九年级上册数学《二次函数》易错题

合集下载

二次函数(易错30题7个考点)(解析版)-2024学年九年级数学上册《重难点题型高分突破》(人教版)

二次函数(易错30题7个考点)(解析版)-2024学年九年级数学上册《重难点题型高分突破》(人教版)

第2单元二次函数(易错30题7个考点)一.二次函数的性质(共1小题)1.如图,抛物线y=ax2+bx+c交x轴于(﹣1,0)、(3,0)两点,则下列判断中,错误的是()A.图象的对称轴是直线x=1B.当x>1时,y随x的增大而减小C.一元二次方程ax2+bx+c=0的两个根是﹣1和3D.当﹣1<x<3时,y<0【答案】D【解答】解:A、对称轴为直线x==1,正确,故本选项错误;B、当x>1时,y随x的增大而减小,正确,故本选项错误;C、一元二次方程ax2+bx+c=0的两个根是﹣1和3正确,故本选项错误;D、应为当﹣1<x<3时,y>0,故本选项正确.故选:D.二.二次函数图象与系数的关系(共3小题)2.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,对称轴为x=﹣,下列结论中,正确的是()A.abc>o B.b2﹣4ac<0C.2b+c>0D.4a﹣2b+c<0【答案】D【解答】解:A、图象开口向上,与y轴交于负半轴,对称轴在y轴左侧,能得到:a>0,c<0,﹣<0,b>0,∴abc>0,错误;B、图象与x轴有2个交点,依据根的判别式可知b2﹣4ac>0,错误;C、∵﹣=﹣,∴b=a,∵x=1时,a+b+c<0,∴2b+c<0,错误;D、∵图象与x轴交于左边的点在﹣2和﹣3之间,∴x=﹣2时,4a﹣2b+c<0,正确;故选:D.3.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,有下列结论:①a﹣b+c >0;②2abc>0;③4a﹣2b+c>0;④b2﹣4ac>0;⑤3a+c>0;⑥a﹣c>0,其中正确的结论的个数是()A.2B.3C.4D.5【答案】C【解答】解:当x=﹣1时,y<0,则a﹣b+c<0,所以①错误;抛物线开口向上,则a>0;对称轴在y轴右侧,x=﹣>0,则b<0;抛物线与y轴的交点坐标在x轴下方,则c<0,于是abc>0,所以②正确;当x=﹣2,y>0,则4a﹣2b+c>0,所以③正确;抛物线与x轴有两个交点,则b2﹣4ac>0,所以④正确;x=﹣=1,即b=﹣2a,而a﹣b+c<0,则3a+c<0,所以⑤错误;a>0,c<0,则a﹣c>0,所以⑥正确.故选:C.4.二次函数y=ax2+bx+c(a≠0)的图象如图所示.下列结论:①abc>0;②2a+b=0;③m为任意实数,则a+b>am2+bm;④a﹣b+c>0;⑤若ax12+bx1=ax22+bx2且x1≠x2,则x1+x2=2.其中正确的有()A.①④B.③④C.②⑤D.②③⑤【答案】C【解答】解:①抛物线开口方向向下,则a<0.抛物线对称轴位于y轴右侧,则a、b异号,即ab<0.抛物线与y轴交于正半轴,则c>0.所以abc<0.故①错误.②∵抛物线对称轴为直线x==1,∴b=﹣2a,即2a+b=0,故②正确;③∵抛物线对称轴为直线x=1,∴函数的最大值为:a+b+c,∴a+b+c≥am2+bm+c,即a+b≥am2+bm,故③错误;④∵抛物线与x轴的一个交点在(3,0)的左侧,而对称轴为直线x=1,∴抛物线与x轴的另一个交点在(﹣1,0)的右侧∴当x=﹣1时,y<0,∴a﹣b+c<0,故④错误;⑤∵ax12+bx1=ax22+bx2,∴ax12+bx1﹣ax22﹣bx2=0,∴a(x1+x2)(x1﹣x2)+b(x1﹣x2)=0,∴(x1﹣x2)[a(x1+x2)+b]=0,而x1≠x2,∴a(x1+x2)+b=0,即x1+x2=,∵b=﹣2a,∴x1+x2=2,故⑤正确.综上所述,正确的有②⑤.故选:C.三.二次函数图象上点的坐标特征(共1小题)5.若抛物线y=2x2﹣px+4p+1中不管p取何值时都通过定点,则定点坐标为(4,33).【答案】见试题解答内容【解答】解:y=2x2﹣px+4p+1可化为y=2x2﹣p(x﹣4)+1,分析可得:当x=4时,y=33;且与p的取值无关;故不管p取何值时都通过定点(4,33).四.二次函数的最值(共1小题)6.若函数y=x2﹣6x+5,当2≤x≤6时的最大值是M,最小值是m,则M﹣m=9.【答案】见试题解答内容【解答】解:原式可化为y=(x﹣3)2﹣4,可知函数顶点坐标为(3,﹣4),当y=0时,x2﹣6x+5=0,即(x﹣1)(x﹣5)=0,解得x1=1,x2=5.如图:m=﹣4,当x=6时,y=36﹣36+5=5,即M=5.则M﹣m=5﹣(﹣4)=9.故答案为9.五.抛物线与x轴的交点(共1小题)7.二次函数y=x2+bx+c的图象如图所示,则下列结论正确的是()A.顶点坐标(﹣1,﹣4)B.当x>﹣1时,y随x的增大而减小C.线段AB的长为3D.当﹣3<x<1时,y>0【答案】A【解答】解:由图可知,对称轴为﹣=﹣1,b=2;c=﹣3,则函数解析式为y=x2+2x﹣3.其顶点坐标为(﹣1,﹣4).由图可知,当x>﹣1时,y随x的增大而增大;当y=0时,x2+2x﹣3=0,解得x1=1;x2=﹣3.可知线段AB长为1﹣(﹣3)=4,由图可知当﹣3<x<1时,y<0.可见,只有A正确,故选:A.六.二次函数的应用(共4小题)8.施工队要修建一个横断面为抛物线的公路隧道,其高度为6米,宽度OM为12米.现以O点为原点,OM所在直线为x轴建立直角坐标系(如图1所示).(1)求出这条抛物线的函数解析式,并写出自变量x的取值范围;(2)隧道下的公路是双向行车道(正中间是一条宽1米的隔离带),其中的一条行车道能否行驶宽2.5米、高5米的特种车辆?请通过计算说明;(3)施工队计划在隧道门口搭建一个矩形“脚手架”CDAB,使A、D点在抛物线上.B、C点在地面OM线上(如图2所示).为了筹备材料,需求出“脚手架”三根木杆AB、AD、DC的长度之和的最大值是多少,请你帮施工队计算一下.【答案】见试题解答内容【解答】解:(1)∵M(12,0),P(6,6).∴设这条抛物线的函数解析式为y=a(x﹣6)2+6,∵抛物线过O(0,0),∴a(0﹣6)2+6=0,解得a=﹣,∴这条抛物线的函数解析式为y=﹣(x﹣6)2+6,即y=﹣x2+2x.(0≤x≤12)(2)当x=6﹣0.5﹣2.5=3(或x=6+0.5+2.5=9)时y=4.5<5故不能行驶宽2.5米、高5米的特种车辆.(3)设点A的坐标为(m,﹣m2+2m)则OB=m,AB=DC=﹣m2+2m根据抛物线的轴对称,可得:OB=CM=m,故BC=12﹣2m,即AD=12﹣2m令L=AB+AD+DC=﹣m2+2m+12﹣2m﹣m2+2m=﹣m2+2m+12=﹣(m ﹣3)2+15故当m=3,即OB=3米时,三根木杆长度之和L的最大值为15米.9.嘉兴某公司抓住“一带一路”的机遇不断创新发展,生产销售某产品,该产品销售量y(万件)与售价x(元件)之间存在图1(一条线段)所示的变化趋势,总成本P(万元)与销售量y(万件)之间存在图2所示的变化趋势,当6≤y≤10时可看成一条线段,当10≤y≤18时可看成抛物线P=﹣y2+8y+m(1)写出y与x之间的函数关系式(2)若销售量不超过10万件时,利润为45万元,求此时的售价为多少元/件?(3)当售价为多少元时,利润最大,最大值是多少万元?(利润=销售总额一总成本)【答案】见试题解答内容【解答】解:(1)将点(18,6)、(6,18)代入一次函数表达式:y=kx+b 得:,解得:,函数表达式为:y=﹣x+24;(2)当6≤y≤10时,同理可得:P=10y,由题意得:利润w=yx﹣P=﹣(x﹣10)(x﹣24)=45,解得:x=15或19(舍去19),即:此时的售价为15;(3)①当6≤y≤10时,w1=yx﹣P=﹣(x﹣10)(x﹣24),当x=17时,w1有最大值为49万元;②10≤y≤18时,把点(10,100)代入二次函数并解得:m=40,w2=yx﹣P=(24﹣x)2+(24﹣x)(x﹣8)﹣40=﹣x2+x﹣,当x=﹣=14时,w2的最大值为40万元,49>40,故:x=17元时,w有最大值为49万元.10.某商场经营某种品牌的童装,购进时的单价是60元.根据市场调查,在一段时间内,销售单价是80元时,销售量是200件,而销售单价每降低1元,就可多售出20件.(1)写出销售量y件与销售单价x元之间的函数关系式;写出销售该品牌童装获得的利润w元与销售单价x元之间的函数关系式;(2)若童装厂规定该品牌童装销售单价不低于76元,且商场要完成不少于240件的销售任务,则商场销售该品牌童装获得的最大利润是多少?【答案】(1)y=﹣20x+1800(60≤x≤80),W=﹣20x2+3000x﹣108000;(2)4480元.【解答】解:(1)根据题意得,y=200+(80﹣x)×20=﹣20x+1800,所以销售量y件与销售单价x元之间的函数关系式为y=﹣20x+1800(60≤x ≤80);W=(x﹣60)y=(x﹣60)(﹣20x+1800)=﹣20x2+3000x﹣108000,所以销售该品牌童装获得的利润w元与销售单价x元之间的函数关系式W=﹣20x2+3000x﹣108000;(2)根据题意得,﹣20x+1800≥240,解得x≤78,∴76≤x≤78,w=﹣20x2+3000x﹣108000,对称轴为x=﹣=75,∵a=﹣20<0,∴抛物线开口向下,∴当76≤x≤78时,W随x的增大而减小,∴x=76时,W有最大值,最大值=(76﹣60)(﹣20×76+1800)=4480(元).所以商场销售该品牌童装获得的最大利润是4480元.11.为了落实国务院的指示精神,某地方政府出台了一系列“精准扶贫”优惠政策,使贫困户收入大幅度增加.某农户生产经销一种农产品,已知这种产品的成本价为每千克20元,市场调查发现,该产品每天的销售量y(千克)与销售价x(元/千克)有如下关系:y=﹣2x+80.设这种产品每天的销售利润为w元.(1)求w与x之间的函数关系式;(2)该产品销售价定为每千克多少元时,每天的销售利润最大?最大利润是多少元?(3)如果物价部门规定这种产品的销售价不高于每千克30元,该农户想要每天获得150元的销售利润,销售价应定为每千克多少元?【答案】(1)w=﹣2x2+120x﹣1600;(2)该产品销售价定为每千克30元时,每天销售利润最大,最大销售利润200元;过程见解答;(3)该农户想要每天获得150元的销售利润,销售价应定为每千克25元,过程见解答.【解答】解:(1)由题意得出:w=(x﹣20)•y=(x﹣20)(﹣2x+80)=﹣2x2+120x﹣1600,故w与x的函数关系式为:w=﹣2x2+120x﹣1600;(2)w=﹣2x2+120x﹣1600=﹣2(x﹣30)2+200,∵﹣2<0,∴当x=30时,w有最大值.w最大值为200.答:该产品销售价定为每千克30元时,每天销售利润最大,最大销售利润200元.(3)当w=150时,可得方程﹣2(x﹣30)2+200=150.解得x1=25,x2=35.∵35>30,∴x2=35不符合题意,应舍去.答:该农户想要每天获得150元的销售利润,销售价应定为每千克25元.七.二次函数综合题(共19小题)12.如图(1)所示,E为矩形ABCD的边AD上一点,动点P,Q同时从点B 出发,点P沿折线BE﹣ED﹣DC运动到点C时停止,点Q沿BC运动到点C 时停止,它们运动的速度都是1cm/秒.设P、Q同时出发t秒时,△BPQ的面积为ycm2.已知y与t的函数关系图象如图(2)(曲线OM为抛物线的一部分),则下列结论:①AD=BE=5;②;③当0<t≤5时,;④当秒时,△ABE∽△QBP;其中正确的结论是()A.①②③B.②③C.①③④D.②④【答案】C【解答】解:根据图(2)可得,当点P到达点E时,点Q到达点C,∵点P、Q的运动的速度都是1cm/秒,∴BC=BE=5,∴AD=BE=5,故①小题正确;又∵从M到N的变化是2,∴ED=2,∴AE=AD﹣ED=5﹣2=3,在Rt△ABE中,AB===4,∴cos∠ABE==,故②小题错误;过点P作PF⊥BC于点F,∵AD∥BC,∴∠AEB=∠PBF,∴sin∠PBF=sin∠AEB==,∴PF=PB sin∠PBF=t,∴当0<t≤5时,y=BQ•PF=t•t=t2,故③小题正确;当t=秒时,点P在CD上,此时,PD=﹣BE﹣ED=﹣5﹣2=,PQ=CD﹣PD=4﹣=,∵=,==,∴=,又∵∠A=∠Q=90°,∴△ABE∽△QBP,故④小题正确.综上所述,正确的有①③④.故选:C.13.如图,分别过点P i(i,0)(i=1、2、…、n)作x轴的垂线,交的图象于点A i,交直线于点B i.则=.【答案】见试题解答内容【解答】解:根据题意,知A1、A2、A3、…A n的点都在函与直线x=i(i=1、2、…、n)的图象上,B1、B2、B3、…B n的点都在直线与直线x=i(i=1、2、…、n)图象上,∴A1(1,)、A2(2,2)、A3(3,)…A n(n,n2);B1(1,﹣)、B2(2,﹣1)、B3(3,﹣)…B n(n,﹣);∴A1B1=|﹣(﹣)|=1,A2B2=|2﹣(﹣1)|=3,A3B3=|﹣(﹣)|=6,…A nB n=|n2﹣(﹣)|=;∴=1,=,…=.∴,=1++…+,=2[+++…+],=2(1﹣+﹣+﹣+…+﹣),=2(1﹣),=.故答案为:.14.如图,已知二次函数y=ax2+bx+c(a≠0)的顶点是(1,4),且图象过点A(3,0),与y轴交于点B.(1)求二次函数y=ax2+bx+c的解析式;(2)求直线AB的解析式;=3,如果存在,(3)在直线AB上方的抛物线上是否存在一点C,使得S△ABC 请求出C点的坐标,如果不存在,请说明理由.【答案】(1)y=﹣x2+2x+3;(2)y=﹣x+3;(3)C(1,4)或C(2,3).【解答】解:(1)∵(1,4)是二次函数的顶点,∴设二次函数的解析式为y=a(x﹣1)2+4.又∵图象过点A(3,0),∴代入可得4a+4=0,解得a=﹣1,∴y=﹣(x﹣1)2+4或y=﹣x2+2x+3;(2)由y=﹣x2+2x+3可知,B为(0,3).设直线AB的解析式为:y=kx+t(k≠0),将A(3,0)和B(0,3)代入可得k=﹣1,b=3∴直线AB的解析式为:y=﹣x+3;(3)∵C在直线AB上方的抛物线上,∴可设C(x,﹣x2+2x+3)其中x>0,过C作CD∥y轴,交AB于D点.则D坐标为(x,﹣x+3),=3,又∵S△ABC∴[(﹣x2+2x+3)﹣(﹣x+3)]×3=3,解得x1=1,x2=,2,代入﹣x2+2x+3得4或3.∴C点坐标为(1,4)或(2,3).15.如图,已知抛物线y=﹣x2+bx+c经过B(﹣3,0),C(0,3)两点,与x 轴的另一个交点为A.(1)求抛物线的解析式;(2)若直线y=mx+n经过B,C两点,则m=1;n=3;(3)在抛物线对称轴上找一点E,使得AE+CE的值最小,直接写出点E的坐标;(4)设点P为x轴上的一个动点,是否存在使△BPC为等腰三角形的点P,若存在,直接写出点P的坐标;若不存在,说明理由.【答案】(1)y=﹣x2﹣2x+3;(2)1,3;(3)E的坐标为(﹣1,2);(4)点P的坐标为(﹣3﹣3,0)或(3﹣3,0)或(0,0)或(3,0).【解答】解:(1)把点B(﹣3,0),C(0,3)代入y=﹣x2+bx+c得:,解得:,∴抛物线的解析式是y=﹣x2﹣2x+3;(2)把B(﹣3,0),C(0,3)代入y=mx+n中得:,解得:;故答案为:1,3;(3)如图1,由(2)知:直线BC的解析式为y=x+3,抛物线的对称轴为直线x=﹣=﹣1,直线BC与直线x=﹣1相交于点E,则EB=EA,此时AE+CE最小,此时点E的坐标为(﹣1,2);(4)∵B(﹣3,0),C(0,3),∴OB=OC=3,∴BC=3,分三种情况:①BC=BP,如图2,此时点P的坐标为(﹣3﹣3,0)或(3﹣3,0);②当P与O重合时,△BPC也是等腰三角形,此时P(0,0);③BC=CP,如图3,此时点P的坐标为(3,0);综上所述,点P的坐标为(﹣3﹣3,0)或(3﹣3,0)或(0,0)或(3,0).16.在平面直角坐标系xOy中,已知抛物线y=ax2﹣2(a+1)x+a+2(a≠0).(1)当a=﹣时,求抛物线的对称轴及顶点坐标;(2)请直接写出二次函数图象的对称轴(用含a的代数式表示)及二次函数图象经过的定点坐标是(1,0).(3)若当1≤x≤5时,函数值有最大值为8,求二次函数的解析式;(4)已知点A(0,﹣3)、B(5,﹣3),若抛物线与线段AB只有一个公共点,请直接写出a的取值范围.【答案】(1)直线x=﹣7,(﹣7,8);(2)(1,0);(3)y=x2﹣4x+3;(4)a的取值范围是:a=或0<a<或﹣5<a<0.【解答】解:(1)a=﹣时,y=﹣x2﹣x+∴对称轴为直线x=﹣=﹣7,把x=﹣7代入y=﹣x2﹣x+得,y=8,∴顶点坐标为(﹣7,8);(2)∵y=ax2﹣2(a+1)x+a+2(a≠0).∴对称轴为直线x=﹣=1+,∵y=ax2﹣2(a+1)x+a+2=a(x﹣1)2﹣2(x﹣1)=(x﹣1)[a(x﹣1)﹣2],∴二次函数经过的定点坐标为(1,0);故答案为:(1,0);(3)由(2)知:二次函数图象的对称轴为直线x=1+,分两种情况:①当a<0时,1+<1,在自变量x的值满足1≤x≤5的情况下,y随x的增大而减小,∴当x=1时,y=0,而当1≤x≤5时,函数值有最大值为8,所以此种情况不成立;②当a>0时,1+>1,i)当1<1+≤3时,即a≥,当x=5时,二次函数的最大值为y=25a﹣10(a+1)+a+2=8,∴a=1,此时二次函数的解析式为y=x2﹣4x+3;ii)当1+>3时,在自变量x的值满足1≤x≤5的情况下,y随x的增大而减小,即x=1有最大值,所以此种情况不成立;综上所述:此时二次函数的解析式为:y=x2﹣4x+3;(4)分三种情况:①当抛物线的顶点在线段AB上时,抛物线与线段AB只有一个公共点,即当y=﹣3时,ax2﹣2(a+1)x+a+2=﹣3,ax2﹣2(a+1)x+a+5=0,Δ=4(a+1)2﹣4a(a+5)=0,∴a=,当a=时,x2﹣x+=0,解得:x1=x2=4(符合题意,如图1),②当a>0时,如图2,当x=0时,y>﹣3;当x=5时,y<﹣3,∴,解得:﹣5<a<,∴0<a<;③当a<0时,如图3,当x=0时,y>﹣3;当x=5时,y<﹣3,∴,解得:﹣5<a<,∴﹣5<a<0;综上所述,a的取值范围是:a=或0<a<或﹣5<a<0.17.如图,抛物线y=﹣x2+bx+c与x轴交于A,B两点,与y轴交于点C,抛物线的对称轴交x轴于点D.已知A(﹣1,0),C(0,3).(1)求抛物线的解析式;(2)在抛物线的对称轴上有一点M,使得MA+MC的值最小,求此点M的坐标;(3)在抛物线的对称轴上是否存在P点,使△PCD是等腰三角形,如果存在,求出点P的坐标,如果不存在,请说明理由.【答案】(1)y=﹣x2+2x+3;(2)点M(1,2);(3)点P的坐标为(1,6)或(1,)或(1,﹣)或(1,).【解答】解:(1)∵抛物线y=﹣x2+bx+c经过A(﹣1,0),C(0,3)两点,∴,解得:,∴该抛物线的解析式为y=﹣x2+2x+3;(2)由对称性可知,直线BC与抛物线对称轴的交点就是点M,抛物线y=﹣x2+2x+3的对称轴是直线x=﹣=1,由于点A(﹣1,0),则点B(3,0),设直线BC的解析式为y=kx+d,则,解得,∴直线BC的解析式为y=﹣x+3,当x=1时,y=﹣1+3=2,∴点M(1,2);(3)设P(1,t),则PC2=12+(t﹣3)2,CD2=32+12=10,PD2=t2,根据△PCD为等腰三角形,分三种情况讨论:①当PC=CD时,则12+(t﹣3)2=10,解得:t=6或t=0(此时点P与D重合,舍去),∴P(1,6);②当CD=PD时,则10=t2,解得:t=±,∴P1(1,),P2(1,﹣);③当PC=PD时,则12+(t﹣3)2=t2,解得:t=,P(1,);综上所述,点P的坐标为(1,6)或(1,)或(1,﹣)或(1,).18.如图1,抛物线y=ax2+x+c与x轴交于点A、B(4,0)(A点在B点左侧),与y轴交于点C(0,6),点P是抛物线上一个动点,连接PB,PC,BC(1)求抛物线的函数表达式;(2)若点P的横坐标为3,求△BPC的面积;(3)如图2所示,当点P在直线BC上方运动时,连接AC,求四边形ABPC 面积的最大值,并写出此时P点坐标.(4)若点M是x轴上的一个动点,点N是抛物线上一动点,P的横坐标为3.试判断是否存在这样的点M,使得以点B,M,N,P为顶点的四边形是平行四边形,若存在,请直接写出点M的坐标;若不存在,请说明理由.【答案】(1)该抛物线的函数表达式为y=﹣x2+x+6;=;(2)S△BPC的最大值为24,此时,点P的坐标为(2,6);(3)S四边形ABPC(4)点M的坐标为(8,0)或(﹣,0)或(,0)或(0,0).【解答】解:(1)∵抛物线y=ax2+x+c经过点B(4,0)、C(0,6),∴,解得:,∴该抛物线的函数表达式为y=﹣x2+x+6;(2)设直线BC的解析式为y=kx+b,则,解得:,∴直线BC的解析式为y=x+6,∵点P的横坐标为3,∴P(3,),如图1,过点P作PE∥y轴,交BC于点E,则E(3,),∴PE=﹣=,=S△BPE+S△CPE=××(4﹣3)+××3=;∴S△BPC(3)∵y=﹣x2+x+6,∴抛物线的对称轴为直线x=1,∵点A和点B(4,0)关于直线x=1对称,∴A(﹣2,0),∴AB=4﹣(﹣2)=6,∵C(0,6),∴OC=6,=AB•OC=×6×6=18,∴S△ABC如图2,过点P作PE∥y轴交BC于点E,设P(t,﹣t2+t+6),则E(t,t+6),∴PE=﹣t2+t+6﹣(t+6)=﹣t2+3t,=S△PBE+S△PCE=PE•(x B﹣x P)+PE•(x P﹣x C)=×(﹣t2+3t)∴S△PBC×4=﹣t2+6t,=S△PBC+S△ABC=﹣t2+6t+18=﹣(t﹣2)2+24,∴S四边形ABPC∵﹣<0,有最大值,最大值为24.∴当t=2时,S四边形ABPC此时,点P的坐标为(2,6);(4)由(2)知P(3,),B(4,0),∵点M是x轴上的一个动点,点N是抛物线上一动点,∴设M(m,0),N(n,﹣n2+n+6),当BP、MN为对角线时,BP与MN的中点重合,则,解得:,(此时点N与点P重合,舍去),∴M(8,0);当BM、PN为对角线时,BM与PN的中点重合,则,解得:,,∴M(﹣,0)或(,0);当BN、PM为对角线时,BN与PM的中点重合,则,解得:,(此时点N与点P重合,舍去),∴M(0,0);综上所述,点M的坐标为(8,0)或(﹣,0)或(,0)或(0,0).19.如图,抛物线y=﹣x2+2x+3与x轴交于A、B两点(点A在点B的左边),与y轴交于点C,点D和点C关于抛物线的对称轴对称.(1)求直线AD的解析式;(2)如图,直线AD上方的抛物线上有一点F,过点F作FG⊥AD于点G,求线段FG的最大值;(3)点M是抛物线的顶点,点P是y轴上一点,点Q是坐标平面内一点,以A,M,P,Q为顶点的四边形是以AM为边的矩形,求点Q的坐标.(2)FG的最大值为:;(3)或.【解答】(1)解:当x=0时,y=﹣x2+2x+3=3,则C(0,3),当y=0时,﹣x2+2x+3=0,解得x1=﹣1,x2=3,则A(﹣1,0),B(3,0),∵y=﹣x2+2x+3=﹣(x﹣1)2+4,∴抛物线对称轴为直线x=1,而点D和点C关于直线x=1对称,∴D(2,3),设直线AD的解析式为y=kx+b,把A(﹣1,0),D(2,3)分别代入得,解得,∴直线AD的解析式为y=x+1;(2)记AD于y轴的交点为E,当x=0时,y=x+1=1,则E(0,1),∴OA=OE,∴△OAE为等腰直角三角形,∴∠EAO=∠AEO=45°,过F作FN∥y轴交AD于N,∴∠FNG=45°,∴△FGN为等腰直角三角形,∴,设F(x,﹣x2+2x+3),则N(x,x+1),∴,当时,FN有最大值,∴FG的最大值为:;(3)如图,当P在AM的右边,记直线AM交y轴于R,y=﹣x2+2x+3=﹣(x﹣1)2+4,则M(1,4),设直线AM的解析式为y=mx+n,把A(﹣1,0)、M(1,4)分别代入得,解得,∴直线AM的解析式为y=2x+2,当x=0时,y=2x+2=2,则R(0,2),设P(0,y),而四边形APQM为矩形,∴∠RAP=90°,∴(2﹣y)2=12+y2+12+22,解得:,即,由平移的性质可得:;如图,当P在AM的左边,同理可得:(y﹣2)2=(1﹣0)2+(4﹣2)2+(0﹣1)2+(y﹣4)2,解得:,即,由平移的性质可得:;综上:或.20.如图所示,在平面直角坐标中,抛物线的顶点P到x轴的距离是4,抛物线与x轴相交于O、M两点,OM=4;矩形ABCD的边BC在线段的OM上,点A、D在抛物线上.(1)求这条抛物线的解析式;(2)设点D的横坐标是m,矩形ABCD的周长为L,求L与m的关系式,并求出L的最大值;(3)点E在抛物线的对称轴上,在抛物线上是否存在点F,使得以E、F、O、M为顶点的四边形是平行四边形?如果存在,求F点的坐标.【答案】(1)y=﹣x2+4x;(2)当m=1时,周长L有最大值10;(3)点F(﹣2,﹣12)或(6,﹣12)或(2,4)时,以E、F、O、M为顶点的四边形是平行四边形.【解答】解:(1)依题意得顶点P的坐标(2,4),设抛物线的解析式为y=a(x﹣2)2+4,把点M(4,0)代入解析式,解得a=﹣1,所以y=﹣(x﹣2)2+4=﹣x2+4x,所以抛物线的解析式为:y=﹣x2+4x.(2)∵点D的横坐标是m,∴点D的纵坐标是﹣m2+4m,BC=4﹣2m,∴矩形ABCD的周长L=2(﹣m2+4m+4﹣2m)=﹣2(m﹣1)2+10,∴当m=1时,周长L有最大值10.(3)①OM是平行四边形的边时:点F的横坐标:2﹣4=﹣2,纵坐标:y=﹣(﹣2)2+4×(﹣2)=﹣12,此时,点F(﹣2,﹣12);或点F的横坐标:2+4=6,纵坐标:y=﹣62+4×6=﹣12,此时,点F(6,﹣12).②OM是平行四边形的对角线时,EF所在的直线经过OM的中点,∴EF都在抛物线的对称轴上,∴点F与点P重合,∴点F(2,4).综上所述,点F(﹣2,﹣12)或(6,﹣12)或(2,4)时,以E、F、O、M 为顶点的四边形是平行四边形.21.如图,一次函数y=x+1的图象与x轴交于点A,与y轴交于点B,二次函数y=x2+bx+c的图象与一次函数y=x+1的图象交于B、C两点,与x轴交于D、E两点,且D点坐标为(1,0).(1)求抛物线的解析式;(2)在x轴上找一点P,使|PB﹣PC|最大,求出点P的坐标;(3)在x轴上是否存在点P,使得△PBC是以点P为直角顶点的直角三角形?若存在,求出点P的坐标,若不存在,请说明理由.【答案】(1)y=x2﹣x+1;(2)P(﹣2,0);(3)存在,P(1,0)或(3,0).【解答】解:(1)将B(0,1),D(1,0)的坐标代入y=x2+bx+c,得:,解得,∴解析式y=x2﹣x+1.(2)当P在x轴上的任何位置(点A除外)时,根据三角形两边之差小于第三边得|PB﹣PC|<BC,当点P在点A处时,|PB﹣PC|=BC,这时,|PB﹣PC|最大,即P在A点时,|PB﹣PC|最大.∵直线y=x+1交x轴与A点,令y=0,x=﹣2,即A(﹣2,0),∴P(﹣2,0).(3)设符合条件的点P存在,令P(a,0):当P为直角顶点时,如图:过C作CF⊥x轴于F;∵∠BPO+∠OBP=90°,∠BPO+∠CPF=90°,∴∠OBP=∠FPC,∴Rt△BOP∽Rt△PFC,∴,即,整理得a2﹣4a+3=0,解得a=1或a=3;∴所求的点P的坐标为(1,0)或(3,0),综上所述:满足条件的点P共有2个.22.如图,抛物线y=﹣x2+bx+c与x轴交于A,B两点,与y轴交于点C,抛物线的对称轴交x轴于点D,已知A(﹣1,0),C(0,2).(1)求抛物线的解析式;(2)在抛物线的对称轴上是否存在点P,使△PCD是以CD为腰的等腰三角形?如果存在,直接写出点P的坐标;如果不存在,请说明理由;(3)点E是线段BC上的一个动点,过点E作x轴的垂线与抛物线相交于点F,求△CBF的最大面积及此时点E的坐标.【答案】(1)y=﹣x2+x+2;(2)存在,点P的坐标为(,)或(,﹣)或(,4);(3)△CBF的最大面积为4,E(2,1).【解答】解:(1)∵A(﹣1,0),C(0,2)在抛物线y=x2+bx+c上,则,解得,∴抛物线解析式为y=﹣x2+x+2;(2)存在,理由:∵y=﹣x2+x+2=﹣(x﹣)2+,∴抛物线对称轴为直线x=,∴D(,0),且C(0,2),∴CD==,∵点P在对称轴上,∴可设P(,t),∴PD=|t|,PC=,当PD=CD时,则有|t|=,解得t=±,此时P点坐标为(,)或(,﹣);当PC=CD时,则有=,解得t=0(与D重合,舍去)或t=4,此时P点坐标为(,4);综上可知存在满足条件的点P,其坐标为(,)或(,﹣)或(,4);(3)当y=0时,即﹣x2+x+2=0,解得x=﹣1或x=4,∴A(﹣1,0),B(4,0),设直线BC解析式为y=kx+s,由题意可得,解得,∴直线BC解析式为y=﹣x+2,∵点E是线段BC上的一个动点,∴可设E(m,﹣m+2),则F(m,﹣m2+m+2),∴EF=﹣m2+m+2﹣(﹣m+2)=﹣m2+2m=﹣(m﹣2)2+2,=×4•EF=2[﹣(m﹣2)2+2]=﹣(m﹣2)2+4,∴S△CBF∵﹣1<0,有最大值,最大值为4,∴当m=2时,S△CBF此时﹣x+2=1,∴E(2,1),即E为BC的中点,∴当E运动到BC的中点时,△CBF的面积最大,最大面积为4,此时E点坐标为(2,1).23.已知二次函数y=﹣x2+bx+c的图象与直线y=x+3相交于点A和点B,点A 在x轴上,点B在y轴上.抛物线的顶点为P.(1)求这个二次函数的解析式;(2)现将抛物线向右平移m个单位,当抛物线与△ABP有且只有一个公共点时,求m的值;=2S△ABP,若存在,(3)在直线AB下方的抛物线上是否存在点Q,使得S△ABQ请求出点Q的坐标,若不存在,请说明理由.【答案】(1)这个二次函数的解析式为:y=﹣x2﹣2x+3;(2)m的值为2;(3)点Q的坐标为(﹣4,﹣5)或(1,0).【解答】解:(1)当x=0时,y=3,∴B(0,3),当y=0时,x+3=0,∴x=﹣3,∴A(﹣3,0),把A(﹣3,0)和B(0,3)代入二次函数y=﹣x2+bx+c中得:,解得:,∴这个二次函数的解析式为:y=﹣x2﹣2x+3;(2)y=﹣x2﹣2x+3=﹣(x+1)2+4,∴P(﹣1,4),将抛物线向右平移m个单位,P对应点为(﹣1+m,4),∴平移后的抛物线解析式为y=﹣(x+1﹣m)2+4,把B(0,3)代入得,3=﹣(1﹣m)2+4,解得m1=2,m2=0(舍去),故m的值为2;=S△APD+S梯形PDOB﹣S△AOB=+×(3+4)×1﹣(3)∵S△ABP=3,=2S△ABP=6,∴S△ABQ设点Q的坐标为(a,﹣a2﹣2a+3),分两种情况:①如图1,当Q在对称轴的左侧,过点P作PD⊥x轴于点D,过点Q作QE ∥y轴交直线AB于E,=(a+3+a2+2a﹣3)(﹣a+3+a)=6,∴S△ABQ解得:a1=﹣4,a2=1(舍),∴Q(﹣4,﹣5);②如图2,当Q在对称的右侧,过点P作PD⊥x轴于点D,过点Q作QE∥y 轴交直线AB于E,同理可得a=1,∴Q(1,0),综上,点Q的坐标为(﹣4,﹣5)或(1,0).24.如图1和图2,已知抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=﹣1,且抛物线经过B(1,0),C(0,3)两点,与x轴交于点A.(1)求抛物线的解析式;(2)如图1,在抛物线的对称轴直线x=﹣1上找一点M,使点M到点B的距离与到点C的距离之和最小,求出点M的坐标;(3)如图2,点Q为直线AC上方抛物线上一点,若∠CBQ=45°,请求出点Q坐标.【答案】见试题解答内容【解答】解:(1)点B的坐标为(1,0),函数的对称轴为x=﹣1,故点A (﹣3,0),则抛物线的表达式为:y=a(x+3)(x﹣1)=a(x2+2x﹣3),即﹣3a=3,解得:a=﹣1,故抛物线的表达式为:y=﹣x2﹣2x+3…①;(2)点B关于函数对称轴的对称点为点A,则AC交函数对称轴于点M,则点M为所求,由点A、C的坐标得,直线AC的表达式为:y=x+3,当x=﹣1时,y=2,故点M(﹣1,2);(3)如图,设直线BQ交y轴于点H,作HG⊥BC于点G,tan∠OCB=,∠CBQ=45°,则设:BG=HG=x,则CG=3x,则BC=BG+CG=4x==,解得x=,CH=x=,则点H(0,),由点B、H的坐标可得,直线BQ的表达式为:y=﹣x+…②,联立①②并解得:x=1(舍去)或﹣,故点Q(﹣,).25.如图,二次函数y=ax2+bx+c(a≠0)的图象与x轴交于点A(﹣1,0)、B (3,0)两点,与y轴交于点C(0,3),D为抛物线的顶点.(1)求此二次函数的表达式;(2)求△CDB的面积.(3)在其对称轴右侧的抛物线上是否存在一点P,使△PDC是等腰三角形?若存在,请直接写出点P的坐标;若不存在,请说明理由.【答案】见试题解答内容【解答】解:(1)设解析式为:y=a(x﹣x1)(x﹣x2)(a≠0),即y=a (x+1)(x﹣3).把点C(0,3)代入,得a(0+1)(0﹣3)=3.a=﹣1.故该抛物线解析式是y=﹣(x+1)(x﹣3)或y=﹣x2+2x+3.(2)由y=﹣x2+2x+3=﹣(x﹣1)2+4知,顶点坐标D为(1,4).∵B(3,0),C(0,3),∴BC2=18,BD2=(3﹣1)2+(0﹣4)2=20,CD2=(0﹣1)2+(3﹣4)2=2,∴BD2=BC2+CD2.∴△BCD是直角三角形,且∠BCD=90°.=CD•BC=××3=3,即△CDB的面积是3.∴S△BCD(3)存在,由y=﹣x2+2x+3得,D点坐标为(1,4),对称轴为x=1,①若以CD为底边,则PD=PC,设P点坐标为(x,y),根据勾股定理得:x2+(3﹣y)2=(x﹣1)2+(4﹣y)2,即y=4﹣x,又∵P点(x,y)在抛物线上,∴4﹣x=﹣x2+2x+3,即x2﹣3x+1=0,解得x1=,x2=<1(舍去),∴x=,∴y=4﹣x=,即点P坐标为(,).②若以CD为一腰,因为点P在对称轴右侧的抛物线上,由抛物线对称性知,点P与点C关于直线x=1对称,此时点P坐标为(2,3),∴符合条件的点P坐标为(,)或(2,3).26.如图,在平面直角坐标系中,已知抛物线y=ax2﹣2x+c与直线y=kx+b都经过A(0,﹣3),B(3,0)两点,该抛物线的顶点为C.(1)求此抛物线和直线AB的解析式;(2)设点P是直线AB下方抛物线上的一动点,当△PAB面积最大时,试求出点P的坐标,并求出△P AB面积的最大值;(3)设直线AB与该抛物线的对称轴交于点E,在射线EB上是否存在一点M,过点M作x轴的垂线交抛物线于点N,使点M、N、C、E是平行四边形的四个顶点?若存在,试求出点M的坐标;若不存在,请说明理由.【答案】(1)y=x2﹣2x﹣3;y=x﹣3;(2),P(,﹣);(3)(2,﹣1)或(,),【解答】解:(1)∵抛物线y=ax2﹣2x+c经过A(0,﹣3),B(3,0)两点,∴,解得,∴抛物线的解析式为y=x2﹣2x﹣3,∵直线y=kx+b经过A(0,﹣3),B(3,0)两点,∴,解得,∴直线AB的解析式为y=x﹣3;(2)如图1,作PQ∥y轴交直线AB于点Q,设P(m,m2﹣2m﹣3),则Qm,m﹣3),∴PQ=m﹣3﹣(m2﹣2m﹣3)=﹣m2+3m,=×3×(﹣m2+3m)∴S△P AB=﹣m2+m=﹣(m﹣)2+,∴当m=时,△PAB面积有最大值,最大值是,此时P点坐标为(,﹣).(3)存在,理由如下:∵y=x2﹣2x﹣3=(x﹣1)2﹣4,∴抛物线的顶点C的坐标为(1,﹣4),∵CE∥y轴,∴E(1,﹣2),∴CE=2,①如图2,若点M在x轴下方,四边形CEMN为平行四边形,则CE=MN,设M(a,a﹣3),则N(a,a2﹣2a﹣3),∴MN=a﹣3﹣(a2﹣2a﹣3)=﹣a2+3a,∴﹣a2+3a=2,解得:a=2,a=1(舍去),∴M(2,﹣1),②如图3,若点M在x轴上方,四边形CENM为平行四边形,则CE=MN,设M(a,a﹣3),则N(a,a2﹣2a﹣3),∴MN=a2﹣2a﹣3﹣(a﹣3)=a2﹣3a,∴a2﹣3a=2,解得:a=,a=(舍去),∴M(,),综合可得M点的坐标为(2,﹣1)或(,),27.矩形OABC在直角坐标系中的位置如图所示,A,C两点的坐标分别为A(6,0),C(0,3),直线y=x与BC边相交于点D.(1)求点D的坐标;(2)若抛物线y=ax2+bx经过D,A两点,试确定此抛物线的表达式;(3)设(2)中抛物线的对称轴与直线OD交于点M,点P为对称轴上一动点,以P,O,M为顶点的三角形与△OCD相似,求符合条件的P点的坐标.【答案】(1)D(4,3);(2)y=﹣x2+x;(3)P1(3,0),P2(3,﹣4).【解答】解:(1)∵四边形OABC是矩形,∴BC∥OA,∵直线y=x与BC边相交于点D,∴点D的纵坐标为3,令y=3,得3=x,解得:x=4,∴D(4,3);(2)∵抛物线y=ax2+bx经过D(4,3),A(6,0)两点,∴,解得:,∴该抛物线的解析式为y=﹣x2+x;(3)如图2:抛物线的对称轴与x轴交于点P1,符合条件.∵CB∥OA,∴∠P1OM=∠CDO,∵∠DCO=∠OP1M=90°,∴Rt△P1OM∽Rt△CDO.∵x=﹣=3,∴该点坐标为P1(3,0).过点O作OD的垂线交抛物线的对称轴于点P2,∵对称轴平行于y轴,∴∠P2MO=∠DOC,∴Rt△P2OM∽Rt△DCO.在△P2P1O和△DCO中,,,∴△P2P1O≌△DCO(AAS).∴CD=P1P2=4,∵点P2位于第四象限,∴P2(3,﹣4).∴符合条件的点P有两个,分别是P1(3,0),P2(3,﹣4).28.已知一次函数y1=﹣3x+3与x轴,y轴分别交于点A,B两点,抛物线y2=ax2﹣2ax+a+4(a<0);(1)若抛物线经过点B,求出抛物线的解析式;(2)抛物线是否经过一定点,若经过定点,求出定点坐标,若不经过,请说明理由;(3)在(1)的条件下,第一象限一点M是抛物线上一动点,连接AM,BM,设点M的横坐标为t,四边形BOAM的面积为S,求出S与t的函数关系式,当t取何值时,S有最大值是多少?【答案】(1)y=﹣x2+2x+3;(2)抛物线经过一定点,定点坐标为(1,4);(3)S=﹣t2++(0<t<3),当t=时,S有最大值是.【解答】解:(1)当x=0时,y=3,∴B(0,3),将B(0,3)代入y2=ax2﹣2ax+a+4中得:a+4=3,∴a=﹣1,∴抛物线的解析式为:y=﹣x2+2x+3;(2)抛物线y2=ax2﹣2ax+a+4=a(x﹣1)2+4,当x=1时,y2=4,∴抛物线经过一定点,定点坐标为(1,4);(3)如图,连接OM,当y=0时,﹣3x+3=0,∴x=1,∴A(1,0),由题意得:M(t,﹣t2+2t+3)(0<t<3),+S△AOM∴S=S△OBM=•OB•x M+•OA•y M=×3t+×1×(﹣t2+2t+3)=﹣t2++(0<t<3)=﹣(t﹣)2+;∵﹣<0,∴当t=时,S有最大值是.29.已知抛物线y=﹣x2+x+3与x轴交于点A、B(A在B的左侧),与y 轴交于点C.∠BAC的平分线AD交y轴于点D.过点D的直线l与射线AC、AB分别交于点M、N.(1)求抛物线的对称轴;(2)当实数a>﹣2时,求二次函数y=﹣x2+x+3在﹣2<x≤a时的最大值;(可用含a的代数式表示)(3)当直线l绕点D旋转时,试证明为定值,并求出该定值.【答案】(1)x=;(2)当a≤时,最大值为﹣a2+a+3;当a>时,最大值为4;(3)证明见解答过程,定值是.【解答】解:(1)抛物线对称轴为:x==;(2)①当a≤时,如图:此时二次函数y=﹣x2+x+3在﹣2<x≤a时的最大值,在x=a时取得,最大值为y=﹣a2+a+3,②当a>时,如图:此时二次函数y=﹣x2+x+3在﹣2<x≤a时的最大值,在x=时取得,最大值为y=4,综上所述,当a≤时,最大值为﹣a2+a+3;当a>时,最大值为4;(3)过M作ME⊥x轴于E,在y=﹣x2+x+3中令x=0得y=3,令y=0得x1=﹣,x2=3,∴A(﹣,0),B(3,0),C(0,3),∴OA=,OC=3,∴tan∠OAC==,∴∠OAC=60°,即∠BAC=60°,∵∠BAC的平分线AD交y轴于点D,∴∠OAD=30°,∴OD=OA•tan30°=1,∴D(0,1),①当M在线段AC上时,如图:设AM=a,AN=b,则ON=AN﹣OA=b﹣,∴N(b﹣,0),设直线DN解析式为y=kx+m,将D(0,1),N(b﹣,0)代入得:,解得,∴直线DN解析式为y=x+1,在Rt△AME中,∠OAC=60°,AM=a,∴AE=a,ME=a,∴OE=﹣a=,∴M(,a),将M(,a)代入y=x+1得:a=×+1,变形为:ab=2(a+b),∴a+b=ab,∴=+===,∴为定值,是;②当M在线段AC延长线上时,如图:设AM=a,AN=b,则ON=OA﹣AN=﹣b,∴N(b﹣,0),设直线DN解析式为y=tx+n,将D(0,1),N(b﹣,0)代入得:,解得,∴直线DN解析式为y=x+1,在Rt△AME中,∠OAC=60°,AM=a,∴AE=a,ME=a,∴OE=a﹣=,∴M(,a),将M(,a)代入y=x+1,得:a=×+1,变形为:ab=2(a+b),∴a+b=ab,∴=+===,∴为定值,是;综上所述,直线l绕点D旋转时,为定值,该定值是.30.如图,已知关于x的二次函数y=﹣x2+bx+c(c>0)的图象与x轴相交于A、B两点(点A在点B的左侧),与y轴交于点C,且OB=OC=3,顶点为M.(1)求出二次函数的关系式;(2)点P为线段MB上的一个动点,过点P作x轴的垂线PD,垂足为D.若OD=m,△PCD的面积为S,求S关于m的函数关系式,并写出m的取值范围;(3)探索线段MB上是否存在点P,使得△PCD为直角三角形?如果存在,求出P的坐标;如果不存在,请说明理由.【答案】见试题解答内容【解答】解:(1)∵OB=OC=3,∴B(3,0),C(0,3)∴,解得,∴二次函数的解析式为y=﹣x2+2x+3;(2)∵y=﹣x2+2x+3=﹣(x﹣1)2+4,∴M(1,4)设直线MB的解析式为y=kx+n,则有解得:,∴直线MB的解析式为y=﹣2x+6∵PD⊥x轴,OD=m,∴点P的坐标为(m,﹣2m+6)S三角形PCD=×(﹣2m+6)•m=﹣m2+3m(1≤m<3);(3)∵若∠PDC是直角,则点C在x轴上,由函数图象可知点C在y轴的正。

初三《二次函数》经典习题汇编(易错题、难题)

初三《二次函数》经典习题汇编(易错题、难题)

二次函数习题讲解一、二次函数的相关概念1. 若函数的图象与轴只有一个交点, 那么的值为()A. 0B. 0或2C. 2或-2D. 0, 2或-22.当或()时, 代数式的值相等, 则时, 代数式的值为。

3.已知和时, 多项式的值相等, 且, 则当时, 多项式的值等于________。

二、二次函数的顶点问题1. 若抛物线的顶点在第一象限, 则的取值范围为________。

2.如图, 在平面直角坐标系中, 抛物线所表示的函数解析式为, 则下列结论正确的是()A. ,B. ,C. ,D. ,三、二次函数的对称轴问题1. 已知二次函数, 当时, 的值随值的增大而减小, 则实数的取值范围是()A. B. C. D.2. 已知二次函数, 当时, 随的增大而增大, 则实数的取值范围是________。

3.已知二次函数, 当时, 随的增大而增大, 而的取值范围是()A. B. C. D.四、二次函数的图象共存问题1. 在同一直角坐标系中, 函数和(是常数, 且)的图象可能是()A B C D2. 二次函数的图象如图所示, 则一次函数与反比例函数在同一坐标系内的图象大致为()A B C D五、二次函数的图象综合问题1. 已知二次函数 的图象如图所示, 对称轴为 。

下列结论中, 正确的是( )A. B. C. D.2.已知二次函数 的图象如图所示, 下列结论:① ;② ;③ ;④ 。

其中, 正确结论的个数是( )A. 1B. 2C. 3D. 43.已知二次函数 的图象如图所示, 下列4个结论:①0abc <;②20a b +=;③420a b c ++>;④b a c <+;⑤()a b m am b +>+(m 为不等于1的任意实数)。

