高三数学立体几何专题复习教案
高三数学复习教案10套立体几何与空间向量
yk iA(x,y,z)O jxzlB'O'A'B O A βα1 空间直角坐标系:(1)若空间的一个基底的三个基向量互相垂直,且长为1,这个基底叫单位正交基底,用{,,}i j k r r r 表示;(2)在空间选定一点O 和一个单位正交基底{,,}i j k r r r ,以点O 为原点,分别以,,i j k r r r 的方向为正方向建立三条数轴:x 轴、y 轴、z 轴,它们都叫坐标轴.我们称建立了一个空间直角坐标系O xyz -,点O叫原点,向量 ,,i j k r r r都叫坐标向量.通过每两个坐标轴的平面叫坐标平面,分别称为xOy 平面,yOz 平面,zOx 平面;2.空间直角坐标系中的坐标: 在空间直角坐标系O xyz -中,对空间任一点A ,存在唯一的有序实数组(,,)x y z ,使OA xi yj zk =++u u u r r r,有序实数组(,,)x y z 叫作向量A 在空间直角坐标系O xyz-中的坐标,记作(,,)A x y z ,x 叫横坐标,y 叫纵坐标,z 叫竖坐标.3.空间向量的直角坐标运算律:(1)若123(,,)a a a a =r ,123(,,)b b b b =r,则112233(,,)a b a b a b a b +=+++r r ,112233(,,)a b a b a b a b -=---r r ,123(,,)()a a a a R λλλλλ=∈r , 112233a b a b a b a b ⋅=++r r , 112233//,,()a b a b a b a b R λλλλ⇔===∈r r, 1122330a b a b a b a b ⊥⇔++=r r.(2)若111(,,)A x y z ,222(,,)B x y z ,则212121(,,)AB x x y y z z =---u u u r.一个向量在直角坐标系中的坐标等于表示这个向量的有向线段的终点的坐标减去起点的坐标4 模长公式:若123(,,)a a a a =r , 则222123||a a a a a a =⋅=++r r r .5.夹角公式:112233222222123123cos ||||a ba b a b a a a b b b ⋅⋅==⋅++++r rr r r r .6.两点间的距离公式:若111(,,)A x y z ,222(,,)B x y z ,则2222212121||()()()AB AB x x y y z z ==-+-+-uuu r uuu r7.直线和平面所成角:(1)定义:平面的一条斜线和它在平面上的射影所成的锐角叫做这条斜线和这个平面所成的角 一直线垂直于平面,所成的角是直角一直线平行于平面或在平面内,所成角为0︒角直线和平面所成角范围: [0,2π] (2)定理:斜线和平面所成角是这条斜线和平面内经过斜足的直线所成的一切角中最小的角8.公式:已知平面的斜线a 与内一直线b 相交成θ角,且a 与相交成1角,a 在上的射影c 与b 相交成2角,则有θϕϕcos cos cos 21=ϕ2ϕ1c b aθPαO ABED'B'C'A'ODACBαHDCBA9 二面角的概念:平面内的一条直线把平面分为两个部分,其中的每一部分叫做半平面;从一条直线出发的两个半平面所组成的图形叫做二面角,这条直线叫做二面角的棱,每个半平面叫做二面角的面若棱为l ,两个面分别为,αβ的二面角记为l αβ--10.二面角的平面角:(1)过二面角的棱上的一点O 分别在两个半平面内作棱的两条垂线,OA OB ,则AOB ∠叫做二面角l αβ--的平面角(2)一个平面垂直于二面角l αβ--的棱l ,且与两半平面交线分别为,,OA OB O 为垂足,则AOB ∠也是l αβ--的平面角(1)二面角的平面角范围是[0,180]o o ;(2)二面角的平面角为直角时,则称为直二面角,组成直二面角的两个平面互相垂直11 两个平面垂直的定义:两个相交成直二面角的两个平面互相垂直;相交成直二面角的两个平面叫做互相垂直的平面12.面面垂直的判定定理: 如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直 13.面面垂直的性质定理: 若两个平面互相垂直,那么在一个平面内垂直于它们的交线的直线垂直于另一个平面 练习:1设231(,,)a a a a =r ,231(,,)b b b b =r,且a b ≠r r ,记||a b m -=r r ,求a b -r r 与x 轴正方向的夹角的余弦值2. 在ΔABC 中,已知AB =(2,4,0),BC =(-1,3,0),则∠ABC =___ 3.已知空间三点A(0,2,3),B(-2,1,6),C(1,-1,5),⑴求以向量AC AB ,为一组邻边的平行四边形的面积S ;⑵若向量a r 分别与向量AC AB ,垂直,且|a r |=3,求向量a r的坐标4.直角ABC ∆的斜边AB 在平面α内,,AC BC 与α所成角分别为30,45oo,CD 是斜边AB 上的高线,求CD 与平面α所成角的正弦值5.如果二面角l αβ--的平面角是锐角,点P 到,,l αβ的距离分别为22,4,42,求二面角的大小6.如图,正方体的棱长为1,'B C BC O '=I ,求:(1)AO 与A C ''所成角; (2)AO 与平面ABCD 所成角的正切值;(3)平面AOB 与平面AOC 所成角7已知正方体1AC 的棱长为a ,E 是1CC 的中点,O 是对角线1BD 的中点,(1)求证:OE 是异面直线1CC 和1BD 的公垂线;(2)求异面直线1CC 和1BD 的距离参考答案: 1设231(,,)a a a a =r ,231(,,)b b b b =r,且a b ≠r r ,记||a b m -=r r ,αHDCBA求a b -r r与x 轴正方向的夹角的余弦值解:取x 轴正方向的任一向量(,0,0)c x =r,设所求夹角为α,∵22331111()(,,)(,0,0)()a b c a b a b a b x a b x -⋅=---⋅=-r r r∴1111()()cos ||||a b c a b x a bmx m a b c α-⋅--===-⋅r r r r rr ,即为所求 2. 在ΔABC 中,已知AB =(2,4,0),BC =(-1,3,0),则∠ABC =___解:(2,4,0),(1,3,0),BA BC =--=-u u u r u u u rQcos ,||||BA BC BA BC BA BC ⋅∴===u u u r u u u r u u u r u u u r u u u r u u u r ∴∠ABC =45°3.已知空间三点A(0,2,3),B(-2,1,6),C(1,-1,5)⑴求以向量,为一组邻边的平行四边形的面积S ;⑵若向量a r 分别与向量AC AB ,垂直,且|a r |=3,求向量a r的坐标分析:⑴21||||cos ),2,3,1(),3,1,2(==∠∴-=--=AC AB BAC Θ ∴∠BAC =60°,3760sin ||||==∴οAC AB S ⑵设a r=(x,y,z),则,032=+--⇒⊥z y x AB a33||,023222=++⇒==+-⇒⊥z y x z y x解得x =y =z =1或x =y =z =-1,∴a r =(1,1,1)或a r=(-1,-1,-1).4.直角ABC ∆的斜边AB 在平面α内,,AC BC 与α所成角分别为30,45o o,CD 是斜边AB 上的高线,求CD 与平面α所成角的正弦值解:过点C 作CH α⊥于点H ,连接,,AH BH OH ,则30CAH ∠=o,45CBH ∠=o,CDH ∠为所求CD 与α所成角,记为θ, 令CH a =,则2,AC a BC ==,则在Rt ABC ∆中,有AC BC CD AB ⋅==βαlP C B图1AED'B'C'A'ODACB在Rt CDH ∆中,sin CH CD θ==∴CD 与平面α所成角的正弦值2. 5.如果二面角l αβ--的平面角是锐角,点P 到,,l αβ的距离分别为4,,求二面角的大小分析:点P 可能在二面角l αβ--内部,也可能在外部,应区别处理解:如图1是点P 在二面角l αβ--的内部时,图2是点P 在二面角l αβ--外部时, ∵PA α⊥ ∴PA l ⊥ ∵AC l ⊥ ∴面PAC l ⊥ 同理,面PBC l ⊥而面PAC I 面PBC PC = ∴面PAC 与面PBC 应重合 即,,,A C P B 在同一平面内,则ACB ∠是二面角l αβ--的平面角在Rt APC ∆中,1sin 2PA ACP PB ∠=== ∴30ACP ∠=o在Rt BPC ∆中,sin 2PB BCP PC ∠===∴45BCP ∠=o故304575ACB ∠=+=ooo(图1)或453015ACB ∠=-=ooo(图2) 即二面角l αβ--的大小为75o 或15说明:作一个垂直于棱的平面,此平面与两个半平面的交线所成的角就是二面角的平面角6.