PSCAD的电力系统仿真大作业2

合集下载

PSCAD在电力系统电磁暂态仿真应用技术

PSCAD在电力系统电磁暂态仿真应用技术
1.电磁暂态过程的分析。主要研究电力系统故障和操作过电压及谐振过电压,一次与二次系统相互作用的控制暂态过程,以及电力电子设备的快速暂态过程,为变压器、断路器等高压电气设备和输电线路的绝缘配合和过电压保护的选择,降低或限制电力系统过电压技术措施的制定,以及电力电子控制设备的设计提供依据。
2.机电暂态过程分析。主要研究电力系统受到大扰动后的暂态稳定和受到小扰动后的静态稳定性能。其中暂态稳定分析是研究电力系统受到诸如短路故障,切除或投入线路、发电机、负荷,发电机失去励磁或者冲击性负荷等大扰动作用下,电力系统的动态行为和保持同步稳定运行的能力。为选择规划设计中电力系统的网络结构,校验和分析运行中电力系统的稳定性能和稳定破坏事故,制定防止稳定破坏的措施提供依据。静态稳定分析是研究电力系统受到小扰动后的稳定性能,为确定输电系统的输送功率,分析静态稳定破坏和低频振荡事故的原因,选择发电机励磁调节系统、电力系统稳定器和其他控制调节装置的型式和参数提供依据。
电力系统分析包括稳态分析、故障分析和暂态分析三方面内容。
1
主要研究电力系统稳态运行方式的性能,包括系统有功功率和无功功率的平衡,网络节点电压和支路功率的分布等,解决系统有功功率和频率调整,无功功率和电压控制问题。
潮流计算是进行电力系统稳态分析的主要方法。潮流计算的结果可以给出电力系统稳态运行方式下各节点电压相量和各支路功率分布。通过调整系统运行方式的给定条件,进行必要的潮流计算,可以研究并从中选择经济上合理、技术上可行、安全可靠的正常方式,及时发现电力网元件如变压器和线路过负荷、母线电压越限等异常工况并做出适当处理。潮流计算还给出电力网的功率损耗,便于进行网损分析,并进一步制定降低网损的措施。潮流计算还可用于电力系统事故预想,通过模拟发电厂、线路、变压器等元件的开断,分析其引起潮流分布的相应改变,确定事故影响的程度和防止事故扩大的措施。潮流计算也用于输电线路工频过电压研究和调相、调压分析,为确定超高压线路并联补偿容量、变压器可调分接头设置、发电机额定功率因数等系统规划设计的主要参数以及线路绝缘水平提供部分依据。潮流计算还是考虑负荷电流的短路电流计算和稳定计算的基础,为这些计算提供初始运行方式。

PSCAD电力电子仿真讲义

PSCAD电力电子仿真讲义

PSCAD电力电子仿真讲义谭甜源武汉大学电气工程学院2012年6月目录第一部分:电力电子基本模块及其功能 (1)1.电力电子器件(Power Electronic Switch) (1)1.1二极管(Diode) (1)1.2晶闸管(Thyristor) (2)1.3 Transistor/GTO/IGBT (3)2.插值触发脉冲发生器 (3)2.1插值和器件动作(Interpolation and Switching) (3)2.2插值点的触发脉冲(Interpolated Firing Pulses) (7)3.控制系统的搭建(电力电子装置常用控制模块) (7)3.1 锁相环(Three-Phase PI-Controlled Phase Locked Loop) (7)3.2 静止坐标系和旋转坐标系变换(abc to dq0 Transformation) (8)3.3 PI控制器 (9)3.4 传递函数 (9)3.5 载波调制PWM算法 (10)3.6 采样和保持模块 (11)3.7 滤波器 (12)3.8 逻辑控制 (12)3.9 FFT变换器 (13)4.自定义元件或模块的应用(Creating a New Coponent or Module) (13)4.1使用元件向导(Using the Component Wizard) (13)5.与MATLAB的仿真接口 (17)第二部分:PSCAD自带例程中有关电力电子部分的讲解 (25)1.Power Electronics(常见电力电子装置) (25)1.1 Single-Phase Thyristor Half-Wave Rectifier(单相半波半控整流电路) (25)1.2 Single-Phase GTO Half-Wave Rectifier(单相半波全控整流电路) (25)1.3 Phase Controlled AC Switch(相控交流开关电路) (25)2.APF(有源电力滤波器) (25)2.1 6-Pulse Bridge(6脉波桥)(常用非线性负载) (25)2.2 并联型有源电力滤波器(Shunt APF) (26)2.3 串联型有源电力滤波器(Series APF) (28)第三部分:典型应用案例介绍 (29)1.仿真模拟连续控制系统(采用滞环电流跟踪控制法的APF) (29)2.仿真离散数字控制系统(采用三角波比较法的APF) (29)附录A:其它常用相关模块及其功能介绍 (31)A.1 电力电子仿真常用元件模块 (31)A.1.1金属氧化物浪涌避雷器(Metal Oxide Surge Arrestor) (31)A.1.2电感(Inductor) (31)A.1.3电压表(Voltmeters) (31)A.1.4实常数(Real Constant) (31)A.1.5电流表,安培表(Current Meter,Ammeter) (31)A.1.6时间信号变量(Time Signal Variable) (32)A.1.7节点环(Node Loop)(Three Phase Electrical Node) (32)A.1.8三相两绕组变压器(3-Phase 2-Winding Transformer) (32)A.1.9接地(Ground) (33)A.1.10单输入比较器(Single Input Comparator) (33)A.2 电力电子装置(TSC、HVDC): (33)A.2.1 Static VAR Compensator(静止无功补偿器) (33)A.2.2 Generic Current Control(通用的电流控制)-直流输电仿真 (34)A.2.3 Generic Gamma Control(通用的gamma控制)-直流输电仿真 (35)A.2.4 Voltage Dependent Current Limits(依赖于电流限制的电压) (36)A.2.5 Minimum Gamma Measurement(gamma的最小测量值) (36)A.2.6 CCCM Controller for Rectifier(整流器的联合协调控制器) (37)A.2.7 CCCM Contoller for Inverter(逆变器的联合协调控制器) (37)A.2.8 Effective Gamma Measurement(有效的gamma测量值) (39)A.2.9 Apparent Gamma Measurement(视在gamma的测量) (39)A.2.10 Thyristor Switched Capacitor Allocator(晶闸管投切电容器的分配) . 40A.2.11 TSC/TCR Non-Linear Susceptance Characteristic(TSC/TCR的非线性电纳特性) (40)A.2.12 TCR/TSC Capacitor Switching Logic(TCR/TSC电容投切逻辑) (41)第一部分:电力电子基本模块及其功能1.电力电子器件(Power Electronic Switch)PSCAD自带的电力电子开关模块是一个多功能模块,它可以用来模拟常见的五种电力电子器件,包括:二极管(Diode)、晶闸管(Thyristor)、晶体管(Transistor)、门极可关断晶闸管(GTO)和绝缘栅双极晶体管(IGBT)。

PSCAD在电力系统电磁暂态仿真的应用

PSCAD在电力系统电磁暂态仿真的应用

引言电力工业是国民经济发展的基础工业。

随着经济建设的发展,发电设备的容量也在相应增大。

为了更好的保证安全运行,经济运行,并保证电能质量,我们应该考虑任何电力系统故障的情况,并加以研究。

电力系统正常运行的破坏多半是由短路故障引起的。

在供电系统中,短路冲击电流会使两相邻导体间产生巨大的电动力,使元件损坏;大的短路电流将使导体温度急剧上升,会使元件烧毁;阻抗电压大幅下降,影响系统稳定性。

发生短路时,系统从一种状态变到另一种状态,并伴随产生复杂的电磁暂态现象。

所以有必要对电力系统电磁暂态进行研究。

目前,电力系统暂态分析的研究理论已越来越完善,但基本上是通过建立数学模型,并解数学方程来分析的。

这让我们很难理解其推导过程,所以很有必要利用直观的方法来分析并得出相同的结论。

本设计利用PSCAD软件建立了简单电力系统和复杂电力系统两个仿真模型。

简单电力系统模型包括:同步发电机模型、负荷模型等;复杂电力系统模型包括:同步发电机模型、变压器模型、输电线模型、负荷模型等。

本设计通过运用EMTDC模块对电力系统仿真进行计算,并分析其电磁暂态稳定性,其中计算了发生四类短路故障时的暂态参数,并对其分析比较,来研究电力系统的这四类短路之间的异同和暂态对电力系统的影响。

