简述双馈异步发电机的基本工作原理及其功率流向要点

合集下载

双馈异步发电机及其工作原理

双馈异步发电机及其工作原理

双馈异步发电机双馈异步发电机是一种绕线式感应发电机,按转子类型分为有刷和无刷两种,无刷发电机即为鼠笼型发电机,由于鼠笼型风力发电机励磁控制困难,无法最大限度的利用风能,所以目前很少应用;有刷发电机即为双馈异步发电机,具备易于控制转矩和速度、能工作在恒频变速状态、电机可以超同步和超容量运行、驱动变流器的总额定功率可以降低到电机容量的1/4等方面的优点,是本文介绍的重点。

双馈异步发电机变速恒频风力发电机的核心部件。

此类发电机主要由电机本体和冷却系统两大部分组成。

电机本体由定子、转子和轴承系统组成,冷却系统分为水冷、空空冷和空水冷三种结构。

双馈异步发电机的定子绕组直接与电网相连,转子绕组通过变频器与电网连接,转子绕组电源的频率、电压、幅值和相位按运行要求由变频器自动调节,机组可以在不同的转速下实现恒频发电,满足用电负载和并网的要求。

由于采用了交流励磁,发电机和电力系统构成了"柔性连接",即可以根据电网电压、电流和发电机的转速来调节励磁电流,精确的调节发电机输出电压,使其能满足要求。

异步电动机运行时,电磁转矩和转向相同,即转差率>0;异步发电机运行时,电磁转矩和转速方向相反,转差率<0,发电机的功率随该负转差率绝对值的增大而提高。

当双馈发电机的转子绕组通过三相低频电流时,在转子中会形成一个低速旋转磁场,这个磁场的旋转速度与转子的机械转速相叠加,使其等于定子的同步转速,从而在发电机定子绕组中感应出相应于同步转速的工频电压。

当风速变化时,转速随之而变化,相应地改变转子电流的频率和旋转磁场的速度,就会使定子输出频率保持恒定。

双馈发电机通过控制转子励磁,使定子的输出频率保持在工频。

当发电机的转速低于气隙旋转磁场的转速时,发电机处于亚同步速运行,为了保证发电机发出的频率与电网频率一致,需要变频器向发电机转子提供正相序励磁,给转子绕组输入一个其旋转磁场方向与转子机械方向相同的励磁电流,此时转子的制动转矩与转子的机械转向相反,转子的电流必须与转子的感应电动势反方向,转差率减小,定子向电网馈送电功率,而变频器向转子绕组输入功率。

双馈式风力发电机结构原理及功率分析

双馈式风力发电机结构原理及功率分析

双馈式风力发电机结构原理及功率分析1 双馈式风力发电机的结构双馈发电机(Doubly—Fed Induction Generator,简称DFIG)最初的设想来自于一位英国学者,是在自级联异步电机的基础上发展出来的。

其在结构上与绕线异步电机较为类似,由于其转子和定子两部分都能馈入或馈出能量,因此得名“双馈”,同时,由于双馈式发电机是通过转子来产生交流磁场,所以,双馈式发电机也被形象的称为交流励磁发电机。

双馈式发电机的结构一般是由转子、定子和气隙三个组成的。

在双馈式电机定子的铁心上,均匀的分布着同形状的凹槽,它的主要作用就是用来嵌入定子绕组,使得通过定子的三相电流能够产生旋转磁场,同样,在转子中也有嵌入用绝缘导线组成的三相绕组,如图1,从示意图中可以清楚的看到,转子上引出的三相线先连接到位于转轴上的集电环上,然后再由电刷引出。

一般情况下,定子是直接接到工频电网上,而转子则通过变换器连接到电网上,以用于转子进行交流励磁用。

2 双馈式风力发电机的原理双馈式电机交流励磁变速恒频发电系统图2所示即为双馈式发电机交流励磁变速恒频发电系统的基本组成示意图。

图的最左端为风机的桨叶,当桨叶通过风力的推动转动时,连杆经过齿轮箱的变速后带动发电机转动。

当风速发生变化时,势必带动发电机的转速发生变化,此时,可以通过变频器有针对的控制输入到转子侧的励磁电流的频率,来改变转子磁场的旋转速度,这样,就能使定子侧感应出同步转速,将变速恒频发电变为现实。

n+(-)60f1/p=60f2/p要保持电网的频率不发生变化,我们可以通过控制转子的电流频率,即f1来确保f2恒定不变,达到变速恒频的目的。

当发电机的转速小于同步转速,即ωr<ω1时,整个发电机处于亚同步状态,在此状态下,通过励磁变频器,电网向发电机的转子提供交流励磁,补偿其转差功率,由定子向电网馈出电能;当发电机的转速大于同步转速,即ωr>ω1时,该发电机处于超同步状态之下,在此状态下,同样通过励磁变换器,转子回路向电网馈出电能,励磁变换器的能量方向与亚同步状态下相反,同时,定子回路也向电网馈出电能;当发电机的转速与同步转速相等,即ωr=ω1时,此时可以看作普通的同步电机,式2—1中fr=0,变流器向转子提供直流励磁。

双馈异步风力发电机机组变流器基本运行原理

双馈异步风力发电机机组变流器基本运行原理

双馈异步风力发电机机组变流器基本运行原理一、引言近年来,随着环保意识的提高和可再生能源的重要性日益凸显,风力发电作为一种清洁、可再生的能源形式,受到了广泛的关注和推广。