其中正确的结论有( )个A. 1B. 2C. 3D. 44. 已知二次函数 的图象如图所示, 下列结论:①0abc <;②2b a <;③240b ac ->;④0a b c ++>。

(专题精选)初中数学二次函数易错题汇编附答案解析

(专题精选)初中数学二次函数易错题汇编附答案解析

(专题精选)初中数学二次函数易错题汇编附答案解析一、选择题1.已知抛物线y =x 2+2x ﹣m ﹣1与x 轴没有交点,则函数y =的大致图象是( )A .B .C .D .【答案】B 【解析】 【分析】由题意可求m <﹣2,即可求解. 【详解】∵抛物线y =x 2+2x ﹣m ﹣1与x 轴没有交点, ∴△=4﹣4(﹣m ﹣1)<0 ∴m <﹣2∴函数y =的图象在第二、第四象限, 故选B . 【点睛】本题考查了反比例函数的图象,二次函数性质,求m 的取值范围是本题的关键.2.要将抛物线2y x =平移后得到抛物线223y x x =++,下列平移方法正确的是( ) A .向左平移1个单位,再向上平移2个单位 B .向左平移1个单位,再向下平移2个单位 C .向右平移1个单位,再向上平移2个单位 D .向右平移1个单位,再向下平移2个单位 【答案】A 【解析】 【分析】原抛物线顶点坐标为(0,0),平移后抛物线顶点坐标为(-1,2),由此确定平移办法. 【详解】y=x 2+2x+3=(x+1)2+2,该抛物线的顶点坐标是(-1,2),抛物线y=x 2的顶点坐标是(0,0),则平移的方法可以是:将抛物线y=x 2向左平移1个单位长度,再向上平移2个单位长度. 故选:A . 【点睛】此题考查二次函数图象与几何变换.解题关键是将抛物线的平移问题转化为顶点的平移,寻找平移方法.3.如图,抛物线y =ax 2+bx +c (a ≠0)与x 轴交于点A (1,0),对称轴为直线x =﹣1,当y >0时,x 的取值范围是( )A .﹣1<x <1B .﹣3<x <﹣1C .x <1D .﹣3<x <1【答案】D 【解析】 【分析】根据已知条件求出抛物线与x 轴的另一个交点坐标,即可得到答案. 【详解】解:∵抛物线y =ax 2+bx +c 与x 轴交于点A (1,0),对称轴为直线x =﹣1, ∴抛物线与x 轴的另一交点坐标是(﹣3,0), ∴当y >0时,x 的取值范围是﹣3<x <1. 所以答案为:D . 【点睛】此题考查抛物线的性质,利用对称轴及图象与x 轴的一个交点即可求出抛物线与x 轴的另一个交点坐标.4.方程2x 3x 10+-=的根可视为函数3y x =+的图象与函数1y x=的图象交点的横坐标,则方程3x 2x 10+-=的实根x 0所在的范围是( ) A .010<x <4B .011<x <43C .011<x <32D .01<x <12【答案】C 【解析】 【分析】首先根据题意推断方程x 3+2x-1=0的实根是函数y=x 2+2与1y x=的图象交点的横坐标,再根据四个选项中x 的取值代入两函数解析式,找出抛物线的图象在反比例函数上方和反比例函数的图象在抛物线的上方两个点即可判定推断方程x 3+2x-1=0的实根x 所在范围. 【详解】解:依题意得方程3x 2x 10+-=的实根是函数2y x 2=+与1y x=的图象交点的横坐标,这两个函数的图象如图所示,它们的交点在第一象限.当x=14时,21y x 2216=+=,1y 4x==,此时抛物线的图象在反比例函数下方; 当x=13时,21229y x =+=,1y 3x==,此时抛物线的图象在反比例函数下方; 当x=12时,21224y x =+=,1y 2x==,此时抛物线的图象在反比例函数上方; 当x=1时,2y x 23=+=,1y 1x==,此时抛物线的图象在反比例函数上方. ∴方程3x 2x 10+-=的实根x 0所在范围为:011<x <32. 故选C . 【点睛】此题考查了学生从图象中读取信息的数形结合能力.解决此类识图题,同学们要注意分析其中的“关键点”,还要善于分析各图象的变化趋势.5.函数25y ax bx =++(0)a ≠,当1x =与7x =时函数值相等,则8x =时,函数值等于( ) A .5 B .52-C .52D .-5【答案】A 【解析】 【分析】根据二次函数的对称性,求得函数25y ax bx =++(0)a ≠的对称轴,进而判断与8x =的函数值相等时x 的值,由此可得结果. 【详解】∵函数25y ax bx =++(0)a ≠,当1x =与7x =时函数值相等,∴函数25y ax bx =++(0)a ≠的对称轴为:1742x +==, ∴8x =与0x =的函数值相等,∴当8x =时,250055y ax bx a b =++=⨯+⨯+=, 即8x =时,函数值等于5, 故选:A . 【点睛】本题主要考查二次函数的图象和对称性.掌握二次函数的对称性和对称轴的求法,是解题的关键.6.如图,坐标平面上,二次函数y =﹣x 2+4x ﹣k 的图形与x 轴交于A 、B 两点,与y 轴交于C 点,其顶点为D ,且k >0.若△ABC 与△ABD 的面积比为1:4,则k 值为何?( )A .1B .12C .43D .45【答案】D 【解析】 【分析】求出顶点和C 的坐标,由三角形的面积关系得出关于k 的方程,解方程即可. 【详解】解:∵y =﹣x 2+4x ﹣k =﹣(x ﹣2)2+4﹣k , ∴顶点D(2,4﹣k),C(0,﹣k), ∴OC =k , ∵△ABC 的面积=12AB•OC =12AB•k ,△ABD 的面积=12AB(4﹣k),△ABC 与△ABD 的面积比为1:4,∴k =14(4﹣k), 解得:k =45.故选:D . 【点睛】本题考查了抛物线与x 轴的交点、抛物线的顶点式;根据三角形的面积关系得出方程是解决问题的关键.7.将抛物线y=x2﹣4x+1向左平移至顶点落在y轴上,如图所示,则两条抛物线.直线y=﹣3和x轴围成的图形的面积S(图中阴影部分)是()A.5 B.6 C.7 D.8【答案】B【解析】【分析】B,C分别是顶点,A是抛物线与x轴的一个交点,连接OC,AB,阴影部分的面积就是平行四边形ABCO的面积.【详解】抛物线y=x2﹣4x+1=(x-2)2-3的顶点坐标C(2.-3), 向左平移至顶点落在y轴上,此时顶点B(0,-3),点A是抛物线与x轴的一个交点,连接OC,AB,如图,阴影部分的面积就是ABCO的面积,S=2×3=6;故选:B.【点睛】本题考查二次函数图象的性质,阴影部分的面积;能够将面积进行转化是解题的关键.8.抛物线y=ax2+bx+c的顶点为(﹣1,3),与x轴的交点A在点(﹣3,0)和(﹣2,0)之间,其部分图象如图,则以下结论,其中正确结论的个数为()①若点P(﹣3,m),Q(3,n)在抛物线上,则m<n;②c=a+3;③a+b+c<0;④方程ax2+bx+c=3有两个相等的实数根.A .1个B .2个C .3个D .4个【答案】C 【解析】试题分析:由抛物线与x 轴有两个交点,可知b 2-4ac >0,所以①错误;由抛物线的顶点为D (-1,2),可知抛物线的对称轴为直线x=-1,然后由抛物线与x 轴的一个交点A 在点(-3,0)和(-2,0)之间,可知抛物线与x 轴的另一个交点在点(0,0)和(1,0)之间,因此当x=1时,y <0,即a+b+c <0,所以②正确; 由抛物线的顶点为D (-1,2),可知a-b+c=2,然后由抛物线的对称轴为直线x=2b a=-1,可得b=2a ,因此a-2a+c=2,即c-a=2,所以③正确;由于当x=-1时,二次函数有最大值为2,即只有x=-1时,ax 2+bx+c=2,因此方程ax2+bx+c-2=0有两个相等的实数根,所以④正确. 故选C .考点:二次函数的图像与性质9.已知二次函数y =ax 2+bx +c 的图像如图所示,则下列结论正确的个数有( ) ①c >0;②b 2-4ac <0;③ a -b +c >0;④当x >-1时,y 随x 的增大而减小.A .4个B .3个C .2个D .1个【答案】C 【解析】 【分析】由抛物线的开口方向判断a 与0的关系,由抛物线与y 轴的交点判断c 与0的关系,然后根据抛物线与x 轴交点及x=-1时二次函数的值的情况进行推理,进而对所得结论进行判断. 【详解】解:由图象可知,a <0,c >0,故①正确;抛物线与x 轴有两个交点,则b²-4ac>0,故②错误;∵当x=-1时,y>0,即a-b+c>0, 故③正确;由图象可知,图象开口向下,对称轴x >-1,在对称轴右侧, y 随x 的增大而减小,而在对称轴左侧和-1之间,是y 随x 的增大而减小,故④错误. 故选:C . 【点睛】本题考查了二次函数图象与系数的关系:二次项系数a 决定抛物线的开口方向和大小.当a >0时,抛物线向上开口;当a <0时,抛物线向下开口;一次项系数b 和二次项系数a 共同决定对称轴的位置:当a 与b 同号时,对称轴在y 轴左; 当a 与b 异号时,对称轴在y 轴右.常数项c 决定抛物线与y 轴交点:抛物线与y 轴交于(0,c ).抛物线与x 轴交点个数由判别式确定:△=b 2-4ac >0时,抛物线与x 轴有2个交点;△=b 2-4ac=0时,抛物线与x 轴有1个交点;△=b 2-4ac <0时,抛物线与x 轴没有交点.10.二次函数y=ax 2+bx+c (a≠0)的部分图象如图所示,图象过点(﹣1,0),对称轴为直线x=2,下列结论:(1)4a+b=0;(2)9a+c >﹣3b ;(3)7a ﹣3b+2c >0;(4)若点A (﹣3,y 1)、点B (﹣12,y 2)、点C (7,y 3)在该函数图象上,则y 1<y 3<y 2;(5)若方程a (x+1)(x ﹣5)=﹣3的两根为x 1和x 2,且x 1<x 2,则x 1<﹣1<5<x 2.其中正确的结论有( )A .2个B .3个C .4个D .5个【答案】B 【解析】根据题意和函数的图像,可知抛物线的对称轴为直线x=-2ba=2,即b=-4a ,变形为4a+b=0,所以(1)正确;由x=-3时,y >0,可得9a+3b+c >0,可得9a+c >-3c ,故(2)正确;因为抛物线与x 轴的一个交点为(-1,0)可知a-b+c=0,而由对称轴知b=-4a ,可得a+4a+c=0,即c=-5a.代入可得7a ﹣3b+2c=7a+12a-5a=14a ,由函数的图像开口向下,可知a <0,因此7a ﹣3b+2c <0,故(3)不正确;根据图像可知当x <2时,y 随x 增大而增大,当x >2时,y 随x 增大而减小,可知若点A (﹣3,y 1)、点B (﹣12,y 2)、点C (7,y 3)在该函数图象上,则y 1=y 3<y 2,故(4)不正确;根据函数的对称性可知函数与x 轴的另一交点坐标为(5,0),所以若方程a (x+1)(x ﹣5)=﹣3的两根为x 1和x 2,且x 1<x 2,则x 1<﹣1<x 2,故(5)正确.正确的共有3个. 故选B.点睛:本题考查了二次函数图象与系数的关系:二次函数y=ax 2+bx+c (a≠0),二次项系数a 决定抛物线的开口方向和大小,当a >0时,抛物线向上开口;当a <0时,抛物线向下开口;一次项系数b 和二次项系数a 共同决定对称轴的位置,当a 与b 同号时(即ab >0),对称轴在y 轴左; 当a 与b 异号时(即ab <0),对称轴在y 轴右;常数项c 决定抛物线与y 轴交点. 抛物线与y 轴交于(0,c );抛物线与x 轴交点个数由△决定,△=b 2﹣4ac >0时,抛物线与x 轴有2个交点;△=b 2﹣4ac=0时,抛物线与x 轴有1个交点;△=b 2﹣4ac <0时,抛物线与x 轴没有交点.11.二次函数2y ax bx c =++(,,a b c 是常数,0a ≠)的自变量x 与函数值y 的部分对应值如下表:且当12x =-时,与其对应的函数值0y >.有下列结论:①0abc >;②2-和3是关于x 的方程2ax bx c t ++=的两个根;③0m <203n +<.其中,正确结论的个数是( ) A .0 B .1C .2D .3【答案】C 【解析】 【分析】首先确定对称轴,然后根据二次函数的图像和性质逐一进行分析即可求解. 【详解】∵由表格可知当x=0和x=1时的函数值相等都为-2 ∴抛物线的对称轴是:x=-2b a =12; ∴a 、b 异号,且b=-a ; ∵当x=0时y=c=-2 ∴c 0<∴abc >0,故①正确;∵根据抛物线的对称性可得当x=-2和x=3时的函数值相等都为t ∴2-和3是关于x 的方程2ax bx c t ++=的两个根;故②正确; ∵b=-a ,c=-2∴二次函数解析式:2-a -2=y ax x∵当12x =-时,与其对应的函数值0y >.∴3204a->,∴a83>;∵当x=-1和x=2时的函数值分别为m和n,∴m=n=2a-2,∴m+n=4a-4203>;故③错误故选:C.【点睛】本题考查了二次函数的综合题型,主要利用了二次函数图象与系数的关系,二次函数的对称性,二次函数与一元二次方程等知识点,要会利用数形结合的思想,根据给定自变量x 与函数值y的值结合二次函数的性质逐条分析给定的结论是关键.12.若用“*”表示一种运算规则,我们规定:a*b=ab﹣a+b,如:3*2=3×2﹣3+2=5.以下说法中错误的是()A.不等式(﹣2)*(3﹣x)<2的解集是x<3B.函数y=(x+2)*x的图象与x轴有两个交点C.在实数范围内,无论a取何值,代数式a*(a+1)的值总为正数D.方程(x﹣2)*3=5的解是x=5【答案】D【解析】【分析】根据题目中所给的运算法则列出不等式,解不等式即可判定选项A;根据题目中所给的运算法则求得函数解析式,由此即可判定选项B;根据题目中所给的运算法则可得a*(a+1)=a(a+1)﹣a+(a+1)=a2+a+1=(a+12)2+34>0,由此即可判定选项C;根据题目中所给的运算法则列出方程,解方程即可判定选项D.【详解】∵a*b=ab﹣a+b,∴(﹣2)*(3﹣x)=(﹣2)×(3﹣x)﹣(﹣2)+(3﹣x)=x﹣1,∵(﹣2)*(3﹣x)<2,∴x﹣1<2,解得x<3,故选项A正确;∵y=(x+2)*x=(x+2)x﹣(x+2)+x=x2+2x﹣2,∴当y=0时,x2+2x﹣2=0,解得,x1=﹣x2=﹣1B正确;∵a*(a+1)=a(a+1)﹣a+(a+1)=a2+a+1=(a+12)2+34>0,∴在实数范围内,无论a取何值,代数式a*(a+1)的值总为正数,故选项C正确;∵(x﹣2)*3=5,∴(x﹣2)×3﹣(x﹣2)+3=5,解得,x=3,故选项D错误;故选D . 【点睛】本题是阅读理解题,根据题目中所给的运算法则得到相应的运算式子是解决问题的关键.13.若A (-4,1y ),B (-3,2y ),C (1,3y )为二次函数y =x 2+4x -m 的图象上的三点,则1y ,2y ,3y 的大小关系是( ) A .1y <2y <3y B .3y <1y <2yC .2y <1y <3yD .1y <3y <2y【答案】C 【解析】 【分析】分别将点的坐标代入二次函数解析式,然后进行判断即可. 【详解】解:y 1=(-4)2+4×(-4)m -=16-16m - =m -, y 2=(-3)2+4×(-3)m - =9-12m - =3m --, y 3=12+4×m - 1=1+4m - =5m -, ∵-3m -<m -<5m -, ∴y 2<y 1<y 3. 故选:C. 【点睛】本题考查了二次函数图象上点的坐标特征,解题的关键在于三个函数值的大小不受m 的影响.14.如图,在边长为4的正方形ABCD 中,动点P 从A 点出发,以每秒1个单位长度的速度沿AB 向B 点运动,同时动点Q 从B 点出发,以每秒2个单位长度的速度沿BC CD →方向运动,当P 运动到B 点时,P Q 、点同时停止运动.设P 点运动的时间为t 秒,APQ ∆的面积为S ,则表示S 与t 之间的函数关系的图象大致是( )A .B .C .D .【答案】D【解析】【分析】本题应分两段进行解答,①点P 在AB 上运动,点Q 在BC 上运动;②点P 在AB 上运动,点Q 在CD 上运动,依次得出S 与t 的关系式,即可判断得出答案.【详解】解:当点P 在AB 上运动,点Q 在BC 上运动时,此时,,2AP t BQ t ==2122APQ S t t t =⋅⋅=V ,函数图象为抛物线; 当点P 在AB 上运动,点Q 在BC 上运动时,此时,AP t =,APQ V 底边AP 上的高保持不变1422APQ S t t =⋅⋅=V ,函数图象为一次函数; 故选:D .【点睛】本题考查的知识点是函数图象,理解题意,分段求出S 与t 之间的函数关系是解此题的关键.15.若二次函数y =ax 2+bx +c (a ≠0)的图象于x 轴的交点坐标分别为(x 1,0),(x 2,0),且x 1<x 2,图象上有一点M (x 0,y 0)在x 轴下方,对于以下说法:①b 2﹣4ac >0②x =x 0是方程ax 2+bx +c =y 0的解③x 1<x 0<x 2④a (x 0﹣x 1)(x 0﹣x 2)<0其中正确的是( )A .①③④B .①②④C .①②③D .②③【答案】B【解析】【分析】①根据二次函数图象与x 轴有两个不同的交点,结合根的判别式即可得出△=b 2-4ac >0,①正确;②由点M (x 0,y 0)在二次函数图象上,利用二次函数图象上点的坐标特征即可得出x=x 0是方程ax 2+bx+c=y 0的解,②正确;③分a >0和a <0考虑,当a >0时得出x 1<x 0<x 2;当a <0时得出x 0<x 1或x 0>x 2,③错误;④将二次函数的解析式由一般式转化为交点式,再由点M (x 0,y 0)在x 轴下方即可得出y 0=a (x 0-x 1)(x 0-x 2)<0,④正确.【详解】①∵二次函数y=ax 2+bx+c (a≠0)的图象于x 轴的交点坐标分别为(x 1,0),(x 2,0),且x 1<x 2,∴方程ax 2+bx+c=0有两个不相等的实数根,∴△=b 2-4ac >0,①正确;②∵图象上有一点M (x 0,y 0),∴a +bx 0+c=y 0,∴x=x 0是方程ax 2+bx+c=y 0的解,②正确;③当a >0时,∵M (x 0,y 0)在x 轴下方,∴x 1<x 0<x 2;当a <0时,∵M (x 0,y 0)在x 轴下方,∴x 0<x 1或x 0>x 2,③错误;④∵二次函数y=ax 2+bx+c (a≠0)的图象于x 轴的交点坐标分别为(x 1,0),(x 2,0), ∴y=ax 2+bx+c=a (x-x 1)(x-x 2),∵图象上有一点M (x 0,y 0)在x 轴下方,∴y 0=a (x 0-x 1)(x 0-x 2)<0,④正确;故选B .【点睛】本题考查了抛物线与x 轴的交点、二次函数图象上点的坐标特征以及二次函数图象与系数的关系,根据二次函数的相关知识逐一分析四条结论的正误是解题的关键.16.如图,ABC ∆为等边三角形,点P 从A 出发,沿A B C A →→→作匀速运动,则线段AP 的长度y 与运动时间x 之间的函数关系大致是( )A .B .C .D .【答案】B【解析】【分析】根据题意可知点P 从点A 运动到点B 时以及从点C 运动到点A 时是一条线段,故可排除选项C 与D ;点P 从点B 运动到点C 时,y 是x 的二次函数,并且有最小值,故选项B 符合题意,选项A 不合题意.【详解】根据题意得,点P 从点A 运动到点B 时以及从点C 运动到点A 时是一条线段,故选项C 与选项D 不合题意;点P 从点B 运动到点C 时,y 是x 的二次函数,并且有最小值,∴选项B 符合题意,选项A 不合题意.故选B .【点睛】本题考查了动点问题的函数图象:通过分类讨论,利用三角形面积公式得到y 与x 的函数关系,然后根据二次函数和一次函数图象与性质解决问题.17.已知二次函数2()y x h =-- (h 为常数),当自变量x 的值满足25x ≤≤时,与其对应的函数值y 的最大值为-1,则h 的值为( )A .3或6B .1或6C .1或3D .4或6【答案】B【解析】分析:分h <2、2≤h≤5和h >5三种情况考虑:当h <2时,根据二次函数的性质可得出关于h 的一元二次方程,解之即可得出结论;当2≤h≤5时,由此时函数的最大值为0与题意不符,可得出该情况不存在;当h >5时,根据二次函数的性质可得出关于h 的一元二次方程,解之即可得出结论.综上即可得出结论.详解:如图,当h <2时,有-(2-h )2=-1,解得:h 1=1,h 2=3(舍去);当2≤h≤5时,y=-(x-h )2的最大值为0,不符合题意;当h >5时,有-(5-h )2=-1,解得:h 3=4(舍去),h 4=6.综上所述:h 的值为1或6.故选B .点睛:本题考查了二次函数的最值以及二次函数的性质,分h <2、2≤h≤5和h >5三种情况求出h 值是解题的关键.18.已知抛物线y=x 2-2mx-4(m >0)的顶点M 关于坐标原点O 的对称点为M′,若点M′在这条抛物线上,则点M 的坐标为( )A .(1,-5)B .(3,-13)C .(2,-8)D .(4,-20)【答案】C【解析】【分析】【详解】解:22224=()4y x mx x m m =-----,∴点M (m ,﹣m 2﹣4),∴点M′(﹣m ,m 2+4),∴m 2+2m 2﹣4=m 2+4.解得m=±2.∵m >0,∴m=2,∴M (2,﹣8). 故选C .【点睛】本题考查二次函数的性质.19.已知二次函数y =a (x ﹣h )2+k 的图象如图所示,直线y =ax +hk 的图象经第几象限( )A .一、二、三B .一、二、四C .一、三、四D .二、三、四【答案】D【解析】【分析】 根据二次函数的图象和性质可得a <0,h <0,k >0,以此判断一次函数的图象所经过的象限即可.【详解】解:由函数图象可知,y =a (x ﹣h )2+k 中的a <0,h <0,k >0,∴直线y =ax +hk 中的a <0,hk <0,∴直线y =ax +hk 经过第二、三、四象限,故选:D .【点睛】本题考查了一次函数的图象的问题,掌握二次函数、一次函数的图象和性质是解题的关键.20.在平面直角坐标系中,点P 的坐标为()1,2,将抛物线21322y x x =-+沿坐标轴平移一次,使其经过点P ,则平移的最短距离为( )A .12B .1C .5D .52【答案】B【解析】【分析】先求出平移后P 点对应点的坐标,求出平移距离,即可得出选项.【详解】 解:21322y x x =-+=()215322x --, 当沿水平方向平移时,纵坐标和P 的纵坐标相同,把y=2代入得:解得:x=0或6,平移的最短距离为1-0=1;当沿竖直方向平移时,横坐标和P 的横坐标相同,把x=1代入得:解得:y=12-, 平移的最短距离为152=22⎛⎫--⎪⎝⎭, 即平移的最短距离是1,故选B.【点睛】本题考查了二次函数图象上点的坐标特征,能求出平移后对应的点的坐标是解此题的关键.。

九年级上册数学 二次函数易错题(Word版 含答案)

九年级上册数学  二次函数易错题(Word版 含答案)

九年级上册数学 二次函数易错题(Word 版 含答案)一、初三数学 二次函数易错题压轴题(难)1.在平面直角坐标系中,将函数2263,(y x mx m x m m =--≥为常数)的图象记为G .(1)当1m =-时,设图象G 上一点(),1P a ,求a 的值; (2)设图象G 的最低点为(),o o F x y ,求o y 的最大值;(3)当图象G 与x 轴有两个交点时,设右边交点的横坐标为2,x 则2x 的取值范围是 ; (4)设1112,,2,16816A m B m ⎛⎫⎛⎫+ ⎪ ⎪⎝⎭⎝⎭,当图象G 与线段AB 没有公共点时,直接写出m 的取值范围.【答案】(1)0a =或3a =-;(2)118;(3)21136x -<<-;(4)18m <-或116m >-【解析】 【分析】(1)将m=-1代入解析式,然后将点P 坐标代入解析式,从而求得a 的值; (2)分m >0和m ≤0两种情况,结合二次函数性质求最值; (3)结合二次函数与x 轴交点及对称轴的性质确定取值范围; (4)结合一元二次方程根与系数的关系确定取值范围. 【详解】解:(1)当1m =-时,()22613y x x x =++≥把(),1P a 代入,得22611a a ++=解得0a =或3a =- (2)当0m >时,,(3)F m m - 此时,0o y m =-<当0m ≤时,2223926=2()22y x mx m x m m m =----- ∴239,22F m m m ⎛⎫--⎪⎝⎭此时,229911=()22918m m m ---++ ∴0y 的最大值118=综上所述,0y 的最大值为118(3)由题意可知:当图象G 与x 轴有两个交点时,m >0当抛物线顶点在x 轴上时,22=4(6)42()=0b ac m m -=--⨯⨯-△ 解得:m=0(舍去)或29m =-由题意可知抛物线的对称轴为直线x=32m 且x ≥3m∴当图象G 与x 轴有两个交点时,设右边交点的横坐标为x 2,则x 2的取值范围是21136x -<<- (4)18m <-或116m >- 【点睛】本题属于二次函数综合题,考查了二次函数的性质,不等式等知识,解题的关键是理解题意,学会用分类讨论的思想思考问题,学会用转化的思想思考问题,属于中考压轴题.2.已知函数222222(0)114(0)22x ax a x y x ax a x ⎧-+-<⎪=⎨---+≥⎪⎩(a 为常数). (1)若点()1,2在此函数图象上,求a 的值. (2)当1a =-时,①求此函数图象与x 轴的交点的横坐标.②若此函数图象与直线y m =有三个交点,求m 的取值范围.(3)已知矩形ABCD 的四个顶点分别为点()2,0A -,点()3,0B ,点()3,2C ,点()2,2D -,若此函数图象与矩形ABCD 无交点,直接写出a 的取值范围.【答案】(1)1a =或3a =-;(2)①1x =--1x =+;②724m ≤<或21m -<<-;(3)3a <--或1a ≤<-或a >【解析】 【分析】(1)本题根据点(1,2)横坐标大于零,故将点代入对应解析式即可求得a 的取值. (2)①本题将1a =-代入解析式,分别令两个函数解析式y 值为零即可求得函数与x 轴交点横坐标;②本题可求得分段函数具体解析式,继而求得顶点坐标,最后平移直线y m =观察其与图像交点,即可得到答案.(3)本题可根据对称轴所在的位置分三种情况讨论,第一种为当2a <-,将2222y x ax a =-+-函数值与2比大小,将2211422y x ax a =---+与0比大小;第二种为当20a -≤<,2222y x ax a =-+-函数值与0比大小,且该函数与y 轴的交点和0比大小,2211422y x ax a =---+函数值与2比大小,且该函数与y 轴交点与2比大小;第三种为2222y x ax a =-+-与y 轴交点与2比大小,2211422y x ax a =---+与y 轴交点与0比大小. 【详解】(1)将()1,2代入2211422y x ax a =---+中,得2112422a a =---+,解得1a =或3a =-.(2)当1a =-时,函数为2221,(0)17(0)22x x x y x x x ⎧+-<⎪=⎨-++≥⎪⎩,①令2210x x +-=,解得1x =--1x =- 令217022x x -++=,解得1x =+或1x =-综上,1x =--1x =+.②对于函数()2210y x x x =+-<,其图象开口向上,顶点为()1,2--; 对于函数217(0)22y x x x =-++≥,其图象开口向下,顶点为()1,4,与y 轴交于点70,2⎛⎫⎪⎝⎭. 综上,若此函数图象与直线y m =有三个交点,则需满足724m ≤<或21m -<<-. (3)2222y x ax a =-+-对称轴为x a =;2211422y x ax a =---+对称轴为x a =-. ①当2a <-时,若使得2222y x ax a =-+-图像与矩形ABCD 无交点,需满足当2x =-时,2222y x ax a =-+-24+422a a =->+,解不等式得0a >或4a ,在此基础上若使2211422y x ax a =---+图像与矩形ABCD 无交点,需满足当3x =时,2221111493422220y x ax a a a =---+=⨯--+<-,解得3a >或3a <--,综上可得:3a <--.②当20a -≤<时,若使得2222y x ax a =-+-图像与矩形ABCD 无交点,需满足2x =-时,2222y x ax a =-+-24+420a a =+-<;当0x =时,22222=20y x ax a a =-+--≤;得222a -≤<-,在此基础上若使2211422y x ax a =---+图像与矩形ABCD 无交点,需满足0x =时,2221114=42222y x ax a a ---+->=;3x =时,2221111493422222y x ax a a a =---+=⨯--+>-;求得21a -<<-; 综上:21a -≤<-.③当0a ≥时,若使函数图像与矩形ABCD 无交点,需满足0x =时,22222=22y x ax a a =-+--≥且2221114+40222y x ax a a =---+=-<;求解上述不等式并可得公共解集为:22a >.综上:若使得函数与矩形ABCD 无交点,则322a <--或21a -≤<-或22a >. 【点睛】本题考查二次函数综合,求解函数解析式常用待定系数法,函数含参数讨论时,往往需要分类讨论,分类讨论时需要先选取特殊情况以用来总结规律,继而将规律一般化求解题目.3.如图,若抛物线y =x 2+bx+c 与x 轴相交于A ,B 两点,与y 轴相交于点C ,直线y =x ﹣3经过点B ,C . (1)求抛物线的解析式;(2)点P 是直线BC 下方抛物线上一动点,过点P 作PH ⊥x 轴于点H ,交BC 于点M ,连接PC .①线段PM 是否有最大值?如果有,求出最大值;如果没有,请说明理由;②在点P 运动的过程中,是否存在点M ,恰好使△PCM 是以PM 为腰的等腰三角形?如果存在,请直接写出点P 的坐标;如果不存在,请说明理由.【答案】(1)y =x 2﹣2x ﹣3;(2)①有,94;②存在,(2,﹣3)或(32,2﹣2) 【解析】 【分析】(1)由直线表达式求出点B 、C 的坐标,将点B 、C 的坐标代入抛物线表达式,即可求解;(2)①根据PM =(x ﹣3)﹣(x 2﹣2x ﹣3)=﹣(x ﹣32)2+94即可求解; ②分PM =PC 、PM =MC 两种情况,分别求解即可. 【详解】解:(1)对于y =x ﹣3,令x =0,y =﹣3,y =0,x =3, 故点B 、C 的坐标分别为(3,0)、(0,﹣3), 将点B 、C 的坐标代入抛物线表达式得:9303b c c ++=⎧⎨=-⎩,解得:32c b =-⎧⎨=-⎩,故抛物线的表达式为:y =x 2﹣2x ﹣3;(2)设:点M (x ,x ﹣3),则点P (x ,x 2﹣2x ﹣3), ①有,理由:PM =(x ﹣3)﹣(x 2﹣2x ﹣3)=﹣(x ﹣32)2+94, ∵﹣1<0,故PM 有最大值,当x =32时,PM 最大值为:94; ②存在,理由:PM 2=(x ﹣3﹣x 2+2x+3)2=(﹣x 2+3x )2; PC 2=x 2+(x 2﹣2x ﹣3+3)2; MC 2=(x ﹣3+3)2+x 2;(Ⅰ)当PM =PC 时,则(﹣x 2+3x )2=x 2+(x 2﹣2x ﹣3+3)2, 解得:x =0或2(舍去0), 故x =2,故点P (2,﹣3);(Ⅱ)当PM =MC 时,则(﹣x 2+3x )2=(x ﹣3+3)2+x 2,解得:x =0或(舍去0和),故x =3,则x 2﹣2x ﹣3=2﹣,故点P (3,2﹣).综上,点P 的坐标为:(2,﹣3)或(3,2﹣). 【点睛】本题考查的是二次函数综合运用,涉及到一次函数的性质、等腰三角形的性质等,其中(2)②,要注意分类求解,避免遗漏.4.如图,抛物线2(0)y ax bx c a =++≠与坐标轴的交点为()30A -,,()10B ,,()0,3C -,抛物线的顶点为D .(1)求抛物线的解析式.(2)若E 为第二象限内一点,且四边形ACBE 为平行四边形,求直线CE 的解析式. (3)P 为抛物线上一动点,当PAB ∆的面积是ABD ∆的面积的3倍时,求点P 的坐标.【答案】(1)223y x x =+-;(2)33y x =--;(3)点P 的坐标为()5,12-或()3,12.【解析】 【分析】(1)本题考查二次函数解析式的求法,可利用待定系数法,将点带入求解;(2)本题考查二次函数平行四边形存在性问题,可根据题干信息结合平行四边形性质确定动点位置,进一步利用待定系数法求解一次函数解析式;(3)本题考查二次函数与三角形面积问题,可先根据题干面积关系假设动点坐标,继而带入二次函数,列方程求解. 【详解】(1)∵抛物线2y ax bx c =++与坐标轴的交点为()30A -,,()10B ,,()0,3C -,∴93003a b c a b c c -+=⎧⎪++=⎨⎪=-⎩,解得123a b c =⎧⎪=⎨⎪=-⎩∴抛物线的解析式为223y x x =+-. (2)如图,过点E 作EH x ⊥轴于点H,则由平行四边形的对称性可知1AH OB ==,3EH OC ==. ∵3OA =,∴2OH =,∴点E 的坐标为()2,3-. ∵点C 的坐标为()0,3-,∴设直线CE 的解析式为()30y kx k =-< 将点()2,3E -代入,得233k --=,解得3k =-,∴直线CE 的解析式为33y x =--.(3)∵2223(1)4y x x x =+-=+-,∴抛物线的顶点为()1,4D --.∵PAB ∆的面积是ABD ∆的面积的3倍, ∴设点P 为(),12t .将点(),12P t 代入抛物线的解析式223y x x =+-中,得22312t t +-=,解得3t =或5t =-, 故点P 的坐标为()5,12-或()3,12. 【点睛】本题考查二次函数与几何的综合,利用待定系数法求解解析式时还可以假设交点式,几何图形存在性问题求解往往需要利用其性质,假设动点坐标,列方程求解.5.如图,抛物线2y x bx c =-++的图象与x 轴交于A 、B 两点(点A 在点B 的左边),与y 轴交于点C ,点D 为抛物线的顶点.点A 坐标的为3,0,点C 的坐标为()0,3.(Ⅰ)求抛物线的解析式;(Ⅱ)点M 为线段AB 上一点(点M 不与点A 、B 重合),过点M 作i 轴的垂线,与直线AC 交于点E ,与抛物线交于点P ,过点P 作//PQ AB 交抛物线于点Q ,过点Q 作QN x ⊥轴于点N .若点P 在点Q 左边,当矩形PMNQ 的周长最大时,求AEM △的面积;(Ⅲ)在(Ⅱ)的条件下,当矩形PMNQ 的周长最大时,连接DQ ,过抛物线上一点F 作y 轴的平行线,与直线AC 交于点G (点G 在点F 的上方).若=22FG DQ ,求点F 的坐标.【答案】(Ⅰ)223y x x =--+;(Ⅱ)12;(Ⅲ)()4,5F --或()1,0 【解析】 【分析】(Ⅰ)将点A ,点C 坐标代入解析式可求解;(Ⅱ)设M (x ,0),P (x ,-x 2-2x+3),利用对称性可求点Q (-2-x ,-x 2-2x+3),可求MP=-x 2-2x+3,PQ=-2-x-x=-2-2x ,则可用x 表示矩形PMNQ 的周长,由二次函数的性质可求当矩形PMNQ 的周长最大时,点P 的坐标,即可求点E ,点M 的坐标,由三角形面积公式可求解;(Ⅲ)先求出点D 坐标,即可求DQ=2,可得FG=4,设F (m ,-m 2-2m+3),则G (m ,m+3),用含有m 的式子表示FG 的长度即可求解. 【详解】解:(Ⅰ)依题意()()2330{3b c c --+⨯-+==解得2{3b c =-= 所以223y x x =--+(Ⅱ)2223(1)4yx x x抛物线的对称轴是直线1x =-(,0)M x ,()2,23P x x x --+,其中31x -<<-∵P 、Q 关于直线1x =-对称 设Q 的横坐标为a 则()11a x --=-- ∴2a x =--∴()22,23Q x x x ----+∴223MP x x =--+,222PQ x x x =---=--∴周长()222222232822(2)10d x x x x x x =----+=--+=-++ 当2x =-时,d 取最大值,此时,(2,0)M - ∴2(3)1AM =---= 设直线AC 的解析式为y kx b =+则303k b b -+=⎧⎨=⎩,解得13k b =⎧⎨=⎩∴设直线AC 的解析式为3y x将2x =-代入3yx,得1y =∴(2,1)E -, ∴1EM=∴11111222AEM S AM ME ∆=⋅=⨯⨯=(Ⅲ)由(Ⅱ)知,当矩形PMNQ 的周长最大时,2x =-此时点()0,3Q ,与点C 重合, ∴3OQ = ∵2223(1)4yx x x∴()1,4D -过D 作DK y ⊥轴于K , 则1DK =,4OK = ∴431OK OK OQ =-=-= ∴DKQ 是等腰直角三角形,2DQ =∴224FG DQ ==设()2,23F m m m --+,则(,3)G m m +()223233FG m m m m m =+---+=+∴234m m +=,解得14m =-,21m = 当4m =-时,2235m m --+=- 当1m =时,2230m m --+=. ∴()4,5F --或()1,0【点睛】本题是二次函数综合题,考查了二次函数的性质,矩形的性质,等腰直角三角形的性质等,利用参数表示线段的长度是本题的关键.6.如图,直线3yx与x 轴、y 轴分别交于点A ,C ,经过A ,C 两点的抛物线2y ax bx c =++与x 轴的负半轴的另一交点为B ,且tan 3CBO ∠=(1)求该抛物线的解析式及抛物线顶点D 的坐标;(2)点P 是射线BD 上一点,问是否存在以点P ,A ,B 为顶点的三角形,与ABC 相似,若存在,请求出点P 的坐标;若不存在,请说明理由【答案】(1)243y x x =++,顶点(2,1)D --;(2)存在,52,33P ⎛⎫--⎪⎝⎭或(4,3)-- 【解析】 【分析】(1)利用直线解析式求出点A 、C 的坐标,从而得到OA 、OC ,再根据tan ∠CBO=3求出OB ,从而得到点B 的坐标,然后利用待定系数法求出二次函数解析式,整理成顶点式形式,然后写出点D 的坐标;(2)根据点A 、B 的坐标求出AB ,判断出△AOC 是等腰直角三角形,根据等腰直角三角形的性质求出AC ,∠BAC=45°,再根据点B 、D 的坐标求出∠ABD=45°,然后分①AB 和BP 是对应边时,△ABC 和△BPA 相似,利用相似三角形对应边成比例列式求出BP ,过点P 作PE ⊥x 轴于E ,求出BE 、PE ,再求出OE 的长度,然后写出点P 的坐标即可;②AB 和BA 是对应边时,△ABC 和△BAP 相似,利用相似三角形对应边成比例列式求出BP ,过点P 作PE ⊥x 轴于E ,求出BE 、PE ,再求出OE 的长度,然后写出点P 的坐标即可. 【详解】解:(1)令y=0,则x+3=0, 解得x=-3, 令x=0,则y=3,∴点A (-3,0),C (0,3), ∴OA=OC=3, ∵tan ∠CBO=3OCOB=, ∴OB=1, ∴点B (-1,0),把点A 、B 、C 的坐标代入抛物线解析式得,93003a b c a b c c -+=⎧⎪-+=⎨⎪=⎩,解得:143a b c =⎧⎪=⎨⎪=⎩, ∴该抛物线的解析式为:243y x x =++, ∵y=x 2+4x+3=(x+2)2-1, ∴顶点(2,1)D --;(2)∵A(-3,0),B(-1,0),∴AB=-1-(-3)=2,∵OA=OC,∠AOC=90°,∴△AOC是等腰直角三角形,∴AC=2OA=32,∠BAC=45°,∵B(-1,0),D(-2,-1),∴∠ABD=45°,①AB和BP是对应边时,△ABC∽△BPA,∴AB ACBP BA=,即2322BP=,解得BP=22,过点P作PE⊥x轴于E,则BE=PE=23×22=23,∴OE=1+23=53,∴点P的坐标为(-53,-23);②AB和BA是对应边时,△ABC∽△BAP,∴AB ACBA BP=,即2322BP =,解得BP=32过点P作PE⊥x轴于E,则BE=PE=2=3, ∴OE=1+3=4, ∴点P 的坐标为(-4,-3); 综合上述,当52,33P ⎛⎫--⎪⎝⎭或(4,3)--时,以点P ,A ,B 为顶点的三角形与ABC ∆相似;【点睛】本题是二次函数综合题型,主要利用了直线与坐标轴交点的求解,待定系数法求二次函数解析式,等腰直角三角形的判定与性质,相似三角形的判定与性质,难点在于(2)要分情况讨论.7.定义:在平面直角坐标系中,O 为坐标原点,设点P 的坐标为(x ,y ),当x <0时,点P 的变换点P′的坐标为(﹣x ,y );当x≥0时,点P 的变换点P′的坐标为(﹣y ,x ). (1)若点A (2,1)的变换点A′在反比例函数y=k x的图象上,则k= ; (2)若点B (2,4)和它的变换点B'在直线y=ax+b 上,则这条直线对应的函数关系式为 ,∠BOB′的大小是 度.(3)点P 在抛物线y=x 2﹣2x ﹣3的图象上,以线段PP′为对角线作正方形PMP'N ,设点P 的横坐标为m ,当正方形PMP′N 的对角线垂直于x 轴时,求m 的取值范围.(4)抛物线y=(x ﹣2)2+n 与x 轴交于点C ,D (点C 在点D 的左侧),顶点为E ,点P 在该抛物线上.若点P 的变换点P′在抛物线的对称轴上,且四边形ECP′D 是菱形,求n 的值.【答案】(1) -2;(2) y=13x+103,90;(3) m <0,或;(4) n=﹣8,n=﹣2,n=﹣3.【解析】【分析】(1)先求出A 的变换点A ′,然后把A ′代入反比例函数即可得到结论;(2)确定点B ′的坐标,把问题转化为方程组解决;(3)分三种情形讨论:①当m <0时;②当m ≥0,PP '⊥x 轴时;③当m ≥0,MN ⊥x 轴时.(4)利用菱形的性质,得到点E 与点P '关于x 轴对称,从而得到点P '的坐标为(2,﹣n ).分两种情况讨论:①当点P 在y 轴左侧时,点P 的坐标为(﹣2,﹣n ),代入抛物线解析式,求解即可;②当点P 在y 轴右侧时,点P 的坐标为(﹣n ,﹣2).代入抛物线解析式,求解即可.【详解】(1)∵A (2,1)的变换点为A ′(-1,2),把A ′(-1,2)代入y =k x中,得到k =-2.故答案为:-2.(2)点B (2,4)的变换点B ′(﹣4,2),把(2,4),(﹣4,2)代入y =ax +b 中.得到:2442a b a b +=⎧⎨-+=⎩,解得:13103a b ⎧=⎪⎪⎨⎪=⎪⎩,∴11033y x =+. ∵OB 2=2224+=20,OB ′2=2224+=20,BB ′2=22(42)(24)--+-=40,∴OB 2+OB ′2=BB ′2,∴∠BOB ′=90°.故答案为:y =13x +103,90. (3)①当m <0时,点P 与点P '关于y 轴对称,此时MN 垂直于x 轴,所以m <0. ②当m ≥0,PP '⊥x 轴时,则点P '的坐标为(m ,m ),点P 的坐标为(m ,﹣m ). 将点P (m ,﹣m )代入y =x 2﹣2x ﹣3,得:﹣m =m 2﹣2m ﹣3.解得:12m m ==(不合题意,舍去).所以m = ③当m ≥0,MN ⊥x 轴时,则PP '∥x 轴,点P 的坐标为(m ,m ).将点P (m ,m )代入y =x 2﹣2x ﹣3,得:m =m 2﹣2m ﹣3.解得:123322m m ==(不合题意,舍去).所以32m +=. 综上所述:m 的取值范围是m <0,m=12+或m=32. (4)∵四边形ECP 'D 是菱形,∴点E 与点P '关于x 轴对称.∵点E 的坐标为(2,n ),∴点P '的坐标为(2,﹣n ).①当点P 在y 轴左侧时,点P 的坐标为(﹣2,﹣n ).代入y =(x ﹣2)2+n ,得:﹣n =(﹣2﹣2)2+n ,解得:n =﹣8.②当点P 在y 轴右侧时,点P 的坐标为(﹣n ,﹣2).代入y =(x ﹣2)2+n ,得:﹣2=(﹣n ﹣2)2+n .解得:n 1=﹣2,n 2=﹣3.综上所述:n 的值是n =﹣8,n =﹣2,n =﹣3.【点睛】本题是二次函数综合题、一次函数的应用、待定系数法、变换点的定义等知识,解题的关键是理解题意,学会用分类讨论的射线思考问题,学会用方程的思想思考问题,属于中考压轴题.8.如图,已知顶点为M (32,258)的抛物线过点D (3,2),交x 轴于A ,B 两点,交y 轴于点C ,点P 是抛物线上一动点.(1)求抛物线的解析式;(2)当点P 在直线AD 上方时,求△PAD 面积的最大值,并求出此时点P 的坐标; (3)过点P 作直线CD 的垂线,垂足为Q ,若将△CPQ 沿CP 翻折,点Q 的对应点为Q '.是否存在点P ,使Q '恰好落在x 轴上?若存在,求出点P 的坐标;若不存在,说明理由.【答案】(1)213222y x x =-++;(2)最大值为4,点P (1,3);(3)存在,点P 139313-+). 【解析】【分析】 (1)用待定系数法求解即可;(2)由△PAD 面积S =S △PHA +S △PHD ,即可求解;(3)结合图形可判断出点P 在直线CD 下方,设点P 的坐标为(a ,213222a a -++),当P 点在y 轴右侧时,运用解直角三角形及相似三角形的性质进行求解即可.【详解】解:(1)设抛物线的表达式为:y =a (x ﹣h )2+k =a (x ﹣32)2+258, 将点D 的坐标代入上式得:2=a (3﹣32)2+258, 解得:a =﹣12, ∴抛物线的表达式为:213222y x x =-++; (2)当x =0时,y =﹣12x 2+32x +2=2, 即点C 坐标为(0,2), 同理,令y =0,则x =4或﹣1,故点A 、B 的坐标分别为:(﹣1,0)、(4,0),过点P 作y 轴的平行线交AD 于点H,由点A 、D 的坐标得,直线AD 的表达式为:y =12(x +1), 设点P (x ,﹣12x 2+32x +2),则点H (x ,12x +12), 则△PAD 面积为:S =S △PHA +S △PHD =12×PH ×(x D ﹣x A )=12×4×(﹣12x 2+32x +2﹣12x 12-)=﹣x 2+2x +3, ∵﹣1<0,故S 有最大值,当x =1时,S 有最大值,则点P (1,3);(3)存在满足条件的点P ,显然点P 在直线CD 下方,设直线PQ 交x 轴于F ,点P 的坐标为(a ,﹣12a 2+32a +2),当P 点在y 轴右侧时(如图2),CQ =a ,PQ =2﹣(﹣12a 2+32a +2)=12a 2﹣32a , 又∵∠CQ ′O +∠FQ ′P =90°,∠COQ ′=∠Q ′FP =90°,∴∠FQ ′P =∠OCQ ′,∴△COQ ′∽△Q ′FP ,'''Q C Q P CO FQ =,即213222'a a a Q F-=, ∴Q ′F =a ﹣3,∴OQ ′=OF ﹣Q ′F =a ﹣(a ﹣3)=3,CQ =CQ ′=22223213CO OQ +=+=, 此时a =13,点P 的坐标为(13,9313-+). 【点睛】 此题考查了二次函数的综合应用,综合考查了翻折变换、相似三角形的判定与性质,解答此类题目要求我们能将所学的知识融会贯通,属于中考常涉及的题目.9.在平面直角坐标系xOy 中(如图),已知二次函数2y ax bx c =++(其中a 、b 、c 是常数,且a ≠0)的图像经过点A (0,-3)、B (1,0)、C (3,0),联结AB 、AC . (1)求这个二次函数的解析式;(2)点D 是线段AC 上的一点,联结BD ,如果:3:2ABD BCD S S ∆∆=,求tan ∠DBC 的值; (3)如果点E 在该二次函数图像的对称轴上,当AC 平分∠BAE 时,求点E 的坐标.【答案】(1)243y x x =-+-;(2)32;(3)E (2,73-) 【解析】【分析】(1)直接利用待定系数法,把A 、B 、C 三点代入解析式,即可得到答案;(2)过点D 作DH ⊥BC 于H ,在△ABC 中,设AC 边上的高为h ,利用面积的比得到32AD DC =,然后求出DH 和BH ,即可得到答案; (3)延长AE 至x 轴,与x 轴交于点F ,先证明△OAB ∽△OFA ,求出点F 的坐标,然后求出直线AF 的方程,即可求出点E 的坐标.【详解】解:(1)将A (0,-3)、B (1,0)、C (3,0)代入20y ax bx c a =++≠()得,03,0934,300a b a b c =+-⎧⎪=+-⎨⎪-=++⎩解得143abc=-⎧⎪=⎨⎪=-⎩,∴此抛物线的表达式是:243y x x=-+-.(2)过点D作DH⊥BC于H,在△ABC中,设AC边上的高为h,则11:():():3:222ABD BCDS S AD h DC h AD DC∆∆=⋅⋅==,又∵DH//y轴,∴25CH DC DHOC AC OA===.∵OA=OC=3,则∠ACO=45°,∴△CDH为等腰直角三角形,∴26355CH DH==⨯=.∴64255BH BC CH=-=-=.∴tan∠DBC=32DHBH=.(3)延长AE至x轴,与x轴交于点F,∵OA=OC=3,∴∠OAC=∠OCA=45°,∵∠OAB=∠OAC -∠BAC=45°-∠BAC ,∠OFA=∠OCA -∠FAC=45°-∠FAC ,∵∠BAC=∠FAC ,∴∠OAB=∠OFA .∴△OAB ∽△OFA , ∴13OB OA OA OF ==. ∴OF=9,即F (9,0);设直线AF 的解析式为y=kx+b (k≠0),可得093k b b =+⎧⎨-=⎩ ,解得133k b ⎧=⎪⎨⎪=-⎩, ∴直线AF 的解析式为:133y x =-, 将x=2代入直线AF 的解析式得:73y =-, ∴E (2,73-). 【点睛】 本题考查了相似三角形的判定和性质,二次函数的性质,求二次函数的解析式,等腰直角三角形的判定和性质,求一次函数的解析式,解题的关键是掌握二次函数的图像和性质,以及正确作出辅助线构造相似三角形.10.如图,经过原点的抛物线2y ax x b =-+与直线2y =交于A ,C 两点,其对称轴是直线2x =,抛物线与x 轴的另一个交点为D ,线段AC 与y 轴交于点B .(1)求抛物线的解析式,并写出点D 的坐标;(2)若点E 为线段BC 上一点,且2EC EA -=,点(0,)P t 为线段OB 上不与端点重合的动点,连接PE ,过点E 作直线PE 的垂线交x 轴于点F ,连接PF ,探究在P 点运动过程中,线段PE ,PF 有何数量关系?并证明所探究的结论;(3)设抛物线顶点为M ,求当t 为何值时,DMF ∆为等腰三角形?【答案】(1)214y x x =-;点D 的坐标为(4,0);(2)5PF PE =,理由见解析;(3)512t =或98t = 【解析】【分析】(1)先求出a 、b 的值,然后求出解析式,再求出点D 的坐标即可;(2)由题意,先求出点E 的坐标,然后证明Rt Rt PBE FHE ∆∆∽,得到2EF PE =,结合勾股定理,即可得到答案;(3)根据题意,可分为三种情况进行分析:FM FD =或DF DM =或FM MD =,分别求出三种情况的值即可.【详解】解:(1)∵抛物线2y ax x b =-+经过原点, ∴0b =.又抛物线的对称轴是直线2x =,∴122a --=,解得:14a =. ∴抛物线的解析式为:214y x x =-. 令2104y x x =-=, 解得:10x =,24x =.∴点D 的坐标为(4,0).(2)线段PE 、PF 的数量关系为:5PF PE =.证明:由抛物线的对称性得线段AC 的中点为(2,2)G ,如图①,AE EG GC +=,∴EG GC AE =-,∴EG EG EG GC AE EC EA +=+-=-,∵2EC EA -=,∴1EG =,∴(1,2)E ,过点E 作EH x ⊥轴于H ,则2EH OB ==.∵PE EF ⊥,∴90PEF ∠=︒,∵BE EH ⊥,∴90BEH ∠=︒.∴PEB HEF ∠=∠.在Rt PBE ∆与Rt FHE ∆中,∵PEB HEF ∠=∠,90EHF EBP ∠=∠=︒,∴Rt Rt PBE FHE ∆∆∽,∴12PE BE EF HE ==, ∴2EF PE =. 在Rt PEF ∆中,由勾股定理得:222222(2)5PF PE EF PE PE PE =+=+=,∴5PF PE =.(3)由2211(2)144y x x x =-=--, ∴顶点M 坐标为(2,1)-.若DMF ∆为等腰三角形,可能有三种情形:(I )若FM FD =.如图②所示:连接MG 交x 轴于点N ,则90MNF ∠=︒,∵(4,0)D ,∴2222125MD MN ND =+=+=. 设FM FD k ==,则2NF k =-.在Rt MNF ∆中,由勾股定理得:222NF MN MF +=,∴22(2)1k k -+=,解得:54k =, ∴54FM =,34NF =, ∴1MN =,即点M 的纵坐标为1-;令1y =-,则2114x x -=-, ∴2x =,即ON=2,∴OF=114, ∴11,04F ⎛⎫ ⎪⎝⎭. ∵(1,2)E ,∴1,2BE BP t ==-,∴221(2)PE t =+-,∴251(2)PF t =•+-,在Rt △OPF 中,由勾股定理,得222OP OF PF +=,∴22211()55(2)4t t +=+-, ∴98t =. (II )若DF DM =.如图③所示:此时5FD DM ==∴45OF =,∴(45,0)F ,由(I )知,PE =,PF =在Rt △OPF 中,由勾股定理,得222OP OF PF +=,∴222(455(2)t t +-=+-∴12t =. (III )若FM MD =.由抛物线对称性可知,此时点F 与原点O 重合.∵PE EF ⊥,点P 在直线AC 上方,与点P 在线段OB 上运动相矛盾,故此种情形不存在.【点睛】本题考查的是二次函数综合运用,涉及到相似三角形的判定和性质,一次函数的性质,等腰三角形的性质,全等三角形的判定和性质,以及勾股定理等知识,其中(3),要注意分类求解,避免遗漏.。