通过此次设计进一步巩固和加强了四年来所学的知识,并得到了实际工作经验。

设计中查阅了大量的相关资料,努力做到有据可循。

在设计中逐步掌握了查阅,运用资料的能力,总结了四年来所学的电力工业的相关知识,为日后的工作打下了坚实的基础。

由于我在知识条件等方面的局限,仍存在许多不足,但在指导老师和学院大力支持和帮助下,已有相当大的改进,在此表示衷心的感谢。

第一章绪论1.1 电力系统分析简介运用数字仿真计算或模拟试验的方法,对电力系统的稳态方式和受到扰动后的暂态行为进行考察的分析研究。

对规划、设计的电力系统,通过电力系统分析,可选择正确的系统参数,制定合理的电力系统方案;对运行中的电力系统,借助电力系统分析,可确定合理的运行方式,进行系统事故分析和预想,提出防止和处理事故的技术措施。

PSCAD教程08-应用PSCAD进行直流输电系统仿真研究

PSCAD教程08-应用PSCAD进行直流输电系统仿真研究
第 27 页
应用PSCAD进行高压直流输电系统仿真研究
多实例化组件(MIM)技术
PSCAD X4之前所有版本中的组件(module)缺乏多实例化能 力,即一个组件定义只能有一个实例。X4版本通过完全重 新设计PSCAD的程序结构,使其成为更朝向以数据为中心 的模型,从而具备了提高多实例化组件的能力。
无插值时的二极管电流
由于时间步长固定,若器件动作处于时间步长间隔中,只 有等到下一时间步长时程序才能体现出此事件。此时将造 成仿真错误 。
第 22 页
应用PSCAD进行高压直流输电系统仿真研究
解决方法: 缩短仿真步长—仿真时间延长、内存需求增大, 不能根本性解决问题。 变步长仿真—检测到开关动作事件时,划分仿真步长为 更小的时间间隔。不能避免虚假电压和电流尖峰。 插值方法—具有更快的速度和更高的精度。能在采用较大时 间步长的情况下更精确地对任何开关事件进行仿真。
第 13 页
应用PSCAD进行高压直流输电系统仿真研究
平波电抗器
第 14 页
应用PSCAD进行高压直流输电系统仿真研究
6. 滤波器(Filter)
减小注入交、直流系统谐波的设备 种类: 交流滤波器, 直流滤波器 有源滤波器; 无源滤波器:单调谐滤波器 双调谐滤波器 高通滤波器
第 15 页
应用PSCAD进行高压直流输电系统仿真研究
应用pscad进行高压直流输电系统仿真研究进行高压直流输电系统仿真研究应用pscad进行高压直流输电系统仿真研究主要内容?一高压直流输电系统的主要元件?二相关元件的pscad模型?三高压直流输电系统运行与控制第2页?四高压直流输电系统的pscad仿真应用pscad进行高压直流输电系统仿真研究交流母线换流站i平波电抗器直流平波电抗器直流滤波器交流母线换流交流母线换流变压器换流站ii换流变压器换流变压器一高压直流输电系统的主要元件第3页交流系统交流系统i无功补偿设备交流滤波器无功补偿设备交流滤波器直流线路vdi滤波器桥i变压器断路器桥ii交流系统交流系统ii无功补偿设备无功补偿设备交流滤波器交流滤波器vdii应用pscad进行高压直流输电系统仿真研究1

PSCAD实验二报告讲解

PSCAD实验二报告讲解

实验报告一、实验目的:1)能熟练运用计算机对不同的短路故障进行仿真;2)能够分析各种短路故障下电压电流的变化过程;3)掌握不对称短路的分析方法;二、完成后的电力系统故障建模图:三、实验内容及步骤:利用实验一建成的模型做以下实验:(故障开始时间均为0.4,故障持续时间1s)1)在AB段任选一处设单相接地故障,在过渡电阻分别为0、50欧、100欧和200欧时,仿真并记录故障点的三相电压电流波形。

2)在AB段首端10km处、AB段200km处及BC段末端10km处分别设单相接地故障,过渡电阻分别为0,仿真并记录故障点的三相电压电流波形。

3)同时在AB段,BC段任选一处设相间接地短路,过渡电阻为0,仿真并记录两个故障点的三相电压电流波形;4)同时在AB段,AD段任选一处设相间短路(两条相线相接),等效过渡电阻为0,仿真并记录两个故障点的三相电压电流波形;5)在变压器出口处设三相短路,仿真并记录故障点三相电压电流波形。

四、实验仿真结果:1、在AB段任选一处设单相接地故障,在过渡电阻为0欧时的三相电压电流波形图:2、在AB段任选一处设单相接地故障,在过渡电阻为50欧时的三相电压电流波形图:3、在AB段任选一处设单相接地故障,在过渡电阻为100欧时的三相电压电流波形图:4、在AB段任选一处设单相接地故障,在过渡电阻为200欧时的三相电压电流波形图:5、在AB段首端10km处设单相接地故障,过渡电阻分别为0,故障点的三相电压电流波形6、AB段200km处设单相接地故障,过渡电阻分别为0,故障点的三相电压电流波形7、BC段末端10km处设单相接地故障,过渡电阻分别为0,故障点的三相电压电流波形8、在AB段,BC段任选一处设相间接地短路,过渡电阻为0;在AB段,AD段任选一处设相间短路,等效过渡电阻为0,AB段故障点的三相电压电流波形;BC段故障点的三相电压电流波形;AD段故障点的三相电压电流波形;9、在变压器出口处设三相短路,故障点三相电压电流波形。

电力系统故障仿真实验指导书(PSCAD EMTDC软件手册)

电力系统故障仿真实验指导书(PSCAD EMTDC软件手册)

电力系统故障仿真实验指导书(PSCAD/ EMTDC软件手册)(试用版)目录第一章PSCAD/EMTDC软件介绍 (1)1.1 概述 (1)1.2 PSCAD/EMTDC软件的使用 (2)1.2.1 PSCAD/EMTDC基本操作方法 (2)1.2.2 PSCAD/EMTDC故障建模及仿真流程 (12)第二章实验项目 (16)实验一电力系统故障建模 (16)1、实验目的 (16)2、预习要求 (16)3、实验内容及步骤 (16)4、思考题 (17)5、实验报告 (17)实验二电力系统故障仿真分析 (17)1、实验目的 (17)2、预习要求 (17)3、实验内容及步骤 (17)4、思考题 (18)5、实验报告 (18)实验三 IEEE14bus系统建模(选做) (19)附录不同电压等级下的输电线路典型参数 (20)第一章PSCAD/EMTDC软件介绍1.1 概述PSCAD/EMTDC是加拿大马尼托巴高压直流研究中心出品的一款电力系统电磁暂态仿真软件,PSCAD(Power Systems Computer Aided Design)是用户界面,EMTDC (Electromagnetic Transients including DC)是内部程序。

EMTDC最初代表直流暂态,是一套基于软件的电磁暂态模拟程序。

Dennis Woodford博士于1976年在加拿大曼尼托巴水电局开发完成了EMTDC的初版,编写这个程序的原因是因为当时现存的研究工具不能够满足曼尼托巴电力局对尼尔逊河高压直流工程进行强有力和灵活的研究的要求。

自此之后程序被不断开发,至今已被广泛地应用在电力系统许多类型的模拟研究,其中包括交流研究,雷电过电压和电力电子学研究。

EMTDC开始时在大型计算机上使用。

然后在1986年被移植到Unix系统和以后的PC机上。

PSCAD代表电力系统计算机辅助设计,PSCAD的开发成功,使得用户能更方便地使用EMTDC进行电力系统分析,使电力系统复杂部分可视化成为可能,而且软件可以作为实时数字仿真器的前置端。