如图,正方体的棱长为1,'B C BC O '=I ,求:(1)AO 与A C ''所成角;(2)AO 与平面ABCD 所成角的正切值; (3)平面AOB 与平面AOC 所成角 解:(1)∵//A C AC '' ∴AO 与A C ''所成角就是OAC ∠∵,OC OB AB ⊥⊥平面BC ' ∴OC OA ⊥(三垂线定理)βαlPCB图2AO ED 1C 1B 1A 1DCBA OD 1C 1B 1A 1D CB A在Rt AOC ∆中, 2,2OC AC == ∴30OAC ∠=o (2)作OE BC ⊥,平面BC '⊥平面ABCD∴OE ⊥平面ABCD ,OAE ∠为OA 与平面ABCD 所成角 在Rt OAE ∆中,22115,1()22OE AE ==+= ∴5tan 5OE OAE AE ∠== (3)∵,OC OA OC OB ⊥⊥ ∴OC ⊥平面AOB 又∵OC ⊂平面AOC ∴平面AOB ⊥平面AOC 即平面AOB 与平面AOC 所成角为907已知正方体1AC 的棱长为a ,E 是1CC 的中点,O 是对角线1BD 的中点,(1)求证:OE 是异面直线1CC 和1BD 的公垂线;(2)求异面直线1CC 和1BD 的距离 解:(1)解法一:延长EO 交1A A 于F ,则F 为1A A 的中点,∴//EF AC , ∵1CC AC ⊥,∴1C C EF ⊥,连结1,D E BE ,则1D E BE =, 又O 是1BD 的中点,∴1OE BD ⊥,∴OE 是异面直线1CC 和1BD 的公垂线(2)由(1)知,OE 122AC ==. 解法二:建立空间直角坐标系,用坐标运算证明(略)引申:求1B C 与BD 间的距离解法一:(转化为1B C 到过BD 且与1B C 平行的平面的距离) 连结1A D ,则1A D //1B C ,∴1B C //平面1A DB ,连1AC ,可证得1AC BD ⊥,1AC AD ⊥,∴1AC ⊥平面1A DB ,∴平面1AC ⊥平面1A DB ,且两平面的交线为1A O ,过C 作1CE AO ⊥,垂足为E ,则CE 即为1B C 与平面1A DB 的距离,也即1B C 与BD 间的距离,在1A OC ∆中,111122OC A A CE AO ⋅=⋅,∴CE a =. (解法二):坐标法:以D 为原点,1,,DA DC DD 所在的直线分别为x 轴,y 轴、z 轴建立空间直角坐标系, 则(,0,0),(,,0),(0,,0)A a B a a C a ,11(,,),(,0,),(0,0,0)B a a a A a a D , 由(解法一)求点C 到平面1A DB 的距离CE ,设(,,)E x y z , ∵E 在平面1A DB 上,∴111A E A D A B λμ=+u u u u r u u u u r u u u r,即(,,)(,0,)(0,,)x a y z a a a a a λμ--=--+,∴x a a y a z a a a λμμλ=-⎧⎪=⎨⎪=--⎩, ∵1,CE A D CE BD ⊥⊥u u u r u u u u r u u u r u u u r ,∴(,2,)(,0,)0(,2,)(,,0)0x y z a a x y z a a ---=⎧⎨---=⎩,解得:23λμ==,∴111(,,)333CE a a a =--u u u r,∴3CE a =. 解法三:直接求1B C 与BD 间的距离设1B C 与BD 的公垂线为1OO ,且11,O B C O BD ∈∈,设(,,)O x y z ,设DO BD λ=u u u r u u u r,则(,,)(,,0)x y z a a λ=--,∴0x a y a z λλ=-⎧⎪=-⎨⎪=⎩,∴(,,0)O a a λλ--,同理1(,,)O a a a μμ,∴1((),,)OO a a a a μλλμ=++u u u u r ,∴111,OO BD OO B C ⊥⊥u u u u r u u u r u u u u r u u u u r , ∴1110,0OO BD OO B C ⋅=⋅=u u u u r u u u r u u u u r u u u u r,解得:21,33λμ=-=,1OO =u u u u r 111(,,)333a a a -,1||OO =u u u u r .。
高考数学专题复习专题七立体几何教案文
高考数学专题复习专题七立体几何教案文第一篇:高考数学专题复习专题七立体几何教案文专题七立体几何自查网络核心背记一、空间几何体的结构特征(一)多面体1.棱柱可以看成是一个多边形(包含图形所围成的平面部分)上各点都沿同一个方向移动____所形成的几何体.2.主要结构特征:棱柱有两个面互相平行,而其余的交线都互相平行,其余的这些面都是四边形.3.侧棱和底面____的棱柱叫做直棱柱,底面为的直棱柱叫做正棱柱.4.有一个面是多边形,而其余各面都的三角形的多面体叫做棱锥.5.如果棱锥的底面是一,它的顶点又在过且与底面垂直的直线上,则这个棱锥叫做正棱锥,正棱锥各侧面都是一的等腰三角形,这些等腰三角形____都相等,叫做棱锥的斜高.6.棱锥被一的平面所截,截面和底面间的部分叫做棱台.一——7.由正棱锥截得的棱台叫做正棱台.正棱台各侧面都是全等的等腰梯形,这些一叫做棱台的斜高.正棱台中两底面中心连线,相应的边心距和.组成一个直角梯形;两底面中心连线,和两底面相应的外接圆半径组成一个直角梯形.(二)旋转体1.分别以一、直角梯形中——、——____所在的直线为旋转轴,其余各边旋转一周而形成的曲面所围成的几何体叫做圆柱、圆锥、圆台.旋转轴叫做所围成的几何体的轴;在轴上的这条边叫做这个几何体的高;垂直于轴的边旋转而成的叫做这个几何体的底面;不垂直于轴的边旋转而成的叫做这个几何体的侧面,无论旋转到什么位置,这条边都叫做侧面的母线,’ 2.-个半圆绕着____所在的直线旋转一周所形成的曲面叫球面,球面所围成的几何体称为 1球.球面也可以看做空间中到一个定点的距离等于定长的点的集合.3.球的截面性质:球的截面是;球心和截面(不过球心)圆心的连线于截面;设球的半径为R,截面圆的半径为r,球心到截面圆的距离d就是球心0到截面圆心0i的距离,它们的关系是一.4.球的大圆、小圆:球面被的平面截得的圆叫做球的大圆;球面被的平面截得的圆叫做球的小圆.(三)投影1.当图形中的直线或线段不平行于投射线时,平行投影具有如下性质:①直线或线段的平行投影是____;②平行直线的平行投影是;③平行于投射面的线段,它的投影与这条线段;④与投射面平行的平面图形,它的投影与这个图形;⑤在同一直线或平行线上,两条线段的平行投影的比等于____. 2.-个.把一个图形照射在一个平面上,这个图形的影子就是它在这个平面上的中心投影.空间图形经过中心投影后,直线还是直线,但是平行线可能变成____.3.在物体的平行投影中,如果投射线与投射面____,则称这样的平行投影为正投影.4.除了平行投影的性质正投影还具备如下性质:直于投射面的直线或线段的正投影是.②于投射霹的平面图形的正投影是(四)斜二测画法与三视图1.斜二测画法的作图规则可以简记为:水平方向方向长度竖直方向线,变为方线,长度2.投射面与视图:通常,总是选取三个____的平面作为投射面,来得到三个投影图.一个投射面水平放置,叫做水平投射面,投射到水平投射面内的图形叫做,一个投射面放置在正前方,这个投射面叫做直立投射面.投射到直立投射面内的圆形叫做和直立、水平两个投射面都垂直的投射面叫做侧立投射l面.投射到侧立投射面内的圆形叫做3.三视图定义:将空间图形向水平投射面,直立投射面、侧立投射面作正投影.然后把这个投影按一定的布局放在一个平面内,这样构成的图形叫做空闷图形的三视图.4.三视图的画法要求;三视图的主视图、俯视图、左视图分别是从物体的看到的物体的正投影围成的平面图形.5.一个物体的三视图的排列规则是:俯视图放在的下面,长度与一样;左视图放在主视图的,高度与____一样,宽度与——的宽度—样为了便于记忆.通常说:“长对正高平齐、宽相等”或“主左一样高、主俯—样长、左俯—样宽6.画三视图时应注意:被挡住的轮廓要画成瘦线,尺寸线用细实线标出;φ表示直径,R表示半径;单位不注明按mm计,二、空间几何体的表面积与体积(一)柱、锥、台的表面积公式1.设直棱柱的高为b,底面多边形的周长为c,则直棱柱侧面面积计算公式为——.设圆柱的底面半径为r 周长为C,侧面母线长为l,则圆柱的侧面积是____. 2.设正棱锥的底面边长为a,底面周长为C,斜高为h,则正n梭锥的侧面积计算公式为一·如果圆锥底面半径为r,周长为C,侧面母线长为l,那么圆锥的侧面积是一.3.如果设正棱台下底面边长为a、周长为C,上底面边长为a'、周长为C'斜高为h',则正竹棱台的侧面积公式为____ .如果圆台的上下底面半径分为r',r,周长为C,C,侧面母线长为l,那么圆台的侧面积是(二)柱、锥、台的体积公式1.棱柱的底面面积为S,高为h,则体积为——’底面半径为r,高是h的圆柱体的体积计算公式是—一.2.若一个棱锥的底面面积为S.高为h,那么它的体积公式为____.若圆锥的底面圆的半径为r,高为h,则体积为____.3.若台体(棱台、圆台)上、下底面面积分别为S,S,高为h,则台体的体积公式为一,若圆台的上、下底面半径分别为r,r,高为h.则圆台的体积公式为(三)球的表面积与体积公式设球的半径为R.则球的表面积计算公式为-.即球面面积等于它的大圆面积的____.球的体积公式为三、平面的基本性质与推论(一)平面的定义平面是一个不加定义,只需理解的最基本的原始概念.在生活中平静的水面、镜面、书桌面都给我们平面的印象,立体几何中的平面就是由此抽象出来的.平面是处处平直的面,它是向四面八方一的.无大小、厚薄之分,它是不可度量的.(二)平面的基本性质及推论 1.平面的基本性质 1:如果一条直线上的两点在一个平面内,那么这条直线上的都在这个平面内,这时我们说:直线在平面内或平面____直线.2.平面的基本性质2:经过____的三点,有且只有一个平面,即:____的三点确定一个平面.3.推论1:经过一条直线和____一点,有且只有一个平面.4.推论2:经过两条直线有且只有一个平面.5.推论3:经过两条直线有且只有一个平面.6.面面相交:如果两个平面有一条公共直线,则称之为两平面相交,这条公共直线也叫做两个平面的交线.平面口与p相交,交线是Z,符号表示为.7.平面的基本性质3:如果不重合的两个平面有一个公共点,那么它们一条经过一的公共直线.(三)异面直线1._ ___的直线叫做异面直线.2.异面直线的判定:与一平面相交于一点的直线与平面内一的直线是异面直线,用符号表示为:若ABn口-B,B垂z,Zc口,则直线AB与直线z是异面直线.