数学九年级上册 二次函数易错题(Word版 含答案)

数学九年级上册  二次函数易错题(Word版 含答案)

数学九年级上册二次函数易错题(Word版含答案)一、初三数学二次函数易错题压轴题(难)1.如图,二次函数y=ax2+bx+c交x轴于点A(1,0)和点B(3,0),交y轴于点C,抛物线上一点D的坐标为(4,3)(1)求该二次函数所对应的函数解析式;(2)如图1,点P是直线BC下方抛物线上的一个动点,PE//x轴,PF//y轴,求线段EF的最大值;(3)如图2,点M是线段CD上的一个动点,过点M作x轴的垂线,交抛物线于点N,当△CBN是直角三角形时,请直接写出所有满足条件的点M的坐标.【答案】(1)y=x2﹣4x+3;(2)EF的最大值为24;(3)M点坐标为可以为(2,3),(552+,3),(552-,3).【解析】【分析】(1)根据题意由A、B两点坐标在二次函数图象上,设二次函数解析式的交点式,将D点坐标代入求出a的值,最后将二次函数的交点式转化成一般式形式.(2)由题意可知点P在二次函数图象上,坐标为(p,p2﹣4p+3).又因为PF//y轴,点F 在直线BC上,P的坐标为(p,﹣p+3),在Rt△FPE中,可得FE2PF,用纵坐标差的绝对值可求线段EF的最大值.(3)根据题意求△CBN是直角三角形,分为∠CBN=90°和∠CNB=90°两类情况计算,利用三角形相似知识进行分析求解.【详解】解:(1)设二次函数的解析式为y=a(x﹣b)(x﹣c),∵y=ax2+bx+与x轴r的两个交点A、B的坐标分别为(1,0)和(3,0),∴二次函数解析式:y=a(x﹣1)(x﹣3).又∵点D(4,3)在二次函数上,∴(4﹣3)×(4﹣1)a=3,∴解得:a=1.∴二次函数的解析式:y=(x﹣1)(x﹣3),即y=x2﹣4x+3.(2)如图1所示.因点P 在二次函数图象上,设P (p ,p 2﹣4p+3). ∵y =x 2﹣4x+3与y 轴相交于点C , ∴点C 的坐标为(0,3). 又∵点B 的坐标为B (3,0), ∴OB =OC∴△COB 为等腰直角三角形. 又∵PF//y 轴,PE//x 轴, ∴△PEF 为等腰直角三角形. ∴EF 2PF .设一次函数的l BC 的表达式为y =kx+b , 又∵B (3,0)和C (0,3)在直线BC 上,303k b b +=⎧⎨=⎩, 解得:13k b =-⎧⎨=⎩,∴直线BC 的解析式为y =﹣x+3. ∴y F =﹣p+3.FP =﹣p+3﹣(p 2﹣4p+3)=﹣p 2+3p . ∴EF 2p 22. ∴线段EF 的最大值为,EF max 42-24. (3)①如图2所示:若∠CNB =90°时,点N 在抛物线上,作MN//y 轴,l//x 轴交y 轴于点E , BF ⊥l 交l 于点F .设点N 的坐标为(m ,m 2﹣4m+3),则点M 的坐标为(m ,3), ∵C 、D 两点的坐标为(0,3)和(4,3), ∴CD ∥x 轴.又∵∠CNE =∠NBF ,∠CEN =∠NFB =90°, ∴△CNE ∽△NBF . ∴CE NE =NFBF, 又∵CE =﹣m 2+4m ,NE =m ;NF =3﹣m ,BF =﹣m 2+4m ﹣3,∴24m mm-+=2343m m m --+-,化简得:m 2﹣5m+5=0. 解得:m 1=552+,m 2=552-.∴M 点坐标为(55+,3)或(55-,3)②如图3所示:当∠CBN =90°时,过B 作BG ⊥CD , ∵∠NBF =∠CBG ,∠NFB =∠BGC =90°, ∴△BFN ∽△CGB . ∵△BFN 为等腰直角三角形, ∴BF =FN ,∴0﹣(m 2﹣4m+3)=3﹣m . ∴化简得,m 2﹣5m+6=0. 解得,m =2或m =3(舍去) ∴M 点坐标为,(2,3).综上所述,满足题意的M 点坐标为可以为(2,3),(552+,3),(552-,3).【点睛】本题考查待定系数法求解函数解析式,二次函数和三角函数求值,三角形相似等相关知识点;同时运用数形结合和分类讨论的思想探究点在几何图形上的位置关系.2.在平面直角坐标系中,O 为坐标原点,抛物线L :y =ax 2﹣4ax (a >0)与x 轴正半轴交于点A .抛物线L 的顶点为M ,对称轴与x 轴交于点D . (1)求抛物线L 的对称轴.(2)抛物线L :y =ax 2﹣4ax 关于x 轴对称的抛物线记为L ',抛物线L '的顶点为M ',若以O 、M 、A 、M '为顶点的四边形是正方形,求L '的表达式.(3)在(2)的条件下,点P 在抛物线L 上,且位于第四象限,点Q 在抛物线L '上,是否存在点P 、点Q 使得以O 、D 、P 、Q 为顶点的四边形是平行四边形,若存在,求出点P 坐标,若不存在,请说明理由.【答案】(1)2x =;(2)2122y x x =-+ ;(3)存在,P 点的坐标为(33,3或(33,3-或(13,3或(13,3+-或31,2⎛⎫- ⎪⎝⎭【解析】 【分析】(1)根据抛物线的对称轴公式计算即可.(2)利用正方形的性质求出点M ,M ′的坐标即可解决问题.(3)分OD是平行四边形的边或对角线两种情形求解即可.【详解】解:(1)∵抛物线L:y=ax2﹣4ax(a>0),∴抛物线的对称轴x=﹣42aa=2.(2)如图1中,对于抛物线y=ax2﹣4ax,令y=0,得到ax2﹣4ax=0,解得x=0或4,∴A(4,0),∵四边形OMAM′是正方形,∴OD=DA=DM=DM′=2,∴M((2,﹣2),M′(2,2)把M(2,﹣2)代入y=ax2﹣4ax,可得﹣2=4a﹣8a,∴a=12,∴抛物线L′的解析式为y=﹣12(x﹣2)2+2=﹣12x2+2x.(3)如图3中,由题意OD=2.当OD 为平行四边形的边时,PQ =OD =2,设P (m ,12m 2﹣2m ),则Q [m ﹣2,﹣12(m ﹣2)2+2(m ﹣2)]或[m +2,﹣12(m +2)2+2(m +2)], ∵PQ ∥OD , ∴12m 2﹣2m =﹣12(m ﹣2)2+2(m ﹣2)或12m 2﹣2m =﹣12(m +2)2+2(m +2), 解得m =3±3或1±3,∴P (3+3,3)或(3﹣3,﹣3)或(1﹣3,3)和(1+3,﹣3), 当OD 是平行四边形的对角线时,点P 的横坐标为1,此时P (1,﹣32), 综上所述,满足条件的点P 的坐标为(3+3,3)或(3﹣3,﹣3)或(1﹣3,3)和(1+3,﹣3)或(1,﹣32). 【点睛】本题属于二次函数综合题,考查了二次函数的性质,正方形的性质,平行四边形的判定和性质等知识,解题的关键是理解题意,学会利用参数构建方程解决问题,学会用分类讨论的思想思考问题,属于中考压轴题学会利用参数构建方程解决问题,学会用分类讨论的思想思考问题,属于中考压轴题3.如图,抛物线()250y ax bx a =+-≠经过x 轴上的点1,0A 和点B 及y 轴上的点C ,经过B C 、两点的直线为y x n =+.(1)求抛物线的解析式.(2)点P 从A 出发,在线段AB 上以每秒1个单位的速度向B 运动,同时点E 从B 出发,在线段BC 上以每秒2个单位的速度向C 运动.当其中一个点到达终点时,另一点也停止运动.设运动时间为t 秒,求t 为何值时,PBE △的面积最大并求出最大值.(3)过点A 作AM BC ⊥于点M ,过抛物线上一动点N (不与点B C 、重合)作直线AM 的平行线交直线BC 于点Q .若点A M N Q 、、、为顶点的四边形是平行四边形,求点N 的横坐标.【答案】(1)265y x x =-+- (2)2t =;(3或4【解析】 【分析】(1)先确定A 、B 、C 三点的坐标,然后用待定系数法解答即可;(2)先求出AB 、BC 的长并说明△BOC 是等腰直角三角形,再求出点P 到BC 的高d为)454d BP sin t =⋅︒=-,则12PBESBE d =⨯⨯)()1244222t t t =⨯⨯-=-,再根据二次函数的性质即可确定最大值;(3)先求出454AM AB sin =⋅︒==N 作直线AM 的平行线交直线BC 于点,Q 则,再说明四边形AMNQ是平行四边形,得到NQ AM ==;再过点N 作NH x ⊥轴,交x 轴于点,G 交BC 于点,H 结合题意说明NQH 为等腰直角三角形,求得4NH ===;设()2,65N m m m -+-,则(),0G m ,(),5H m m -,最后分点N 在x 轴上方时、点N 在x 轴下方且5m >时和1m <三种情况解答即可. 【详解】解:()1因为直线y x n =+经过B C 、两点,且点B 在x 轴上,点C 在y 轴上, ∵()(),,00,B n C n -∴抛物线25y ax bx =+-经过点1,0A ,点(),0B n -,点()0,C n ,∴250505a b an bn n +-=⎧⎪--=⎨⎪-=⎩,解得51,6n a b =-⎧⎪=-⎨⎪=⎩所以抛物线的解析式为265y x x =-+-.()2∵()()()1,05,0,0,,5,A B C -∴4,AB BC BOC ==为等腰直角三角形, ∴45,ABC ∠=由题意得4,2,02BP t BE t t =-=<≤点P 到BE 的距离()4542d BP sin t =⋅︒=- 所以12PBESBE d =⨯⨯)()1244222t t t t =⨯⨯-=-;∵二次函数()()4f t t =-的函数图象开口向下,零点为0和4, ∴0422t +==时,∴()()()2242max f t f ==⨯-=即2t =时,PBE △的面积最大,且最大值为()3由题意得4542AM AB sin =⋅︒=⨯= 过点N 作直线AM 的平行线交直线BC 于点,Q 则,NQ BC ⊥ ∵点,A M N Q 、、为顶点的四边形是平行四边形,∴NQ AM ==过点N 作NH x ⊥轴,交x 轴于点,G 交BC 于点,H ∵:5BC l y x =-,∴NQH 为等腰直角三角形,∴4,NH ===设()2,65N m m m -+-, 则(),0G m ,(),5H m m -,①点N 在x 轴上方时,此时()()2655,NH m m m =-+---∴()()26554m m m -+---=,即()()140,m m --=解得1m =(舍,因为此时点N 与点A 重合)或4m =;②点N 在x 轴下方且5m >时,此时()()2565,NH m m m =---+- ∴()()25654m m m ---+-=,即2540,m m --=解得552m -=<(舍)或52m =③点N 在x 轴下方且1m <时,此时()()2565,NH m m m =---+-∴()()25654m m m ---+-=,即2540,m m --=解得5412m -=或5412m +=(舍)综上所述,5414,2m m +==,5412m -=符合题意, 即若点,A M N Q 、、为顶点的四边形是平行四边形, 点N 的横坐标为541-或4或541+.【点睛】本题主要考查了二次函数的性质、平行四边形的判定与性质,掌握二次函数的性质以及分类讨论思想是解答本题的关键4.如图1,抛物线2:C y x =经过变换可得到抛物线()1111:C y a x x b =-,1C 与x 轴的正半轴交于点1A ,且其对称轴分别交抛物线C 、1C 于点1B 、1D ,此时四边形111D OB A 恰为正方形;按上述类似方法,如图2,抛物线()1111:C y a x x b =-经过变换可得到抛物线()2222:C y a x x b =-,2C 与x 轴的正半轴交于点2A ,且对称轴分别交抛物线1C 、2C 于点2B 、2D ,此时四边形222OB A D 也恰为正方形;按上述类似方法,如图3,可得到抛物线()3333:C y a x x b =-与正方形333OB A D ,请探究以下问题: (1)填空:1a = ,1b = ; (2)求出2C 与3C 的解析式;(3)按上述类似方法,可得到抛物线():n n n n C y a x x b =-与正方形n n n OB A D (1n ≥). ①请用含n 的代数式直接表示出n C 的解析式;②当x 取任意不为0的实数时,试比较2018y 与2019y 的函数值的大小关系,并说明理由.【答案】(1)11a =,12b =;(2)22132y x x =-,23126y x x =-;(3)①()2212123n n y x x n -=-≥⨯,②20182019y y >. 【解析】 【分析】(1)求与x 轴交点A 1坐标,根据正方形对角线性质表示出B 1的坐标,代入对应的解析式即可求出对应的b 1的值,写出D 1的坐标,代入y 1的解析式中可求得a 1的值; (2)求与x 轴交点A 2坐标,根据正方形对角线性质表示出B 2的坐标,代入对应的解析式即可求出对应的b 2的值,写出D 2的坐标,代入y 2的解析式中可求得a 2的值,写出抛物线C 2的解析式;再利用相同的方法求抛物线C 3的解析式;(3)①根据图形变换后二次项系数不变得出a n =a 1=1,由B 1坐标(1,1)、B 2坐标(3,3)、B 3坐标(7,7)得B n 坐标(2n -1,2n -1),则b n =2(2n -1)=2n +1-2(n ≥1),写出抛物线C n 解析式.②根据规律得到抛物线C 2015和抛物线C 2016的解析式,用求差法比较出y 2015与y 2016的函数值的大小. 【详解】解:(1)y 1=0时,a 1x (x -b 1)=0, x 1=0,x 2=b 1, ∴A 1(b 1,0),由正方形OB 1A 1D 1得:OA 1=B 1D 1=b 1, ∴B 1(12b ,12b ),D 1(12b ,12b-), ∵B 1在抛物线c 上,则12b =(12b )2, 解得:b 1=0(不符合题意),b 1=2, ∴D 1(1,-1),把D 1(1,-1)代入y 1=a 1x (x -b 1)中得:-1=-a 1,∴a 1=1,故答案为1,2;(2)当20y =时,有()220a x x b -=,解得2x b =或0x =,()22,0A b ∴.由正方形222OB A D ,得2222B D OA b ==,222,22b b B ⎛⎫∴ ⎪⎝⎭,222,22b b D ⎛⎫- ⎪⎝⎭. 2B 在抛物线1C 上,2222222b b b ⎛⎫∴=- ⎪⎝⎭. 解得24b =或20b =(不合舍去),()22,2D ∴-2D 在抛物线2C 上,()22224a ∴-=-. 解得212a =. 2C ∴的解析式是()2142y x x =-,即22122y x x =-. 同理,当30y =时,有()330a x x b -=,解得3x b =,或0x =.()33,0A b ∴.由正方形333OB A D ,得3333B D OA b ==,333,22b b B ⎛⎫∴ ⎪⎝⎭,333,22b b D ⎛⎫- ⎪⎝⎭. 3B 在抛物线2C 上,2333122222b b b ⎛⎫∴=-⋅ ⎪⎝⎭. 解得312b =或30b =(不合舍去), ()36,6D ∴-3D 在抛物线3C 上,()366612a ∴-=-.解得316a =. 3C ∴的解析式是()31126y x x =-,即23126y x x =-.(3)解:①n C 的解析式是()2212123n n y x x n -=-≥⨯. ②由①可得2201820161223y x x =-⨯,2201920171223y x x =-⨯. 当0x ≠时,220182019201620171110233y y x >⎛⎫-=- ⎪⎝⎭, 20182019y y ∴>.【点睛】本题是二次函数与方程、正方形的综合应用,将函数知识与方程、正方形有机地结合在一起.这类试题一般难度较大.解这类问题关键是善于将函数问题转化为方程问题,善于利用正方形的有关性质、定理和二次函数的知识,并注意挖掘题目中的一些隐含条件.就此题而言:①求出抛物线与x 轴交点坐标⇔把y =0代入计算,把函数问题转化为方程问题;②利用正方形对角线相等且垂直平分表示出对应B 1、B 2、B 3、B n 的坐标;③根据规律之间得到解析式是关键.5.在平面直角坐标系中,将函数y =x 2﹣2mx+m (x≤2m ,m 为常数)的图象记为G ,图象G 的最低点为P(x 0,y 0).(1)当y 0=﹣1时,求m 的值.(2)求y 0的最大值.(3)当图象G 与x 轴有两个交点时,设左边交点的横坐标为x 1,则x 1的取值范围是 .(4)点A 在图象G 上,且点A 的横坐标为2m ﹣2,点A 关于y 轴的对称点为点B ,当点A 不在坐标轴上时,以点A 、B 为顶点构造矩形ABCD ,使点C 、D 落在x 轴上,当图象G 在矩形ABCD 内的部分所对应的函数值y 随x 的增大而减小时,直接写出m 的取值范围.【答案】(1或﹣1;(2)14;(3)0<x 1<1;(4)m =0或m >43或23≤m <1 【解析】【分析】(1)分m >0,m =0,m <0三种情形分别求解即可解决问题;(2)分三种情形,利用二次函数的性质分别求解即可;(3)由(1)可知,当图象G 与x 轴有两个交点时,m >0,求出当抛物线顶点在x 轴上时m 的值,利用图象法判断即可;(4)分四种情形:①m <0,②m =0,③m >1,④0<m≤1,分别求解即可解决问题.【详解】解:(1)如图1中,当m >0时,∵y=x2﹣2mx+m=(x﹣m)2﹣m2+m,图象G是抛物线在直线y=2m的左侧部分(包括点D),此时最底点P(m,﹣m2+m),由题意﹣m2+m=﹣1,解得m=51+或51-+(舍弃),当m=0时,显然不符合题意,当m<0时,如图2中,图象G是抛物线在直线y=2m的左侧部分(包括点D),此时最底点P是纵坐标为m,∴m=﹣1,综上所述,满足条件的m的值为512或﹣1;(2)由(1)可知,当m>0时,y0=﹣m2+m=﹣(m﹣12)2+14,∵﹣1<0,∴m=12时,y0的最大值为14,当m=0时,y0=0,当m<0时,y0<0,综上所述,y0的最大值为14;(3)由(1)可知,当图象G与x轴有两个交点时,m>0,当抛物线顶点在x轴上时,4m2﹣4m=0,∴m=1或0(舍弃),∴观察观察图象可知,当图象G与x轴有两个交点时,设左边交点的横坐标为x1,则x1的取值范围是0<x1<1,故答案为0<x1<1;(4)当m<0时,观察图象可知,不存在点A满足条件,当m=0时,图象G在矩形ABCD内的部分所对应的函数值y随x的增大而减小,满足条件,如图3中,当m>1时,如图4中,设抛物线与x轴交于E,F,交y轴于N,观察图象可知当点A在x轴下方或直线x=﹣m和y轴之间时(可以在直线x=﹣m上)时,满足条件.则有(2m﹣2)2﹣2m(2m﹣2)+m<0,解得m>43,或﹣m≤2m﹣2<0,解得23≤m<1(不合题意舍弃),当0<m≤1时,如图5中,当点A在直线x=﹣m和y轴之间时(可以在直线x=﹣m上)时,满足条件.即或﹣m≤2m﹣2<0,解得23≤m<1,综上所述,满足条件m的值为m=0或m>43或23≤m<1.【点睛】本题属于二次函数综合题,考查了二次函数的性质,矩形的性质,最值问题,不等式等知识,解题的关键是理解题意,学会用分类讨论的思想思考问题,学会用转化的思想思考问题,属于中考压轴题.6.已知点P(2,﹣3)在抛物线L:y=ax2﹣2ax+a+k(a,k均为常数,且a≠0)上,L交y轴于点C,连接CP.(1)用a表示k,并求L的对称轴及L与y轴的交点坐标;(2)当L经过(3,3)时,求此时L的表达式及其顶点坐标;(3)横、纵坐标都是整数的点叫做整点.如图,当a<0时,若L在点C,P之间的部分与线段CP所围成的区域内(不含边界)恰有4个整点,求a的取值范围;(4)点M(x1,y1),N(x2,y2)是L上的两点,若t≤x1≤t+1,当x2≥3时,均有y1≥y2,直接写出t的取值范围.【答案】(1)k=-3-a;对称轴x=1;y轴交点(0,-3);(2)2y=2x-4x-3,顶点坐标(1,-5);(3)-5≤a <-4;(4)-1≤t ≤2.【解析】【分析】(1)将点P(2,-3)代入抛物线上,求得k 用a 表示的关系式;抛物线L 的对称轴为直线2a x==12a--,并求得抛物线与y 轴交点; (2)将点(3,3)代入抛物线的解析式,且k=-3-a ,解得a=2,k=-5,即可求得抛物线解析式与顶点坐标;(3)抛物线L 顶点坐标(1,-a-3),点C ,P 之间的部分与线段CP 所围成的区域内(不含边界)恰有4个整点,这四个整点都在x=1这条直线上,且y 的取值分别为-2、-1、0、1,可得1<-a-3≤2,即可求得a 的取值范围;(4)分类讨论取a >0与a <0的情况进行讨论,找出1x 的取值范围,即可求出t 的取值范围.【详解】解:(1)∵将点P(2,-3)代入抛物线L :2y=ax -2ax+a+k ,∴-3=4a 4a a+k=a+k -+∴k=-3-a ;抛物线L 的对称轴为直线-2a x=-=12a,即x =1; 将x=0代入抛物线可得:y=a+k=a+(-3-a)=-3,故与y 轴交点坐标为(0,-3); (2)∵L 经过点(3,3),将该点代入解析式中,∴9a-6a+a+k=3,且由(1)可得k=-3-a ,∴4a+k=3a-3=3,解得a=2,k=-5,∴L 的表达式为2y=2x -4x-3;将其表示为顶点式:2y=2(x-1)-5,∴顶点坐标为(1,-5);(3)解析式L 的顶点坐标(1,-a-3),∵在点C ,P 之间的部分与线段CP 所围成的区域内(不含边界)恰有4个整点,这四个整点都在x=1这条直线上,且y 的取值分别为-2、-1、0、1,∴1<-a-3≤2,∴-5≤a <-4;(4)①当a <0时,∵2x 3≥,为保证12y y ≥,且抛物线L 的对称轴为x=1,∴就要保证1x 的取值范围要在[-1,3]上,即t ≥-1且t+1≤3,解得-1≤t ≤2;②当a >0时,抛物线开口向上,t ≥3或t+1≤-1,解得:t ≥3或t ≤-2,但会有不符合题意的点存在,故舍去,综上所述:-1≤t ≤2.【点睛】本题考查二次函数的图象及性质;熟练掌握二次函数的图象及性质,数形结合解题是关键.7.如图,若抛物线y=x2+bx+c与x轴相交于A,B两点,与y轴相交于点C,直线y=x﹣3经过点B,C.(1)求抛物线的解析式;(2)点P是直线BC下方抛物线上一动点,过点P作PH⊥x轴于点H,交BC于点M,连接PC.①线段PM是否有最大值?如果有,求出最大值;如果没有,请说明理由;②在点P运动的过程中,是否存在点M,恰好使△PCM是以PM为腰的等腰三角形?如果存在,请直接写出点P的坐标;如果不存在,请说明理由.【答案】(1)y=x2﹣2x﹣3;(2)①有,94;②存在,(2,﹣3)或(32,2﹣2)【解析】【分析】(1)由直线表达式求出点B、C的坐标,将点B、C的坐标代入抛物线表达式,即可求解;(2)①根据PM=(x﹣3)﹣(x2﹣2x﹣3)=﹣(x﹣32)2+94即可求解;②分PM=PC、PM=MC两种情况,分别求解即可.【详解】解:(1)对于y=x﹣3,令x=0,y=﹣3,y=0,x=3,故点B、C的坐标分别为(3,0)、(0,﹣3),将点B、C的坐标代入抛物线表达式得:9303b cc++=⎧⎨=-⎩,解得:32 cb=-⎧⎨=-⎩,故抛物线的表达式为:y=x2﹣2x﹣3;(2)设:点M(x,x﹣3),则点P(x,x2﹣2x﹣3),①有,理由:PM=(x﹣3)﹣(x2﹣2x﹣3)=﹣(x﹣32)2+94,∵﹣1<0,故PM有最大值,当x=32时,PM最大值为:94;②存在,理由:PM2=(x﹣3﹣x2+2x+3)2=(﹣x2+3x)2;PC2=x2+(x2﹣2x﹣3+3)2;MC2=(x﹣3+3)2+x2;(Ⅰ)当PM=PC时,则(﹣x2+3x)2=x2+(x2﹣2x﹣3+3)2,解得:x=0或2(舍去0),故x=2,故点P(2,﹣3);(Ⅱ)当PM=MC时,则(﹣x2+3x)2=(x﹣3+3)2+x2,解得:x=0或3±2(舍去0和3+2),故x=3﹣2,则x2﹣2x﹣3=2﹣42,故点P(3﹣2,2﹣42).综上,点P的坐标为:(2,﹣3)或(3﹣2,2﹣42).【点睛】本题考查的是二次函数综合运用,涉及到一次函数的性质、等腰三角形的性质等,其中(2)②,要注意分类求解,避免遗漏.8.如图①抛物线y=ax2+bx+4(a≠0)与x轴,y轴分别交于点A(﹣1,0),B(4,0),点C三点.(1)试求抛物线的解析式;(2)点D(3,m)在第一象限的抛物线上,连接BC,BD.试问,在对称轴左侧的抛物线上是否存在一点P,满足∠PBC=∠DBC?如果存在,请求出点P点的坐标;如果不存在,请说明理由;(3)点N在抛物线的对称轴上,点M在抛物线上,当以M、N、B、C为顶点的四边形是平行四边形时,请直接写出点M的坐标.【答案】(1)y=﹣x2+3x+4;(2)存在.P(﹣34,1916).(3)1539(,)24M--21139 (,) 24M-3521 (,) 24M【解析】【分析】(1)将A,B,C三点代入y=ax2+bx+4求出a,b,c值,即可确定表达式;(2)在y轴上取点G,使CG=CD=3,构建△DCB≌△GCB,求直线BG的解析式,再求直线BG与抛物线交点坐标即为P点,(3)根据平行四边形的对边平行且相等,利用平移的性质列出方程求解,分情况讨论.【详解】解:如图:(1)∵抛物线y=ax2+bx+4(a≠0)与x轴,y轴分别交于点A(﹣1,0),B(4,0),点C三点.∴4016440a ba b-+=⎧⎨++=⎩解得13ab=-⎧⎨=⎩∴抛物线的解析式为y=﹣x2+3x+4.(2)存在.理由如下:y=﹣x2+3x+4=﹣(x﹣32)2+254.∵点D(3,m)在第一象限的抛物线上,∴m=4,∴D(3,4),∵C(0,4)∵OC=OB,∴∠OBC=∠OCB=45°.连接CD,∴CD∥x轴,∴∠DCB=∠OBC=45°,∴∠DCB=∠OCB,在y轴上取点G,使CG=CD=3,再延长BG交抛物线于点P,在△DCB和△GCB中,CB=CB,∠DCB=∠OCB,CG=CD,∴△DCB≌△GCB(SAS)∴∠DBC=∠GBC.设直线BP解析式为y BP=kx+b(k≠0),把G(0,1),B(4,0)代入,得k=﹣14,b=1,∴BP解析式为y BP=﹣14x+1.y BP=﹣14x+1,y=﹣x2+3x+4当y=y BP时,﹣14x+1=﹣x2+3x+4,解得x1=﹣34,x2=4(舍去),∴y=1916,∴P(﹣34,1916).(3)1539 (,)24M--21139 (,) 24M-3521 (,) 24M理由如下,如图B(4,0),C(0,4) ,抛物线对称轴为直线32x=,设N(32,n),M(m, ﹣m2+3m+4)第一种情况:当MN与BC为对边关系时,MN∥BC,MN=BC,∴4-32=0-m,∴m=52-∴﹣m2+3m+4=39 4 -,∴1539 (,)24M--;或∴0-32=4-m,∴m=11 2∴﹣m2+3m+4=39 4 -,∴21139 (,) 24M-;第二种情况:当MN与BC为对角线关系,MN与BC交点为K,则K(2,2),∴322 2m∴m=5 2∴﹣m2+3m+4=21 4∴3521 (,) 24M综上所述,当以M、N、B、C为顶点的四边形是平行四边形时,点M的坐标为1539 (,)24M--21139 (,) 24M-3521 (,) 24M.【点睛】本题考查二次函数与图形的综合应用,涉及待定系数法,函数图象交点坐标问题,平行四边形的性质,方程思想及分类讨论思想是解答此题的关键.9.如图,在平面直角坐标系中,抛物线y=﹣12x2+bx+c与x轴交于B,C两点,与y轴交于点A,直线y=﹣12x+2经过A,C两点,抛物线的对称轴与x轴交于点D,直线MN与对称轴交于点G,与抛物线交于M,N两点(点N在对称轴右侧),且MN∥x轴,MN=7.(1)求此抛物线的解析式.(2)求点N的坐标.(3)过点A的直线与抛物线交于点F,当tan∠FAC=12时,求点F的坐标.(4)过点D作直线AC的垂线,交AC于点H,交y轴于点K,连接CN,△AHK沿射线AC 以每秒1个单位长度的速度移动,移动过程中△AHK与四边形DGNC产生重叠,设重叠面积为S,移动时间为t(0≤t5S与t的函数关系式.【答案】(1)y=﹣12x2+32x+2;(2)点N的坐标为(5,-3);(3)点F的坐标为:(3,2)或(173,﹣509);(4)25,04949(1044t tS tt⎧⎛≤≤⎪⎪⎝⎭=-<≤⎪⎪+<≤⎪⎩.【解析】【分析】(1)点A、C的坐标分别为(0,2)、(4,0),将点A、C坐标代入抛物线表达式即可求解;(2)抛物线的对称轴为:x=32,点N的横坐标为:37522+=,即可求解;(3)分点F在直线AC下方、点F在直线AC的上方两种情况,分别求解即可;(4)分0≤t≤5、当5<t<t【详解】解:(1)直线y=﹣12x+2经过A,C两点,则点A、C的坐标分别为(0,2)、(4,0),则c=2,抛物线表达式为:y=﹣12x2+bx+2,将点C坐标代入上式并解得:b=32,故抛物线的表达式为:y=﹣12x2+32x+2…①;(2)抛物线的对称轴为:x=32,点N的横坐标为:375 22+=,故点N的坐标为(5,-3);(3)∵tan∠ACO=2142AOCO===tan∠FAC=12,即∠ACO=∠FAC,①当点F在直线AC下方时,设直线AF交x轴于点R,∵∠ACO=∠FAC,则AR=CR,设点R(r,0),则r2+4=(r﹣4)2,解得:r=32,即点R的坐标为:(32,0),将点R、A的坐标代入一次函数表达式:y=mx+n得:230 2nm n=⎧⎪⎨+=⎪⎩,解得:432mn⎧=-⎪⎨⎪=⎩,故直线AR的表达式为:y=﹣43x+2…②,联立①②并解得:x=173,故点F(173,﹣509);②当点F在直线AC的上方时,∵∠ACO=∠F′AC,∴AF′∥x轴,则点F′(3,2);综上,点F的坐标为:(3,2)或(173,﹣509);(4)如图2,设∠ACO=α,则tanα=12AOCO=,则sinα5,cosα5①当0≤t 35时(左侧图),设△AHK移动到△A′H′K′的位置时,直线H′K′分别交x轴于点T、交抛物线对称轴于点S,则∠DST =∠ACO =α,过点T 作TL ⊥KH ,则LT =HH ′=t ,∠LTD =∠ACO =α,则DT ='52co 5c s 2os L HH T t αα===,DS =tan DT α, S =S △DST =12⨯DT ×DS =254t ; 35<t 35时(右侧图), 同理可得:S =''DGS T S 梯形=12⨯DG ×(GS ′+DT ′)=12⨯3+55﹣323594-; 35<t 53594+; 综上,S =2535,023593535,(245435935(5)1044t t t t t t ⎧⎛≤≤⎪ ⎪⎝⎭⎪⎪⎨-<≤⎪⎪⎪+<≤⎪⎩. 【点睛】本题考查的是二次函数综合运用,涉及到一次函数、图形平移、图形的面积计算等,其中(3)、(4),要注意分类求解,避免遗漏.10.如图,直线3y x 与x 轴、y 轴分别交于点A ,C ,经过A ,C 两点的抛物线2y ax bx c =++与x 轴的负半轴的另一交点为B ,且tan 3CBO ∠=(1)求该抛物线的解析式及抛物线顶点D 的坐标;(2)点P 是射线BD 上一点,问是否存在以点P ,A ,B 为顶点的三角形,与ABC 相似,若存在,请求出点P 的坐标;若不存在,请说明理由【答案】(1)243y x x =++,顶点(2,1)D --;(2)存在,52,33P ⎛⎫-- ⎪⎝⎭或(4,3)-- 【解析】【分析】(1)利用直线解析式求出点A 、C 的坐标,从而得到OA 、OC ,再根据tan ∠CBO=3求出OB ,从而得到点B 的坐标,然后利用待定系数法求出二次函数解析式,整理成顶点式形式,然后写出点D 的坐标;(2)根据点A 、B 的坐标求出AB ,判断出△AOC 是等腰直角三角形,根据等腰直角三角形的性质求出AC ,∠BAC=45°,再根据点B 、D 的坐标求出∠ABD=45°,然后分①AB 和BP 是对应边时,△ABC 和△BPA 相似,利用相似三角形对应边成比例列式求出BP ,过点P 作PE ⊥x 轴于E ,求出BE 、PE ,再求出OE 的长度,然后写出点P 的坐标即可;②AB 和BA 是对应边时,△ABC 和△BAP 相似,利用相似三角形对应边成比例列式求出BP ,过点P 作PE ⊥x 轴于E ,求出BE 、PE ,再求出OE 的长度,然后写出点P 的坐标即可.【详解】解:(1)令y=0,则x+3=0,解得x=-3,令x=0,则y=3,∴点A (-3,0),C (0,3),∴OA=OC=3,∵tan ∠CBO=3OC OB=, ∴OB=1,∴点B (-1,0),把点A 、B 、C 的坐标代入抛物线解析式得, 93003a b c a b c c -+=⎧⎪-+=⎨⎪=⎩,解得:143a b c =⎧⎪=⎨⎪=⎩,∴该抛物线的解析式为:243y x x =++,∵y=x 2+4x+3=(x+2)2-1,∴顶点(2,1)D --;(2)∵A (-3,0),B (-1,0),∴AB=-1-(-3)=2,∵OA=OC,∠AOC=90°,∴△AOC是等腰直角三角形,∴AC=2OA=32,∠BAC=45°,∵B(-1,0),D(-2,-1),∴∠ABD=45°,①AB和BP是对应边时,△ABC∽△BPA,∴AB ACBP BA=,即2322BP=,解得BP=223,过点P作PE⊥x轴于E,则BE=PE=23×22=23,∴OE=1+23=53,∴点P的坐标为(-53,-23);②AB和BA是对应边时,△ABC∽△BAP,∴AB ACBA BP=,即2322=,解得BP=32过点P作PE⊥x轴于E,则BE=PE=2=3,∴OE=1+3=4,∴点P的坐标为(-4,-3);综合上述,当52,33P⎛⎫--⎪⎝⎭或(4,3)--时,以点P,A,B为顶点的三角形与ABC∆相似;【点睛】本题是二次函数综合题型,主要利用了直线与坐标轴交点的求解,待定系数法求二次函数解析式,等腰直角三角形的判定与性质,相似三角形的判定与性质,难点在于(2)要分情况讨论.。

九年级数学 二次函数易错题(Word版 含答案)

九年级数学 二次函数易错题(Word版 含答案)


综上所述, 点坐标为
故存在点Q,且这样的点有两个点.
【点睛】
(1)本题考查了利用待定系数法求二次函数解析式,根据已知条件选用顶点式较方便;
(2)本题是三角形面积的最值问题,解决这个问题应该在分析图形的基础上,引出自变量,再根据图形的特征列出面积的计算公式,用含自变量的代数式表示面积的函数式,然后求出最值.
则直线 的函数解析式为

(舍去),
点 的坐标为
综上可得,点 的坐标为 或
【点睛】
本题考查二次函数的图象及性质,一次函数的性质,熟练掌握二次函数的图象及性质,结合数形结合的思想和分类讨论的思想解题是解本题的关键.
2.如图所示,在平面直角坐标系中,抛物线 的顶点坐标为 ,并与 轴交于点 ,点 是对称轴与 轴的交点.
【答案】(1)(1,0);(2)① ;②存在,点 的坐标为 或 .
【解析】
【分析】
(1)直接令 ,即可求出点B的坐标;
(2)①令x=0,求出点C坐标为(0,a),再由△ABC的面积得到 (1−a)•(−a)=6即可求a的值,即可得到解析式;
②当点P在x轴上方时,直线OP的函数表达式为y=3x,则直线与抛物线的交点为P;当点P在x轴下方时,直线OP的函数表达式为y=-3x,则直线与抛物线的交点为P;分别求出点P的坐标即可.
【详解】
解: 抛物线顶点为
可设抛物线解析式为
将 代入 得
抛物线 ,即
连接 ,
设 点坐标为
当 时, 最大值为
存在,设点D的坐标为
过 作对称轴的垂线,垂足为 ,

在 中有
化简得
(舍去),
∴点D( ,-3)
连接 ,在 中
在以 为圆心, 为半径的圆与 轴的交点上

九年级数学上册 _ 月考易错题型专练:二次函数【存在性问题】

九年级数学上册 _ 月考易错题型专练:二次函数【存在性问题】

九年级数学上册| 月考易错题型二次函数【存在性问题】【一】如图,在平面直角坐标系中,二次函数y=ax2+bx﹣4(a≠0)的图象与x轴交于点A(﹣2,0)与点C(8,0)两点,与y轴交于点B,其对称轴与x轴交于点D.(1)直接写出B点的坐标;解:把A(﹣2,0)和C(8,0)代入y=ax2+bx﹣4,得4a-2b-4=0,64a+8b-4=0解得a=1/4,b=-3/2∴抛物线的解析式为y=1/4x2-3/2x﹣4;当x=0时,y=1/4x2-3/2x﹣4=﹣4,则B(0,﹣4)(2)求该二次函数的解析式;解:由(1)知,抛物线的解析式为y=1/4x2-3/2x﹣4(3)若点P(m,n)是该二次函数图象上的一个动点(其中m>0,n<0),连结PB,PD,BD,AB.请问是否存在点P,使得△BDP的面积恰好等于△ADB的面积?若存在请求出此时点P的坐标,若不存在说明理由.解:存在.∵y=1/4x2-3/2x﹣4=1/4(x﹣3)2﹣25/4,∴抛物线的对称轴为直线x=3,∴D(3,0).由(1)知,B(0,﹣4).连接OP,如图,设P(m,1/4m2-3/2m﹣4)(0<m<8),∵S△PBD=S△POD+S△POB﹣S△BOD,S△ABD=1/2×5×4=10,而△BDP的面积恰好等于△ADB的面积,∴1/2×3×(-1/4m2+3/2m+4)+1/2×4×m-1/2×3×4=10,整理得3m2﹣34m+80=0,解得m1=10/3,m2=8(舍去),∴P点坐标为(10/3,-56/9).【二】如图,抛物线过A(1,0)、B(﹣3,0),C(0,﹣3)三点,直线AD交抛物线于点D,点D的横坐标为﹣2,点P (m,n)是线段AD上的动点,过点P的直线垂直于x轴,交抛物线于点Q.(1)求直线AD及抛物线的解析式;解:设抛物线的解析式为y=ax2+bx+c,将A(1,0),B(﹣3,0)C(0,﹣3)代入y=ax2+bx+c得:a+b+c=0;9a-3b+c=0;c=-3解得:a=1;b=2;c=-3;∴抛物线的解析式为:y=x2+2x﹣3,当x=﹣2时,y=(﹣2)2﹣4﹣3=﹣3,∴D(﹣2,﹣3),设直线AD的解析式为y=kx+b,将A(1,0),D(﹣2,﹣3)代入得:k+b=0,-2k+b=-3 解得:k=1,b=-1∴直线AD的解析式为y=x﹣1;因此直线AD的解析式为y=x﹣1,抛物线的解析式为:y=x2+2x﹣3.(2)求线段PQ的长度l与m的关系式,m为何值时,PQ最长?解:∵点P在直线AD上,Q抛物线上,P(m,n),∴n=m﹣1 Q(m,m2+2m﹣3)∴PQ的长l=(m﹣1)﹣(m2+2m﹣3)=﹣m2﹣m+2 (﹣2≤m≤1)∴当m=-(-1/-1×2)=1/2时,PQ的长l最大=﹣(-1/2)2﹣(-1/2)+2=9/4.∴线段PQ的长度l与m的关系式为:l=﹣m2﹣m+2 (﹣2≤m≤1)当m=-1/2时,PQ最长,最大值为9/4.(3)在平面内是否存在整点(横、纵坐标都为整数)R,使得P、Q、D、R为顶点的四边形是平行四边形?若存在,求出点R的坐标;若不存在,说明理由.解:①若PQ为平行四边形的一边,则R一定在直线x=﹣2上,如图:∵PQ的长为0<PQ≤9/4的整数,∴PQ=1或PQ=2,当PQ=1时,则DR=1,此时,在点D上方有R1(﹣2,﹣2),在点D下方有R2(﹣2,﹣4);当PQ=2时,则DR=2,此时,在点D上方有R3(﹣2,﹣1),在点D下方有R4(﹣2,﹣5);②若PQ为平行四边形的一条对角线,则PQ与DR互相平分,当PQ=1时,即:x﹣1﹣(x2+2x﹣3)=1,此时x不是整数,当PQ=2时,即x﹣1﹣(x2+2x﹣3)=2,此时x1=﹣1,x2=0;当x1=﹣1,R与点C重合,即R5(0,﹣3),当x2=0;此时R6(2,﹣1)综上所述,符合条件的点R有:R1(﹣2,﹣2),R2(﹣2,﹣4),R3(﹣2,﹣1),R4(﹣2,﹣5),R5(0,﹣3),R6(2,﹣1).答:符合条件的点R共有6个,【三】如图,抛物线y=ax2+bx+c(a≠0)的顶点坐标为(2,﹣1),图象与y轴交于点C(0,3),与x轴交于A、B 两点.(1)求抛物线的解析式;解:∵抛物线的顶点坐标为(2,﹣1),∴可设抛物线解析式为y=a(x﹣2)2﹣1(a≠0),把C(0,3)代入可得a(0﹣2)2﹣1=3,解得a=1,∴抛物线解析式为y=(x﹣2)2﹣1=x2﹣4x+3;(2)设抛物线对称轴与直线BC交于点D,连接AC、AD,点E为直线BC上的任意一点,过点E作x轴的垂线与抛物线交于点F,问是否存在点E使△DEF为直角三角形?若存在,求出点E坐标,若不存在,请说明理由.解:在y=x2﹣4x+3中,令y=0可得x2﹣4x+3=0,解得x=1或x=3,∴A(1,0),B(3,0),设直线BC解析式为y=kx+3,把B(3,0)代入得:3k+3=0,解得k=﹣1,∴直线BC解析式为y=﹣x+3,由(1)可知抛物线的对称轴为x=2,此时y=﹣2+3=1,∴D(2,1),∴AD2=2,AC2=10,CD2=8,∵AD2+CD2=AC2,∴∠ADC=90°,由题意知EF∥y轴,则∠FED=∠OCB≠90°,∴△DEF为直角三角形,分∠DFE=90°和∠EDF=90°两种情况,①当∠DFE=90°时,即DF∥x轴,则D、F的纵坐标相同,∴F点纵坐标为1,∵点F在抛物线上,∴x2﹣4x+3=1,解得x=2±√2,即点E的横坐标为2±√2,∵点E在直线BC上,∴当x=2+√2时,y=﹣x+3=1-√2,当x=2-√2时,y=﹣x+3=1,∴E点坐标为(2+√2,1-√2)或(2-√2,1+√2);②当∠EDF=90°时,且∠ADC=90°,∴点F在直线AD 上,∵A(1,0),D(2,1),∴直线AD解析式为y=x﹣1,∴直线AD与抛物线的交点即为F点,联立直线AD与抛物线解析式有x2﹣4x+3=x﹣1,解得x=1或x=4,当x=1时,y=﹣x+3=2,当x=4时,y=﹣x+3=﹣1,∴E点坐标为(1,2)或(4,﹣1),综上可知存在满足条件的点E,其坐标为(2+√2,1-√2)或(2-√2,1+√2)或(1,2)或(4,﹣1).。