PSCAD的电力系统仿真大作业2

PSCAD的电力系统仿真大作业2

电力系统分析课程报告姓名*******学院自动化与电气工程学院一、同步发电机三相短路仿真1、仿真模型的建立选取三相同步发电机模型,以三相视图表示。

励磁电压和原动机输入转矩Ef 与Tm均为定常值1.0,且发电机空载。

当运行至0.5056s时,发电机发生三相短路故障。

同步发电机三相短路实验仿真模型如图1所示。

图4Ta=0.278s发生短路If波形2)Ta=0.0278s时,直流分量的衰减过程(以励磁电流作为分析)如图5所示。

图5Ta=0.278s发生短路If波形2.2短路时刻的不同对短路电流的影响由于短路电流的直流分量起始值越大,短路电流瞬时值就越大,而直流分量的起始值于短路时刻的电流相位有关,即直流分量是由于短路后电流不能突变而产生的。

Pscad模型中对短路时刻的设置如图6所示图6Pscad对于短路时刻的设置1)当在t=0.5056时发生三相短路,三相短路电流波形如图7所示。

图7t=0.5056时三相短路电流波形2)当在t=0.6时发生三相短路,三相短路电流波形如图8所示。

图8t=6时三相短路电流波形2.3Xd、Xd`、Xd``对短路电流的影响1)Xd的影响2.4Td`、Td``对短路电流的影响在Pscad中衰减时间常数的设置如图19所示:图19Pscad对于衰减时间常数的设置1)下面验证不同Td`时A相短路电流暂态交流分量衰减速度。

i.Td`=6.55时短路励磁电流的波形如图20所示图20Td`=6.55时短路励磁电流的波形ii.Td`=1.55时短路励磁电流的波形如图21所示图21Td`=1.55时短路励磁电流的波形2)下面验证不同Td``时A相短路电流暂态交流分量衰减速度。

i.Td``=0.039时短路励磁电流的波形如图22所示图22Td``=0.039时短路励磁电流的波形ii.Td``=3.039时短路励磁电流的波形如图23所示图23Td``=3.039时短路励磁电流的波形二、简单电力网络的线路故障仿真1、仿真模型的建立仿真模型预览图根据题目要求,建立如图24所示的仿真模型。

2022年的电力系统仿真大作业

2022年的电力系统仿真大作业

仿真计算1、在PSCAD中建立经典旳同步发电机模型,对同步发电机出口三相短路进行仿真研究。

规定:(1)运行“同步发电机短路”模型,截取定子三相短路电流波形,并对波形进行分析,验证与理论分析中包括旳多种分量与否一致;图一同步发电机短路模型图二、定子三相短路电流定子三相短路电流中具有直流分量和交流分量,其中周期分量会衰减。

三相短路电流直流分量大小不等,但衰减规律相似,均按指数规律衰减,衰减时间常数为Ta,由定子回路电阻和等值电感决定,大概在0.2s。

交流分量也按指数规律衰减,它包括两个衰减时间常数,分为次暂态过程、暂态过程和稳态过程。

(2)修改电抗参数Xd(Xd’,X’’d),增长或者减小,截取定子三相电流,并与第一步成果对比分析;图一是Xd`=0.314 p.u,Xd``=0.280 p.u状况下旳定子电流波形;图二是Xd`=0.514 p.u, Xd``=0.280 p.u状况下旳定子电流波形。

显然,伴随Xd`旳增大定子旳电流在减少。

图三、定子三相短路电流(3)修改时间常数Td(Td’,T’’d),增长或者减小,截取定子三相电流,并与第一步成果对比分析。

参数Td’=6.55s ,Td”=0.039s时定子电流如图一所示;当参数变为Td’=3.55s ,Td”=0.039s是定子电流如图三所示,显然图四、定子三相短路电流2、运用暂态仿真软件对下面旳简朴电网进行建模,对模型中各元件参数进行详细阐明,并进行短路计算。

将故障点旳电流电压波形及线路M端旳电流电压波形、相量图粘贴到课程汇报上。

规定:(1)短路类型为①三相故障;②A相接地;③BC两相故障。

(2)两端系统电势夹角取15oδ=。

(3)故障点设置为线路MN中点(25km处)。

(4)仿真成果包括M、N两侧和短路点处旳三相电压、电流旳瞬时值波形和短路发生后时刻旳三相电压、电流相量图。

三、课程学习心得通过本课程旳学习,你有哪些体会和心得,请写出来。

可以从如下几种方面考虑,但不局限于这些方面:通过课程你学到了哪些知识;学会了哪些措施;对电力系统旳认识;对课程旳提议等。

基于PSCAD的微电网控制系统建模与仿真

基于PSCAD的微电网控制系统建模与仿真

基于PSCAD的微电网控制系统建模与仿真PSCAD软件是电力系统仿真软件中的一种,它可以用于设计、分析和优化电力系统的控制系统。

微电网是一种能够让多种不同的能源设备和负载集成在一起的电力系统,其控制和管理对于实现微电网功率均衡和优化非常关键。

因此,本文将介绍如何使用PSCAD软件来建模和仿真微电网控制系统。

第一步,建立微电网模型。

在PSCAD中创建新项目后,选择微电网模型的拓扑结构,包括各种能源源(太阳能光伏发电、风能发电等)和负载(家庭、工厂等)。

将拓扑结构中所有的能量汇(如充电电池、ESSE等)布置在一个区域内,充当能量存储和管理的中心。

在模型设置中,设置各种能源源的容量、负载需求、电池充放电等参数。

第二步,建立微电网控制系统。

将微网设计中的器件或系统连接起来,实现对微电网的控制和管理。

利用PSCAD提供的控制器和信号处理器建立微网的分级控制系统。

根据需要,加入分布式控制算法、能量管理算法和负载控制算法等实现微电网的自动管理。

第三步,仿真并测试微电网控制系统。

使用PSCAD中的仿真功能验证微电网控制系统的功能和性能。

为了优化微电网,可以通过调整控制系统参数来达到更好的功率均衡和能量管理效果。

通过对微电网的仿真,可以对微电网的性能进行全面的评估。

例如,可以确定微电网的电池容量是否足够、是否可以满足负载要求等。

在模拟期间,可以观察模型中多个部件之间的交互,并使用数字仪表板和时间响应曲线记录电力系统中的电量和电压。

在仿真结束后,还可以使用PSCAD生成仿真报告,分析系统的性能指标并评估系统的性能。

总之,PSCAD可以用于微电网控制系统的建模、仿真和优化,可以帮助使用者快速、高效地评估微电网性能和控制系统的优化。

据此,未来微电网的发展将会有更加广阔的前景。

数据分析是现代社会中必不可少的方法之一,可以通过数据分析的结果在各种领域中做出更好的决策。

下面我们将列举一些相关数据进行分析。

首先,我们来看全球各大洲的能源消耗情况。

基于PSCAD和MATLAB的电力系统电磁暂态仿真研究

基于PSCAD和MATLAB的电力系统电磁暂态仿真研究

基于PSCAD和MATLAB的电力系统电磁暂态仿真研究摘要电磁暂态的研究主要是针对电力系统出现故障时对系统参数进行分析。

本文根据电力系统的故障分析理论,运用电磁暂态仿真软件PSCAD/EMTDC和系统仿真软件MATLAB,以双电源供电系统为模型分别对其进行了单相接地、两相相间短路及三相接地故障条件下的电磁暂态仿真分析,通过仿真结果比较,得出两种仿真环境下的仿真波形几乎一致,与故障分析算例基本吻合,这说明这两种仿真环境都适用于电力系统的电磁暂态仿真,但在故障设置方面,PSCAD的设置更为灵活方便。

同时,由PSCAD建立一个简单的交直流传输系统为模型,根据PSCAD-MATLAB接口技术原理,实现了接口环境下的电磁暂态仿真研究,这说明了PSCAD-MATLAB接口仿真技术在电磁暂态分析中的有效性。

