中是比较常见的,我国每年因断裂造成的损失十分巨大。

一方面,由于传统的设计是以完整构件的静强度和疲劳强度为依据,并给以较大的安全系数,但是含裂纹在役设备还是常有断裂事故发生。

另一方面,对于一些关键设备,缺乏对不完整构件剩余强度的估算,让其提前退役,从而造成了不必要的浪费。

因此,有必要对含裂纹构件的断裂参量进行评定,如应力强度因了和J积分。

确定应力强度因了的方法较多,典型的有解析法、边界配位法、有限单元法等。

对于工程上常见的受复杂载荷并包含不规则裂纹的构件,数值模拟分析是解决这些复杂问题的最有效方法。

本文以某一锻件中取出的一维断裂试样为计算模型,介绍了利用有限元软件ANSYS计算应力强度因子。

2 断裂参量数值模拟的理论基础对于线弹性材料裂纹尖端的应力场和应变场可以表述为:(1)其中K是应力强度因子,r和θ是极坐标参量,可参见图1,(1)式可以应用到三个断裂模型的任意一种。

图1 裂纹尖端的极坐标系(2)应力强度因子和能量释放率的关系:G=K/E" (3)其中:G为能量释放率。

平面应变:E"=E/(1-v2)平面应力:E=E"3 求解断裂力学问题断裂分析包括应力分析和计算断裂力学的参数。

应力分析是标准的ANSYS线弹性或非线性弹性问题分析。

因为在裂纹尖端存在高的应力梯度,所以包含裂纹的有限元模型要特别注意存在裂纹的区域。

如图2所示,图中给出了二维和三维裂纹的术语和表示方法。

图2 二维和三维裂纹的结构示意图3.1 裂纹尖端区域的建模裂纹尖端的应力和变形场通常具有很高的梯度值。

场值得精确度取决于材料,几何和其他因素。

为了捕获到迅速变化的应力和变形场,在裂纹尖端区域需要网格细化。

对于线弹性问题,裂纹尖端附近的位移场与成正比,其中r是到裂纹尖端的距离。

在裂纹尖端应力和应变是奇异的,并且随1/变化而变化。

为了产生裂纹尖端应力和应变的奇异性,裂纹尖端的划分网格应该具有以下特征:·裂纹面一定要是一致的。

基于ANSYS Workbench的均压环断裂分析

基于ANSYS Workbench的均压环断裂分析

质量检测基于A N SY SW orkbench的均压环新裂分祈王益博,杨乐,孟忠,莫冰,马梁丁,康鹏(西安西电高压开关有限责任公司,陕西西安710018)摘要:均压环是高压电器设备的重要组成部分,其主要作用是均衡对地杂散电容,使电压分布均 匀。

运行在大风地区的高压隔离开关均压环,在风载荷的较大作用力下,其自身的设计强度和运行可靠性至关重要。

基于A N SY SW orkbenchl8. 1有限元分析软件,对由于大风作用力引起的均压环断裂问题 进行逐步分析,通过确定计算条件、进行受力分析、建立模型和仿真计算等,分析得出该均压环在较大的 风载荷作用力下的位移和应力情况。

结果表明,在保证均压环的设计强度满足使用要求的情况下,均压 环的制造质量是影响其强度和运行可靠性的主要因素。

给出了提高高压隔离开关均压环强度及运行可靠性的具体措施。

关键词:高压隔离开关均压环;大风;ANSYS;强度;分析;可靠性中图分类号:TM 564.1 文献标志码:AGrading Ring Fracture Analysis Based on ANSYS WorkbenchWANGYibo, YANGLe, MENGZhong, MOBing, MALiangding, KANG Peng(Xi’anXDHighVoltageSwitchCo.!Ltd.!Xi’an710018,China)Ab str a ct: The grading ring is an important part of the high voltage electrical equipment.It is mainly used for balancing the stray capacitance and distributing the voltage evenly.Under a large force of wind load,the HV switch disconnector­grading ring operating in high winds area is very important for its own design strength and operational reliability.Based on the ANSYS Workbench l8.1finite element analysis software,a fracture problem of the HV switch disconnector-grading ring caused by strong wind force is analyzed.The calculation condition determination,the stress analysis,the model establish­ment,the stress surface cutting and the simulation calculation are carried out in step.The displacement and stress of the HV switch disconnector-grading ring under wind load are obtained.The results show that the manufacturing quality of the grading ring is the main factor affecting the strength and reliability of the grading ring when the design strength of the grad­ing ring meets the requirements of operation.Some measures to improve the strength and reliability of the HV switch dis­connector-grading ring are put forward.K e y w o r ds:HV switch disconnector-grading ring,high winds,ANSYS,strength,analysis,reliability我国西北部存在诸多强风气候区域,以新疆为 例,从其西部的阿拉山口到东部的哈密地区之间就存在八大著名风区,其中,以达坂城至吐鲁番、阿拉 山口至七角井最为著名[1]。

断裂力学参量[整理版]

断裂力学参量[整理版]

ANSYS求解断裂力学参量的理论方法工程上,线弹性断裂力学中常用应力强度因子K、J积分、G能量释放率这三个参量来描述裂纹场。

ANSYS软件能较好地计算裂纹周围区域的应力分布,并能计算裂纹的应力强度因子K、J积分以及能量释放率G等,其特点是简单、经济、精度高。

下面主要介绍在ANSYS中如何求解应力强度因子K和J积分。

(1)求解应力强度因子ANSYS软件中提供了所谓的“位移外推”法(displacement extrapolation) 来计算应力强度因子[5]。

在线弹性范围内,对于三维裂纹,裂纹尖端的局部位移场与应力强度因子的关系为[6]:)2)22IIIIIIKu kGKv kGKwG⎧=+⎪⎪⎪⎪=+⎨⎪⎪⎪=⎪⎩式中: u、v、w—如图2.5所示裂纹尖端局部直角坐标系下裂纹前端位移;r—如图2.5所示裂纹尖端局部柱坐标系下坐标;G—材料剪切模量;K I、K II、K III—应力强度因子;v—为泊松比;34()3()1vk vv-⎧⎪=⎨-⎪+⎩平面应变或轴对称平面应力当利用裂纹尖端节点的位移进行计算时,应力强度因子和裂纹面节点的位移差存在下列关系:IIIIIIKKK⎧=⎪⎪⎪⎪=⎨⎪⎪⎪=⎪⎩三维裂纹的局部坐标在使用有限元法进行应力强度因子计算时,由于常规单元在裂纹尖端存在奇异性,为使计算准确,必须在裂纹尖端使用细小的单元;如果使用奇异元,即使用二次三角(或五面体)单元,并将靠近裂纹尖端的中间节点置于1/4处,则位于沿裂纹尖端的单元边上的应力和应变与1/消除了奇异性,也就是说,可以用相对比较稀疏的单元得到精度较高的结果。