而风力发电机组作为风力发电系统的核心部件,其稳定性和效率对整个系统的运行影响重大。

双馈异步风力发电机机组变流器作为风力发电机组的关键部件之一,其基本运行原理对整个系统的性能具有重要影响,因此有必要对其进行全面了解和分析。

二、双馈异步风力发电机机组概述双馈异步风力发电机机组是一种常见的风力发电机组类型,其主要由风轮、叶片、主轴、发电机、变流器等组成。

风轮转动驱动主轴旋转,主轴通过传动系统带动发电机工作,发电机将机械能转化为电能输出给电网。

其中变流器起着将发电机输出的交流电转换为直流电,通过逆变器将直流电再转换为交流电,并使得风力发电机组能够与电网实现同步运行的重要作用。

三、双馈异步风力发电机机组变流器基本结构双馈异步风力发电机机组变流器主要由变流器电路、控制系统和通信系统等组成。

其中变流器电路包括整流部分和逆变部分,控制系统负责对变流器进行控制和监测,通信系统用于与上层监控系统进行数据交互。

双馈异步风力发电机机组变流器通常采用IGBT(绝缘栅双极型晶体管)等功率器件,以实现对电流和电压的精确控制。

四、双馈异步风力发电机机组变流器工作原理1.变流器整流部分:发电机输出的交流电首先被变流器整流部分进行整流,将交流电转换为直流电。

这个过程包括整流桥、滤波电路等部分,其主要目的是将交流电转换为基本平稳的直流电,以便后续逆变器的工作。

2.变流器逆变部分:经过整流的直流电被逆变器逆变部分转换为交流电,通过逆变器的PWM控制,将直流电转化为符合电网要求的交流电,并具有同步电网的频率和相位。

逆变部分通过对功率器件的开关控制,将直流电转换为交流电输出到电网。

3.控制系统:变流器的控制系统通过对PWM控制信号的生成和对功率器件的开关控制,实现对变流器的电流和电压的精确控制,使得风力发电机组与电网实现有效的功率传递和稳定的运行。

双馈发电机的原理

双馈发电机的原理

双馈发电机的原理双馈发电机是一种独特的电动机,在发电和驱动领域得到广泛应用。

它采用了双馈结构,即同时给定定子绕组和转子绕组电源,具有高效率和较好的性能。

本文将详细介绍双馈发电机的原理及其工作过程。

一、双馈发电机的结构双馈发电机由定子绕组、转子绕组和磁路组成。

定子绕组是通过固定在定子上的线圈形成的,而转子绕组是固定在转子上的线圈。

通过将定子和转子绕组分别接入电源,实现对发电机的控制。

二、双馈发电机的原理双馈发电机的原理是基于磁场的相互作用和电流的感应。

当定子绕组通电时,产生的磁场将影响转子绕组中的电流。

反过来,转子绕组中的电流也会产生磁场,进一步影响定子绕组中的电流。

通过这种相互作用,能够实现能量的转换和传输。

三、双馈发电机的工作过程在正常工作状态下,双馈发电机的定子和转子绕组均接通电源。

定子绕组产生旋转磁场,通过与转子绕组的电流相互作用,产生驱动力矩。

转子绕组中的电流会产生磁场,与定子绕组的磁场相互作用,进一步提高发电机的效率和性能。

四、双馈发电机的优势相比传统的发电机,双馈发电机具有以下优势:1. 高效率:双馈发电机能够通过转子绕组中的电流来调节和控制磁场,从而提高发电机的效率。

2. 较好的性能:双馈发电机在低速启动和高速运行时具有较好的性能,能够适应各种工况要求。

3. 灵活性:双馈发电机的结构和控制方式可以根据实际需求进行调整,具有较强的灵活性和适应性。

五、双馈发电机的应用领域双馈发电机广泛应用于风力发电、水力发电和轨道交通等领域。

在风力发电中,双馈发电机能够充分利用风能,并通过优化的控制系统实现最大的发电效率。

在水力发电中,双馈发电机具有低噪音、高效率和可靠性等优点。

在轨道交通中,双馈发电机能够实现高速度和高扭矩的需求。

六、总结双馈发电机作为一种独特的电动机,通过双馈结构实现了高效率和较好的性能。

它的工作原理是基于磁场的相互作用和电流的感应。

双馈发电机的优势包括高效率、较好的性能和灵活性,广泛应用于风力发电、水力发电和轨道交通等领域。

双馈发电机工作原理

双馈发电机工作原理

第七章双馈风力发电机工作原理我们通常所讲的双馈异步发电机实质上是一种绕线式转子电机,由于其定、转子都能向电网馈电,故简称双馈电机。

双馈电机虽然属于异步机的范畴,但是由于其具有独立的励磁绕组,可以象同步电机一样施加励磁,调节功率因数,所以又称为交流励磁电机,也有称为异步化同步电机。

同步电机由于是直流励磁,其可调量只有一个电流的幅值,所以同步电机一般只能对无功功率进行调节。

交流励磁电机的可调量有三个:一是可调节的励磁电流幅值;二是可改变励磁频率;三是可改变相位。

这说明交流励磁电机比同步电机多了两个可调量。

通过改变励磁频率,可改变发电机的转速,达到调速的目的。

这样,在负荷突变时,可通过快速控制励磁频率来改变电机转速,充分利用转子的动能,释放或吸收负荷,对电网扰动远比常规电机小。

改变转子励磁的相位时,由转子电流产生的转子磁场在气隙空间的位置上有一个位移,这就改变了发电机电势与电网电压相量的相对位移,也就改变了电机的功率角。

这说明电机的功率角也可以进行调节。

所以交流励磁不仅可调节无功功率,还可以调节有功功率。

交流励磁电机之所以有这么多优点,是因为它采用的是可变的交流励磁电流。

但是,实现可变交流励磁电流的控制是比较困难的,本章的主要内容讲述一种基于定子磁链定向的矢量控制策略,该控制策略可以实现机组的变速恒频发电而且可以实现有功无功的独立解耦控制,当前的主流双馈风力发电机组均是采用此种控制策略。

一、双馈电机的基本工作原理设双馈电机的定转子绕组均为对称绕组,电机的极对数为p,根据旋转磁场理论,当定子对称三相绕组施以对称三相电压,有对称三相电流流过时,会在电机的n称为同步转速,它与电网频率气隙中形成一个旋转的磁场,这个旋转磁场的转速11f 及电机的极对数p 的关系如下:pf n 1160=(3-1)同样在转子三相对称绕组上通入频率为2f 的三相对称电流,所产生旋转磁场相对于转子本身的旋转速度为:pf n 2260=(3-2)由式3-2可知,改变频率2f ,即可改变2n ,而且若改变通入转子三相电流的相序,还可以改变此转子旋转磁场的转向。

两相直流异步发电机

两相直流异步发电机

两相直流异步发电机两相直流异步发电机是一种常见的发电设备,它的工作原理和结构都与其他类型的发电机不同,具有独特的特点和优势。

下面将从不同的角度来介绍这种发电机。

一、工作原理两相直流异步发电机的工作原理是利用电磁感应现象,将机械能转化为电能。

当发电机的转子旋转时,转子上的导体与磁场相互作用,产生感应电动势。

这个感应电动势使得电荷在导体内部移动,最终形成电流。

这样,机械能就被转化为了电能。

二、结构特点两相直流异步发电机的结构相对简单,由转子、定子、磁场等部件组成。

转子是发电机的旋转部分,由导体和轴组成。

定子是发电机的固定部分,由绕组和铁芯组成。

磁场则由永磁体或电磁体产生。

这种结构使得发电机具有体积小、重量轻、运行稳定等特点。

三、优势和应用两相直流异步发电机具有许多优势,使其在不同领域得到广泛应用。

首先,它具有较高的效率和可靠性,能够稳定地输出电能。

其次,它的启动和停止都比较方便,能够快速响应外部指令。

此外,它还具有较低的噪音和振动水平,对环境影响较小。

因此,它被广泛应用于工业生产、交通运输、农业生产等领域。

四、发展趋势随着科技的不断进步,两相直流异步发电机也在不断发展。

目前,一些新型材料和技术正在被应用到发电机的制造中,以提高其效率和性能。

此外,人们对发电机的环保性能也提出了更高的要求,因此,研发更加节能环保的发电机成为了一个重要的方向。

总结起来,两相直流异步发电机是一种具有独特工作原理和结构特点的发电设备。

它的优势和应用范围广泛,对于推动社会经济的发展具有重要意义。

随着科技的进步,相信这种发电机在未来会有更加广阔的发展前景。

双馈异步发电机原理最好的讲解

双馈异步发电机原理最好的讲解

双馈异步发电机工作原理一、先知道什么是双馈风力发电机双馈发电的意思就是指感应电机的定子、转子同时能发出电能,双馈发电机其转子和定子都最终连于电网,转子与定子都参与励磁,其定子和转子都可以与电网有能量的交换。

二、双馈异步发电机的原理是通过叶轮将风能转变为机械转矩,通过主轴传动链,经过齿轮箱增速到异步发电机转速后,通过励磁变流器励磁而将发电机的定子电能并入电网。

如果超过发电机同步转速,转子也处于发电状态,通过变流器向电网馈电。

双馈发电机正是由叶片通过齿轮箱变速,带动以达到定子侧输出相对完美正弦波,同时在额定转速下,转子侧也能同时发出电流,已达到最大利用风能效果。

三、特点1、由于定子直接与电网连接,转子采用变频供电,因此,系统中的变频器容量仅仅取决于发电机运行时的最大转差功率,一般发电机最大转差功率为25%-35%,因而变频器的最大容量仅为发电机容量的1/4-1/3,这样系统的总体配置费用就比较低。

2、具有变速恒频的特性。

3、可以实现有功功率和无功功率的调节。

四、如何实现变速恒频。

设双馈发电机的定子转子绕组为对称绕组,电机的极对数为P,根据旋转磁场理论,当定子对称三相绕组施以对称三相电压,有对称三相电流流过时,会在电机的气隙中形成一个旋转磁场,这个旋转磁场的转速n1为同步转速,它与电网频率f1及电机的极对数p的关系如下:n1=60f1/p ,同样在转子三相通入频率为f2的三相对称电流,所产生的旋转磁场速度为n2=60f2/p,改变f2即可改变n2,而且若改变通入转子三相电流相序,还可以改变此转子旋转磁场的转向,因此若设n1为对应于电网频率为50Hz时双馈发电机的同步转速,而n为电机转子本身的旋转速度,则只要维持n±n2=n1=常数,则双馈电机定子绕组的感应电势如同在同步发电机一样,其频率将始终维持为f1不变。