关键字:电磁暂态;PSCAD;MATLAB;接口技术The simulation study for electromagnetic transient in powersystem based on PSCAD and MATLABAbstractElectro-magnetic transient research mainly aims at power system which for analysis of system parameters when it is malfunctioning. Based on the theory of fault analysis in power system, the usage of Power System Computer Aided Design/Electromagnetic Transients in DC system and Matrix Laboratory, as well as the model of two-source supply system, this paper mainly illustrates the simulation for electromagnetic transients through the application of a variety of faults, such as single-phase earth fault, inter-phase short circuit, andthree-phase grounding fault. By the comparison of simulation outcomes, it showed that the simulation waveforms under two kinds of simulation environment does almost unanimously which is similar to the example of fault analysis, the two simulation environments are suitable for the research of electromagnetic transients in power system. But in fault setting, the setting of PSCAD is more agile and convenient . Meanwhile, it presented the implementation of the simulation study for electromagnetic transient with the basis of the principle ofPSCAD-MATLAB interface techniques and the model established by PSCAD of a simple AC/DC transmission system, which has shown that the effectiveness of PSCAD-MA TLAB interface techniques in the study of electromagnetic transients.Key words: electromagnetic transients; PSCAD; MATLAB; interface techniques目录摘要 (I)Abstract (II)第一章概述 (1)1.1 国内系统事故概况 (1)1.2 电力系统的电磁暂态数字仿真概述 (2)1.3 本文主要工作 (3)第二章电力系统的故障分析 (5)2.1 电力系统的故障介绍 (5)2.1.1 电力系统的短路故障概念和分类 (5)2.1.2 电力系统的短路故障原因及其危害 (6)2.2 电力系统的不对称故障分析方法—对称分量法 (7)2.2.1 对称分量法原理 (7)2.2.2 对称分量法的应用 (8)2.2.3 正序等效定则 (10)第三章基于PSCAD/EMTDC和MATLAB的电磁暂态仿真设计 (12)3.1 PSCAD/EMTDC的工作环境介绍 (12)3.2 MATLA的工作环境介绍 (15)3.3 基于PSCAD和MATLAB的电力系统电磁暂态仿真设计 (19)3.3.1 基于PSCAD交流电力网络的模型建立 (19)3.3.2 基于MA TLAB交流电力网络的模型建立 (24)3.3.3电力系统的故障设置 (28)3.3.4时域仿真分析 (30)第四章基于PSCAD/EMTDC和MATLAB的电磁暂态接口仿真研究 (32)4.1 PSCAD和MATLAB的接口技术介绍 (32)4.1.1 接口技术的背景 (32)4.1.2 接口技术原理及接口的实现过程 (33)4.2 基于PSCAD-MA TLAB的电力系统电磁暂态仿真 (35)4.2.1 基于PSCAD的交直流系统的模型建立 (35)4.2.2 电力系统的故障设置 (39)4.2.3 PSCAD-MA TLAB的接口环节 (40)4.2.4 时域仿真分析 (41)4.2.5 接口仿真分析 (43)第五章结束语 (51)参考文献 (52)附录A (54)附录B (58)致谢 (62)第一章概述1.1 国内系统事故概况我国电力系统是世界上发展非常迅速的系统。

基于PSCAD4.2软件的电力系统距离保护仿真分析

基于PSCAD4.2软件的电力系统距离保护仿真分析

0 引 言
电力系统 保护 中,输 电线路 的保护 主要 是距 离
保 护 ,其不 受运行 方 式的影 响 ,继 电保 护性 能得 到
电 以及 继 电保护 系统 等领域 较 为活跃 ,该 软件 主要
对 电力系统 时域 和频 率等变 量进 行仿 真分 析 ,其结
果一般 以简 单 易懂 的图形 界面输 出,使得 仿真 过程 清 晰 、准确 而 灵活 J 。本 文 基 于P S C A D 4 . 2 软件 对
电工电. _ 【 ( 2 0 1 4 No . 7 )
时 j ~ …
基 于P s C A D 4 . 2 软件 的电力系统距离保护伪真分析
产品与应用 _
基 于P S C A D 4 . 2 软件 的 电力系统距 离保护仿真分析
彭湃 ,程汉湘
( 广 东工业 大学 自动化 学院 s t r a c t :Ana l y s i s wa s ma d e o n t he b a s i c pr i n c i p l e o f po we r t r a n s mi s s i o n l i ne d i s t a n c e p r o t e c t i o n ,t hi s pa pe r b u i l t up t h e d i s t a nc e p r o t e c t i o n s i mu l a t i o n mo de l b a s e d o n PS CAD4. 2 s o twa f r e a n d s e t p o s s i b l y h a p p e ni n g g r o u n di n g f a ul t s a n d f a ul t s b e t we e n p h a s e s o f t h e t r a n s mi s s i o n l i n e s , t o ge t wa v e f o r ms o f v o l t a g e , c u r r e n t a n d o t h e r c ha ng e r ul e s t r a ns mi s s i o n l i n e u n d e r t h e c o n d i t i on s of d i f f e r e n t f a u l t k i nd s .S i mu l a t i o n r e s ul t s h o ws t h a t t h e e s t a b l i s he d mo d e l wi t h t hi s s o f t wa r e c a n c o r r e c t l y r e le f c t f u n c t i o n me c h a ni s m o f d i s t a n c e p r o t e c t i o n ,t ha t t h e di s t a nc e pr o t e c t i o n d e vi c e i s a b l e t o r e s p o n d t o f a u l t s i g n a l f a s t wi t h a c t i on o n t h e c i r c u i t b r e a k e r , t o r e a l i z e p r o — t e c t i o n of po we r t r a n s mi s s i o n l i ne s . Ke y wo r ds :P S CAD4. 2 s of t wa r e ; d i s t a n c e p r o t e c t i o n ; g r o u n d i n g f a u l t