九年级数学上册 二次函数易错题(Word版 含答案)

九年级数学上册  二次函数易错题(Word版 含答案)

九年级数学上册二次函数易错题(Word版含答案)一、初三数学二次函数易错题压轴题(难)1.如图1,抛物线y=mx2﹣3mx+n(m≠0)与x轴交于点C(﹣1,0)与y轴交于点B (0,3),在线段OA上有一动点E(不与O、A重合),过点E作x轴的垂线交直线AB 于点N,交抛物线于点P,过点P作PM⊥AB于点M.(1)分别求出抛物线和直线AB的函数表达式;(2)设△PMN的面积为S1,△AEN的面积为S2,当1236 25SS=时,求点P的坐标;(3)如图2,在(2)的条件下,将线段OE绕点O逆时针旋转的到OE′,旋转角为α(0°<α<90°),连接E′A、E′B,求E'A+23E'B的最小值.【答案】(1)抛物线y=﹣34x2+94x+3,直线AB解析式为y=﹣34x+3;(2)P(2,3 2);(3410【解析】【分析】(1)由题意令y=0,求出抛物线与x轴交点,列出方程即可求出a,根据待定系数法可以确定直线AB解析式;(2)根据题意由△PNM∽△ANE,推出65PNAN=,以此列出方程求解即可解决问题;(3)根据题意在y轴上取一点M使得OM′=43,构造相似三角形,可以证明AM′就是E′A+23E′B的最小值.【详解】解:(1)∵抛物线y=mx2﹣3mx+n(m≠0)与x轴交于点C(﹣1,0)与y轴交于点B (0,3),则有330 nm m n⎧⎨⎩++==,解得433mn⎧⎪⎨⎪-⎩==,∴抛物线239344y x x=-++,令y=0,得到239344x x-++=0,解得:x=4或﹣1,∴A(4,0),B(0,3),设直线AB解析式为y=kx+b,则340bk b+⎧⎨⎩==,解得334kb⎧-⎪⎨⎪⎩==,∴直线AB解析式为y=34-x+3.(2)如图1中,设P(m,239344m m-++),则E(m,0),∵PM⊥AB,PE⊥OA,∴∠PMN=∠AEN,∵∠PNM=∠ANE,∴△PNM∽△ANE,∵△PMN的面积为S1,△AEN的面积为S2,123625SS=,∴65PNAN=,∵NE∥OB,∴AN AEAB OA=,∴AN=54545454(4﹣m),∵抛物线解析式为y =239344x x -++, ∴PN =239344m m -++﹣(34-m+3)=34-m 2+3m , ∴2336455(4)4m mm -+=-, 解得m =2或4(舍弃), ∴m =2, ∴P (2,32). (3)如图2中,在y 轴上 取一点M′使得OM′=43,连接AM′,在AM′上取一点E′使得OE′=OE .∵OE′=2,OM′•OB =43×3=4, ∴OE′2=OM′•OB , ∴OE OBOM OE '='', ∵∠BOE′=∠M′OE′, ∴△M′OE′∽△E′OB ,∴M E OE BE OB '''='=23, ∴M′E′=23BE′,∴AE′+23BE′=AE′+E′M′=AM′,此时AE′+23BE′最小(两点间线段最短,A 、M′、E′共线时),最小值=AM′2244()3+410. 【点睛】本题属于二次函数综合题,考查相似三角形的判定和性质、待定系数法、最小值问题等知识,解题的关键是构造相似三角形,找到线段AM ′就是AE′+23BE′的最小值,属于中考压轴题.2.在平面直角坐标系中,二次函数22y ax bx =+-的图象与x 轴交于点(4,0)A -,(1,0)B ,与y 轴交于点C .(1)求此抛物线的解析式;(2)点P 是抛物线22y ax bx =+-上的任意一点,过点P 作x 轴的垂线PD ,直线PD交直线AC 于点D .①是否存在点P ,使得PAC ∆的面积是ABC ∆面积的45?若存在,求出点P 的坐标;若不存在,请说明理由.②点Q 是坐标平面内的任意一点,若以O ,C ,Q ,D 为顶点的四边形是菱形时,请直接写出点Q 的坐标. 【答案】(1)213222y x x =+- (2)①存在,点P 的坐标为(22,12)-+-,(222,12)--+,(2,3)--②1816,55Q ⎫⎛-- ⎪⎝⎭,2(2,1)Q -,34525Q ⎝⎭,44525Q ⎛ ⎝⎭【解析】 【分析】(1)将(4,0)A -,(1,0)B 两点坐标代入解析式中求解即可; (2)①先求出△PAC 的面积为4,再求出直线AC 的解析式为122y x =--.设点P 的横坐标为(t ,213222t t +-),利用21442∆∆∆=-=⋅=+=PAC PDC PDA S S S OA PD t t 即可求解; ②先设出D 点坐标,然后再按对角线分成三种情况讨论即可求解. 【详解】解:(1)由题意得,将(4,0)A -,(1,0)B 两点坐标代入解析式中:1642020a b a b --=⎧⎨+-=⎩,解得:1232a b ⎧=⎪⎪⎨⎪=⎪⎩. ∴此抛物线的解析式为213222y x x =+-, 故答案为213222y x x =+-. (2)①存在点P ,使得PAC ∆的面积是ABC ∆面积的45.理由如下: 作出如下所示示意图:∵点(4,0)A -,(1,0)B , ∴4OA =,5AB =, 令0x =,则2y =-, ∴(0,2)C -,∴2OC =, ∴1152522ABC S AB OC ∆=⋅=⨯⨯=, ∴445545PAC ABC S S ∆∆==⨯=, 设直线AC 的解析式为y mx n =+,则有402m n n -+=⎧⎨=-⎩,解得:122m n ⎧=-⎪⎨⎪=-⎩,∴直线AC 的解析式为122y x =--. 设点P 的横坐标为t ,则其纵坐标为213222t t +-, 即213,222P t t t ⎫⎛+- ⎪⎝⎭. ∵PD x ⊥轴,则点D 的坐标为1,22t t ⎫⎛-- ⎪⎝⎭. ∴2213112222222PD t t t t t ⎫⎛=+----=+ ⎪⎝⎭. ∵22111424222PAC PDC PDA S S S OA PD t t t t ∆∆∆=-=⋅=⨯⨯+=+. ∴244t t +=,即2440t t +-=或2440t t ++=,解得:12t =-+22t =--32t =-.∴点P的坐标为(2-+-,(2--+,(2,3)--,故答案为:(2-+-或(2--+或(2,3)--. ②分类讨论:情况一:当OC 为菱形的对角线时,此时DO=DC ,即D 点在线段OC 的垂直平分线, ∴D 点坐标(-2,-1),将△OCD 沿y 轴翻折,此时四边形ODCQ 为菱形,故此时Q 点坐标为(2,-1),如下图一所示,情况二:当OQ 为对角线时,DO=DQ ,如下图二所示,DQ=OC=OD=2,设D 点坐标1,22⎛⎫-- ⎪⎝⎭x x ,则EO=-x ,DE=122x +,在Rt △EDO 中,由勾股定理可知:EO²+ED²=DO², 故221(2)42++=x x ,解得80(),5舍==-x x ,此时Q 点坐标为816,55⎛⎫-- ⎪⎝⎭,情况三:当OD 为对角线时,OC=OQ=2,如下图三所示:设D 点坐标1,22⎛⎫-- ⎪⎝⎭m m ,则EO=|m|,DE=122m +,QE=2-(122m +)=12m , 在Rt △QDO 中,由勾股定理可知:QE²+EO²=QO²,故221()()42+=m m ,解得124545==m m ,此时Q 点坐标为4525⎝⎭或4525⎛ ⎝⎭, 综上所述,Q 点的坐标为1816,55Q ⎫⎛--⎪⎝⎭,2(2,1)Q -,3452555Q ⎛- ⎝⎭,4452555Q ⎛- ⎝⎭.故答案为1816,55Q ⎫⎛-- ⎪⎝⎭,2(2,1)Q -,34525Q ⎝⎭,44525Q ⎛ ⎝⎭. 【点睛】本题考查了待定系数法求二次函数解析式,三角形的面积问题,菱形的存在性问题等,属于综合题,具有一定的难度,熟练掌握二次函数的图形及性质是解决本题的关键.3.如图,抛物线2y ax 2x c =++经过,,A B C 三点,已知()()1,0,0,3.A C -()1求此抛物线的关系式;()2设点P 是线段BC 上方的抛物线上一动点,过点P 作y 轴的平行线,交线段BC 于点,D 当BCP 的面积最大时,求点D 的坐标;()3点M 是抛物线上的一动点,当()2中BCP 的面积最大时,请直接写出使45PDM ∠=︒的点M 的坐标【答案】(1)2y x 2x 3=-++;(2)点33,22D ⎛⎫ ⎪⎝⎭;(3)点M 的坐标为()0,3或113113,22⎛⎫++ ⎪ ⎪⎝⎭【解析】 【分析】(1)由2y ax 2x c =++经过点()(),1,00,3A C -,利用待定系数法即可求得此抛物线的解析式.(2)首先设点()2,23,P t t t -++令2230x x -++=,求得()3,0B ,然后设直线BC 的关系式为y kx b =+,由待定系数法求得BC 的解析式为3y x =-+,可得()()22,3,2333D t t PD t t t t t -+=-++--+=-+,BCP 的面积为()21333,22S PD t t =⨯=-+利用二次函数的性质即可求解; (3)根据PD y 轴,45PDM ∠=︒,分别设DM y x b =+,DM y x b =-+,根据点33D(22,)坐标即可求出b ,再与抛物线联系即可得出点M 的坐标. 【详解】()1将()(),1,00,3A C -分别代入22,y ax x c =++可解得1,3,a c =-=即抛物线的关系式为2y x 2x 3=-++.()2设点()2,23,P t t t -++令2230,x x -++=解得121,3,x x =-=则点()3,0B .设直线BC 的关系式为(y kx b k =+为常数且0k ≠), 将点,B C 的坐标代入,可求得直线BC 的关系式为3y x =-+.∴点()()22,3,2333D t t PD t t t t t -+=-++--+=-+设BCP 的面积为,S 则()21333,22S PD t t =⨯=-+ ∴当32t =时,S 有最大值,此时点33,22D ⎛⎫ ⎪⎝⎭.()3∵PD y 轴,45PDM ∠=︒第一种情况:令DM y x b =+,33D(22,) 解得:b=0∴223y x y x x =⎧⎨=-++⎩解得:113x 2=∴11M 22+(, 第二种情况:令DM y x b =-+,33D(22,) 解得:b=3∴2323y x y x x =-+⎧⎨=-++⎩解得:x=0或x=3(舍去) ∴M 03(,)满足条件的点M 的坐标为()0,3或⎝⎭【点睛】此题主要考查待定系数法求函数解析式和二次函数的性质,熟练掌握二次函数的性质是解题关键.4.在平面直角坐标系中,将函数y =x 2﹣2mx+m (x≤2m ,m 为常数)的图象记为G ,图象G 的最低点为P(x 0,y 0). (1)当y 0=﹣1时,求m 的值.(2)求y0的最大值.(3)当图象G与x轴有两个交点时,设左边交点的横坐标为x1,则x1的取值范围是.(4)点A在图象G上,且点A的横坐标为2m﹣2,点A关于y轴的对称点为点B,当点A不在坐标轴上时,以点A、B为顶点构造矩形ABCD,使点C、D落在x轴上,当图象G 在矩形ABCD内的部分所对应的函数值y随x的增大而减小时,直接写出m的取值范围.【答案】(1)512+或﹣1;(2)14;(3)0<x1<1;(4)m=0或m>43或23≤m<1【解析】【分析】(1)分m>0,m=0,m<0三种情形分别求解即可解决问题;(2)分三种情形,利用二次函数的性质分别求解即可;(3)由(1)可知,当图象G与x轴有两个交点时,m>0,求出当抛物线顶点在x轴上时m的值,利用图象法判断即可;(4)分四种情形:①m<0,②m=0,③m>1,④0<m≤1,分别求解即可解决问题.【详解】解:(1)如图1中,当m>0时,∵y=x2﹣2mx+m=(x﹣m)2﹣m2+m,图象G是抛物线在直线y=2m的左侧部分(包括点D),此时最底点P(m,﹣m2+m),由题意﹣m2+m=﹣1,解得m 51+51-+当m=0时,显然不符合题意,当m<0时,如图2中,图象G是抛物线在直线y=2m的左侧部分(包括点D),此时最底点P是纵坐标为m,∴m=﹣1,综上所述,满足条件的m 51或﹣1;(2)由(1)可知,当m>0时,y0=﹣m2+m=﹣(m﹣12)2+14,∵﹣1<0,∴m=12时,y0的最大值为14,当m=0时,y0=0,当m<0时,y0<0,综上所述,y0的最大值为14;(3)由(1)可知,当图象G与x轴有两个交点时,m>0,当抛物线顶点在x轴上时,4m2﹣4m=0,∴m=1或0(舍弃),∴观察观察图象可知,当图象G与x轴有两个交点时,设左边交点的横坐标为x1,则x1的取值范围是0<x1<1,故答案为0<x1<1;(4)当m<0时,观察图象可知,不存在点A满足条件,当m=0时,图象G在矩形ABCD内的部分所对应的函数值y随x的增大而减小,满足条件,如图3中,当m>1时,如图4中,设抛物线与x轴交于E,F,交y轴于N,观察图象可知当点A在x轴下方或直线x=﹣m和y轴之间时(可以在直线x=﹣m上)时,满足条件.则有(2m﹣2)2﹣2m(2m﹣2)+m<0,解得m>43,或﹣m≤2m﹣2<0,解得23≤m<1(不合题意舍弃),当0<m≤1时,如图5中,当点A在直线x=﹣m和y轴之间时(可以在直线x=﹣m上)时,满足条件.即或﹣m≤2m﹣2<0,解得23≤m<1,综上所述,满足条件m的值为m=0或m>43或23≤m<1.【点睛】本题属于二次函数综合题,考查了二次函数的性质,矩形的性质,最值问题,不等式等知识,解题的关键是理解题意,学会用分类讨论的思想思考问题,学会用转化的思想思考问题,属于中考压轴题.5.如图,已知抛物线y=ax2+bx+c(a≠0)的顶点坐标为Q(2,-1),且与y轴交于点C(0,3),与x轴交于A,B两点(点A在点B的右侧),点P是该抛物线上的一动点,从点C沿抛物线向点A运动(点P与A不重合),过点P作PD∥y轴,交AC于点D.(1)求该抛物线的函数关系式;(2)当△ADP是直角三角形时,求点P的坐标;(3)在题(2)的结论下,若点E在x轴上,点F在抛物线上,问是否存在以A、P、E、F为顶点的平行四边形?若存在,求点F的坐标;若不存在,请说明理由.【答案】(1) y=x2﹣4x+3;(2) P1(1,0),P2(2,﹣1);(3) F1(22,1),F2(22,1).【解析】【分析】(1)已知了抛物线的顶点坐标,可将抛物线的解析式设为顶点式,然后将函数图象经过的C点坐标代入上式中,即可求出抛物线的解析式;(2)由于PD∥y轴,所以∠ADP≠90°,若△ADP是直角三角形,可考虑两种情况:①以点P为直角顶点,此时AP⊥DP,此时P点位于x轴上(即与B点重合),由此可求出P点的坐标;②以点A为直角顶点,易知OA=OC,则∠OAC=45°,所以OA平分∠CAP,那么此时D、P关于x轴对称,可求出直线AC的解析式,然后设D、P的横坐标,根据抛物线和直线AC的解析式表示出D、P的纵坐标,由于两点关于x轴对称,则纵坐标互为相反数,可据此求出P 点的坐标;(3)很显然当P、B重合时,不能构成以A、P、E、F为顶点的四边形,因为点P、F都在抛物线上,且点P为抛物线的顶点,所以PF与x轴不平行,所以只有(2)②的一种情况符合题意,由②知此时P、Q重合;假设存在符合条件的平行四边形,那么根据平行四边形的性质知:P、F的纵坐标互为相反数,可据此求出F点的纵坐标,代入抛物线的解析式中即可求出F 点的坐标.【详解】(1)∵抛物线的顶点为Q (2,﹣1),∴设抛物线的解析式为y=a (x ﹣2)2﹣1,将C (0,3)代入上式,得:3=a (0﹣2)2﹣1,a=1;∴y=(x ﹣2)2﹣1,即y=x 2﹣4x+3;(2)分两种情况:①当点P 1为直角顶点时,点P 1与点B 重合;令y=0,得x 2﹣4x+3=0,解得x 1=1,x 2=3;∵点A 在点B 的右边,∴B (1,0),A (3,0);∴P 1(1,0);②当点A 为△AP 2D 2的直角顶点时;∵OA=OC ,∠AOC=90°,∴∠OAD 2=45°;当∠D 2AP 2=90°时,∠OAP 2=45°,∴AO 平分∠D 2AP 2;又∵P 2D 2∥y 轴,∴P 2D 2⊥AO ,∴P 2、D 2关于x 轴对称;设直线AC 的函数关系式为y=kx+b (k≠0).将A (3,0),C (0,3)代入上式得:303k b b +=⎧⎨=⎩, 解得13k b =-⎧⎨=⎩; ∴y=﹣x+3;设D 2(x ,﹣x+3),P 2(x ,x 2﹣4x+3),则有:(﹣x+3)+(x 2﹣4x+3)=0,即x 2﹣5x+6=0;解得x 1=2,x 2=3(舍去);∴当x=2时,y=x 2﹣4x+3=22﹣4×2+3=﹣1;∴P 2的坐标为P 2(2,﹣1)(即为抛物线顶点).∴P 点坐标为P 1(1,0),P 2(2,﹣1);(3)由(2)知,当P 点的坐标为P 1(1,0)时,不能构成平行四边形;当点P 的坐标为P 2(2,﹣1)(即顶点Q )时,平移直线AP 交x 轴于点E ,交抛物线于F ;∵P (2,﹣1),∴可设F (x ,1);∴x 2﹣4x+3=1,解得x 1=2﹣2,x 2=2+2;∴符合条件的F 点有两个,即F 1(2﹣2,1),F 2(2+2,1).【点睛】此题主要考查了二次函数的解析式的确定、直角三角形的判定、平行四边形的判定与性质等重要知识点,同时还考查了分类讨论的数学思想,能力要求较高,难度较大.6.如图,抛物线2(0)y ax bx c a =++≠与坐标轴的交点为()30A -,,()10B ,,()0,3C -,抛物线的顶点为D .(1)求抛物线的解析式.(2)若E 为第二象限内一点,且四边形ACBE 为平行四边形,求直线CE 的解析式. (3)P 为抛物线上一动点,当PAB ∆的面积是ABD ∆的面积的3倍时,求点P 的坐标.【答案】(1)223y x x =+-;(2)33y x =--;(3)点P 的坐标为()5,12-或()3,12.【解析】【分析】(1)本题考查二次函数解析式的求法,可利用待定系数法,将点带入求解;(2)本题考查二次函数平行四边形存在性问题,可根据题干信息结合平行四边形性质确定动点位置,进一步利用待定系数法求解一次函数解析式;(3)本题考查二次函数与三角形面积问题,可先根据题干面积关系假设动点坐标,继而带入二次函数,列方程求解.【详解】(1)∵抛物线2y ax bx c=++与坐标轴的交点为()30A-,,()10B,,()0,3C-,∴9303a b ca b cc-+=⎧⎪++=⎨⎪=-⎩,解得123abc=⎧⎪=⎨⎪=-⎩∴抛物线的解析式为223y x x=+-.(2)如图,过点E作EH x⊥轴于点H,则由平行四边形的对称性可知1AH OB==,3EH OC==.∵3OA=,∴2OH=,∴点E的坐标为()2,3-.∵点C的坐标为()0,3-,∴设直线CE的解析式为()30y kx k=-<将点()2,3E-代入,得233k--=,解得3k=-,∴直线CE的解析式为33y x=--.(3)∵2223(1)4y x x x=+-=+-,∴抛物线的顶点为()1,4D--.∵PAB∆的面积是ABD∆的面积的3倍,∴设点P为(),12t.将点(),12P t代入抛物线的解析式223y x x=+-中,得22312t t+-=,解得3t=或5t=-,故点P的坐标为()5,12-或()3,12.【点睛】本题考查二次函数与几何的综合,利用待定系数法求解解析式时还可以假设交点式,几何图形存在性问题求解往往需要利用其性质,假设动点坐标,列方程求解.7.如图,在平面直角坐标系中,二次函数y=﹣x2+6x﹣5的图象与x轴交于A、B两点,与y轴交于点C,其顶点为P,连接PA、AC、CP,过点C作y轴的垂线l.(1)P的坐标,C的坐标;(2)直线1上是否存在点Q,使△PBQ的面积等于△PAC面积的2倍?若存在,求出点Q 的坐标;若不存在,请说明理由.【答案】(1)(3,4),(0,﹣5);(2)存在,点Q的坐标为:(92,﹣5)或(212,﹣5)【解析】【分析】(1)利用配方法求出顶点坐标,令x=0,可得y=-5,推出C(0,-5);(2)直线PC的解析式为y=3x-5,设直线交x轴于D,则D(53,0),设直线PQ交x轴于E,当BE=2AD时,△PBQ的面积等于△PAC的面积的2倍,分两种情形分别求解即可解决问题.【详解】解:(1)∵y=﹣x2+6x﹣5=﹣(x﹣3)2+4,∴顶点P(3,4),令x=0得到y=﹣5,∴C(0,﹣5).故答案为:(3,4),(0,﹣5);(2)令y=0,x2﹣6x+5=0,解得:x=1或x=5,∴A(1,0),B(5,0),设直线PC的解析式为y=kx+b,则有534 bk b=-⎧⎨+=⎩,解得:35 kb=⎧⎨=-⎩,∴直线PC的解析式为:y=3x﹣5,设直线交x轴于D,则D(53,0),设直线PQ交x轴于E,当BE=2AD时,△PBQ的面积等于△PAC的面积的2倍,∵AD=23,∴BE=43,∴E(113,0)或E′(193,0),则直线PE的解析式为:y=﹣6x+22,∴Q(92,﹣5),直线PE′的解析式为y=﹣65x+385,∴Q′(212,﹣5),综上所述,满足条件的点Q的坐标为:(92,﹣5)或(212,﹣5);【点睛】本题考查抛物线与x轴的交点、二次函数的性质等知识,解题的关键是熟练掌握待定系数法,学会用转化的思想思考问题,属于中考常考题型.8.在平面直角坐标系中,抛物线y=x2+(k﹣1)x﹣k与直线y=kx+1交于A,B两点,点A 在点B的左侧.(1)如图1,当k=1时,直接写出A ,B 两点的坐标;(2)在(1)的条件下,点P 为抛物线上的一个动点,且在直线AB 下方,试求出△ABP 面积的最大值及此时点P 的坐标;(3)如图2,抛物线y=x 2+(k ﹣1)x ﹣k (k >0)与x 轴交于点C 、D 两点(点C 在点D 的左侧),在直线y=kx+1上是否存在唯一一点Q ,使得∠OQC=90°?若存在,请求出此时k 的值;若不存在,请说明理由.【答案】(1)A(-1,0) ,B(2,3)(2)△ABP 最大面积s=1927322288⨯=; P (12,﹣34) (3)存在;25 【解析】【分析】(1) 当k=1时,抛物线解析式为y=x 2﹣1,直线解析式为y=x+1,然后解方程组211y x y x ⎧=⎨=+⎩﹣即可; (2) 设P (x ,x 2﹣1).过点P 作PF ∥y 轴,交直线AB 于点F ,则F (x ,x+1),所以利用S △ABP =S △PFA +S △PFB ,,用含x 的代数式表示为S △ABP=﹣x 2+x+2,配方或用公式确定顶点坐标即可.(3) 设直线AB :y=kx+1与x 轴、y 轴分别交于点E 、F ,用k 分别表示点E 的坐标,点F 的坐标,以及点C 的坐标,然后在Rt △EOF 中,由勾股定理表示出EF 的长,假设存在唯一一点Q ,使得∠OQC=90°,则以OC 为直径的圆与直线AB 相切于点Q ,设点N 为OC 中点,连接NQ ,根据条件证明△EQN ∽△EOF ,然后根据性质对应边成比例,可得关于k 的方程,解方程即可.【详解】解:(1)当k=1时,抛物线解析式为y=x 2﹣1,直线解析式为y=x+1.联立两个解析式,得:x 2﹣1=x+1,解得:x=﹣1或x=2,当x=﹣1时,y=x+1=0;当x=2时,y=x+1=3,∴A (﹣1,0),B (2,3).(2)设P (x ,x 2﹣1).如答图2所示,过点P 作PF ∥y 轴,交直线AB 于点F ,则F (x ,x+1).∴PF=y F ﹣y P =(x+1)﹣(x 2﹣1)=﹣x 2+x+2.S △ABP =S △PFA +S △PFB =PF (xF ﹣xA )+PF (xB ﹣xF )=PF (xB ﹣xA )=PF∴S △ABP=(﹣x 2+x+2)=﹣(x ﹣12)2+278 当x=12时,yP=x 2﹣1=﹣34. ∴△ABP 面积最大值为,此时点P 坐标为(12,﹣34). (3)设直线AB :y=kx+1与x 轴、y 轴分别交于点E 、F ,则E (﹣1k ,0),F (0,1),OE=1k,OF=1. 在Rt △EOF 中,由勾股定理得:EF=22111=k k +⎛⎫+ ⎪⎝⎭.令y=x 2+(k ﹣1)x ﹣k=0,即(x+k )(x ﹣1)=0,解得:x=﹣k 或x=1.∴C (﹣k ,0),OC=k .假设存在唯一一点Q ,使得∠OQC=90°,如答图3所示,则以OC 为直径的圆与直线AB 相切于点Q ,根据圆周角定理,此时∠OQC=90°. 设点N 为OC 中点,连接NQ ,则NQ ⊥EF ,NQ=CN=ON=2k . ∴EN=OE ﹣ON=1k ﹣2k . ∵∠NEQ=∠FEO ,∠EQN=∠EOF=90°,∴△EQN ∽△EOF , ∴NQ EN OF EF =,即:1221k k k k-=, 解得:k=±25, ∵k >0,∴k=25. ∴存在唯一一点Q ,使得∠OQC=90°,此时k=25. 考点:1.二次函数的性质及其应用;2.圆的性质;3.相似三角形的判定与性质.9.如图,已知抛物线2y x bx c =-++与x 轴交于A ,B 两点,过点A 的直线l 与抛物线交于点C ,其中点A 的坐标是()1,0,点C 的坐标是()2,3-,抛物线的顶点为点D .(1)求抛物线和直线AC 的解析式.(2)若点P 是抛物线上位于直线AC 上方的一个动点,求APC ∆的面积的最大值及此时点P 的坐标.(3)若抛物线的对称轴与直线AC 相交于点E ,点M 为直线AC 上的任意一点,过点M 作//MN DE 交抛物线于点N ,以D ,E ,M ,N 为顶点的四边形能否为平行四边形?若能,求出点M 的坐标;若不能,请说明理由.【答案】(1)y=-x 2-2x+3,y=-x+1;(2)最大值为278,此时点P(12-,154);(3)能,(0,1),(1172-+,3172)或(1172--,3172) 【解析】【分析】(1)直接利用待定系数法进行求解,即可得到答案;(2)设点P(m ,-m 2-2m+3),则Q(m ,-m+1),求出PQ 的长度,结合三角形的面积公式和二次函数的性质,即可得到答案;(3)根据题意,设点M(t ,-t+1),则点N(t ,-t 2-2t+3),可分为两种情况进行分析:①当点M 在线段AC 上时,点N 在点M 上方;②当点M 在线段AC (或CA )延长线上时,点N 在点M 下方;分别求出点M 的坐标即可.【详解】解:(1)∵抛物线y=-x 2+bx+c 过点A(1,0),C(-2,3),∴10423b c b c -++=⎧⎨--+=⎩,,解得:23b c =-⎧⎨=⎩,. ∴抛物线的解析式为y=-x 2-2x+3.设直线AC 的解析式为y=kx+n .将点A ,C 坐标代入,得023k n k n +=⎧⎨-+=⎩,,解得11k n =-⎧⎨=⎩,. ∴直线AC 的解析式为y=-x+1.(2)过点P 作PQ ∥y 轴交AC 于点Q .设点P(m ,-m 2-2m+3),则Q(m ,-m+1).∴PQ=(-m 2-2m+3)-(-m+1)=-m 2-m+2.∴S △APC =S △PCQ +S △APQ =12PQ·(x A -x C )=12(-m 2-m+2)×3=23127()228m -++. ∴当m=12-时,S △APC 最大,最大值为278,此时点P(12-,154). (3)能.∵y=-x 2-2x+3,点D 为顶点,∴点D(-1,4),令x=-1时,y=-(-1)+1=2,∴点E(-1,2).∵MN ∥DE ,∴当MN=DE=2时,以D ,E ,M ,N 为顶点的四边形是平行四边形.∵点M 在直线AC 上,点N 在抛物线上,∴设点M(t ,-t+1),则点N(t ,-t 2-2t+3).①当点M 在线段AC 上时,点N 在点M 上方,则MN=(-t 2-2t+3)-(-t+1)=-t 2-t+2.∴-t 2-t+2=2,解得:t=0或t=-1(舍去).∴此时点M 的坐标为(0,1).②当点M 在线段AC (或CA )延长线上时,点N 在点M 下方,则MN=(-t+1)-(-t 2-2t+3)=t 2+t-2.∴t 2+t-2=2,解得:或.∴此时点M 的坐标为(1172-+,3172-)或(1172--,3172+). 综上所述,满足条件的点M 的坐标为:(0,1),(117-+,317-)或(117--,317+). 【点睛】本题考查了待定系数法求一次函数解析式、待定系数法求二次函数解析式、二次函数图象上点的坐标特征、一次函数图象上点的坐标特征、二次函数的性质、三角形的面积以及周长,解题的关键是:(1)根据点的坐标,利用待定系数法求出抛物线及直线AC 的函数关系式;(2)利用三角形的面积公式和二次函数的性质解题;(3)利用二次函数图象的对称性结合两点之间线段最短找出点M 的位置.10.如图,已知顶点为M (32,258)的抛物线过点D (3,2),交x 轴于A ,B 两点,交y 轴于点C ,点P 是抛物线上一动点.(1)求抛物线的解析式;(2)当点P 在直线AD 上方时,求△PAD 面积的最大值,并求出此时点P 的坐标; (3)过点P 作直线CD 的垂线,垂足为Q ,若将△CPQ 沿CP 翻折,点Q 的对应点为Q '.是否存在点P ,使Q '恰好落在x 轴上?若存在,求出点P 的坐标;若不存在,说明理由.【答案】(1)213222y x x =-++;(2)最大值为4,点P (1,3);(3)存在,点P 139313-+). 【解析】【分析】 (1)用待定系数法求解即可;(2)由△PAD 面积S =S △PHA +S △PHD ,即可求解;(3)结合图形可判断出点P 在直线CD 下方,设点P 的坐标为(a ,213222a a -++),当P 点在y 轴右侧时,运用解直角三角形及相似三角形的性质进行求解即可.【详解】 解:(1)设抛物线的表达式为:y =a (x ﹣h )2+k =a (x ﹣32)2+258, 将点D 的坐标代入上式得:2=a (3﹣32)2+258, 解得:a =﹣12, ∴抛物线的表达式为:213222y x x =-++; (2)当x =0时,y =﹣12x 2+32x +2=2, 即点C 坐标为(0,2), 同理,令y =0,则x =4或﹣1,故点A 、B 的坐标分别为:(﹣1,0)、(4,0),过点P 作y 轴的平行线交AD 于点H ,由点A 、D 的坐标得,直线AD 的表达式为:y =12(x +1), 设点P (x ,﹣12x 2+32x +2),则点H (x ,12x +12), 则△PAD 面积为:S =S △PHA +S △PHD =12×PH ×(x D ﹣x A )=12×4×(﹣12x 2+32x +2﹣12x 12-)=﹣x 2+2x +3, ∵﹣1<0,故S 有最大值,当x =1时,S 有最大值,则点P (1,3);(3)存在满足条件的点P ,显然点P 在直线CD 下方,设直线PQ 交x 轴于F ,点P 的坐标为(a ,﹣12a 2+32a +2),当P 点在y 轴右侧时(如图2),CQ =a ,PQ =2﹣(﹣12a 2+32a +2)=12a 2﹣32a , 又∵∠CQ ′O +∠FQ ′P =90°,∠COQ ′=∠Q ′FP =90°,∴∠FQ ′P =∠OCQ ′,∴△COQ ′∽△Q ′FP ,'''Q C Q P CO FQ =,即213222'a a a Q F-=, ∴Q ′F =a ﹣3,∴OQ ′=OF ﹣Q ′F =a ﹣(a ﹣3)=3,CQ =CQ ′22223213CO OQ +=+= 此时a 13P 1393132-+). 【点睛】此题考查了二次函数的综合应用,综合考查了翻折变换、相似三角形的判定与性质,解答此类题目要求我们能将所学的知识融会贯通,属于中考常涉及的题目.。

《二次函数》易错题

《二次函数》易错题

二次函数易错题选摘1、若32)2(--=m x m y 是二次函数,且开口向上,则m 的值为( )A.5±B.5C. —5D.0【答案】C2、已知点(-1,1y ),(2,213y -),(21,3y )在函数12632++=x x y 的图象上,则1y 、2y 、3y 的大小关系是( )A.321y y y >>B. 312y y y >>C. 132y y y >>D. 213y y y >>【答案】C3、已知抛物线c bx ax y ++=2经过原点和第一、二、三象限,那么,( )A.000>>>c b a ,,B. 000=<>c b a ,,C.000><<c b a ,,D. 000=>>c b a ,,【答案】D4、一次函数b ax y +=与二次函数c bx ax y ++=2在同一坐标系中的图象可能是( )A B C D【答案】C5、当k 取任何实数时,抛物线22)(21k k x y +-=的顶点所在的曲线是( ) A .2x y = B. 2x y -= C. 2x y =(0>x ) D. 2x y =(0<x )【答案】A6、抛物线2ax y =与22x y =形状相同,则a =_________.【答案】2±.(第7题图) (第8题图) 7、如图是抛物线c bx ax y ++=2的一部分,对称轴是直线x =1,若其与x 轴的一个交点为(3,0),则由图象可知,不等式02>++c bx ax 的解集是_____________.【答案】31>-<x x 或8、如图是二次函数c bx ax y ++=2(0≠a )在平面直角坐标系中的图象,根据图形判断:①0>c ;②0<++c b a ;③02<-b a ;④ac a b 482>+,其中正确的是__________(填写序号).【答案】②④9如图,隧道的截面是由抛物线AED 和矩形ABCD 构成,矩形的长BC 为8m ,宽AB 为2m ,以BC 所在的直线为x 轴,线段BC 的中垂线为y 轴,建立平面直角坐标系.y 轴是抛物线的对称轴,顶点E 到坐标原点O 的距离为6m 。

人教版九年级上册数学第二十二章 二次函数含答案(易错题)

人教版九年级上册数学第二十二章 二次函数含答案(易错题)

人教版九年级上册数学第二十二章二次函数含答案一、单选题(共15题,共计45分)1、对于抛物线,下列说法正确的是()A.开口向下,顶点坐标B.开口向上,顶点坐标C.开口向下,顶点坐标D.开口向上,顶点坐标2、抛物线的顶点坐标是().A. B. C. D.3、下列二次函数所对应的抛物线中,开口程度与其它不一样的是()A.y=x 2+2x﹣7B.C.D.4、对于二次函数y=﹣(x﹣1)2+2的图象与性质,下列说法正确的是()A.对称轴是直线x=1,最小值是2B.对称轴是直线x=1,最大值是2 C.对称轴是直线x=﹣1,最小值是2 D.对称轴是直线x=﹣1,最大值是25、如图为二次函数y=ax2+bx+c的图象,在下列说法中正确的是,()① ac>0 ②方程ax2+bx+c=0的根是x1=-1,x2=3③a+b+c<0④当x>1时,y随x的增大而增大A.①③B.②④C.①②④D.②③④6、如图,是抛物线y=ax2+bx+c(a≠0)图象的一部分,已知抛物线的对称轴为x=2,与x轴的一个交点是(﹣1,0).下列结论:①ac<0;②4a﹣2b+c>0;③抛物线与x轴的另一个交点是(4,0);④点(﹣3,y1),(6,y2)都在抛物线上,则有y1<y2.其中正确的个数为()A.1B.2C.3D.47、如图是有相同对称轴的两条抛物线,则下列关系中正确的是()A.h=m,k=nB.h=m,k>nC.h=m,k<nD.h>m,k>n8、在平面直角坐标系中,将抛物线y=x2-4先向右平移两个单位,再向上平移两个单位,得到的抛物线的解析式是( )A. B. C. D.9、抛物线的对称轴是直线()A. B. C. D.10、已知二次函数y=(m﹣2)x2+2mx+m﹣3的图象与x轴有两个交点,(x1,0),(x2, 0),则下列说法正确是( )①该函数图象一定过定点(﹣1,﹣5);②若该函数图象开口向下,则m的取值范围为:m<2;③当m>2,且1≤x≤2时,y的最大值为:4m﹣5;④当m>2,且该函数图象与x轴两交点的横坐标x1, x2满足﹣3<x1<﹣2,﹣1<x2<0时,m的取值范围为:m<11.A.①②③④B.①②④C.①③④D.②③④11、将抛物线y=x2+3先向左平移2个单位,再向下平移1个单位,所得新抛物线的解析式为()A.y=(x+2)2+2B.y=(x﹣1)2+5C.y=(x+2)2+4D.y =(x﹣2)2+212、二次函数的图象可以由二次函数的图象平移而得到,下列平移正确的是()A.先向右平移2个单位,再向上平移1个单位B.先向右平移2个单位,再向下平移1个单位C.先向左平移2个单位,再向上平移1个单位 D.先向左平移2个单位,再向下平移1个单位13、已知抛物线y=x2﹣2x+1与x轴的一个交点为(m,0),则代数式m2﹣2m+2013的值为()A.2011B.2012C.2013D.201414、抛物线y=x2+2x+2的对称轴是()A.直线x=1B.直线x=﹣1C.直线y=﹣1D.直线y=115、已知关于x的二次函数y=(x-h)2+3,当1≤x≤3时,函数有最小值2h,则h的值为()A. B. 或2 C. 或6 D. 或2或6二、填空题(共10题,共计30分)16、已知二次函数y=x2+2x﹣7的一个函数值是8,那么对应的自变量x的值是________.17、已知关于的二次函数的图象与轴的一个交点坐标为.若,则的取值范围是________18、二次函数y=﹣x2+2x+3,当x=________时,y有最________值为________.19、某水果店销售一批水果,平均每天可售出,每kg盈利4元,经调查发现,每kg降价0.5元,商店平均每天可多售出水果,则商店平均每天的最高利润为________元20、二次函数y=ax2+bx+c,自变量x与函数y的对应值如表:x …-5 -4 -3 -2 -1 0 …y …4 0 -2 -2 0 4 …下列说法:①抛物线的开口向下;②当x>-3时,y随x的增大而增大;③二次函数的最小值是-2;④抛物线的对称轴是x=-2.5.其中正确的是________.(填序号)21、对于一个函数,当自变量x取n时,函数值y等于4-n,我们称n为这个函数的“二合点”,如果二次函数y=mx2+x+1有两个相异的二合点x1, x2,且x1<x2<1,则m的取值范围是________.22、如图,线段AB的长为2,C为AB上一个动点,分别以AC、BC为斜边在AB 的同侧作两个等腰直角三角形△ACD和△BCE,那么DE长的最小值是________.23、已知关于x的一元二次方程x2+bx﹣c=0无实数解,则抛物线y=﹣x2﹣bx+c经过________象限.24、已知二次函数的图象经过原点及点(﹣3,﹣2),且图象与x轴的另一交点到原点的距离为1,则该二次函数的解析式为________.25、若二次函数的图像上有,,三点,则,,的大小关系是________.三、解答题(共5题,共计25分)26、已知抛物线的顶点坐标是(3,-1),与y轴的交点是(0,-4),求这个二次函数的解析式.27、用配方法把二次函数y=﹣2x2+6x+4化为y=a(x+m)2+k的形式,再指出该函数图象的开口方向、对称轴和顶点坐标.28、已知二次函数y=ax2+k(a≠0),当x=2时,y=4;当x=﹣1时,y=﹣3,求这个二次函数解析式.29、求二次函数y=﹣2x2+8x﹣6的对称轴、顶点坐标.30、抛物线的图象如图,求这条抛物线的解析式.(结果化成一般式)参考答案一、单选题(共15题,共计45分)1、A2、D3、A4、B5、D6、B7、B8、E9、D10、B11、A13、B14、B15、C二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)27、28、29、30、。

二次函数易错题(Word版 含答案)

二次函数易错题(Word版 含答案)