四、空间中的平行关系(一)平面的基本性质4与等角定理1.平面的基本性质4:平行子同一直线的两条直线____.符号表示为:若直线矗∥6.c∥6,那么——.2.等角定理:如果一个角的p边与另一个角的两边分别对应平行,并且一,那么这两个角相等.(二)空间四边形顺次连接____ 的四点A.B,C.D所梅成的图形叫做空闻四边形.其中,四个点A,B,C.D,每个点都Ⅱq它的____ .所连接的相邻顶点fa-的线段叫做它的____.连接不相邻的顶点的线段叫做空间四边形的____.(三)直线与平面平行1.直线a和平面口只有一个公共点A,叫做直线与平面____.这个公共点A叫做直线与平面的交点.记作____.2.直线a与平面a没有公共点,叫做直线与平面平行.记作一一.3.判定定理:如果____的一条直线和——的一条直线平行,那么这条直线与这个平面平行.4.性质定理:如果一条直线与一个平面平行,____ 的平面和这个平面相交,那么这条直线就和两平面的交线平行.(四)平面与平面平行1.两不重合平面有公共点就叫两平面相交,记作口n卢2 Z.若两个平面一,则称这两个平面为平行平面,“平面口平行于平面p"可以记作“口∥∥.2.平面与平面平行的判定定理;如果一个平面内有两条一直线都平行于另一个平面,那么这两个平面平行.3.推论:如果—个平面内有两条____直线分别平行于另—个平面内的两条直线,则这两个平面平行.4.性质定理:如果两个____平面同时与第三个平面相交,那么它们的交线平行.符号语言表示为:口//p,a(l y=a,pffy=b净_,.。
立体几何专题训练讲解教案
立体几何专题训练讲解教案一、教学目标。
1. 知识与技能,学生能够掌握立体几何的基本概念和相关定理,能够运用所学知识解决实际问题。
2. 过程与方法,培养学生观察、分析、推理和解决问题的能力。
3. 情感态度与价值观,激发学生对立体几何的兴趣,培养学生的动手能力和团队合作精神。
二、教学重点与难点。
1. 教学重点,立体几何的基本概念和相关定理。
2. 教学难点,运用所学知识解决实际问题。
三、教学过程。
1. 导入新课。
教师通过展示一些常见的立体几何图形,如立方体、圆柱体、圆锥体等,引导学生讨论它们的特点和性质,引发学生对立体几何的兴趣。
2. 概念讲解。
教师通过讲解,引导学生理解立体几何的基本概念,如立体图形、平面图形、棱、面、顶点等,并介绍相关的定理和公式。
3. 例题讲解。
教师通过一些例题的讲解,让学生掌握立体几何的解题方法和技巧,引导学生理解和运用所学知识解决实际问题。
4. 练习训练。
教师设计一些练习题,让学生在课堂上进行练习,巩固所学知识,培养学生的观察、分析、推理和解决问题的能力。
5. 拓展延伸。
教师设计一些拓展性的问题,让学生进行讨论和探究,拓展立体几何的知识面,激发学生的学习兴趣。
6. 课堂小结。
教师对本节课的重点内容进行总结,强调学生需要掌握的知识点和解题方法,激励学生继续努力学习。
四、教学反思。
通过本节课的教学实践,我发现学生在立体几何的学习中存在一些困惑和难点,如对立体图形的性质理解不够深刻、解题方法不够灵活等。
因此,在今后的教学中,我将更加注重引导学生进行思维的拓展和灵活运用所学知识解决问题的能力,帮助学生更好地掌握立体几何的知识和技能。
同时,我还将结合学生的实际情况,设计更多的趣味性练习和拓展性问题,激发学生的学习兴趣,提高学生的学习积极性。
五、教学总结。
通过本节课的教学,学生对立体几何的基本概念和相关定理有了初步的了解和掌握,但在解题方法和技巧上还存在一些不足之处。
因此,今后的教学中,我将继续加强学生对立体几何的理解和运用能力的培养,提高学生的学习效果和综合素质。
高中立体几何教案5篇
高中立体几何教案5篇第一篇:高中立体几何教案高中立体几何教案第一章直线和平面两个平面平行的性质教案教学目标1.使学生掌握两个平面平行的性质定理及应用;2.引导学生自己探索与研究两个平面平行的性质定理,培养和发展学生发现问题解决问题的能力.教学重点和难点重点:两个平面平行的性质定理;难点:两个平面平行的性质定理的证明及应用.教学过程一、复习提问教师简述上节课研究的主要内容(即两个平面的位置关系,平面与平面平行的定义及两个平面平行的判定定理),并让学生回答:(1)两个平面平行的意义是什么?(2)平面与平面的判定定理是怎样的?并用命题的形式写出来?(教师板书平面与平面平行的定义及用命题形式书写平面与平面平行的判定定理)(目的:(1)通过学生回答,来检查学生能否正确叙述学过的知识,正确理解平面与平面平行的判定定理.(2)板书定义及定理内容,是为学生猜测并发现平面与平面平行的性质定理作准备)二、引出命题(教师在对上述问题讲评之后,点出本节课主题并板书,平面与平面平行的性质)师:从课题中,可以看出,我们这节课研究的主要对象是什么?生:两个平面平行能推导出哪些正确的结论.师:下面我们猜测一下,已知两平面平行,能得出些什么结论.(学生议论)师:猜测是发现数学问题常用的方法.“没有大胆的猜想,就作不出伟大的发现.”但猜想不是盲目的,有一些常用的方法,比如可以对已有的命题增加条件,或是交换已有命题的条件和结论.也可通过类比法即通过两个对象类似之处的比较而由已经获得的知识去引出新的猜想等来得到新的命题.(不仅要引导学生猜想,同时又给学生具体的猜想方法)师:前面,复习了平面与平面平行的判定定理,判定定理的结论是两平面平行,这对我们猜想有何启发?生:由平面与平面平行的定义,我猜想:两个平面平行,其中一个平面内的直线必平行于另一个面.师:很好,把它写成命题形式.(教师板书并作图,同时指出,先作猜想、再一起证明)猜想一:已知:平面α∥β,直线a 求证:a∥β.生:由判定定理“垂直于同一条直线的两个平面平行”.我猜想:一条直线垂直于两个平行平面中的一个平面,它也垂直于另一个平面.[教师板书]α,猜想二:已知:平面α∥β,直线l⊥α.求证:l⊥β.师:这一猜想的已知条件不仅是“α∥β”,还加上了“直线l⊥α”.下面请同学们看课本上关于判定定理“垂直于同一直线的两平面平行”的证明.在证明过程中,“平面γ∩α=a,平面γ∩β=a′”.a与a′是什么关系?生:a∥a′.师:若改为γ不是过AA′的平面,而是任意一个与α,β都相交的平面γ.同学们考虑一下是否可以得到一个猜想呢?(学生讨论)生:如果一个平面与两个平行平面中的一个相交,也必与另一个平面相交.” [教师板书] 猜想三:已知:平面α∥β,平面γ∩α=a,求证:γ与β一定相交.师:怎么作这样的猜想呢?生:我想起平面几何中的一个结论:“一条直线与两条平行线中的一条相交,也必与另一条相交.”师:很好,这里实质用的是类比法来猜想.就是把原来的直线类似看作平面.两平行直线类似看作两个平行平面,从而得出这一猜想.大家再考虑,猜想三中,一个平面与两个平行平面相交,得到的交线有什么位置关系?生:平行师:请同学们表达出这个命题.生:如果两个平行平面同时和第三个平面相交,那么它们的交线平行. [教师板书]猜想四:已知:平面α∥β,平面γ∩α=a,γ∩β=b.求证:a∥b.[通过复习定理的证明方法,既发现了猜想三,猜想四,同时又复习了定理的证明方法,也为猜想四的证明,作了铺垫] 师:在得到猜想三时,我们用到了类比法,实际上,在立体几何的研究中,将所要解决的问题与平面几何中的有关问题作类比,常常能给我们以启示,发现立体几何中的新问题.比如:在平面几何中,我们有这样一条定理:“夹在两条平行线间的平行线段相等”,请同学们用类比的方法,看能否得出一个立体几何中的猜想?生:把两条平行线看作两个平行平面,可得猜想:夹在两个平行平面间的平行线段相等. [教师板书] 猜想五:已知:平面α∥β,AA′∥BB′,且A,B∈α,B,B′∈β.求证:AA′=BB′.[该命题,在教材中是一道练习题,但也是平面与平面平行的性质定理,为了完整体现平面与平面平行的性质定理,故尔把它放在课堂上进行分析]三、证明猜想师:通过分析,我们得到了五个猜想,猜想的结论往往并不完全可靠.得到猜想,并不意谓着我们已经得到了两个平面平行的性质定理,下面主要来论证我们得到的猜想是否正确.[师生相互交流,共同完成猜想的论证] 师:猜想一是由平面与平面平行的定义得到的,因此在证明过程中要注意应用定义.[猜想一证明] 证明:因为α∥β,所以α与β无公共点.又因为a α,所以 a与β无公共点.故a∥β.师:利用平面与平面平行的定义及线面平行的定义,论证了猜想一的正确性.这便是平面与平面平行的性质定理一.简言之,“面面平行,则线面平行.”[教师擦掉“猜想一”,板书“性质定理一”] [论证完猜想一之后,教师与学生共同研究了“猜想二”,发现,若论证了“猜想四”的正确性质,“猜想二”就容易证了,因而首先讨论“猜想三,猜想四”] 师:“猜想三”是类比平面几何中的结论得到的,还记得初中时,是怎么证明的?[学生回答:反证法] 师:那么,大家可否类比初中的证明方法来证明“猜想三”呢?生:用反证法:假设γ与β不相交,则γ∥β.这样过直线a有两个平面α和γ与β平行.与“过平面外一点有且只有一个平面与已知平面平行”矛盾.故γ与β相交.师:很好.由此可知:不只是发现问题时可用类比法,就是证明方法也可用类比方法.不过猜想三,虽已证明为正确的命题,但教材中并把它作为平面与平面平行的性质定理,大家在今后应用中要注意.[猜想四的证明] 师:猜想四要证明的是直线a∥b,显然a,b共面于平面γ,只需推导出a与b无公共点即可.生:(证法一)因为a∥β,所以 a与β无公共点.又因为a α,b β.所以 a与b无公共点.又因为a γ,b 所以a∥b.师:我们来探讨其它的证明方法.要证线线平行,可以转化为线面平行.生:(证法二)因为a α,又因为α∥β,所以a∥β.又因为a γ,且γ∩β=b,所以a∥b.师:用两种不同证法得出了“猜想四”是正确的.这是平面和平面平行的性质定理二.[教师擦掉“猜想四”,板书“性质定理二”] 师:平面与平面平行的性质定理二给出了在两个平行平面内找一对平行线的方法.