(2)求解J积分J积分定义为一个围绕裂尖的线积分(二维) 或一个围绕裂纹前沿的面积分。

它用计算裂纹尖端的奇异应力和应变,与积分路径无关。

为了避开裂纹尖点的奇异性,取得较好的精度,积分路径一般取得离裂纹尖点较远。

J积分形式如图2.6所示,其表达式如下:()yxx yuuJ Wdy t t dsx yΓΓ∂∂=-+∂∂⎰⎰式中:W—应变能密度(单位体积应变能);Г—围绕裂纹尖点任意路径;xt—X 方向的作用向量,x x xy yt nσσ=+;yt—Y方向的作用向量,y y xy xt nσσ=+;n—积分路径的外法向向量;s —积分路径距离;围绕裂纹尖端的任意一条J 积分路径在ANSYS 中,为了计算位移向量的偏导数x u x ∂∂与y u y ∂∂,将积分路径向x 正负方向分别移动Δx/2,并求出路径Γ+Δx/2上各点的位移u x1和u y 1以及路径Γ-Δx/2上各点的u x 1和u y 1,则:2121()()x x x y y y u x u u xu y u u y∂∂=-∆⎧⎪⎨∂∂=-∆⎪⎩ ANSYS 具有强大的后处理功能,利用此功能,在求解后可以通过ANSYS 通用后处理器中的单元列表功能,很方便地把各变量映射到自定义的路径中去。

ansys断裂力学技巧

ansys断裂力学技巧

Ansys断裂力学裂纹和瑕疵在很多结构和零部件中会出现,有时会导致严重的后果。

断裂力学就是研究裂纹扩散问题的学科。

12.1 断裂力学的理解断裂力学就是解决结构在外载荷作用下,裂纹和瑕疵如何扩散的问题。

它包含裂纹扩散相应的解析预报和实验结果验证。

解析预报是通过断裂参数的计算得出的,如裂纹区域的应力强度因子,它可以用来评估裂纹的生长率。

最具典型的是,裂纹的长度随着一些循环载荷的每一次作用而增长,如飞机上机舱的增压-减压。

另外,环境的情况,如温度或光线的照射等,都会影响某些材料的断裂性能。

在研究中,断裂问题需重点研究的典型参数如下:●应力强度因子(K I, K II和K III),是断裂的三个基本形式。

●J-积分,是一种不受线路影响的线积分,用来测量裂纹端点的奇异应力和应变。

●能量释放率(G),它代表裂纹开始和终止处的能量的大小。

12.2 求解断裂力学问题求解断裂力学问题包括执行线弹性或弹塑性静态分析,以及使用专用的后处理命令或宏来计算需要的断裂参数。

此处分成两个部分来介绍:●裂纹区域的建模●计算断裂参数12.2.1裂纹区域的建模断裂模型中最重要的部分就是裂纹边界的部分。

在ansys中,在二维模型和三位模型中,分别将裂纹的边界看成是裂纹端点和裂纹前端。

如图12.1所示。

r是距离裂纹端点的长度。

裂裂纹面应该是重合纹端点处的应力和应变是奇异的,的,裂纹端点(或裂纹前端)附近的单元应该是二次的,即角点之间有中间节点。

这种单元被称为奇异单元。

12.2.1.1 二维断裂模型二维断裂模型的推荐单元类型是PLANE2,6节点的三角实体单元。

裂纹端点附近的单元的第一行是奇异的,如图12.2(a)所示。

前处理模块PREP7的命令(Main Menu> Preprocessor> Meshing> Size Cntrls> Concentrat KPs> Create)可以定义某关键点附近的单元划分的大小,在断裂模型中特别有用。

Ansys 断裂力学理论

Ansys 断裂力学理论

第四章断裂力学文献来源:/document/200707/article796_2.htm4.1 断裂力学的定义在许多结构和零部件中存在的裂纹和缺陷,有时会导致灾难性的后果。

断裂力学在工程领域的应用就是要解决裂纹和缺陷的扩展问题。

断裂力学是研究载荷作用下结构中的裂纹是怎样扩展的,并对有关的裂纹扩展和断裂失效用实验的结果进行预测。

它是通过计算裂纹区域和破坏结构的断裂参数来预测的,如应力强度因子,它能估算裂纹扩展速率。

一般情况下,裂纹的扩展是随着作用在构件上的循环载荷次数而增加的。

如飞机机舱中的裂纹扩展,它与机舱加压及减压有关。

此外,环境条件,如温度、或大范围的辐射都能影响材料的断裂特性。

典型的断裂参数有:与三种基本断裂模型相关的应力强度因子(K I,K II,K III)(见图4-1);J积分,它定义为与积分路径无关的线积分,用于度量裂纹尖端附近奇异应力与应变的强度;能量释放率(G),它反映裂纹张开或闭合时功的大小;注意--在本节大部分的图形中裂纹的宽度被放大了许多倍。

图4-1 裂缝的三种基本模型4.2 断裂力学的求解求解断裂力学问题的步骤为:先进行线弹性分析或弹塑性静力分析,然后用特殊的后处理命令、或宏命令计算所需的断裂参数。

本章我们集中讨论下列两个主要的处理过程。

裂纹区域的模拟;计算断裂参数。

4.2.1 裂纹区域的模拟在断裂模型中最重要的区域,是围绕裂纹边缘的部位。

裂纹的边缘,在2D模型中称为裂纹尖端,在3D模型中称为裂纹前缘。

如图4-2所示。

图4-2 裂纹尖端和裂纹前缘在线弹性问题中,在裂纹尖端附近(或裂纹前缘)某点的位移随而变化,γ是裂纹尖端到该点的距离,裂纹尖端处的应力与应变是奇异的,随1/变化。

为选取应变奇异点,相应的裂纹面需与它一致,围绕裂纹顶点的有限元单元应该是二次奇异单元,其中节点放到1/4边处。

图4-3表示2-D和3-D模型的奇异单元。

图4-3 2-D和3-D模型的奇异单元4.2.1.1 2-D断裂模型对2D断裂模型推荐采用PLANE2单元,其为六节点三角形单元。

(整理)ANSYS Workbench 14.0超级学习手册(第1章).

(整理)ANSYS Workbench 14.0超级学习手册(第1章).