二次函数易错题(Word版含答案)一、初三数学二次函数易错题压轴题(难)1.图①,二次函数y=ax2+bx+c(a≠0)的图象经过点A(﹣1,0),并且与直线y=1 2 x﹣2相交于坐标轴上的B、C两点,动点P在直线BC下方的二次函数的图象上.(1)求此二次函数的表达式;(2)如图①,连接PC,PB,设△PCB的面积为S,求S的最大值;(3)如图②,抛物线上是否存在点Q,使得∠ABQ=2∠ABC?若存在,则求出直线BQ的解析式及Q点坐标;若不存在,请说明理由.【答案】(1)y=12x2﹣32x﹣2;(2)﹣1<0,故S有最大值,当x=2时,S的最大值为4;(3)Q的坐标为(53,﹣289)或(﹣113,929).【解析】【分析】(1)根据题意先求出点B、C的坐标,进而利用待定系数法即可求解;(2)由题意过点P作PH//y轴交BC于点H,并设点P(x,12x2﹣32x﹣2),进而根据S=S△PHB+S△PHC=12PH•(x B﹣x C),进行计算即可求解;(3)根据题意分点Q在BC下方、点Q在BC上方两种情况,利用解直角三角形的方法,求出点H的坐标,进而分析求解.【详解】解:(1)对于直线y=12x﹣2,令x=0,则y=﹣2,令y=0,即12x﹣2=0,解得:x=4,故点B、C的坐标分别为(4,0)、(0,﹣2),抛物线过点A、B两点,则y=a(x+1)(x﹣4),将点C的坐标代入上式并解得:a=12,故抛物线的表达式为y=12x2﹣32x﹣2①;(2)如图2,过点P作PH//y轴交BC于点H,设点P(x,12x2﹣32x﹣2),则点H(x,12x﹣2),S=S△PHB+S△PHC=12PH•(x B﹣x C)=12×4×(12x﹣2﹣12x2+32x+2)=﹣x2+4x,∵﹣1<0,故S有最大值,当x=2时,S的最大值为4;(3)①当点Q在BC下方时,如图2,延长BQ交y轴于点H,过点Q作QC⊥BC交x轴于点R,过点Q作QK⊥x轴于点K,∵∠ABQ=2∠ABC,则BC是∠ABH的角平分线,则△RQB为等腰三角形,则点C是RQ的中点,在△BOC中,tan∠OBC=OCOB=12=tan∠ROC=RCBC,则设RC=x=QB,则BC=2x,则RB22(2)x x5=BQ,在△QRB中,S△RQB=12×QR•BC=12BR•QK,即122x•2x=125,解得:KQ5∴sin∠RBQ=KQBQ55x=45,则tanRBH=43,在Rt △OBH 中,OH =OB•tan ∠RBH =4×43=163,则点H (0,﹣163), 由点B 、H 的坐标得,直线BH 的表达式为y =43(x ﹣4)②, 联立①②并解得:x =4(舍去)或53, 当x =53时,y =﹣289,故点Q (53,﹣289); ②当点Q 在BC 上方时,同理可得:点Q 的坐标为(﹣113,929); 综上,点Q 的坐标为(53,﹣289)或(﹣113,929). 【点睛】本题考查的是二次函数综合运用,涉及到一次函数的性质、等腰三角形的性质、解直角三角形、面积的计算等,注意分类讨论思维的应用,避免遗漏.2.在平面直角坐标系中,O 为坐标原点,抛物线L :y =ax 2﹣4ax (a >0)与x 轴正半轴交于点A .抛物线L 的顶点为M ,对称轴与x 轴交于点D . (1)求抛物线L 的对称轴.(2)抛物线L :y =ax 2﹣4ax 关于x 轴对称的抛物线记为L ',抛物线L '的顶点为M ',若以O 、M 、A 、M '为顶点的四边形是正方形,求L '的表达式.(3)在(2)的条件下,点P 在抛物线L 上,且位于第四象限,点Q 在抛物线L '上,是否存在点P 、点Q 使得以O 、D 、P 、Q 为顶点的四边形是平行四边形,若存在,求出点P 坐标,若不存在,请说明理由.【答案】(1)2x =;(2)2122y x x =-+ ;(3)存在,P 点的坐标为(33,3或(33,3-或(13,3或(13,3+-或31,2⎛⎫- ⎪⎝⎭【解析】 【分析】(1)根据抛物线的对称轴公式计算即可.(2)利用正方形的性质求出点M,M′的坐标即可解决问题.(3)分OD是平行四边形的边或对角线两种情形求解即可.【详解】解:(1)∵抛物线L:y=ax2﹣4ax(a>0),∴抛物线的对称轴x=﹣42aa=2.(2)如图1中,对于抛物线y=ax2﹣4ax,令y=0,得到ax2﹣4ax=0,解得x=0或4,∴A(4,0),∵四边形OMAM′是正方形,∴OD=DA=DM=DM′=2,∴M((2,﹣2),M′(2,2)把M(2,﹣2)代入y=ax2﹣4ax,可得﹣2=4a﹣8a,∴a=12,∴抛物线L′的解析式为y=﹣12(x﹣2)2+2=﹣12x2+2x.(3)如图3中,由题意OD=2.当OD 为平行四边形的边时,PQ =OD =2,设P (m ,12m 2﹣2m ),则Q [m ﹣2,﹣12(m ﹣2)2+2(m ﹣2)]或[m +2,﹣12(m +2)2+2(m +2)], ∵PQ ∥OD , ∴12m 2﹣2m =﹣12(m ﹣2)2+2(m ﹣2)或12m 2﹣2m =﹣12(m +2)2+2(m +2), 解得m =33,∴P 33或(333或(133和33, 当OD 是平行四边形的对角线时,点P 的横坐标为1,此时P (1,﹣32), 综上所述,满足条件的点P 的坐标为33或(333或(133)和33)或(1,﹣32). 【点睛】本题属于二次函数综合题,考查了二次函数的性质,正方形的性质,平行四边形的判定和性质等知识,解题的关键是理解题意,学会利用参数构建方程解决问题,学会用分类讨论的思想思考问题,属于中考压轴题学会利用参数构建方程解决问题,学会用分类讨论的思想思考问题,属于中考压轴题3.对于函数y =ax 2+(b+1)x+b ﹣2(a ≠0),若存在实数x0,使得a 20x +(b+1)x 0+b ﹣2=x0成立,则称x 0为函数y =ax 2+(b+1)x+b ﹣2(a ≠0)的不动点. (1)当a =2,b =﹣2时,求y =ax 2+(b+1)x+b ﹣2(a ≠0)的不动点;(2)若对于任何实数b ,函数y =ax 2+(b+1)x+b ﹣2(a ≠0)恒有两相异的不动点,求实数a 的取值范围;(3)在(2)的条件下,若y =ax 2+(b+1)x+b ﹣2(a ≠0)的图象上A ,B 两点的横坐标是函数y =ax 2+(b+1)x+b ﹣2(a ≠0)的不动点,且直线y =﹣x+2121a 是线段AB 的垂直平分线,求实数b 的取值范围.【答案】(1)不动点是﹣1或2;(2)a 的取值范围是0<a <2;(3)b 的取值范围是﹣b <0. 【解析】 【分析】(1)将a =2,b =﹣2代入函数y =ax 2+(b+1)x+b ﹣2(a ≠0),得y =2x 2﹣x ﹣4,然后令x =2x 2﹣x ﹣4,求出x 的值,即y =ax 2+(b+1)x+b ﹣2(a ≠0)的不动点;(2)对于任何实数b ,函数y =ax 2+(b+1)x+b ﹣2(a ≠0)恒有两相异的不动点,可以得到x =ax 2+(b+1)x+b ﹣2(a ≠0)时,对于任何实数b 都有△>0,然后再设t =△,即可求得a 的取值范围;(3)根据y =ax 2+(b+1)x+b ﹣2(a ≠0)的图象上A ,B 两点的横坐标是函数y =ax 2+(b+1)x+b ﹣2(a ≠0)的不动点,可知点A 和点B 均在直线y =x 上,然后设出点A 和点B 的坐标,从而可以得到线段AB 的中点坐标,再根据直线y =﹣x+2121a 是线段AB 的垂直平分线,从而可以求得b 的取值范围. 【详解】解:(1)当a =2,b =﹣2时, 函数y =2x 2﹣x ﹣4, 令x =2x 2﹣x ﹣4, 化简,得x 2﹣x ﹣2=0 解得,x 1=2,x 2=﹣1,即y =ax 2+(b+1)x+b ﹣2(a ≠0)的不动点是﹣1或2; (2)令x =ax 2+(b+1)x+b ﹣2, 整理,得 ax 2+bx+b ﹣2=0,∵对于任何实数b ,函数y =ax 2+(b+1)x+b ﹣2(a ≠0)恒有两相异的不动点, ∴△=b 2﹣4a (b ﹣2)>0,设t =b 2﹣4a (b ﹣2)=b 2﹣4ab+8a ,对于任何实数b ,t >0, 故(﹣4a )2﹣4×1×8a <0, 解得,0<a <2,即a 的取值范围是0<a <2; (3)由题意可得, 点A 和点B 在直线y =x 上, 设点A (x 1,x 1),点B (x 2,x 2),∵A ,B 两点的横坐标是函数y =ax 2+(b+1)x+b ﹣2(a ≠0)的不动点, ∴x 1,x 2是方程ax 2+bx+b ﹣2=0的两个根, ∴x 1+x 2=﹣b a,∵线段AB 中点坐标为(122x x +,122x x+), ∴该中点的坐标为(2b a -,2b a-), ∵直线y =﹣x+2121a +是线段AB 的垂直平分线,∴点(2b a -,2ba -)在直线y =﹣x+2121a +上, ∴2ba -=21221b a a ++∴﹣b =222122a a a ≤+=2,(当a =22时取等号) ∴0<﹣b ≤24, ∴﹣2≤b <0, 即b 的取值范围是﹣24≤b <0. 【点睛】本题是一道二次函数综合题、主要考查新定义、二次函数的性质、二次函数图象上点的坐标特征、一次函数的性质,解答本题的关键是明确题意,利用二次函数的性质解答.4.如图1,抛物线21:C y x b =+交y 轴于()0,1A .(1)直接写出抛物线1C 的解析式______________.(2)如图1,x 轴上两动点,M N 满足:m n X X n -==.若,B C (B 在C 左侧)为线段MN 上的两个动点,且满足:B 点和C 点关于直线:1l x =对称.过B 作BB x '⊥轴交1C于B ',过C 作CC x '⊥轴交1C 于C ',连接B C ''.求B C ''的最大值(用含n 的代数式表示).(3)如图2,将抛物线1C 向下平移78个单位长度得到抛物线2C .2C 对称轴左侧的抛物线上有一点M ,其横坐标为m .以OM 为直径作K ,记⊙K 的最高点为Q .若Q 在直线2y x =-上,求m 的值.【答案】(1)21y x =+;(2)1|n -;(3)14m =-或12m =- 【解析】 【分析】(1)将()0,1A 带入抛物线1C 解析式,求得b 的值,即可得到抛物线1C 的解析式; (2)设(),0B q ,则()2,0C q -,求()2B C ''并进行化简,由1n q -≤<且12,qn <-得21n q -<,则当()2maxB C''⎡⎤⎢⎥⎣⎦时,取min 2q q n ==-,带入()2B C '',即可求得()maxB C '';(3)依题意将抛物线1C 向下平移78个单位长度得到抛物线2C ,求得2C 解析式,根据解析式特点设21,8M m m ⎛⎫+ ⎪⎝⎭,得到222218OM m m ⎛⎫=++ ⎪⎝⎭,由圆的特性易求得,⊙K 的最高点点Q 坐标为:2111,2228m OM m ⎛⎫⎛⎫++ ⎪⎪⎝⎭⎝⎭,设Q y k =,则2111228k OM m ⎛⎫=++ ⎪⎝⎭,化简得到22211084k m k m ⎛⎫++-= ⎪⎝⎭,由Q 点在2y x =-上,得2Q k x m =-=-,继而得到231048m m -+=,解得14m =-或12m =-. 【详解】解:(1)将()0,1A 带入抛物线21:C y x b =+,得b=1, 则21:1C y x =+,(2)设(),0B q ,则()2,0C q -, ∴()22222(2)(2)B C q q q q ''⎡⎤=--+--⎣⎦2204020q q =-+()2201q =-,∵1n q -≤<且12,q n <-21n q -<∴,∴()2maxB C''⎡⎤⎢⎥⎣⎦时,min 2q q n ==-,即()22220(21)20(1)B C n n ''=--=-,∴()max1|B C n ''=-,(3)根据题意,将抛物线1C 向下平移78个单位长度得到抛物线2C , ∴221:8C y x =+, ∴21,8M m m ⎛⎫+⎪⎝⎭, ∴222218OM m m ⎛⎫=++ ⎪⎝⎭,∴由圆的特性易求得,⊙K 的最高点点Q 坐标为:2111,2228m OM m ⎛⎫⎛⎫++ ⎪⎪⎝⎭⎝⎭, 设Q y k =,则2111228k OM m ⎛⎫=++ ⎪⎝⎭, ∴222111428OM k m ⎡⎤⎛⎫=-+ ⎪⎢⎥⎝⎭⎣⎦, 化简上式得:22211084k m k m ⎛⎫++-= ⎪⎝⎭, ∵Q 点在2y x =-上,则2Q k x m =-=-, ∴k m =-为上述方程的一个解, ∴分析可知1()04k m k m ⎛⎫+-= ⎪⎝⎭, 21148m m m -=+∴,∴231048m m -+=, 解得:114m =-,212m =-(经检验114m =-,212m =-是方程231048m m -+=的解), 故14m =-或12m =-.【点睛】本题主要考查二次函数的图像及性质、图像平移的性质、及二次函数与一元二次方程的综合应用、最值求法等知识.解题关键是熟练掌握二次函数的性质,充分利用数形结合的思想.5.定义:对于已知的两个函数,任取自变量x 的一个值,当0x ≥时,它们对应的函数值相等;当0x <时,它们对应的函数值互为相反数,我们称这样的两个函数互为相关函数.例如:正比例函数y x =,它的相关函数为(0)(0)x x y x x ≥⎧=⎨-<⎩. (1)已知点()5,10A -在一次函数5y ax =-的相关函数的图像上,求a 的值; (2)已知二次函数2142y x x =-+-. ①当点3,2B m ⎛⎫ ⎪⎝⎭在这个函数的相关函数的图像上时,求m 的值; ②当33x -≤≤时,求函数2142y x x =-+-的相关函数的最大值和最小值. (3)在平面直角坐标系中,点M 、N 的坐标分别为1,12⎛⎫-⎪⎝⎭、9,12⎛⎫⎪⎝⎭,连结MN .直接写出线段MN 与二次函数24y x x n =-++的相关函数的图像有两个公共点时n 的取值范围.【答案】(1)1;(2)①22- ;②max 432y =,min 12y =-;(3)31n -<≤-,514n <≤【解析】 【分析】(1)先求出5y ax =-的相关函数,然后代入求解,即可得到答案;(2)先求出二次函数的相关函数,①分为m <0和m ≥0两种情况将点B 的坐标代入对应的关系式求解即可; ②当-3≤x <0时,y=x 2-4x+12,然后可 此时的最大值和最小值,当0≤x≤3时,函数y=-x 2+4x-12,求得此时的最大值和最小值,从而可得到当-3≤x≤3时的最大值和最小值; (3)首先确定出二次函数y=-x 2+4x+n 的相关函数与线段MN 恰好有1个交点、2个交点、3个交点时n 的值,然后结合函数图象可确定出n 的取值范围. 【详解】解:(1)根据题意,一次函数5y ax =-的相关函数为5,(0)5,(0)ax x y ax x -≥⎧=⎨-+<⎩, ∴把点()5,10A -代入5y ax =-+,则(5)510a -⨯-+=,∴1a =;(2)根据题意,二次函数2142y x x =-+-的相关函数为2214,(0)214,(0)2x x x y x x x ⎧-+-≥⎪⎪=⎨⎪-+<⎪⎩, ①当m <0时,将B (m ,32)代入y=x 2-4x+12得m 2-4m+1322=, 解得:m=2当m≥0时,将B (m ,32)代入y=-x 2+4x-12得:-m 2+4m-12=32, 解得:或m=2.综上所述:m=2-或m=2+或m=2-②当-3≤x <0时,y=x 2-4x+12,抛物线的对称轴为x=2,此时y 随x 的增大而减小, ∴当3x =-时,有最大值,即2143(3)4(3)22y =--⨯-+=, ∴此时y 的最大值为432. 当0≤x≤3时,函数y=-x 2+4x 12-,抛物线的对称轴为x=2, 当x=0有最小值,最小值为12-, 当x=2时,有最大值,最大值y=72. 综上所述,当-3≤x≤3时,函数y=-x 2+4x 12-的相关函数的最大值为432,最小值为12-; (3)如图1所示:线段MN 与二次函数y=-x 2+4x+n 的相关函数的图象恰有1个公共点.∴当x=2时,y=1,即-4+8+n=1,解得n=-3.如图2所示:线段MN与二次函数y=-x2+4x+n的相关函数的图象恰有3个公共点.∵抛物线y=x2-4x-n与y轴交点纵坐标为1,∴-n=1,解得:n=-1.∴当-3<n≤-1时,线段MN与二次函数y=-x2+4x+n的相关函数的图象恰有2个公共点.如图3所示:线段MN与二次函数y=-x2+4x+n的相关函数的图象恰有3个公共点.∵抛物线y=-x2+4x+n经过点(0,1),∴n=1.如图4所示:线段MN与二次函数y=-x2+4x+n的相关函数的图象恰有2个公共点.∵抛物线y=x 2-4x-n 经过点M (12-,1), ∴14+2-n=1,解得:n=54. ∴1<n≤54时,线段MN 与二次函数y=-x 2+4x+n 的相关函数的图象恰有2个公共点. 综上所述,n 的取值范围是-3<n≤-1或1<n≤54. 【点睛】本题主要考查的是二次函数的综合应用,解答本题主要应用了二次函数的图象和性质、函数图象上点的坐标与函数解析式的关系,求得二次函数y=-x 2+4x+n 的相关函数与线段MN 恰好有1个交点、2个交点、3个交点时n 的值是解题的关键.6.如图,抛物线2(0)y ax bx c a =++≠与坐标轴的交点为()30A -,,()10B ,,()0,3C -,抛物线的顶点为D .(1)求抛物线的解析式.(2)若E 为第二象限内一点,且四边形ACBE 为平行四边形,求直线CE 的解析式. (3)P 为抛物线上一动点,当PAB ∆的面积是ABD ∆的面积的3倍时,求点P 的坐标.【答案】(1)223y x x =+-;(2)33y x =--;(3)点P 的坐标为()5,12-或()3,12.【解析】【分析】(1)本题考查二次函数解析式的求法,可利用待定系数法,将点带入求解;(2)本题考查二次函数平行四边形存在性问题,可根据题干信息结合平行四边形性质确定动点位置,进一步利用待定系数法求解一次函数解析式;(3)本题考查二次函数与三角形面积问题,可先根据题干面积关系假设动点坐标,继而带入二次函数,列方程求解.【详解】(1)∵抛物线2y ax bx c=++与坐标轴的交点为()30A-,,()10B,,()0,3C-,∴9303a b ca b cc-+=⎧⎪++=⎨⎪=-⎩,解得123abc=⎧⎪=⎨⎪=-⎩∴抛物线的解析式为223y x x=+-.(2)如图,过点E作EH x⊥轴于点H,则由平行四边形的对称性可知1AH OB==,3EH OC==.∵3OA=,∴2OH=,∴点E的坐标为()2,3-.∵点C的坐标为()0,3-,∴设直线CE的解析式为()30y kx k=-<将点()2,3E-代入,得233k--=,解得3k=-,∴直线CE的解析式为33y x=--.(3)∵2223(1)4y x x x=+-=+-,∴抛物线的顶点为()1,4D--.∵PAB∆的面积是ABD∆的面积的3倍,∴设点P为(),12t.将点(),12P t代入抛物线的解析式223y x x=+-中,得22312t t+-=,解得3t=或5t=-,故点P的坐标为()5,12-或()3,12.【点睛】本题考查二次函数与几何的综合,利用待定系数法求解解析式时还可以假设交点式,几何图形存在性问题求解往往需要利用其性质,假设动点坐标,列方程求解.7.如图,抛物线2y x bx c=-++的图象与x轴交于A、B两点(点A在点B的左边),与y 轴交于点C ,点D 为抛物线的顶点.点A 坐标的为3,0,点C 的坐标为()0,3.(Ⅰ)求抛物线的解析式;(Ⅱ)点M 为线段AB 上一点(点M 不与点A 、B 重合),过点M 作i 轴的垂线,与直线AC 交于点E ,与抛物线交于点P ,过点P 作//PQ AB 交抛物线于点Q ,过点Q 作QN x ⊥轴于点N .若点P 在点Q 左边,当矩形PMNQ 的周长最大时,求AEM △的面积;(Ⅲ)在(Ⅱ)的条件下,当矩形PMNQ 的周长最大时,连接DQ ,过抛物线上一点F 作y 轴的平行线,与直线AC 交于点G (点G 在点F 的上方).若=22FG DQ ,求点F 的坐标.【答案】(Ⅰ)223y x x =--+;(Ⅱ)12;(Ⅲ)()4,5F --或()1,0 【解析】【分析】(Ⅰ)将点A ,点C 坐标代入解析式可求解;(Ⅱ)设M (x ,0),P (x ,-x 2-2x+3),利用对称性可求点Q (-2-x ,-x 2-2x+3),可求MP=-x 2-2x+3,PQ=-2-x-x=-2-2x ,则可用x 表示矩形PMNQ 的周长,由二次函数的性质可求当矩形PMNQ 的周长最大时,点P 的坐标,即可求点E ,点M 的坐标,由三角形面积公式可求解;(Ⅲ)先求出点D 坐标,即可求2FG=4,设F (m ,-m 2-2m+3),则G (m ,m+3),用含有m 的式子表示FG 的长度即可求解.【详解】 解:(Ⅰ)依题意()()2330{3b c c --+⨯-+== 解得2{3b c =-= 所以223y x x =--+(Ⅱ)2223(1)4y x x x抛物线的对称轴是直线1x =-(,0)M x ,()2,23P x x x --+,其中31x -<<-∵P 、Q 关于直线1x =-对称设Q 的横坐标为a则()11a x --=--∴2a x =--∴()22,23Q x x x ----+∴223MP x x =--+,222PQ x x x =---=--∴周长()222222232822(2)10d x x x x x x =----+=--+=-++当2x =-时,d 取最大值,此时,(2,0)M -∴2(3)1AM =---=设直线AC 的解析式为y kx b =+ 则303k b b -+=⎧⎨=⎩,解得13k b =⎧⎨=⎩∴设直线AC 的解析式为3yx 将2x =-代入3yx ,得1y = ∴(2,1)E -,∴1EM = ∴11111222AEM S AM ME ∆=⋅=⨯⨯= (Ⅲ)由(Ⅱ)知,当矩形PMNQ 的周长最大时,2x =-此时点()0,3Q ,与点C 重合,∴3OQ =∵2223(1)4y x x x∴()1,4D -过D 作DK y ⊥轴于K ,则1DK =,4OK =∴431OK OK OQ =-=-=∴DKQ 是等腰直角三角形,2DQ =∴224FG DQ ==设()2,23F m m m --+,则(,3)G m m + ()223233FG m m m m m =+---+=+∴234m m +=,解得14m =-,21m =当4m =-时,2235m m --+=-当1m =时,2230m m --+=.∴()4,5F --或()1,0【点睛】本题是二次函数综合题,考查了二次函数的性质,矩形的性质,等腰直角三角形的性质等,利用参数表示线段的长度是本题的关键.8.如图,已知抛物线2y x bx c =-++与x 轴交于A ,B 两点,过点A 的直线l 与抛物线交于点C ,其中点A 的坐标是()1,0,点C 的坐标是()2,3-,抛物线的顶点为点D .(1)求抛物线和直线AC 的解析式.(2)若点P 是抛物线上位于直线AC 上方的一个动点,求APC ∆的面积的最大值及此时点P 的坐标.(3)若抛物线的对称轴与直线AC 相交于点E ,点M 为直线AC 上的任意一点,过点M 作//MN DE 交抛物线于点N ,以D ,E ,M ,N 为顶点的四边形能否为平行四边形?若能,求出点M 的坐标;若不能,请说明理由.【答案】(1)y=-x 2-2x+3,y=-x+1;(2)最大值为278,此时点P(12-,154);(3)能,(0,1),)或【解析】【分析】(1)直接利用待定系数法进行求解,即可得到答案;(2)设点P(m ,-m 2-2m+3),则Q(m ,-m+1),求出PQ 的长度,结合三角形的面积公式和二次函数的性质,即可得到答案;(3)根据题意,设点M(t ,-t+1),则点N(t ,-t 2-2t+3),可分为两种情况进行分析:①当点M 在线段AC 上时,点N 在点M 上方;②当点M 在线段AC (或CA )延长线上时,点N 在点M 下方;分别求出点M 的坐标即可.【详解】解:(1)∵抛物线y=-x 2+bx+c 过点A(1,0),C(-2,3),∴10423b c b c -++=⎧⎨--+=⎩,,解得:23b c =-⎧⎨=⎩,. ∴抛物线的解析式为y=-x 2-2x+3.设直线AC 的解析式为y=kx+n .将点A ,C 坐标代入,得023k n k n +=⎧⎨-+=⎩,,解得11k n =-⎧⎨=⎩,. ∴直线AC 的解析式为y=-x+1.(2)过点P 作PQ ∥y 轴交AC 于点Q .设点P(m ,-m 2-2m+3),则Q(m ,-m+1).∴PQ=(-m 2-2m+3)-(-m+1)=-m 2-m+2.∴S △APC =S △PCQ +S △APQ =12PQ·(x A -x C )=12(-m 2-m+2)×3=23127()228m -++. ∴当m=12-时,S △APC 最大,最大值为278,此时点P(12-,154). (3)能.∵y=-x 2-2x+3,点D 为顶点,∴点D(-1,4),令x=-1时,y=-(-1)+1=2,∴点E(-1,2).∵MN ∥DE ,∴当MN=DE=2时,以D ,E ,M ,N 为顶点的四边形是平行四边形.∵点M 在直线AC 上,点N 在抛物线上,∴设点M(t,-t+1),则点N(t,-t2-2t+3).①当点M在线段AC上时,点N在点M上方,则MN=(-t2-2t+3)-(-t+1)=-t2-t+2.∴-t2-t+2=2,解得:t=0或t=-1(舍去).∴此时点M的坐标为(0,1).②当点M在线段AC(或CA)延长线上时,点N在点M下方,则MN=(-t+1)-(-t2-2t+3)=t2+t-2.∴t2+t-2=2,解得:t=1172-+或t=1172--.∴此时点M的坐标为(117-+,317-)或(117--,317+).综上所述,满足条件的点M的坐标为:(0,1),(117-+,317-)或(1172--,3172+).【点睛】本题考查了待定系数法求一次函数解析式、待定系数法求二次函数解析式、二次函数图象上点的坐标特征、一次函数图象上点的坐标特征、二次函数的性质、三角形的面积以及周长,解题的关键是:(1)根据点的坐标,利用待定系数法求出抛物线及直线AC的函数关系式;(2)利用三角形的面积公式和二次函数的性质解题;(3)利用二次函数图象的对称性结合两点之间线段最短找出点M的位置.9.在平面直角坐标系中,二次函数y=ax2+bx+2的图象与x轴交于A(﹣3,0),B(1,0)两点,与y轴交于点C.(1)求这个二次函数的关系解析式;(2)求直线AC的函数解析式;(3)点P是直线AC上方的抛物线上一动点,是否存在点P,使△ACP的面积最大?若存在,求出点P的坐标;若不存在,说明理由;【答案】(1)y=﹣2 3 x2﹣43x+2;(2)223y x=+;(3)存在,(35,22-)【解析】【分析】(1)直接用待定系数法即可解答;(2)先确定C点坐标,设直线AC的函数解析式y=kx+b,最后用待定系数法求解即可;(3)连接PO,作PM⊥x轴于M,PN⊥y轴于N,然后求出△ACP面积的表达式,最后利用二次函数的性质求最值即可.【详解】解:(1)∵抛物线y=ax2+bx+2过点A(﹣3,0),B(1,0),∴093202a ba b=-+⎧⎨=++⎩解得2343ab⎧=-⎪⎪⎨⎪=-⎪⎩,∴二次函数的关系解析式为y=﹣23x2﹣43x+2;(2)∵当x=0时,y=2,∴C(0,2)设直线AC的解析式为y kx b=+,把A、C两点代入得0=32k bb-+⎧⎨=⎩解得232kb⎧=⎪⎨⎪=⎩∴直线AC的函数解析式为223y x=+;(3)存在.如图: 连接PO,作PM⊥x轴于M,PN⊥y轴于N设点P坐标为(m,n),则n=224233m m--+),PN=-m,AO=3当x=0时,y=22400233-⨯-⨯+=2,∴点C 的坐标为(0,2),OC=2 ∵PAC PAO PCO ACO S S S S =+-212411322()3223322m m m ⎛⎫=⨯⋅--++⨯⋅--⨯⨯ ⎪⎝⎭ =23m m --∵a=-1<0∴函数S △PAC =-m 2-3m 有最大值∴b 当m=()33212-=--⨯- ∴当m=32-时,S △PAC 有最大值n=222423435223332322m m ⎛⎫--+=-⨯-⨯+= ⎪⎝⎭ ∴当△ACP 的面积最大时,P 的坐标为(35,22-). 【点睛】 本题是二次函数压轴题,综合考查了二次函数的图象与性质、待定系数法、二次函数极值等知识点,根据题意表示出△PAC 的面积是解答本题的关键.10.如图,已知二次函数22(0)y ax ax c a 的图象与x 轴负半轴交于点A (-1,0),与y 轴正半轴交与点B ,顶点为P ,且OB=3OA ,一次函数y=kx+b 的图象经过A 、B .(1) 求一次函数解析式;(2)求顶点P 的坐标;(3)平移直线AB 使其过点P ,如果点M在平移后的直线上,且3tan 2OAM ∠=,求点M 坐标;(4)设抛物线的对称轴交x 轴与点E ,联结AP 交y 轴与点D ,若点Q 、N 分别为两线段PE 、PD 上的动点,联结QD 、QN ,请直接写出QD+QN 的最小值.【答案】(1) 一次函数的解析式为:y=3x+3(2)顶点P 的坐标为(1,4)(3) M 点的坐标为:15,2(,39⎛⎫- ⎪⎝⎭或 23-)(4)最小值为5【解析】【分析】 (1)根据抛物线的解析式即可得出B (0,3),根据OB=3OA ,可求出OA 的长,也就得出了A 点的坐标,然后将A 、B 的坐标代入直线AB 的解析式中,即可得出所求;(2)将(1)得出的A 点坐标代入抛物线的解析式中,可求出a 的值,也就确定了抛物线的解析式进而可求出P 点的坐标;(3)易求出平移后的直线的解析式,可根据此解析式设出M 点坐标(设横坐标,根据直线的解析式表示出纵坐标).然后过M 作x 轴的垂线设垂足为E ,在构建的直角三角形AME 中,可用M 点的坐标表示出ME 和AE 的长,然后根据∠OAM 的正切值求出M 的坐标.(本题要分M 在x 轴上方和x 轴下方两种情况求解.方法一样.)(4)作点D 关于直线x=1的对称点D′,过点D′作D′N ⊥PD 于点N ,根据垂线段最短求出QD+QN 的最小值.【详解】(1)∵A (-1,0),∴OA=1∵OB=3OA ,∴B (0,3)∴图象过A 、B 两点的一次函数的解析式为:y=3x+3(2)∵二次函数22(0)y ax ax c a =-+<的图象与x 轴负半轴交与点A (-1,0),与y 轴正半轴交与点B (0,3),∴c=3,a=-1∴二次函数的解析式为:223y x x =-++∴抛物线223y x x =-++的顶点P (1,4)(3)设平移后的直线的解析式为:3y x b =+∵直线3y x b =+过P (1,4)∴b=1∴平移后的直线为31y x =+∵M 在直线31y x =+,且3tan 2OAM ∠=设M (x,3x+1)① 当点M 在x 轴上方时,有31312x x +=+,∴13x = ∴11,23M ⎛⎫ ⎪⎝⎭②当点M 在x 轴下方时,有31312x x +-=+,∴59x =- ∴25(,9M - 23-)(4)作点D关于直线x=1的对称点D’,过点D’作D’N⊥PD于点N当-x2+2x+3=0时,解得,x=-1或x=3,∴A(-1,0),P点坐标为(1,4),则可得PD解析式为:y=2x+2,令x=0,可得y=2,∴D(0,2),∵D与D′关于直线x=1对称,∴D′(2,2).根据ND′⊥PD,设ND′解析式为y=kx+b,则k=-12,即y=-12x+b,将D′(2,2)代入,得2=-12×2+b,解得b=3,可得函数解析式为y=-12x+3,将两函数解析式组成方程组得:13222y xy x⎧=-+⎪⎨⎪=+⎩,解得25145xy⎧=⎪⎪⎨⎪=⎪⎩,故N(214 ,) 55,由两点间的距离公式:d=2221445 2255⎛⎫⎛⎫-+-=⎪ ⎪⎝⎭⎝⎭,∴所求最小值为45【点睛】本题主要考查了一次函数解析式的确定、二次函数解析式的确定、函数图象的平移等知识点.同时考查了应用轴对称和垂线段最短解决线段和的最小值问题.。

九年级上册 二次函数易错题(Word版 含答案)

九年级上册 二次函数易错题(Word版 含答案)

九年级上册二次函数易错题(Word版含答案)一、初三数学二次函数易错题压轴题(难)1.如图,抛物线y=﹣x2+bx+c与x轴交于A,B两点,其中A(3,0),B(﹣1,0),与y轴交于点C,抛物线的对称轴交x轴于点D,直线y=kx+b1经过点A,C,连接CD.(1)求抛物线和直线AC的解析式:(2)若抛物线上存在一点P,使△ACP的面积是△ACD面积的2倍,求点P的坐标;(3)在抛物线的对称轴上是否存在一点Q,使线段AQ绕Q点顺时针旋转90°得到线段QA1,且A1好落在抛物线上?若存在,求出点Q的坐标;若不存在,请说明理由.【答案】(1)2y x2x3=-++;3y x=-+;(2)(﹣1,0)或(4,﹣5);(3)存在;(1,2)和(1,﹣3)【解析】【分析】(1)将点A,B坐标代入抛物线解析式中,求出b,c得出抛物线的解析式,进而求出点C 的坐标,再将点A,C坐标代入直线AC的解析式中,即可得出结论;(2)利用抛物线的对称性得出BD=AD,进而判断出△ABC的面积和△ACP的面积相等,即可得出结论;(3)分点Q在x轴上方和在x轴下方,构造全等三角形即可得出结论.【详解】解:(1)把A(3,0),B(﹣1,0)代入y=﹣x2+bc+c中,得93010b cb c-++=⎧⎨--+=⎩,∴23bc=⎧⎨=⎩,∴抛物线的解析式为y=﹣x2+2x+3,当x=0时,y=3,∴点C的坐标是(0,3),把A(3,0)和C(0,3)代入y=kx+b1中,得11303k bb+=⎧⎨=⎩,∴113kb=-⎧⎨=⎩∴直线AC的解析式为y=﹣x+3;(2)如图,连接BC,∵点D是抛物线与x轴的交点,∴AD=BD,∴S△ABC=2S△ACD,∵S△ACP=2S△ACD,∴S△ACP=S△ABC,此时,点P与点B重合,即:P(﹣1,0),过B点作PB∥AC交抛物线于点P,则直线BP的解析式为y=﹣x﹣1①,∵抛物线的解析式为y=﹣x2+2x+3②,联立①②解得,1xy=-⎧⎨=⎩或45xy=⎧⎨=-⎩,∴P(4,﹣5),∴即点P的坐标为(﹣1,0)或(4,﹣5);(3)如图,①当点Q在x轴上方时,设AC与对称轴交点为Q',由(1)知,直线AC的解析式为y=﹣x+3,当x=1时,y=2,∴Q'坐标为(1,2),∵Q'D=AD=BD=2,∴∠Q'AB=∠Q'BA=45°,∴∠AQ'B=90°,∴点Q'为所求,②当点Q在x轴下方时,设点Q(1,m),过点A1'作A1'E⊥DQ于E,∴∠A1'EQ=∠QDA=90°,∴∠DAQ+∠AQD=90°,由旋转知,AQ=A1'Q,∠AQA1'=90°,∴∠AQD+∠A1'QE=90°,∴∠DAQ=∠A1'QE,∴△ADQ≌△QEA1'(AAS),∴AD=QE=2,DQ=A1'E=﹣m,∴点A1'的坐标为(﹣m+1,m﹣2),代入y=﹣x2+2x+3中,解得,m=﹣3或m=2(舍),∴Q的坐标为(1,﹣3),∴点Q的坐标为(1,2)和(1,﹣3).【点睛】本题考查的是二次函数的综合题,涉及解析式的求解,与三角形面积有关的问题,三角形“k”字型全等,解题的关键是利用数形结合的思想,设点坐标并结合几何图形的性质列式求解.2.如图1,抛物线y=mx2﹣3mx+n(m≠0)与x轴交于点C(﹣1,0)与y轴交于点B (0,3),在线段OA上有一动点E(不与O、A重合),过点E作x轴的垂线交直线AB 于点N,交抛物线于点P,过点P作PM⊥AB于点M.(1)分别求出抛物线和直线AB的函数表达式;(2)设△PMN的面积为S1,△AEN的面积为S2,当1236 25SS时,求点P的坐标;(3)如图2,在(2)的条件下,将线段OE绕点O逆时针旋转的到OE′,旋转角为α(0°<α<90°),连接E′A、E′B,求E'A+23E'B的最小值.【答案】(1)抛物线y =﹣34 x 2+94 x +3,直线AB 解析式为y =﹣34x +3;(2)P (2,32);(3【解析】 【分析】(1)由题意令y =0,求出抛物线与x 轴交点,列出方程即可求出a ,根据待定系数法可以确定直线AB 解析式;(2)根据题意由△PNM ∽△ANE ,推出65PN AN =,以此列出方程求解即可解决问题; (3)根据题意在y 轴上 取一点M 使得OM′=43,构造相似三角形,可以证明AM′就是E′A+23E′B 的最小值. 【详解】解:(1)∵抛物线y =mx 2﹣3mx+n (m≠0)与x 轴交于点C (﹣1,0)与y 轴交于点B (0,3),则有330n m m n ⎧⎨⎩++==,解得433m n ⎧⎪⎨⎪-⎩==, ∴抛物线239344y x x =-++, 令y =0,得到239344x x -++=0, 解得:x =4或﹣1, ∴A (4,0),B (0,3),设直线AB 解析式为y =kx+b ,则340b k b +⎧⎨⎩==,解得334k b ⎧-⎪⎨⎪⎩==, ∴直线AB 解析式为y =34-x+3. (2)如图1中,设P (m ,239344m m -++),则E (m ,0),∵PM ⊥AB ,PE ⊥OA , ∴∠PMN =∠AEN , ∵∠PNM =∠ANE , ∴△PNM ∽△ANE ,∵△PMN 的面积为S 1,△AEN 的面积为S 2,123625S S =, ∴65PN AN =, ∵NE ∥OB , ∴AN AEAB OA=, ∴AN =54545454(4﹣m ),∵抛物线解析式为y =239344x x -++, ∴PN =239344m m -++﹣(34-m+3)=34-m 2+3m , ∴2336455(4)4m mm -+=-, 解得m =2或4(舍弃), ∴m =2, ∴P (2,32). (3)如图2中,在y 轴上 取一点M′使得OM′=43,连接AM′,在AM′上取一点E′使得OE′=OE .∵OE′=2,OM′•OB =43×3=4, ∴OE′2=OM′•OB , ∴OE OBOM OE '='', ∵∠BOE′=∠M′OE′, ∴△M′OE′∽△E′OB ,∴M E OE BE OB '''='=23, ∴M′E′=23BE′,∴AE′+23BE′=AE′+E′M′=AM′,此时AE′+23BE′最小(两点间线段最短,A 、M′、E′共线时),最小值=AM′2244()3+410. 【点睛】本题属于二次函数综合题,考查相似三角形的判定和性质、待定系数法、最小值问题等知识,解题的关键是构造相似三角形,找到线段AM ′就是AE′+23BE′的最小值,属于中考压轴题.3.如图,直线y =12x ﹣2与x 轴交于点B ,与y 轴交于点A ,抛物线y =ax 2﹣32x+c 经过A ,B 两点,与x 轴的另一交点为C . (1)求抛物线的解析式;(2)M 为抛物线上一点,直线AM 与x 轴交于点N ,当32MN AN =时,求点M 的坐标; (3)P 为抛物线上的动点,连接AP ,当∠PAB 与△AOB 的一个内角相等时,直接写出点P 的坐标.【答案】(1)y=12x2﹣32x﹣2;(2)点M的坐标为:(5,3)或(﹣2,3)或(2,﹣3)或(1,﹣3);(3)点P的坐标为:(﹣1,0)或(32,﹣258)或(173,509)或(3,﹣2).【解析】【分析】(1)根据题意直线y=12x﹣2与x轴交于点B,与y轴交于点A,则点A、B的坐标分别为:(0,-2)、(4,0),即可求解;(2)由题意直线MA的表达式为:y=(12m﹣32)x﹣2,则点N(43m-,0),当MNAN=32时,则NHON=32,即4343mmm---=32,进行分析即可求解;(3)根据题意分∠PAB=∠AOB=90°、∠PAB=∠OAB、∠PAB=∠OBA三种情况,分别求解即可.【详解】解:(1)直线y=12x﹣2与x轴交于点B,与y轴交于点A,则点A、B的坐标分别为:(0,﹣2)、(4,0),则c=﹣2,将点B的坐标代入抛物线表达式并解得:a=12,故抛物线的表达式为:y=12x2﹣32x﹣2①;(2)设点M(m,12m2﹣32m﹣2)、点A(0,﹣2),将点M、A的坐标代入一次函数表达式:y=kx+b并解得:直线MA的表达式为:y=(12m﹣32)x﹣2,则点N(43m-,0),当MNAN=32时,则NHON=32,即:4343mmm---=32,解得:m=5或﹣2或2或1,故点M的坐标为:(5,3)或(﹣2,3)或(2,﹣3)或(1,﹣3);(3)①∠PAB=∠AOB=90°时,则直线AP的表达式为:y=﹣2x﹣2②,联立①②并解得:x=﹣1或0(舍去0),故点P(﹣1,0);②当∠PAB=∠OAB时,当点P在AB上方时,无解;当点P在AB下方时,将△OAB沿AB折叠得到△O′AB,直线OA交x轴于点H、交抛物线为点P,点P为所求,则BO=OB=4,OA=OA=2,设OH=x,则sin∠H=BO OAHB HA'=,即:2444x x=++,解得:x=83,则点H(﹣83,0),.则直线AH的表达式为:y=﹣34x﹣2③,联立①③并解得:x=32,故点P(32,﹣258);③当∠PAB=∠OBA时,当点P在AB上方时,则AH=BH,设OH=a,则AH=BH=4﹣a,AO=2,故(4﹣a)2=a2+4,解得:a=32,故点H(32,0),则直线AH的表达式为:y=43x﹣2④,联立①④并解得:x=0或173(舍去0),故点P(173,509);当点P在AB下方时,同理可得:点P(3,﹣2);综上,点P的坐标为:(﹣1,0)或(32,﹣258)或(173,509)或(3,﹣2).【点睛】本题考查的是二次函数综合运用,涉及到一次函数、解直角三角形、勾股定理的运用等,要注意分类讨论,解题全面.4.如图,抛物线y=﹣x2+mx+n与x轴交于A、B两点,与y轴交于点C,抛物线的对称轴交x轴于点D,已知A(﹣1,0),C(0,2).(1)求抛物线的表达式;(2)在抛物线的对称轴上是否存在点P,使△PCD是以CD为腰的等腰三角形?如果存在,直接写出P点的坐标;如果不存在,请说明理由;(3)点E时线段BC上的一个动点,过点E作x轴的垂线与抛物线相交于点F,当点E运动到什么位置时,四边形CDBF的面积最大?求出四边形CDBF的最大面积及此时E点的坐标.【答案】(1)抛物线的解析式为:y=﹣x2+x+2(2)存在,P1(,4),P2(,),P3(,﹣)(3)当点E运动到(2,1)时,四边形CDBF的面积最大,S四边形CDBF的面积最大=.【解析】试题分析:(1)将点A、C的坐标分别代入可得二元一次方程组,解方程组即可得出m、n的值;(2)根据二次函数的解析式可得对称轴方程,由勾股定理求出CD的值,以点C为圆心,CD为半径作弧交对称轴于P1;以点D为圆心CD为半径作圆交对称轴于点P2,P3;作CH 垂直于对称轴与点H,由等腰三角形的性质及勾股定理就可以求出结论;(3)由二次函数的解析式可求出B点的坐标,从而可求出BC的解析式,从而可设设E点的坐标,进而可表示出F的坐标,由四边形CDBF的面积=S△BCD+S△CEF+S△BEF可求出S与a的关系式,由二次函数的性质就可以求出结论.试题解析:(1)∵抛物线y=﹣x2+mx+n经过A(﹣1,0),C(0,2).解得:,∴抛物线的解析式为:y=﹣x2+x+2;(2)∵y=﹣x2+x+2,∴y=﹣(x﹣)2+,∴抛物线的对称轴是x=.∴OD=.∵C(0,2),∴OC=2.在Rt△OCD中,由勾股定理,得CD=.∵△CDP是以CD为腰的等腰三角形,∴CP1=CP2=CP3=CD.作CH⊥x轴于H,∴HP1=HD=2,∴DP1=4.∴P1(,4),P2(,),P3(,﹣);(3)当y=0时,0=﹣x2+x+2∴x1=﹣1,x2=4,∴B(4,0).设直线BC的解析式为y=kx+b,由图象,得,解得:,∴直线BC 的解析式为:y=﹣x+2.如图2,过点C 作CM ⊥EF 于M ,设E (a ,﹣a+2),F (a ,﹣a 2+a+2), ∴EF=﹣a 2+a+2﹣(﹣a+2)=﹣a 2+2a (0≤x≤4). ∵S 四边形CDBF =S △BCD +S △CEF +S △BEF =BD•OC+EF•CM+EF•BN , =+a (﹣a 2+2a )+(4﹣a )(﹣a 2+2a ), =﹣a 2+4a+(0≤x≤4).=﹣(a ﹣2)2+∴a=2时,S 四边形CDBF 的面积最大=, ∴E (2,1).考点:1、勾股定理;2、等腰三角形的性质;3、四边形的面积;4、二次函数的最值5.定义:对于已知的两个函数,任取自变量x 的一个值,当0x ≥时,它们对应的函数值相等;当0x <时,它们对应的函数值互为相反数,我们称这样的两个函数互为相关函数.例如:正比例函数y x =,它的相关函数为(0)(0)x x y x x ≥⎧=⎨-<⎩. (1)已知点()5,10A -在一次函数5y ax =-的相关函数的图像上,求a 的值; (2)已知二次函数2142y x x =-+-. ①当点3,2B m ⎛⎫ ⎪⎝⎭在这个函数的相关函数的图像上时,求m 的值;②当33x -≤≤时,求函数2142y x x =-+-的相关函数的最大值和最小值. (3)在平面直角坐标系中,点M 、N 的坐标分别为1,12⎛⎫-⎪⎝⎭、9,12⎛⎫ ⎪⎝⎭,连结MN .直接写出线段MN 与二次函数24y x x n =-++的相关函数的图像有两个公共点时n 的取值范围.【答案】(1)1;(2)①22- ;②max 432y =,min 12y =-;(3)31n -<≤-,514n <≤【解析】【分析】 (1)先求出5y ax =-的相关函数,然后代入求解,即可得到答案;(2)先求出二次函数的相关函数,①分为m <0和m ≥0两种情况将点B 的坐标代入对应的关系式求解即可;②当-3≤x <0时,y=x 2-4x+12,然后可 此时的最大值和最小值,当0≤x≤3时,函数y=-x 2+4x-12,求得此时的最大值和最小值,从而可得到当-3≤x≤3时的最大值和最小值; (3)首先确定出二次函数y=-x 2+4x+n 的相关函数与线段MN 恰好有1个交点、2个交点、3个交点时n 的值,然后结合函数图象可确定出n 的取值范围.【详解】解:(1)根据题意,一次函数5y ax =-的相关函数为5,(0)5,(0)ax x y ax x -≥⎧=⎨-+<⎩, ∴把点()5,10A -代入5y ax =-+,则(5)510a -⨯-+=,∴1a =;(2)根据题意,二次函数2142y x x =-+-的相关函数为2214,(0)214,(0)2x x x y x x x ⎧-+-≥⎪⎪=⎨⎪-+<⎪⎩, ①当m <0时,将B (m ,32)代入y=x 2-4x+12得m 2-4m+1322=, 解得:m=2当m≥0时,将B (m ,32)代入y=-x 2+4x-12得:-m 2+4m-12=32, 解得:或m=2.综上所述:m=25-或m=22+或m=22-.②当-3≤x <0时,y=x 2-4x+12,抛物线的对称轴为x=2,此时y 随x 的增大而减小, ∴当3x =-时,有最大值,即2143(3)4(3)22y =--⨯-+=, ∴此时y 的最大值为432. 当0≤x≤3时,函数y=-x 2+4x 12-,抛物线的对称轴为x=2, 当x=0有最小值,最小值为12-, 当x=2时,有最大值,最大值y=72. 综上所述,当-3≤x≤3时,函数y=-x 2+4x 12-的相关函数的最大值为432,最小值为12-; (3)如图1所示:线段MN 与二次函数y=-x 2+4x+n 的相关函数的图象恰有1个公共点.∴当x=2时,y=1,即-4+8+n=1,解得n=-3.如图2所示:线段MN 与二次函数y=-x 2+4x+n 的相关函数的图象恰有3个公共点.∵抛物线y=x 2-4x-n 与y 轴交点纵坐标为1,∴-n=1,解得:n=-1.∴当-3<n≤-1时,线段MN 与二次函数y=-x 2+4x+n 的相关函数的图象恰有2个公共点. 如图3所示:线段MN 与二次函数y=-x 2+4x+n 的相关函数的图象恰有3个公共点.∵抛物线y=-x2+4x+n经过点(0,1),∴n=1.如图4所示:线段MN与二次函数y=-x2+4x+n的相关函数的图象恰有2个公共点.∵抛物线y=x2-4x-n经过点M(12,1),∴14+2-n=1,解得:n=54.∴1<n≤54时,线段MN与二次函数y=-x2+4x+n的相关函数的图象恰有2个公共点.综上所述,n的取值范围是-3<n≤-1或1<n≤54.【点睛】本题主要考查的是二次函数的综合应用,解答本题主要应用了二次函数的图象和性质、函数图象上点的坐标与函数解析式的关系,求得二次函数y=-x2+4x+n的相关函数与线段MN 恰好有1个交点、2个交点、3个交点时n的值是解题的关键.6.如图,抛物线y=ax2+bx+2经过点A(−1,0),B(4,0),交y轴于点C;(1)求抛物线的解析式(用一般式表示);(2)点D为y轴右侧抛物线上一点,是否存在点D使S△ABC=23S△ABD?若存在,请求出点D坐标;若不存在,请说明理由;(3)将直线BC绕点B顺时针旋转45°,与抛物线交于另一点E,求BE的长.【答案】(1)213222y x x =-++(2)存在,D (1,3)或(2,3)或(5,3-)(3)10【解析】【分析】 (1)由A 、B 的坐标,利用待定系数法可求得抛物线解析式;(2)由条件可求得点D 到x 轴的距离,即可求得D 点的纵坐标,代入抛物线解析式可求得D 点坐标;(3)由条件可证得BC ⊥AC ,设直线AC 和BE 交于点F ,过F 作FM ⊥x 轴于点M ,则可得BF=BC ,利用平行线分线段成比例可求得F 点的坐标,利用待定系数法可求得直线BE 解析式,联立直线BE 和抛物线解析式可求得E 点坐标,则可求得BE 的长.【详解】解:(1)∵抛物线y=ax 2+bx+2经过点A (-1,0),B (4,0),∴2016420a b a b -+=⎧⎨++=⎩,解得:1232a b ⎧=-⎪⎪⎨⎪=⎪⎩, ∴抛物线解析式为:213222y x x =-++; (2)由题意可知C (0,2),A (-1,0),B (4,0),∴AB=5,OC=2,∴S △ABC =12AB•OC=12×5×2=5, ∵S △ABC =23S △ABD , ∴S △ABD =315522⨯=, 设D (x ,y ), ∴11155222AB y y •=⨯•=, 解得:3y =;当3y =时,2132322y x x =-++=, 解得:1x =或2x =,∴点D 的坐标为:(1,3)或(2,3);当3y =-时,2132322y x x =-++=-, 解得:5x =或2x =-(舍去),∴点D 的坐标为:(5,-3);综合上述,点D 的坐标为:(1,3)或(2,3)或(5,-3);(3)∵AO=1,OC=2,OB=4,AB=5,∴22125AC =+=,222425BC =+=,∴222AC BC AB +=,∴△ABC 为直角三角形,即BC ⊥AC ,如图,设直线AC 与直线BE 交于点F ,过F 作FM ⊥x 轴于点M ,由题意可知∠FBC=45°,∴∠CFB=45°,∴25CF BC ==∴AO AC OM CF =,即1525OM = 解得:2OM =, ∴OC AC FM AF =,即2535FM = 解得:6FM =,∴点F 为(2,6),且B 为(4,0),设直线BE 解析式为y=kx+m ,则2640k m k m +=⎧⎨+=⎩,解得312k m =-⎧⎨=⎩,∴直线BE解析式为:312y x =-+;联立直线BE 和抛物线解析式可得:231213222y x y x x =-+⎧⎪⎨=-++⎪⎩, 解得:40x y =⎧⎨=⎩或53x y =⎧⎨=-⎩, ∴点E 坐标为:(5,3)-, ∴22(54)(3)10BE =-+-=.【点睛】 本题为二次函数的综合应用,涉及待定系数法、三角形面积、勾股定理及其逆定理、平行线分线段成比例、函数图象的交点、等腰直角三角形的性质、方程思想及分类讨论思想等知识.在(1)中注意待定系数法的应用,在(2)中求得D 点的纵坐标是解题的关键,在(3)中由条件求得直线BE 的解析式是解题的关键.本题考查知识点较多,综合性较强,特别是最后一问,有一定的难度.7.如图①抛物线y =ax 2+bx +4(a ≠0)与x 轴,y 轴分别交于点A (﹣1,0),B (4,0),点C 三点.(1)试求抛物线的解析式;(2)点D (3,m )在第一象限的抛物线上,连接BC ,BD .试问,在对称轴左侧的抛物线上是否存在一点P ,满足∠PBC =∠DBC ?如果存在,请求出点P 点的坐标;如果不存在,请说明理由;(3)点N 在抛物线的对称轴上,点M 在抛物线上,当以M 、N 、B 、C 为顶点的四边形是平行四边形时,请直接写出点M 的坐标.【答案】(1)y =﹣x 2+3x +4;(2)存在.P (﹣34,1916).(3)1539(,)24M -- 21139(,)24M - 3521(,)24M 【解析】【分析】(1)将A,B,C 三点代入y =ax 2+bx+4求出a,b,c 值,即可确定表达式;(2)在y轴上取点G,使CG=CD=3,构建△DCB≌△GCB,求直线BG的解析式,再求直线BG与抛物线交点坐标即为P点,(3)根据平行四边形的对边平行且相等,利用平移的性质列出方程求解,分情况讨论.【详解】解:如图:(1)∵抛物线y=ax2+bx+4(a≠0)与x轴,y轴分别交于点A(﹣1,0),B(4,0),点C三点.∴4016440a ba b-+=⎧⎨++=⎩解得13ab=-⎧⎨=⎩∴抛物线的解析式为y=﹣x2+3x+4.(2)存在.理由如下:y=﹣x2+3x+4=﹣(x﹣32)2+254.∵点D(3,m)在第一象限的抛物线上,∴m=4,∴D(3,4),∵C(0,4)∵OC=OB,∴∠OBC=∠OCB=45°.连接CD,∴CD∥x轴,∴∠DCB=∠OBC=45°,∴∠DCB=∠OCB,在y轴上取点G,使CG=CD=3,再延长BG交抛物线于点P,在△DCB和△GCB中,CB=CB,∠DCB=∠OCB,CG=CD,∴△DCB≌△GCB(SAS)∴∠DBC=∠GBC.设直线BP解析式为y BP=kx+b(k≠0),把G(0,1),B(4,0)代入,得k=﹣14,b=1,∴BP解析式为y BP=﹣14x+1.y BP=﹣14x+1,y=﹣x2+3x+4当y=y BP时,﹣14x+1=﹣x2+3x+4,解得x1=﹣34,x2=4(舍去),∴y=1916,∴P(﹣34,1916).(3)1539 (,)24M--21139 (,) 24M-3521 (,) 24M理由如下,如图B(4,0),C(0,4) ,抛物线对称轴为直线32x=,设N(32,n),M(m, ﹣m2+3m+4)第一种情况:当MN与BC为对边关系时,MN∥BC,MN=BC,∴4-32=0-m,∴m=52-∴﹣m2+3m+4=39 4 -,∴1539 (,)24M--;或∴0-32=4-m,∴m=11 2∴﹣m2+3m+4=39 4 -,∴21139 (,) 24M-;第二种情况:当MN与BC为对角线关系,MN与BC交点为K,则K(2,2),∴322 2m∴m=5 2∴﹣m2+3m+4=21 4∴3521 (,) 24M综上所述,当以M、N、B、C为顶点的四边形是平行四边形时,点M的坐标为1539 (,)24M--21139 (,) 24M-3521 (,) 24M.【点睛】本题考查二次函数与图形的综合应用,涉及待定系数法,函数图象交点坐标问题,平行四边形的性质,方程思想及分类讨论思想是解答此题的关键.8.如图,在平面直角坐标系中,二次函数y=﹣x2+6x﹣5的图象与x轴交于A、B两点,与y轴交于点C,其顶点为P,连接PA、AC、CP,过点C作y轴的垂线l.(1)P的坐标,C的坐标;(2)直线1上是否存在点Q,使△PBQ的面积等于△PAC面积的2倍?若存在,求出点Q 的坐标;若不存在,请说明理由.【答案】(1)(3,4),(0,﹣5);(2)存在,点Q的坐标为:(92,﹣5)或(212,﹣5)【解析】【分析】(1)利用配方法求出顶点坐标,令x=0,可得y=-5,推出C(0,-5);(2)直线PC的解析式为y=3x-5,设直线交x轴于D,则D(53,0),设直线PQ交x轴于E,当BE=2AD时,△PBQ的面积等于△PAC的面积的2倍,分两种情形分别求解即可解决问题.【详解】解:(1)∵y=﹣x2+6x﹣5=﹣(x﹣3)2+4,∴顶点P(3,4),令x=0得到y=﹣5,∴C(0,﹣5).故答案为:(3,4),(0,﹣5);(2)令y=0,x2﹣6x+5=0,解得:x=1或x=5,∴A(1,0),B(5,0),设直线PC的解析式为y=kx+b,则有534 bk b=-⎧⎨+=⎩,解得:35 kb=⎧⎨=-⎩,∴直线PC的解析式为:y=3x﹣5,设直线交x轴于D,则D(53,0),设直线PQ交x轴于E,当BE=2AD时,△PBQ的面积等于△PAC的面积的2倍,∵AD=23,∴BE=43,∴E(113,0)或E′(193,0),则直线PE的解析式为:y=﹣6x+22,∴Q(92,﹣5),直线PE ′的解析式为y =﹣65x +385, ∴Q ′(212,﹣5), 综上所述,满足条件的点Q 的坐标为:(92,﹣5)或(212,﹣5); 【点睛】本题考查抛物线与x 轴的交点、二次函数的性质等知识,解题的关键是熟练掌握待定系数法,学会用转化的思想思考问题,属于中考常考题型.9.如图,已知二次函数1L :()22311y mx mx m m =+-+≥和二次函数2L :()2341y m x m =--+-()1m ≥图象的顶点分别为M 、N ,与x 轴分别相交于A 、B 两点(点A 在点B 的左边)和C 、D 两点(点C 在点D 的左边),(1)函数()22311y mx mx m m =+-+≥的顶点坐标为______;当二次函数1L ,2L 的y 值同时随着x 的增大而增大时,则x 的取值范围是_______;(2)判断四边形AMDN 的形状(直接写出,不必证明);(3)抛物线1L ,2L 均会分别经过某些定点;①求所有定点的坐标;②若抛物线1L 位置固定不变,通过平移抛物线2L 的位置使这些定点组成的图形为菱形,则抛物线2L 应平移的距离是多少?【答案】(1)()1,41m --+,13x ;(2)四边形AMDN 是矩形;(3)①所有定点的坐标,1L 经过定点()3,1-或()1,1,2L 经过定点()5,1-或()1,1-;②抛物线2L 应平移的距离是423+423-.【解析】【分析】(1)将已知抛物线解析式转化为顶点式,直接得到点M 的坐标;结合函数图象填空; (2)利用抛物线解析式与一元二次方程的关系求得点A 、D 、M 、N 的横坐标,可得AD 的中点为(1,0),MN 的中点为(1,0),则AD 与MN 互相平分,可证四边形AMDN 是矩形;(3)①分别将二次函数的表达式变形为1:(3)(1)1L y m x x =+-+和2:(1)(5)1L y m x x =----,通过表达式即可得出所过定点;②根据菱形的性质可得EH 1=EF=4即可,设平移的距离为x ,根据平移后图形为菱形,由勾股定理可得方程即可求解.【详解】解:(1)12b x a=-=-,顶点坐标M 为(1,41)m --+, 由图象得:当13x 时,二次函数1L ,2L 的y 值同时随着x 的增大而增大. 故答案为:(1,41)m --+;13x ;(2)结论:四边形AMDN 是矩形.由二次函数21:231(1)L y mx mx m m =+-+和二次函数22:(3)41(1)L y m x m m =--+-解析式可得:A 点坐标为41(1m m ---,0),D 点坐标为41(3m m -+,0), 顶点M 坐标为(1,41)m --+,顶点N 坐标为(3,41)m -,AD ∴的中点为(1,0),MN 的中点为(1,0),AD ∴与MN 互相平分,∴四边形AMDN 是平行四边形,又AD MN =,∴□AMDN 是矩形;(3)①二次函数21:231(3)(1)1L y mx mx m m x x =+-+=+-+,故当3x =-或1x =时1y =,即二次函数21:231L y mx mx m =+-+经过(3,1)-、(1,1)两点,二次函数22:(3)41(1)(5)1L y m x m m x x =--+-=----,故当1x =或5x =时1y =-,即二次函数22:(3)41L y m x m =--+-经过(1,1)-、(5,1)-两点,②二次函数21:231L y mx mx m =+-+经过(3,1)-、(1,1)两点,二次函数22:(3)41L y m x m =--+-经过(1,1)-、(5,1)-两点,如图:四个定点分别为(3,1)E -、(1,1)F ,(1,1)H -、(5,1)G -,则组成四边形EFGH 为平行四边形, ∴FH ⊥HG ,FH=2,HM=4-x ,设平移的距离为x ,根据平移后图形为菱形,则EH 1=EF=H 1M=4,由勾股定理可得:FH 2+HM 2=FM 2,即22242(4)x =+-,解得:423x =±,抛物线1L 位置固定不变,通过左右平移抛物线2L 的位置使这些定点组成的图形为菱形,则抛物线2L 应平移的距离是423+或423-.【点睛】本题考查了二次函数的解析式的求法和与几何图形结合的综合能力的培养.要会利用数形结合的思想把代数和几何图形结合来,利用点的坐标的意义表示线段的长度,从而求出线段之间的关系.10.在平面直角坐标系中,二次函数y =ax 2+bx +2的图象与x 轴交于A (﹣3,0),B (1,0)两点,与y 轴交于点C .(1)求这个二次函数的关系解析式;(2)点P 是直线AC 上方的抛物线上一动点,是否存在点P ,使△ACP 的面积最大?若存在,求出点P 的坐标;若不存在,说明理由;(3)在平面直角坐标系中,是否存在点Q ,使△BCQ 是以BC 为腰的等腰直角三角形?若存在,直接写出点Q 的坐标;若不存在,说明理由;【答案】(1)224233y x x =--+;(2)存在,点P 35,22⎛⎫- ⎪⎝⎭,使△PAC 的面积最大;(3)存在点Q ,使△BCQ 是以BC 为腰的等腰直角三角形.Q 点坐标为:Q 1(2,3),Q 2(3,1),Q 3(﹣1,﹣1),Q 4(﹣2,1).【解析】【分析】(1)直接把点A (﹣3,0),B (1,0)代入二次函数y =ax 2+bx+2求出a 、b 的值即可得出抛物线的解析式;(2)设点P 坐标为(m ,n ),则n =﹣23m 2﹣43m+2,连接PO ,作PM ⊥x 轴于M ,PN ⊥y 轴于N .根据三角形的面积公式得出△PAC 的表达式,再根据二次函数求最大值的方法得出其顶点坐标即可;(3)以BC 为边,在线段BC 两侧分别作正方形,正方形的其他四个顶点均可以使得“△BCQ 是以BC 为腰的等腰直角三角形”,因此有四个点符合题意要求,再过Q 1点作Q 1D ⊥y 轴于点D ,过点Q 2作Q 2E ⊥x 轴于点E ,根据全等三角形的判定定理得出△Q 1CD ≌△CBO ,△CBO ≌△BQ 2E ,故可得出各点坐标.【详解】(1)∵抛物线y =ax 2+bx+2过点A (﹣3,0),B (1,0),∴093202a b a b =-+⎧⎨=++⎩ 2343a b ⎧=-⎪⎪⎨⎪=-⎪⎩解得 ∴二次函数的关系解析式为y =﹣23x 2﹣43x+2; (2)存在.∵如图1所示,设点P 坐标为(m ,n ),则n =﹣23m 2﹣43m+2. 连接PO ,作PM ⊥x 轴于M ,PN ⊥y 轴于N .则PM=﹣23m2﹣43m+2.,PN=﹣m,AO=3.∵当x=0时,y=﹣23×0﹣43×0+2=2,∴OC=2,∴S△PAC=S△PAO+S△PCO﹣S△ACO=12AO•PM+12CO•PN﹣12AO•CO=12×3×(﹣23m2﹣43m+2)+12×2×(﹣m)﹣12×3×2=﹣m2﹣3m∵a=﹣1<0∴函数S△PAC=﹣m2﹣3m有最大值∴当m=﹣2ba=﹣32时,S△PAC有最大值.∴n=﹣23m2﹣43m+2=﹣23×(﹣32)2﹣43×(﹣32)+2=52,∴存在点P(﹣32,52),使△PAC的面积最大.(3)如图2所示,以BC为边在两侧作正方形BCQ1Q2、正方形BCQ4Q3,则点Q1,Q2,Q3,Q4为符合题意要求的点.过Q1点作Q1D⊥y轴于点D,过点Q2作Q2E⊥x轴于点E,∵∠1+∠2=90°,∠2+∠3=90°,∠3+∠4=90°,∴∠1=∠3,∠2=∠4,在△Q1CD与△CBO中,∵11324Q C BC∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△Q1CD≌△CBO,∴Q1D=OC=2,CD=OB=1,∴OD=OC+CD=3,∴Q1(2,3);同理可得Q4(﹣2,1);同理可证△CBO≌△BQ2E,∴BE=OC=2,Q2E=OB=1,∴OE=OB+BE=1+2=3,∴Q2(3,1),同理,Q3(﹣1,﹣1),∴存在点Q,使△BCQ是以BC为腰的等腰直角三角形.Q点坐标为:Q1(2,3),Q2(3,1),Q3(﹣1,﹣1),Q4(﹣2,1).【点睛】本题考查的是二次函数综合题,涉及到用待定系数法求二次函数解析式,二次函数极值、全等三角形的判定与性质,正方形及等腰直角三角形的性质等知识,涉及面较广,难度较大.。

初三《二次函数》经典习题汇编(易错题、难题)

初三《二次函数》经典习题汇编(易错题、难题)

初三《二次函数》经典习题汇编(易错题、难题)二次函数》经典题汇编模块一:二次函数的相关概念1.若函数 y = mx + (m+2)x/(m+1) 的图像与 x 轴只有一个交点,那么 m 的值为()A。

0.B。

±2.C。

2或-2.D。

2或-22.当 x = m 或x = n (m ≠ n) 时,代数式 x - 2x^2 + 3 的值相等,则 x = m + n 时,代数式 x - 2x^2 + 3 的值为。

3.已知 x = 2m + n + 2 和 x = m + 2n 时,多项式 x^2 + 4x +6 的值相等,且 m - n + 2 ≠ 0,则当 x = 3(m + n + 1) 时,多项式 x^2 + 4x + 6 的值等于 ________。

模块二:二次函数的顶点问题1.若抛物线 y = (x + m)^2 + (m + 1) 的顶点在第一象限,则m 的取值范围为 ________。

2.如图,在平面直角坐标系中,抛物线所表示的函数解析式为 y = -2(x - h)^2 + k,则下列结论正确的是()A。

h。

0.k。

0B。

h。

0C。

h < 0.k < 0D。

h。

0.k < 0模块三:二次函数的对称轴问题1.已知二次函数 y = -x^2 + 2bx + c,当 x。

1 时,y 的值随x 增大而减小,则实数 b 的取值范围是()A。

b ≥ -1B。

b ≤ -1C。

b ≥ 1D。

b ≤ 12.已知二次函数 y = x + 2mx + 2,当 x。

2 时,y 随 x 的增大而增大,则实数 m 的取值范围是 ________。

3.已知二次函数 y = x + (m-1)x + 1,当 x。

1 时,y 随 x 的增大而增大,而 m 的取值范围是()A。

m = -1B。

m = 3C。

m ≤ -1D。

m ≥ -1模块四:二次函数的图像共存问题1.在同一直角坐标系中,函数 y = mx + m 和 y = -mx + 2x + 2(m 是常数,且m ≠ 0)的图像可能是()A。

第二十二章 二次函数 易错必考63题(13个考点)专练(解析版)

第二十二章 二次函数 易错必考63题(13个考点)专练(解析版)

第二十二章二次函数易错必考63题(13个考点)专练易错必考题一、根据二次函数的定义求参数1.(2023·全国·九年级专题练习)若函数2221m m y m m x =(+)是二次函数,那么m 的值是()A .2B .1 或3C .3D .12【答案】C【分析】根据二次函数的定义: 20y ax bx c a ,进行计算即可.【详解】解:由题意得:221=2m m ,解得:1m 或=3m ;又∵2+0m m ,解得:1m 且0m ,∴=3m .故选C .【点睛】本题考查二次函数的定义.熟练掌握二次函数的定义是解题的关键.注意二次项系数不为零.2.(2023春·江苏南京·九年级校联考阶段练习)点 ,1m 是二次函数221y x x 图像上一点,则236m m 的值为【答案】6【分析】把点 ,1m 代入221y x x 即可求得22m m 值,将236m m 变形 232m m ,代入即可.【详解】解:∵点 ,1m 是二次函数221y x x 图像上,∴2121m m 则222m m .∴ 223632326m m m m 故答案为:6.【点睛】本题考查了二次函数图象上点的坐标特征,根据点坐标求待定系数是解题的关键.3(2023春·广东河源·九年级校考开学考试)已知函数21(1)3m y m x x 为二次函数,求m 的值.【答案】m=﹣1【分析】根据二次函数的定义,列出一个式子即可解决问题.【详解】解:由题意:21012m m ,解得1m ,1m 时,函数21(1)3m y m x x 为二次函数.【点睛】本题考查二次函数的定义,记住二次函数的定义是解题的关键,形如2(y ax bx c a 、b 、c 是常数,0)a 的函数,叫做二次函数.易错必考题二、二次函数与一次函数、反比例函数图象的综合判断4.(2023春·浙江杭州·八年级校考阶段练习)二次函数2y ax bx c 的图象如图所示,则一次函数24y ax b ac 与反比例函数a b cy x在同一坐标系内的图象大致为()A .B .C .D .【答案】C【分析】由抛物线的图象可知,横坐标为1的点,即 1a b c ,在第四象限可得0a b c ,从而得到反比例函数a b cy x的图象分布在二、四象限,由抛物线的开口方向和与x 的交点个数得到2040a b ac ,,从而得到一次函数24y ax b ac 的图象经过一、二、三象限,即可得到答案.【详解】解:由抛物线的图象可知,横坐标为1的点,即 1a b c ,在第四象限,0a b c ,反比例函数a b cy x的图象分布在二、四象限,∵抛物线的开口向上,0a ,∵抛物线与x 轴有两个交点,240b ac ,一次函数24y ax b ac 的图象经过一、二、三象限,故选:C .【点睛】本题主要考查了一次函数、反比例函数、二次函数的图象与系数的关系,熟练掌握一次函数、反比例函数、二次函数的图象与系数的关系,采用数形结合的思想解题,是解此题的关键.5.(2023秋·四川南充·九年级校考期末)在同一坐标系中,一次函数y ax c 与二次函数2y ax c 的图象可能是()A .B .C .D .【答案】B【分析】可先确定每一选项中的一次函数图象,得到a 、c 的符号,再验证二次函数图象是否一致即可.【详解】解:A 、由一次函数y ax c 的图象得0a ,0c ,则二次函数2y ax c 图象开口向上,故该选项不符合题意;B 、由一次函数y ax c 的图象得a<0,0c ,则二次函数2y ax c 图象开口向下,与y 轴正半轴相交,故该选项符合题意;C 、由一次函数y ax c 的图象得a<0,0c ,则二次函数2y ax c 图象开口向下,故该选项不符合题意;D 、由一次函数y ax c 的图象得a<0,0c ,则二次函数2y ax c 图象开口向下,故该选项不符合题意,故答案为:B .【点睛】本题考查一次函数、二次函数图象综合判断,熟知一次函数、二次函数的图象与系数的关系是解答的关键.6.(2023春·山东日照·九年级校考期中)在同一直角坐标系中,反比例函数ky x与二次函数2y x kx k 的大致图像可能是()A .B .C .D .【答案】B【分析】根据k 的取值范围分当0k 时和当0k 时两种情况进行讨论,根据反比例函数的图像与性质以及二次函数的图像与性质进行判断即可.【详解】解:当0k 时,反比例函数ky x的图像经过一、三象限,二次函数2y x kx k 的图像开口向上,其对称轴2kx在y 轴右侧,且与y 轴交于负半轴,故选项C 、D 不符合题意;当0k 时,反比例函数ky x的图像经过二、四象限,二次函数2y x kx k 的图像开口向上,其对称轴2kx在y 轴左侧,且与y 轴交于正半轴,故选项A 不符合题意,选项B 符合题意.故选:B .【点睛】本题主要考查了反比例函数的图像与性质以及二次函数的图像与性质,解题关键是根据k 的取值范围分当0k 时和当0k 时两种情况进行讨论.7.(2023春·安徽安庆·九年级校考阶段练习)二次函数2y ax bx 和反比例函数by x在同一平面直角坐标系中的大致图象可能是()A .B .C .D .【答案】B【分析】根据b 的取值范围分当0b 时和当0b 时两种情况进行讨论,根据反比例函数图象与性质,二次函数图象和性质进行判断即可.【详解】当0b 时,反比例函数by x的图象经过第一、三象限,当0a 时,二次函数2y ax bx 图象,开口向上,对称轴2bx a在y 轴左侧,则A 选项不符合题意,当a<0时,二次函数2y ax bx 图象,开口向下,对称轴2bx a在y 轴右侧,则C 选项不符合题意,B 选项符合题意;当0b 时,反比例函数by x的图象经过第二、四象限,当0a 时,二次函数2y ax bx 图象,开口向上,对称轴2bx a在y 轴右侧,则D 选项不符合题意;故选:B .【点睛】本题考查反比例函数的性质及二次函数的性质,解题的关键是根据题意对b 的取值进行分类讨论(当0b 时和当0b 时),注意运用数形结合的思想方法,充分观寻找图象中的关键点,结合函数解析式进行求解.易错必考题三、二次函数的图象与性质8.(2023春·陕西咸阳·九年级统考期中)已知二次函数2220y mx mx m ()在22x 时有最小值2 ,则m ()A .4 或12B .4或12C .4 或12D .4或12【答案】B【分析】先求出二次函数对称轴为直线1x ,再分0m 和0m 两种情况,利用二次函数的性质进行求解即可.【详解】解:∵二次函数 222212y mx mx m x m ,∴对称轴为直线1x ,①当0m ,抛物线开口向上,1x 时,有最小值22y m ,解得:4m ;②当0m <,抛物线开口向下,∵对称轴为直线1x ,在22x 时有最小值2 ,∴2x 时,有最小值922y m m ,解得:12m .故选:B .【点睛】本题主要考查了二次函数图像的性质,掌握分类讨论的思想是解题的关键.9.(2023春·江苏泰州·九年级校考阶段练习)已知点 12,P y , 24,Q y , 3,M m y 均在抛物线2y ax bx c 上,其中20am b .若321y y y ,则m 的取值范围是()A .2mB .1mC .21m D .14m 【答案】B【分析】由20am b 得到2bm a,此时3y y ,判断 3M m y ,为抛物线的顶点,且抛物线开口向下,然后分4m 和4m 两种情况分类讨论解题即可.【详解】解:∵20am b ,2b m a,∵直线2bx a是抛物线²y ax bx c 的对称轴,且此时3y y ,且321y y y ,∴ 3M m y ,为抛物线的顶点,且抛物线开口向下,①当4m 时,点P Q 、都在M 左侧(或Q 与M 重合),此时一定有321y y y 符合题意,②当4m 时,∵321y y y ,∴M 在点P 右侧,即2m ,且点P 到对称轴的距离大于点Q 到对称轴的距离,即 24m m ,解得:�>1,∴14m ,综上所述,m 的取值范围是1m 故选:B .【点睛】本题考查二次函数的图像和性质,掌握分类讨论的数学思想是解题的关键.10.(2023秋·全国·九年级专题练习)设0ab ,且函数 1²24f x x ax b 与 2²42f x x ax b 有相同的最小值u ;函数 3²24f x x bx a 与 4²42f x x bx a 有相同的最大值v ;则u v 的值()A .必为正数B .必为负数C .必为0D .符号不能确定【答案】C【分析】本题给出四个函数的解析式及两条重要信息 1f x 与有相同的最小值u ; 3f x 与 4f x 有相同的最大值v ,将函数化为顶点式,再根据条件列出等式即可求解此题.【详解】∵ 2221²2444f x x ax b x a b a b a , 2222²4222424f x x ax b x a b a b a ,则22424b a u b a ,得223b a ①∵0ab ,∴0b ,又∵ 2222234²4422424f x x b a b a b f x x b a b a b ,;则22424a b v a b ,得223a b ,②∵0ab ,∴ 0a ,∴3320a b ,∴②① 得, 2223a b b a ,解得0a b 或23b a (舍去),当0a b 时,2226565650u v b a a b a b b a ,∴ 0u v ,故选:C .【点睛】本题考查了二次函数的最值,难度较大,解题的关键是将函数的标准形式化为顶点形式.11.(2023秋·全国·九年级专题练习)已知抛物线243y x x 上两点 1122,,,A x y B x y ,且212x x ,则下列说法一定正确的是()A .若11x 时,则120y yB .若11x 时,则120y yC .若111x 时,则120y yD .若111x 时,则210y y 【答案】D【分析】求得抛物线的开口方向,对称轴以及抛物线与x 轴的交点,然后利用二次函数的性质判断即可;【详解】解:∵抛物线 22433121y x x x x x ,∴抛物线开口向上,对称轴为直线2x ,抛物线与x 轴的交点为 (3,0),1,0 ,若11x 时,212x x ∵,∴21x ,∴无法确定1y 、2y 的大小,故A 、B 不正确,不合题意;若111x 时,∵抛物线243y x x 上两点 1122,,,A x y B x y ,且212x x ,∴213x ,∴210y y ,故C 不正确,D 正确.故选:D .【点睛】本题考查了二次函数图象上点的坐标特征,抛物线与x 轴的交点,熟知二次函数的性质是解题的关键12.(2023秋·福建福州·九年级福建省福州第八中学校考开学考试)已知抛物线 220y ax ax b a 经过 13,A n y , 221, B n y 两点,若A ,B 分别位于抛物线对称轴的两侧,且12y y ,则n 的取值范围是.【答案】01n /10n 【分析】根据二次函数的增减性,进行求解即可.【详解】解:∵ 220y ax ax b a ,对称轴为直线212ax a,∴抛物线开口向下,抛物线上的点离对称轴越远,函数值越小;∵A ,B 分别位于抛物线对称轴的两侧,且12y y ,①当3121n n 时,此不等式无解,不符合题意;②2113n n ,即:21n 时,31121n n ,解得:0n ,综上:01n .故答案为:01n .【点睛】本题考查二次函数的图象和性质.解题的关键是掌握二次函数的增减性.13.(2023秋·湖北孝感·九年级校考开学考试)关于抛物线2y x ,给出下列说法:①抛物线开口向下,顶点是 0,4.②当1x 时,y 随x 的增大而减小.③当23x 时,50y .④若,m p ,n p 是该抛物线上两个不同的点,则0m n .其中正确的说法有.(填序号)【答案】②④/④②【分析】直接根据二次函数的图象和性质逐项判断即可.【详解】解:∵2y x ,∴①抛物线开口向下,顶点是原点,故该项错误;②对称轴为0x ,当1x 时,y 随x 的增大而减小,故该项正确;③当23x 时,0x 时取最大值0,3x 时取最小值9 ,因此90y ,故该项错误;④若 ,m p 、 ,n p 是该抛物线上两点,则两点关于直线0x 对称,因此0m n ,故该项正确.故答案为:②④.【点睛】本题主要考查二次函数的图象和性质,掌握该知识点并熟练运用数形结合思想是解题的关键.14.(2023秋·福建福州·九年级校考开学考试)若函数2y ax bx c (0a )图象过点(1,0) ,(0,2) 且抛物线的顶点位于第四象限,设35P a b c ,则P 的取值范围为.【答案】88P 【分析】根据(1,0) 和(0,2) 得到a ,b ,c 的关系,通过0a ,对称轴大于0,得到0b ,进而求出a 的准确范围,最终求出P 的取值范围.【详解】解:由题意可知,0a b c ,2c ,20a b ,2b a ,0a ∵,且对称轴bx 02a,0b ,20a ,02a ,353510288P a b c a a a ∵,8888a ,88P .故答案为:88P .【点睛】本题考查二次函数的性质,解题关键是掌握二次函数与方程的关系,掌握二次函数图象与系数的关系.15、(2023春·吉林长春·九年级校考期中)如图,在平面直角坐标系中,线段PQ 的端点坐标分别为(12)P ,,(13)Q ,,抛物线2223y x mx m (m 为常数,0m )和线段PQ 有公共点时,m 的取值范围是,【答案】1713m【分析】抛物线和线段PQ 有公共点可知23y ,当点(12)P ,在抛物线上时,可算出此时的m 的值,当点(13)Q ,在抛物线上时,算出此时的m 的值,由此即可求解.【详解】解:抛物线2223y x mx m (m 为常数,0m )和线段PQ 有公共点,(12)P ,,(13)Q ,,∴23y ,∴当点(12)P ,在抛物线上时,21232m m ,解得,11m ,213m ;当点(13)Q ,在抛物线上时,21233m m ,解得,3173m ,4173m ;∵当23y 时,有公共点,且0m ,∴m 的取值范围是1713m ,故答案为:1713m.【点睛】本题主要考查二次函数图像与线段的交点问题,掌握二次函数图像的性质,线段与图像的位置关系,数形结合分析是解题的关键.16.(2023春·浙江杭州·九年级校考阶段练习)已知二次函数 2220y x mx m m m .(1)若2m ,求该函数图象的顶点坐标.(2)若当1x 时,y 随x 的增大而减小;当2x 时,y 随x 的增大而增大,求m 的取值范围.(3)若函数1y y m ,点(2,),(,)M m s N n t 都在函数1y 的图象上,且s t ,求n 的取值范围.(用含m 的代数式表示)【答案】(1)2,2 (2)12m (3)2n m 或3n m 【分析】(1)把2m 代入 2220y x mx m m m 求出解析式,然后配方即可;(2)先求出 2220y x mx m m m 的对称轴,可得当x m 时,y 随x 的增大而减小;当x >m 时,y随x 的增大而增大,再结合条件即可求出;(3)根据代入法求出s t 、,结合s t 即可求出答案.【详解】(1)解:当2m 时,242y x x ,将242y x x 配方得:2(2)2y x ,∴该函数图象的顶点坐标是 2,2 ;(2)解:在 2220y x mx m m m 中,222b m x m a 轴,当x m 时,y 随x 的增大而减小;当x >m 时,y 随x 的增大而增大,∵当1x 时,y 随x 的增大而减小;当2x 时,y 随x 的增大而增大,∴12m ;(3)解:∵1y y m , 2220y x mx m m m ,∴221(12)y x m x m m ,∵点(2,),(,)M m s N n t 都在函数1y 的图象上,当2x m 时,6s ,当x n 时,22211(12)()24m t n m n m m n ,∵s t ,∴21216()24m n,∴212125()6244m n ,∴12522m n 或12522m n ,∴2n m 或3n m ;【点睛】本题是二次函数的一个综合题,主要考查了求顶点坐标,二次函数的性质,熟练掌握相关知识是关键.17.(2023秋·全国·九年级专题练习)已知抛物线2(0)y ax bx c a 经过(1)A t ,,(3)B t ,两点.(1)当1a 时,求b 的值;(2)当0 t ,且10x ≤≤时,y 的最大值为3.①求抛物线的解析式;②抛物线与y 轴交于点C ,直线(1)y kx k 与抛物线交于点D ,与直线BC 交于点F ,连接CD ,当:3:2COF CDF S S 时,求k 的值.【答案】(1)2b (2)①223y x x ;②32k =或4【分析】(1)根据(1)A t ,,(3)B t ,对称,写出对称轴方程1x ,根据对称轴是2b x a,且1a ,求出2b ;(2)①10x ≤≤在对称轴1x 的左侧,0x 时时,y 有最大值为3,得到0x 时,3y c ,根据0 t ,得到方程组,解方程组即可求解;②利用三角形的面积关系,得到点F 与点D 的横坐标的比为3:5,设点F 的横坐标为3t ,则点D 的横坐标为5t ,利用待定系数法用含t 的代数式求得直线OF 的解析式,进而得到点D 的坐标,将点D 坐标代入抛物线的解析式求得t 值即可求得结论.【详解】(1)解:抛物线2(0)y ax bx c a 经过(1)A t ,,(3)B t ,两点,1312x ,∵2b x a,1a ,2b ;(2)解:①∵(1)A t ,,(3)B t ,,0 t ,(10)A ,,(30)B ,,∵对称轴是直线1x ,0a ,当1x 时,y 随x 的增大而增大,∵10x ≤≤时,y 的最大值为3,当0x 时,3y c ,抛物线解析式为23y ax bx ,把(10)A ,,(30)B ,,代入得:309330a b a b, 12a b, 抛物线解析式为223y x x ;②由①得:(10)A ,,(30)B ,,(03)C ,,设直线BC 的解析式为 10y kx b k ,11330b k b,解得:13k b , 直线BC 的解析式为3y x ,∵:3:2COF CDF S S ,:3:5COF COD S S ,点F 与点D 的横坐标的比为3:5,设点F 的横坐标为3t ,则点D 的横坐标为5t ,∵点F 在直线BC 上,3,33F t t .∵点F 在直线(1)y kx k 上,333t k t ,解得:1t k t, 直线OF 的解析式为1t y x t,∵点D 在直线OF 上, 5,55D t t ,∵点D 在抛物线上,2525355t t t ,解得:15t 或25,当15t 时,115415k ,当25t 时,2135225x ,综上所述,32k =或4.【点拨】本题考查了二次函数性质,待定系数法求函数解析式,三角形面积,熟练掌握根据二次函数值随自变量变化情况确定二次函数的最值,待定系数法求二次函数的解析式,同高的两个三角形面积与底边成比例,是解决本题的关键.易错必考题四、二次函数图象的平移问题18.(2023秋·全国·九年级专题练习)将抛物线22y ax bx (a 、b 是常数,0a )向下平移2个单位长度后,得到的新抛物线恰好和抛物线2142y x x关于y 轴对称,则a 、b 的值为()A .1a ,2b B .12a ,1b =-C .12a ,1b =-D .1a ,2b 【答案】C【分析】先求出抛物线2142y x x 关于y 轴对称的抛物线为 219122y x ,再根据抛物线平移的性质得出抛物线22y ax bx 向下平移2个单位长度后为24y ax bx ,即可得出a 和b 的值.【详解】解:∵ 2211941222y x x x,∴抛物线2142y x x 关于y 轴对称的抛物线为 219122y x ,∵抛物线22y ax bx 向下平移2个单位长度后为24y ax bx ,∵24y ax bx 与2142y x x关于y 轴对称,∴ 22419122y ax bx x ,整理得:224412y x x a bx x,∴12a ,1b =-,故选:C .【点睛】本题主要考查了二次函数的平移规律,解题的关键是掌握将二次函数化为顶点式的方法和步骤,以及二次函数的平移规律:上加下减,左加右减.19.(2023春·浙江金华·九年级校考期中)如图,一条抛物线与x 轴相交于M ,N 点(点M 在点N 的左侧),其顶点P 在线段AB 上移动,点A ,B 的坐标分别为 2,3 , 1,3,点N 的横坐标的最大值为4,则点M 的横坐标的最小值为()A .1B .3C .5D .7【答案】C 【分析】其顶点P 在线段AB 上移动,点A ,B 的坐标分别为 2,3 , 1,3,分别求出对称轴过点A 和B 时的情况,即可判断出M 点横坐标的最小值.【详解】解:根据题意知,∵点N 的横坐标的最大值为4,此时点P 和点B 重合,即抛物线的对称轴为:1x ,N 点坐标为 4,0,则M 点坐标为 2,0 ,点P 和点A 重合,点M 的横坐标最小,此时抛物线的对称轴为:2x ,N 点坐标为 1,0,则M 点的坐标为 5,0 ,点M 的横坐标的最小值为5 ,故选:C .【点睛】本题考查了抛物线与x 轴的交点,二次函数的图象与性质,解答本题的关键是理解二次函数在平行于x 轴的直线上移动时,两交点之间的距离不变.20.(2023春·湖北恩施·九年级统考期中)在平面直角坐标系xOy 中,将抛物线223y x x 先绕原点O 旋转180 ,再向上平移3个单位,则平移后的抛物线解析式为.【答案】22y x x【分析】先把抛物线配方为顶点式,求出顶点坐标,求出旋转后的抛物线,再根据“上加下减,左加右减”的法则进行解答即可.【详解】解:∵ 2223=12y x x x ,∴抛物线的顶点为 12,,将抛物线223y x x 先绕原点旋转180 抛物线顶点为 12 ,-,旋转后的抛物线为 212y x ,再向上平移3个单位, 2212+32y x x x .故答案为:22y x x .【点睛】本题考查的是抛物线的图象与几何变换,解题的关键是熟知函数图象旋转与平移的法则.21.(2023秋·河北张家口·九年级统考期末)如图,坐标平面上有一透明片,透明片上有一抛物线L : 227y x .(1)写出L 的对称轴和y 的最小值;(2)点P 为透明片上一点,P 的坐标为 9,6.平移透明片,平移后,P 的对应点为P ,抛物线L 的对应抛物线为L ,其表达式恰为267y x x ,求PP 移动的最短路程.【答案】(1)对称轴为直线:7x ,y 的最小值为2(2)42PP 【分析】(1)直接根据解析式进行作答即可;(2)求出平移后的抛物线的顶点坐标,PP 移动的最短路程为两个顶点间的距离,进行求解即可.【详解】(1)解:∵ 222277y x x ,顶点坐标为 7,2,∴对称轴为直线7x ,y 的最小值为2;(2)∵ 226732y x x x ,顶点坐标为 3,2 ,∵抛物线L 的顶点坐标为 7,2,∴PP 移动的最短路程为 22732242 .【点睛】本题考查二次函数的图象与性质,二次函数图象的平移.熟练掌握二次函数的图象和性质,是解题的关键.22.(2023秋·陕西安康·九年级统考期末)已知二次函数 2420y ax x a 图像的对称轴为直线2x .(1)求a 的值;(2)将该二次函数的图像沿x 轴向右平移2个单位后得到一个新的二次函数,求新二次函数的解析式.【答案】(1)1a (2)2814y x x 【分析】(1)根据对称轴列式求解即可解答;(2)将a 的值代入,结合抛物线解析式求平移后图像所对应的二次函数的表达式即可.【详解】(1)解:∵二次函数 2420y ax x a 图像的对称轴为直线2x ∴422a,解得1a .(2)解:∵1a ,∴242y x x ,∴平移后为: 222422814y x x x x .∴新二次函数的解析式为2814y x x .【点睛】本题主要考查了二次根式的性质、二次根式的平移等知识点,掌握二次根式的性质是解答本题的关键.23.(2023·山东·九年级专题练习)如图,抛物线过点 0,0O , 10,0E ,矩形ABCD 的边AB 在线段OE 上(点B 在点A 的左侧),点C ,D 在抛物线上,设 ,0B t ,当2t 时,4BC .(1)求抛物线的函数表达式;(2)当t 为何值时,矩形ABCD 的周长有最大值?最大值是多少?(3)保持2t 时的矩形ABCD 不动,向右平移抛物线,当平移后的抛物线与矩形的边有两个交点G ,H ,且直线GH 平分矩形ABCD 的面积时,求抛物线平移的距离.【答案】(1)21542y x x (2)当1t 时,矩形ABCD 的周长有最大值,最大值为412(3)4【分析】(1)设抛物线的函数表达式为 100y ax x a ,求出点C 的坐标,将点C 的坐标代入即可求出该抛物线的函数表达式;(2)由抛物线的对称性得AE OB t ,则102AB t ,再得出21542BC t t ,根据矩形的周长公式,列出矩形周长的表达式,并将其化为顶点式,即可求解;(3)连接A C ,BD 相交于点P ,连接OC ,取OC 的中点Q ,连接PQ ,根据矩形的性质和平移的性质推出四边形OCHG 是平行四边形,则PQ CH ,12PQ OA .求出2t 时,点A 的坐标为 8,0,则142CH OA ,即可得出结论.【详解】(1)解:设抛物线的函数表达式为 100y ax x a .∵当2t 时,4BC ,∴点C 的坐标为 2,4 .将点C 坐标代入表达式,得 22104a ,解得14a .∴抛物线的函数表达式为21542y x x.(2)解:由抛物线的对称性得:AE OB t ,∴102AB t .当x t 时,21542BC t t .∴矩形ABCD 的周长为2152210242AB BC t t t21202t t 2141122t .∵102,∴当1t 时,矩形ABCD 的周长有最大值,最大值为412.(3)解:连接AC ,BD 相交于点P ,连接OC ,取OC 的中点Q ,连接PQ .∵直线GH 平分矩形ABCD 的面积,∴直线GH 过点P ..由平移的性质可知,四边形OCHG 是平行四边形,∴PQ CH .∵四边形ABCD 是矩形,∴P 是AC 的中点.∴12PQ OA .当2t 时,点A 的坐标为 8,0,∴142CH OA .∴抛物线平移的距离是4.【点睛】本题主要考查了求二次函数的解析式,二次函数的图象和性质,矩形的性质,平移的性质,解题的关键是掌握用待定系数法求解二次函数表达式的方法和步骤,二次函数图象上点的坐标特征,矩形的性质,以及平移的性质.易错必考题五、根据二次函数的图象判断式子符号24.(2023秋·全国·九年级专题练习)如图,抛物线 21y a x k 与x 轴交于 1,0A ,B 两点,下列判断正确的是()A .0a B .当0x 时,y 随x 的增大而减小C .点B 的坐标为3,0D .0a k 【答案】C 【分析】根据二次函数的图象和性质,逐一进行判断即可.【详解】解:A 、抛物线开口向下,a<0,选项错误,不符合题意;B 、 21y a x k ,对称轴为1x ,当1x 时,y 随x 的增大而减小,选项错误,不符合题意;C 、∵抛物线 21y a x k 与x 轴交于 1,0A ,对称轴为1x ,∴点B 的坐标为 3,0,选项正确,符合题意;D 、∵抛物线 21y a x k 与x 轴交于 1,0A ,∴ 2011a k ,∴4k a ,∴430a k a a a ,故选项D 错误,不符合题意;故选C .【点睛】本题考查二次函数的图象和性质,熟练掌握二次函数的图象和性质,是解题的关键.25.(2023秋·全国·九年级专题练习)如图,根据二次函数2y ax bx c 的图象得到如下结论:①0abc ②20a b ③0a b c ④30a c ⑤当2x 时,y 随x 的增大而增大⑥一定存在实数0x ,使得200ax bx a b 成立.上述结论,正确的是()A .①②⑤B .②③④C .②③⑥D .③④⑤【答案】C 【分析】根据抛物线开口向上得出0a ,根据抛物线和y 轴的交点在y 轴的负半轴上得出0c ,根据图象关于=1x 对称,得到12b a,即2a b ,故0b ,根据图象与x 轴的一个交点为3x ,即可得到图象与x 轴的另一个交点为1x ,根据方程20ax bx c 的根,把1x 代入2y ax bx c 求出0a b c ,再将2a b 代入0a b c 得到30a c ,根据抛物线的对称轴和图象得出当1x 时,y 随x 的增大而增大,根据函数最小值为a b c ,当01x 时,则200ax bx c a b c ,即0ax bx a b ,故一定存在实数0x ,使得200ax bx a b 成立.【详解】解:∵抛物线开口向上、顶点在y 轴左侧、抛物线与y 轴交于负半轴,0a ,0c ,∵抛物线关于=1x 对称,12b a,即20a b , 0b ,<0abc ,故①错误,故②正确;∵抛物线过点 3,0 ,对称轴为直线=1x ,∴抛物线过点 1,0,把1x 代入2y ax bx c ,得到0a b c 0a b c ,故③正确;2b a ,0a b c ,30a c ,故④错误;∵抛物线开口向上,对称轴是直线=1x ,∴当1x 时,y 随x 的增大而增大;故⑤错误;∵函数最小值为a b c ,∴当01x 时,则200ax bx c a b c ,即0ax bx a b ,∴一定存在实数0x ,使得200ax bx a b 成立,故⑥正确;故选:C .【点睛】本题考查二次函数图象与系数的关系,解答本题的关键是明确题意,利用二次函数的性质和数形结合的思想解答.26.(2023·黑龙江齐齐哈尔·统考模拟预测)如图,已知二次函数 20y ax bx c a 的图象如图所示,对于下列结论,其中正确结论的个数是()①0abc ;② 220a c b ;③30a c ;④若m 为任意实数;则26am bm b a ;⑤当22x k 时,y 随x 增大而先增大后减小.A .1B .2C .3D .4【答案】B【分析】根据二次函数的性质进行判断求解.【详解】解:由于图像开口向上,0a ,∵抛物线对称轴为12b x a,20b a ,∵抛物线与y 轴的交点在x 轴下方,0c ,<0abc ,①错误;有图像知,将1x 代入得0a b c ,将=1x 代入得<0a b c ,22()()0a c b a b c a c b ,②错误;有图像知,将1x 代入得0a b c ,2b a ∵,30a c ,③正确;当=1x 时,函数有最小值y a b c ,若m 为任意实数;则2am bm c a b c ,2am bm a b ,22am bm b a b ,2b a ∵,243am bm b a a a ,0a ∵,36a a ,26am bm b a ,④正确;20k ∵,222k ,根据图像可知,22x k 时,y 随x 增大而先减小后增大.⑤错误;故选:B .【点睛】本题主要考查二次函数的图像和性质,熟练掌握二次函数的性质是解题的关键.27.(2023·山东·九年级专题练习)如图,二次函数2(0)y ax bx c a 的图象与x 轴的正半轴交于点A ,对称轴为直线1x .下面结论:①<0abc ;②20a b ;③30a c ;④方程20(0)ax bx c a 必有一个根大于1 且小于0.其中正确的是.(只填序号)【答案】①②④【分析】根据题意和函数图象,可以判断各个小题中的结论是否成立,本题得以解决.【详解】解:由图象可得,000,,,a b c 则<0abc ,故①正确;∵12b a,∴2b a ,∴20a b ,故②正确;∵函数图象与x 轴的正半轴交点在点(2,0)和(3,0)之间,对称轴是直线1x ,∴函数图象与x 轴的另一个交点在点(0,0)和点 1,0 之间,故④正确;∴当=1x 时,0y a b c ,∴20y a a c ,∴30a c ,故③错误;故答案为:①②④.【点睛】本题考查二次函数图象与系数的关系、二次函数图象上点的坐标特征、抛物线与x 轴的交点,解答本题的关键是明确题意,利用二次函数的性质和数形结合的思想解答.28.(2023秋·全国·九年级专题练习)已知二次函数 20y ax bx c a 的图像如图所示,有下列5个结论:①0abc ;②b a c ;③420a b c ;④23c b ;⑤ a b m am b (1m 的实数).其中正确的结论有(填序号)【答案】③④⑤【分析】由抛物线的开口方向可以得出a<0,由抛物线与y 轴的交点可以判断0c ,由抛物线的对称轴可以判断0b ,再根据抛物线与x 轴的交点情况以及抛物线的顶点进行推理即可得到答案.【详解】解:①∵二次函数 20y ax bx c a 的图象开口方向向下,与y 轴交于正半轴,对称轴为直线1x ,0002b a c a,,,>0b ,<0abc ,故①错误,不符合题意;②∵二次函数 20y ax bx c a 的图象与x 轴的交点在 10 ,的右边,图象开口方向向下, 当=1x 时,0y ,0a b c ,b ac ,故②错误,不符合题意;③∵二次函数 20y ax bx c a 的图象与x 轴的另一个交点在 20,的右边,图象开口方向向下, 当2x 时,0y ,420a b c ,故③正确,符合题意;④由①得:12b a,12a b ,由②得:<0a b c ,102b bc ,23c b ,故④正确,符合题意;⑤∵二次函数 20y ax bx c a 的图象的对称轴为直线1x ,当1x 时,y 取最大值,最大值为a b c ,当 1x m m 时,2am bm c a b c ,1a b m am b m ,故⑤正确,符合题意;综上所述:正确的结论有:③④⑤,故答案为:③④⑤.【点睛】本题主要考查了二次函数的图象与各项系数符号的关系,根据二次函数的图象判断式子的符号,熟练掌握二次函数的性质,采用数形结合的方法解题,是解此题的关键.29.(2023秋·全国·九年级专题练习)如图,二次函数2y ax bx c 的图象过点 3,0A ,对称轴为直线1x .给出以下结论:①0abc <;② 21a ax x b ;③若 211,M n y , 222,N n y 为函数图象上的两点,则12y y ;④若关于x 的一元二次方程 20ax bx c p p 有整数根,则对于a 的每一个值,对应的p 值有3个.其中正确的有.(写出所有正确结论的序号)【答案】①②③【分析】由抛物线的开口方向判断a 与0的关系,由抛物线与y 轴的交点判断c 与0的关系,然后根据对称轴及抛物线与x 轴交点情况进行推理,进而对所得结论进行判断.【详解】∵抛物线开口向下,0a ;∵抛物线的对称轴为直线x 2b a10 ,0b ;∵抛物线与y 轴的交点在x 轴上方,0c ,0abc ,故①正确;∵当1x 时,函数有最大值,2a b c ax bx c ,即 21a ax x b故②正确;∵抛物线的对称轴是1x ,则2212(1,2,())M n y N n y ,在对称轴右侧,2212n n ,12y y ,。