即:“作一平面,交两面,得交线,则线线平行.”同时也给我们证明两条直线平行的又一方法.简言之,“面面平行,则线线平行”.[猜想二的证明] 师:猜想二要证明的是直线l⊥β,根据线面垂直的判定定理,就要证明l和平面β内的两条相交直线垂直.那么如何在平面β内作两条相交直线呢?[引导学生回忆:“垂直于同一直线的两个平面平行”的定理的证明] γ,生:(证法一)设l∩α=A,l∩β=B.过AB作平面γ∩α=a,γ∩β=a′.因为α∥β,所以a∥a′.再过AB作平面δ∩α=b,δ∩β=b′.同理b∥b′.又因为l⊥α,所以l⊥a,l⊥b,所以l⊥a′,l⊥b′,又a′∩b′=β,故l⊥β.师:要证明l⊥β,根据线面垂直的定义,就是要证明l和平面β内任何一条直线垂直.生:(证法二)在β内任取一条直线b,经过b作一平面γ,使γ∩α=a,因为α∥β,所以a∥b,因此l⊥α,a α,故l⊥a,所以l⊥b.又因为b为β内任意一条直线,所以l⊥β.[教师擦掉“猜想二”,板书“性质定理三”] [猜想五的证明] 证明:因为AA′∥BB′,所以过AA′,BB′有一个平面γ,且γ∩α=AB,γ∩β=A′B′.因为α∥β,所以AB∥A′B′,因此AA′ B′B为平行四边形.故AA′=BB′.[教师擦掉“猜想五”,板书“性质定理四”] 师:性质定理四,是类比两条平行线的性质得到的.平行线的性质有许多,大家还能类比得出哪些有关平行平面的猜想呢?你能证明吗?请大家课下思考.[因类比法是重要的方法,但平行性质定理已得出,故留作课下思考]四、定理应用师:以上我们通过探索一猜想一论证,得出了平面与平面平行的四个性质定理,下面来作简单的应用.例已知平面α∥β,AB,CD为夹在α,β间的异面线段,E、F分别为AB,CD的中点.求证:EF∥α,EF∥β.师:要证EF∥β,根据直线与平面平行的判定定理,就是要在β内找一条直线与EF平行.证法一:连接AF并延长交β于G.因为AG∩CD=F,所以 AG,CD确定平面γ,且γ∩α=AC,γ∩β=DG.因为α∥β,所以AC∥DG,所以∠ACF=∠GDF,又∠AFC=∠DFG,CF=DF,所以△ACF≌△DFG.所以AF=FG.又 AE=BE,所以EF∥BG,BG 故EF∥β.同理:EF∥α.师:要证明EF∥β,只须过EF作一平面,使该平面与β平行,则根据平面与平面平行性质定理即可证.证法二:因为AB与CD为异面直线,所以A CD.β.在A,CD确定的平面内过A作AG∥CD,交β于G,取AG中点H,连结AC,HF.因为α∥β,所以AC∥DG∥EF.因为DG β,所以HF∥β.又因为 E为AB的中点,因此EH∥BG,所以EH∥β.又EH∩FH=H,因此平面EFH∥β,EF 所以EF∥β.同理,EF∥α.平面EFH,师:从以上两种证明方法可以看出,虽然是解决立体几何问题,但都是通过转化为平面几何的问题来解决的.这是解决立体几何问题的一种技能,只是依据的不同,转化的方式也不同.五、平行平面间的距离师:和两个平行平面同时垂直的直线,叫做这两个平行平面的公垂线,它夹在这两个平行平面间的部分,叫做这两个平行平面的公垂线段.两个平行平面有几条公垂线?这些公垂线的位置关系是什么?生:两个平行平面有无数条公垂线,它们都是平行直线.师:夹在两平行平面之间的公垂线段有什么数量关系?根据是什么?生:相等,根据“夹在两个平行平面间的平行线段相等.”师:可见夹在两个平行平面的公垂线段长度是唯一的.而且是夹在两个平行平面间的所有线段中最短的.因此我们把这公垂线段的长度叫做两个平行平面的距离.显然两个平行平面的距离等于其中一个平面上的任一点到另一个平面的垂线段的长度.六、小结1.由学生用文字语言和符号语言来叙述两个平面平行的性质定理.教师总结本节课是由发现与论证两个过程组成的.简单的说就是:由具体问题具体素材用类比等方法猜想命题,并由转化等方法论证猜想的正确性,得到结论.2.在应用定理解决立体几何问题时,要注意转化为平面图形的问题来处理.大家在今后学习中一定要注意掌握这一基本技能.3.线线平行、线面平行与面面平行的判定定理和性质定理构成一套完整的定理体系.在学习中应发现其内在的科学规律:低一级位置关系判定着高一级位置关系;高一级位置关系一定能推导低一级位置关系.下面以三种位置关系为纲应用转化的思想整理如下:七、布置作业课本:p.38,习题五5,6,7,8.课堂教学设计说明1.本节课的中心是两个平行平面的性质定理.定理较多,若采取平铺直叙,直接地给出命题,那样就绕开了发现、探索问题的过程,虽然比较省事,但对发展学生的思维能力是不利的.在设计本教案时,充分考虑到教学研究活动是由发现与论证这样两个过程组成的.因而把“如何引出命题”和“如何猜想”作为本节课的重要活动内容.在教师的启发下,让学生利用具体问题;运用具体素材,通过类比等具体方法,发现命题,完成猜想.然后在教师的引导下,让学生一一完成对猜想的证明,得到两个平面平行的性质定理.也就在这一“探索”、“发现”、“论证”的过程中,培养了学生发现问题,解决问题的能力.在实施过程中,让学生处在主体地位,教师始终处于引导者的位置.特别是在用类比法发现猜想时,学生根据两条平行线的性质类比得出许多猜想.比如:根据“平行于同一条直线的两条直线平行”得到“平行于同一个平面的两个平面平行.”根据“两条直线平行,同位角相等”等,得到“与两个平行平面都相交的直线与两个平面所成的角相等”等等,当然在这些猜想中,有的是正确的,有的是错误的,这里不一一叙述.这就要求教师在教学过程中,注意变化,作适当处理.学生在整节课中,思维活跃,沉浸在“探索、发现”的思维乐趣中,也正是在这种乐趣中,提高了学生的思维能力.2.在对定理的证明过程中,课上不仅要求证出来,而且还考虑多种证法.对于定理的证明,是解决问题的一些常用方法,也可以说是常规方法,是要学生认真掌握的.因此教师要把定理的证明方法,作为教学的重点内容进行必要的讲解,培养学生解决问题的能力.3.转化是重要的数学思想及数学思维方法.它在立体几何中处处体现.实质上处理空间图形问题的基本思想方法就是把它转化为平面图形的问题,化繁为简.特别是在线线平行,线面平行,面面平行三种平行的关系上转化的思想也有较充分的体现,因而在小结中列出三个平行关系相互转让的关系图,一方面便于学生理解,记忆,同时通过此表,能马上发现三者相互推导的关系,能打开思路,发现线索,得到最佳的解题方案.第二篇:高中立体几何高中立体几何的学习高中立体几何的学习主要在于培养空间抽象能力的基础上,发展学生的逻辑思维能力和空间想象能力。
高考数学专题复习《立体几何》 说课教案
高考数学专题复习《立体几何》说课教案二、学情分析我校是区普通中学,学生的数学素质参差不齐:部分学生由于基础不扎实认知能力较差,与课堂教学节奏不同步;部分学生上课内容能听懂,概念定理也背得出,经过一轮复习,他们对本专题的知识已经有了全面的了解和把握,具备初步应用能力,由于长期缺乏正确的学习方法,他们的认知习惯多是被动的接受学习,知识无序混乱,做题生搬硬套,没有形成知识关系网络,缺乏独立思考能力。
基于这样学情,在二轮复习中做到如下几点:1、在题型的选择上要对路,文科坚持以线面平行或垂直为基本点选择例题、习题、高考题,不搞偏题、难题、怪题,。
2、在落实基础上不能留下疑点,需保证相关的知识包括定义、性质、定理、公式要牢记于心熟练会用。
3、在答题规范上要耐心纠正,保证会而全对。
4、在解证方法上,教学展示要坚持两法并举,不能忽视综合法。
三、复习设计(一)教学内容第一讲柱、锥、台、球的结构特征第二讲点、直线、平面之间的位置关系(二)课时安排约一周时间(具体结合实际情况)(三)重点、难点重点:能运用公理、定理和已获得的结论证明一些空间位置关系的简单命题难点:培养和发展学生的空间想象能力、推理论证能力、运用图形语言进行交流的能力,以及几何直观能力。
(四)复习方法讲练结合,计算机辅助教学(五)典型例题考点一——三视图突破点:空间几何体的三视图、表面积、体积问题【例1】(2013年山东文卷4)一个四棱锥的侧棱长都相等,底面是正方形,其正(主) 视图如图所示,该四棱锥侧面积和体积分别是()(A)45,8(B)845,3(C)84(51),3(D) 8,8跟踪训练1.(2010年浙江卷)若某几何体的三视图(单位:cm)如下图所示,则此几何体的体积是()2.(2011辽宁文8)一个正三棱柱的侧棱长和底面边长相等,体积为32,它的三视图中的俯视图如右图所示,左视图是一个矩形,则这个矩形的面是( )A.4 B.32C.2 D.33.(2014·安徽卷)一个多面体的三视图如图1-2所示,则该多面体的体积是()图1-2A.233B.476C .6D .7 考点二——线面关系的论证(解答题)突破点1:线线、线面的位置关系【例2】:正三棱柱ABC —A 1B 1C 1中,点D 是BC 的中点,BC= BB 1.设B 1D∩BC 1=F. (1)求证:A 1C ∥平面AB 1D ;(2)求证:BC 1⊥平面AB 1D. 跟踪训练1.(2011江苏16)如图,在四棱锥ABCD P 中,平面 PAD ⊥平面ABCD ,AB=AD ,∠BAD=60°,E 、F 分别是AP 、AD 的中点求证:(1)直线EF ‖平面PCD ; (2)平面BEF ⊥平面PAD.2.(2011天津文17)如图,在四棱锥P ABCD -中,底面ABCD为平行四边形,045ADC ∠=,1AD AC ==,O 为AC 中点, PO ⊥平面ABCD ,2PO =, M 为PD 中点. (Ⅰ)证明:PB //平面ACM ;(Ⅱ)证明:AD ⊥平面PAC .突破点2:面面平行与垂直的证明问题 【例3】DCABPMO跟踪训练3.如右图,在正三棱柱ABC—A1B1C1中,AA1=AB=a,F、F1分别是AC、A1C1的中点.求证:(1)平面AB1F1∥平面C1BF;(2)平面AB1F1⊥平面ACC1A1.(六)查漏补缺练习 一、选择题1.如果一个水平放置的图形的斜二测直观图是一个底角为45°,腰和上底均为1的等腰梯形,那么原平面图形的面积是( )A .2+2 B.1+22 C.2+22D .1+ 22.