双馈发电机的转差率s=(n1-n)/n1 ,则双馈发电机转子三相绕组内通入的电流频率应为f2=pn2/60=p(n1-n)/60=p(n1-n)/n1*n1=pn1/60*(n1-n)/n1=f1*s上式表明:在异步发电机转子以变化的转速转动时,只要在转子的三相对称绕组中通入转差频率为f1*s的电流,则在双馈发电机定子绕组中就能产生50Hz的恒频电势,所以根据上述原理,只要控制好转子电流的频率,就可以实现变速恒频发电了。

双馈异步发电机的所有资料

双馈异步发电机的所有资料

什么是双馈异步发电机,什么是异步电机,两者的区别绕线电动机的转子铁心是不绝缘的,双馈电机的铁心是绝缘的,主要是双馈电机需要考虑转子交流励磁的工况,而绕线电机一般工作在转差率不高的异步状态。

使用绕线电动机替代双馈电机最大的问题就是转子涡流损耗较大,调速工作的范围非常有限,太宽的调速将导致转子励磁交流频率高,损耗就大了。

此外绕线电机的绕线转子线路的绝缘是很低的,正常工作时电机的无功必须依赖电网补充。

作为双馈电机使用时,如果电机需要向电网发无功,则励磁的电压会比较大,可能会超出电机的极限引起击穿事故。

使用绕线电机替代双馈电机是可行的,但调速范围要远远小于真正的双馈电机。

使用绕线电机替代主要是常规异步电机的漏磁要比发电机的大,磁场气隙也比较大。

此外绕线电机因为转子不绝缘,相当于存在一个阻尼绕组,导致转子交流励磁磁场被涡流部分抵消(也会影响暂态过程),要接近双馈电机的状态,就只能在额定转速附近试验,转速调整的范围就很小,绕组励磁频率很低,没有意义。

励磁频率越高,涡流影响越大,偏差也越大,影响实验结果。

在调速运行时,转子与定子磁场存在差速,相当于一个磁场从转子表面扫过,会导致转子产生涡流,也会引起定子的功率损耗。

要改造绕线电机几乎等于买几个新的,非常不划算了。

双馈发电机又被人们称之为交流励磁发电机.由于转子方采用交流电压励磁,使其具有灵活的运行方式,在解决电站持续工频过电压、变速恒频发电、抽水蓄能电站电动-发电机组的调速等问题方面有着传统同步发电机无法比拟的优越性。

交流励磁发电机主要的运行方式有以下三种:1) 运行于变速恒频方式;2) 运行于无功大范围调节的方式;3) 运行于发电-电动方式。

异步发电机是指异步电机处于发电的工作状态,从其激励方式有电网电源励磁发电(他励)和并联电容自励发电(自励)两种情况。

1、电网电源励磁发电:是将异步电机接到电网上,电机内的定子绕组产生以同步转速转动的旋转磁场,再用原动机拖动,使转子转速大于同步转速,电网提供的磁力矩的方向必定与转速方向相反,而机械力矩的方向则与转速方向相同,这时就将原动机的机械能转化为电能。

双馈发电机工作原理

双馈发电机工作原理

双馈发电机工作原理第一篇:双馈发电机工作原理双馈发电机工作原理双馈风力发电机是时下应用比较广泛的风机,它的特殊之处在于其定子绕组和转子绕组都直接或间接地与电网相连,定子侧绕组产生的工频交流电直接馈入电网,转子侧的功率通过整流逆变装置上网。

与一般的异步发电机相比,双馈风机允许发电机转速在一定范围内波动,因为转子侧(相当于励磁绕组)中电流的大小和频率可以通过整流逆变装置进行调节,从而在转速发生变化的情况下,维持定子侧输出功率频率的恒定。

暂态建模资料摘要随着风力发电并网容量的快速增加,风电接入对电网运行性能的影响越加明显。

联网运行双馈感应风电机组的运行特性对电网的安全稳定运行有着重要的影响。

本文对联网运行双馈感应风电机组的仿真建模、运行控制及模型的有效性进行了研究分析,主要包括以下内容:分析了两相同步旋转坐标系下双馈感应风电机组数学模型的特点,建立了双馈感应风电机组联网运行电磁暂态模型,对不同运行条件下双馈感应风电机组的运行特性进行了仿真模拟,深入了解了双馈感应风电机组的联网运行特性。

建立了联网运行双馈感应风电机组运行控制策略,在此基础上,构建了控制系统传递函数模型,分析了PI控制器参数选择对控制系统性能的影响,提出了PI控制器参数设置的方法。

提出了电网发生对称性故障时双馈感应风电机组的短路电流计算简化模型,为评估双馈感应风电机组短路对电网继电保护装置的影响提供了有效的计算模型。

设计了风电机组联网短路试验方案,分析了短路试验数据识别出风电机组厂家未提供的风电机组撬杠保护动作值,并仿真重现了风电机组联网短路试验,仿真数据与试验数据相吻合,验证了所构建系统模型和仿真系统的有效性。

研究现状由于风能是一种随即性很强的一种能源,不能像火力发电、水力发电那样可以预先调度,因此大规模的风力发电的接入对电网的经济、安全、稳定运行带来了诸多不利的影响,对系统调频、调压、调峰带来了困难。

同时由于风电机组大多包含有对运行条件要求很高的电力电子变流器,在一些运行方式下电网的扰动对风电机组的正常运行也会带来一定的影响,严重时可能会引起风电机组跳闸,造成电网功率大幅波动,威胁着电网的运行安全,而从系统持续运行的角度考虑,通常希望风电机组具有一定的故障穿越能力,能够在一定的故障情况下持续联网运行,因此对联网运行风电机组的运行特性,需要进行深入的研究。

简述双馈异步发电机的基本工作原理及其功率流向

简述双馈异步发电机的基本工作原理及其功率流向

题目:简述双馈异步发电机的基本工作原理及其功率流向一、双馈异步发电机及其工作原理1、双馈异步发电机双馈异步风力发电机是一种绕线式感应发电机,是变频风力发电机组的核心部分,也是风力发电机组国产化的关键部件之一。

该发电机主要有电机本体和冷却系统两大部分组成。

电机本体有定子、转子和轴承系统组成,冷却系统分为水冷、空空冷和空水冷三种结构。

双馈异步发电机的定子绕组直接与电网相连,转子绕组通过变频器与电网连接,转子绕组电源的频率、电压、幅值和相位按运行要求由变频器自动调节,机组可以在不同的转速下实现恒频发电,满足用电负载和并网的要求。

由于采用了交流励磁,发电机和电力系统构成“柔性连接”,即可以根据电网电压、电流和发电机的转速来调节励磁电流,精确的调节发电机输出电压,使其能满足要求。

2、双馈异步发电机的工作原理根据电机学理论,在转子三相对称绕组中通入三相对称的交流电,将在电机气隙间产生磁场,此旋转此磁场的转速与所通入的交流电的频率及电机的极对数p 有关。

p f n 2260= (1-1)式(1-1)中,2n 为转子中通入频率为2f 的三相对称交流励磁电流后所产生的旋转磁场相对于转子本身的旋转速度(r/min )。

从式(1-1)中可知,改变频率2f ,即可改变2n 。

因此若设1n 为对应于电网频率50Hz (Hz f 502=)时发电机的同步转速,而n 为发电机转子本身的旋转速度,只要转子旋转磁场的转速与转子本身的机械速度n 相加等于定子磁场的同步旋转速度1n ,即12n n n =+ (1-2)则定子绕组感应出的电动势的频率将始终维持为电网频率1f 不变。

式(1-2)中,当2n 与n 旋转方向相同时,2n 取正值,当2n 与n 旋转方向相反时,2n 取负值。

由于pf n 1160= (1-3) 将式(1-1),式(1-3)代入式(1-2)中,式(1-2)可另写为1260f f np =+ (1-4) 式(1-4)表明不论发电机的转子速度n 随风力机如何变化,只要通过转子的励磁电流的频率满足式(1-4),则双馈异步电动机就能够发出与电网一致的恒定频率的50Hz 交流电。

双馈异步风力发电机工作原理

双馈异步风力发电机工作原理

双馈异步风力发电机工作原理
双馈异步风力发电机是一种常用于大型风力发电机组的变频风力发电机。

它的工作原理基于异步电动机的双馈结构。

该发电机由主发电机和辅助发电机组成。

主发电机采用三相异步电动机构造,由高速轴驱动。

辅助发电机由低速轴驱动。

两个发电机之间通过转子传动部件(通常为液力变矩器)相连接。

当风向风速改变时,风力发电机组需要迅速跟踪变化,并同时提供稳定的输出电力。

双馈异步风力发电机通过调节主发电机电流和辅助发电机电流的相位和幅值来实现这一目标。

当风速低于额定风速时,辅助发电机通过其低速轴产生电势,然后通过转子传动部件和主发电机的电动势连接到电网。

主发电机旋转并与电网同步运行,将产生的电能通过转子传动部件传递给辅助发电机,然后送回电网。

当风速大于额定风速时,主发电机无法提供足够的电能,此时辅助发电机扮演更重要的角色。

主发电机和辅助发电机之间的转子传动部件通过传递转矩将未被主发电机转化为电能的机械能传递给辅助发电机,然后再通过辅助发电机将其转化为电能并送回电网。

通过调节主发电机和辅助发电机之间的相位和幅值,双馈异步风力发电机可以实现对电能输出的灵活控制,提高风力发电机组的响应速度和效率。

双馈异步发电机原理

双馈异步发电机原理

双馈异步发电机双馈异步发电机是一种绕线式感应发电机,按转子类型分为有刷和无刷两种,无刷发电机即为鼠笼型发电机,由于鼠笼型风力发电机励磁控制困难,无法最大限度的利用风能,所以目前很少应用;有刷发电机即为双馈异步发电机,具备易于控制转矩和速度、能工作在恒频变速状态、电机可以超同步和超容量运行、驱动变流器的总额定功率可以降低到电机容量的1/4等方面的优点,是本文介绍的重点。

双馈异步发电机变速恒频风力发电机的核心部件。

此类发电机主要由电机本体和冷却系统两大部分组成。

电机本体由定子、转子和轴承系统组成,冷却系统分为水冷、空空冷和空水冷三种结构。

双馈异步发电机的定子绕组直接与电网相连,转子绕组通过变频器与电网连接,转子绕组电源的频率、电压、幅值和相位按运行要求由变频器自动调节,机组可以在不同的转速下实现恒频发电,满足用电负载和并网的要求。

由于采用了交流励磁,发电机和电力系统构成了"柔性连接",即可以根据电网电压、电流和发电机的转速来调节励磁电流,精确的调节发电机输出电压,使其能满足要求。

异步电动机运行时,电磁转矩和转向相同,即转差率>0;异步发电机运行时,电磁转矩和转速方向相反,转差率<0,发电机的功率随该负转差率绝对值的增大而提高。

当双馈发电机的转子绕组通过三相低频电流时,在转子中会形成一个低速旋转磁场,这个磁场的旋转速度与转子的机械转速相叠加,使其等于定子的同步转速,从而在发电机定子绕组中感应出相应于同步转速的工频电压。

当风速变化时,转速随之而变化,相应地改变转子电流的频率和旋转磁场的速度,就会使定子输出频率保持恒定。

双馈发电机通过控制转子励磁,使定子的输出频率保持在工频。

当发电机的转速低于气隙旋转磁场的转速时,发电机处于亚同步速运行,为了保证发电机发出的频率与电网频率一致,需要变频器向发电机转子提供正相序励磁,给转子绕组输入一个其旋转磁场方向与转子机械方向相同的励磁电流,此时转子的制动转矩与转子的机械转向相反,转子的电流必须与转子的感应电动势反方向,转差率减小,定子向电网馈送电功率,而变频器向转子绕组输入功率。

双馈异步发电机

双馈异步发电机
④ 实时监控系统及雷电保护装置(选配)。
定子每相线圈安装2个PT1OO。
前后轴承各装有2个PT1OO。
主电刷和接地碳刷均具有碳刷磨损监控装置。
定、转子雷电保护装置。
7. 发电机的使用维护 ① 运输、存储 ② 安装、调试 ③ 维护、保养 润滑脂的补充 电刷维护 滑环维护 热敏元件检测数据的分析判断 风机的正常使用
2. 具有变速恒频的特性。 3. 可以实现有功功率和无功功率的调节。
四、双馈发机考核的关键点
1. 工作特性 a. 空载特性测定 b. 负载特性测定(包括转
子绕组短路状态下异步 发电机的固有特性和转 子绕组由双向逆变器供 电状态下的调节特性) c. 效率计算和特性曲线绘 制 2. 温升考核
a. cosΦ=1 b. cosΦ=±0.95 3. 一般电机试验项目
一、 风力发电机的主要类型
异步发电机
同步发电机
使用 场合
特点
双速发电 机
定桨距风 力发电机 组
低风速低 速运行, 使发电机 也具有在 较高的效 率水平。
绕线式异步发 电机
变桨距风力发 电机组
高风速时可以 通过控制转子 电阻,使得输 出功率保持平 稳。
双馈异步发 电机
变速风力发 电机组
低速永磁同步发电机 变速风力发电机组
可以方便调 可以控制励磁调节发 节有功功率 电机的功率因数,使 和无功功率 功率因数达到1。在 的输出,同 相同条件下,同步发 时调节电网 电机的调速范围比异 的功率因数。 步发电机更宽。
二、双馈发电机的工作原理
双馈发电机的定子绕组接工频电网,转子绕组由具有可调节频率、相 位、幅值和相序的三相电源励磁,采用双向可逆专用变频器。双馈发 电机可以在不同的风速下运行,其转速可以随风速的变化做相应调整, 使风力机的运行始终处于最佳状态,提高了风能的利用率。同时,通 过控制馈入转子绕组的电流参数,不仅可以保持定子输出的电压和频 率不变,还可以调节输入到电网的功率因数,提高系统的稳定性。

论述双馈式风机的发电原理与发展

论述双馈式风机的发电原理与发展

论述双馈式风机的发电原理与发展双馈式风机是一种目前比较成熟的风力发电技术,其发电原理是通过风机叶片受到风能驱动后,带动发电机旋转产生电能。

双馈式风机的发电原理和发展历程一直备受人们的关注和探讨。

本文将从发电原理和发展历程两个方面来论述双馈式风机的发电原理与发展。

一、双馈式风机的发电原理双馈式风机的发电原理可以简单概括为:风力驱动叶片旋转,叶片带动发电机转子旋转,产生电力。

具体而言,双馈式风机的发电原理主要包括以下几个步骤:1. 风轮转动:风轮是风机的核心部件,其上装有叶片,当风力作用于叶片时,风轮开始旋转。

2. 转动传动:风轮的旋转带动主轴转动,主轴通过传动装置将旋转动力传递给发电机。

3. 发电转子旋转:发电机内部有一个转子和一个定子,当转子旋转时,定子内的线圈会受到磁场的作用而感生电动势。

4. 产生电力:发电机通过转子旋转产生电动势,最终产生电力供应给电网或储存设备。

双馈式风机的名称中“双馈”指的是发电机转子拥有两个电路,一个是与定子电路相连的固定转速电路,这部分功率占总功率的30%,另一个是与变频器相连的可控转速电路,这部分功率占总功率的70%。

这种设计使得双馈式风机可以在一定程度上调节转速,适应不同风速下的发电需求。

二、双馈式风机的发展历程双馈式风机的发展历程可以追溯到上世纪70年代,在当时风能利用领域取得了飞速的发展,人们开始研究如何将风能转化为电能。

经过多年的研发和应用实践,双馈式风机得到了不断完善和提升。

1. 技术创新阶段:双馈式风机的早期发展主要是以提高发电机转速、降低成本和提高效率为主要目标。

1986年,中国华北电力大学成功研制出我国第一台双馈式风力发电机组,开创了我国双馈式风机的发展先河。

2. 成熟稳定阶段:随着技术的不断进步,双馈式风机的各项技术指标得到了显著提高,成为了风电行业中的主流产品之一。

发电效率、稳定性和可靠性得到了显著提升,产品性能更加稳定可靠。

3. 高效节能阶段:当前,双馈式风机的发展进入了高效节能阶段。

浅谈双馈异步发电机变流器工作原理与故障处理

浅谈双馈异步发电机变流器工作原理与故障处理

浅谈双馈异步发电机变流器工作原理与故障处理发表时间:2020-10-12T08:24:16.404Z 来源:《中国电业》(发电)》2020年第14期作者:宋汉胜[导读] 双馈异步发电机变流器,是通过调节转子绕组励磁电流的频率、幅值、相位和相序来实现变速恒频控制的。

分析双馈电机运行原理和励磁控制方法的基础上,对变速恒频控制、恒压控制、并网控制以及亚同步速、同步速和超同步速三种不同运行状态之间的动态转换控制技术,进行了试验研究,为兆瓦级变速恒频双馈风力发电机励磁控制系统的设计奠定了基础。

宋汉胜国华(河北)新能源有限公司河北张家口 075000摘要:双馈异步发电机变流器,是通过调节转子绕组励磁电流的频率、幅值、相位和相序来实现变速恒频控制的。

分析双馈电机运行原理和励磁控制方法的基础上,对变速恒频控制、恒压控制、并网控制以及亚同步速、同步速和超同步速三种不同运行状态之间的动态转换控制技术,进行了试验研究,为兆瓦级变速恒频双馈风力发电机励磁控制系统的设计奠定了基础。

关键词:风力发电;变流器;IGBT;变流器故障引言双馈风力发电系统变速恒频变流器的核心技术是基于电力电子和计算机控制的交流励磁控制技术。

本文在华锐SL1500机组的基础上,讲述双馈异步发电系统变流器的工作原理和常见故障处理。

一、变频器基础知识变频器本质上是一种通过频率变换方式来进行转矩(速度)和磁场变频器是利用电力半导体器件的通断作用将工频电源变换为另一频率的电能控制装置。

我们现在使用的变频器主要采用交—直—交方式(VVVF变频或矢量控制变频),先把工频交流电源通过整流器转换成直流电源,然后再把直流电源转换成频率、电压均可控制的交流电源以供给电动机。

1变频器的基本结构1.1变频器是利用电力半导体器件的通断作用将工频电源变换为另一频率的电能控制装置。

1.2变频器分为控制电路、整流电路、直流电路、逆变电路。

控制电路:完成对主电路的控制整流电路:将交流电变换成直流电直流中间电路:对整流电路的输出进行平滑滤波逆变电路:将直流电再逆变成交流电2电力电子器件定义电力电子器件又称为功率半导体器件,用于电能变换和电能控制电路中的大功率电子器件(通常指电流为数十至数千安,电压为数百伏以上),又称功率电子器件。

双馈异步发电机基本原理

双馈异步发电机基本原理

子输出机械能量,带动机械负载旋转起来。
转子转速n<n0,所以称为异步电机。s=(n0-n)/n0,称为转差率, 是异步电(动)机的对重要的一个参数。sN为额定转差率。
2.4同步发电机
同步电机和感应电机一样是一种常用的交流电机。特点是: 稳态运行时,转子的转速和电网频率之间又不变得关系
n=ns=60f/p,ns成为同步转速。若电网的频率不变,则稳态时同
E1 4.44 fNkw11
3.4 通有正弦电流时单相绕组的磁动势
一相绕组的磁动势为 则单相绕组的基波磁动势为
式中, F1 — 单相绕组基波磁动势的幅值,
单相绕组的基波磁动势在空间随角按余弦规律 分布,在时间上随按余弦规律脉振。
单相绕组的基波磁动势为脉振磁动势,其脉振频率 (图4-6) 取决于电流的频率。
因此,交流电机的调速比较困难,最好的办法是改变电源的频率,而以 往要改变电源频率是比较复杂的。所以70年代以前,在要求调速的
场合,多用直流电机。随着电力电子技术的发展,交流电动机的变
频调速技术已开始得到实用。 交流电机一般采用三相制,因为三相交流电机与单相电机相比,
无论在性能指标,原材料利用和价格等方面均有明显的优越性。同
交流电源。
◆ 交变性与对称性:由于旋转磁场极性相间,使得感应电势的极性交变;由于电 枢绕组的对称性,保证了感应电势的三相对称性。
4. 双馈发电机的基本原理
4.1概述
双馈发电机又被人们称之为交流励磁发电机.由于转子方采用交流电
压励磁,使其具有灵活的运行方式,在解决电站持续工频过电压、变速恒频发 电、抽水蓄能电站电动-发电机组的调速等问题方面有着传统同步发电机无
240 电角度处,可按 (图4-1)所划分的相带连成B、C

第七章双馈风力发电机工作原理完整

第七章双馈风力发电机工作原理完整

第七幸双馈风力发电机工作原理完整第七章双馈风力发电机工作原理我们通常所讲的双馈异步发电机实质上是一种绕线式转子电机,由于其定、转子都能向电网馈电,故简称双馈电机。

双馈电机虽然属于异步机的范畴,但是由于其具有独立的励離绕组,可以象同步电机一样施加励離,调节功率因数,所以又称为交流励嫌电机,也有称为异步化同步电机。

同步电机由于是直流励磁,其可调量只有一个电流的幅值,所以同步电机一般只能对无功功率进行调节。

交流励磁电机的可调量有三个:一是可调节的励嫌电流幅值;二是可改变励磁频率;三是可改变相位。

这说明交流励礦电机比同步电机多了两个可调量。

通过改变励磁频率,可改变发电机的转速,达到调速的目的。

这样,在负荷究变时,可通过快速控制励嫌频率来改变电机转速,充分利用转子的动能,释放或吸收负荷,对电网扰动远比常规电机小。

改变转子励磁的相位吋,由转子电流产生的转子磁场在气隙空间的位置上有一个位移,这就改变了发电机电势与电网电压相量的相对位移,也就改变了电机的功率角。

这说明电机的功率角也可以进行调节。

所以交流励嫌不仅可调节无功功率,还可以调节有功功率。

交流励磁电机之所以有这么多优点,是因为它采用的是可变的交流励磁电流。

但是,实现可变交流励磁电流的控制是比较困难的,本章的主要内容讲述一种总于定子磁链定向的矢量控制策略,该控制策略可以实现机组的变速恒频发电而且可以实现有功无功的独立解耦控制,当前的主流双馈风力发电机组均是采用此种控制策略。