基于PSCAD调用MATLAB的电力系统电磁暂态仿真

基于PSCAD调用MATLAB的电力系统电磁暂态仿真

2017年东北电力技术NORTHEASTELECTRICPOWERTECHNOLOGY专论基于PSCAD调用MATLAB的电力系统电磁暂态仿真田汝冰1,朱时雨2,吉炫颖1,朴永鑫1(1.国网通化供电公司,吉林㊀通化㊀134001;2.国家电网公司东北分部,辽宁㊀沈阳㊀110180)摘要:随着社会的不断发展,电力系统逐渐发展成为一个大规模㊁时变的复杂系统,因而对电力系统仿真分析软件的要求也不断提高㊂介绍了电磁暂态分析程序PSCAD/EMTDC与数学模型软件包MATLAB的基本概况及优点,鉴于PSCAD/EMTDC与MATLAB/Simulink的接口能综合两者的优点,详细阐述了两者互联的原理及实现方法㊂在PSCAD中建立了一个简单的电力系统供电模型,根据PSCAD-MATLAB接口技术原理,实现了接口环境下的电磁暂态仿真研究㊂通过仿真结果比较,得出2种仿真环境下的仿真波形几乎一致,说明了PSCAD-MATLAB接口仿真技术在电磁暂态分析中的有效性㊂关键词:电力系统仿真;PSCAD/EMTDC;MATLAB/Simulink;接口[中图分类号]TM743㊀[文献标志码]A㊀[文章编号]1004-7913(2017)10-0001-04ElectromagneticTransientSimulationBasedonMATLABCallsPSCADinPowerSystemTIANRubing1,ZHUShiyu2,JIXuanying1,PIAOYongxin1(1.StateGridTonghuaPowerSupplyCompany,Tonghua,Jilin134001,China;2.NortheastBranchofStateGridCorporationofChina,Shenyang,Liaoning110180,China)Abstract:Withthedevelopmentofsociety,thepowersystemgraduallydevelopedintoalarge⁃scaleandtime⁃varyingcomplexgrid.Therequirementofpowersystemsimulationanalysissoftwareshouldhasbeenimproved.Thispaperdiscussesthebasicprofileandad⁃vantagesoftheelectromagnetictransientanalysisprogramPSCAD/EMTDCandthemathmodelsoftwarepackageMATLAB.Theinter⁃facebetweenPSCAD/EMTDCandMATLABisabletotakefulladvantageoftheirmerits,thuspaperanalyzestheprincipleandtheim⁃plementationoftheinterface.Finally,asimplemodelofthepowersystemisbuiltusingPSCADanditpresentedtheimplementationofthesimulationstudyforelectromagnetictransientwiththebasisoftheprincipleofPSCAD⁃MATLABinterface.SimulationresultshowsthewaveformsundertwokindsofsimulationenvironmentdoesalmostunanimouslywhichhasshownthattheeffectivenessofPSCAD⁃MATLABinterfacetechniquesinthestudyofelectromagnetictransients.Keywords:powersystemsimulation;PSCAD/EMTDC;MATLAB/Simulink;interface随着社会的不断进步及科技的不断发展,电力系统也不断扩大和网络化,并逐渐发展成为一个大规模㊁时变的复杂系统,在国民经济中发挥着举足轻重的作用㊂通过建立适当的数学模型来模拟实际电路进行分析变得越来越重要㊂掌握高效的模拟仿真技术对于电力系统工作者进行电力系统规划㊁保护㊁调度及故障研究具有重要的实际意义[1-2]㊂PSCAD/EMTDC是目前世界上被广泛使用的电力系统仿真分析程序㊂PSCAD是电磁暂态分析程序,在电力系统分析上能够发挥强大的优势,科研工作者可以在集成的图形环境中建立模型并进行仿真分析[3]㊂MATLAB是数学模型软件包,具有强大的数据分析处理能力以及功能齐备的各种工具箱[4]㊂PSCAD仿真程序中提供了可供与MATLAB接口的功能,因此可将两者的优点结合起来,使得仿真过程灵活多变,增强电力系统仿真的实用性㊂国内相关文献对接口技术做了一定的研究㊂文献[5]介绍了PSCAD与Simulink接口的实现方法㊂文献[6]在PSCAD中建立接口模型,启动MAT⁃LAB数学引擎调用M文件进行仿真分析,验证了两者互联后进行仿真的有效性㊂文献[7]联合MATLAB与PSCAD提供的接口元件,搭建了SVC控制系统仿真模型,并将其应用到PSCAD/EMTDC㊀东北电力技术2017年仿真模型中,通过仿真证明了该方法的可行性和仿真模型的正确性㊂本文主要介绍了PSCAD与MATLAB各自的仿真特点,并详细分析了PSCAD与MATLAB/Simulink的接口原理及其实现方法㊂最后通过仿真算例验证了两者接口的有效性和可行性㊂为接口功能的进一步发展提供了一定的理论依据㊂1㊀PSCAD/EMTDC与MATLAB概述PSCAD/EMTDC程序广泛应用于电力系统相关仿真分析中,具有非常完善的EMTDC元件模型库和功能,能够用以研究电力系统中交直流方面的问题,也可以进行电力电子器件仿真分析,具有非线性控制的多功能仿真工具㊂PSCAD是EMTDC的前置处理程序,具有较好的可视界面,用户可以在该图形界面上搭建所需电力系统方面的相关模型并配置各元件的参数值,PSCAD程序运行时通过FOR⁃TRAN编译器进行编译㊁连接,仿真结果随着PSCAD程序运行的进度在PLOT中实时生成曲线,用户可根据仿真曲线来验证结果是否合理,因而使该软件更加人性化,方便广大用户使用㊂PSCAD/EMTDC仿真程序能应用于电力系统时域和频域方面的仿真,在电网受到扰动或有关参数发生变化时,计算和分析电网中相应参数随时间变化的规律,即交流系统的谐波研究㊁暂态扭矩的分析㊁直流系统的启动㊁直流系统换相方法研究㊁串联或并联的多端输电系统的电磁暂态仿真㊁同杆架设的交直流电路的相互影响等㊂以数据计算和处理闻名的MATLAB是当前国际认可的优秀科技应用软件之一,包括MATLAB和Simulink两大部分㊂MATLAB是以矩阵运算为基础,把计算机可视化程序设计融入到交互的工作环境中,可实现建模仿真㊁工程数据分析和计算㊁算法研究等功能;Simulink是MATLAB所提供的内置仿真程序,用以对动态系统进行建模㊁仿真和分析,具有非线性控制的动态系统多功能仿真工具㊂它挂接在MATLAB环境上,以MATLAB强大的计算分析能力为基础,利用直观的仿真模型元件进行仿真分析和计算㊂另外,为了更加有利于仿真建模,Simulink提供了各种仿真工具箱,并不断扩展和完善,自电力系统模块集(PowerSystemBlock)推出后,使得Simulink在电力系统领域的应用日趋完善[8]㊂2㊀PSCAD/EMTDC与MATLAB/Simulink接口原理分析PSCAD/EMTDC主要应用于电力系统仿真,MATLAB数据分析能力强,两者各具优点且具有互补性,因而可考虑将两者结合起来增强电力系统仿真的实用性㊂PSCAD/EMTDC与MATLAB/Simulink接口的实现方法主要有以下两种㊂a.用户可根据需要编写M文件来定义所需元件模型,并通过MATLAB引擎调用M文件将这些自定义模型与PSCAD中的元件模型进行连接㊂b.用户可根据需要利用Simulink中的数学和控制功能模块搭建模型,通过在PSCAD中建立自定义接口元件实现与Simulink的互联㊂PSCAD/EMTDC与MATLAB的接口原理图如图1所示㊂利用PSCAD与MATLAB接口主要是兼顾两者优点,搭建相应模型并同时运行及完成它们之间数据㊁控制信息的交换,实现两者协同仿真的目的㊂假设PSCAD中搭建的模型通过接口有m个输入变量和n个输出变量㊂将PSCAD中的m个数据通过外部接口传输到MATLAB中㊂充分发挥MATLAB强大的数据处理及分析能力,经过分析运算,将得到的n个运算结果反映到PSCAD中,最后得出所需的数据结果㊂因此,根据需要在PSCAD中搭建电力系统模型并利用MATLAB中的控制条件㊁分析算法就可以得到相应的仿真数据及其分析结果㊂图1㊀PSCAD/EMTDC与MATLAB接口原理在PSCAD界面中建立自定义元件模型,其通过该元件与外部数据进行交换㊂PSCAD内包含DS⁃DYN(数字仿真动态子程序)和DSOUT(数字仿真输出子程序)2个Fortran文件,通过编写DSDYN和DSOUT文件的代码来实现自定义元件与PSCAD程序中的数据交换㊂2 1㊀PSCAD与MATLAB接口原理同其它仿真工具的语言编码相比,MATLAB语言具有语法简单㊁容易调试㊁人机交互性强等优点㊂因此,用户可以方便根据研究需要来编写MATLAB程序中的M文件定义元件模型㊂EMTDC库文件中提供了与MATLAB的接口子程序MLAB_INT,通过它可以启动MATLAB数据引擎调用M文件㊂2017年田汝冰,等:基于PSCAD调用MATLAB的电力系统电磁暂态仿真接口程序的相关参数包括M文件的名称㊁保存路径以及输入变量格式定义㊂EMTDC程序运行时将在每个执行周期由DSDYN直接调用接口程序,以此来启动MATLAB并运行相应的仿真程序,MAT⁃LAB运行期间实时将其运算结果通过接口元件送至PSCAD,并在PSCAD实时生成仿真曲线㊂这样,PSCAD/EMTDC与MATLAB就紧密地结合起来,实现用户所需的仿真目的㊂PSCAD与MATLAB的接口内部结构如图2所示㊂图2㊀PSCAD与MATLAB接口内部结构2 2㊀PSCAD与Simulink接口原理为了更好发挥PSCAD与MATLAB语言的接口技术优点,可以考虑将Simulink中的数学模块和控制功能模型应用到PSCAD程序中㊂EMTDC库文件中提供了与Simulink的接口子程序SIMULINK_INT,这就为实现PSCAD与MATLAB语言的接口技术提供了条件㊂为了实现与Simulink的接口,可在PSCAD仿真程序中搭建自定义接口元件,通过该接口元件调用接口子程序SIMULINK_INT,并利用Fortran的接口功能启动MATLAB引擎而打开Simulink文件㊂然后把EMTDC里面的仿真数据通过WorkspaceI/O传递给Simulink㊂之后再把Simu⁃link仿真后的运算结果返回到EMTDC中,并在PSCAD实时生成仿真曲线,这样,PSCAD与Sim⁃ulink就紧密地结合起来,实现用户所需的仿真目的㊂PSCAD与Simulink的接口内部结构如图3所示㊂图3㊀PSCAD与Simulink接口内部结构2 3㊀接口元件设计接口自定义元件包括Graphic㊁Parameters和Script3个部分的设计,它们之间相辅相成㊂Graphic的功能是用户可根据个人喜好来设计自定义元件的外观,以及修改输入输出数列的名称和维数㊂Parameters的作用是提供自定义元件的一些参数的设置㊂这里主要是对MATLAB/Simulink路径和文件名以及调用Simulink文件的速度进行设置㊂脚本代码主要由用户根据需要来完成,自由度较大㊂需要注意的是,由于PSCAD仿真程序是根据每个变量的名称来区分变量,因此,在设置相应参数时应确保同一变量的名称保持前后一致㊂3㊀仿真分析单相接地短路㊁两相短路以及三相短路是影响电力系统安全稳定运行最常见的故障㊂其中三相短路的危害最大,但其出现的概率相对较低,而单相接地短路最常见,约占短路总故障的65%[9]㊂本文在PSCAD仿真软件中搭建了一个简单的供电网络模型来模拟各种短路故障,用以验证PSCAD与MATLAB接口技术在电力系统仿真分析中的有效性㊂图4所示为一简单的供电系统电路图,现在PSCAD中按接线图搭建仿真模型并模拟各种短路故障,利用PSCAD与MATLAB接口对其线路发生故障情况下进行仿真㊂图4㊀系统接线图3 1㊀算例1基于PSCAD和MATLAB的接口思想,实现PSCAD与MATLAB的联合仿真,通过接口模块调用MATLAB程序中的M文件,实现MATLAB的相量图绘制功能㊂以下就故障处发生短路故障的情形,绘制电流的相量图,并且与PSCAD绘制的相量图进行对比分析㊂为了实现接口的绘图功能,需要先用傅里叶分解模块FFT进行矢量分解,输入的电流值可以分解为三相的幅值和相位分量㊂经过分解之后,利用PSCAD自身的绘图功能,实时实现相量图的绘制;另外,PSCAD同时将定义的各分量输入至PSCAD-MATLAB自定义的接口元件模块,这样待系统编译运行后,便会出现MATLAB的绘图框动态显示相量图的情况㊂故障处分别对单相接地短路㊁两相接地短路㊁三相接地短路进行仿真,具体仿真结果如图5所示㊂基于PSACD-MATLAB的接口仿真在3种故障㊀东北电力技术2017年(a)单相接地短路(b)两相接地短路(c)三相接地短路图5㊀MATLAB与PSCAD在不同故障下绘制的各相电流相量图条件下的仿真结果可知,由MATLAB绘制的相量图与PSCAD的仿真结果几乎一致㊂因此,上述基于2种仿真环境下的接口技术可以有效应用于电磁暂态的仿真分析中㊂3 2㊀算例2用户可根据实际需要利用Simulink中的数学和控制功能模块搭建模型,通过在PSCAD/EMTDC中建立自定义接口元件实现与Simulink互联㊂本文利用上述电力系统电路图在没有发生故障的情况下进行仿真㊂仿真时分别对B1和B2处的电压进行测量,并将两者的值通过PSCAD和MATLAB接口模块输送到Simulink中进行仿真运算㊂在Simulink中搭建模型对两处的电压进行取正后再相加,之后将结果回馈到PSCAD中进行输出,仿真结果如图6所示㊂从图6中可以得出,PSCAD经过仿真运算后输出的波形与经过自定义接口元件到达Simulink经过仿真运算输出的图形几乎一致,这说明了图6㊀PSCAD与Simulink接口仿真结果PSCAD和Simulink的接口连接成功,证明了接口模块的有效性㊂4㊀结束语本文详细阐述了PSCAD/EMTDC与MATLAB/Simulink接口的基本原理,并在PSCAD中搭建了简单的供电网络模型,利用PSCAD与MATLAB的接口技术进行仿真分析㊂仿真结果表明接口技术在电磁暂态分析中的有效性㊂但将MATLAB/Simulink中的各种算法应用到接口技术中进行仿真建模还需要进一步研究㊂参考文献:[1]㊀李广凯,李庚银.电力系统仿真软件综述[J].电气电子教学学报,2005,27(3):61-65.[2]㊀钱㊀鑫,李㊀琥,施㊀围.电力系统仿真计算软件介绍[J].继电器,2001,30(1):43-46.[3]㊀林良真,叶㊀林.电磁暂态分析软件包PSCAD/EMTDC[J].电网技术,2000,24(1):65-66.[4]㊀姚㊀伟,文劲宇,程时杰,等.基于Matlab/Simulink的电力系统仿真工具箱的开发[J].电网技术,2012,36(6):95-101.[5]㊀乐丽琴,杨小品.PSCAD与Simulink接口的工程实现[J].工业控制计算机,2009,22(2):33-34.[6]㊀杨健维,麦瑞坤,何正友.PSCAD/EMTDC与Matlab接口研究[J].电力自动化设备,2007,27(11):83-87.[7]㊀邹㊀宁,方存洋,刘育鑫,等.PSCAD/EMTDC-MATLAB联合仿真技术在SVC控制系统仿真建模中的应用[J].江苏电机工程,2012,31(5):40-44.[8]㊀于㊀群,曹㊀娜.MATLAB/Simulink电力系统建模与仿真[M].北京:机械工业出版社,2011:28-31.[9]㊀熊信银,张步涵.电力系统工程基础[M].武汉:华中科技大学出版社,2003:156-157.作者简介:田汝冰(1987),男,硕士,助理工程师,现从事继电保护及智能电网相关领域仿真分析工作㊂(收稿日期㊀2017-07-10)。

基于PSCAD的交直流电力系统故障仿真

基于PSCAD的交直流电力系统故障仿真

仿真技术
基于 PSCAD 的交直流电力系统故障仿真
AC/DC Power Grid Fault Simulation Based on PSCAD
(郑州大学) 蒋 建 东 周 挥 毫
J IANG J ian-dong ZHOU Hui-hao
摘要: 本 文 简 单 介 绍 了 电 力 系 统 暂 态 仿 真 软 件 PSCAD 的 功 能 、 元 件 库 和 仿 真 程 序 执 行 的 过 程 。 在 PSCAD 中 进 行 了 交 直 流 电

引言
由于高压直流输电具有电能损耗小,可控性强优点,在远 距离大容量输电、海底输电、系统互联等领域中得到了广泛应 用 。目前,我国已有葛上、天广、三常、三广和贵广直流输电系 统投入实际运行,形成了交直流混合电力系统。数字仿真具有 投资小、功耗低、占用场地小、灵活性和扩展性强、实验重复性 好、自动化程度高等优点,随着计算机技术的不断发展,越来越 得到大家的认可。通过数字仿真方法进行交直流电力系统故障 仿真分析是一种十分有效的方法。
1 PSCAD 简介
PSCAD 软件包的主要功能是进行电力系统时域和频域计 算仿真, 典型应用是计算电力系统遭受扰动或参数变化时,电 参数随时间变化的规律;另外,PSCAD 软件包可以广泛应用于 高压直流输电、FACTS 控制器的设计、电力系统谐波分析及电 力电子领域的仿真计算。具有丰富的元件库,主要包括:
WANG Yan CHEN Xing-lin
通 讯 地 址 :(150001 哈 尔 滨 市 哈 尔 滨 工 业 大 学 一 校 区 九 公 寓
309# ) 李志奇
(收稿日期:2009.02.23)(修稿日期:2009.03.25)
《现场总线技术应用 200 例》已出版, 每册定价 55 元(含邮资),汇至

关于 PSCAD 的电力系统电压调节器仿真分析.

关于 PSCAD 的电力系统电压调节器仿真分析.

关于 PSCAD 的电力系统电压调节器仿真分析.摘要:对于发电厂来说,高压母线电压稳定性对于整个电压的稳定性来说是十分重要的,安装电力系统电压调节器之后可以显著提升发电机动态无功储备容量,进而能够有效提升高压路线的电压稳定性。

在本研究中,针对电力系统电压调节器数学模型,进一步分析负调节效果,能够为之后电厂PSVR的运用奠定基础,构建基于电力系统计算机软件的PSVR仿真模型,进而能够对电厂中的电网事故,波动情况,冲击负荷等多种扰动现象进行仿真分析,验证PSVR在线提升机组对电力系统的支撑效果。

通过仿真分析我们发现,利用PSVR能够通过发电机潜在无功容量,提升其无功响应速度,进而能够快速恢复暂态电压,提升机组对发电厂高压母线稳定性的作用。

关键字:PSCAD;电力系统;电压调节器;仿真;分析近年来随着全国范围内电网互联工程的广泛实施,以及交直流电网施工规模的扩大,具备动态无功储备对于直流交流电网实现电压稳定性来说是十分重要的,目前对于在大型受端电网来说,暂态电压的稳定性是当前急需解决的问题。

发电厂的高压母线是电网交互和发电厂的重要界面,其高压母线的稳定性将对于整个电网稳定性十分重要,相比并联补偿电抗器,电容器等来说具有较快的数据响应速度,调节平滑等特点,传统发电机类似调节器主要是通过发电机端电压控制,然而当出现电网故障时需要较多的无功功率,进而提升其电压稳定性,无法提供较多无功功率,维持高压母线电压处于较高水平。

在安装电压调节器之后可以帮助电厂发电机提高动态无功储备容量,进而可以稳定发电厂的高压母线稳定性,因此有必要深入分析电力系统的电压调节器。

在本研究中,基于当前大电网动态无功储备量逐渐减小,且电网电压受到挑战的情况下,深入分析了电力系统电压调节器的有关性能,并且分析PSVR负调差效果,以某电厂作为研究对象,针对PSVR的具体应用作为研究对象,构建了基于电力系统计算机软件的研究系统仿真模型,包括励磁系统,PSVR,电网负荷模型,能够对该电厂的冲击负荷,电网事故,无功电压波动等多种扰动进行模拟分析,并进一步验证了PSVR在有效提升机组对无功支撑的有效作用。

PSCAD实验指导书

PSCAD实验指导书

电力系统故障仿真实验指导书(PSCAD/ EMTDC软件手册)(试用版)目录第一章 PSCAD/EMTDC软件介绍 (1)1.1 概述 (1)1.2 PSCAD/EMTDC软件的使用 (2)1.2.1 PSCAD/EMTDC基本操作方法 (2)1.2.2 PSCAD/EMTDC故障建模及仿真流程 (12)第二章实验项目 (17)实验一电力系统故障建模 (17)1、实验目的 (17)2、预习要求 (17)3、实验内容及步骤 (17)4、思考题 (18)5、实验报告 (18)实验二电力系统故障仿真分析 (18)1、实验目的 (18)2、预习要求 (18)3、实验内容及步骤 (18)4、思考题 (19)5、实验报告 (19)实验三 IEEE14bus系统建模(选做) (20)附录不同电压等级下的输电线路典型参数 (21)第一章 PSCAD/EMTDC软件介绍1.1 概述PSCAD/EMTDC是加拿大马尼托巴高压直流研究中心出品的一款电力系统电磁暂态仿真软件,PSCAD(Power Systems Computer Aided Design)是用户界面,EMTDC(Electromagnetic Transients including DC)是内部程序。

EMTDC最初代表直流暂态,是一套基于软件的电磁暂态模拟程序。

Dennis Woodford博士于1976年在加拿大曼尼托巴水电局开发完成了EMTDC的初版,编写这个程序的原因是因为当时现存的研究工具不能够满足曼尼托巴电力局对尼尔逊河高压直流工程进行强有力和灵活的研究的要求。

自此之后程序被不断开发,至今已被广泛地应用在电力系统许多类型的模拟研究,其中包括交流研究,雷电过电压和电力电子学研究。

EMTDC开始时在大型计算机上使用。

然后在1986年被移植到Unix系统和以后的PC机上。

PSCAD代表电力系统计算机辅助设计,PSCAD的开发成功,使得用户能更方便地使用EMTDC进行电力系统分析,使电力系统复杂部分可视化成为可能,而且软件可以作为实时数字仿真器的前置端。

PSCAD教程08-应用PSCAD进行直流输电系统仿真研究

PSCAD教程08-应用PSCAD进行直流输电系统仿真研究
应用PSCAD进行 高压直流输电系统仿真研究
武汉大学电气工程学院 乐 健 2012.06
应用PSCAD进行高压直流输电系统仿真研究
主要内容
一、高压直流输电系统的主要元件 二、相关元件的PSCAD模型 三、高压直流输电系统运行与控制 四、高压直流输电系统的PSCAD仿真
第2页
应用PSCAD进行高压直流输电系统仿真研究
第 10 页
三相全波桥式换流电路原理图
应用PSCAD进行高压直流输电系统仿真研究
4. 换流变压器(Converter Transformer) 向换流器提供适当等级的不接地三相电压源设备 作用: 使HVDC系统建立自己的对地参考点; 减小注入系统的谐波。 特点: 接线方式: Y0/Y, Y0/△, Y0/Y/△ 短路电抗大: 15~20% 噪声大
1. 晶闸管( Thyristor )

特点:
o 可控导通 o 单向导电
K G

导通的充要条件:
• 正向电压>0 • 控制电流脉冲
A

可靠关断的充要条件:
• 正向电流<0 • 正向电压<0, 且持续一段时间
第4页
应用PSCAD进行高压直流输电系统仿真研究
晶闸管
- 8kV (-9kV) - 2kA - 5 inch wafer
无插值时的二极管电流
由于时间步长固定,若器件动作处于时间步长间隔中,只 有等到下一时间步长时程序才能体现出此事件。此时将造 成仿真错误 。
第 22 页
应用PSCAD进行高压直流输电系统仿真研究
解决方法: 缩短仿真步长—仿真时间延长、内存需求增大, 不能根本性解决问题。 变步长仿真—检测到开关动作事件时,划分仿真步长为 更小的时间间隔。不能避免虚假电压和电流尖峰。 插值方法—具有更快的速度和更高的精度。能在采用较大时 间步长的情况下更精确地对任何开关事件进行仿真。

应用PSCAD进行电力电子装置仿真

应用PSCAD进行电力电子装置仿真

2018/10/23
16
第一部分 基本模块及功能介绍
3.8 逻辑控制电路
多输入逻辑门电路:包括与、或、异或等
2018/10/23
17
第一部分 基本模块及功能介绍
3.9 FFT模块
2018/10/23
18
第一部分 基本模块及功能介绍
4. 自定义元件/模块
1)调用“元件向导”来创建自定 义元件/模块的“壳体”
12
第一部分 基本模块及功能介绍
3.4 传递函数
2018/10/23
13
第一部分 基本模块及功能介绍
3.5 载波调制PWM算法
方案1:
方案2:
2018/10/23
14
第一部分 基本模块及功能介绍
3.6 采样和保持模块
2018/10/23
15
第一部分 基本模块及功能介绍
3.7 滤波器
可实现:低通、带通、高通、带阻等各种类型的滤波器
主要内容
第一部分:基本模块及功能介绍
电力电子器件、插值触发脉冲发生器、控制系统的搭 建、自定义模块、与MATLAB的仿真接口
第二部分:软件自带例程介绍
Power Electronics、APF
第三部分:几个典型的应用案例分析
模拟系统的仿真、数字系统的仿真、PWM脉冲策略的仿 真、缓冲吸收电路的仿真
2018/10/23
9
第一部分 基本模块及功能介绍
3.2静止坐标系和旋转坐标系变换
2018/10/23
10
第一部分 基本模块及功能介绍
3.2静止坐标系和旋转坐标系变换(老版本)
2018/10/23
11
第一部分 基本模块及功能介绍

应用PSCAD进行电力电子装置仿真PPT共38页

应用PSCAD进行电力电子装置仿真PPT共38页
❖ 知识就是财富 ❖ 丰富你的人生
71、既然我已经踏上这条道路,那么,任何东西都不应妨碍我沿着这条路走下去。——康德 72、家庭成为快乐的种子在外也不致成为障碍物但在旅行之际却是夜间的伴侣。——西塞罗 73、坚持意志伟大的事业需要始终不渝的精神。——伏尔泰 74、路漫漫其修道远,吾将上下而求索。——屈原 75、内外相应,言行相称。——韩非
应用PSCAD进行电力电子装置仿真
51、山气日夕佳,飞鸟相与还。 52、木欣欣以向荣,泉涓涓而始流。
53、富贵非吾愿,帝乡不可期。 54、雄发指危冠,猛气冲长缨。 55、土地平旷,屋舍俨然,有良田美 池桑竹 之属, 阡陌交 通,鸡

基于PSCAD的高压直流输电系统建模和仿真

基于PSCAD的高压直流输电系统建模和仿真

基于PSCAD的高压直流输电系统建模与仿真摘要:为了配合高压直流输电系统在我国的发展,介绍了高压直流输电系统的基本结构和工作原理,运用PSCAD仿真软件分别建立、分析了HVDC系统的简化模型和CIGRE的HVDC 标准测试系统模型,对四种故障下的暂态响应进行仿真计算,仿真结果表明交直流系统中的任何故障都会使直流输电控制系统的控制模式发生快速切换,且其响应速度很快,即使在交流系统故障未切除的很短时间内,直流控制系统也已能达到一种稳定的控制模式。

关键词:高压直流输电(HVDC);电流源型换流器;PSCAD;PWM;标准测试系统0 引言高压直流输电今年来发展很快,是我国重要的区域联网方式。

文献[1]指出,我国已建成了世界上第一个±800kV的最高直流电压等级的特高压直流输电工程,且计划在2020年前投运的直流输电工程将超过30个,学习和掌握直流输电技术成为电力电子技术领域及电力工程领域工作人员不可缺少的知识构成。

本文利用PSCAD仿真软件对HVDC系统进行了由简单到复杂的建模和仿真,对其运行特性进行观测和研究,是在高压直流输电课程的学习之后的总结与提升,为以后的深入学习奠定基础。

在简化模型中,直流输电系统简化为以不可控整流器、平波电抗器和逆变器相连接的交流电源,逆变器的触发脉冲由PWM调制生成,观测整流输出电流和逆变输出电压。

在较复杂的CIGRE的直流输电标准测试系统模型中,采用可控的双桥12脉动换流器作为整流器和逆变器,观测交直流侧电压、电流。

1 HVDC系统简介4图1 长距离式HVDC系统主接线1—交流系统2—换流变压器3—脉动换流器4—平波电抗器5—交流滤波器6—直流滤波器高压直流输电由将交流电变换为直流电的整流器、高压直流输电线路和将直流电变换为交流电的逆变器三部分构成,因此从结构上看,高压直流输电是交流-直流-交流形式的电力电子换流电路。

到目前为止,工程上绝大部分直流输电的换流器(又称换流阀,包含整流器和逆变器)由半控型晶闸管器件组成,称采用这种换流器的直流输电为常规高压直流输电。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
图13Pscad对于暂态电抗Xd的设置
下面验证不同Xd`时A相短路电流的暂态过程。
i.Xd`=0.314时A相短路电流的波形如图14所示:
图14Xd`=0.314时A相短路电流波形
ii.Xd`=1时A相短路电流的波形如图15所示:
图15Xd``=1时A相短路电流波形
3)Xd``的影响
这里次暂态电抗Xd``与暂态电抗Xd`相似,Xd``影响的是短路后的次暂态过程。
图4Ta=0.278s发生短路If波形
2)Ta=0.0278s时,直流分量的衰减过程(以励磁电流作为分析)如图5所示。
图5Ta=0.278s发生短路If波形
2.
由于短路电流的直流分量起始值越大,短路电流瞬时值就越大,而直流分量的起始值于短路时刻的电流相位有关,即直流分量是由于短路后电流不能突变而产生的。
在Pscad中次暂态电抗Xd``的设置如图16所示:
图16Pscad对于次暂态电抗Xd``的设置
下面验证不同Xd``时A相短路电流的暂态过程。
i.Xd``=0.28时A相短路电流的波形如图17所示:
图17Xd``=0.28时A相短路电流波形
ii.Xd``=0.9时A相短路电流的波形如图18所示:
图18Xd``=0.9时A相短路电流波形
Pscad模型中对短路时刻的设置如图6所示
图6Pscad对于短路时刻的设置
1)当在t=0.5056时发生三相短路,三相短路电流波形如图7所示。
图7t=0.5056时三相短路电流波形
2)当在t=0.6时发生三相短路,三相短路电流波形如图8所示。
图8t=6时三相短路电流波形
2.
1)Xd的影响
Pscad中对于Xd的设置如图9所示:
对于课程的建议:可能由于课时的原因,课程进行的略微紧张,基础稍欠缺的地方有些跟不上。因为了解到老师有做过故障保护相关工作的经验,所以希望老师以后能为学生拓展一些电力系统其他方面的知识。
在此再次感谢老师在学习上的支持和帮助。
图27瞬时波形显示方式
图28FFT处理模块
图29 FFT模式选择
图20相量仪输出幅相特征
3
3.1
由于是对称故障且系统两侧基本相同,这里只看M侧A相。
故障前幅相特性
故障后幅相特性
3.2
主要看特殊相A相的电气量变化情况
M侧A相母线电压波形
M侧母线ABC相电流波形
短路点A相电压波形
短路点ABC三相电流波形(故障前重合)。
图9Pscad对于D轴同步电抗Xd的设置
下面验证不同Xd时A相短路电流的稳定值。
i.Xd=1.014(标幺制,下同)时,真波形如图10所示
图10Xd=1.014时A相短路电流波形
ii.Xd=10时,仿真波形如图11所示
图11Xd=1.014时A相短路电流波形
2)Xd`的影响
在Pscad中暂态电抗Xd`的设置如图13所示:
图1同步发电机三相短路实验仿真模型
2
2.
三相短路电流的直流分量大小不等,但衰减规律相同,均按指数规律衰减,衰减时间常数为Ta,由定子回路的电阻和等值电感决定(大约0.2s)。pscad同步发电机模型衰减时间常数Ta对应位置如图3所示(当前Ta=0.278s)。
图3同步发电机模型参数Ta对应位置
1)Ta=0.278s时,直流分量的衰减过程(以励磁电流作为分析)如图4所示。
图26变压器模型参数设置位置
2
由于题目要求三相电压电流的瞬时波形和向量图,所以需要设计不同的输出通道。瞬时波形用覆盖图形和分离图形显示(如图27所示);相量图需要将各相电气量经过FFT模块处理(如图28所示),采用其幅值相位模式,用处理完成后的基波表示(如图29所示),用向量仪显示效果(如图30所示)。
根据题目要求,建立如图24所示的仿真模型。
图24简单电力网络仿真模型
i.三相电源参数、输电线路(π型等值电路)参数对应在仿真模型中的设置位置如图25(a)(b)所示。
图25(a)电源参数设置位置
注:题目要求中两侧电源电势夹角为 ,即两侧Phase值相差 。
图25(b)π型等值电路参数设置位置
ii.变压器参数设置如图26所示,变压器采用星三角连接且不接地,零序电流不流通。
2)下面验证不同Td``时A相短路电流暂态交流分量衰减速度。
i.Td``=0.039时短路励磁电流的波形如图22所示
图22Td``=0.039时短路励磁电流的波形
ii.Td``=3.039时短路励磁电流的波形如图23所示
图23Td``=3.039时短路励磁电流的波形
二、简单电力网络的线路故障仿真
1
仿真模型预览图
2.
在Pscad中衰减时间常数的设置如图19所示:
图19Pscad对于衰减时间常数的设置
1)下面验证不同Td`时A相短路电流暂态交流分量衰减速度。
i.Td`=6.55时短路励磁电流的波形如图20所示
图20Td`=6.55时短路励磁电流的波形
ii.Td`=1.55时短路励磁电流的波形如图21所示
图21Td`=1.55时短路励磁电流的波形
电力系统分析课程报告
姓名*******
学院自动化与电气工程学院
专业控制科学与工程
班级*******
指导老师*******
二〇一六年五月十三
一、同步发电机三相短路仿真
1
选取三相同步发电机模型,以三相视图表示。励磁电压和原动机输入转矩Ef与Tm均为定常值1.0,且发电机空载。当运行至0.5056s时,发电机发生三相短路故障。同步发电机三相短路实验仿真模型如图1所示。
故障前幅相特性
故障后幅相特性
3.3
仍然主要看特殊相A的电气量变化
母线M侧A相电压波形
短路点ABC三相电压波形(故障前重合,故障后BC两相电压减小)
短路点ABC三相电流波形
短路前的幅相特性
短路后的幅相特性
4
通过对于电力系统分析这门课一个学期的学习,我更加深入的了解了电力系统分析中主要考虑的问题。本学期主要是对电力系统的暂态的学习,通过刘益青老师的耐心讲解和课下用PSCAD仿真软件对课程的巩固,使我自己在故障分析的能力上又上了一个台阶。
相关文档
最新文档