若正三棱柱ABC -A 1B 1C 1的侧棱长与底面边长相等,则AB 1与侧面ACC 1A 1所成角的正弦值为( ) A .64 B .104C .22 D .323.三棱锥P -ABC 的两侧面P AB 、PBC 都是边长为2a 的正三角形, AC =3a ,则二面角A -PB -C 的大小为( ) A .90°B .30°C .45°D .60°4.已知矩形ABCD ,AB =1,BC = 2.将△ABD 沿矩形的对角线BD 所在的直线进行翻折,在翻折过程中,( ) A .存在某个位置,使得直线AC 与直线BD 垂直 B .存在某个位置,使得直线AB 与直线CD 垂直 C .存在某个位置,使得直线AD 与直线BC 垂直D .对任意位置,三对直线“AC 与BD ”,“AB 与CD ”,“AD 与BC ”均不垂直 二、填空题5.已知正三棱柱ABC -A 1B 1C 1的所有棱长都等于6,且各顶点都在同一球面上,则此球的表面积等于________.6.如图,正方体ABCD -A 1B 1C 1D 1的棱长为1,点M ∈AB 1,N ∈BC 1,且AM =BN ≠2,有以下四个命题:①AA 1⊥MN ;②A 1C 1∥MN ;③MN ∥平面 A 1B 1C 1D 1;④MN 与A 1C 1是异面直线.其中正确命题的序号是________.NM ABDCO 三、解答题7.如图,在四棱锥O ABCD -中,底面ABCD 四边长为1的菱形,4ABC π∠=,OA ABCD ⊥底面, 2OA =,M 为OA 的中点,N 为BC 的中点.(Ⅰ)证明:直线MN OCD平面‖;(Ⅱ)求异面直线AB 与MD 所成角的大小; (Ⅲ)求点B 到平面OCD 的距离.。
立体几何专题复习教学设计
立体几何专题复习教学设计第一篇:立体几何专题复习教学设计立体几何专题教学设计【考情分析】立体几何主要培养学生的发展空间想像能力和推理论证能力。
立体几何是高考必考的内容,试题一般以“两小题一大题或一大题一小题”的形式出现,分值在17—22分左右。
近三年的试题中必有一个选择题是以三视图为背景,来考查空间几何体的表面积或体积。
立体几何在高考中的考查难度一般为中等,从解答题来看,立体几何大题所处的位置为前4道,有承上启下的作用。
主要考查的知识点有: 1.客观题考查的知识点:(1)判断:线线、线面、面面的位置关系;(2)计算:求角(异面直线所成角、线面角、二面角);求距离(主要是点面距离、球面距离);求表面积、体积;(3)球内接简单几何体(正方体、长方体、正四面体、正三棱锥、正四棱柱)(4)三视图、直观图(由几何体的三视图作出其直观图,或由几何体的直观图判断其三视图)2.主观题考查的知识点:(1)有关几何体:四棱锥、三棱锥、(直、正)三、四棱柱;(2)研究的几何结构关系:以线线、线面(尤其是垂直)为主的点线面位置关系;(3)研究的几何量:二面角、线面角、异面直线所成角、线线距、点面距离、面积、体积。
其中,解答题的第二问一般都是求一个空间角,而且都能通过传统方法(几何法)和空间向量两种方法加以解决。
【课时安排】本专题复习时间为三课时:例2.设α、β为互不重合的平面,m、n为互不重合的直线,给出下列四个命题:①若m⊥α,n⊂α,则m⊥n;②若m⊂α,n⊂α,m//β,n//β,则α//β;③若α⊥β,α∩β=m,n⊂α,m⊥n,则n⊥β;④若m⊥α,α⊥β,m//n,则n//β.其中所有正确命题的序号是.解决策略:培养学生善于利用身边的工具与情境(如纸笔、桌面、墙角等)构造具体模型,充分利用正方体这个有力的载体,将抽象问题具体化处理,提高他们的空间想象能力.本类题为高考常考题型,其本质实为多项选择题.主要考查空间中线面之间的位置关系,要求熟悉有关公理、定理及推论,并具备较好的空间想象能力,做到不漏选多选.基本题型三:空间中点线面位置关系的证明(解答题)例3.如图,已知在三棱柱ABC—A1B1C1中,AA1⊥面ABC,AC=BC,M、N、P、Q分别是AA1、BB1、AB、B1C1的中点.(1)求证:面PCC1⊥面MNQ;(2)求证:PC1∥面MNQ.解决策略:证明或探究空间中线线、线面与面面平行与垂直的位置关系,一要熟练掌握所有判定与性质定理,梳理好几种位置关系的常见A1 B1证明方法,如证明线面平行,既可以构造线线平行,也可以构造面面M平行;二要掌握解题时由已知想性质、由求证想判定,即分析法与综合法相结合来寻找证明的思路;三要严格要求学生注意表述规范,推理严谨,避免使用一些正确但不能作为推理依据的结论.此外,要特A N P B 别注重培养学生的空间想象能力,会分析一些非常规放置的空间几何体(如侧面水平放置的棱锥、棱柱等),会画空间图形的三视图与直观图,且会把三视图、直观图还原成空间图形.基本题型四:运用空间向量证明与计算(解答题)例4.如图,在四棱锥P-ABCD中,底面ABCD为正方形,PD⊥平面ABCD,且PD=AB=a,E是PB的中点.P(1)在平面PAD内求一点F,使得EF⊥平面PBC;(2)求二面角F-PC-E的余弦值大小.解决策略:要注意培养学生对空间几何体合理建系的意识,会求平面的法向量;要求学生理解用向量判定空间线面位置关系、求解夹角与E 距离的原理,并掌握一般求解步骤.其中,线线角、线面角与二面角是本类题型中的重点考查对象,应加强训练.此外,在探究点的位置等问题中,要引导学生根据共线向量,用已知点的坐标表示未知点的坐标,根据题设通过解方程(组)来解决问题的方法.【复习建议】 A B C1.三视图是新课标新增的内容,考查形式越来越灵活,因此与三视图相关内容应重点训练。
高三数学二轮专题复习教案――立体几何
高三数学二轮专题复习教案――立体几何一、本章知识结构:二、重点知识回顾1、空间几何体的结构特征(1)棱柱、棱锥、棱台和多面体棱柱是由满足下列三个条件的面围成的几何体:①有两个面互相平行;②其余各面都是四边形;③每相邻两个四边形的公共边都互相平行;棱柱按底面边数可分为:三棱柱、四棱柱、五棱柱等.棱柱性质:①棱柱的各个侧面都是平行四边形,所有的侧棱都相等;②棱柱的两个底面与平行于底面的截面是对应边互相平行的全等多边形.③过棱柱不相邻的两条侧棱的截面都是平行四边形.棱锥是由一个底面是多边形,其余各面是有一个公共顶点的三角形所围成的几何体.棱锥具有以下性质:①底面是多边形;②侧面是以棱锥的顶点为公共点的三角形;③平行于底面的截面和底面是相似多边形,相似比等于从顶点到截面和从顶点到底面距离的比.截面面积和底面面积的比等于上述相似比的平方.棱台是棱锥被平行于底面的一个平面所截后,截面和底面之间的部分.由棱台定义可知,所有侧棱的延长线交于一点,继而将棱台还原成棱锥.多面体是由若干个多边形围成的几何体.多面体有几个面就称为几面体,如三棱锥是四面体.(2)圆柱、圆锥、圆台、球分别以矩形的一边,直角三角形的一直角边,直角梯形垂直于底边的腰所在的直线,半圆以它的直径所在直线为旋转轴,旋转一周而形成的几何体叫做圆柱、圆锥、圆台、球圆柱、圆锥和圆台的性质主要有:①平行于底面的截面都是圆;②过轴的截面(轴截面)分别是全等的矩形、等腰三角形、等腰梯形;③圆台的上底变大到与下底相同时,可以得到圆柱;圆台的上底变小为一点时,可以得到圆锥.2、空间几何体的侧面积、表面积(1)棱柱侧面展开图的面积就是棱柱的侧面积,棱柱的表面积就是它的侧面积与两底面面积的和.因为直棱柱的各个侧面都是等高的矩形,所以它的展开图是以棱柱的底面周长与高分别为长和宽的矩形.如果设直棱柱底面周长为c,高为h,则侧面积S ch=侧.若长方体的长、宽、高分别是a、b、c,则其表面积2() S ab bc ca=++表.(2)圆柱的侧面展开图是一个矩形.矩形的宽是圆柱母线的长,矩形的长为圆柱底面周长.如果设圆柱母线的长为l,底面半径为r,那么圆柱的侧面积2πS rl=侧,此时圆柱底面面积2πS r=底.所以圆柱的表面积222π2π2π()S S S rl r r r l=+=+=+侧底.(3)圆锥的侧面展开图是以其母线为半径的扇形.如果设圆锥底面半径为r,母线长为l,则侧面积πS rl=侧,那么圆锥的表面积是由其侧面积与底面面积的和构成,即为2πππ()S S S rl r r r l=+=+=+侧底.(4)正棱锥的侧面展开图是n个全等的等腰三角形.如果正棱锥的周长为c,斜高为h',则它的侧面积12S ch'=侧.(5)正棱台的侧面积就是它各个侧面积的和.如果设正棱台的上、下底面的周长是c c',,斜高是h',那么它的侧面积是12S ch'=侧.(6)圆台侧面展开图是以截得该圆台的圆锥母线为大圆半径,圆锥与圆台的母线之差为小圆半径的一个扇环.如果设圆台的上、下底面半径分别为r r',,母线长为l,那么它的侧面积是π()S r r l'=+侧.圆台的表面积等于它的侧面积与上、下底面积的和,即2222π()πππ() S S S S r r l r r r r r l rl''''=++=+++=+++侧上底下底.(7)球的表面积24πS R =,即球的表面积等于其大圆面积的四倍.3、空间几何体的体积(1)柱体(棱柱、圆柱)的体积等于它的底面积S 和高h 的积,即V Sh=柱体.其中底面半径是r ,高是h 的圆柱的体积是2πV r h=圆柱.(2)如果一个锥体(棱锥、圆锥)的底面积是S ,高是h ,那么它的体积是13V Sh=锥体.其中底面半径是r ,高是h 的圆锥的体积是21π3V r h=圆锥,就是说,锥体的体积是与其同底等高柱体体积的13.(3)如果台体(棱台、圆台)的上、下底面积分别是S S ',,高是h,那么它的体积是1()3V S S h=+台体.其中上、下底半径分别是r R ,,高是h 的圆台的体积是221π()3V r Rr R h=++圆台.(4)球的体积公式:334R V π=.4、中心投影和平行投影(1)中心投影:投射线均通过投影中心的投影。
高三数学立体几何专题复习教案