第1章ANSYS Workbench 14.0概述本章从总体上对ANSYS Workbench 14.0自带软件包括结构力学模块、流体力学模块等进行概述,同时对ANSYS Workbench 14.0最新整合的其他模块进行简单介绍,其中包括低频电磁场分析模块Ansoft Maxwell、多领域机电系统设计与仿真分析模块Ansoft Simplorer、疲劳分析模块nCode及复合材料建模与后处理模块ACP等。

同时,本章还以SolidWorks 软件为例,介绍Workbench 14.0与常见的CAD软件进行集成的步骤及方法。

学习目标:(1)了解ANSYS Workbench软件各模块的功能;(2)掌握ANSYS Workbench软件与SolidWorks软件的集成设置;(3)掌握ANSYS Workbench平台的常规设置,包括单位设置、外观颜色设置等。

1.1 ANSYS软件简介ANSYS提供广泛的工程仿真解决方案,这些方案可以对设计过程要求的任何场进行工程虚拟仿真。

全球的诸多组织都相信ANSYS为它们的工程仿真软件投资带来最好的价值。

ANSYS软件是融结构、流体、电场、磁场、声场分析于一体的大型通用有限元分析软件。

由世界上最大的有限元分析软件公司之一、美国ANSYS公司开发,它能与多数CAD 软件接口,实现数据的共享和交换。

软件主要包括3个部分:前处理模块,分析计算模块和后处理模块。

(1)前处理模块提供了一个强大的实体建模及网格划分工具,用户可以方便地构造有限元模型。

(2)分析计算模块包括结构分析(线性分析、非线性分析和高度非线性分析)、流体动力学分析、电磁场分析、声场分析、压电分析以及多物理场的耦合分析,可模拟多种物理介质的相互作用,具有灵敏度分析及优化分析能力。

(3)后处理模块可将计算结果以彩色等值线显示、梯度显示、矢量显示、粒子流迹显示、立体切片显示、透明及半透明显示(可看到结构内部)等图形方式显示出来,也可将计算结果以图表、曲线形式显示或输出。

基于ANSYS Workbench的预应力混凝土结构开裂分析

基于ANSYS Workbench的预应力混凝土结构开裂分析

基于ANSYS Workbench的预应力混凝土结构开裂分析摘要:为研究裂缝宽度及深度对预应力混凝土箱梁结构受力性能的影响,采用分布裂缝模型,通过SolidWorks软件建立实体模型,利用ANSYS Workbench软件划分网格、添加动静荷载并采用降温法实现预应力加载,完成对实际桥梁进行有限元的分析计算,结果表明不同程度开裂对结构受力有一定影响,但不会对其结构极限承载能力和刚度造成严重损失。

关键词:预应力混凝土裂缝受力性能 ANSYS Workbench SolidWorks1、概述20世纪30年代以来,预应力混凝土结构在桥梁、大型建筑和水工结构等土木工程中得到了大量、广泛的应用。

统计资料表明[1]:近20年来,我国所建混凝土桥梁中,75%以上采用的是预应力混凝土结构。

然而,由于设计、施工和运营管理等方面的不足和缺陷,在役的许多预应力混凝土连续箱梁结构都存在不同形式的裂缝,这些裂缝的存在对结构的安全性、耐久性和正常使用产生了十分不利的影响[2]。

裂缝的出现引起周围钢筋和混凝土受力的变化,结构产生变形,刚度下降,从而导致内力重分布的现象。

由于分布裂缝模型将单个裂缝连续化,不需要改变有限元网格划分,适用于有限元分析并且接近于工程实际情况,文中采用该模型进行分析。

2、结构有限元分析方法2.1结构建模方法此次建模过程中,采用SolidWorks软件构造出结构的各部分的零件图,然后通过配合的方式生成整体结构的装配体文件。

裂缝可以由单独零件切割掉部分结构之后装配而成,从而构建出预应力混凝土结构有限元分析的全桥模型。

2.2结构分析方法通过SolidWorks和ANSYS Workbench的无缝链接,将生成的结构装配体文件直接导入Workbench中,划分网格、添加荷载和控制截面,进行实际的结构受力分析,可以得到直接得到实体单元的应力和应变结果。

在ANSYS中对预应力钢筋混凝土采用整体式的分析方法,将混凝土和钢筋的作用一起考虑,其原理如下:(1)式中,T为预应力钢筋单元的降温量;Ny为有效预应力;α为热膨胀系数;Ay为预应力筋面积。

断裂力学-ansys

断裂力学-ansys
4-4
Create)用于指定关键点周围的单元大小,它特别适用于断裂模型。本命令自动围绕指定的关键点产 生奇异单元。命令的其他选项可以控制第一行单元的半径,以及控制周围的单元数目等,图4-5 显 示用 KSCON 命令产生的断裂模型。
图4-5 断裂样本和2D有限元模型 建立2-D模型的其他建议:
尽可能利用对称条件。在许多情况下根据对称或反对称边界条件,只需要模拟裂纹区的一 半,如下所示:
图4-6 利用对称性 为获得理想的计算结果,围绕裂纹尖端的第一行单元,其半径应该是八分之一裂纹长或更 小。沿裂纹周向每一单元最好有30-40角度。 裂纹尖端的单元不能有扭曲,最好是等腰三角形。 4.2.1.2 3-D线弹性断裂问题 三维模型推荐使用的单元类型为 20 节点块体元 SOLID186,如图4-4b所示。围绕裂纹前缘的第 一行单元应该是奇异单元。这种单元是楔形的,单元的KLPO 面退化成 KO 线。 产生三维断裂模型要比二维模型复杂,KSCON 命令不能用于三维模型,必须保证裂纹前缘沿着 单元的 KO 边。 建立三维断裂模型的建议如下: 推荐的单元尺寸与二维模型一样。此外在所有的方向上,单元的相邻边之比不能超过 4:1。 在弯曲裂纹前缘上,单元的大小取决于局部曲率的数值。例如,沿圆环状弯曲裂纹前缘, 在 15-30°的角度内至少有一个单元。 所有单元的边(包括在裂纹前缘上的)都应该是直线。 4.2.2 计算断裂参数 ANSYS中可以计算如下断裂参数: J-积分 应力强度因子(KI, KII, KIII) J-积分的计算要在求解层执行而结果存储在后处理用的结果文件(.rst)中。执行J-积分运算时 , 要使用CINT命令。应力强度因子的计算要使用后处理器中的KCAL命令。详细信息参见《Numerical Evaluation of Fracture Mechanics Parameters》。

ANSYS 基本建模方法及结构稳定性分析-推荐下载

ANSYS 基本建模方法及结构稳定性分析-推荐下载

ANSYS 基本建模方法及结构稳定性分析一 ANSYS与结构分析ANSYS软件是融结构、流体、电磁场、声场和热场分析于一体的大型通用有限元分析软件,可广泛应用于土木、地质、矿业、材料、机械、水利等工程的分析和研究。

￿可在大多数计算机和操作系统(如Windows、UNIX、Linux、HP-UX等)中运行,可与大多数CAD软件接口。

结构分析用于确定结构的变形、应变、应力及反作用力等,它包括以下几种类型:静力分析——用于静态载荷。

可以考虑结构的线性及非线性行为,例如:大变形、大应变、应力刚化、接触、塑性、超弹及蠕变等。

屈曲分析——用于计算线性屈曲载荷并确定屈曲模态形状。

同时可以实现非线性屈曲分析。

模态分析——计算线性结构的自振频率及振形。

谐响应分析——确定线性结构对随时间按正弦曲线变化的载荷的响应。

瞬态动力学分析——确定结构对随时间任意变化的载荷的响应. 可以考虑与静力分析相同的结构非线性行为.谱分析——是模态分析的扩展,用于计算由于随机振动引起的结构应力和应变(也叫作响应谱或PSD)。