一、双馈电机的基本工作原理设双馈电机的定转子绕组均为对称绕组,电机的极对数为",根据旋转礁场理论,当定子对称三相绕组施以对称三相电压,有对称三相电流流过时,会在电机的气隙中形成一个旋转的黴场,这个旋转離场的转速①称为同步转速,它与电网频率第七幸双馈风力发电机工作原理完整及电机的极对数〃的关系如下:(3-1) P同样在转子三相对称绕组上通入频率为人的三相对称电流,所产生璇转嫌场相对于转子本身的旋转速度为:(3-2) 由式3・2可知,改变频率九,即可改变心,而且若改变通入转子三相电流的相序,还可以改变此转子旋转礁场的转向。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

题目:简述双馈异步发电机的基本工作原理及其功率流向
一、双馈异步发电机及其工作原理
1、双馈异步发电机
双馈异步风力发电机是一种绕线式感应发电机,是变频风力发电机组的核心部分,也是风力发电机组国产化的关键部件之一。

该发电机主要有电机本体和冷却系统两大部分组成。

电机本体有定子、转子和轴承系统组成,冷却系统分为水冷、空空冷和空水冷三种结构。

双馈异步发电机的定子绕组直接与电网相连,转子绕组通过变频器与电网连接,转子绕组电源的频率、电压、幅值和相位按运行要求由变频器自动调节,机组可以在不同的转速下实现恒频发电,满足用电负载和并网的要求。

由于采用了交流励磁,发电机和电力系统构成“柔性连接”,即可以根据电网电压、电流和发电机的转速来调节励磁电流,精确的调节发电机输出电压,使其能满足要求。

2、双馈异步发电机的工作原理
根据电机学理论,在转子三相对称绕组中通入三相对称的交流电,将在电机气隙间产生磁场,此旋转此磁场的转速与所通入的交流电的频率及电机的极对数p有关。

(1-1)
式(1-1)中,为转子中通入频率为的三相对称交流励磁电流后所产生的旋转磁场相对于转子本身的旋转速度(r/min)。

从式(1-1)中可知,改变频率,即可改变。

因此若设为对应于电网频率50Hz()时发电机的同步转速,而为发电机转子本身的旋转速度,只要转子旋转磁场的转速与转子本身的机械速度相加等于定子磁场的同步旋转速度,即
(1-2)
则定子绕组感应出的电动势的频率将始终维持为电网频率不变。

式(1-2)中,当与旋转方向相同时,取正值,当与旋转方向相反时,取负值。

由于
(1-3)
将式(1-1),式(1-3)代入式(1-2)中,式(1-2)可另写为
(1-4)
式(1-4)表明不论发电机的转子速度随风力机如何变化,只要通过转子的励磁电流的频率满足式(1-4),则双馈异步电动机就能够发出与电网一致的恒定频率的50Hz交流电。

由于发电机运行时,经常用转差率描述发电机的转速,根据转差率
,将式(1-4)中的转速用转差率替换,则式(1-4)可变为
(1-5)
需要说明,当<1时,为负值,可通过转子绕组的相序与定子绕组懂的相序相反实现。

通过式(1-5)可知,在双馈异步发电机转子以变化的转速运行时,控制转子电流的频率,可使定子频率恒定。

只要在转子的三相对称绕组中通入转差率
()的电流,双馈异步发电机可实现变速恒频运行的目的。

2、双馈异步发电机的功率流向
根据双馈异步发电机转子转速的变化,双馈异步发电机可以有以下三种运行状态:
(1)亚同步状态当发电机的转速小于同步转速时,由转差率为的电流产出的旋转磁场转速与转子方向相同,此时励磁变流器向发电机转子提供交流励磁,发电机由定子发出电能给电网。

(2)超同步状态当发电机的转速大于同步转速时,由转差率为的电流产生的旋转磁场转速与转子转动方向相反,此时发电机同时由定子和转子发出电能电网,励磁变流器的能量流向逆向。

(3)同步运行状态当发电机的转速等于同步转速时,处于同步状态。

此时状态下转差率,这表明此时通入转子绕组的电流的频率为0,即励磁变换器向转子提供直流励磁,以此与普通同步发电机一样。

在不计铁耗和机械损耗的情况下,转子励磁双馈发电机的能量流动关系可以写为
式中,为转子轴上输入的机械功率;为转子励磁变流器输入的电功率;
为定子输出的电功率;为定子绕组铜耗;为转子绕组铜耗;为转差率。

当发电机的铜耗很小,上诉公式可近似理解为
转子上所带的变流器是双馈异步发电机的重要部件。

根据上式可知,双馈异步发电机构成的变速恒频风力发电系统,其变流器的容量取决于发电机变速运行时最大转差率。

一般双馈电机的最大转差率为,因此变频器的最大容量仅为发电机额定容量的1/3~1/4,能较多地降低系统成本。

相关文档
最新文档