(解题思想方法归纳)
问题一: 证明线线平行
1.证明两直线 、 平行,若直线 和直线 共面时,则可以用平面几何中常用的一些方法(如证明 和 是一个平行四边形的一组对边)证明它们无公共点。
在立体几何中一般还有以下几种思路:
①根据公理4
②根据“线面平行Байду номын сангаас的性质定理
③根据“线面垂直”的性质定理,若直线 和 都与平面 垂直,则 // 。
②利用中位法。如给出异面直线AB和CD,连接AC、AD、BC,然后再分别取这三条线段的中点E、F、G,连接EF、EG、FG得到△EFG,则∠FEG就是所求角或所求角的补角。这种方法优点是作异面直线所成角比较容易,但缺点是△EFG中有一边GF的长度不容易求。
3.向量方法:
转化成求两个向量的夹角(即等于所求的异面直线所成的角或其补角的大小)
2.向量方法:
①转化为证明向量共线。
②根据共面向量定理。
③证明向量与平面的法向量相互垂直。
问题三: 证明面面平行
1.传统几何方法:
①根据两个平面平行的定义
②根据两个平面平行的判定定理
③垂直于同一条直线的两个平面平行
④平行于同一平面的两个平面平行
2.思维过程:
线线平行 线面平行 面面平行
线线平行 线面垂直 面面平行
问题八: 求平面的斜线与平面所成角
1.传统几何方法:
①转化为求斜线与它在平面内的射影所成的角,通过直角三角形求解。
②利用三面角定理(即最小角定理) 求 。
2.向量方法:设 为平面 的法向量,直线 与平面 所成的角为 ,则
问题九: 求二面角
1.作出二面角的平面角并通过解三角形计算。作平面角常用方法如下:
立体几何复习教案
立体几何复习教案教案:立体几何复习教学内容:立体几何的基本概念和性质复习教学目标:1.复习立体几何的基本概念,如立体图形、多面体等。
2.复习立体几何的性质,如表面积、体积等。
3.强化学生对立体几何的理解和应用能力。
教学重点:1.立体几何的基本概念的复习。
2.立体几何的性质的复习。
教学难点:对立体几何的应用能力的强化。
教学准备:教学用具:课件、多面体模型等。
教学过程:Step 1:引入立体几何的复习通过引导学生回忆立体几何的基本概念,如点、线、面、体等,并简要介绍立体几何的应用领域和重要性。
Step 2:复习立体几何的基本概念1.复习点、线、面的概念。
2.复习立体图形的概念及种类,如球体、圆柱体、锥体、棱柱体等。
3.复习多面体的概念及种类,如四面体、六面体等。
Step 3:复习立体几何的性质1.复习表面积的计算方法,并通过实例进行计算练习。
2.复习体积的计算方法,并通过实例进行计算练习。
3.复习立体几何图形的旋转、翻转和镜像等性质。
Step 4:巩固立体几何的知识进行一些小组讨论和练习题,强化学生对立体几何的理解和应用能力。
Step 5:拓展应用通过引导学生思考,在实际生活、工程等领域中应用立体几何的情况,拓展学生的思维和应用能力。
Step 6:复习总结对本堂课所学内容进行总结和复习,帮助学生巩固所学知识。
Step 7:作业布置布置一些与立体几何相关的作业,以进一步巩固学生的学习成果。
教学评价:在整个教学过程中,通过学生回答问题、小组讨论和练习题等方式进行评价,以了解学生对立体几何知识的掌握程度和应用能力的发展情况。
教学反思:通过本堂课的复习教学,学生对立体几何的基本概念和性质有了较好的理解和掌握,学生对立体几何的应用能力也有了一定的提高。
在教学过程中,可以适当引入更多的生活实例,并加强练习的设置,以进一步巩固学生的学习成果。
高三立体几何重点专题复习教案
1A 高三立体几何重点专题复习教案空间的角教学目标:⒈掌握异面直线所成角的概念和异面直线所成角的求法;2.掌握直线与平面所成角的概念,以及直线与平面所成角的求法;3.理角二面角及平面角的概念掌握求二面角大小的方法.4.培养学生将空间问题转化为平面问题的化归能力. 教学过程:一、 提问检查基础知识1、 两条异面直线所成角的定义?范围是多少?2、 直线与平面所成角的定义?直线与平面所成角的范围是什么?怎样求直线与平面所成的角?3、 二面角的定义?怎样定义二面角的平面角?二面角的平面角的范围?怎样确定二面角的平面角? 二、基本技能训练讲评:在一个二面角的两个半平面分别垂直于另一个二面角的两个半平面,则这两个二面角的大小关系是( ) (A)相等 (B)互补 (C) 相等或互补 (D)不能确定讲评:复习二面角的有关概念,选D 三、基本方法课堂演练:1.如图,在正方体1AC 中,求面对角线1A B 与对角面11BB D D 所成的角解:连结11AC 与11B D 交于O ,连结OB , ∵111DD AC ⊥,1111B D AC ⊥,∴1AO ⊥平面11BB D D , ∴1A BO ∠是1A B 与对角面11BB D D 所成的角,在1Rt A BO ∆中,1112A O AB =, ∴130A BO ∠=. 说明:求直线与平面所成角的一般方法是先找斜线在平面中的射影,后求斜线与其射影的夹角件允许的情况下,用公式21cos cos cos θθθ=⋅求线面角显得更加方便2.如图,AB ⊥平面BCD ,BD CD ⊥,若2AB BC BD ==,求二面角B AC D --的正弦值A B C D EF分析:要求二面角的正弦值,首先要找到二面角的平面角解:过D 作DE AC ⊥于E ,过E 作EF AC ⊥交BC 于F ,连结DF , 则C 垂直于平面DEF ,FED ∠为二面角B AC D --的平面角, ∴AC DF ⊥,又AB ⊥平面BCD ,∴AB DF ⊥,AB CD ⊥, ∴DF ⊥平面ABC ,∴DF EF ⊥,DF BC ⊥, 又∵AB CD ⊥,BD CD ⊥,∴CD ⊥平面ABD ,∴CD AD ⊥, 设BD a =,则2AB BC a ==,在Rt BCD ∆中,1122BCD S BC DF BD CD ∆=⋅=⋅,∴DF =, 同理,Rt ACD ∆中,DE =,∴sin DF FED DE ∠=== 所以,二面角B AC D --的正弦值为5. 四、综合能力提升1、已知四棱锥P —ABCD 的底面为直角梯形,AB ∥DC ,∠DAB=900,PA ⊥底面ABCD ,且PA=AD=DC=12AB=1,M 是PB 的中点。
【公开课教案】《高三立体几何综合复习》教学设计
《高三立体几何综合复习》教学设计一、教材分析立体几何是高中数学的重要概念之一。
最近几年高考对立体几何的要求发生了很大的变化,注重空间的平行与垂直关系的判定,淡化空间角和空间距离的考查,因此立体几何的难度和以往相比有大幅度的降。
因此依据考试说明的要求在高三复习中制定以下目标:1.高度重视立体几何基础知识的复习,扎实地掌握基本概念、定理和公式等基础知识。
2.复习过程中指导学生通过网络图或框图主动建构完整的知识体系,尤其要以线线、线面、面面三种位置关系形成网络,能够熟练地转化和迁移。
3.重视模型复习,强化学生的“想图、画图、识图、解图”的能力,重视图形语言、文字语言、符号语言转化的训练。
尤其重视对所画的立体图形、三视图与真实图形思维理解上的一致性。
4.在完成解答题时,要重视培养学生规范书写,注意表述的逻辑性及准确性,要注意训练学生思考的严谨性,在计算相关量时应做到“一作、二证、三算”。
做好本节课的复习,对学生系统地掌握直线和平面的知识乃至于创新能力的培养都具有重要的意义。
二、学情分析在传统的高中数学立体几何的学习中,采取的基本方法:面面俱到的知识点整理,典型的例题解答,课堂的跟踪训练,灌输解题规律,这种模式由于缺乏新意,学生思维难以兴奋,发散性思维受到抑制,创新意识逐渐消弱,学习的效果可想而知。
因此立体几何的学习只有深入到学科知识的内部,充分调动学生的思维,触及学生的兴奋点,这样才能达到高效学习的目的。
三、设计思想在新课程理念下,在立体几何教学中我进行了研究性学习的尝试,所谓研究性学习就是应用研究性学习的理念、方法去指导立体几何,学生在教师的引导下尽可能地采取自主性、探究性的学习方式,不仅要注意基础知识的学习,更应该关注自身综合素质、创新意识的提高。
让学生在教师的引导下,充分地动手、动口、动脑,掌握学习的主动权。
四、媒体手段利用电子白板,幻灯片课件,几何画板软件。
让学生分组自己动手利用几何画板绘制立体图形,分组讨论得出结论,充分调动学生的学习的积极性主动性,自主的发现问题,找到解决问题的方法。
高三专题复习 立体几何 教学设计
C.如果aa,a,那么a//D.如果a//b,b//a,那么a//a
4.如图,在正三棱锥A—BCD中,∠BAC=30°,AB=a,平行于AD、BC的截面EFGH分别交AB、BD、DC、CA于点E、F、G、H.
(1)判定四边形EFGH的形状,并说明理由.
推论1 经过一条直线和这条直线外一点,有且只有一个平面.
推论2 经过两条相交直线,有且只有一个平面.
推论3 经过两条平行直线,有且只有一个平面.
4.证题方法
5.空间线面的位置关系
平行—没有公共点
共面
(1)直线与直线 相交—有且只有一个公共点
异面(既不平行,又不相交)
直线在平面内—有无数个公共点
(2)直线和平面 直线不在平面内 平行—没有公共点
高三数学第一轮专题复习
—立体几何教学设计
【考纲要求】
1.掌握平面的基本性质,空间两条直线、直线和平面、两个平面的位置关系(特别是平行和垂直关系).
2.能运用有关概念以及有关两条直线、直线和平面、两个平面的平行和垂直关系的性质与判定,进行论证和解决有关问题.
【知识结构】
1.平面通常用一个平行四边形来表示.平面常用希腊字母α、β、γ…或拉丁字母M、N、P来表示,也可用表示平行四边形的两个相对顶点字母表示,如平面AC.
(2)设P是棱AD上的点,当AP为何值时,平面PBC⊥平面EFGH,请给出证明.
4.(1)证明:
同理EF∥FG,∴EFGH是平行四边形
∵A—BCD是正三棱锥,∴A在底面上的射影O是△BCD的中心,
∴DO⊥BC,∴AD⊥BC,
∴HG⊥EH,四边形EFGH是矩形.