《二次函数》易错题以及分析

《二次函数》易错题以及分析

一、选择题(每小题3分,共30分)1、在下列函数关系式中,(1)22x y -=;(2)2x x y -=;(3)3)1(22+-=x y ; (4)332--=x y ,二次函数有( ) A.1个 B.2个 C.3个 D.4个【答案】D【解析】二次函数的一般式为c bx ax y ++=2(0≠a ),4个均为二次函数,故选D. 【易错点】本题考查二次函数的定义和一般式,属容易题,但学生对二次函数解析式的常见形式把握不够,还是出现把(3)不当二次函数来处理.. 2、若32)2(--=mx m y 是二次函数,且开口向上,则m 的值为( )A.5±B.5C. —5D.0【答案】C【解析】二次函数的“二次”体现为自变量的最高次数为2次,因此32-m =2,且2-m 0≠,故选C.【易错点】考查二次函数的定义,属容易题,学生容易得出32-m =2,但会忽略2-m 0≠,说明对二次函数的“二次”定义理解不透彻.3、把抛物线23x y =向上平移2个单位,向向右平移3个单位,所得的抛物线解析式是( )A. 2)3(32-+=x y B. 2)3(32++=x y C. 2)3(32--=x y D. 2)3(32+-=x y 【答案】D【解析】由二次函数的平移规律即可得出答案,故选D.【易错点】考查二次函数的平移规律,属容易题,但学生过分强调死记硬背,不数形结合,往往会出错.4、下列二次函数的图象与x 轴没有交点的是( ) A. x x y 932+= B. 322--=x x y C. 442-+-=x x y D. 5422++=x x y【答案】D【解析】由ac b 42-即可判断二次函数的图象与x 轴的交点情况,本题D 中ac b 42-=-240<,表示与x 轴没有交点,故选D.【易错点】考查二次函数的图象与x 轴的交点情况,属容易题,但学生计算能力不高,导致错误较多.5、已知点(-1,1y ),(2,213y -),(21,3y )在函数12632++=x x y 的图象上,则1y 、2y 、3y 的大小关系是( )A.321y y y >>B. 312y y y >>C. 132y y y >>D. 213y y y >>【答案】C【解析】根据二次函数的解析式可得对称轴为直线1-=x ,又抛物线开口向上,所以横坐标越接近-1,对应的函数值越小,故选C.【易错点】考查二次函数的图象的对称性,属一般题,学生由于基础薄弱,习惯将所有x 的值一一代入,求得y 的值,一费时,二计算容易出错,导致得分率不高. 6、已知抛物线c bx ax y ++=2经过原点和第一、二、三象限,那么,( ) A.000>>>c b a ,, B. 000=<>c b a ,, C.000><<c b a ,, D. 000=>>c b a ,,【答案】D【解析】根据二次函数c b a 、、的符号判定方法,即可得出D ,故选D. 【易错点】根据已知条件画不出二次函数图象的草图,故无法选择答案.7、若二次函数)2(2-++=m m x mxy 的图象经过原点,则m 的值为( )A.0或2B.0C. 2D.无法确定【答案】C【解析】二次函数经过原点,则0=c ,本题中即0)2(=-m m ,则20或=m ,但二次函数二次项系数不等于0,因此0≠m ,故选C.【易错点】能得出0)2(=-m m ,却忽略了二次项系数不等于零.8、一次函数b ax y +=与二次函数c bx ax y ++=2在同一坐标系中的图象可能是( )A B C D【答案】C【解析】根据一次函数的图象得出a 、b 的符号,进而判断二次函数的草图是否正确,A 和B 中a 的符号已经发生矛盾,故不选,C 符合,D 中由一次函数得b 0<,而由二次函数得b 0>,矛盾,也舍去,故选C.【易错点】对于如何判断二次函数中一次项系数b 的符号理解不深,故常选错. 9、当k 取任何实数时,抛物线22)(21k k x y +-=的顶点所在的曲线是( )A .2xy = B.2xy -= C.2xy =(0>x ) D. 2x y =(0<x )【答案】A【解析】由给出的顶点式得出抛物线的顶点为(2,k k ,),在2xy =上,故选A.【易错点】当二次函数解析式中出现参数时,学生往往不知所措,过多得关注了k 字母而没有看到这是一个顶点式的抛物线,故选不出答案.10、抛物线3522+-=x x y 与坐标轴的交点共有( ) A.4个 B.3个 C.2个 D.1个【答案】B【解析】由ac b 42->0得出抛物线与x 轴有2个交点,与y 轴一个交点,共3个,故选B. 【易错点】仅仅得出与与x 轴的2个交点就选择C ,审题不严谨.. 二、填空题(每小题3分,共24分)11、函数7)5(2++-=x y 的对称轴是_____________,顶点坐标是_________,图象开口_______,当x ________时,y 随x 的增大而减小,当5-=x 时,函数有最____值,是______. 【答案】直线5-=x ,(-5,7),向下,5-≥,大,7. 【解析】根据二次函数顶点式的基本性质即可完成这一题. 【易错点】在增减性填空时往往写成5->x ,忽略等号. 12、抛物线2ax y =与22x y =形状相同,则a =_________. 【答案】2±.【解析】形状相同,即a 相同,故a =2±. 【易错点】只写-2,忽略+2.13、二次函数)2)(3(-+-=x x y 的图象的对称轴是__________. 【答案】直线21-=x .【解析】根据二次函数的交点式得抛物线与x 轴的两个交点的横坐标为-3和2,故对称轴为直线21223-=+-=x .【易错点】直接将二次函数转化为一般式,再根据公式求解,导致计算错误较多. 14、当x =________时,函数4)2(2+-=x y 有最_____值,是________.【答案】2,小,2.【解析】4)2(2+-x 当2=x 有最小值4,故4)2(2+-=x y 在此时有最小值2.【易错点】最小值容易写成4,而不是2.15、抛物线c bx x y ++-=2的图象如图所示,则此抛物线的解析式为______________. 【答案】4)1(2+--=x y【解析】根据图象可设抛物线为k x y +--=2)1(,把点(3,0)代入求出4=k 即可. 【易错点】从对称轴角度出发,过分注重对称性来解题,使题复杂化.(第15题图) (第16题图) (第17题图)16、如图是抛物线c bx ax y ++=2的一部分,对称轴是直线x =1,若其与x 轴的一个交点为(3,0),则由图象可知,不等式02>++c bx ax 的解集是_____________. 【答案】31>-<x x 或【解析】根据图象得出抛物线的对称轴为直线2311+==x x ,得11-=x 故图象与x 轴的另一个交点为(-1,0),不等式的解集即为二次函数0>y 时x 的取值范围,故由图象得出在x 轴的上方,故31>-<x x 或【易错点】没有将不等式问题转化为二次函数0>y 的问题,另外不会观察图象也是导致本题得分率低的一个重要原因.17、如图是二次函数c bx ax y ++=2(0≠a )在平面直角坐标系中的图象,根据图形判断:①0>c ;②0<++c b a ;③02<-b a ;④ac a b 482>+,其中正确的是__________(填写序号).【答案】②④【解析】根据二次函数c 的符号判定方法,得出①错;观察图象,当1=x 时,图象上的点在x 轴下方,故②正确;由0,0<>b a 得出③正确;因为ac b 42->0,而0>-8a ,ac b 42-a 8->,移项得④正确.【易错点】对二次函数中通过数形结合判断字母和代数式符号的方法没有掌握. 18、如图,从地面竖直向上跑出一个小球,小球的高度h (单位:m )与小球运动时间t (单位:s )之间的关系式为2530t t h -=,那么小球从抛出至落到地面所需的时间是_____秒. 【答案】6【解析】令0=h ,得05302=-t t ,解得60或=t ,因0>t ,故6=t . 【易错点】没有将实际生活问题传化成二次函数问题. 三、简答题(共56分)19、(8分)已知二次函数c bx ax y ++=2,当x =0时,y =4;当x =1时,y =9;当x =2时,y =18,求这个二次函数.【答案】把当x =0,y =4;x =1,y =9;x =2,y =18代入c bx ax y ++=2得,…1分 ⎪⎩⎪⎨⎧++=++==4241894b a cb ac ,……………………4分 解得⎪⎩⎪⎨⎧===432c b a ,…………………………7分∴4322++=x x y ……………………8分【易错点】本题考查学生利用三元一次方程组求解二次函数解析式的能力,而部分学生往往出现三元一次方程组解答出错,计算能力不高的情况. 20、(8分)二次函数的图象顶点是(-2,4),且过(-3,0); (1)求函数的解析式;(2)求出函数图象与坐标轴的交点,并画出函数图象.【答案】(1)由题意得,设4)2(2++=x a y 把(-3,0)得,0=4+a ………………2分∴4-=a ,∴4)2(42++-=x y ……………………3分(2)令0=x ,则12444-=+⨯-=y ,∴与y 轴的交点为(0,-12)……4分 令0=y ,则04)2(42=++-x , 解得 11-=x ,32=x ∴与x 轴的交点为(-1,0)和(-3,0)………………6分图象略.………………………………………………………8分【易错点】本题考查利用顶点式求二次函数解析式、二次函数与坐标轴的交点及函数图象画法.学生出错较多的地方是与坐标轴交点求解不齐全. 21、(10分)利用图象判断方程23212-=x x是否有解,若有解,请写出它的解.(结果精确到0.1)【答案】∵23212-=x x,∴设23212+-=x x y ,则方程的解即函数图象与x 轴两个交点的横坐标.∴由图象得 8.01≈x ,2.52≈x【易错点】本题考查利用图象法求方程的近似解.学生不理解为何要用图象法求方程的近似解,进而会直接用公式法求解.22、(10分)某体育用品商店购进一批滑板,每件进价为100元,售价为130元,每星期可卖出80件.商家决定降价销售,根据市场调查,每降价5元,每星期可多售出20件. (1)求商家降价前每星期的销售利润是多少元? (2)降价后,商家要使每星期的销售利润最大,应将售价定为多少?最大销售利润是多少? 【答案】(1)(130-100)×80=2400元…………………………………3分 (2)设每件降价x 元,商家每星期的利润为y 元,则………………4分)480)(30(x x y +-==24004042++-x x =-42)5(-x +2500…………7分∴当5=x 时,y 有最大值,为2500………………………………………9分即降价5元、售价为125元时,销售利润最大,为2500元.………………10分【易错点】本题是二次函数最值问题的实际应用,若学生把售价定为x 元,则无形中增加了题目的难度,所以本题中设置合理的未知数是至关重要的,而学生往往不会这一点而导致此题错解.23、(10分)如图,隧道的截面是由抛物线AED 和矩形ABCD 构成,矩形的长BC 为8m ,宽AB 为2m ,以BC 所在的直线为x 轴,线段BC 的中垂线为y 轴,建立平面直角坐标系.y 轴是抛物线的对称轴,顶点E 到坐标原点O 的距离为6m 。

数学九年级上册 二次函数易错题(Word版 含答案)

数学九年级上册  二次函数易错题(Word版 含答案)

数学九年级上册二次函数易错题(Word版含答案)一、初三数学二次函数易错题压轴题(难)1.图①,二次函数y=ax2+bx+c(a≠0)的图象经过点A(﹣1,0),并且与直线y=1 2 x﹣2相交于坐标轴上的B、C两点,动点P在直线BC下方的二次函数的图象上.(1)求此二次函数的表达式;(2)如图①,连接PC,PB,设△PCB的面积为S,求S的最大值;(3)如图②,抛物线上是否存在点Q,使得∠ABQ=2∠ABC?若存在,则求出直线BQ的解析式及Q点坐标;若不存在,请说明理由.【答案】(1)y=12x2﹣32x﹣2;(2)﹣1<0,故S有最大值,当x=2时,S的最大值为4;(3)Q的坐标为(53,﹣289)或(﹣113,929).【解析】【分析】(1)根据题意先求出点B、C的坐标,进而利用待定系数法即可求解;(2)由题意过点P作PH//y轴交BC于点H,并设点P(x,12x2﹣32x﹣2),进而根据S=S△PHB+S△PHC=12PH•(x B﹣x C),进行计算即可求解;(3)根据题意分点Q在BC下方、点Q在BC上方两种情况,利用解直角三角形的方法,求出点H的坐标,进而分析求解.【详解】解:(1)对于直线y=12x﹣2,令x=0,则y=﹣2,令y=0,即12x﹣2=0,解得:x=4,故点B、C的坐标分别为(4,0)、(0,﹣2),抛物线过点A、B两点,则y=a(x+1)(x﹣4),将点C的坐标代入上式并解得:a=12,故抛物线的表达式为y=12x2﹣32x﹣2①;(2)如图2,过点P作PH//y轴交BC于点H,设点P(x,12x2﹣32x﹣2),则点H(x,12x﹣2),S=S△PHB+S△PHC=12PH•(x B﹣x C)=12×4×(12x﹣2﹣12x2+32x+2)=﹣x2+4x,∵﹣1<0,故S有最大值,当x=2时,S的最大值为4;(3)①当点Q在BC下方时,如图2,延长BQ交y轴于点H,过点Q作QC⊥BC交x轴于点R,过点Q作QK⊥x轴于点K,∵∠ABQ=2∠ABC,则BC是∠ABH的角平分线,则△RQB为等腰三角形,则点C是RQ的中点,在△BOC中,tan∠OBC=OCOB=12=tan∠ROC=RCBC,则设RC=x=QB,则BC=2x,则RB22(2)x x5=BQ,在△QRB中,S△RQB=12×QR•BC=12BR•QK,即122x•2x=125,解得:KQ5∴sin∠RBQ=KQBQ55x=45,则tanRBH=43,在Rt △OBH 中,OH =OB•tan ∠RBH =4×43=163,则点H (0,﹣163), 由点B 、H 的坐标得,直线BH 的表达式为y =43(x ﹣4)②, 联立①②并解得:x =4(舍去)或53, 当x =53时,y =﹣289,故点Q (53,﹣289); ②当点Q 在BC 上方时,同理可得:点Q 的坐标为(﹣113,929); 综上,点Q 的坐标为(53,﹣289)或(﹣113,929). 【点睛】本题考查的是二次函数综合运用,涉及到一次函数的性质、等腰三角形的性质、解直角三角形、面积的计算等,注意分类讨论思维的应用,避免遗漏.2.如图,抛物线()21y x a x a =-++与x 轴交于,A B 两点(点A 位于点B 的左侧),与y轴的负半轴交于点C .()1求点B 的坐标.()2若ABC 的面积为6.①求这条抛物线相应的函数解析式.②在拋物线上是否存在一点,P 使得POB CBO ∠=∠?若存在,请求出点P 的坐标;若不存在,请说明理由.【答案】(1)(1,0);(2)①223y x x =+-;②存在,点P 的坐标为⎝⎭或⎝⎭. 【解析】 【分析】(1)直接令0y =,即可求出点B 的坐标;(2)①令x=0,求出点C 坐标为(0,a ),再由△ABC 的面积得到12(1−a)•(−a)=6即可求a 的值,即可得到解析式;②当点P 在x 轴上方时,直线OP 的函数表达式为y=3x ,则直线与抛物线的交点为P ;当点P 在x 轴下方时,直线OP 的函数表达式为y=-3x ,则直线与抛物线的交点为P ;分别求出点P 的坐标即可. 【详解】解:()1当0y =时,()210,x a x a -++=解得121,.x x a ==点A 位于点B 的左侧,与y 轴的负半轴交于点,C0,a ∴<∴点B 坐标为()1,0.()2①由()1可得,点A 的坐标为(),0a ,点C 的坐标为()0,,0,a a <1,AB a OC a ∴=-=-ABC 的面积为6,()()116,2a a ∴--⋅= 123,4a a ∴=-=.0,a <3a ∴=-22 3.y x x =+-②点B 的坐标为()1,0,点C 的坐标为()0,3-, ∴设直线BC 的解析式为3,y kx =-则03,k =-3k ∴=.,POB CBO ∠=∠∴当点P 在x 轴上方时,直线//OP 直线,BC ∴直线OP 的函数解析式3,y x =为则23,23,y x y x x =⎧⎨=+-⎩1111333132x y ⎧-=⎪⎪∴⎨-⎪=⎪⎩(舍去),2211333132x y ⎧+=⎪⎪⎨+⎪=⎪⎩∴点的P 坐标为1133313,⎛⎫++ ⎪ ⎪⎝⎭; 当点P 在x 轴下方时,直线'OP 与直线OP 关于x 轴对称,则直线'OP 的函数解析式为3,y x =- 则23,23,y x y x x =-⎧⎨=+-⎩115372153372x y ⎧--=⎪⎪∴⎨+⎪=⎪⎩(舍去),225372153372x y ⎧-+=⎪⎪⎨-⎪=⎪⎩ ∴点P'的坐标为53715337,⎛⎫-+- ⎪ ⎪⎝⎭综上可得,点P 的坐标为1133313,22⎛⎫++ ⎪ ⎪⎝⎭或53715337,22⎛⎫-+- ⎪ ⎪⎝⎭【点睛】本题考查二次函数的图象及性质,一次函数的性质,熟练掌握二次函数的图象及性质,结合数形结合的思想和分类讨论的思想解题是解本题的关键.3.如图,直线y =12x ﹣2与x 轴交于点B ,与y 轴交于点A ,抛物线y =ax 2﹣32x+c 经过A ,B 两点,与x 轴的另一交点为C . (1)求抛物线的解析式;(2)M 为抛物线上一点,直线AM 与x 轴交于点N ,当32MN AN =时,求点M 的坐标; (3)P 为抛物线上的动点,连接AP ,当∠PAB 与△AOB 的一个内角相等时,直接写出点P 的坐标.【答案】(1)y=12x2﹣32x﹣2;(2)点M的坐标为:(5,3)或(﹣2,3)或(2,﹣3)或(1,﹣3);(3)点P的坐标为:(﹣1,0)或(32,﹣258)或(173,509)或(3,﹣2).【解析】【分析】(1)根据题意直线y=12x﹣2与x轴交于点B,与y轴交于点A,则点A、B的坐标分别为:(0,-2)、(4,0),即可求解;(2)由题意直线MA的表达式为:y=(12m﹣32)x﹣2,则点N(43m-,0),当MNAN =32时,则NHON=32,即4343mmm---=32,进行分析即可求解;(3)根据题意分∠PAB=∠AOB=90°、∠PAB=∠OAB、∠PAB=∠OBA三种情况,分别求解即可.【详解】解:(1)直线y=12x﹣2与x轴交于点B,与y轴交于点A,则点A、B的坐标分别为:(0,﹣2)、(4,0),则c=﹣2,将点B的坐标代入抛物线表达式并解得:a=12,故抛物线的表达式为:y=12x2﹣32x﹣2①;(2)设点M(m,12m2﹣32m﹣2)、点A(0,﹣2),将点M、A的坐标代入一次函数表达式:y=kx+b并解得:直线MA的表达式为:y=(12m﹣32)x﹣2,则点N(43m-,0),当MNAN=32时,则NHON=32,即:4343mmm---=32,解得:m=5或﹣2或2或1,故点M的坐标为:(5,3)或(﹣2,3)或(2,﹣3)或(1,﹣3);(3)①∠PAB=∠AOB=90°时,则直线AP的表达式为:y=﹣2x﹣2②,联立①②并解得:x=﹣1或0(舍去0),故点P(﹣1,0);②当∠PAB=∠OAB时,当点P在AB上方时,无解;当点P在AB下方时,将△OAB沿AB折叠得到△O′AB,直线OA交x轴于点H、交抛物线为点P,点P为所求,则BO=OB=4,OA=OA=2,设OH=x,则sin∠H=BO OAHB HA'=,即:2444x x=++,解得:x=83,则点H(﹣83,0),.则直线AH的表达式为:y=﹣34x﹣2③,联立①③并解得:x=32,故点P(32,﹣258);③当∠PAB=∠OBA时,当点P在AB上方时,则AH=BH,设OH=a,则AH=BH=4﹣a,AO=2,故(4﹣a)2=a2+4,解得:a=32,故点H(32,0),则直线AH的表达式为:y=43x﹣2④,联立①④并解得:x=0或173(舍去0),故点P(173,509);当点P在AB下方时,同理可得:点P(3,﹣2);综上,点P的坐标为:(﹣1,0)或(32,﹣258)或(173,509)或(3,﹣2).【点睛】本题考查的是二次函数综合运用,涉及到一次函数、解直角三角形、勾股定理的运用等,要注意分类讨论,解题全面.4.在平面直角坐标系中,将函数y=x2﹣2mx+m(x≤2m,m为常数)的图象记为G,图象G的最低点为P(x0,y0).(1)当y0=﹣1时,求m的值.(2)求y0的最大值.(3)当图象G与x轴有两个交点时,设左边交点的横坐标为x1,则x1的取值范围是.(4)点A在图象G上,且点A的横坐标为2m﹣2,点A关于y轴的对称点为点B,当点A不在坐标轴上时,以点A、B为顶点构造矩形ABCD,使点C、D落在x轴上,当图象G 在矩形ABCD内的部分所对应的函数值y随x的增大而减小时,直接写出m的取值范围.【答案】(1或﹣1;(2)14;(3)0<x1<1;(4)m=0或m>43或23≤m<1【解析】【分析】(1)分m>0,m=0,m<0三种情形分别求解即可解决问题;(2)分三种情形,利用二次函数的性质分别求解即可;(3)由(1)可知,当图象G与x轴有两个交点时,m>0,求出当抛物线顶点在x轴上时m的值,利用图象法判断即可;(4)分四种情形:①m<0,②m=0,③m>1,④0<m≤1,分别求解即可解决问题.【详解】解:(1)如图1中,当m>0时,∵y=x2﹣2mx+m=(x﹣m)2﹣m2+m,图象G是抛物线在直线y=2m的左侧部分(包括点D),此时最底点P(m,﹣m2+m),由题意﹣m2+m=﹣1,解得m=512+或512-+(舍弃),当m=0时,显然不符合题意,当m<0时,如图2中,图象G是抛物线在直线y=2m的左侧部分(包括点D),此时最底点P是纵坐标为m,∴m=﹣1,综上所述,满足条件的m 51+或﹣1;(2)由(1)可知,当m>0时,y0=﹣m2+m=﹣(m﹣12)2+14,∵﹣1<0,∴m=12时,y0的最大值为14,当m=0时,y0=0,当m<0时,y0<0,综上所述,y0的最大值为14;(3)由(1)可知,当图象G与x轴有两个交点时,m>0,当抛物线顶点在x轴上时,4m2﹣4m=0,∴m=1或0(舍弃),∴观察观察图象可知,当图象G与x轴有两个交点时,设左边交点的横坐标为x1,则x1的取值范围是0<x1<1,故答案为0<x1<1;(4)当m<0时,观察图象可知,不存在点A满足条件,当m=0时,图象G在矩形ABCD内的部分所对应的函数值y随x的增大而减小,满足条件,如图3中,当m>1时,如图4中,设抛物线与x轴交于E,F,交y轴于N,观察图象可知当点A在x轴下方或直线x=﹣m和y轴之间时(可以在直线x=﹣m上)时,满足条件.则有(2m﹣2)2﹣2m(2m﹣2)+m<0,解得m>43,或﹣m≤2m﹣2<0,解得23≤m<1(不合题意舍弃),当0<m≤1时,如图5中,当点A在直线x=﹣m和y轴之间时(可以在直线x=﹣m上)时,满足条件.即或﹣m≤2m﹣2<0,解得23≤m<1,综上所述,满足条件m的值为m=0或m>43或23≤m<1.【点睛】本题属于二次函数综合题,考查了二次函数的性质,矩形的性质,最值问题,不等式等知识,解题的关键是理解题意,学会用分类讨论的思想思考问题,学会用转化的思想思考问题,属于中考压轴题.5.如图,直线l:y=﹣3x+3与x轴,y轴分别相交于A、B两点,抛物线y=﹣x2+2x+b经过点B.(1)该抛物线的函数解析式;(2)已知点M是抛物线上的一个动点,并且点M在第一象限内,连接AM、BM,设点M 的横坐标为m,△ABM的面积为S,求S与m的函数表达式,并求出S的最大值;(3)在(2)的条件下,当S取得最大值时,动点M相应的位置记为点M'.①写出点M'的坐标;②将直线l绕点A按顺时针方向旋转得到直线l',当直线l′与直线AM'重合时停止旋转,在旋转过程中,直线l'与线段BM'交于点C,设点B,M'到直线l'的距离分别为d1,d2,当d1+d2最大时,求直线l'旋转的角度(即∠BAC的度数).【答案】(1)2y x 2x 3=-++;(2)21525228S m ⎛⎫=--+ ⎪⎝⎭ ,258;(3)①57,24M ⎛⎫'⎪⎝⎭;②45° 【解析】 【分析】(1)利用直线l 的解析式求出B 点坐标,再把B 点坐标代入二次函数解析式即可求出b 的值.(2)设M 的坐标为(m ,﹣m 2+2m +3),然后根据面积关系将△ABM 的面积进行转化. (3)①由(2)可知m =52,代入二次函数解析式即可求出纵坐标的值. ②可将求d 1+d 2最大值转化为求AC 的最小值. 【详解】(1)令x =0代入y =﹣3x+3, ∴y =3, ∴B (0,3),把B (0,3)代入y =﹣x 2+2x+b 并解得:b =3, ∴二次函数解析式为:y =﹣x 2+2x+3. (2)令y =0代入y =﹣x 2+2x+3,∴0=﹣x 2+2x+3, ∴x =﹣1或3,∴抛物线与x 轴的交点横坐标为-1和3, ∵M 在抛物线上,且在第一象限内, ∴0<m <3,令y =0代入y =﹣3x+3, ∴x =1,∴A 的坐标为(1,0),由题意知:M 的坐标为(m ,﹣m 2+2m+3), ∴S =S 四边形OAMB ﹣S △AOB =S △OBM +S △OAM ﹣S △AOB=12×m×3+12×1×(-m2+2m+3)-12×1×3=﹣12(m﹣52)2+258,∴当m=52时,S取得最大值258.(3)①由(2)可知:M′的坐标为(52,74).②设直线l′为直线l旋转任意角度的一条线段,过点M′作直线l1∥l′,过点B作BF⊥l1于点F,根据题意知:d1+d2=BF,此时只要求出BF的最大值即可,∵∠BFM′=90 ,∴点F在以BM′为直径的圆上,设直线AM′与该圆相交于点H,∵点C在线段BM′上,∴F在优弧'BM H上,∴当F与M′重合时,BF可取得最大值,此时BM′⊥l1,∵A(1,0),B(0,3),M′(52,74),∴由勾股定理可求得:AB10,M′B55M′A 85,过点M′作M′G⊥AB于点G,设BG=x,∴由勾股定理可得:M′B2﹣BG2=M′A2﹣AG2,∴851610﹣x)2=12516﹣x2,∴x =5108, cos ∠M′BG ='BG BM =2,∠M′BG= 45︒ 此时图像如下所示,∵l 1∥l′,F 与M′重合,BF ⊥l 1 ∴∠B M′P=∠BCA =90︒, 又∵∠M′BG=∠CBA= 45︒ ∴∠BAC =45︒. 【点睛】本题主要考查了一次函数与二次函数的综合以及一次函数旋转求角度问题,正确掌握一次函数与二次函数性质及综合问题的解法是解题的关键.6.如图1,抛物线21:C y x b =+交y 轴于()0,1A .(1)直接写出抛物线1C 的解析式______________.(2)如图1,x 轴上两动点,M N 满足:m n X X n -==.若,B C (B 在C 左侧)为线段MN 上的两个动点,且满足:B 点和C 点关于直线:1l x =对称.过B 作BB x '⊥轴交1C 于B ',过C 作CC x '⊥轴交1C 于C ',连接B C ''.求B C ''的最大值(用含n 的代数式表示).(3)如图2,将抛物线1C 向下平移78个单位长度得到抛物线2C .2C 对称轴左侧的抛物线上有一点M ,其横坐标为m .以OM 为直径作K ,记⊙K 的最高点为Q .若Q 在直线2y x =-上,求m 的值.【答案】(1)21y x =+;(2)1|n -;(3)14m =-或12m =- 【解析】 【分析】(1)将()0,1A 带入抛物线1C 解析式,求得b 的值,即可得到抛物线1C 的解析式; (2)设(),0B q ,则()2,0C q -,求()2B C ''并进行化简,由1n q -≤<且12,qn <-得21n q -<,则当()2maxB C ''⎡⎤⎢⎥⎣⎦时,取min 2q q n ==-,带入()2B C '',即可求得()maxB C '';(3)依题意将抛物线1C 向下平移78个单位长度得到抛物线2C ,求得2C 解析式,根据解析式特点设21,8M m m ⎛⎫+ ⎪⎝⎭,得到222218OM m m ⎛⎫=++ ⎪⎝⎭,由圆的特性易求得,⊙K 的最高点点Q 坐标为:2111,2228m OM m ⎛⎫⎛⎫++ ⎪⎪⎝⎭⎝⎭,设Q y k =,则2111228k OM m ⎛⎫=++ ⎪⎝⎭,化简得到22211084k m k m ⎛⎫++-= ⎪⎝⎭,由Q 点在2y x =-上,得2Q k x m =-=-,继而得到231048m m -+=,解得14m =-或12m =-. 【详解】解:(1)将()0,1A 带入抛物线21:C y x b =+,得b=1, 则21:1C y x =+,(2)设(),0B q ,则()2,0C q -, ∴()22222(2)(2)B C q q q q ''⎡⎤=--+--⎣⎦2204020q q =-+()2201q =-,∵1n q -≤<且12,q n <-21n q -<∴,∴()2maxB C ''⎡⎤⎢⎥⎣⎦时,min 2q q n ==-, 即()22220(21)20(1)B C n n ''=--=-,∴()max1|B C n ''=-,(3)根据题意,将抛物线1C 向下平移78个单位长度得到抛物线2C , ∴221:8C y x =+, ∴21,8M m m ⎛⎫+⎪⎝⎭, ∴222218OM m m ⎛⎫=++ ⎪⎝⎭,∴由圆的特性易求得,⊙K 的最高点点Q 坐标为:2111,2228m OM m ⎛⎫⎛⎫++ ⎪⎪⎝⎭⎝⎭, 设Q y k =,则2111228k OM m ⎛⎫=++ ⎪⎝⎭, ∴222111428OM k m ⎡⎤⎛⎫=-+ ⎪⎢⎥⎝⎭⎣⎦, 化简上式得:22211084k m k m ⎛⎫++-= ⎪⎝⎭, ∵Q 点在2y x =-上,则2Q k x m =-=-, ∴k m =-为上述方程的一个解, ∴分析可知1()04k m k m ⎛⎫+-= ⎪⎝⎭, 21148m m m -=+∴,∴231048m m -+=, 解得:114m =-,212m =-(经检验114m =-,212m =-是方程231048m m -+=的解),故14m=-或12m=-.【点睛】本题主要考查二次函数的图像及性质、图像平移的性质、及二次函数与一元二次方程的综合应用、最值求法等知识.解题关键是熟练掌握二次函数的性质,充分利用数形结合的思想.7.如图,若抛物线y=x2+bx+c与x轴相交于A,B两点,与y轴相交于点C,直线y=x﹣3经过点B,C.(1)求抛物线的解析式;(2)点P是直线BC下方抛物线上一动点,过点P作PH⊥x轴于点H,交BC于点M,连接PC.①线段PM是否有最大值?如果有,求出最大值;如果没有,请说明理由;②在点P运动的过程中,是否存在点M,恰好使△PCM是以PM为腰的等腰三角形?如果存在,请直接写出点P的坐标;如果不存在,请说明理由.【答案】(1)y=x2﹣2x﹣3;(2)①有,94;②存在,(2,﹣3)或(32,2﹣2)【解析】【分析】(1)由直线表达式求出点B、C的坐标,将点B、C的坐标代入抛物线表达式,即可求解;(2)①根据PM=(x﹣3)﹣(x2﹣2x﹣3)=﹣(x﹣32)2+94即可求解;②分PM=PC、PM=MC两种情况,分别求解即可.【详解】解:(1)对于y=x﹣3,令x=0,y=﹣3,y=0,x=3,故点B、C的坐标分别为(3,0)、(0,﹣3),将点B、C的坐标代入抛物线表达式得:9303b cc++=⎧⎨=-⎩,解得:32c b =-⎧⎨=-⎩,故抛物线的表达式为:y =x 2﹣2x ﹣3;(2)设:点M (x ,x ﹣3),则点P (x ,x 2﹣2x ﹣3), ①有,理由:PM =(x ﹣3)﹣(x 2﹣2x ﹣3)=﹣(x ﹣32)2+94, ∵﹣1<0,故PM 有最大值,当x =32时,PM 最大值为:94; ②存在,理由:PM 2=(x ﹣3﹣x 2+2x+3)2=(﹣x 2+3x )2; PC 2=x 2+(x 2﹣2x ﹣3+3)2; MC 2=(x ﹣3+3)2+x 2;(Ⅰ)当PM =PC 时,则(﹣x 2+3x )2=x 2+(x 2﹣2x ﹣3+3)2, 解得:x =0或2(舍去0), 故x =2,故点P (2,﹣3);(Ⅱ)当PM =MC 时,则(﹣x 2+3x )2=(x ﹣3+3)2+x 2,解得:x =0或(舍去0和),故x =3,则x 2﹣2x ﹣3=2﹣,故点P (3,2﹣).综上,点P 的坐标为:(2,﹣3)或(3,2﹣). 【点睛】本题考查的是二次函数综合运用,涉及到一次函数的性质、等腰三角形的性质等,其中(2)②,要注意分类求解,避免遗漏.8.如图,已知抛物2(0)y ax bx c a =++≠经过点,A B ,与y 轴负半轴交于点C ,且OC OB =,其中B 点坐标为(3,0),对称轴l 为直线12x =. (1)求抛物线的解析式;(2) 在x 轴上方有一点P , 连接PA 后满足PAB CAB ∠=∠, 记PBC ∆的面积为S , 求当10.5S =时点P 的坐标(3)在(2)的条件下,当点P 恰好落在抛物线上时,将直线BC 上下平移,平移后的10.5S =时点P 的坐标;直线y x t =+与抛物线交于,C B ''两点(C '在B '的左侧),若以点,,C B P ''为顶点的三角形是直角三角形,求出t 的值.【答案】(1)211322y x x =--(2)(2,6)(3)19或32 【解析】 【分析】(1)确定点A 的坐标,再进行待定系数法即可得出结论;(2)确定直线AP 的解析式,用m 表示点P 的坐标,由面积关系求S 和m 的函数关系式即可求解;(3)先确定点P 的坐标,当'''90B PC ∠=,利用根与系数的关系确定'''B C 的中点E 的坐标,利用''2B C PE =建立方程求解,当''''90PC B ∠=时,确定点G 的坐标,进而求出直线''C G 的解析式,得出点''C 的坐标即可得出结论. 【详解】(1)∵OC OB =,且B 点坐标为(3,0), ∴C 点坐标为(0,3)-.设抛物线解析式为21()2y a x k =-+.将B 、C 两点坐标代入得2504134a k a k ⎧=+⎪⎪⎨⎪-=+⎪⎩,解得12258a k ⎧=⎪⎪⎨⎪=-⎪⎩.∴抛物线解析式为22112511()-322822y x x x =-=--. (2)如图1,设AP 与y 轴交于点'C .∵PAB CAB ∠=∠,OA OA =,90AOC AOC ∠'=∠=︒, ∴AOC ∆≌AOC ∆', ∴3OC OC ='=, ∴(0,3)C '. ∵对称轴l 为直线12x =,∴(2,0)A-, ∴直线AP 解析式为332y x =+, ∵(3,0)B ,(0,-3)C , ∴直线BC 解析式为-3y x =, ∴313(3)622PF x x x =+--=+, ∴13924PBC S OB PF x ∆=⨯⨯=+, ∵10.5S =,∴3910.54x +=, ∴2x =.此时P 点的坐标为(2,6).(3)如图2,由211-322332y x x y x ⎧=-⎪⎪⎨⎪=+⎪⎩得6,12P (),当90C PB ∠=''︒时,取''B C 的中点E ,连接PE . 则2B C PE ''=,即224B C PE =''. 设1122(,),(,)B x y C x y ''.由211-322y x x y x t⎧=-⎪⎨⎪=+⎩得23(26)0x x t --+=, ∴12123,(26)x x x x t +==-+, ∴点33(,)22E t +,222221212121212()()2()2()41666B C x x y y x x x x x x t⎡⎤=-+-=-+-=+⎣=⎦'',222233261(6)(1221222PE t t t=-+-=-+),∴226116664(21)2t t t+=-+,解得:19t=或6(舍去),当90PC B''''∠=︒时,延长C P''交BC于H,交x轴于G.则90,45BHG PGO∠=︒∠=︒,过点P作PG x⊥轴于点Q,则12GQ PQ==,∴(18,0)G,∴直线C G''的解析式为18y x=-+,由211-322-18y x xy x⎧=-⎪⎨⎪=+⎩得725xy=-⎧⎨=⎩或612xy=⎧⎨=⎩(舍去),∴(7,25)C'-',将(7,25)C'-'代入y x t=+中得32t=.综上所述,t的值为19或32.【点睛】本题主要考查了待定系数法、全等三角形的判定和性质、三角形面积的计算方法、根与系数的关系、直角三角形的性质,属于二次函数综合题.9.如图①抛物线y=ax2+bx+4(a≠0)与x轴,y轴分别交于点A(﹣1,0),B(4,0),点C三点.(1)试求抛物线的解析式;(2)点D(3,m)在第一象限的抛物线上,连接BC,BD.试问,在对称轴左侧的抛物线上是否存在一点P,满足∠PBC=∠DBC?如果存在,请求出点P点的坐标;如果不存在,请说明理由;(3)点N在抛物线的对称轴上,点M在抛物线上,当以M、N、B、C为顶点的四边形是平行四边形时,请直接写出点M的坐标.【答案】(1)y=﹣x2+3x+4;(2)存在.P(﹣34,1916).(3)1539(,)24M--21139 (,) 24M-3521 (,) 24M【解析】【分析】(1)将A,B,C三点代入y=ax2+bx+4求出a,b,c值,即可确定表达式;(2)在y轴上取点G,使CG=CD=3,构建△DCB≌△GCB,求直线BG的解析式,再求直线BG与抛物线交点坐标即为P点,(3)根据平行四边形的对边平行且相等,利用平移的性质列出方程求解,分情况讨论.【详解】解:如图:(1)∵抛物线y=ax2+bx+4(a≠0)与x轴,y轴分别交于点A(﹣1,0),B(4,0),点C三点.∴4016440a ba b-+=⎧⎨++=⎩解得13ab=-⎧⎨=⎩∴抛物线的解析式为y=﹣x2+3x+4.(2)存在.理由如下:y=﹣x2+3x+4=﹣(x﹣32)2+254.∵点D(3,m)在第一象限的抛物线上,∴m=4,∴D(3,4),∵C(0,4)∵OC=OB,∴∠OBC=∠OCB=45°.连接CD,∴CD∥x轴,∴∠DCB=∠OBC=45°,∴∠DCB=∠OCB,在y轴上取点G,使CG=CD=3,再延长BG交抛物线于点P,在△DCB和△GCB中,CB=CB,∠DCB=∠OCB,CG=CD,∴△DCB≌△GCB(SAS)∴∠DBC=∠GBC.设直线BP解析式为y BP=kx+b(k≠0),把G(0,1),B(4,0)代入,得k=﹣14,b=1,∴BP解析式为y BP=﹣14x+1.y BP=﹣14x+1,y=﹣x2+3x+4当y=y BP时,﹣14x+1=﹣x2+3x+4,解得x1=﹣34,x2=4(舍去),∴y=1916,∴P(﹣34,1916).(3)1539 (,)24M--21139 (,) 24M-3521 (,) 24M理由如下,如图B(4,0),C(0,4) ,抛物线对称轴为直线32x=,设N(32,n),M(m, ﹣m2+3m+4)第一种情况:当MN与BC为对边关系时,MN∥BC,MN=BC,∴4-32=0-m,∴m=52-∴﹣m2+3m+4=39 4 -,∴1539 (,)24M--;或∴0-32=4-m,∴m=11 2∴﹣m2+3m+4=39 4 -,∴21139 (,) 24M-;第二种情况:当MN与BC为对角线关系,MN与BC交点为K,则K(2,2),∴322 2m∴m=5 2∴﹣m2+3m+4=21 4∴3521 (,) 24M综上所述,当以M、N、B、C为顶点的四边形是平行四边形时,点M的坐标为1539 (,)24M--21139 (,) 24M-3521 (,) 24M.【点睛】本题考查二次函数与图形的综合应用,涉及待定系数法,函数图象交点坐标问题,平行四边形的性质,方程思想及分类讨论思想是解答此题的关键.10.如图,在平面直角坐标系中,抛物线y=﹣12x2+bx+c与x轴交于B,C两点,与y轴交于点A,直线y=﹣12x+2经过A,C两点,抛物线的对称轴与x轴交于点D,直线MN与对称轴交于点G,与抛物线交于M,N两点(点N在对称轴右侧),且MN∥x轴,MN =7.(1)求此抛物线的解析式.(2)求点N的坐标.(3)过点A的直线与抛物线交于点F,当tan∠FAC=12时,求点F的坐标.(4)过点D作直线AC的垂线,交AC于点H,交y轴于点K,连接CN,△AHK沿射线AC 以每秒1个单位长度的速度移动,移动过程中△AHK与四边形DGNC产生重叠,设重叠面积为S,移动时间为t(0≤t5S与t的函数关系式.【答案】(1)y=﹣12x2+32x+2;(2)点N的坐标为(5,-3);(3)点F的坐标为:(3,2)或(173,﹣509);(4)2535,043593535,(245435935(5)1044t tS tt⎧⎛≤≤⎪⎪⎝⎭⎪⎪=⎨-<≤⎪⎪⎪+<≤⎪⎩.【解析】【分析】(1)点A、C的坐标分别为(0,2)、(4,0),将点A、C坐标代入抛物线表达式即可求解;(2)抛物线的对称轴为:x=32,点N的横坐标为:37522+=,即可求解;(3)分点F在直线AC下方、点F在直线AC的上方两种情况,分别求解即可;(4)分0≤t≤355、当355<t3535<t5【详解】解:(1)直线y=﹣12x+2经过A,C两点,则点A、C的坐标分别为(0,2)、(4,0),则c=2,抛物线表达式为:y=﹣12x2+bx+2,将点C坐标代入上式并解得:b=32,故抛物线的表达式为:y=﹣12x2+32x+2…①;(2)抛物线的对称轴为:x=32,点N的横坐标为:37522+=,故点N的坐标为(5,-3);(3)∵tan∠ACO=2142AOCO===tan∠FAC=12,即∠ACO=∠FAC,①当点F在直线AC下方时,设直线AF交x轴于点R,∵∠ACO=∠FAC,则AR=CR,设点R(r,0),则r2+4=(r﹣4)2,解得:r=32,即点R的坐标为:(32,0),将点R、A的坐标代入一次函数表达式:y=mx+n得:232nm n=⎧⎪⎨+=⎪⎩,解得:432mn⎧=-⎪⎨⎪=⎩,故直线AR的表达式为:y=﹣43x+2…②,联立①②并解得:x =173,故点F (173,﹣509); ②当点F 在直线AC 的上方时,∵∠ACO =∠F ′AC ,∴AF ′∥x 轴,则点F ′(3,2); 综上,点F 的坐标为:(3,2)或(173,﹣509); (4)如图2,设∠ACO =α,则tanα=12AO CO =,则sinα=5,cosα=5; ①当0≤t ≤35时(左侧图), 设△AHK 移动到△A ′H ′K ′的位置时,直线H ′K ′分别交x 轴于点T 、交抛物线对称轴于点S ,则∠DST =∠ACO =α,过点T 作TL ⊥KH ,则LT =HH ′=t ,∠LTD =∠ACO =α,则DT ='52co 5c s 2os L HH T t αα===,DS =tan DT α, S =S △DST =12⨯DT ×DS =254t ; ②当355<t 35时(右侧图), 同理可得:S =''DGS T S 梯形=12⨯DG ×(GS ′+DT ′)=12⨯3+55﹣323594-; 35<t 5S=359104+;综上,S=25,029494t ttt⎧⎛≤≤⎪⎪⎝⎭-<≤+<≤.【点睛】本题考查的是二次函数综合运用,涉及到一次函数、图形平移、图形的面积计算等,其中(3)、(4),要注意分类求解,避免遗漏.。

九年级数学二次函数易错题总结(含答案)

九年级数学二次函数易错题总结(含答案)

九年级数学二次函数易错题总结(含答案)一、选择题(本大题共10小题,共30.0分)1.已知二次函数y=ax2+2ax+3a−2(a是常数,且a≠0)的图象过点M(x1,−1),N(x2,−1),若MN的长不小于2,则a的取值范围是()A. a≥13B. 0<a≤13C. −13≤a<0 D. a≤−13【答案】B【解析】【分析】本题主要考查了二次函数与一元二次方程的关系及二次函数的性质,首先由点M(x1,−1),N(x2,−1),根据二次函数的性质可知M、N两点为对称点,将y=−1代入函数的解析式中得到关于x的一元二次方程,再根据一元二次方程的关于系数的关系建立关于a的不等式,解不等式即可.【解答】解:∵二次函数y=ax2+2ax+3a−2(a是常数,且a≠0)的图象过点M(x1,−1),N(x2,−1),∴−1=ax2+2ax+3a−2,则ax2+2ax+3a−1=0,设该方程的根为x1、x2,∵MN的长不小于2,∴|x1−x2|≥2,∵x1+x2=−2,x1x2=3a−2a,∴√(x1+x2)2−4x1x2≥2,∴当a<0时,无解,当x>0时,0<a≤13,故选B.2.已知二次函数y=(x+m−2)(x−m)+2,点A(x1,y1),B(x2,y2)(x1<x2)是其图象上两点,()A. 若x1+x2>2,则y1>y2B. 若x1+x2<2,则y1>y2C. 若x1+x2>−2,则y1>y2D. 若x1+x2<−2,则y1<y2【答案】B【解析】【分析】本题主要考查的是二次函数的性质,二次函数的图象上点的坐标特征的有关知识,首先确定抛物线的对称轴x=1,当x1+x2<2时,点A与点B在对称轴的左侧或点A在对称轴的左侧,点B在对称轴的右侧,且点A离对称轴的距离比点B离对称轴的距离大,利用图象法即可判断.【解答】解:如图,当x=m或x=−m+2时,y=2,∴抛物线的对称轴x=m−m+22=1,∴当x1+x2<2时,点A与点B在对称轴的左侧或点A在对称轴的左侧,点B在对称轴的右侧,且点A离对称轴的距离比点B离对称轴的距离大,观察图象可知,此时y1>y2,故选B.3.已知二次函数y=−x2+3mx−3n图象与x轴没有交点,则()A. 2m+n>43B. 2m+n<43C. 2m−n<43D. 2m−n>43【答案】C【解析】【试题解析】【分析】本题考查了二次函数的图象与系数的关系、抛物线与x轴的交点,解决本题的关键是抛物线与x轴没有交点时,判别式小于0的结论的熟练应用.根据二次函数y=−x2+3mx−3n图象与x轴没有交点可得判别式小于0,列出不等式求解即可.【解答】解:∵二次函数y=−x2+3mx−3n图象与x轴没有交点,∴△<0,即(3m)2−4×(−1)×(−3n)<0,9m2−12n<0,3m2<4n,∵抛物线开口向下,与x轴没有交点,∴−3n<0,∴n>0,当x=2时,y<0,即−4+6m−3n<0解得2m−n<43故选:C.4.已知二次函数y=−x²+3mx−3n,图像与x轴没有交点,则()A. 2m+n>43B. 2m+n<43C. 2m−n<43D. 2m−n>43【答案】C【解析】【分析】本题考查了以及二次函数的性质、二次函数图象与x轴的交点,关键是利用△=b2−4ac 和零之间的关系来确定图象与x轴交点的数目,即:当△>0时,函数与x轴有2个交点,当△=0时,函数与x轴有1个交点,当△<0时,函数与x轴无交点.函数y=−x2+3mx−3n的图象与x轴没有交点,用根的判别式:△<0,即可求出n>34m2,然后分别求解即可.【解答】解:∵二次函数y=−x2+3mx−3n,图像与x轴没有交点,令y=0,则0=−x2+3mx−3n,∴△=b2−4ac=9m2−12n<0,即:n>34m2,∴2m+n>2m+34m2=34(m+43)2−43≥−43,∴2m+n>−43,同理:2m−n<2m−34m2=−34(m−43)2+43≤43,即2m−n<43,故选:C.5.小明将如图两水平线l1、l2的其中一条当成x轴,且向右为正方向;两条直线l3、l4的其中一条当成y轴,且向上为正方向,并在此坐标平面中画出二次函数y=ax2−2a2x+1的图象,则()A. l1为x轴,l3为y轴B. l2为x轴,l3为y轴C. l1为x轴,l4为y轴D. l2为x轴,l4为y轴【答案】D【解析】解:∵抛物线的开口向下,∴a<0,∵抛物线的对称轴为:直线x=a<0,∴L4为y轴,∵抛物线与y轴的正半轴相交,∴L2为x轴;故选:D.根据抛物线的开口向下,可得a<0,求出对称轴为:直线x=a,则可确定L4为y轴,再根据图象与y轴交点,可得出L2为x轴,即可得出答案.本题考查了二次函数的性质,开口方向由a确定,与y轴的交点由c确定,左同右异确定b的符号.6.二次函数y=(x−1)(x−m+1)(m是常数),当−2≤x≤0时,y>0,则m的取值范围为()A. m<0B. m<1C. 0<m<1D. m>1【答案】D【解析】解:∵二次函数y =(x −1)(x −m +1)(m 是常数), ∴该函数的图象开口向上,与x 轴的交点为(1,0),(m −1,0), ∵当−2≤x ≤0时,y >0,∴当m −1≥1时,即m ≥2或当0<m −1<1,得1<m <2, 由上可得,m 的取值范围为m >1, 故选:D .根据二次函数y =(x −1)(x −m +1)(m 是常数),可以求得该函数与x 轴的交点,然后根据当−2≤x ≤0时,y >0和二次函数的性质即可得到m 的取值范围,本题得以解决. 本题考查抛物线与x 轴的交点、二次函数的性质,解答本题的关键是明确题意,利用二次函数的性质和分类讨论的方法解答.7. 已知y 关于x 的二次函数y =ax 2−6ax +1,当−1≤x ≤4,函数的最小值为−3,则a =( )A. −47B. −47或49C. 49D. −47或12【答案】B 【解析】 【分析】本题考查了二次函数的性质及最值,由y =ax 2−6ax +1=a (x −3)2−9a +1,可知当a >0时,最小值是−9a +1=−3,当a <0时,x =−1时,y 有最小值−3,则a +6a +1=−3,解关于a 的方程即可求得. 【解答】解:y =ax 2−6ax +1=a (x −3)2−9a +1, 其对称轴为直线x =3,当a >0时,最小值是−9a +1=−3,解得a =49;当a <0时,x =−1时,y 有最小值−3,则a +6a +1=−3,解得a =−47, 所以a 的值为49或−47, 故选:B .8. 二次函数y =(x −1)(x −m +1)(m 是常数),当−2≤x ≤0时,y >0,则m 的取值范围为( )A. m <0B. m <1C. 0<m <1D. m >1【答案】D【解析】解:∵二次函数y=(x−1)(x−m+1)(m是常数),∴该函数的图象开口向上,与x轴的交点为(1,0),(m−1,0),∵当−2≤x≤0时,y>0,∴当m−1≥1时,即m≥2或当0<m−1<1,得1<m<2,由上可得,m的取值范围为m>1,故选:D.根据二次函数y=(x−1)(x−m+1)(m是常数),可以求得该函数与x轴的交点,然后根据当−2≤x≤0时,y>0和二次函数的性质即可得到m的取值范围,本题得以解决.本题考查抛物线与x轴的交点、二次函数的性质,解答本题的关键是明确题意,利用二次函数的性质和分类讨论的方法解答.9.对于代数式ax2+bx+c(a≠0,x可取任意实数),下列说法正确的是()①存在实数p,q(p≠q),有ap2+bp+c=aq2+bq+c,则ax2+bx+c=a(x−p)(x−q)②存在实数m,n,s(m,n,s互不相等),使得am2+bm+c=an2+bn+c=as2+bs+c③如果ac>0,则一定存在两个实数m<n,使am2+bm+c<0<an2+bn+c④如果ac<0,则一定存在两个实数m<n,使am2+bm+c<0<an2+bn+cA. ①④B. ②③C. ③④D. ④【答案】D【解析】【分析】本题考查代数式;将问题转化为函数思想求解是本题的解题关键.p,q不一定是以y=ax2+bx+c为函数与x轴的两个交点,故①错误;令y=ax2+ bx+c,根据二次函数的对称性,故②错误;若ac>0,当a>0,c>0时,且△≤0,故③错误.【解答】解:存在实数p、q(p≠q)有ap2+bp+c=aq2+bq+c,但是p,q不一定是以y=ax2+bx +c 为函数与x 轴的两个交点,故①错误;令y =ax 2+bx +c ,根据二次函数的对称性,只存在两个实数m 、n 、使am 2+bm +c =an 2+bn +c ;故②错误;若ac >0,当a >0,c >0时,且△≤0,不存在两个实数m <n ,使am 2+bm +c <0<an 2+bn +c ,故③错误; 故选:D .10. 二次函数y =(x −1)(x −m +1)(m 是常数),当−2≤x ≤0时,y >0,则m 的取值范围为( )A. m <0B. m <1C. 0<m <1D. m >1【答案】D【解析】解:∵二次函数y =(x −1)(x −m +1)(m 是常数), ∴该函数的图象开口向上,与x 轴的交点为(1,0),(m −1,0), ∵当−2≤x ≤0时,y >0,∴当m −1≥1时,即m ≥2,满足题意;或当0<m −1<1时,即1<m <2,也满足题意; 综上可得,m 的取值范围为m >1. 故选:D .根据二次函数y =(x −1)(x −m +1)(m 是常数),可以求得该函数与x 轴的交点,然后根据当−2≤x ≤0时,y >0和二次函数的性质即可得到m 的取值范围,本题得以解决. 本题考查抛物线与x 轴的交点、二次函数的性质,解答本题的关键是明确题意,利用二次函数的性质和分类讨论的方法解答.二、填空题(本大题共12小题,共36.0分)11. 当−3≤x ≤2时,函数y =ax²−4ax +2(a ≠0)的最大值是8,则a =_____.【答案】27或−32 【解析】 【分析】本题考查的是二次函数的性质,二次函数的最值,分类讨论有关知识,本题首先求得对称轴,根据x 的取值,分a >0和a <0两种情况讨论求得即可.【解答】解:∵函数y =ax 2−4ax +2(a ≠0)的对称轴为直线x =−−4a 2a=2,∴当a >0时,则x =−3时,函数y =ax 2−4ax +2(a ≠0)的最大值是8, ∴把x =−3代入得,9a +12a +2=8, 解得a =27;∴当a <0时,则x =2时,函数y =ax 2−4ax +2(a ≠0)的最大值是8, ∴把x =2代入得,4a −8a +2=8, 解得a =−32, 故答案为27或−32.12. 已知两点A(4,y 1),B(3,y 2)均在抛物线y =ax 2+bx +c(a ≠0)上,点C(x 0,y 0)是该抛物线的顶点,若y 1<y 2≤y 0,则x 0的取值范围是__________. 【答案】x 0<72 【解析】 【分析】本题考查了二次函数的性质,明确二次函数的对称性及函数值与对称轴远近的大小关系,是解题的关键.先判断出抛物线开口方向向下,进而按照A ,B 两点都在对称轴右侧或在对称轴两侧,分类讨论即可求解. 【解答】解:∵点C(x 0,y 0)是抛物线的顶点,y 1<y 2≤y 0, ∴抛物线有最大值,函数图象开口向下,∴当A(4,y 1),B(3,y 2)两点都在对称轴右侧时,x 0≤3;∴当A(4,y 1),B(3,y 2)两点在对称轴两侧时,则点B(3,y 2)离对称轴要近, ∴3<x 0<72,∴x 0的取值范围为:x 0<72 故答案为:x 0<72.13. 已知关于x 的二次函数y =ax 2+2ax +7a +3在−2≤x ≤5上的函数值始终是正的,则a 的取值范围_____________. 【答案】 a >0或−114<a <0 【解析】略14. 若二次函数y =ax 2+bx +c(a ≠0)的图象的顶点在第一象限,并且过点A(0,1)和点B(−1,0).设S =a +b +c ,则S 的取值范围是_______. 【答案】0<S <2 【解析】 【分析】本题考查了二次函数图象上点的坐标特点,二次函数的图像与性质, 需要灵活运用这些性质解题.将已知两点坐标代入二次函数解析式,得出c 的值及a 、b 的关系式,代入S =a +b +c 中消元,再根据对称轴的位置判断S 的取值范围即可. 【解答】解:将点(0,1)和(−1,0)分别代入抛物线解析式, 得c =1,a =b −1, ∴S =a +b +c =2b ,由题设知,对称轴x =−b2a >0且a <0, ∴2b >0.又由b =a +1及a <0可知2b =2a +2<2.∴0<S <2故本题答案为:0<S <2.15. 已知二次函数y =x 2−2(m −1)x +2m 2−m −2(m 为常数),若对于一切实数m和x 均有y ≥k ,则k 的最大值为 . 【答案】−134【解析】解:y =x 2−2(m −1)x +2m 2−m −2=(x −m +1)2+m 2+m −3, 当x =m −1时,y 有最小值m 2+m −3, 令w =m 2+m −3=(m +12)2−134≥−134,∵对于一切实数m 和x 均有y ≥k ,即k ≤w ,∵w ≥−134, ∴k ≤−134,故答案为−134.求出函数的最小值的取值范围即m 2+m −3=(m +12)2−134≥−134,由已知可知对于一切实数m 和x 均有y ≥k ,即k ≤w .本题考查二次函数的性质;熟练掌握二次函数的性质,能够将已知不等关系转化为函数的最值是解题的关键.16. 已知二次函数y =x 2−2(m −1)x +2m 2−m −2(m 为常数),若对于一切实数m和x 均有y ≥k ,则k 的最大值为____. 【答案】 −134 【解析】 【分析】本题主要考查二次函数的性质,根据二次函数的性质先将二次函数化为顶点式,求出最值,令w =m 2+m −3,根据对于一切实数m 和x 均有y ≥k ,即k ≤w ,和w 的取值范围可求解. 【解答】解:∵y =x 2−2(m −1)x +2m 2−m −2=(x −m +1)2+m 2+m −3, ∴当x =m −1时,y 有最小值m 2+m −3. 令w =m 2+m −3=(m +12)2−134≥−134,∵对于一切实数m 和x 均有y ≥k ,即k ≤w , ∵w ≥−134, ∴k ≤−134. 故答案为k ≤−134.17. 当−1≤a ≤14时,则抛物线y =−x 2+2ax +2−a 的顶点到x 轴距离的最小值为_______. 【答案】2916 【解析】 【分析】本题考查的是抛物线与x 轴的交点,熟知一元二次方程的根与抛物线与x 轴的交点之间的关系是解答此题的关键.得出抛物线y =−x 2+2ax +2−a 顶点的纵坐标表达式,把a 的取值代入即可. 【解答】解:∵抛物线y =−x 2+2ax +2−a 的顶点纵坐标=−4(2−a )−4a 2−4=2−a +a 2=(a −12)2+74, 又∵−1≤a ≤14,当a =14时,(14−12)2+74=2916,∴顶点到x 轴距离的最小值是2916. 故答案为:2916.18. 已知y =ax 2+bx +c(a ≠0)的图象经过点A(−1,1)和B(1,−1),且当−1≤x ≤1时,有−1≤y ≤1,则a 的取值范围是____. 【答案】−12≤a <0或0<a ≤12 【解析】 【分析】本题考查了二次函数的图象和性质和二次函数图象上点的坐标特征,能灵活运用性质是解此题的关键.把A 、B 的坐标代入函数解析式,即可求出a +c =0,b =−1,代入得出抛物线表达式为y =ax 2−x −a(a ≠0),得出对称轴为x =12a ,再进行判断即可. 【解答】解:∵抛物线y =ax 2+bx +c(a ≠0)经过点A(−1,1)和点B(1,−1), ∴a −b +c =1 ①,a +b +c =−1 ②, ①+ ②得:a+c=0,即a与c互为相反数, ①− ②得:b=−1,所以抛物线表达式为y=ax2−x−a(a≠0),∴对称轴为直线x=12a,当a<0时,抛物线开口向下,且x=12a<0,∵抛物线y=ax2−x−a(a≠0)经过点A(−1,1)和点B(1,−1),画图可知,当12a ≤−1时符合题意,此时−12≤a<0,当−1<12a<0时,图象不符合−1≤y≤1的要求,舍去,同理,当a>0时,抛物线开口向上,且x=12a>0,画图可知,当12a ≥1时符合题意,此时0<a≤12,当0<12a<1时,图象不符合−1≤y≤1的要求,舍去,综上所述:a的取值范围是−12≤a<0或0<a≤12,故答案为−12≤a<0或0<a≤12.19.已知二次函数y=x2−2(m−1)x+2m2−m−2(m为常数),若对于一切实数m和x均有y≥k,则k的最大值为______.【答案】−134【解析】解:y=x2−2(m−1)x+2m2−m−2=(x−m+1)2+m2+m−3,当x=m−1时,y有最小值m2+m−3,令w =m 2+m −3=(m +12)2−134≥−134,∵对于一切实数m 和x 均有y ≥k ,即k ≤w , ∵w ≥−134,∴k ≤−134, 故答案为−134.求出函数的最小值的取值范围即m 2+m −3=(m +12)2−134≥−134,由已知可知对于一切实数m 和x 均有y ≥k ,即k ≤w .本题考查二次函数的性质;熟练掌握二次函数的性质,能够将已知不等关系转化为函数的最值是解题的关键.20. 如图所示,已知二次函数y =ax 2+bx +c 的图象与x 轴交于A ,B 两点,与y 轴交于点C ,对称轴为直线x =1.直线y =−x +c 与抛物线y =ax 2+bx +c 交于C ,D 两点,D 点在x 轴下方且横坐标小于3,则下列结论:①a −b +c <0;②2a +b +c >0;③x(ax +b)≤a +b ;④a <−1.其中正确的有____________. 【答案】①②③④ 【解析】【分析】本题考查了二次函数图象与系数的关系,也考查了二次函数与不等式的关系,关键是得出x =3时,一次函数值比二次函数值大,根据二次函数的性质,二次函数图象与系数的关系,二次函数与不等式的关系逐一判断即可. 【解答】解:∵抛物线与x 轴的一个交点在(3,0)左侧, 而抛物线的对称轴为直线x =1,∴抛物线与x 轴的另一个交点在(−1,0)右侧, ∴当x =−1时,y <0, ∴a −b +c <0,所以①正确; ∵抛物线与y 轴的交点在x 轴上方, ∴c >0,∵抛物线的对称轴为直线x =−b2a =1,∴b=−2a,∴2a+b+c=2a−2a+c>0,所以②正确;∵x=1时,二次函数有最大值,∴ax2+bx+c≤a+b+c,∴x(ax+b)≤a+b,所以③正确;∵直线y=−x+c与抛物线y=ax2+bx+c交于C,D两点,D点在x轴下方且横坐标小于3,∴x=3时,一次函数值比二次函数值大,即9a+3b+c<−3+c,而b=−2a,∴9a−6a<−3,解得a<−1,所以④正确.故答案为①②③④.21.已知四个点的坐标分别为A(−4,2),B(−3,1),C(−1,1),D(−2,2),若抛物线y=ax2与四边形ABCD的边没有交点,则a的取值范围为____.【答案】a<0或a>1或0<a<19【解析】【分析】本题考查了二次函数的性质,二次函数图象上点的坐标特征和二次函数图象与系数的关系.解题的关键是熟练掌握和运用二次函数的有关知识,熟练运用数形结合.画出图象,分几种情况讨论:当抛物线开口向下,抛物线和四边形ABCD的边没有交点;当抛物线开口向上,把点的坐标分别代入二次函数的解析式,求出a的值,再根据二次函数的性质,即可求出的a取值范围.【解答】解:如图,当抛物线开口向下,抛物y=ax2与四边形ABCD的边没有交点,∴a<0;当抛物线开口向上,把点C(−1,1)代入y=ax2,得1=(−1)2a,解得a=1,∵|a|越大,抛物线开口越小,|a|越小,抛物线开口越大,若抛物y=ax2与四边形ABCD的边没有交点,则a>1;把点B(−3,1)代入y=ax2,得1=(−3)2a,解得a=19,把点A(−4,2)代入y=ax2,得2=(−4)2a,解得a=18,∵抛物y=ax2与四边形ABCD的边没有交点,∴{0<a<19 0<a<18,解得0<a<19,综上,a的取值范围为a<0或a>1或0<a<19.故答案为a<0或a>1或0<a<19.22.二次函数,y=(x−1m)(mx−6m)(其中m>0)下列命题:①该函数图象过(6,0),②该函数图像顶点在第三象限③若当x<n时,都有y随x的增大而减小,则,n≤3+12m,正确的序号是【答案】①③【解析】【分析】本题主要考查的是二次函数的性质的有关知识,先把二次函数化简为一般式,求得对称轴与根的判别式,再根据二次函数的性质进行判断即可.【解答】解:∵y=(x−1m)(mx−6m)=mx2−(6m+1)x+6,∴对称轴为x=−−(6m+1)2m =3+12m,△=[−(6m+1)]2−24m=(6m−1)2≥0,当x=6时,y=0,∴该函数图象过(6,0);故 ①正确;∵y=(x−1m)(mx−6m)=mx2−(6m+1)x+6,∴对称轴为x=−−(6m+1)2m =3+12m>0,该函数图象顶点不在第三象限,故 ②错误;当x<n时,y随x的增大而减小,即n≤3+12m,故③正确.故答案为①③.三、解答题(本大题共19小题,共152.0分)23.在平面直角坐标系中,设二次函数y1=x2+bx+a,y2=ax2+bx+1(a,b是实数,a≠0).(1)若函数y1的对称轴为直线x=3,且函数y1的图象经过点(a,b),求y1的表达式.(2)设函数y1的图象经过点(m,n),函数y2的图象经过点(1m ,1n),其中mn≠0,求m,n满足的关系式.(3)当0<x<1时,比较y1和y2的函数值的大小.【答案】解:(1)由题意,得到−b2=3,解得b=−6,∵函数y1的图象经过(a,−6),∴a2−6a+a=−6,解得a=2或3,∴函数y1=x2−6x+2或y1=x2−6x+3.(2)将点(m,n)代入y1,点(1m ,1n)代入y2,得:n=m2+mb+a①,1n =am2+bm+1②,将①两边都除以m2,得:nm2=1+bm+am2③,∴由②和③,得:1n =nm2,∵mn≠0,∴m2=n2;(3)①当0<x<1,a=1时,y1=x2+bx+1,y2=x2+bx+1,此时y1=y2;②当0<x<1,a>1时,y1−y2=x2+bx+a−(ax2+bx+1)=x2+bx+a−ax2−bx−1=(1−a)x2+ a−1=(a−1)(1−x2),∵a>1,∴a−1>0,又∵0<x<1,∴0<x2<1,∴1−x2>0,∴(a−1)(1−x2)>0,∴y1>y2;③当0<x<1,a<1时,y1−y2=x2+bx+a−(ax2+bx+1)=x2+bx+a−ax2−bx−1=(1−a)x2+ a−1=(a−1)(1−x2),∵a<1,∴a−1<0,又∵0<x<1,∴0<x2<1,∴1−x2>0,∴(a−1)(1−x2)<0,∴y1<y2.【解析】此题考查的是二次函数的性质和二次函数图象上点的坐标特征.(1)根据对称轴直线求出b的值,再将点的坐标代入y1,求出a的值,即可确定y1的表达式;(2)将点(m,n)代入y1,点(1m ,1n)代入y2,得到两个含有m,n的等式,将其中一个变形后可得到1n =nm2,再次变形可得结论;(3)分情况讨论当0<x<1,a=1时;当0<x<1,a>1时;当0<x<1,a<1时,利用作差法列式计算后判断即可.24.已知一个二次函数y1的图像与x轴的交点为(−2,0),(4,0)形状与二次函数y2=ax2相同,且y1的图像顶点在函数y=2x+b的图像上(a,b为常数),则请用含有a的代数式表示b.【答案】解:由题意得:y1=±a(x+2)(x−4)=±a(x−1)2±9a,顶点坐标为:(1,±9a),将顶点坐标代入函数y=2x+b表达式得:±9a=2+b,解得:b=9a−2或b=−9a−2,用含有a的代数式表示b为b=9a−2或b=−9a−2.【解析】本题考查的是抛物线与x轴的交点,主要考查函数图象上点的坐标特征,要求学生非常熟悉函数与坐标轴的交点、顶点等点坐标的求法,及这些点代表的意义及函数特征.由题意得:y1=±a(x+2)(x−4)=±a(x−1)2±9a,则顶点坐标为:(1,±9a),将顶点坐标代入函数y=2x+b表达式,即可求解.25.在平面直角坐标系xOy中,已知抛物线y1=x2−4x+4的顶点为D,直线y2=kx−2k(k≠0).(1)点D是否在直线y2=kx−2k上?请说明理由;(2)过x轴上一点M(t,0)(0≤t≤2)作x轴上的垂线,分别交y1,y2于点P,点Q.小明同学借助图象性质探究:当k满足什么条件时,存在实数t使得PQ=3.他发现以下结论:①当k>0时,存在满足条件的t;②当−2<k<−0.5时,不存在满足条件的t.你认为小明的判断是否正确?请说明理由.【答案】解:(1)∵y1=x2−4x+4=(x−2)2,∴点D的坐标为(2,0).当x=2时,y2=2k−2k=0,∴点D在直线y2=kx−2k上.(2)∵点M(t,0),∴点P(t,t2−4t+4),点Q(t,kt−2k),∴PQ=|t2−4t+4−(kt−2k)|=|t2−(4+k)t+(4+2k)|.①当P在Q点上方时,k>0∵PQ=3∴t2−(4+k)t+(4+2k)=3整理得t2−(4+k)t+(1+2k)=0,∵Δ=b2−4ac=(4+k)2−4(1+2k)=k2+12>0,∴当k>0时,存在满足条件的t值.①正确.②当P在Q点下方时,k<0∵PQ=3∴t2−(4+k)t+(4+2k)=−3即t2−(4+k)t+(7+2k)=0∵Δ=b2−4ac=(4+k)2−4(7+2k)=k2−12∴当存在PQ=3时,k2−12≥0∴k≤−2√3或k≥2√3(舍去)∴当−2<k<−0.5时,不存在满足条件的t②正确.【解析】本题是代数综合题,综合考查了一次函数和二次函数图象性质.解答时注意随着k值的变化讨论PQ的相对位置关系.(1)将抛物线解析式整理成顶点式形式,然后将顶点D的坐标代入y2=kx−2k即可(2)根据M点坐标可以得出P,Q的坐标,进而得到PQ=|t2−4t+4−(kt−2k)|= |t2−(4+k)t+(4+2k)|,①当P在Q点上方时,k>0,可得t2−(4+k)t+(1+ 2k)=0,根据根的判别式判断即可;②当P在Q点下方时,k<0,可得t2−(4+k)t+(7+2k)=0,根据判别式即可求解.26.函数y=ax2+bx+c(a≠0)的部分图象如图所示:①当y<0时,x的取值范围是__________;②方程ax2+bx+c=3的解是_________.【答案】①x<−5或x>1;②x1=−4,x2=0.【解析】【分析】本题主要考查的是二次函数的图象,二次函数的图象与一元二次方程,二次函数的性质等有关知识.①利用抛物线的对称性得到抛物线与x轴的另一个交点坐标为(−5,0),然后写出抛物线在x轴下方所对应的自变量的范围即可;②抛物线与y轴的交点为(0,3),利用抛物线对称性得到抛物线过点(−4,0),从而得到方程ax2+bx+c=3的解.【解答】解:①∵抛物线与x轴的一个交点坐标为(1,0),而抛物线的对称轴为直线x=−2,∴抛物线与x轴的另一个交点坐标为(−5,0),∴当y<0时,x的取值范围是x<−5或x>1;故答案为x<−5或x>1;②方程ax2+bx+c=3的解为x1=−4,x2=0.故答案为x1=−4,x2=0.27.已知二次函数y1=ax²+bx+c(a≠0)的图象经过三点(1,0),(−6,0),(0,−3).(1)求该二次函数的解析式.(2)若反比例函数y2=4x(x>0)图象与二次函数y1=ax²+bx+c(a≠0)的图象在第一象限内交于点A(x0,y o),x0落在两个相邻的正整数之间,请求出这两个相邻的正整数.(3)若反比例函数y2=kx(k>0,x>0)的图象与二次函数y1=ax²+bx+c(a≠0)的图象在第一象限内的交点为B,点B的横坐标为m,且满足3<m<4,求实数k的取值范围.【答案】解:(1)设抛物线解析式为y=a(x−1)(x+6),将(0,−3)代入,解得a=12.∴抛物线解析式为y1=12x2+52x−3.(2)画出二次函数y1=12x2+52x−3的图象以及反比例函数y2=4x(x>0)在第一象限内的图象,由图象可知,交点的横坐标x0落在1和2之间,从而得出这两个相邻的正整数为1与2.(3)由函数图象和函数性质可知:当3<x<4时,对y1=12x2+52x−3,y1随着x增大而增大,对y2=kx(k>0,x>0),y2随着x的增大而减小.因为B为二次函数图象与反比例函数图象的交点,所以当m=3时,由反比例函数图象在二次函数上方得y2>y1,即k3>12×32+52×3−3,解得k>27.同理,当m=4时,由二次函数图象在反比例上方得y1>y2,即12×42+52×4−3>k4,解k<60,所以k的取值范围为27<k<60.【解析】(1)已知抛物线与x轴的交点,可用交点式来设二次函数的解析式.然后将另一点的坐标代入即可求出函数的解析式.(2)画出二次函数y1=12x2+52x−3的图象以及反比例函数y2=4x(x>0)在第一象限内的图象,由图象进而可写出所求的两个正整数.(3)点B的横坐标m满足3<m<4,可通过x=3,x=4两个点上抛物线与反比例函数的大小关系即可求出k的取值范围.本题主要考查了待定系数法求二次函数的解析式,二次函数的性质,反比例函数图象上点的坐标特征,反比例函数的性质,在直角坐标系中作图、读图的能力是解题的关键.28.如图所示,矩形ABCD的四个顶点在正三角形EFG的边上,已知△EFG的边长为2,设边长AB为x,矩形ABCD的面积为S.求:(1)S关于x的函数表达式和自变量x的取值范围.(2)S的最大值及此时x的值.【答案】解:(1)过E作EM⊥FG,交DC于点N,∵四边形ABCD是矩形,∴CD//FG,AB=CD=x,∴△EDC∽△EFG,,∵△EFG是等边三角形,EM⊥FG,∴FM=12FG=1,∴EM=√22−12=√3,∴x2=√3−MN√3,∴MN=2√3−√3x2,∴S=AB·MN=x·2√3−√3x2=−√32x2+√3x(0<x<2);(2)S=−√32x2+√3x=−√32(x−1)2+√32,当x=1时,S最大=√32.【解析】本题考查了相似三角形的判定和性质,矩形的性质,等边三角形的性质,二次函数的性质,正确的理解题意是解题的关键.(1)根据矩形的性质得到△EDC∽△EFG,则,用x表示出MN的长,根据矩形的面积公式即可得到结论;(2)根据二次函数的性质即可得到结论.29.已知二次函数y=ax2+bx−3(a≠0),且a+b=3.(1)若其图象经过点(−3,0),求此二次函数的表达式.(2)若(m,n)为(1)中二次函数图象在第三象限内的点,请分别求m,n的取值范围.(3)点P(x 1,y 1),Q(x 2,y 2)是函数图象上两个点,满足x 1+x 2=2且x 1<x 2,试比较y 1和y 2的大小关系.【答案】解:(1)由题意得:{a +b =39a −3b −3=0,解得:{a =1b =2,∴此二次函数的表达式为:y =x 2+2x −3;(2)如图,∵y =x 2+2x −3=(x +1)2−4,且(m,n)是二次函数图象在第三象限内的点,∴−4≤n <0,当y =0时,x 2+2x −3=0, x =−3或1,∴图象过(1,0)和(−3,0), ∴−3<m <0;(3)由条件可得:y 1=ax 12+(3−a)x 1−3,y 2=ax 22+(3−a)x 2−3,∴y 2−y 1=(x 2−x 1)[a(x 2+x 1)+3−a], ∵x 1+x 2=2且x 1<x 2, ∴y 2−y 1=(x 2−x 1)(a +3), ①当a >−3时,y 2>y 1, ②当a =−3时,y 2=y 1, ③当a <−3时,y 2<y 1.【解析】(1)依据待定系数法可求得二次函数的解析式;(2)利用配方法可得:y =x 2+2x −3=(x +1)2−4,图象过(1,0)和(−3,0),可得结论; (3)根据已知得:b =3−a ,并将P 和Q 的坐标分别代入抛物线的解析式,并计算y 2−y 1=(x 2−x 1)(a +3),分情况讨论可得结论.本题主要考查的是二次函数的性质,抛物线与x 轴的交点,利用数形结合思想求得m 和n 的取值范围是解题的关键.30. 已知抛物线y =x 2+bx +c(b >0)的顶点为A 点,(1)当A(−1,−2)时,求b 与c 的值. (2)若直线y =mx +n(n ≠0)经过A 点,①当直线与抛物线都与y 轴交于同一点,求b 与m 的关系式;②当直线与抛物线的另一个交点B 的横坐标是方程x 2−mx +14=0的一个根.求m 的最小值.【答案】解:(1)∵抛物线y =x 2+bx +c(b >0)的顶点为A(−1,−2),∴{−b2=−14c−b 24=−2, 解得b =2,c =−1; (2)①把(−b 2,4c−b 24)代入y =mx +n 得4c−b 24=−b2m +n ,∵直线与抛物线都与y 轴交于同一点, 所以c =n , 所以4n−b 24=−bm 2+n ,整理得b =2m ;②设点A 的横坐标为x 1,点B 的横坐标为x 2, 则x 1=−b2①,令mx +n =x 2+bx +c ,整理得x 2+(b −m)x +c −n =0, 由根与系数的关系得, x 1+x 2=m −b②, 将①代入②,得 x 2=m −b 2③,把③代入x 2−mx +14=0,得, b 2−2mb +1=0, ∵b >0, ∴{m >04m 2−4≥0,解得m ≥1, ∴m 的最小值为1.【解析】(1)根据定顶点坐标公式求解;(2)①把A 代入y =mx +n ,再根据直线与抛物线与y 轴同交点,可确定b ,m 关系; ②设点A 的横坐标为x 1,点B 的横坐标为x 2,根据根与系数的关系可得x 1与x 2的关系,然后用m ,b 的代数式表示x 2,再将其代入方程x 2−mx +14=0,可得m 与b 的关系,从而确定m 最小值.本题考查二次函数根与系数的关系、二次函数图象上点的坐标特征,解答本题的关键是明确题意,利用二次函数的性质和数形结合的思想解答.31.已知一个二次函数y1的图象与x轴的交点为(−2,0),(4,0),形状与二次函数y2=ax2相同且开口方向与之相反,且y1的图象顶点在函数y=2x+b的图象上(a,b为常数),则请用含有a的代数式表示b.【答案】解:由题意得:y1=−a(x+2)(x−4)=−a(x−1)2+9a,顶点坐标为:(1,9a),将顶点坐标代入函数y=2x+b表达式得:9a=2+b,故b=9a−2.【解析】本题考查的是抛物线与x轴的交点,主要考查函数图象上点的坐标特征,要求学生非常熟悉函数与坐标轴的交点、顶点等点坐标的求法,及这些点代表的意义及函数特征.由题意得:y1=−a(x+2)(x−4)=−a(x−1)2+9a,则顶点坐标为:(1,9a),将顶点坐标代入函数y=2x+b表达式,即可求解.32.已知一个二次函数y1的图象与x轴的交点为(−4,0),(8,0),形状与二次函数y2=ax2相同,且y1的图象顶点在函数y=4x+b的图象上(a,b为常数),则请用含有a的代数式表示b.【答案】解:由题意得:y1=a(x+4)(x−8)=a(x−2)2−36a,顶点坐标为:(2,−36a),将顶点坐标代入函数y=4x+b表达式得:−36a=8+b,故b=−36a−8.【解析】本题考查的是二次函数的性质,一次函数图象点的坐标特征有关知识,由题意得:y1=a(x+4)(x−8)=a(x−2)2−36a,则顶点坐标为:(2,−36a),将顶点坐标代入函数y=4x+b表达式,即可求解.33.已知二次函数y=−x2+2kx+1−k(k是常数)(1)求此函数的顶点坐标.(2)当x≥1时,y随x的增大而减小,求k的取值范围.(3)当0≤x≤1时,该函数有最大值3,求k的值.【答案】解:(1)∵抛物线的解析式为y=−x2+2kx+1−k=−(x−k)2+1−k+k2,∴抛物线的顶点坐标为(k,1−k+k2);(2)∵抛物线的解析式为y=−(x−k)2+1−k+k2,∴当x≥k时,y随x的增大而减小,∵当x≥1时,y随x的增大而减小,∴k≤1.(3)①当k<0时,x=0时,函数值最大,最大值为1−k,∴1−k=3,解得k=−2;②当0≤k≤1时,最大值为1−k+k2,则1−k+k2=3,解得k=2(舍去)或−1(舍去);③当k>1时,x=1时,函数值最大,最大值为−1+2k+1−k,∴−1+2k+1−k=3,解得k=3综上,当0≤x≤1时,该函数有最大值3,则k=−2或k=3.【解析】本题考查二次函数的性质,二次函数的最值,分类讨论是解题的关键.(1)配方得到顶点式,可确定顶点坐标;(2)根据二次函数的性质即可得到k的取值;(3)分三种情况讨论,关键题意得到关于k的方程,解方程即可求得.34.已知二次函数y=ax2−4ax+3+b(a≠0).(1)求出二次函数图象的对称轴;(2)若该函数的图象经过点(1,3),且整数a,b满足4<a+|b|<9,求二次函数的表达式;(3)在(2)的条件下且a>0,当t≤x≤t+1时有最小值3,求t的值.2=2;【答案】解:(1)二次函数图象的对称轴是x=−−4a2a(2)该二次函数的图象经过点(1,3),∴a−4a+3+b=3,∴b=3a,把b=3a代入4<a+|b|<9,得4<a +3|a|<9.当a >0时,4<4a <9,则1<a <94. 而a 为整数, ∴a =2,则b =6,∴二次函数的表达式为y =2x 2−8x +9; 当a <0时,4<−2a <9,则−92<a <−2. 而a 为整数,∴a =−3或−4,则对应的b =−9或−12,∴二次函数的表达式为y =−3x 2+12x −6或y =−4x 2+16x −9; (3)在(2)的条件下,且a >0,所以y =2x 2−8x +9, 开口向上,对称轴为直线x =2, ①当t +1<2时,即t <1.y 随着x 的增大而减少,当x =t +1时,y 取得最小值.即2(t +1)2−8(t +1)+9=32,解得t 1=12,t 2=32(舍去), 所以t =12, ②当t ≤2≤t +1时,即1≤t ≤2. 此时,x =2时,y 取最小为1≠32, ③当t >2时,y 随着x 的增大而增大,当x =t 时,y 取得最小值. 即2t 2−8t +9=32,解得t 1=32(舍去),t 2=52 ,所以t =52, 综上可得:t 的值为12或52.。

第22章 二次函数(易错必刷30题11种题型专项训练)(原卷版)-2024-2025学年九年级数学上

第22章 二次函数(易错必刷30题11种题型专项训练)(原卷版)-2024-2025学年九年级数学上

第22章二次函数(易错必刷30题11种题型专项训练)一.二次函数的定义(共4小题)1.(2022秋•宜昌期中)下列选项描述的y与x之间的关系是二次函数的是()A.正方体的体积y与棱长x之间的关系B.某商品在6月的售价为30元,7月和8月连续两次降价销售,平均每月降价的百分率为x,该商品8月的售价y与x之间的关系C.距离一定时,汽车匀速行驶的时间y与速度x之间的关系D.等腰三角形的顶角度数y与底角度数x之间的关系2.(2022秋•岫岩县期中)下列各式中,y是x的二次函数的是()A.y=ax2+bx+c B.y=2+x(x+1)C.y=x2﹣(x+2)2D.y=3.(2022秋•长沙期中)二次函数y=x2﹣2x+3的一次项系数是()A.1B.2C.﹣2D.34.(2022秋•库车市期中)若y=(m+2)+(m﹣2)x+m是关于x的二次函数,则m的值为.二.二次函数的图象(共2小题)5.(2022秋•黔东南州期中)如图所示的抛物线是二次函数y=(m﹣2)x2﹣3x+m2+m﹣6的图象,那么m 的值是.6.(2022秋•黔东南州期中)在同一坐标系中,二次函数y=ax2+bx与一次函数y=bx﹣a的图象可能是()A.B.C.D.三.二次函数的性质(共2小题)7.(2022秋•嘉祥县期中)下列关于二次函数y=3(x+1)(2﹣x)的图象和性质的叙述中,正确的是()A.点(0,2)在函数图象上B.开口方向向上C.对称轴是直线x=1D.与直线y=3x有两个交点8.(2022秋•平潭县校级期中)下列关于抛物线y=﹣(x+2)2+6的说法,正确的是()A.抛物线开口向上B.抛物线的顶点坐标为(2,6)C.抛物线的对称轴是直线x=6D.抛物线经过点(0,2)四.二次函数图象与系数的关系(共2小题)9.(2022秋•福山区期中)如图,已知抛物线y=ax2+bx﹣2的对称轴是直线x=﹣1,直线l∥x轴,且交抛物线于点P(x1,y1),Q(x2,y2),下列结论错误的是()A.b2>﹣8aB.若实数m≠﹣1,则a﹣b<am2+bmC.3a﹣2>0D.当y>﹣2时,x1•x2<010.(2022秋•武昌区校级期中)如图,抛物线y=ax2+bx+c与x轴交于点A(—1,0),顶点坐标为(1,n),与y轴的交点在(0,2),(0,3)之间(包含端点).有下列结论:①a+b+c>0;②3a+b>0;③﹣1≤a ≤﹣;④≤n≤4,其中正确的有.五.二次函数图象上点的坐标特征(共2小题)11.(2022秋•新丰县期中)设A(0,y1),B(1,y2),C(2,y3)是抛物线y=﹣(x+1)2+k上的三点,则y1,y2,y3的大小关系为()A.y3>y2>y1B.y1>y3>y2C.y1>y2>y3D.y3>y1>y212.(2022秋•闽清县校级期中)已知点A(x1,y1),B(x2,y2)均在抛物线y=ax2﹣2ax+4(a≠0)上,若x1<x2,x1+x2=1﹣a,则()A.当a>﹣1时,y1<y2B.当a>﹣1时,y1>y2C.当a<﹣1时,y1<y2D.当a<﹣1时,y1>y2六.二次函数图象与几何变换(共2小题)13.(2022秋•乐陵市期中)抛物线y=﹣x2+x+1经平移后,不可能得到的抛物线是()A.y=﹣x2+x B.y=﹣x2﹣4C.y=﹣x2+2021x﹣2022D.y=﹣x2+x+114.(2022秋•横县期中)如果将抛物线y=x2向左平移2个单位,再向下平移1个单位,所得到的抛物线解析式为()A.y=(x+2)2﹣1B.y=(x﹣2)2﹣1C.y=(x+2)2+1D.y=(x﹣2)2+1七.二次函数的最值(共3小题)15.(2022秋•伊州区校级期中)如图,已知二次函数y=(x+1)2﹣4,当﹣2≤x≤2时,则函数y的最小值和最大值()A.﹣3和5B.﹣4和5C.﹣4和﹣3D.﹣1和516.(2022秋•黑龙江期中)若实数x,y满足x+y2=3,设s=x2+8y2,则s的取值范围是.17.(2022秋•海安市期中)已知关于x的函数y,当t≤x≤t+1时,函数y的最大值为P,最小值为Q,令函数g=,则称函数g为函数y的“关联函数”.(1)若y=x+1,t=0,求函数y的“关联函数”g的值;(2)若y=x2﹣2x+k.①当k=1,t≤0时,求函数y的“关联函数”g的最小值;②当函数y的“关联函数”g的值为时,求t的值.八.待定系数法求二次函数解析式(共2小题)18.(2022秋•无为市期中)在一条笔直的滑道上有黑、白两个小球同向运动,黑球在A处开始减速,此时白球在黑球前面70cm处.小聪测量黑球减速后的运动速度v(单位:cm/s)、运动距离y(单位:cm)随运动时间t(单位:s)变化的数据,整理得下表.运动时间t/s01234运动速度109.598.58v/cm/s运动距离y/cm09.751927.7536小聪探究发现,黑球的运动速度v与运动时间t之间成一次函数关系,运动距离y与运动时间t之间成二次函数关系.(1)直接写出v关于t的函数解析式和y关于t的函数解析式(不要求写出自变量的取值范围);(2)当黑球减速后运动距离为64cm时,求它此时的运动速度;(3)若白球一直以2cm/s的速度匀速运动,问黑球在运动过程中会不会碰到白球?请说明理由.19.(2022秋•启东市期中)已知抛物线y=ax2+bx﹣1(a>0)经过点(2,﹣1),当1﹣2m≤x≤1+3m时,y的最小值为﹣2.(1)求抛物线的解析式;(2)当n<x<n+1时,y的取值范围是2n+1<y<2n+4,求n的值.九.抛物线与x轴的交点(共2小题)20.(2022秋•黔东南州期中)抛物线y=ax2+bx+c上部分点的横坐标x,纵坐标y的对应值如表:x…﹣2﹣1012…y…04664…从表中可知,下列说法中正确的是()A.抛物线的对称轴是直线x=0B.抛物线与x轴的一个交点为(3,0)C.函数y=ax2+bx+c的最大值为6D.在对称轴右侧,y随x增大而增大21.(2022秋•岫岩县期中)已知函数y=mx2+3mx+m﹣1的图象与坐标轴恰有两个公共点,则实数m的值为.一十.二次函数的应用(共7小题)22.(2022秋•慈溪市期中)如图,小明以抛物线为灵感,在平面直角坐标系中设计了一款高OD为14的奖杯,杯体轴截面ABC是抛物线的一部分,则杯口的口径AC为.23.(2022秋•宾阳县期中)如图,一名男生推铅球,铅球行进高度y(m)与水平距离x(m)之间的关系是y=﹣x2+8x+20,则他将铅球推出的距离是m.24.(2022秋•临潼区期中)如图是抛物线型拱桥,当拱顶离水面2m时,水面宽4m,如果水面下降0.5m,那么水面宽度增加m.25.(2022秋•海安市期中)从地面竖直向上抛出一小球,小球的高度h(单位;m)与小球的运动时间t(单位:s)之间的关系式是h=30t﹣5t2(0≤t≤6).小球运动的时间是s时,小球最高.26.(2022秋•萨尔图区期中)荔枝是夏季的时令水果,储存不太方便.某水果店将进价为18元/千克的荔枝,以28元/千克售出时,每天能售出40千克.市场调研表明:当售价每降低1元/千克时,平均每天能多售出10千克.设降价x元.(1)降价后平均每天可以销售荔枝千克.(用含x的代数式表示)(2)设销售利润为y,请写出y关于x的函数关系式.(3)该水果店想要使荔枝的销售利润平均每天达到480元,且尽可能地减少库存压力,应将价格定为多少元/千克?27.(2022秋•射洪市期中)某商店将进价为8元的商品按每件10元售出,每天可售出200件,现在采取提高商品售价减少销售量的办法增加利润,如果这种商品每件的销售价每提高0.5元其销售量就减少10件.(1)应将每件售价定为多少元时,才能使每天利润为640元?(2)每件售价定为多少元时,才能使利润最大?其最大利润是多少?28.(2022秋•滨城区期中)某公园要修建一个圆形喷水池,在池中心竖直安装一根水管,水管OA长2.25m.在水管的顶端安装一个喷水头,使喷出的抛物线形水柱在与池中心的水平距离为1m处达到最高,高度为3m.(1)建立如图所示平面直角坐标系,求抛物线(第一象限部分)的解析式;(2)不考虑其它因素,水池的直径至少要多少米才能使喷出的水流不落到池外?(3)实际施工时,经测量,水池的最大半径只有2.5m,在不改变喷出的抛物线形水柱形状的情况下,且喷出的抛物线形水柱在与池中心的水平距离为1m处达到最高,需对水管的长度进行调整,求调整后水管的最大长度.一十一.二次函数综合题(共2小题)29.(2022秋•永吉县期中)如图,在平面直角坐标系中,抛物线y=﹣x2+bx+c与直线交于A,B两点,点A在x轴上,点B的横坐标为2.(1)点A坐标为,点B坐标为.(2)求此抛物线所对应的函数解析式.(3)点P是抛物线上一点,点P与点B不重合,设点P的横坐标为m,过点P作PC∥y轴,交直线AB 于点C,设PC的长为h.①若点P在直线AB的上方,求h关于m的函数解析式;②若点P在x轴的上方,当h随m的增大而增大时,直接写出m的取值范围.30.(2022秋•普陀区期中)在平面直角坐标系xOy中(如图),抛物线的顶点是A(1,﹣5),且经过点B (﹣1,﹣1),过点B作BC∥x轴,交抛物线的对称轴于点C.(1)求抛物线的表达式和点C的坐标;(2)联结AB,如果点D是该抛物线上一点,且位于第一象限,当∠DBC=∠BAC时,求点D的坐标.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二次函数
1.已知二次函数2(3)2y x =-++,当42x -≤≤时,函数值y 的取值范围是_______
2.已知二次函数2()1y x h =-+(h 为常数),在自变量x 的值满足13x ≤≤的情况下,与其对应的函数值y 的最小值为5,则h 的值为( )
A.1或-5
B.-1或5
C.1或-3
D.1或3
(变式)当21x -≤≤时,二次函数22()1y x m m =--++有最大值4,求实数m 的值.
3.已知函数24y x x m =--+的图像经过点123135(,),(1,),(,)43
A y
B y
C y --,则123,,y y y 的大小关系为__________________________
4.若抛物线262y x x c =-+-的顶点到x 轴的距离是3,则c 的值为________
5.已知二次函数22y x bx c =-++,当1x ≥时,y 随x 的增大而减小,则b 的取值范围是( )
A. 1b ≥-
B. 1b ≤-
C. 1b ≥
D. 1b ≤
6.如图是二次函数2y ax bx c =++的部分图像,图像过点(-1,0)对称轴为直线1x =.下列结论:①0abc <;②b c <;③30a c +=;④当0y >时,13x -<<.其中正确的有( )
A.1个
B.2个
C.3个
D.4个
7.如图是二次函数2(0)y ax bx c a =++≠的图像.下列结论:①0abc >; ②20a b -<;③420a b c -+<;④22()a c b +<.其中正确的有( )
A.1个
B.2个
C.3个
D.4个
8.如图是二次函数2y ax bx =+的图像,则化简
b a a -的结果为( )
A.
ab B. ab - C. ab -- D. ab -
1 -1 O 6题图 1 -1 O
2 7题图 8题图 O 9题图 1 O 2
3 A 10题图
O -1 1 2
9.如图是二次函数2y ax bx c =++图像的一部分,与x 轴的交点A 在(2,0)和(3,0)之间,对称轴是直线1x =.下列结论:①0ab <;②20a b +=;③30a c +>;④()()a b m am b m +≥+为实数;⑤当13x -<<时,0y >.其中正确的是( )
A.①②④
B.①②⑤
C.②③④
D.③④⑤
10.如图是二次函数2
y ax bx c =++的图像.若42M a b =+,N a b =-,,则M 与N 的大小关系为_____M N (填“>” “=” “<”).
2.如图,直线y =x +1与抛物线y =x 2﹣4x +5交于A ,B 两点,点P 是y 轴上的一个动点,当△P AB 的周长最小时,S △P AB = .
3.如图,抛物线y =ax 2+bx +c 与x 轴交于点A (﹣1,0),顶点坐标(1,n ),与y 轴的交点在(0,2),(0,3)之间(包含端点),则下列结论:
①3a +b >0;②﹣1≤a ≤﹣;③对于任意实数m ,a +b ≥am 2+bm 总成立;
④关于x 的方程ax 2+bx +c =n ﹣1有两个不相等的实数根.其中正确结论为 .(只填序号)
4.已知在△ABC 中,AB =AC =8,∠BAC =30°,将△ABC 绕点A 旋转,使点B 落在原△ABC 的点C 处,此时点C 落在点D 处,延长线段AD ,交原△ABC 的边BC 的延长线于点E ,那么线段DE 的长等于 .
三.解答题
10.设抛物线为y=x2﹣kx+k﹣1,根据下列各条件,求k的值.
(1)物线的顶点在x轴上;(2)抛物线的顶点在y轴上;(3)物线的顶点(﹣1,﹣4);
(4)抛物线经过原点;(5)当x=1时,y有最小值;(6)y的最小值为﹣1.
11.直线y=kx﹣2k+4(k≠0)与抛物线y=﹣x2+4x﹣3有唯一公共点,求k的值.12.如图,已知抛物线y=ax2+bx+c(a≠0)与x轴交于点A(1,0)和点B(﹣3,0),与y轴交于点C,且OC=OB.
(1)求此抛物线的解析式;
(2)若点E为第二象限抛物线上一动点,连接BE,CE,求四边形BOCE面积的最大值,并求出此时点E的坐标;
(3)点P在抛物线的对称轴上,若线段P A绕点P逆时针旋转90°后,点A的对应点A′恰好也落在此抛物线上,求点P的坐标.
(4)连接AC,H是抛物线上一动点,过点H作AC的平行线交x轴于点F.是否存在这样的点F,使得以A,C,H,F为顶点所组成的四边形是平行四边形?若存在,求出满足条件的点F的坐标;若不存在,请说明理由.
13.某科技公司接到一份新型高科技产品紧急订单,要求在10天内(含10天)完成任务,为提高生产效率,工厂加班加点,接到任务的第一天就生产了该种产品42件,以后每天生产的产品都比前一天多2件,由于机器损耗等原因,当日生产的产品数量达到50件后,每多生产一件,当天生产的所有产品平均每件成本就增加10元.
(1)设第x天生产产品y件,求出y与x之间的函数解析式,并写出自变量x的取值范围.(2)若该产品每件生产成本(日生产量不超过50件时)为1000元,订购价格为每件1460元,设第x天的利润为W元,试求W与x之间的函数解析式,并求该公司哪一天获得的利润最大,最大利润是多少?
(3)该公司当天的利润不低于22680元的是哪几天?请直接写出结果.
14.如图,直线y=﹣x+c与x轴交于点A(3,0),与y轴交于点B,抛物线y=﹣x2+bx+c 经过点A,B.
(1)求点B的坐标和抛物线的解析式;
(2)M(m,0)为x轴上一动点,过点M且垂直于x轴的直线与直线AB及抛物线分别交于点P,N.①点M在线段OA上运动,若以B,P,N为顶点的三角形与△APM相似,求点M的坐标;②点M在x轴上自由运动,若三个点M,P,N中恰有一点是其它两点所连线段的中点(三点重合除外),则称M,P,N三点为“共谐点”.请直接写出使得M,P,N三点成为“共谐点”的m的值.
15.如图,抛物线y=﹣x2+mx+n与x轴交于A、B两点,与y轴交于点C,抛物线的对称轴交x轴于点D,已知A(﹣1,0),C(0,2).
(1)求抛物线的表达式;
(2)在抛物线的对称轴上是否存在点P,使△PCD是以CD为腰的等腰三角形?如果存在,直接写出P点的坐标;如果不存在,请说明理由;
(3)点E是线段BC上的一个动点,过点E作x轴的垂线与抛物线相交于点F,当点E 运动到什么位置时,四边形CDBF的面积最大?求出四边形CDBF的最大面积及此时E 点的坐标.。

相关文档
最新文档