显式动力分析——ANSYS/LS-DYNA(显式动力学分析模块)可用于计算高度非线性动力学问题和复杂的接触问题。

专项分析——断裂分析, 复合材料分析,疲劳分析。

二 ANSYS分析过程中三个主要的步骤:.1. 创建有限元模型–创建或读入几何模型.–定义材料属性.–划分单元(节点及单元).2. 施加载荷进行求解– 施加载荷及载荷选项.– 求解.3. 查看结果– 查看分析结果.– 检验结果. (分析是否正确)三几何建模ANSYS软件几何建模通常包括两种方式,自底向上建模和自顶向下建模。

所谓自底向上建模,顾名思义就是又建立模型的最低单元的点到最高单元的体来构造实体模型。

即首先定义关键点,然后利用这些关键点定义较高级的实体图元,如线,面,体。

ANSYS软件允许通过汇集线面体等几何体素的方法构造建模。

当生成一种体素时,ANSYS程序会自动生成所有从属于该体素较低级的土元,这种一开始便由较高级的实体图元构造模型的方法就是所谓的自顶向下的建模方法。

ANSYS结构非线性分析指南_第四章

ANSYS结构非线性分析指南_第四章

第四章材料非线性分析4.1 材料非线性概述许多与材料有关的参数可以使结构刚度在分析期间改变。

塑性、非线性弹性、超弹性材料、混凝土材料的非线性应力—应变关系,可以使结构刚度在不同载荷水平下(以及在不同温度下)改变。

蠕变、粘塑性和粘弹性可以引起与时间、率、温度和应力相关的非线性。

膨胀可以引起作为温度、时间、中子流水平(或其他类似量)函数的应变。

ANSYS程序应可以考虑多种材料非线性特性:1.率不相关塑性指材料中产生的不可恢复的即时应变。

2.率相关塑性也可称之为粘塑性,材料的塑性应变大小将是加载速度与时间的函数。

3.材料的蠕变行为也是率相关的,产生随时间变化的不可恢复应变,但蠕变的时间尺度要比率相关塑性大的多。

4.非线性弹性允许材料的非线性应力应变关系,但应变是可以恢复的。

5.超弹性材料应力应变关系由一个应变能密度势函数定义,用于模拟橡胶、泡沫类材料,变形是可以恢复的。

6.粘弹性是一种率相关的材料特性,这种材料应变中包含了弹性应变和粘性应变。

7.混凝土材料具有模拟断裂和压碎的能力。

8.膨胀是指材料在中子流作用下的体积扩大效应。

4.2 塑性分析4.2.1 塑性理论简介许多常用的工程材料,在应力水平低于比例极限时,应力—应变关系为线性的。

超过这一极限后,应力—应变关系变成非线性,但却不一定是非弹性的。

以不可恢复的应变为特征的塑性,则在应力超过屈服点后开始出现。

由于屈服极限与比例极限相差很小,ANSYS程序在塑性分析中,假设这二个点相同,见图4-1。

图4-1 弹塑性应力-应变曲线塑性是一种非保守的(不可逆的),与路径相关的现象。

换句话说,荷载施加的顺序,以及什么时候发生塑性响应,影响最终求解结果。

如果用户预计在分析中会出现塑性响应,则应把荷载处理成一系列的小增量荷载步或时间步,以使模型尽可能附合荷载—响应路径。

最大塑性应变是在输出(Jobname.OUT)文件的子步信息中打印的。

在一个子步中,如果执行了大量的平衡迭代,或得到大于15%的塑性应变增量,则塑性将激活自动时间步选项[AUTOTS ](GUI :Main Menu>Solution> Sol'n Control:Basic Tab 或 MainMenu>Solution>Unabridged Menu> Time /Frequenc>Time and Substps)。

ansys断裂例子

ansys断裂例子

ansys断裂例子第一版(没有加断裂判断准则,强行逐个杀死界面接触单元):fini/clear/filn,crack1 /PREP7!*ET,1,PLANE182 !*KEYOPT,1,1,2 KEYOPT,1,3,1 KEYOPT,1,4,0 KEYOPT,1,6,0 KEYOPT,1,10,0 !* rect,0,100,0,100 rect,0,100,100,110lesi,1,,,10lesi,2,,,10esha,2!*MPTEMP,,,,,,,, MPTEMP,1,0MPDATA,EX,1,,210e3MPDATA,PRXY,1,,0.3MPTEMP,,,,,,,, MPTEMP,1,0MPDATA,EX,2,,70 MPDATA,PRXY,2,,0.33amesh,1lesi,5,,,10lesi,6,,,2mat,2amesh,2lsel,s,,,3nsll,s,1cm,c1,nodelsel,s,,,5nsll,s,1cm,t1,nodensel,s,loc,x d,all,uxnsel,s,loc,y d,all,uyd,all,uxmp,mu,3,0/COM, CONTACT PAIR CREATION - STARTCM,_NODECM,NODE CM,_ELEMCM,ELEM CM,_LINECM,LINE CM,_AREACM,AREA /GSAV,cwz,gsav,,tempMP,MU,3,0MAT,3R,3REAL,3ET,2,169ET,3,172R,3,,,100,0.1,0, RMORE,,,1.0E20,0.0,1.0,RMORE,0.0,0,1.0,,1.0,0.5RMORE,0,0.5,1.0,0.0,KEYOPT,3,2,0KEYOPT,3,3,0KEYOPT,3,4,0KEYOPT,3,5,0KEYOPT,3,7,0KEYOPT,3,8,0KEYOPT,3,9,0KEYOPT,3,10,0 KEYOPT,3,11,0 KEYOPT,3,12,5 ! Generate the target surfaceNSEL,S,,,T1CM,_TARGET,NODE TYPE,2ESLN,S,0ESURF,ALLCMSEL,S,_ELEMCM ! Generate the contact surfaceNSEL,S,,,C1CM,_CONTACT,NODE TYPE,3ESLN,S,0ESURF,ALLALLSELESEL,ALLESEL,S,TYPE,,2ESEL,A,TYPE,,3 ESEL,R,REAL,,3 /PSYMB,ESYS,1 /PNUM,TYPE,1 /NUM,1 EPLOTESEL,ALLESEL,S,TYPE,,2 ESEL,A,TYPE,,3 ESEL,R,REAL,,3 CMSEL,A,_NODECM CMDEL,_NODECM CMSEL,A,_ELEMCM CMDEL,_ELEMCM CMSEL,S,_LINECMCMDEL,_LINECM CMSEL,S,_AREACM CMDEL,_AREACM /GRES,cwz,gsav CMDEL,_TARGET CMDEL,_CONTACT /COM, CONTACT PAIR CREATION - ENDlsel,s,,,7nsll,s,1cm,s1,node!Gradient surface loadSFGRAD,PRES,0,X,0,-0.1,sf,all,pres,-0.1 nsel,allesel,all!save/solutime,1deltim,1,1,1 solve/post1plns,s,1/soluanty,,resttime,1.1ekill,140solve/post1plns,s,1/soluanty,,rest time,1.2ekill,140 ekill,139 solve/post1plns,s,1/soluanty,,rest time,1.3ekill,140 ekill,139 ekill,138 solve/post1plns,s,1/soluanty,,rest time,1.4ekill,140 ekill,139 ekill,138 ekill,137 solve/post1plns,s,1第二版(加了断裂自动判断准则)。

ANSYS结构分析教程篇(45页,详细)(图文)

ANSYS结构分析教程篇(45页,详细)(图文)

ANSYS结构分析基础篇一、总体介绍进行有限元分析的基本流程:1.分析前的思考1)采用哪种分析(静态,模态,动态...)2)模型是零件还是装配件(零件可以form a part形成装配件,有时为了划分六面体网格采用零件,但零件间需定义bond接触)3)单元类型选择(线单元,面单元还是实体单元)4)是否可以简化模型(如镜像对称,轴对称)2.预处理1)建立模型2)定义材料3)划分网格4)施加载荷及边界条件3.求解4.后处理1)查看结果(位移,应力,应变,支反力)2)根据标准规范评估结构的可靠性3)优化结构设计高阶篇:一、结构的离散化将结构或弹性体人为地划分成由有限个单元,并通过有限个节点相互连接的离散系统。

这一步要解决以下几个方面的问题:1、选择一个适当的参考系,既要考虑到工程设计习惯,又要照顾到建立模型的方便。

2、根据结构的特点,选择不同类型的单元。

对复合结构可能同时用到多种类型的单元,此时还需要考虑不同类型单元的连接处理等问题。

3、根据计算分析的精度、周期及费用等方面的要求,合理确定单元的尺寸和阶次。

4、根据工程需要,确定分析类型和计算工况。

要考虑参数区间及确定最危险工况等问题。

5、根据结构的实际支撑情况及受载状态,确定各工况的边界约束和有效计算载荷。

二、选择位移插值函数1、位移插值函数的要求在有限元法中通常选择多项式函数作为单元位移插值函数,并利用节点处的位移连续性条件,将位移插值函数整理成以下形函数矩阵与单元节点位移向量的乘积形式。

位移插值函数需要满足相容(协调)条件,采用多项式形式的位移插值函数,这一条件始终可以满足。

但近年来有人提出了一些新的位移插值函数,如:三角函数、样条函数及双曲函数等,此时需要检查是否满足相容条件。

2、位移插值函数的收敛性(完备性)要求:1) 位移插值函数必须包含常应变状态。

2)位移插值函数必须包含刚体位移。

3、复杂单元形函数的构造对于高阶复杂单元,利用节点处的位移连续性条件求解形函数,实际上是不可行的。

基于ANSYS的先简支后连续桥型支座处桥面开裂受力分析

基于ANSYS的先简支后连续桥型支座处桥面开裂受力分析

R=B ’ L% , += ’ ! !""$ *I: ’ ,
基于 !"#$# 的先简支后连续桥型支座处 桥面开裂受力分析
胡柏学% ,颜东煌% ,管国东! ,肖勇刚%
(% ’ 长沙理工大学,湖南 长沙 [摘 (%"")$ ; ! ’ 湖南省交通科学研究院,湖南 长沙 (%""%#)
要]利用 *+,-, 有限元分析软件计算分析了四种 连 续 类 型 简 支 梁 桥 支 座 处 桥 面 开 裂 问 题, 得出了四种
第’期
胡柏学, 等: 基于 O%CUC 的先简支后连续桥型支座处桥面开裂受力分析
!#!
而是按照如上图所示比例逐步加载的, 如描述为 “重 车重轴负载 !"# $%” , 则对应图上 “ ! & !” 的 情 况, 类 似, 如描述为 “ 重 车 重 轴 负 载 !’( $%, 桥面出现裂
缝” , 则对应图上 “! &
表 % !" # $ 梁模型分区配筋率参数取值表 +,-./ ’ 7/-,7 7,23: :; ,7/, 6,72323:4(!# 8 96,4 + 537</7)
分区编号 ! ’ B " 体 纵向 # ) #’* " # ) ##I ( # ) #!I * # ) #’! J 积 配 横向 # ) ##! ’ # ) ##! # # ) ##* H # ) #’! J 筋 率 竖向 # ) ##" H # ) ##I ( # ) ##’ B # ) ##! J
(% ’ 12345623 .4789:67;< => ,?794?9 34@ A9?24=B=5<,12345623,CD434 (%"")$ ,12743; ! ’ CD434 1=EED 47?3;7=46 F9693:?2 G46;7;D;9,12345623,CD434 (%""%# ,12743) [ )9+6/%#6].6745 ;29 >747;9 9B9E94; 343B<69 6=>;H3:9 *+,-,,;276 I3I9: ?3B?DB3;9@ 34@ 343B<69@ >=D: J74@6 => I:=KB9E6 3K=D; ;29 I389E94; ?:3?J745 =4 ;29 I79: => ;29 67EIB< 6DII=:;9@ K:7@59 ’ 1=EI3:745 ;29 >=D: J74@6 ?23:3?;9:76;7? => ;29 I389E94; ?=4?:9;9 ?:3?J745,;276 I3I9: 59; ;29 :96DB; ;23; ;29 ?=4;74D9@ K< I:974 >=:?745 6;99B K3: 3>;9: 67EIB< 6DII=:;9@ K:7@59 76 I:9>9:3KB< ’ [ G"* <,/0+]?=4?:9;9;?:3?J;?=4;74D9@ K< I:974>=:?745 6;99B K3: 3>;9: 67EIB< 6DII=:;9@ K:7@59;>747;9 9B9E94; 随着高等级 公 路 特 别 是 高 速 公 路 的 发 展, 在我 国桥梁建设过程 中 遇 到 了 许 多 十 分 突 出 的 问 题, 其 中伸缩缝破 坏、 桥面开裂等现象尤为突出

断裂参量在ANSYS中的计算分析

断裂参量在ANSYS中的计算分析

$! 结论
"# $ ! 通过以上的计算分析, 说明断裂参量在 %&’(’ 中的计算是可行的, 为复杂裂纹在复杂载荷下的断裂判 据的计算提供了有效的方法 "# % ! 宏观裂纹的倾角对于应力强度因子和 # 积分值都有一定程度的影响, 但是对应力强度因子的影响大一 点, 对于 # 积分的影响不太明显。 "# & ! 宏观裂纹的长度在构件的失稳破坏过程中起着主导作用, 对于应力强度因子和 # 积分的影响都比较显 著% "# " ! 应力强度因子和 # 积分是相关联的, 它们之间有着一定的内在关系。 参考文献:
$# 断裂参量数值计算的理论基础
56 5 # 应力强度因子数值计算的理论基础 在线弹性断裂力学中, 由于裂纹尖端的应力场的强弱程度主要由应力强度因子 " 这个参量来描述, 故 通过它可以建立 " 9 " #$ 的断裂准则, 来解决工程实际的断裂问题。 " 的大小与外载的性质、 裂纹及裂纹弹性体几何形状等因素有关的一个量, 写成通式是 " % & ! %( ’ ", #)% & !, ", # 式中 ! 是与裂纹有关的几何形状因子, " 是裂纹承受的应力, # 是裂纹长度。 56 7 # ! 积分数值计算的理论基础 ! 积分是断裂力学中的一个重要概念, 其数值是一个与积分回路无关的常数, 即具有守恒性, 它也反映了 裂纹尖端的某种力学特性或应力应变场强度, 同时在分析中可能避开裂纹尖端这个难以直接严密分析的区 域。这里利用 ! 积分的定义来求解其值。
/0 1234 5 "64, 7%8 9:4; ( <:=3>?@:4? AB +:CD342C3E F4;24::>24; , GD243 H42I:>J2?K AB +2424; 34L M:CD4AEA;K, N6ODA6 1234;J6 ..)PPQ , GD243) <51 =.402: B>3C?6>: =3>3@:?:>J; J?>:JJ 24?:4J2?K B3C?A>; & 24?:;>3E; %&’(’ 8>2,4(*,: G3EC6E3?2A4 @:?DAL AB B>3C?6>: =3>3@:?:>J 24 %&’(’ 2J 24?>AL6C:LR MD: >:J6E?J JDAS ?D3? ?D: & 5 24?:;>3E 34L J?>:JJ 24?:4J2?K B3C?A> 3>: I3>23TE: S2?D ?D: C>3CU A>2:4?3?2A4 34L C>3CU E:4;?D >:J=:C?2I:EKR MD:J: =>AI2L: I3E2L @:?DAL BA> ?D: C3EC6E3?2A4 AB CA@=E:V C>3CUJ 64L:> CA@=E:V EA3LJR

ANSYS 断裂力学新功能之SMART自适应裂纹萌生分析

ANSYS 断裂力学新功能之SMART自适应裂纹萌生分析

文章来源:安世亚太官方订阅号(搜索:Peraglobal)裂纹扩展是指材料在外界因素作用下裂纹萌生、生长的动态过程。

对于不考虑奇异性的裂纹扩展分析,需要定义准则来确定裂纹萌生的初始位置。

新版本中使用SMART(分离、变形、自适应和重划分网格技术)分析裂纹扩展时增加了最大主应力准则去评估裂纹萌生的时间和位置。

当满足该准则时,裂纹自动以椭圆的形状(目前只支持椭圆裂纹)和适当的尺寸插入到定义的裂纹区域,然后程序进行下一步的裂纹扩展计算。

以一个简单的demo来描述SMART自适应裂纹萌生分析的计算步骤:1、创建分析模型如图示紧凑拉伸试样,一端固定,上下圆孔给定100N拉力,预测产生I形裂纹,最大主应力位置在开口前沿。

图1 计算模型2、建立裂纹产生区域节点组件图示模型中选择最大主应力前沿一排节点作为裂纹产生区域的节点组件,并命名为CrkInitZone。

图2 裂纹产生区域节点组件3、对模型进行初步分析,最大主应力为61.5MPA,设定产生裂纹的临界主应力为60MPA图3 没有裂纹时分析,最大主应力云图4、在分析中插入如下命令流,定义裂纹产生准则和裂纹扩展计算选项!! 定义最大主应力作为裂纹萌生准则,注意单位制TB,CRKI,1TBDATA,1,60!! TB,CRKI,MAT_ID,NTEMP,NPTS!! TBDATA,1,Par1!!其中Par1是临界最大主应力值;CRKI,自适应裂纹萌生准则;MAT_ID材料编号!! 通过ADPCI(adaptive crack initiation)在裂纹产生区域节点组件自动生成椭圆裂纹ADPCI,DEFINE,1,CrkInitZone,1,ELLIPSE!! ADPCI,DEFINE,CIID,CompName,MAT_ID,CRACKGEOM!!其中CIID是ADPCI编号。

“CompName”为裂纹产生区域节点组件名称。

MAT_ID将临界值(通过TB、CRKI定义)与裂纹萌生数据记录连接起来。

补充材料一断裂力学ansys方法课件

补充材料一断裂力学ansys方法课件
结论与展望
断裂力学ANSYS方法的应用总结
断裂力学ANSYS方法在结构分析中具有广泛的应用,能够模拟复杂的断裂和损伤行 为,为工程设计和安全评估提供重要依据。
该方法在材料、机械、航空航天、土木工程等领域得到广泛应用,为解决实际工程 问题提供了有效的手段。
断裂力学ANSYS方法在模拟复杂断裂和损伤行为方面具有较高的精度和可靠性,但 也需要考虑模型的简化、边界条件的设置等因素对模拟结果的影响。
03
CATALOGUE
ANSYS软件介绍
ANSYS软件概述
01
全球领先的高级工程仿真软件
02 广泛应用于航空、航天、汽车、电子、材料、土 木等领域
03 提供结构、流体、热、电磁等多物理场仿真功能
ANSYS在断裂力学分析中的应用
模拟裂纹的萌生和扩展过程
1
2
评估材料的断裂韧性、应力强度因子等参数
预测结构的断裂行为和寿命
总结词:通过ANSYS软件对金属材料进行断裂 分析,研究其断裂行为和机理。
01
02
详细描述
建立金属材料的有限元模型,并进行网格 划分。
03
04
定义材料属性,包括弹性模量、泊松比和 断裂韧性等。
施加边界条件和载荷,模拟金属材料在不 同条件下的断裂行为。
05
06
分析断裂过程中应力、应变和位移等参数 的变化情况。
断裂力学在工程中的应用
航空航天
飞机和航天器的结构中存在许多裂纹,断裂力学的应用有助于提 高其安全性和可靠性。
船舶
船舶的结构和材料在海洋环境中容易受到腐蚀和损伤,断裂力学的 应用有助于提高其耐久性和安全性。
核能
核反应堆和核电站中的压力容器、管道等设备需要承受高温、高压 和放射性环境,断裂力学的应用有助于确保其安全运行。

断裂力学-ansys

断裂力学-ansys
这里W是应变能密度,T是动能密度,σ 表示应力,u 是位移矢量,Γ 是线积分域。 对于线弹性材料的裂纹来说,J-积分表示能量释放率。而对于非线弹性材料,裂纹尖端的应力 位移幅由J-积分来描述。 4.1.2.3 J-积分作为应力强度因子 Hutchinson、 Rice 和Rosengren分别独立地研究发现J-积分描述了非线弹性材料的裂纹尖端区的 特征。他们每个人都假定了塑性应变和应力之间的关系。如果包含弹性应变,它们的单向变形关系
第四章 断裂力学
4.1 断裂力学的定义
裂纹和缺陷会因为某些原因存在于许多结构和零部件中。可能是材料本身具有缺陷。裂纹可能 是制造过程产生的,也可能是后来由于环境因素产生的。裂纹和缺陷的存在能极大地降低构件在载 荷和环境作用中的完整性。
断裂力学使用应用力学的概念发展了对结构中存在裂纹尖端的应力与变形区的思路。对裂纹尖 端的应力与变形区深入的了解有助于发展结构的失效安全设计和安全寿命设计。基于断裂力学设计 的思想是广泛使用的,不是局限于核工业,航空航天,民用,和机械工程等领域。
PLANE182 PLANE183 SOLID185 PLANE186 PLANE187 J-积分计算支持如下材料属性: 线弹性 塑性 4.3.1.4 J-积分计算过程 ANSYS在求解器中通过子步计算J-积分,然后存储在结果文件中。 CINT命令用来计算J-积分,还用来设置运算所需要的不同的参数。 J-积分计算按如下步骤进行:
对于2-D 问题,在热应变不存在时,积分路径依赖于塑性应变、积分面上的体力和裂纹表面的 压力,域积分表示的J-积分公式为:
这里q是所谓的裂纹扩展矢量。q的方向是在裂纹尖端的局部坐标系的x轴 。q矢量在Γ曲线上为零 , 并且在Γ曲线内部除中间节点(如果有,它们直接连接在Γ曲线上)的所有节点为单位矢量。ANSYS 引用这些节点单位矢量q作为虚拟裂纹扩展节点。

ANSYS Workbench 14.0超级学习手册(第1章)

ANSYS Workbench 14.0超级学习手册(第1章)

第1章ANSYS Workbench 14.0概述本章从总体上对ANSYS Workbench 14.0自带软件包括结构力学模块、流体力学模块等进行概述,同时对ANSYS Workbench 14.0最新整合的其他模块进行简单介绍,其中包括低频电磁场分析模块Ansoft Maxwell、多领域机电系统设计与仿真分析模块Ansoft Simplorer、疲劳分析模块nCode及复合材料建模与后处理模块ACP等。

同时,本章还以SolidWorks 软件为例,介绍Workbench 14.0与常见的CAD软件进行集成的步骤及方法。

学习目标:(1)了解ANSYS Workbench软件各模块的功能;(2)掌握ANSYS Workbench软件与SolidWorks软件的集成设置;(3)掌握ANSYS Workbench平台的常规设置,包括单位设置、外观颜色设置等。

1.1 ANSYS软件简介ANSYS提供广泛的工程仿真解决方案,这些方案可以对设计过程要求的任何场进行工程虚拟仿真。

全球的诸多组织都相信ANSYS为它们的工程仿真软件投资带来最好的价值。

ANSYS软件是融结构、流体、电场、磁场、声场分析于一体的大型通用有限元分析软件。

由世界上最大的有限元分析软件公司之一、美国ANSYS公司开发,它能与多数CAD 软件接口,实现数据的共享和交换。

软件主要包括3个部分:前处理模块,分析计算模块和后处理模块。

(1)前处理模块提供了一个强大的实体建模及网格划分工具,用户可以方便地构造有限元模型。

(2)分析计算模块包括结构分析(线性分析、非线性分析和高度非线性分析)、流体动力学分析、电磁场分析、声场分析、压电分析以及多物理场的耦合分析,可模拟多种物理介质的相互作用,具有灵敏度分析及优化分析能力。

(3)后处理模块可将计算结果以彩色等值线显示、梯度显示、矢量显示、粒子流迹显示、立体切片显示、透明及半透明显示(可看到结构内部)等图形方式显示出来,也可将计算结果以图表、曲线形式显示或输出。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

ANSYS结构分析指南第四章断裂力学4.1 断裂力学的定义在许多结构和零部件中存在的裂纹和缺陷,有时会导致灾难性的后果。

断裂力学在工程领域的应用就是要解决裂纹和缺陷的扩展问题。

断裂力学是研究载荷作用下结构中的裂纹是怎样扩展的,并对有关的裂纹扩展和断裂失效用实验的结果进行预测。

它是通过计算裂纹区域和破坏结构的断裂参数来预测的,如应力强度因子,它能估算裂纹扩展速率。

一般情况下,裂纹的扩展是随着作用在构件上的循环载荷次数而增加的。

如飞机机舱中的裂纹扩展,它与机舱加压及减压有关。

此外,环境条件,如温度、或大范围的辐射都能影响材料的断裂特性。

典型的断裂参数有:与三种基本断裂模型相关的应力强度因子(K I,K II,K III)(见图4-1);J积分,它定义为与积分路径无关的线积分,用于度量裂纹尖端附近奇异应力与应变的强度;能量释放率(G),它反映裂纹张开或闭合时功的大小;注意--在本节大部分的图形中裂纹的宽度被放大了许多倍。

图4-1 裂缝的三种基本模型4.2 断裂力学的求解求解断裂力学问题的步骤为:先进行线弹性分析或弹塑性静力分析,然后用特殊的后处理命令、或宏命令计算所需的断裂参数。

本章我们集中讨论下列两个主要的处理过程。

裂纹区域的模拟;计算断裂参数。

4.2.1 裂纹区域的模拟在断裂模型中最重要的区域,是围绕裂纹边缘的部位。

裂纹的边缘,在2D模型中称为裂纹尖端,在3D模型中称为裂纹前缘。

如图4-2所示。

图4-2 裂纹尖端和裂纹前缘在线弹性问题中,在裂纹尖端附近(或裂纹前缘)某点的位移随而变化,γ是裂纹尖端到该点的距离,裂纹尖端处的应力与应变是奇异的,随1/变化。

为选取应变奇异点,相应的裂纹面需与它一致,围绕裂纹顶点的有限元单元应该是二次奇异单元,其中节点放到1/4边处。

图4-3表示2-D和3-D模型的奇异单元。

图4-3 2-D和3-D模型的奇异单元4.2.1.1 2-D断裂模型对2D断裂模型推荐采用PLANE2单元,其为六节点三角形单元。

围绕裂纹尖端的第一行单元,必须具有奇异性,如图4-3a所示。

PREP7 中KSCON命令(Main Menu>Preprocessor>-Meshing-Shape & Size>-Concentrat KPs-Create)用于指定关键点周围的单元大小,它特别适用于断裂模型。

本命令自动围绕指定的关键点产生奇异单元。

命令的其他选项可以控制第一行单元的半径,以及控制周围的单元数目等,图4-4显示用KSCON命令产生的断裂模型。

图4-4 断裂样本和2D有限元模型建立2-D模型的其他建议:尽可能利用对称条件。

在许多情况下根据对称或反对称边界条件,只需要模拟裂纹区的一半,如下所示:图4-5 利用对称性为获得理想的计算结果,围绕裂纹尖端的第一行单元,其半径应该是八分之一裂纹长或更小。

沿裂纹周向每一单元最好有30-40角度。

裂纹尖端的单元不能有扭曲,最好是等腰三角形。

4.2.1.2 3-D断裂模型三维模型推荐使用的单元类型为20 节点块体元SOLID95,如图4-3b所示。

围绕裂纹前缘的第一行单元应该是奇异单元。

这种单元是楔形的,单元的KLPO 面退化成KO 线。

产生三维断裂模型要比二维模型复杂,KSCON命令不能用于三维模型,必须保证裂纹前缘沿着单元的KO 边。

建立三维断裂模型的建议如下:推荐的单元尺寸与二维模型一样。

此外在所有的方向上,单元的相邻边之比不能超过4:1。

在弯曲裂纹前缘上,单元的大小取决于局部曲率的数值。

例如,沿圆环状弯曲裂纹前缘,在15-30°的角度内至少有一个单元。

所有单元的边(包括在裂纹前缘上的)都应该是直线。

4.2.2 计算断裂参数在静态分析完成后,可以通过通用后处理器POST1 来计算断裂参数,如前面提到的应力强度因子、J积分及能量释放率等。

4.2.2.1 应力强度因子用POST1 中的KCALC命令((Main Menu>General Postproc>Nodal Calcs>Stress Int Factr)计算复合型断裂模式中的应力强度因子(K I,K II,K III)。

该命令仅适用于在裂纹区域附近具有均匀的各向同性材料的线弹性问题。

使用KCALC命令的步骤如下:1、定义局部的裂纹尖端或裂纹前缘的坐标系,以X轴平行于裂纹面(在三维模型中垂直于裂纹前缘),Y 轴垂直于裂纹面,如图4-6 所示。

注意--当使用KCALC命令时,坐标系必须是激活的模型坐标系[CSYS]和结果坐标系[RSYS]。

命令:LOCAL (或CLOCAL ,CS,CSKP等)GUI:Utility Menu>WorkPlane>Local Coordinate Systems>Create LocalCS>At Specified Loc图4-6 裂缝坐标系2、定义沿裂纹面的路径,应以裂纹尖端作为路径的第一点。

对于半个裂纹模型而言,沿裂纹面需有两个附加点,这两个点都沿裂缝面;对于整体裂纹模型,则应包括两个裂纹面,共需四个附加点,两个点沿一个裂纹面,其他两个点沿另一个裂纹面。

图4-7 给出了二维模型的情况。

命令:PATH,PPATHGUI:Main Menu>General Postproc>Path Operations>Define Path图4-7 典型路径定义(a)半个裂纹模型;(b)整个裂纹模型3、计算K I,K II,K III,KCALC命令中的KPLAN域用于指定模型是平面应变或平面应力。

除了薄板的分析,在裂纹尖端附近或其渐近位置,其应力一般是考虑为平面应变。

KCSYM域用来指定半裂纹模型是否具有对称边界条件、反对称边界条件或是整体裂纹模型。

命令:KCALCGUI:Main Menu>General Postproc>Nodal Calcs>Stress Int Factr4.2.2.2 J 积分J积分的最简单形式,可以定义为与路径无关的曲线积分,它能度量裂纹尖端附近的奇异应力和应变的强度。

式(4-1)是二维情况下的定积分表达式。

它假定裂缝位于总体直角坐标X-Y平面,而X轴平行于裂缝。

(4-1)其中:γ=围绕裂纹尖端的任意积分路径;W=应变能密度(单位体积的应变能);t x=沿X轴的牵拉力向量σx n x + σxy n y;t y=沿Y轴的牵拉力向量σy n y + σxy n x;σ=应力分量;n=路径γ的单位外法向矢量分量;u=位移矢量;s=路径γ的距离。

图4-8 围绕裂纹尖端的J积分路径二维模型计算J积分的步骤:1、读入所要的结果。

命令:SETGUI:Main Menu>General Postproc>First Set2、存储每个单元的应变能和体积。

命令:ETABLEGUI:Main Menu>General Postproc>Element Table>Define Table3、计算每个单元的应变能密度。

命令:SEXPGUI:Main Menu>General Postproc>Element Table>Exponentiate4、定义线积分路径。

见图4-9。

命令:PATH,PPATHGUI:Main Menu>General Postproc>Path Operations>Define Path图4-9 J积分路径示例5、将步骤1存储在单元表中的应变能密度映射到积分路径上。

命令:PDEFGUI:Main Menu>General Postproc>Path Operations>Map Onto Path6、对总体Y轴积分。

命令:PCALCGUI:Main Menu>General Postproc>Path Operations>Integrate7、将积分的最后值赋值给一个参数,它就是式(4-1)的第一项。

命令:*GET,NAME,PATH,,LASTGUI:Utility Menu>Parameters>Get Scalar Data8、将应力分量SX、SY和SXY映射到积分路径上。

命令:PDEFGUI:Main Menu>General Postproc>Path Operations>Map Onto Path9、定义路径法向量。

命令:PVECTGUI:Main Menu>General Postproc>Path Operations>Unit Vector10、计算式(4-1)中的TX和TY。

命令:PCALCGUI:Main Menu>General Postproc>Path Operations>operation11、沿X轴的正方向和负方向沿路径移动一小段距离,计算位移向量的导数(δu x/δx和δu y/δy)。

这涉及到下面的步骤(如图4-10所示):计算路径移动的距离DX。

一般情况下取为路径总长度的1%。

可以通过下面的命令得到路径的总长度:*GET,Name,PATH,,LAST,S沿X轴的的负方向移动DX/2 距离[PCALC,ADD,XG,XG,,,,-DX/2],将UX 和UY 映射到路径上[PDEF],取名为UX1 和UY1。

沿X轴的的正方向移动DX 距离[PCALC,ADD,XG,XG,,,,DX/2](即从原点处移动DX/2 的距离),将UX 和UY 映射到路径上,取名UX2 和UY2。

把路径移回原点(距离-DX/2),然后采用PCALC 计算(UX2-UX1)/DX 和(UY2-UY1)/DX ,它就分别代表σu x/σx和σu y/σy。

参见《ANSYS Coupled-Field Analysis Guide》对*GET, PCALC和PDEF命令的讨论。

图4-10 计算位移矢量的导数12、采用第10步和第11步计算得到的数据,计算J积分的第二项[PCALC],并对路径的距离S[PCALC]积分,得到方程4-1中的第二项。

13、采用5~7和12步所获得的数值,根据式(4.1)计算J积分值。

可把上述步骤写入一个宏,以简化J积分计算,参见《ANSYS APDL Programers Guide》。

4.2.2.3 能量释放率能量释放率用于计算裂纹张开或闭合时所用的功(能量改变)。

计算能量释放率的一个方法是虚拟裂纹扩展方法。

在虚拟裂纹扩张方法中,必须做两次分析:一次是裂纹长度为a,另一次是裂纹长度为a+Δa。

如果这二种情况下的位能U(应变能)被储存,能量释放率就可从下列公式算出:(4.2)其中B 是断裂模型的厚度。

相关文档
最新文档