(2)作CP⊥AD于P点,连结BP,∵AD⊥BC,∴AD⊥面BCP
高三数学专题立体几何复习教案
高三数学专题立体几何复习教案一、教学目标1、掌握以三视图为命题载体,熟悉一些典型的几何体模型,如长(正)方体、三棱柱、三棱锥等几何体的三视图,与学生共同研究空间几何体的结构特征(数量关系、位置关系).2、外接球问题关键是找到球与多面体的联系元素,如球心与截面圆心的关系即“心心相映法”,线面垂直的多面体可补成直棱柱再找外接球球心即“补体法”,进而构建球半径R、截面圆半径r、球心到截面距离d三者之间的勾股定理。
3、在三视图与直观图的互换过程中,培养学生养成构建长方体为“母体”的解题意识,通过寻找外接球球心问题,引导学生更好地理解球与多面体的关系,培养学生的分割与补形的解题意识,特别是将立体几何问题转化为平面几何问题的思想意识和方法,并提高空间想象能力、推理能力、计算能力和动手操作能力,体现化归与转化的基本思想..二、学情分析立体几何是培养学生空间想象力的数学分支,根据学生实际学情,依据考纲依靠课本,在立体几何的复习过程中要想办法让学生建立起完整的知识网络,要突出这门学科的主干,让学生多一点思考,少一点计算。
高考立体几何试题一般是两小题一大题, 其中三视图与直观图、多面体与球相关的外接与内切问题是高考命题的热点,要注意重视空间想象,会识图会画图会想图,提高识图、理解图、应用图的能力,解题时应多画、多看、多想,这样才能提高空间想象能力和解决问题的能力,突出转化、化归的基本思想.三、重点:三视图与直观图的数量、位置的转化;多面体与球相关的外接与内切问题;难点:化归思想,特别是将立体几何问题转化为平面几何问题的思想意识和方法;四、教学方法:问题引导式五、教学过程专题:立体几何问题1:三视图1.一个锥体的主视图和左视图如图所示,下面选项中,不可能是该锥体的俯视图的是( )2.某几何体的三视图如图所示,则该几何体的体积是3.如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的各条棱中,最长的棱的长度为()1111111 1D. 3问题2:球与多面体4.(2016厦门3月质检15)已知四棱锥P ABCD-的底面ABCD是边长为a的正方形,其外接球的表面积为28π,△PAB是等边三角形,平面PAB⊥平面ABCD,则a=▲.延伸1:已知四棱锥P ABCD-的底面ABCD是边长为a的正方形,其外接球的表面积为π24,平面PAB⊥平面ABCD,△PAB是等腰直角三角形,PA⊥AB,则a=▲.延伸2:已知四棱锥P ABCD-的底面ABCD是边长为a的正方形,其外接球的表面积为π24,平面PAB⊥平面ABCD,△PAB是等腰直角三角形,PA⊥PB,则a=▲.延伸3:已知四棱锥P ABCD-的底面ABCD是边长为a的正方形,其外接球的表面积为240π,△PAB 是等腰三角形,PA=PB=2a,平面PAB⊥平面ABCD,则a=▲.延伸4:已知四棱锥P ABCD-的底面ABCD是边长为a的正方形,其外接球的表面积为π24,平面PAB⊥平面ABCD,△PAB中,PA = 2a,PB= a2,则a=▲.延伸5::已知四棱锥P ABCD-,底面ABCD是AB=a,BC=2a的矩形,其外接球的表面积为28π,△PAB 是等边三角形,平面PAB⊥平面ABCD,则a=▲.延伸6:在三棱锥P ABC -中,23PA =,2PC =,7AB =,3BC =,2ABC π∠=,则三棱锥P ABC -外接球的表面积为()(A )4π (B )163π (C )323π (D )16π问题3:立体几何与空间向量1.平行垂直的证明主要利用线面关系的转化 线∥线线∥面面∥面判定线⊥线线⊥面面⊥面性质线∥线线⊥面面∥面←→−←→−−→−−←→−←→−←−−−←→−←→−2.空间向量在几何中的应用1.线线角:设直线a ,b 的方向向量为a ,b ,其夹角为θ,则222222212121212121,cos cos zy x z y x z z y y x x ba b a b a ++•++++=••=><=θ2.线面角:设直线l 的方向向量为AB , 平面α的法向量为n ,直线l 与平面所成的角为θ,则有222222212121212121,cos sin zy x z y x z z y y x x nAB n AB n AB ++•++++=••=><=θ3.面面角:平面α的法向量为1n ,平面β的法向量为2n ,平面α与平面β的夹角为θ,则有222222212121212121212121,cos cos z y x z y x z z y y x x n n n n n n ++•++++=••=><=θ4.点面距离:222222212121,cos zy x z z y y x x nn PA n PA PA d ++++=•=><•=5.如图,四棱锥P-ABCD 中,底面ABCD 是边长为2的菱形,且︒=∠60DAB ,侧面PAD 为等边三角形,且与底面ABCD 垂直,M 为PC 的中点. (1)求证:PA||平面BDM (2)求证:AD ⊥PB ;nBAnAP(3)求直线AB 与平面BDM 所成角的正弦值. (4)求二面角A -BD -M 的余弦值 MBCAD P题目背景变换为以下几种,如何建立坐标系?延伸1: 如图,四棱锥P-ABCD 中,底面ABCD 是梯形,AB||CD,AB=4,CD=2,︒=∠60DAB ,侧面PAD 为边长为2的等边三角形,且与底面ABCD 垂直.延伸2: 如图,四棱锥P-ABCD 中,底面ABCD 是平行四边形,AB=4,AD=2,且︒=∠60DAB ,侧面PAD 为等边三角形,且与底面ABCD 垂直.限时训练1.某几何体三视图如图一所示,则该几何体的体积为( )A .8-2πB .8-πC .8-π2D .8-π42.已知三棱锥P ABC -的四个顶点都在半径为2的球面上,且PA ⊥平面ABC ,若2AB =,3AC =,2BAC π∠=,则棱PA 的长为( )A .32B .3C .3D .9 3.一块石材表示的几何体的三视图如图所示,将该石材切削、打磨,加工成球,则能得到的最大球的半径等于( ) A .1 B .2 C .3 D .44.若三棱锥SABC 的底面是以AB 为斜边的等腰直角三角形,2AB SA SB SC ====,则该三棱锥的外接球的表面积为( )图一A .83π B .433π C .43π D .163π5.已知某几何体的三视图如图所示,则该几何体的体积为________.6.如图,长方体ABCD —A 1B 1C 1D 1中,AB = 16,BC = 10,AA 1 = 8,点E ,F 分别在A 1B 1,D 1C 1上,A 1E =D 1F = 4,过点E ,F 的平面α与此长方体的面相交,交线围成一个正方形。
(完整word版)高三数学二轮专题复习教案设计――立体几何
高三数学二轮专题复习教案――立体几何一、本章知识结构:二、重点知识回顾1、空间几何体的结构特征(1)棱柱、棱锥、棱台和多面体棱柱是由满足下列三个条件的面围成的几何体:①有两个面互相平行;②其余各面都是四边形;③每相邻两个四边形的公共边都互相平行;棱柱按底面边数可分为:三棱柱、四棱柱、五棱柱等.棱柱性质:①棱柱的各个侧面都是平行四边形,所有的侧棱都相等;②棱柱的两个底面与平行于底面的截面是对应边互相平行的全等多边形.③过棱柱不相邻的两条侧棱的截面都是平行四边形.棱锥是由一个底面是多边形,其余各面是有一个公共顶点的三角形所围成的几何体.棱锥具有以下性质:①底面是多边形;②侧面是以棱锥的顶点为公共点的三角形;③平行于底面的截面和底面是相似多边形,相似比等于从顶点到截面和从顶点到底面距离的比.截面面积和底面面积的比等于上述相似比的平方.棱台是棱锥被平行于底面的一个平面所截后,截面和底面之间的部分.由棱台定义可知,所有侧棱的延长线交于一点,继而将棱台还原成棱锥.多面体是由若干个多边形围成的几何体.多面体有几个面就称为几面体,如三棱锥是四面体.(2)圆柱、圆锥、圆台、球分别以矩形的一边,直角三角形的一直角边,直角梯形垂直于底边的腰所在的直线,半圆以它的直径所在直线为旋转轴,旋转一周而形成的几何体叫做圆柱、圆锥、圆台、球圆柱、圆锥和圆台的性质主要有:①平行于底面的截面都是圆;②过轴的截面(轴截面)分别是全等的矩形、等腰三角形、等腰梯形;③圆台的上底变大到与下底相同时,可以得到圆柱;圆台的上底变小为一点时,可以得到圆锥.2、空间几何体的侧面积、表面积(1)棱柱侧面展开图的面积就是棱柱的侧面积,棱柱的表面积就是它的侧面积与两底面面积的和.因为直棱柱的各个侧面都是等高的矩形,所以它的展开图是以棱柱的底面周长与高分别为长和宽的矩形.如果设直棱柱底面周长为c,高为h,则侧面积S ch=侧.若长方体的长、宽、高分别是a、b、c,则其表面积2() S ab bc ca=++表.(2)圆柱的侧面展开图是一个矩形.矩形的宽是圆柱母线的长,矩形的长为圆柱底面周长.如果设圆柱母线的长为l,底面半径为r,那么圆柱的侧面积2πS rl=侧,此时圆柱底面面积2πS r=底.所以圆柱的表面积222π2π2π()S S S rl r r r l=+=+=+侧底.(3)圆锥的侧面展开图是以其母线为半径的扇形.如果设圆锥底面半径为r,母线长为l,则侧面积πS rl=侧,那么圆锥的表面积是由其侧面积与底面面积的和构成,即为2πππ()S S S rl r r r l=+=+=+侧底.(4)正棱锥的侧面展开图是n个全等的等腰三角形.如果正棱锥的周长为c,斜高为h',则它的侧面积12S ch'=侧.(5)正棱台的侧面积就是它各个侧面积的和.如果设正棱台的上、下底面的周长是c c',,斜高是h',那么它的侧面积是12S ch'=侧.(6)圆台侧面展开图是以截得该圆台的圆锥母线为大圆半径,圆锥与圆台的母线之差为小圆半径的一个扇环.如果设圆台的上、下底面半径分别为r r',,母线长为l,那么它的侧面积是π()S r r l'=+侧.圆台的表面积等于它的侧面积与上、下底面积的和,即2222π()πππ() S S S S r r l r r r r r l rl''''=++=+++=+++侧上底下底.(7)球的表面积24πS R =,即球的表面积等于其大圆面积的四倍. 3、空间几何体的体积(1)柱体(棱柱、圆柱)的体积等于它的底面积S 和高h 的积,即V Sh=柱体.其中底面半径是r ,高是h 的圆柱的体积是2πV r h=圆柱.(2)如果一个锥体(棱锥、圆锥)的底面积是S ,高是h ,那么它的体积是13V Sh=锥体.其中底面半径是r ,高是h 的圆锥的体积是21π3V r h=圆锥,就是说,锥体的体积是与其同底等高柱体体积的13.(3)如果台体(棱台、圆台)的上、下底面积分别是S S ',,高是h,那么它的体积是1()3V S S h=+台体.其中上、下底半径分别是r R ,,高是h 的圆台的体积是221π()3V r Rr R h=++圆台.(4)球的体积公式:334R V π=.4、中心投影和平行投影(1)中心投影:投射线均通过投影中心的投影。
高三一轮立体几何复习课教案
高三一轮立体几何复习课教案教案标题:高三一轮立体几何复习课教案教案目标:1. 复习高三一轮学习的立体几何基础知识;2. 强化学生对常见立体几何概念的理解和应用;3. 提高学生的解题能力和问题解决能力。
教学重点:1. 复习并掌握常见立体几何概念,如平行四边形、柱体、锥体等;2. 强化立体几何的思维方式和问题解决方法;3. 训练学生解决高难度立体几何题目的能力。
教学准备:1. 教学课件或者白板、黑板等;2. 学生练习册或习题集;3. 成绩单和学生笔记。
教学过程:一、引入(5分钟)1. 利用教学课件或黑板,引入本节课的主题,并激发学生对立体几何的兴趣和热情;2. 老师可以提出一个与立体几何相关的问题或者引用一个实际问题来引导学生思考;二、复习基础知识(15分钟)1. 复习并强化学生对立体几何基础概念的理解,例如平行四边形的性质、柱体的表面积和体积公式等;2. 提供简单的练习题,让学生回顾并解答,鼓励他们回忆相关的知识点;三、强化概念应用(25分钟)1. 回顾并讲解一些与立体几何相关的典型问题,例如求解线段比例、求解表面积和体积等;2. 给学生一些有挑战性的练习题,鼓励他们应用所学概念解决实际问题;3. 指导学生分析问题、确定解题方法,并辅导他们解题的思路和步骤;四、解题方法分享(15分钟)1. 学生进行小组活动,交流并分享解答问题的方法和思路;2. 老师对学生的分享进行点评和总结,同时指导他们在解题过程中的注意事项;3. 提供一些高难度问题,鼓励学生结合所学知识和解题方法进行探索和解答;五、课堂练习与梳理(15分钟)1. 发放练习册或习题集,让学生进行课堂练习;2. 在学生进行练习的同时,教师可以对学生的解题过程进行辅导和指导;3. 收集学生的成绩单,并提醒学生及时梳理和复习今日所学的知识点。
六、课堂总结与反思(5分钟)1. 对本节课的重点、难点进行总结,并强调学生的进步和知识提高;2. 鼓励学生提出问题、反思自己在学习过程中的困惑和不足之处;3. 鼓励学生积极参与课后的巩固练习,并准备下节课的复习内容。
高考数学立体几何备考复习教案
高考数学立体几何备考复习教案一、教学目标1. 知识与技能:使学生掌握立体几何的基本概念、性质和定理,提高空间想象能力。
2. 过程与方法:通过复习,使学生掌握立体几何的解题方法,提高解题能力。
3. 情感态度与价值观:激发学生学习立体几何的兴趣,培养学生的创新意识。
二、教学内容1. 立体几何的基本概念:点、线、面的位置关系,空间向量。
2. 立体几何的性质:平行公理,空间向量的运算律。
3. 立体几何的定理:平行线、异面直线、线面平行、面面平行、线面垂直、面面垂直的判定与性质。
4. 立体几何的计算:体积、表面积、角、距离的计算。
5. 立体几何的综合应用:空间几何体的结构特征,几何体的运动变化。
三、教学重点与难点1. 教学重点:立体几何的基本概念、性质和定理,立体几何的计算方法。
2. 教学难点:立体几何的综合应用,空间想象能力的培养。
四、教学方法1. 采用讲解、示范、练习、讨论、探索相结合的方法,引导学生掌握立体几何的基本概念、性质和定理。
2. 通过案例分析、几何画板演示等手段,培养学生的空间想象能力。
3. 组织学生进行合作学习,提高学生的解题能力。
五、教学评价1. 课堂表现:观察学生在课堂上的参与程度、提问回答等情况,了解学生的学习状态。
2. 练习与作业:检查学生完成的练习和作业,评估学生的掌握程度。
3. 考试成绩:定期进行立体几何的测试,分析学生的成绩,了解学生的学习效果。
教案第一课时:立体几何的基本概念1. 教师讲解立体几何的基本概念,如点、线、面的位置关系,空间向量。
2. 学生通过案例分析,理解并掌握基本概念。
第二课时:立体几何的性质1. 教师讲解立体几何的性质,如平行公理,空间向量的运算律。
2. 学生通过几何画板演示,直观地理解立体几何的性质。
第三课时:立体几何的定理1. 教师讲解立体几何的定理,如平行线、异面直线、线面平行、面面平行、线面垂直、面面垂直的判定与性质。
2. 学生通过案例分析,掌握立体几何的定理。
高三立体几何重点专题复习教案
高三立体几何重点专题复习教案: 空间向量的运算教学目标(考纲要求):1、理解空间向量的概念,掌握空间向量的加法、减法以及实数与向量的积的运算;2、理解共线向量、共面向量的定义及其定理,了解空间向量的基本定理;3、掌握空间向量数量积的定义及其性质 . 教学重点:空间向量的数量积.教学难点:空间向量基本定理及数量积的应用教学过程:一、提问检查基础知识1、空间向量的定义?2、空间向量的加法、减法、数乘运算及其运算律与平面向量的类同?3、共线向量的定义及共线向量定理?4、空间直线的向量参数表示式的两种形式怎样?5、中点坐标公式?6、怎样判断空间的两个向量是否共面?7、四点共面的三种判定方法?8、空间向量的基本定理?二、基本技能训练讲评:1、若{a,b,c}为空间的一组基底,则下列各项中,能构成基底的一组向量是()A.a,a+b,a-b B. b,a+b,a-bC. c,a+b,a-bD. a+b,a-b ,a-2b讲评:使学生熟练掌握空间向量基底的概念.选C2、平行六面体ABCD—A1B1C1D1中,向量、、、1AA两两的夹角为600,且||=1、||=2、|1AA|=3,则|1AC|等于()A.5 B.6 C.4 D.8讲评:训练学生熟练地运用空间向量加法运算法则,向量的模、数量积等知识解题.选A2、已知在空间四边形ABCD中,G是CDAG的中点,则+-(21)=____.讲评:复习向量减法法则,中点坐标公式等.答案为21.三、基本方法课堂演练4、如图,已知空间四边形OABC中,OB=OC,且∠AOB=∠AOC=θ,求证:OA⊥BC.证明:OBOAOCOAOBOCOABCOA⋅-⋅=-⋅=⋅)(=OCOA||||⋅|||OBOA⋅-⋅∵OB=OA,∠AOB=∠AOC=θ∴0=⋅BCOA,即OA⊥BC点评:利用向量解决有关线线垂直问题,可以大大减少运算量.5.在正方体ABCD—A1B1C1D1中,E、F分别为BB1、DC的中点,(1)求AE与D1F所成的角;(2)证明:AE⊥平面D1A1E。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.立体几何主要研究以下八种距离:点点距、点线距、点面距、线线距(平行线间距离与异面直线间的距离)、线面距、面面距及球面上两点间的距离(课本9.10)。
(1)无论哪种距离,其定义原则有以下两条:一是惟一性,二是最短原则。
(2)以上距离之间有些可以互相转化,如两平行线间距离可以转化成点线距,线面距与面面距都可转化成点面距,再转化成点线距。(3)关于点线距问题经常用到三垂线定理或其逆定理来作出距离,其关键是垂足位置的确定。
④三垂线定理及其逆定理
⑤根据二面角的平面角的定义
2.向量方法:证明向量相互垂直。
问题五: 证明线面垂直
1.传统几何方法:
①如果一条直线垂直于一个平面内的任何一条直线,则这条直线和这个平面垂直
②线面垂直的判定定理
③如果一条直线垂直于两个平行平面中的一个,则这条直线也与另一个平面垂直
④两条平行线中的一条垂直于一个平面,则另一条也垂直于这个平面
②利用中位法。如给出异面直线AB和CD,连接AC、AD、BC,然后再分别取这三条线段的中点E、F、G,连接EF、EG、FG得到△EFG,则∠FEG就是所求角或所求角的补角。这种方法优点是作异面直线所成角比较容易,但缺点是△EFG中有一边GF的长度不容易求。
3.向量方法:
转化成求两个向量的夹角(即等于所求的异面直线所成的角或其补角的大小)
2.向量方法:
①转化为证明向量共线。
②根据共面向量定理。
③证明向量与平面的法向量相互垂直。
问题三: 证明面面平行
1.传统几何方法:
①根据两个平面平行的定义
②根据两个平面平行的判定定理
③垂直于同一条直线的两个平面平行
④平行于同一平面的两个平面平行
2.思维过程:
线线平行 线面平行 面面平行
线线平行 线面垂直 面面平行
④利用特殊图形的垂直关系直接作出平面角。此类问题的特征是图形中一般有二面角的平面角,只须利用前面三种方法进行判断即可找到二面角的平面角。
2.求二面角的大小有时也可不必作平面角,只须判断出二面角与某个线面角或线线角相等,求出即可。
①用射影面积公式:
(其中 为斜面面积, 为射影面积, 为斜面与其射影面所成的二面角的平面角)。此法适用于棱未给出或平面角难以作出的情形。
注意三者的转化
向量方法:
①转化为用向量证明线线平行、线面平行问题。②证明两个平面的法向量共线。
问题四: 证明线线垂直
1.证明线线垂直,若两条直线在同一平面内,可用平面几何中证明两条直线垂直的方法来证明它们垂直。立体几何一般有以下几种证明方法:
①根据定义
②如果直线 //直线 ,直线 直线 ,则
③如果直线 平面 , 则
④根据“面面平行”的性质定理
2.设法转化为线面平行、面面平行、线面垂直的相关问题
3.向量方法:证明向量共线。
问题二: 证明线面平行
1.传统几何方法:
①根据直线与平面平行的定义
②根据直线与平面平行的判定定理
③根据平面与平面平行的性质定理
1.方法②通过“线线平行证明线面平行”,是由低维升向高维的一种思维方式;方法③通过“面面平行证明线面平行”,是由高维降向低维的一种思维方式。这两种思维方式是立体几何中基本的思维方法。
⑤面面垂直的性质定理
2.向量方法:
①转化为证明向量垂直。
②证明向量与平面的法向量共线。
问题六: 证明面面垂直
1.传统几何方法:
①根据面面垂直的定义:如果两个平面相交所成的二面角是直二面角,那么这两个平面互相垂直
②根据面面垂直的判定定理
③利用结论:如果一个平面垂直于两个平行平面中的一个,则它垂直于另一个平面
①先确定二面角的棱,在棱上找一点,分别在两个半平面内作棱的垂线,两垂线所成的角即为平面角。
②垂面法:用垂直于二面角棱的平面截二面角,两交线所成的角即为平面角。
③三垂线定理及其逆定理:过一个半平面内一点作另一半平面的垂线,过垂足在另一个半平面内作棱的垂线得棱上一点(即斜足),斜足与面上一点的连线和斜足与垂足连线所成角为平面角。
高三数学立体几何专题复习教案
(解题思想方法归纳)
问题一: 证明线线平行
1.证明两直线 、 平行,若直线 和直线 共面时,则可以用平面几何中常用的一些方法(如证明 和 是一个平行四边形的一组对边)证明它们无公共点。
在立体几何中一般还有以下几种思路:
①根据公理4
②根据“线面平行”的性质定理
③根据“线面垂直”的性质定理,若直线 和 都与平面 垂直,则 // 。
(4)点线距、点面距为重点,异面直线间的距离是难点。
2.求点到平面的距离,主要有以下方法:
①作出垂线段,直接求垂线段的长度。
②若点在一个平面上,而此平面又垂直于已知平面,利用面面垂直必推出线面垂直,得出表示距离的垂线段。
①定义。在具体问题中异面直线的给出是异面线段形式表示的,因此由异面直线所成角的定义我们可以选择两条线段的四个端点,过其中一个端点作另外一条线段的平行线,选择点的原则是过这点作另外一条线段的平行线要容易作(往往是这点和另外一条线段在一个三角形中且这点在三角形的一边上,或这点和另外一条线段在已知一个平面内且作平行线要好作)
②角,公式为:
③向量方法:
只要在两个半平面内各有棱的垂线 、 (不必相交),则向量 、 所成的角的大小等于所求二面角或其补角的大小。
另法:设 、 分别为两个半平面的法向量,则它们所成的角的大小等于所求二面角或其补角的大小。
对于棱未给出的二面角的求法可通过“作平行线”法或“找公共点”法寻求棱。
2 .向量方法:
①转化为用向量证明线线垂直、线面垂直问题。②证明两个平面的法向量相互垂直。
问题七: 求异面直线所成角
1.传统几何方法:先判断这个角是否是直角,如果是直角可直接证明并得出结论,一般求角的步骤是:
(1)利用平移作出要计算的角;
(2)构造含该角的三角形;
(3)解三角形求角
2.异面直线所成的角作法:
问题八: 求平面的斜线与平面所成角
1.传统几何方法:
①转化为求斜线与它在平面内的射影所成的角,通过直角三角形求解。
②利用三面角定理(即最小角定理) 求 。
2.向量方法:设 为平面 的法向量,直线 与平面 所成的角为 ,则
问题九: 求二面角
1.作出二面角的平面角并通过解三角形计算。作平面角常用方法如下: