高考物理重难点考点:动量守恒定律及“三类模型”问题

合集下载

高中物理专题第六章动量守恒定律及“三类模型”问题

高中物理专题第六章动量守恒定律及“三类模型”问题

高中物理专题第六章动量守恒定律及“三类模型”问题-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN第2讲动量守恒定律及“三类模型”问题一、动量守恒定律1.内容如果一个系统不受外力,或者所受外力的矢量和为零,这个系统的总动量保持不变.2.表达式(1)p=p′,系统相互作用前总动量p等于相互作用后的总动量p′.(2)m1v1+m2v2=m1v1′+m2v2′,相互作用的两个物体组成的系统,作用前的动量和等于作用后的动量和.(3)Δp1=-Δp2,相互作用的两个物体动量的变化量等大反向.(4)Δp=0,系统总动量的增量为零.3.适用条件(1)理想守恒:不受外力或所受外力的合力为零.(2)近似守恒:系统内各物体间相互作用的内力远大于它所受到的外力.(3)某一方向守恒:如果系统在某一方向上所受外力的合力为零,则系统在这一方向上动量守恒.自测1关于系统动量守恒的条件,下列说法正确的是( )A.只要系统内存在摩擦力,系统动量就不可能守恒B.只要系统中有一个物体具有加速度,系统动量就不守恒C.只要系统所受的合外力为零,系统动量就守恒D.系统中所有物体的加速度为零时,系统的总动量不一定守恒答案 C二、碰撞、反冲、爆炸1.碰撞(1)定义:相对运动的物体相遇时,在极短的时间内它们的运动状态发生显著变化,这个过程就可称为碰撞.(2)特点:作用时间极短,内力(相互碰撞力)远大于外力,总动量守恒.(3)碰撞分类①弹性碰撞:碰撞后系统的总动能没有损失.②非弹性碰撞:碰撞后系统的总动能有损失.③完全非弹性碰撞:碰撞后合为一体,机械能损失最大.2.反冲(1)定义:当物体的一部分以一定的速度离开物体时,剩余部分将获得一个反向冲量,这种现象叫反冲运动.(2)特点:系统内各物体间的相互作用的内力远大于系统受到的外力.实例:发射炮弹、爆竹爆炸、发射火箭等.(3)规律:遵从动量守恒定律.3.爆炸问题爆炸与碰撞类似,物体间的相互作用时间很短,作用力很大,且远大于系统所受的外力,所以系统动量守恒.自测2如图1所示,两滑块A、B在光滑水平面上沿同一直线相向运动,滑块A的质量为m,速度大小为2v0,方向向右,滑块B的质量为2m,速度大小为v0,方向向左,两滑块发生弹性碰撞后的运动状态是()图1A.A和B都向左运动B.A和B都向右运动C.A静止,B向右运动D.A向左运动,B向右运动答案 D解析以两滑块组成的系统为研究对象,两滑块碰撞过程动量守恒,由于初始状态系统的动量为零,所以碰撞后两滑块的动量之和也为零,所以A、B的运动方向相反或者两者都静止,而碰撞为弹性碰撞,碰撞后两滑块的速度不可能都为零,则A应该向左运动,B应该向右运动,选项D正确,A、B、C错误.命题点一动量守恒定律的理解和基本应用例1 (多选)如图2所示,A、B两物体质量之比m A∶m B=3∶2,原来静止在平板小车C 上,A、B间有一根被压缩的弹簧,地面光滑,当弹簧突然释放后,则()图2A.若A、B与平板车上表面间的动摩擦因数相同,A、B组成的系统的动量守恒B.若A 、B 与平板车上表面间的动摩擦因数相同,A 、B 、C 组成的系统的动量守恒C.若A 、B 所受的摩擦力大小相等,A 、B 组成的系统的动量守恒D.若A 、B 所受的摩擦力大小相等,A 、B 、C 组成的系统的动量守恒 答案 BCD解析 如果A 、B 与平板车上表面的动摩擦因数相同,弹簧释放后,A 、B 分别相对小车向左、向右滑动,它们所受的滑动摩擦力F f A 向右、F f B 向左,由于m A ∶m B =3∶ 2,所以F f A ∶F f B =3∶2,则A 、B 组成的系统所受的外力之和不为零,故其动量不守恒,A 选项错误;对A 、B 、C 组成的系统,A 、B 与C 间的摩擦力为内力,该系统所受的外力为竖直方向的重力和支持力,它们的合力为零,故该系统的动量守恒,与平板车间的动摩擦因数或摩擦力是否相等无关,故B 、D 选项正确;若A 、B 所受的摩擦力大小相等,则A 、B 组成的系统的外力之和为零,故其动量守恒,C 选项正确.例2 (2017·全国卷Ⅰ·14)将质量为1.00 kg 的模型火箭点火升空,50 g 燃烧的燃气以大小为600 m/s 的速度从火箭喷口在很短时间内喷出.在燃气喷出后的瞬间,火箭的动量大小为(喷出过程中重力和空气阻力可忽略)( ) A.30 kg·m /s B.5.7×102 kg·m/s C.6.0×102 kg·m /s D.6.3×102 kg·m/s答案 A解析 设火箭的质量为m 1,燃气的质量为m 2.由题意可知,燃气的动量p 2=m 2v 2=50×10-3×600 kg·m /s =30 kg·m/s.以火箭运动的方向为正方向,根据动量守恒定律可得,0=m1v 1-m 2v 2,则火箭的动量大小为p 1=m 1v 1=m 2v 2=30 kg·m/s ,所以A 正确,B 、C 、D 错误. 变式1 两磁铁各放在两辆小车上,小车能在水平面上无摩擦地沿同一直线运动.已知甲车和磁铁的总质量为0.5 kg ,乙车和磁铁的总质量为1 kg ,两磁铁的N 极相对.推动一下,使两车相向运动,某时刻甲的速率为2 m /s ,乙的速率为3 m/s ,方向与甲相反,两车运动过程中始终未相碰.则:(1)两车最近时,乙的速度为多大(2)甲车开始反向时,乙的速度为多大答案 (1)43m /s (2)2 m/s解析 (1)两车相距最近时,两车的速度相同,设该速度为v ,取刚开始运动时乙车的速度方向为正方向,由动量守恒定律得m 乙v 乙-m 甲v 甲=(m 甲+m 乙)v 所以两车最近时,乙车的速度为v =m 乙v 乙-m 甲v 甲m 甲+m 乙=1×3-0.5×20.5+1m/s =43 m/s.(2)甲车开始反向时,其速度为0,设此时乙车的速度为v 乙′,取刚开始运动时乙车的速度方向为正方向,由动量守恒定律得 m 乙v 乙-m 甲v 甲=m 乙v 乙′ 解得v 乙′=2 m/s命题点二 碰撞模型问题1.碰撞遵循的三条原则 (1)动量守恒定律 (2)机械能不增加E k1+E k2≥E k1′+E k2′或p 122m 1+p 222m 2≥p 1′22m 1+p 2′22m 2(3)速度要合理①同向碰撞:碰撞前,后面的物体速度大;碰撞后,前面的物体速度大(或相等). ②相向碰撞:碰撞后两物体的运动方向不可能都不改变. 2.弹性碰撞讨论 (1)碰后速度的求解 根据动量守恒和机械能守恒⎩⎪⎨⎪⎧m 1v 1+m 2v 2=m 1v 1′+m 2v 2′ ①12m 1v 12+12m 2v 22=12m 1v 1′2+12m 2v 2′2 ② 解得v 1′=(m 1-m 2)v 1+2m 2v 2m 1+m 2v 2′=(m 2-m 1)v 2+2m 1v 1m 1+m 2(2)分析讨论:当碰前物体2的速度不为零时,若m 1=m 2,则v 1′=v 2,v 2′=v 1,即两物体交换速度. 当碰前物体2的速度为零时,v 2=0,则: v 1′=(m 1-m 2)v 1m 1+m 2,v 2′=2m 1v 1m 1+m 2,①m 1=m 2时,v 1′=0,v 2′=v 1,碰撞后两物体交换速度. ②m 1>m 2时,v 1′>0,v 2′>0,碰撞后两物体沿同方向运动. ③m 1<m 2时,v 1′<0,v 2′>0,碰撞后质量小的物体被反弹回来.例3 (多选)两个小球A 、B 在光滑水平面上相向运动,已知它们的质量分别是m 1=4 kg ,m 2=2 kg ,A 的速度v 1=3 m /s(设为正),B 的速度v 2=-3 m /s ,则它们发生正碰后,其速度可能分别是( ) A.均为1 m /s B.+4 m/s 和-5 m/s C.+2 m /s 和-1 m/s D.-1 m /s 和5 m/s答案 AD解析 由动量守恒,可验证四个选项都满足要求.再看动能情况 E k =12m 1v 12+12m 2v 22=12×4×9 J +12×2×9 J =27 JE k ′=12m 1v 1′2+12m 2v 2′2由于碰撞过程动能不可能增加,所以应有E k ≥E k ′,可排除选项 B.选项C 虽满足E k ≥E k ′,但A 、B 沿同一直线相向运动,发生碰撞后各自仍能保持原来的速度方向(v A ′>0,v B ′<0),这显然是不符合实际的,因此C 错误.验证选项A 、D 均满足E k ≥E k ′,故答案为选项A(完全非弹性碰撞)和选项D(弹性碰撞).例4 (2016·全国卷Ⅲ·35(2))如图3所示,水平地面上有两个静止的小物块a 和b ,其连线与墙垂直;a 和b 相距l ,b 与墙之间也相距l ;a 的质量为m ,b 的质量为34m .两物块与地面间的动摩擦因数均相同.现使a 以初速度v 0向右滑动.此后a 与b 发生弹性碰撞,但b 没有与墙发生碰撞.重力加速度大小为g .求物块与地面间的动摩擦因数满足的条件.图3答案 32v 02113gl ≤μ<v 022gl解析 设物块与地面间的动摩擦因数为μ.若要物块a 、b 能够发生碰撞,应有 12m v 02>μmgl① 即μ<v 022gl②设在a 、b 发生弹性碰撞前的瞬间,a 的速度大小为v 1.由能量守恒定律得 12m v 02=12m v 12+μmgl③设在a 、b 碰撞后的瞬间,a 、b 的速度大小分别为v 1′、v 2′,以向右为正方向,由动量守恒和能量守恒有m v 1=m v 1′+34m v 2′④12m v 12=12m v 1′2+12×34m v 2′2⑤联立④⑤式解得 v 2′=87v 1⑥由题意,b 没有与墙发生碰撞,由功能关系可知 12×34m v 2′2≤μ·3m 4gl⑦联立③⑥⑦式,可得 μ≥32v 02113gl⑧联立②⑧式得,a 与b 发生弹性碰撞,但b 没有与墙发生碰撞的条件为 32v 02113gl ≤μ<v 022gl. 变式2 (2015·全国卷Ⅰ·35(2))如图4所示,在足够长的光滑水平面上,物体A 、B 、C 位于同一直线上,A 位于B 、C 之间.A 的质量为m ,B 、C 的质量都为M ,三者均处于静止状态.现使A 以某一速度向右运动,求m 和M 之间应满足什么条件,才能使A 只与B 、C 各发生一次碰撞.设物体间的碰撞都是弹性的.图4答案 (5-2)M ≤m <M解析 设A 运动的初速度为v 0,A 向右运动与C 发生碰撞,以向右为正方向,由动量守恒定律得 m v 0=m v 1+M v 2由机械能守恒定律得12m v 02=12m v 12+12M v 22可得v 1=m -M m +M v 0,v 2=2mm +M v 0要使得A 与B 能发生碰撞,需要满足v 1<0,即m <M A 反向向左运动与B 发生碰撞过程,有m v 1=m v 3+M v 4 12m v 12=12m v 32+12M v 42 整理可得v 3=m -M m +M v 1,v 4=2m m +M v 1由于m <M ,所以A 还会向右运动,根据要求不发生第二次碰撞,需要满足v 3≤v 2 即2mm +M v 0≥M -m m +M v 1=(m -M m +M )2v 0整理可得m 2+4Mm ≥M 2 解方程可得m ≥(5-2)M 另一解m ≤-(5+2)M 舍去所以使A 只与B 、C 各发生一次碰撞,须满足 (5-2)M ≤m <M拓展点1 “滑块—弹簧”碰撞模型例5 如图5所示,质量M =4 kg 的滑板B 静止放在光滑水平面上,其右端固定一根水平轻质弹簧,弹簧的自由端C 到滑板左端的距离L =0.5 m ,这段滑板与木块A (可视为质点)之间的动摩擦因数μ=0.2,而弹簧自由端C 到弹簧固定端D 所对应的滑板上表面光滑.木块A 以速度v 0=10 m /s 由滑板B 左端开始沿滑板B 上表面向右运动.已知木块A 的质量m =1 kg ,g 取10 m /s 2.求:图5(1)弹簧被压缩到最短时木块A 的速度大小; (2)木块A 压缩弹簧过程中弹簧的最大弹性势能. 答案 (1)2 m/s (2)39 J解析 (1)弹簧被压缩到最短时,木块A 与滑板B 具有相同的速度,设为v ,从木块A 开始沿滑板B 上表面向右运动至弹簧被压缩到最短的过程中,整体动量守恒,以向右为正方向,则 m v 0=(M +m )v 解得v =m M +m v 0代入数据得木块A 的速度v =2 m/s(2)在木块A 压缩弹簧过程中,弹簧被压缩到最短时,弹簧的弹性势能最大,由能量关系知,最大弹性势能为E pm =12m v 02-12(m +M )v 2-μmgL代入数据得E pm =39 J.拓展点2 “滑块—平板”碰撞模型例6 如图6所示,质量m 1=0.3 kg 的小车静止在光滑的水平面上,车长L =1.5 m ,现有质量m 2=0.2 kg 可视为质点的物块,以水平向右的速度v 0=2 m /s 从左端滑上小车,最后在车面上某处与小车保持相对静止.物块与车面间的动摩擦因数μ=0.5,取g =10 m/s 2,求:图6(1)物块与小车共同速度大小; (2)物块在车面上滑行的时间t ; (3)小车运动的位移大小x ;(4)要使物块不从小车右端滑出,物块滑上小车左端的速度v 0′不超过多少答案 (1)0.8 m /s (2)0.24 s (3)0.096 m (4)5 m/s解析 (1)设物块与小车共同速度为v ,以水平向右为正方向, 根据动量守恒定律:m 2v 0=(m 1+m 2)v 解得v =0.8 m/s(2)设物块与车面间的滑动摩擦力为F f ,对物块应用动量定理: -F f t =m 2v -m 2v 0 又F f =μm 2g 解得:t =v 0-v μg代入数据得t =0.24 s(3)对小车应用动能定理:μm 2gx =12m 1v 2解得x =0.096 m(4)要使物块恰好不从小车右端滑出,须使物块运动到小车右端时与小车有共同的速度,设其为v ′,以水平向右为正方向,则: m 2v 0′=(m 1+m 2)v ′ 由系统能量守恒有:12m 2v 0′2=12(m 1+m 2)v ′2+μm 2gL 代入数据解得v 0′=5 m/s故要使物块不从小车右端滑出,物块滑上小车左端的速度v 0′不超过5 m/s.拓展点3“滑块—斜面”碰撞模型例7(2016·全国卷Ⅱ·35(2))如图7所示,光滑冰面上静止放置一表面光滑的斜面体,斜面体右侧一蹲在滑板上的小孩和其面前的冰块均静止于冰面上.某时刻小孩将冰块以相对冰面3 m/s的速度向斜面体推出,冰块平滑地滑上斜面体,在斜面体上上升的最大高度为h=0.3 m(h小于斜面体的高度).已知小孩与滑板的总质量为m1=30 kg,冰块的质量为m2=10 kg,小孩与滑板始终无相对运动.取重力加速度的大小g=10 m/s2.图7(1)求斜面体的质量;(2)通过计算判断,冰块与斜面体分离后能否追上小孩答案(1)20 kg(2)不能,理由见解析解析(1)规定向左为速度正方向.冰块在斜面体上上升到最大高度时两者达到共同速度,设此共同速度为v,斜面体的质量为m3.由水平方向动量守恒和机械能守恒定律得m2v0=(m2+m3)v①12m2v02=12(m2+m3)v2+m2gh②式中v0=3 m/s为冰块推出时的速度.联立①②式并代入题给数据得m3=20 kg③(2)设小孩推出冰块后的速度为v1,由动量守恒定律有m1v1+m2v0=0④代入数据得v1=-1 m/s⑤设冰块与斜面体分离后的速度分别为v2和v3,由动量守恒和机械能守恒定律有m2v0=m2v2+m3v3⑥12m2v02=12m2v22+12m3v32⑦联立③⑥⑦式并代入数据得v 2=-1 m/s⑧由于冰块与斜面体分离后的速度与小孩推出冰块后的速度相同且处在后方,故冰块不能追上小孩.命题点三 “人船模型”问题1.特点⎩⎪⎨⎪⎧(1)两个物体(2)动量守恒(3)总动量为零2.方程m 1v 1-m 2v 2=0(v 1、v 2为速度大小) 3.结论m 1x 1=m 2x 2(x 1、x 2为位移大小)例8 长为L 、质量为M 的小船停在静水中,一个质量为m 的人立在船头,若不计水的阻力和空气阻力,当人从船头走到船尾的过程中,船和人对地面的位移各是多少答案 见解析解析 选人和船组成的系统为研究对象,因系统在水平方向不受力,所以动量守恒,人未走时系统的总动量为零.当人起步加速前进时,船同时加速后退;当人匀速前进时,船匀速后退;当人减速前进时,船减速后退;当人速度为零时,船速度也为零.设某时刻人对地的速率为v 1,船对地的速率为v 2,以人运动的方向为正方向,根据动量守恒定律得 m v 1-M v 2=0①因为在人从船头走到船尾的整个过程中时刻满足动量守恒,对①式两边同乘以Δt ,得 mx 1-Mx 2=0②②式为人对地的位移和船对地的位移关系.由图还可看出:x 1+x 2=L③联立②③两式得x 1=M M +m L ,x 2=mM +mL变式3 如图8所示,质量为M 的气球下挂着长为L 的绳梯,一质量为m 的人站在绳梯的下端,人和气球静止在空中,人从绳梯的下端往上爬到顶端时,人和气球相对于地面移动的距离分别是多少(不计空气阻力)图8答案 见解析解析 由于人和气球组成的系统静止在空中,竖直方向系统所受外力之和为零即系统竖直方向总动量守恒.设某时刻人对地的速率为v 1,气球对地的速率为v 2,以人运动的方向为正方向,根据动量守恒定律得 m v 1-M v 2=0①因为在人从绳梯的下端爬到顶端的整个过程中时刻满足动量守恒定律,对①式两边同乘以Δt , 可得mx =My② 由题意知x +y =L③联立②③得x =Mm +M Ly =m m +ML 即人相对于地面移动的距离是MM +mL . 气球相对于地面移动的距离是mM +m L .命题点四 “子弹打木块”模型问题1.木块放在光滑水平面上,子弹水平打进木块,系统所受的合外力为零,因此动量守恒.2.两者发生的相对位移为子弹射入的深度x 相.3.根据能量守恒定律,系统损失的动能等于系统增加的内能.4.系统产生的内能Q =F f ·x 相,即两物体由于相对运动而摩擦产生的热(机械能转化为内能),等于摩擦力大小与两物体相对滑动的路程的乘积.5.当子弹速度很大时,可能射穿木块,这时末状态子弹和木块的速度大小不再相等,但穿透过程中系统的动量仍守恒,系统损失的动能为ΔE k =F f ·L (L 为木块的长度).例9 一质量为M 的木块放在光滑的水平面上,一质量为m 的子弹以初速度v 0水平打进木块并留在其中,设子弹与木块之间的相互作用力为F f .则: (1)子弹、木块相对静止时的速度是多少(2)子弹在木块内运动的时间为多长(3)子弹、木块相互作用过程中子弹、木块发生的位移以及子弹打进木块的深度分别是多少(4)系统损失的机械能、系统增加的内能分别是多少(5)要使子弹不射出木块,木块至少多长答案 (1)m M +m v 0 (2)Mm v 0F f (M +m )(3)Mm (M +2m )v 022F f (M +m )2 Mm 2v 022F f (M +m )2 Mm v 022F f (M +m )(4)Mm v 022(M +m ) Mm v 022(M +m ) (5)Mm v 022F f (M +m )解析 (1)设子弹、木块相对静止时的速度为v ,以子弹初速度的方向为正方向,由动量守恒定律得 m v 0=(M +m )v 解得v =m M +m v 0(2)设子弹在木块内运动的时间为t ,由动量定理得 对木块:F f t =M v -0 解得t =Mm v 0F f (M +m )(3)设子弹、木块发生的位移分别为x 1、x 2,如图所示,由动能定理得 对子弹:-F f x 1=12m v 2-12m v 02解得:x 1=Mm (M +2m )v 022F f (M +m )2对木块:F f x 2=12M v 2解得:x 2=Mm 2v 022F f (M +m )2子弹打进木块的深度等于相对位移,即x 相=x 1-x 2=Mm v 022F f (M +m )(4)系统损失的机械能为E 损=12m v 02-12(M +m )v 2=Mm v 022(M +m )系统增加的内能为Q =F f ·x 相=Mm v 022(M +m )系统增加的内能等于系统损失的机械能 (5)假设子弹恰好不射出木块,此时有 F f L =12m v 02-12(M +m )v 2解得L =Mm v 022F f (M +m )因此木块的长度至少为Mm v 022F f (M +m ).变式4 (2018·青海平安模拟)如图9所示,质量为2m 、长为L 的木块置于光滑水平面上,质量为m 的子弹以初速度v 0水平向右射向木块,穿过木块的过程中受到木块的恒定阻力为F f =5m v 0216L ,试问子弹能否穿过木块若能穿过,求出子弹穿过木块后两者的速度;若不能穿过,求出子弹打入木块后两者的速度.图9答案 见解析解析 设子弹能穿过木块,穿过木块后子弹的速度为v 1,木块的速度为v 2,以子弹初速度的方向为正方向,根据动量守恒定律得m v 0=m v 1+2m v 2①根据能量守恒定律得5m v 0216L L =12m v 02-12m v 12-12×2m v 22②由①②式解得v 1=v 02或v 1=v 06将v 1=v 06代入①式,得v 2=512v 0>v 1(舍去)将v 1=v 02代入①式,得v 2=14v 0<v 1所以假设成立,即子弹能穿过木块,穿过木块后的速度为12v 0,木块的速度为14v 0.1.现有甲、乙两滑块,质量分别为3m 和m ,以相同的速率v 在光滑水平面上相向运动,发生了碰撞.已知碰撞后,甲滑块静止不动,那么这次碰撞是( ) A.弹性碰撞 B.非弹性碰撞C.完全非弹性碰撞D.条件不足,无法确定答案 A2.(2018·福建福州模拟)一质量为M 的航天器正以速度v 0在太空中飞行,某一时刻航天器接到加速的指令后,发动机瞬间向后喷出一定质量的气体,气体喷出时速度大小为v 1,加速后航天器的速度大小为v 2,则喷出气体的质量m 为( ) A.v 2-v 1v 1MB.v 2v 2-v 1MC.v 2-v 0v 2+v 1MD.v 2-v 0v 2-v 1M 答案 C3.如图1所示,位于光滑水平桌面上的小滑块P 和Q 都可视为质点,质量相等.Q 与水平轻弹簧相连,设Q 静止,P 以某一初速度向Q 运动并与弹簧发生碰撞.在整个过程中,弹簧具有的最大弹性势能等于( )图1A.P 的初动能B.P 的初动能的12C.P 的初动能的13D.P 的初动能的14答案 B4.(多选)如图2甲所示,在光滑水平面上的两个小球发生正碰.小球的质量分别为m 1和m 2.图乙为它们碰撞前后的x -t 图象.已知m 1=0.1 kg.由此可以判断( )图2A.碰前m 2静止,m 1向右运动B.碰后m 2和m 1都向右运动C.m 2=0.3 kgD.碰撞过程中系统损失了0.4 J 的机械能 答案 AC解析 由x -t 图象的斜率得到,碰前m 2的位移不随时间而变化,处于静止状态.m 1速度大小为v 1=ΔxΔt=4 m/s ,方向只有向右才能与m 2相撞,故A 正确;由题图乙读出,碰后m 2的速度为正方向,说明向右运动,m 1的速度为负方向,说明向左运动,故B 错误;由题图乙求出碰后m 2和m 1的速度分别为v 2′=2 m /s ,v 1′=-2 m/s ,根据动量守恒定律得,m 1v 1=m 1v 1′+m 2v 2′,代入解得,m 2=0.3 kg ,故C 正确;碰撞过程中系统损失的机械能为ΔE =12m 1v 12-12m 1v 1′2-12m 2v 2′2,代入解得,ΔE =0 J ,故D 错误.5.(多选)在光滑的水平面上有质量相等的A 、B 两球,其动量分别为10 kg·m /s 与2 kg·m/s ,方向均向东,且规定该方向为正方向,A 球在B 球后,当A 球追上B 球时发生正碰,则相碰以后,A 、B 两球的动量可能分别为( ) A.6 kg·m /s,6 kg·m/s B.-4 kg·m /s,16 kg·m/s C.6 kg·m /s,12 kg·m/s D.3 kg·m /s,9 kg·m/s 答案 AD6.(多选)如图3所示,质量为M 的楔形物体静止在光滑的水平地面上,其斜面光滑且足够长,与水平方向的夹角为θ.一个质量为m 的小物块从斜面底端沿斜面向上以初速度v 0开始运动.当小物块沿斜面向上运动到最高点时,速度大小为v ,距地面高度为h ,则下列关系式中正确的是( )图3A.m v 0=(m +M )vB.m v 0cos θ=(m +M )vC.mgh =12m (v 0sin θ)2D.mgh +12(m +M )v 2=12m v 02答案 BD解析 小物块上升到最高点时,速度与楔形物体的速度相同,二者组成的系统在水平方向上动量守恒,全过程机械能也守恒.以向右为正方向,在小物块上升过程中,由水平方向系统动量守恒得m v 0cos θ=(m +M )v ,故A 错误,B 正确;系统机械能守恒,由机械能守恒定律得mgh +12(m +M )v 2=12m v 02,故C 错误,D 正确.7.(2018·广东东莞调研)两名质量相等的滑冰人甲和乙都静止在光滑的水平冰面上.现在,其中一人向另一个人抛出一个篮球,另一人接球后再抛回.如此反复进行几次之后,甲和乙最后的速率关系是( )A.若甲最先抛球,则一定是v 甲>v 乙B.若乙最后接球,则一定是v 甲>v 乙C.只有甲先抛球,乙最后接球,才有v 甲>v 乙D.无论怎样抛球和接球,都是v 甲>v 乙 答案 B8.如图4所示,具有一定质量的小球A 固定在轻杆一端,另一端挂在小车支架的O 点.用手将小球拉至水平,此时小车静止于光滑水平面上,放手让小球摆下与B 处固定的橡皮泥碰击后粘在一起,则在此过程中小车将( )图4A.向右运动B.向左运动C.静止不动D.小球下摆时,车向左运动后又静止答案 D解析水平方向上,系统不受外力,因此在水平方向上动量守恒.小球下落过程中,水平方向具有向右的分速度,因此为保证动量守恒,小车要向左运动.当撞到橡皮泥,是完全非弹性碰撞,A球和小车大小相等、方向相反的动量恰好抵消掉,小车会静止.9.(多选)质量为M和m0的滑块用轻弹簧连接,以恒定的速度v沿光滑水平面运动,与位于正对面的质量为m的静止滑块发生碰撞,如图5所示,碰撞时间极短,在此过程中,下列情况可能发生的是()图5A.M、m0、m速度均发生变化,分别为v1、v2、v3,而且满足(M+m0)v=M v1+m0v2+m v3B.m0的速度不变,M和m的速度变为v1和v2,而且满足M v=M v1+m v2C.m0的速度不变,M和m的速度都变为v′,且满足M v=(M+m)v′D.M、m0、m速度均发生变化,M、m0速度都变为v1,m的速度变为v2,且满足(M+m)v0=(M+m)v1+m v2答案BC解析碰撞的瞬间M和m组成的系统动量守恒,m0的速度在瞬间不变,以M的初速度方向为正方向,若碰后M和m的速度变为v1和v2,由动量守恒定律得:M v=M v1+m v2;若碰后M和m速度相同,由动量守恒定律得:M v=(M+m)v′,故B、C正确.10.(2018·陕西榆林质检)如图6所示,质量为m2=2 kg和m3=3 kg的物体静止放在光滑水平面上,两者之间有压缩着的轻弹簧(与m2、m3不拴接).质量为m1=1 kg的物体以速度v0=9 m/s向右冲来,为防止冲撞,释放弹簧将m3物体发射出去,m3与m1碰撞后粘合在一起.试求:图6(1)m3的速度至少为多大,才能使以后m3和m2不发生碰撞(2)为保证m3和m2恰好不发生碰撞,弹簧的弹性势能至少为多大答案 (1)1 m/s (2)3.75 J解析 (1)设m 3发射出去的速度为v 1,m 2的速度为v 2,以向右的方向为正方向,对m 2、m 3,由动量守恒定律得:m 2v 2-m 3v 1=0.只要m 1和m 3碰后速度不大于v 2,则m 3和m 2就不会再发生碰撞,m 3和m 2恰好不相撞时,两者速度相等.对m 1、m 3,由动量守恒定律得: m 1v 0-m 3v 1=(m 1+m 3)v 2 解得:v 1=1 m/s即弹簧将m 3发射出去的速度至少为 1 m/s (2)对m 2、m 3及弹簧,由机械守恒定律得: E p =12m 3v 12+12m 2v 22=3.75 J.11.如图7所示,光滑水平轨道右边与墙壁连接,木块A 、B 和半径为0.5 m 的14光滑圆轨道C静置于光滑水平轨道上,A 、B 、C 质量分别为1.5 kg 、0.5 kg 、4 kg.现让A 以6 m /s 的速度水平向右运动,之后与墙壁碰撞,碰撞时间为0.3 s ,碰后速度大小变为4 m/s.当A 与B 碰撞后会立即粘在一起运动,已知g =10 m/s 2,求:图7(1)A 与墙壁碰撞过程中,墙壁对木块A 平均作用力的大小; (2)AB 第一次滑上圆轨道所能达到的最大高度h . 答案 (1)50 N (2)0.3 m解析 (1)A 与墙壁碰撞过程,规定水平向左为正方向,对A 由动量定理有: Ft =m A v 2-m A (-v 1) 解得F =50 N(2)A 与B 碰撞过程,对A 、B 系统,水平方向动量守恒有: m A v 2=(m B +m A )v 3AB 第一次滑上圆轨道到最高点的过程,对A 、B 、C 组成的系统,水平方向动量守恒有: (m B +m A )v 3=(m B +m A +m C )v 4 由能量关系:12(m B +m A )v 32=12(m B +m A +m C )v 42+(m B +m A )gh 解得h =0.3 m.。

备考2025届高考物理一轮复习讲义第七章动量守恒定律第2讲动量守恒定律及应用考点3人船模型

备考2025届高考物理一轮复习讲义第七章动量守恒定律第2讲动量守恒定律及应用考点3人船模型

考点3 人船模型1.人船模型问题如图所示,两个原来静止的物体发生相互作用时,若所受外力的矢量和为零,则动量守恒.在相互作用的过程中,任一时刻两物体的速度大小之比等于质量的反比.2.人船模型的特点(1)两物体满意动量守恒定律:m1v1-m2v2=0.(2)运动特点:人动船动,人静船静,人快船快,人慢船慢,人左船右;人船位移比等于它们质量的反比;人船平均速度(瞬时速度)比等于它们质量的反比,即x1 x2=v1v2=m2m1.(3)应用x1x2=v1v2=m2m1时要留意:v1、v2和x1、x2一般都是相对地面而言的.3.“人船模型”的拓展研透高考明确方向6.[人船模型]有一只小船停靠在湖边码头,小船又窄又长.一位同学想用一个卷尺粗略测定它的质量.他进行了如下操作:首先将船平行于码头自由停岸,轻轻从船尾上船,走到船头停下,而后轻轻下船.用卷尺测出船后退的距离d,然后用卷尺测出船长L.已知他的自身质量为m,水的阻力不计,则船的质量为(B)A.m(L+d)d B.m(L-d)dC.mLd D.m(L+d)L解析设船的质量为M,人走动的时候船的平均速度为v,人的平均速度为v',人从船尾走到船头用时为t,人的位移为L-d,船的位移为d,所以v=dt ,v'=L−dt.以船后退的方向为正方向,依据动量守恒定律有Mv-mv'=0,可得M dt =m(L−d)t,小船的质量为M=m(L−d)d,故B正确.7.[“人船模型”的拓展/2024云南曲靖模拟/多选]如图所示,一半圆槽滑块的质量为M,半圆槽半径为R,滑块静止在光滑水平桌面上,一质量为m的小型机器人(可视为质点)置于半圆槽的A端,在无线遥控器限制下,小型机器人从半圆槽A端移动到B端.下列说法正确的是(CD)A.小型机器人与滑块组成的系统动量守恒B.滑块运动的距离为MRM+mC.滑块与小型机器人运动的水平距离之和为2RD.小型机器人运动的位移是滑块的Mm倍解析小型机器人和滑块组成的系统只在水平方向动量守恒,A错误;小型机器人从A端移动到B端的过程中,由水平方向动量守恒得mx1=Mx2,依据位移关系有x1+x2=2R,可得小型机器人和滑块移动的距离分别为x1=2MRM+m ,x2=2mRM+m,即小型机器人运动的位移与滑块运动的位移之比为x1x2=Mm,故B错误,C、D正确.。

高三物理一轮复习精品学案:动量守恒定律及“三类模型”问题

高三物理一轮复习精品学案:动量守恒定律及“三类模型”问题

第2讲动量守恒定律及“三类模型”问题一、动量守恒定律1.内容如果一个系统不受外力,或者所受外力的矢量和为零,这个系统的总动量保持不变.2.表达式(1)p=p′,系统相互作用前总动量p等于相互作用后的总动量p′.(2)m1v1+m2v2=m1v1′+m2v2′,相互作用的两个物体组成的系统,作用前的动量和等于作用后的动量和.(3)Δp1=-Δp2,相互作用的两个物体动量的变化量等大反向.(4)Δp=0,系统总动量的增量为零.3.适用条件(1)理想守恒:不受外力或所受外力的合力为零.(2)近似守恒:系统内各物体间相互作用的内力远大于它所受到的外力.(3)某一方向守恒:如果系统在某一方向上所受外力的合力为零,则系统在这一方向上动量守恒.自测1关于系统动量守恒的条件,下列说法正确的是()A.只要系统内存在摩擦力,系统动量就不可能守恒B.只要系统中有一个物体具有加速度,系统动量就不守恒C.只要系统所受的合外力为零,系统动量就守恒D.系统中所有物体的加速度为零时,系统的总动量不一定守恒答案 C二、碰撞、反冲、爆炸1.碰撞(1)定义:相对运动的物体相遇时,在极短的时间内它们的运动状态发生显著变化,这个过程就可称为碰撞.(2)特点:作用时间极短,内力(相互碰撞力)远大于外力,总动量守恒.(3)碰撞分类①弹性碰撞:碰撞后系统的总动能没有损失.②非弹性碰撞:碰撞后系统的总动能有损失.③完全非弹性碰撞:碰撞后合为一体,机械能损失最大.2.反冲(1)定义:当物体的一部分以一定的速度离开物体时,剩余部分将获得一个反向冲量,这种现象叫反冲运动.(2)特点:系统内各物体间的相互作用的内力远大于系统受到的外力.实例:发射炮弹、爆竹爆炸、发射火箭等.(3)规律:遵从动量守恒定律.3.爆炸问题爆炸与碰撞类似,物体间的相互作用时间很短,作用力很大,且远大于系统所受的外力,所以系统动量守恒.自测2如图1所示,两滑块A、B在光滑水平面上沿同一直线相向运动,滑块A的质量为m,速度大小为2v0,方向向右,滑块B的质量为2m,速度大小为v0,方向向左,两滑块发生弹性碰撞后的运动状态是()图1A.A和B都向左运动B.A和B都向右运动C.A静止,B向右运动D.A向左运动,B向右运动答案 D解析以两滑块组成的系统为研究对象,两滑块碰撞过程动量守恒,由于初始状态系统的动量为零,所以碰撞后两滑块的动量之和也为零,所以A、B的运动方向相反或者两者都静止,而碰撞为弹性碰撞,碰撞后两滑块的速度不可能都为零,则A应该向左运动,B应该向右运动,选项D正确,A、B、C错误.命题点一动量守恒定律的理解和基本应用例1(多选)如图2所示,A、B两物体质量之比m A∶m B=3∶2,原来静止在平板小车C上,A、B间有一根被压缩的弹簧,地面光滑,当弹簧突然释放后,则()图2A.若A、B与平板车上表面间的动摩擦因数相同,A、B组成的系统的动量守恒B.若A、B与平板车上表面间的动摩擦因数相同,A、B、C组成的系统的动量守恒C.若A、B所受的摩擦力大小相等,A、B组成的系统的动量守恒D.若A、B所受的摩擦力大小相等,A、B、C组成的系统的动量守恒答案BCD解析如果A、B与平板车上表面的动摩擦因数相同,弹簧释放后,A、B分别相对小车向左、向右滑动,它们所受的滑动摩擦力F f A向右、F f B向左,由于m A∶m B=3∶2,所以F f A∶F f B =3∶2,则A、B组成的系统所受的外力之和不为零,故其动量不守恒,A选项错误;对A、B、C组成的系统,A、B与C间的摩擦力为内力,该系统所受的外力为竖直方向的重力和支持力,它们的合力为零,故该系统的动量守恒,与平板车间的动摩擦因数或摩擦力是否相等无关,故B、D选项正确;若A、B所受的摩擦力大小相等,则A、B组成的系统的外力之和为零,故其动量守恒,C选项正确.例2(2017·全国卷Ⅰ·14)将质量为1.00kg的模型火箭点火升空,50g燃烧的燃气以大小为600m/s的速度从火箭喷口在很短时间内喷出.在燃气喷出后的瞬间,火箭的动量大小为(喷出过程中重力和空气阻力可忽略)()A.30kg·m/sB.5.7×102 kg·m/sC.6.0×102kg·m/sD.6.3×102 kg·m/s答案 A解析设火箭的质量为m1,燃气的质量为m2.由题意可知,燃气的动量p2=m2v2=50×10-3×600kg·m/s=30 kg·m/s.以火箭运动的方向为正方向,根据动量守恒定律可得,0=m1v1-m2v2,则火箭的动量大小为p1=m1v1=m2v2=30kg·m/s,所以A正确,B、C、D错误.变式1 两磁铁各放在两辆小车上,小车能在水平面上无摩擦地沿同一直线运动.已知甲车和磁铁的总质量为0.5kg ,乙车和磁铁的总质量为1kg ,两磁铁的N 极相对.推动一下,使两车相向运动,某时刻甲的速率为2m /s ,乙的速率为3 m/s ,方向与甲相反,两车运动过程中始终未相碰.则: (1)两车最近时,乙的速度为多大? (2)甲车开始反向时,乙的速度为多大? 答案 (1)43m /s (2)2 m/s解析 (1)两车相距最近时,两车的速度相同,设该速度为v ,取刚开始运动时乙车的速度方向为正方向,由动量守恒定律得m 乙v 乙-m 甲v 甲=(m 甲+m 乙)v 所以两车最近时,乙车的速度为v =m 乙v 乙-m 甲v 甲m 甲+m 乙=1×3-0.5×20.5+1m/s =43m/s.(2)甲车开始反向时,其速度为0,设此时乙车的速度为v 乙′,取刚开始运动时乙车的速度方向为正方向,由动量守恒定律得 m 乙v 乙-m 甲v 甲=m 乙v 乙′ 解得v 乙′=2m/s命题点二 碰撞模型问题1.碰撞遵循的三条原则 (1)动量守恒定律 (2)机械能不增加E k1+E k2≥E k1′+E k2′或p 122m 1+p 222m 2≥p 1′22m 1+p 2′22m 2(3)速度要合理①同向碰撞:碰撞前,后面的物体速度大;碰撞后,前面的物体速度大(或相等). ②相向碰撞:碰撞后两物体的运动方向不可能都不改变. 2.弹性碰撞讨论 (1)碰后速度的求解 根据动量守恒和机械能守恒⎩⎪⎨⎪⎧m 1v 1+m 2v 2=m 1v 1′+m 2v 2′ ①12m 1v 12+12m 2v 22=12m 1v 1′2+12m 2v 2′2② 解得v 1′=(m 1-m 2)v 1+2m 2v 2m 1+m 2v 2′=(m 2-m 1)v 2+2m 1v 1m 1+m 2(2)分析讨论:当碰前物体2的速度不为零时,若m 1=m 2,则v 1′=v 2,v 2′=v 1,即两物体交换速度. 当碰前物体2的速度为零时,v 2=0,则: v 1′=(m 1-m 2)v 1m 1+m 2,v 2′=2m 1v 1m 1+m 2,①m 1=m 2时,v 1′=0,v 2′=v 1,碰撞后两物体交换速度. ②m 1>m 2时,v 1′>0,v 2′>0,碰撞后两物体沿同方向运动. ③m 1<m 2时,v 1′<0,v 2′>0,碰撞后质量小的物体被反弹回来.例3 (多选)两个小球A 、B 在光滑水平面上相向运动,已知它们的质量分别是m 1=4kg ,m 2=2kg ,A 的速度v 1=3m /s(设为正),B 的速度v 2=-3 m /s ,则它们发生正碰后,其速度可能分别是( ) A.均为1m /s B.+4 m/s 和-5m/s C.+2m /s 和-1 m/sD.-1m /s 和5 m/s答案 AD解析 由动量守恒,可验证四个选项都满足要求.再看动能情况E k =12m 1v 12+12m 2v 22=12×4×9J +12×2×9J =27JE k ′=12m 1v 1′2+12m 2v 2′2由于碰撞过程动能不可能增加,所以应有E k ≥E k ′,可排除选项B.选项C 虽满足E k ≥E k ′,但A 、B 沿同一直线相向运动,发生碰撞后各自仍能保持原来的速度方向(v A ′>0,v B ′<0),这显然是不符合实际的,因此C 错误.验证选项A 、D 均满足E k ≥E k ′,故答案为选项A(完全非弹性碰撞)和选项D(弹性碰撞).例4 (2016·全国卷Ⅲ·35(2))如图3所示,水平地面上有两个静止的小物块a 和b ,其连线与墙垂直;a 和b 相距l ,b 与墙之间也相距l ;a 的质量为m ,b 的质量为34m .两物块与地面间的动摩擦因数均相同.现使a 以初速度v 0向右滑动.此后a 与b 发生弹性碰撞,但b 没有与墙发生碰撞.重力加速度大小为g .求物块与地面间的动摩擦因数满足的条件.图3答案 32v 02113gl ≤μ<v 022gl解析 设物块与地面间的动摩擦因数为μ.若要物块a 、b 能够发生碰撞,应有12m v 02>μmgl ① 即μ<v 022gl②设在a 、b 发生弹性碰撞前的瞬间,a 的速度大小为v 1.由能量守恒定律得 12m v 02=12m v 12+μmgl③设在a 、b 碰撞后的瞬间,a 、b 的速度大小分别为v 1′、v 2′,以向右为正方向,由动量守恒和能量守恒有 m v 1=m v 1′+34m v 2′④ 12m v 12=12m v 1′2+12×34m v 2′2⑤联立④⑤式解得 v 2′=87v 1⑥由题意,b 没有与墙发生碰撞,由功能关系可知 12×34m v 2′2≤μ·3m 4gl ⑦联立③⑥⑦式,可得μ≥32v02113gl⑧联立②⑧式得,a与b发生弹性碰撞,但b没有与墙发生碰撞的条件为32v02 113gl≤μ<v022gl.变式2(2015·全国卷Ⅰ·35(2))如图4所示,在足够长的光滑水平面上,物体A、B、C位于同一直线上,A位于B、C之间.A的质量为m,B、C的质量都为M,三者均处于静止状态.现使A以某一速度向右运动,求m和M之间应满足什么条件,才能使A只与B、C各发生一次碰撞.设物体间的碰撞都是弹性的.图4答案 (5-2)M ≤m <M解析 设A 运动的初速度为v 0,A 向右运动与C 发生碰撞,以向右为正方向,由动量守恒定律得m v 0=m v 1+M v 2由机械能守恒定律得12m v 02=12m v 12+12M v 22可得v 1=m -M m +M v 0,v 2=2mm +Mv 0要使得A 与B 能发生碰撞,需要满足v 1<0,即m <M A 反向向左运动与B 发生碰撞过程,有 m v 1=m v 3+M v 4 12m v 12=12m v 32+12M v 42 整理可得v 3=m -M m +M v 1,v 4=2m m +Mv 1由于m <M ,所以A 还会向右运动,根据要求不发生第二次碰撞,需要满足v 3≤v 2 即2mm +M v 0≥M -m m +M v 1=(m -M m +M)2v 0 整理可得m 2+4Mm ≥M 2解方程可得m≥(5-2)M另一解m≤-(5+2)M舍去所以使A只与B、C各发生一次碰撞,须满足(5-2)M≤m<M拓展点1“滑块—弹簧”碰撞模型例5如图5所示,质量M=4kg的滑板B静止放在光滑水平面上,其右端固定一根水平轻质弹簧,弹簧的自由端C到滑板左端的距离L=0.5m,这段滑板与木块A(可视为质点)之间的动摩擦因数μ=0.2,而弹簧自由端C到弹簧固定端D所对应的滑板上表面光滑.木块A以速度v0=10m/s由滑板B左端开始沿滑板B上表面向右运动.已知木块A的质量m=1 kg,g取10 m/s2.求:图5(1)弹簧被压缩到最短时木块A的速度大小;(2)木块A压缩弹簧过程中弹簧的最大弹性势能.答案(1)2m/s(2)39J解析(1)弹簧被压缩到最短时,木块A与滑板B具有相同的速度,设为v,从木块A开始沿滑板B上表面向右运动至弹簧被压缩到最短的过程中,整体动量守恒,以向右为正方向,则m v0=(M+m)v解得v=mM+mv0代入数据得木块A的速度v=2m/s(2)在木块A压缩弹簧过程中,弹簧被压缩到最短时,弹簧的弹性势能最大,由能量关系知,最大弹性势能为E pm=12m v02-12(m+M)v2-μmgL代入数据得E pm=39J.拓展点2“滑块—平板”碰撞模型例6如图6所示,质量m1=0.3kg的小车静止在光滑的水平面上,车长L=1.5m,现有质量m2=0.2kg可视为质点的物块,以水平向右的速度v0=2m/s从左端滑上小车,最后在车面上某处与小车保持相对静止.物块与车面间的动摩擦因数μ=0.5,取g=10 m/s2,求:图6(1)物块与小车共同速度大小; (2)物块在车面上滑行的时间t ; (3)小车运动的位移大小x ;(4)要使物块不从小车右端滑出,物块滑上小车左端的速度v 0′不超过多少?答案 (1)0.8m /s (2)0.24 s (3)0.096 m (4)5 m/s解析 (1)设物块与小车共同速度为v ,以水平向右为正方向,根据动量守恒定律:m 2v 0=(m 1+m 2)v 解得v =0.8m/s(2)设物块与车面间的滑动摩擦力为F f ,对物块应用动量定理: -F f t =m 2v -m 2v 0 又F f =μm 2g 解得:t =v 0-vμg代入数据得t =0.24s(3)对小车应用动能定理:μm 2gx =12m 1v 2解得x =0.096m(4)要使物块恰好不从小车右端滑出,须使物块运动到小车右端时与小车有共同的速度,设其为v ′,以水平向右为正方向,则:m2v0′=(m1+m2)v′由系统能量守恒有:12=12(m1+m2)v′2+μm2gL2m2v0′代入数据解得v0′=5m/s故要使物块不从小车右端滑出,物块滑上小车左端的速度v0′不超过5m/s.拓展点3“滑块—斜面”碰撞模型例7(2016·全国卷Ⅱ·35(2))如图7所示,光滑冰面上静止放置一表面光滑的斜面体,斜面体右侧一蹲在滑板上的小孩和其面前的冰块均静止于冰面上.某时刻小孩将冰块以相对冰面3m/s的速度向斜面体推出,冰块平滑地滑上斜面体,在斜面体上上升的最大高度为h=0.3 m(h小于斜面体的高度).已知小孩与滑板的总质量为m1=30 kg,冰块的质量为m2=10 kg,小孩与滑板始终无相对运动.取重力加速度的大小g=10 m/s2.图7(1)求斜面体的质量;(2)通过计算判断,冰块与斜面体分离后能否追上小孩?答案(1)20kg(2)不能,理由见解析解析(1)规定向左为速度正方向.冰块在斜面体上上升到最大高度时两者达到共同速度,设此共同速度为v,斜面体的质量为m3.由水平方向动量守恒和机械能守恒定律得m2v0=(m2+m3)v ①12=12(m2+m3)v2+m2gh ②2m2v0式中v0=3m/s为冰块推出时的速度.联立①②式并代入题给数据得m3=20kg ③(2)设小孩推出冰块后的速度为v1,由动量守恒定律有m1v1+m2v0=0 ④代入数据得v1=-1m/s ⑤设冰块与斜面体分离后的速度分别为v2和v3,由动量守恒和机械能守恒定律有m2v0=m2v2+m3v3 ⑥12=12m2v22+12m3v32⑦2m2v0联立③⑥⑦式并代入数据得v 2=-1m/s⑧由于冰块与斜面体分离后的速度与小孩推出冰块后的速度相同且处在后方,故冰块不能追上小孩.命题点三 “人船模型”问题1.特点⎩⎪⎨⎪⎧(1)两个物体(2)动量守恒(3)总动量为零2.方程m 1v 1-m 2v 2=0(v 1、v 2为速度大小) 3.结论m 1x 1=m 2x 2(x 1、x 2为位移大小)例8长为L、质量为M的小船停在静水中,一个质量为m的人立在船头,若不计水的阻力和空气阻力,当人从船头走到船尾的过程中,船和人对地面的位移各是多少?答案见解析解析选人和船组成的系统为研究对象,因系统在水平方向不受力,所以动量守恒,人未走时系统的总动量为零.当人起步加速前进时,船同时加速后退;当人匀速前进时,船匀速后退;当人减速前进时,船减速后退;当人速度为零时,船速度也为零.设某时刻人对地的速率为v 1,船对地的速率为v 2,以人运动的方向为正方向,根据动量守恒定律得 m v 1-M v 2=0①因为在人从船头走到船尾的整个过程中时刻满足动量守恒,对①式两边同乘以Δt ,得 mx 1-Mx 2=0②②式为人对地的位移和船对地的位移关系.由图还可看出: x 1+x 2=L③联立②③两式得x 1=M M +m L ,x 2=mM +mL变式3如图8所示,质量为M的气球下挂着长为L的绳梯,一质量为m的人站在绳梯的下端,人和气球静止在空中,人从绳梯的下端往上爬到顶端时,人和气球相对于地面移动的距离分别是多少?(不计空气阻力)图8答案见解析解析由于人和气球组成的系统静止在空中,竖直方向系统所受外力之和为零即系统竖直方向总动量守恒.设某时刻人对地的速率为v1,气球对地的速率为v2,以人运动的方向为正方向,根据动量守恒定律得m v1-M v2=0 ①因为在人从绳梯的下端爬到顶端的整个过程中时刻满足动量守恒定律,对①式两边同乘以Δt,可得mx=My ②由题意知x+y=L ③联立②③得x=Mm+MLy=mm+ML即人相对于地面移动的距离是MM+mL.气球相对于地面移动的距离是mM+mL.命题点四“子弹打木块”模型问题1.木块放在光滑水平面上,子弹水平打进木块,系统所受的合外力为零,因此动量守恒.2.两者发生的相对位移为子弹射入的深度x相.3.根据能量守恒定律,系统损失的动能等于系统增加的内能.4.系统产生的内能Q=F f·x相,即两物体由于相对运动而摩擦产生的热(机械能转化为内能),等于摩擦力大小与两物体相对滑动的路程的乘积.5.当子弹速度很大时,可能射穿木块,这时末状态子弹和木块的速度大小不再相等,但穿透过程中系统的动量仍守恒,系统损失的动能为ΔE k=F f·L(L为木块的长度).例9 一质量为M 的木块放在光滑的水平面上,一质量为m 的子弹以初速度v 0水平打进木块并留在其中,设子弹与木块之间的相互作用力为F f .则:(1)子弹、木块相对静止时的速度是多少? (2)子弹在木块内运动的时间为多长?(3)子弹、木块相互作用过程中子弹、木块发生的位移以及子弹打进木块的深度分别是多少? (4)系统损失的机械能、系统增加的内能分别是多少? (5)要使子弹不射出木块,木块至少多长? 答案 (1)m M +m v 0 (2)Mm v 0F f (M +m )(3)Mm (M +2m )v 022F f (M +m )2 Mm 2v 022F f (M +m )2 Mm v 022F f (M +m )(4)Mm v 022(M +m ) Mm v 022(M +m ) (5)Mm v 022F f (M +m )解析 (1)设子弹、木块相对静止时的速度为v ,以子弹初速度的方向为正方向,由动量守恒定律得 m v 0=(M +m )v 解得v =mM +mv 0(2)设子弹在木块内运动的时间为t ,由动量定理得 对木块:F f t =M v -0 解得t =Mm v 0F f (M +m )(3)设子弹、木块发生的位移分别为x 1、x 2,如图所示,由动能定理得 对子弹:-F f x 1=12m v 2-12m v 02解得:x 1=Mm (M +2m )v 022F f (M +m )2对木块:F f x 2=12M v 2解得:x 2=Mm 2v 022F f (M +m )2子弹打进木块的深度等于相对位移,即x 相=x 1-x 2=Mm v 022F f (M +m )(4)系统损失的机械能为E 损=12m v 02-12(M +m )v 2=Mm v 022(M +m )系统增加的内能为Q =F f ·x 相=Mm v 022(M +m )系统增加的内能等于系统损失的机械能 (5)假设子弹恰好不射出木块,此时有 F f L =12m v 02-12(M +m )v 2解得L =Mm v 022F f (M +m )因此木块的长度至少为Mm v 022F f (M +m ).变式4(2018·青海平安模拟)如图9所示,质量为高三物理一轮复习31 2m 、长为L 的木块置于光滑水平面上,质量为m 的子弹以初速度v 0水平向右射向木块,穿过木块的过程中受到木块的恒定阻力为F f =5m v 0216L,试问子弹能否穿过木块?若能穿过,求出子弹穿过木块后两者的速度;若不能穿过,求出子弹打入木块后两者的速度.图9答案 见解析解析 设子弹能穿过木块,穿过木块后子弹的速度为v 1,木块的速度为v 2,以子弹初速度的方向为正方向,根据动量守恒定律得m v 0=m v 1+2m v 2① 根据能量守恒定律得5m v 0216L L =12m v 02-12m v 12-12×2m v 22 ②由①②式解得v 1=v 02或v 1=v 06将v 1=v 06代入①式,得v 2=512v 0>v 1(舍去) 将v 1=v 02代入①式,得v 2=14v 0<v 1 所以假设成立,即子弹能穿过木块,穿过木块后的速度为12v 0,木块的速度为14v 0.。

2020版高考物理课时检测(三十六)应用动量守恒定律解决三类典型问题(重点突破课)

2020版高考物理课时检测(三十六)应用动量守恒定律解决三类典型问题(重点突破课)

应用动量守恒定律解决三类典型问题(重点突破课)1.如图所示小船静止于水面上,站在船尾上的人不断将鱼抛向船头的船舱内,将一定质量的鱼抛完后,关于小船的速度和位移,下列说法正确的是( )A .向左运动,船向左移一些B .小船静止,船向左移一些C .小船静止,船向右移一些D .小船静止,船不移动解析:选C 人、船、鱼构成的系统水平方向动量守恒,据“人船模型”,鱼动船动,鱼停船静止;鱼对地发生向左的位移,则人、船的位移向右。

故选项C 正确。

2.(2019·泉州检测)有一个质量为3m 的爆竹斜向上抛出,到达最高点时速度大小为v 0、方向水平向右,在最高点爆炸成质量不等的两块,其中一块质量为2m ,速度大小为v ,方向水平向右,则另一块的速度是( )A .3v 0-vB .2v 0-3vC .3v 0-2vD .2v 0+v解析:选C 在最高点水平方向动量守恒,由动量守恒定律可知,3mv 0=2mv +mv ′,解得另一块的速度为v ′=3v 0-2v ,C 正确。

3.如图所示,一枚火箭搭载着卫星以速率v0进入太空预定位置,由控制系统使箭体与卫星分离。

已知前部分的卫星质量为m 1,后部分的箭体质量为m 2,分离后箭体以速率v 2沿火箭原方向飞行,若忽略空气阻力及分离前后系统质量的变化,则分离后卫星的速率v 1为( )A .v 0-v 2B .v 0+v 2C .v 0-m 2m 1v 2 D .v 0+m 2m 1(v 0-v 2) 解析:选D 火箭和卫星组成的系统,在分离前后沿原运动方向上动量守恒,由动量守恒定律有:(m 1+m 2)v 0=m 1v 1+m 2v 2,解得:v 1=v 0+m 2m 1(v 0-v 2),D 项正确。

4.将静置在地面上,质量为M (含燃料)的火箭模型点火升空,在极短时间内,以相对地面的速度v 0竖直向下喷出质量为m 的炽热气体。

忽略喷气过程中重力和空气阻力的影响,则喷气结束时火箭模型获得的速度大小是( )A.m M v 0B.M m v 0C.M M -m v 0D.mM -m v 0解析:选D 根据动量守恒定律mv 0=(M -m )v ,得v =mM -m v 0,选项D 正确。

2019年高考物理复习:动量守恒定律的典型模型

2019年高考物理复习:动量守恒定律的典型模型
m=1.0kg
C
v0 =2.0m/s
A
B
M=2.0kg
M=2.0kg
解:先假设小物块C 在木板B上移动距离 x 后,停在B上.这 时A、B、C 三者的速度相等,设为V. 由动量守恒得
mv0 (m 2M )V

1 1 2 2 由功能关系得 mg ( s x) mV mv 0 2 2 1 1 2 2 mgx (m 2M )V mv 0
ABD
碰撞中弹簧模型
例10:如图所示,质量为m的小物体B连着轻弹簧 静止于光滑水平面上,质量为2m的小物体A以速 度v0向右运动,则(1)当弹簧被压缩到最短时, 弹性势能Ep为多大? (2)若小物体B右侧固定一挡板,在小物体A与 弹簧分离前使小物体B与挡板发生无机械能损失 的碰撞,并在碰撞后立即将挡板撤去,则碰撞前 小物体B的速度为多大,方可使弹性势能最大值 为2.5Ep?
m s1 = M s2 s1 + s 2 = L
---------------- ①
-----------②
结论: 人船对地位移为将二者相对位移按质量反比分配关系
M s人 L mM
m s船 L mM
1、“人船模型”是动量守恒定律的拓展应用, 它把速度和质量的关系推广到质量和位移 的关系。即: m1v1=m2v2 则:m1s1= m2s2 2、此结论与人在船上行走的速度大小无关。不论

• • • •
P215 新题快递. 例8.在一个足够大的光滑平面内,有两质量相同的 木块A、B,中间用一轻质弹簧相连.如图所示.用 一水平恒力F拉B,A、B一起经过一定时间的匀加 速直线运动后撤去力F.撤去力F后,A、B两物体 的情况足( ). (A)在任意时刻,A、B两物体的加速度大小相等 (B)弹簧伸长到最长时,A、B的动量相等 (C)弹簧恢复原长时,A、B的动量相等 (D)弹簧压缩到最短时,系统的总动能最小

动量守恒定律及“三类模型”问题

动量守恒定律及“三类模型”问题
mv1-Mv2=0 ①
变式
如图8所示,质量为M的气球下挂着长为 L的绳梯,一质量为 m的
人站在绳梯的下端,人和气球静止在空中,人从绳梯的下端往上爬到顶 端时,人和气球相对于地面移动的距离分别是多少?(不计空气阻力)
答案 见解析
图8
解析
由于人和气球组成的系统静止在空中,竖直方向系统所受外力之和
为零即系统竖直方向总动量守恒. 设某时刻人对地的速率为v1,气球对地的速率为v2,以人运动的方向为正方 向,根据动量守恒定律得
解析
选人和船组成的系统为研究对象,因系统在水平方向不受力,
所以动量守恒,人未走时系统的总动量为零.当人起步加速前进时,船 同时加速后退;
当人匀速前进时,船匀速后退;当人减速前进时,船减 速后退;当人速度为零时,船速度也为零.设某时刻人对地的速率为v1,
船对地的速率为v2,以人运动的方向为正方向,根据动量守恒定律得
爆炸与碰撞类似,物体间的相互作用时间很短,作用力很大,且远大于 ______系
统所受的外力,所以系统动量 守恒 .
自测2
如图1所示,两滑块A、B在光滑水平面上沿同一直线相向运动,
滑块A的质量为 m,速度大小为2v0,方向向右,滑块B的质量为2m,速
度大小为v0,方向向左,两滑块发生弹性碰撞后的运动状态是 A.A和B都向左运动 B.A和B都向右运动 C.A静止,B向右运动 D.A向左运动,B向右运动 √ 图1
研透命题点
命题点一 动量守恒定律的理解和基本应用
例1 (多选)如图2所示,A、B两物体质量之比mA∶mB =3∶2,原来静止在平板小车C上,A、B间有一根 被压缩的弹簧,地面光滑,当弹簧突然释放后,则 守恒
图2 A.若A、B与平板车上表面间的动摩擦因数相同,A、B组成的系统的动量

知识点48动量守恒定律在三类模型问题中的应用(拔尖)

知识点48动量守恒定律在三类模型问题中的应用(拔尖)

学问点48:动量守恒定律在三类模型问题中的应用考点一:系统动量守恒的推断【学问思维方法技巧】〔1〕系统动量守恒适用条件①抱负守恒:不受外力或所受外力的合力为零.②近似守恒:系统内各物体间相互作用的内力远大于它所受到的外力.如碰撞、爆炸、反冲。

③某一方向守恒:假如系统在某一方向上所受外力的合力为零,那么系统在这一方向上动量守恒.如滑块-斜面(曲面)模型。

〔2〕推断系统动量是否守恒的“三留意〞:①留意所选取的系统——所选的系统组成不同,结论往往不同。

②留意所讨论的运动过程——系统的运动分为多个过程时,有的过程动量守恒,另一过程那么可能不守恒。

③留意守恒条件——整体不满意系统动量守恒条件时,在某一方向可能满意动量守恒条件。

题型一:系统动量抱负守恒【典例1拔尖题】(多项选择)如下图,一男孩站在小车上,并和木箱一起在光滑的水平冰面上向右匀速运动,木箱与小车挨得很近.现男孩用力向右快速推开木箱.在男孩推开木箱的过程中,以下说法正确的选项是( )A. 木箱的动量的增加量等于男孩动量的削减量B. 男孩对木箱推力的冲量大小等于木箱对男孩推力的冲量大小C. 男孩推开木箱后,男孩和小车的速度可能变为零D. 对于小车、男孩和木箱组成的系统,推开木箱前后的总动能不变【典例1拔尖题】【答案】BC【解析】由于水平冰面光滑,男孩、小车和木箱组成的系统所受合外力为零,系统动量守恒,站在小车上的男孩用力向右快速推出木箱的过程中,木箱的动量增加量等于男孩和小车动量的削减量,故A错误;男孩对木箱的推力和木箱对男孩的推力是作用力与反作用力,冲量等大反向,男孩对木箱推力的冲量大小等于木箱对男孩推力的冲量大小,故B正确;男孩、小车受到与初动量反向的冲量,推开木箱后,男孩和小车的速度可能变为零,故C 正确;男孩、小车与木箱三者组成的系统所受合力为零,系统动量守恒,推开木箱的过程不行能是弹性碰撞,推开前后的总动能变化,故D错误.题型二:系统动量近似守恒【典例2拔尖题】如下图,水平面上有一平板车,某人站在车上抡起锤子从与肩等高处挥下,打在车的左端,打后车与锤相对静止。

电磁感应中的“三类模型问题”

电磁感应中的“三类模型问题”

第2讲|电磁感应中的“三类模型问题”┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄考法学法电磁感应的动力学和能量问题是历年高考的热点和难点,考查的题型一般包括“单杆”模型、“双杆”模型或“导体框”模型,考查的内容有:①匀变速直线运动规律;②牛顿运动定律;③功能关系;④能量守恒定律;⑤动量守恒定律。

解答这类问题时要注意从动力学和能量角度去分析,根据运动情况和能量变化情况分别列式求解。

用到的思想方法有:①整体法和隔离法;②全程法和分阶段法;③条件判断法;④临界问题的分析方法;⑤守恒思想;⑥分解思想。

模型(一)电磁感应中的“单杆”模型类型1“单杆”——水平式物理模型匀强磁场与导轨垂直,磁感应强度为B,导轨间距为L,导体棒ab的质量为m,初速度为零,拉力恒为F,水平导轨光滑,除电阻R外,其他电阻不计动态分析设运动过程中某时刻测得导体棒ab的速度为v,由牛顿第二定律知导体棒ab的加速度为a=Fm-B2L2vmR,a、v同向,随速度的增加,导体棒ab的加速度a减小,当a=0时,v最大,I=BL v mR不再变化收尾状态运动形式匀速直线运动力学特征受力平衡,a=0 电学特征I不再变化[例1](2018·安徽联考)如图所示,光滑平行金属导轨P Q、MN固定在光滑绝缘水平面上,导轨左端连接有阻值为R的定值电阻,导轨间距为L,有界匀强磁场的磁感应强度大小为B、方向竖直向上,边界ab、cd均垂直于导轨,且间距为s,e、f分别为ac、bd的中点,将一长度为L、质量为m、阻值也为R的金属棒垂直导轨放置在ab左侧12s处。

现给金属棒施加一个大小为F、方向水平向右的恒力,使金属棒从静止开始向右运动,金属棒向右运动过程中始终垂直于导轨并与导轨接触良好。

当金属棒运动到ef位置时,加速度刚好为零,不计其他电阻。

求:(1)金属棒运动到ef 位置时的速度大小;(2)金属棒从初位置运动到ef 位置,通过金属棒的电荷量; (3)金属棒从初位置运动到ef 位置,定值电阻R 上产生的焦耳热。

高考物理动量守恒定律常见题型及答题技巧及练习题(含答案)

高考物理动量守恒定律常见题型及答题技巧及练习题(含答案)

高考物理动量守恒定律常见题型及答题技巧及练习题(含答案)一、高考物理精讲专题动量守恒定律1.在图所示足够长的光滑水平面上,用质量分别为3kg 和1kg 的甲、乙两滑块,将仅与甲拴接的轻弹簧压紧后处于静止状态.乙的右侧有一挡板P .现将两滑块由静止释放,当弹簧恢复原长时,甲的速度大小为2m/s ,此时乙尚未与P 相撞.①求弹簧恢复原长时乙的速度大小;②若乙与挡板P 碰撞反弹后,不能再与弹簧发生碰撞.求挡板P 对乙的冲量的最大值. 【答案】v 乙=6m/s. I =8N 【解析】 【详解】(1)当弹簧恢复原长时,设甲乙的速度分别为和,对两滑块及弹簧组成的系统,设向左的方向为正方向,由动量守恒定律可得:又知联立以上方程可得,方向向右。

(2)乙反弹后甲乙刚好不发生碰撞,则说明乙反弹的的速度最大为由动量定理可得,挡板对乙滑块冲量的最大值为:2.水平放置长为L=4.5m 的传送带顺时针转动,速度为v =3m/s ,质量为m 2=3kg 的小球被长为1l m =的轻质细线悬挂在O 点,球的左边缘恰于传送带右端B 对齐;质量为m 1=1kg 的物块自传送带上的左端A 点以初速度v 0=5m/s 的速度水平向右运动,运动至B 点与球m 2发生碰撞,在极短的时间内以碰撞前速率的12反弹,小球向右摆动一个小角度即被取走。

已知物块与传送带间的滑动摩擦因数为μ=0.1,取重力加速度210m/s g =。

求:(1)碰撞后瞬间,小球受到的拉力是多大?(2)物块在传送带上运动的整个过程中,与传送带间摩擦而产生的内能是多少? 【答案】(1)42N (2)13.5J 【解析】 【详解】解:设滑块m1与小球碰撞前一直做匀减速运动,根据动能定理:221111011=22m gL m v m v μ--解之可得:1=4m/s v 因为1v v <,说明假设合理滑块与小球碰撞,由动量守恒定律:21111221=+2m v m v m v - 解之得:2=2m/s v碰后,对小球,根据牛顿第二定律:2222m v F m g l-=小球受到的拉力:42N F =(2)设滑块与小球碰撞前的运动时间为1t ,则()01112L v v t =+ 解之得:11s t =在这过程中,传送带运行距离为:113S vt m == 滑块与传送带的相对路程为:11 1.5X L X m ∆=-=设滑块与小球碰撞后不能回到传送带左端,向左运动最大时间为2t 则根据动量定理:121112m gt m v μ⎛⎫-=-⋅ ⎪⎝⎭解之得:22s t =滑块向左运动最大位移:121122m x v t ⎛⎫=⋅⋅ ⎪⎝⎭=2m 因为m x L <,说明假设成立,即滑块最终从传送带的右端离开传送带 再考虑到滑块与小球碰后的速度112v <v , 说明滑块与小球碰后在传送带上的总时间为22t在滑块与传送带碰撞后的时间内,传送带与滑块间的相对路程22212X vt m ∆==因此,整个过程中,因摩擦而产生的内能是()112Q m g x x μ=∆+∆=13.5J3.如图所示,在倾角为30°的光滑斜面上放置一质量为m 的物块B ,B 的下端连接一轻质弹簧,弹簧下端与挡板相连接,B 平衡时,弹簧的压缩量为x 0,O 点为弹簧的原长位置.在斜面顶端另有一质量也为m 的物块A ,距物块B 为3x 0,现让A 从静止开始沿斜面下滑,A 与B 相碰后立即一起沿斜面向下运动,但不粘连,它们到达最低点后又一起向上运动,并恰好回到O 点(A 、B 均视为质点),重力加速度为g .求:(1)A 、B 相碰后瞬间的共同速度的大小; (2)A 、B 相碰前弹簧具有的弹性势能;(3)若在斜面顶端再连接一光滑的半径R =x 0的半圆轨道PQ ,圆弧轨道与斜面相切 于最高点P ,现让物块A 以初速度v 从P 点沿斜面下滑,与B 碰后返回到P 点还具有向上的速度,则v 至少为多大时物块A 能沿圆弧轨道运动到Q 点.(计算结果可用根式表示) 【答案】20132v gx =014P E mgx =0(2043)v gx =+ 【解析】试题分析:(1)A 与B 球碰撞前后,A 球的速度分别是v 1和v 2,因A 球滑下过程中,机械能守恒,有: mg (3x 0)sin30°=12mv 12 解得:103v gx =…①又因A 与B 球碰撞过程中,动量守恒,有:mv 1=2mv 2…② 联立①②得:21011322v v gx ==(2)碰后,A 、B 和弹簧组成的系统在运动过程中,机械能守恒. 则有:E P +12•2mv 22=0+2mg•x 0sin30° 解得:E P =2mg•x 0sin30°−12•2mv 22=mgx 0−34mgx 0=14mgx 0…③ (3)设物块在最高点C 的速度是v C ,物块A 恰能通过圆弧轨道的最高点C 点时,重力提供向心力,得:2c v mg m R=所以:0c v gR gx ==C点相对于O点的高度:h=2x0sin30°+R+Rcos30°=(43)2+x0…⑤物块从O到C的过程中机械能守恒,得:12mv o2=mgh+12mv c2…⑥联立④⑤⑥得:(53)?ov gx+=…⑦设A与B碰撞后共同的速度为v B,碰撞前A的速度为v A,滑块从P到B的过程中机械能守恒,得:12mv2+mg(3x0sin30°)=12mv A2…⑧A与B碰撞的过程中动量守恒.得:mv A=2mv B…⑨A与B碰撞结束后从B到O的过程中机械能守恒,得:12•2mv B2+E P=12•2mv o2+2mg•x0sin30°…⑩由于A与B不粘连,到达O点时,滑块B开始受到弹簧的拉力,A与B分离.联立⑦⑧⑨⑩解得:33v gx=考点:动量守恒定律;能量守恒定律【名师点睛】分析清楚物体运动过程、抓住碰撞时弹簧的压缩量与A、B到达P点时弹簧的伸长量相等,弹簧势能相等是关键,应用机械能守恒定律、动量守恒定律即可正确解题.4.两个质量分别为0.3Am kg=、0.1Bm kg=的小滑块A、B和一根轻质短弹簧,弹簧的一端与小滑块A粘连,另一端与小滑块B接触而不粘连.现使小滑块A和B之间夹着被压缩的轻质弹簧,处于锁定状态,一起以速度3/v m s=在水平面上做匀速直线运动,如题8图所示.一段时间后,突然解除锁定(解除锁定没有机械能损失),两滑块仍沿水平面做直线运动,两滑块在水平面分离后,小滑块B冲上斜面的高度为 1.5h m=.斜面倾角o37θ=,小滑块与斜面间的动摩擦因数为0.15μ=,水平面与斜面圆滑连接.重力加速度g取210/m s.求:(提示:osin370.6=,ocos370.8=)(1)A、B滑块分离时,B滑块的速度大小.(2)解除锁定前弹簧的弹性势能.【答案】(1)6/Bv m s=(2)0.6PE J=【解析】试题分析:(1)设分离时A 、B 的速度分别为A v 、B v , 小滑块B 冲上斜面轨道过程中,由动能定理有:2cos 1sin 2B B B Bm gh m gh m v θμθ+⋅= ① (3分)代入已知数据解得:6/B v m s = ② (2分)(2)由动量守恒定律得:0()A B A A B B m m v m v m v +=+ ③ (3分) 解得:2/A v m s = (2分) 由能量守恒得:2220111()222A B P A A B Bm m v E m v m v ++=+ ④ (4分) 解得:0.6P E J = ⑤ (2分)考点:本题考查了动能定理、动量守恒定律、能量守恒定律.5.如图所示,固定的凹槽水平表面光滑,其内放置U 形滑板N ,滑板两端为半径R=0.45m 的1/4圆弧面.A 和D 分别是圆弧的端点,BC 段表面粗糙,其余段表面光滑.小滑块P 1和P 2的质量均为m .滑板的质量M=4m ,P 1和P 2与BC 面的动摩擦因数分别为μ1=0.10和μ2=0.20,最大静摩擦力近似等于滑动摩擦力.开始时滑板紧靠槽的左端,P 2静止在粗糙面的B 点,P 1以v 0=4.0m/s 的初速度从A 点沿弧面自由滑下,与P 2发生弹性碰撞后,P 1处在粗糙面B 点上.当P 2滑到C 点时,滑板恰好与槽的右端碰撞并与槽牢固粘连,P 2继续运动,到达D 点时速度为零.P 1与P 2视为质点,取g=10m/s 2.问:(1)P 1和P 2碰撞后瞬间P 1、P 2的速度分别为多大? (2)P 2在BC 段向右滑动时,滑板的加速度为多大? (3)N 、P 1和P 2最终静止后,P 1与P 2间的距离为多少?【答案】(1)10v '=、25m/s v '= (2)220.4m/s a = (3)△S=1.47m 【解析】试题分析:(1)P 1滑到最低点速度为v 1,由机械能守恒定律有:22011122mv mgR mv += 解得:v 1=5m/sP 1、P 2碰撞,满足动量守恒,机械能守恒定律,设碰后速度分别为1v '、2v ' 则由动量守恒和机械能守恒可得:112mv mv mv ''=+ 222112111222mv mv mv ''=+ 解得:10v '=、25m/s v '= (2)P 2向右滑动时,假设P 1保持不动,对P 2有:f 2=μ2mg=2m (向左)设P 1、M 的加速度为a 2;对P 1、M 有:f=(m+M )a 22220.4m/s 5f ma m M m===+ 此时对P 1有:f 1=ma 2=0.4m <f m =1.0m ,所以假设成立. 故滑块的加速度为0.4m/s 2;(3)P 2滑到C 点速度为2v ',由2212mgR mv '= 得23m/s v '= P 1、P 2碰撞到P 2滑到C 点时,设P 1、M 速度为v ,由动量守恒定律得:22()mv m M v mv '=++ 解得:v=0.40m/s 对P 1、P 2、M 为系统:222211()22f L mv m M v '=++ 代入数值得:L=3.8m滑板碰后,P 1向右滑行距离:2110.08m 2v s a ==P 2向左滑行距离:22222.25m 2v s a '==所以P 1、P 2静止后距离:△S=L-S 1-S 2=1.47m考点:考查动量守恒定律;匀变速直线运动的速度与位移的关系;牛顿第二定律;机械能守恒定律.【名师点睛】本题为动量守恒定律及能量关系结合的综合题目,难度较大;要求学生能正确分析过程,并能灵活应用功能关系;合理地选择研究对象及过程;对学生要求较高.6.如图,光滑冰面上静止放置一表面光滑的斜面体,斜面体右侧一蹲在滑板上的小孩和其面前的冰块均静止于冰面上.某时刻小孩将冰块以相对冰面3 m/s 的速度向斜面体推出,冰块平滑地滑上斜面体,在斜面体上上升的最大高度为h="0.3" m (h 小于斜面体的高度).已知小孩与滑板的总质量为m 1="30" kg ,冰块的质量为m 2="10" kg ,小孩与滑板始终无相对运动.取重力加速度的大小g="10" m/s 2.(i )求斜面体的质量;(ii )通过计算判断,冰块与斜面体分离后能否追上小孩? 【答案】(i )20 kg (ii )不能 【解析】试题分析:①设斜面质量为M ,冰块和斜面的系统,水平方向动量守恒:222()m v m M v =+系统机械能守恒:22222211()22m gh m M v m v ++= 解得:20kg M =②人推冰块的过程:1122m v m v =,得11/v m s =(向右)冰块与斜面的系统:22223m v m v Mv '=+ 22222223111+222m v m v Mv ='解得:21/v m s =-'(向右) 因21=v v ',且冰块处于小孩的后方,则冰块不能追上小孩. 考点:动量守恒定律、机械能守恒定律.7.如图所示,静置于水平地面的三辆手推车沿一直线排列,质量均为m ,人在极端的时间内给第一辆车一水平冲量使其运动,当车运动了距离L 时与第二辆车相碰,两车以共同速度继续运动了距离L 时与第三车相碰,三车以共同速度又运动了距离L 时停止。

第2讲动量守恒定律及“三类模型”问题课件

第2讲动量守恒定律及“三类模型”问题课件
第六章 动量 动量守恒定律
第2讲 动量守恒定律及“三类模型”问题
过好双基关
一、动量守恒定律 1.内容 如果一个系统不受外力,或者所受外力的 矢为量零和,这个系统的总动量保持 不变. 2.表达式 (1)p=p′,系统相互作用前总动量p等于相互作用后的总动量p′.
(2)m1v1+m2v2=m1v1′+m,2v相2′互作用的两个物体组成的系统,作用前的动
命题点一 动量守恒定律的理解和基本应用
基础考点 自主悟透
例1 (多选)如图2所示,A、B两物体质量之比mA∶mB
=3∶2,原来静止在平板小车C上,A、B间有一根
被压缩的弹簧,地面光滑,当弹簧突然释放后,则
图2
A.若A、B与平板车上表面间的动摩擦因数相同,A、B组成的系统的动量
守恒
√B.若A、B与平板车上表面间的动摩擦因数相同,A、B、C组成的系统的 动量守恒
答案
4 3 m/s
解析 答案
(2)甲车开始反向时,乙的速度为多大? 答案 2 m/s 解析 甲车开始反向时,其速度为0,设此时乙车的速度为v乙′,取刚开始 运动时乙车的速度方向为正方向,由动量守恒定律得 m乙v乙-m甲v甲=m乙v乙′ 解得v乙′=2 m/s
解析 答案
模型 构建
命题点二 碰撞模型问题
1.碰撞遵循的三条原则(源自)动量守恒定律(2)机械能不增加
能力考点 师生共研
Ek1+Ek2≥Ek1′+Ek2′或2pm121+2pm222≥p21m′12+p22m′22
(3)速度要合理 ①同向碰撞:碰撞前,后面的物体速度大;碰撞后,前面的物体速度大(或 相等). ②相向碰撞:碰撞后两物体的运动方向不可能都不改变.
自测1 关于系统动量守恒的条件,下列说法正确的是 A.只要系统内存在摩擦力,系统动量就不可能守恒 B.只要系统中有一个物体具有加速度,系统动量就不守恒

专题06 动量守恒定律——高考物理复习核心考点归纳识记

专题06 动量守恒定律——高考物理复习核心考点归纳识记

高考一轮复习知识考点归纳 专题06 动量守恒定律【基本概念、规律】动量及动量守恒定律第1节 动量及动量定理第2节 动量守恒定律第3节 动量守恒定律的应用实验 验证动量守恒定律(1)定义:力与力作用时间的乘积.(2)公式:I=Ft ;公式适用范围:恒力冲量;(3)量性:矢量,方向与作用力方向一致;动量及动量定理冲量动量动量定理(1)定义:物体质量与速度的乘积;(2)表达式:p=mv ;(3)量性:矢量,方向与速度方向一致;(4)物理意义:反映物体运动状态(1)内容:物体合外力冲量等于物体动量变化量;(2)表达式:F ·Δt =Δp =p ′-p . (3)注意:动量定理表达式为矢量式【重要考点归纳】考点一 动量定理的理解及应用1.动量定理不仅适用于恒定的力,也适用于随时间变化的力.这种情况下,动量定理中的力F 应理解为变力在作用时间内的平均值.2.动量定理的表达式F ·Δt =Δp 是矢量式,运用它分析问题时要特别注意冲量、动量及动量变化量的方向,公式中的F 是物体或系统所受的合力.3.应用动量定理解释的两类物理现象(1)当物体的动量变化量一定时,力的作用时间Δt 越短,力F 就越大,力的作用时间Δt 越长,力F 就越小,如玻璃杯掉在水泥地上易碎,而掉在沙地上不易碎.(2)当作用力F 一定时,力的作用时间Δt 越长,动量变化量Δp 越大,力的作用时间Δt 越短,动量变化量Δp 越小4.应用动量定理解题的一般步骤 (1)明确研究对象和研究过程.研究过程既可以是全过程,也可以是全过程中的某一阶段. (2)进行受力分析.只分析研究对象以外的物体施加给研究对象的力,不必分析内力. (3)规定正方向.(4)写出研究对象的初、末动量和合外力的冲量(或各外力在各个阶段的冲量的矢量和),根据动量定理列方程求解.考点二 动量守恒定律与碰撞 1.动量守恒定律的不同表达形式守恒条件:(1)理想守恒:系统不受外力或所受外力的合力为零,则系统动量守恒.(2)近似守恒:系统受到的合力不为零,但当内力远大于外力时,系统的动量可近似看成守恒.(3)分方向守恒:系统在某个方向上所受合力为零时,系统在该方向上动量守恒.动量守恒定律动量守恒定律动量守恒应用1.碰撞 物体间的相互作用持续时间很短,而物体间相互作用力很大的现象.2.特点 在碰撞现象中,一般都满足内力远大于外力,可认为相互碰撞的系统动量守恒.动量守恒定律的表达式:m 1v 1+m 2v 2=m 1v ′1+m 2v ′2或Δp 1=-Δp 2.1.爆炸3.反冲 人船模型(1)p=p′,系统相互作用前的总动量p等于相互作用后的总动量p′.(2)m1v1+m2v2=m1v′1+m2v′2,相互作用的两个物体组成的系统,作用前的动量和等于作用后的动量和.(3)Δp1=-Δp2,相互作用的两个物体动量的增量等大反向.(4)Δp=0,系统总动量的增量为零.2.碰撞遵守的规律(1)动量守恒,即p1+p2=p′1+p′2.(2)动能不增加,即E k1+E k2≥E′k1+E′k2或p212m1+p222m2≥p′212m1+p′222m2.(3)速度要合理.①碰前两物体同向,则v后>v前;碰后,原来在前的物体速度一定增大,且v′前≥v′后.②两物体相向运动,碰后两物体的运动方向不可能都不改变.3.两种碰撞特例(1)弹性碰撞两球发生弹性碰撞时应满足动量守恒和机械能守恒.以质量为m1、速度为v1的小球与质量为m2的静止小球发生正面弹性碰撞为例,则有m1v1=m1v′1+m2v′2①12m1v21=12m1v′21+12m2v′22②由①②得v′1=m1-m2v1m1+m2v′2=2m1v1m1+m2结论:①当m1=m2时,v′1=0,v′2=v1,两球碰撞后交换了速度.②当m1>m2时,v′1>0,v′2>0,碰撞后两球都向前运动.③当m1<m2时,v′1<0,v′2>0,碰撞后质量小的球被反弹回来.(2)完全非弹性碰撞两物体发生完全非弹性碰撞后,速度相同,动能损失最大,但仍遵守动量守恒定律.4.应用动量守恒定律解题的步骤(1)明确研究对象,确定系统的组成(系统包括哪几个物体及研究的过程);(2)进行受力分析,判断系统动量是否守恒(或某一方向上动量是否守恒);(3)规定正方向,确定初、末状态动量;(4)由动量守恒定律列出方程;(5)代入数据,求出结果,必要时讨论说明.考点三爆炸和反冲人船模型1.爆炸的特点(1)动量守恒:由于爆炸是在极短的时间内完成的,爆炸时物体间的相互作用力远远大于受到的外力,所以在爆炸过程中,系统的总动量守恒.(2)动能增加:在爆炸过程中,由于有其他形式的能量(如化学能)转化为动能,所以爆炸后系统的总动能增加.(3)位移不变:爆炸的时间极短,因而作用过程中物体运动的位移很小,一般可忽略不计,可以认为爆炸后仍然从爆炸时的位置以新的动量开始运动.2.反冲(1)现象:物体的不同部分在内力的作用下向相反方向运动.(2)特点:一般情况下,物体间的相互作用力(内力)较大,因此系统动量往往有以下几种情况:①动量守恒;②动量近似守恒;③某一方向动量守恒.反冲运动中机械能往往不守恒.注意:反冲运动中平均动量守恒.(3)实例:喷气式飞机、火箭、人船模型等.3.人船模型若人船系统在全过程中动量守恒,则这一系统在全过程中的平均动量也守恒.如果系统由两个物体组成,且相互作用前均静止,相互作用后均发生运动,则由m1v1=-m2v2得m1x1=-m2x2.该式的适用条件是:(1)系统的总动量守恒或某一方向上的动量守恒.(2)构成系统的两物体原来静止,因相互作用而反向运动.(3)x1、x2均为沿动量方向相对于同一参考系的位移.实验:验证动量守恒定律1.实验原理在一维碰撞中,测出物体的质量m和碰撞前后物体的速率v、v′,找出碰撞前的动量p=m1v1+m2v2及碰撞后的动量p′=m1v′1+m2v′2,看碰撞前后动量是否守恒.2.实验方案方案一:利用气垫导轨完成一维碰撞实验(1)测质量:用天平测出滑块质量.(2)安装:正确安装好气垫导轨.(3)实验:接通电源,利用配套的光电计时装置测出两滑块各种情况下碰撞前后的速度(①改变滑块的质量.②改变滑块的初速度大小和方向).(4)验证:一维碰撞中的动量守恒.方案二:利用等长悬线悬挂等大小球完成一维碰撞实验(1)测质量:用天平测出两小球的质量m1、m2.(2)安装:把两个等大小球用等长悬线悬挂起来.(3)实验:一个小球静止,拉起另一个小球,放下时它们相碰.(4)测速度:可以测量小球被拉起的角度,从而算出碰撞前对应小球的速度,测量碰撞后小球摆起的角度,算出碰撞后对应小球的速度.(5)改变条件:改变碰撞条件,重复实验.(6)验证:一维碰撞中的动量守恒.方案三:在光滑桌面上两车碰撞完成一维碰撞实验(1)测质量:用天平测出两小车的质量.(2)安装:将打点计时器固定在光滑长木板的一端,把纸带穿过打点计时器,连在小车的后面,在两小车的碰撞端分别装上撞针和橡皮泥.(3)实验:接通电源,让小车A运动,小车B静止,两车碰撞时撞针插入橡皮泥中,把两小车连接成一体运动.(4)测速度:通过纸带上两计数点间的距离及时间由v=ΔxΔt算出速度.(5)改变条件:改变碰撞条件,重复实验.(6)验证:一维碰撞中的动量守恒.方案四:利用斜槽上滚下的小球验证动量守恒定律(1)用天平测出两小球的质量,并选定质量大的小球为入射小球.(2)按照如图所示安装实验装置,调整固定斜槽使斜槽底端水平.(3)白纸在下,复写纸在上,在适当位置铺放好.记下重垂线所指的位置O.(4)不放被撞小球,让入射小球从斜槽上某固定高度处自由滚下,重复10次.用圆规画尽量小的圆把所有的小球落点圈在里面,圆心P就是小球落点的平均位置.(5)把被撞小球放在斜槽末端,让入射小球从斜槽同一高度自由滚下,使它们发生碰撞,重复实验10次.用步骤(4)的方法,标出碰后入射小球落点的平均位置M和被碰小球落点的平均位置N.如图所示.(6)连接ON,测量线段OP、OM、ON的长度.将测量数据填入表中.最后代入m1OP=m1OM+m2ON,看在误差允许的范围内是否成立.(7)整理好实验器材放回原处.(8)实验结论:在实验误差范围内,碰撞系统的动量守恒.【思想方法与技巧】动量守恒中的临界问题1.滑块与小车的临界问题滑块与小车是一种常见的相互作用模型.如图所示,滑块冲上小车后,在滑块与小车之间的摩擦力作用下,滑块做减速运动,小车做加速运动.滑块刚好不滑出小车的临界条件是滑块到达小车末端时,滑块与小车的速度相同.2.两物体不相碰的临界问题两个在光滑水平面上做匀速运动的物体,甲物体追上乙物体的条件是甲物体的速度v甲大于乙物体的速度v乙,即v甲>v乙,而甲物体与乙物体不相碰的临界条件是v甲=v乙.3.涉及弹簧的临界问题对于由弹簧组成的系统,在物体间发生相互作用的过程中,当弹簧被压缩到最短时,弹簧两端的两个物体的速度相等.4.涉及最大高度的临界问题在物体滑上斜面(斜面放在光滑水平面上)的过程中,由于弹力的作用,斜面在水平方向将做加速运动.物体滑到斜面上最高点的临界条件是物体与斜面沿水平方向具有共同的速度,物体在竖直方向的分速度等于零.5.正确把握以下两点是求解动量守恒定律中的临界问题的关键:(1)寻找临界状态看题设情景中是否有相互作用的两物体相距最近,避免相碰和物体开始反向运动等临界状态.(2)挖掘临界条件在与动量相关的临界问题中,临界条件常常表现为两物体的相对速度关系与相对位移关系,即速度相等或位移相等。

高考物理复习---用动量守恒定律解决“三类模型”问题 考点分析PPT课件

高考物理复习---用动量守恒定律解决“三类模型”问题 考点分析PPT课件
图1
1 2 3 4 5 6 7 8 9 10 11
A.火箭的推力来源于空气对它的反作用力
√B.在燃气喷出后的瞬间,火箭的速度大小为Mm-v0m
C.喷出燃气后,万户及所携带设备能上升的最大高 度为gMm2-v0m2 2
D.在火箭喷气过程中,万户所携设备机械能守恒
1 2 3 4 5 6 7 8 9 10 11
1 2 3 4 5 6 7 8 9 10 11
3.(2019·湖南娄底市下学期质量检测)质量为M的气球上有一个质量为m的 人,气球和人在静止的空气中共同静止于离地h高处,如果从气球上慢 慢放下一个质量不计的软梯,让人沿软梯降到地面,则软梯长至少应为
m A.m+
√ A.42 m/s B.-42 m/s C.40 m/s D.-40 m/s
1 2 3 4 5 6 7 8 9 10 11
解析 喷出气体过程中重力和空气阻力可忽略不计,可知在火箭发射的 过程中二者组成的系统竖直方向的动量守恒,以喷出气体的速度方向为 正方向,由动量守恒定律得:Δmv0+(M-Δm)v=0,解得:v=-42 m/s, 故B正确,A、C、D错误.
正确的是
√A.木板获得的动能为1 J √B.系统损失的机械能为2 J
C.木板A的最小长度为2 m
√D.A、B间的动摩擦因数为0.1
图2
1 2 3 4 5 6 7 8 9 10 11
解析 由题图可知,最终木板获得的速度为 v=1 m/s,A、B 组成的系统 动量守恒,以 B 的初速度方向为正方向,由动量守恒定律得 mv0=(M+ m)v,解得 M=2 kg,则木板获得的动能为 Ek=12Mv2=12×2×12 J=1 J, 故 A 正确; 系统损失的机械能 ΔE=12mv B2-12(m+M)v2,代入数据解得 ΔE=2 J,故 B 正确;

(高中段)第11讲难点增分力学计算题中常考的三类模型

(高中段)第11讲难点增分力学计算题中常考的三类模型

由 v-t 图像知 L=12(v1-v2)t1+12(v1-v2)(t2-t1)=12(v1-v2)t2 t2 时刻木板与滑块速度相等,即 v1-a3(t2-t1)=v2+a2(t2-t1) 联立可得 t1=1 s。
[答案] 1 s
类型二 斜面上的板块模型 当板块模型处于斜面上时,处理此类问题的方法与处理平面上的方法相 同,需要注意的问题是当滑块与木板速度相同时,要将滑块重力在沿着斜面 方向的分力与滑块受到的最大静摩擦力比较一下,判断滑块能否与木板以相 同的加速度共同运动。
[典例 4] 如图所示,光滑水平面上有一质量 M= 4.0 kg 的平板车,车的上表面有一段长 L=1.5 m 的粗糙 水平轨道,水平轨道左侧连一半径 R=0.25 m 的四分之一光滑圆弧轨道,圆弧 轨道与水平轨道在点 O′处相切。现将一质量 m=1.0 kg 的小物块(可视为质点) 从平板车的右端以水平向左的初速度 v0 滑上平板车,小物块与水平轨道间的 动摩擦因数 μ=0.5,小物块恰能到达圆弧轨道的最高点 A。g 取 10 m/s2,求:
a=1 m/s2 木板 A 受到的静摩擦力 Ff=Ma<μmg,A、B 一起运动 x=12aBt12+v1t2-12 aA(t1+t2)2 代入数据得 x=2 m。 (3)0~1 s 内拉力做的功 W1=F1x1=F1·12aBt12=12 J 1~2 s 内拉力做的功 W2=F2x2=F2v1t2=8 J 2~4 s 内拉力做的功

(1)货物在车厢内滑动时加速度的大小和方向;
(2)制动坡床的长度。 解析:(1)设货物的质量为 m,货物在车厢内滑动过程中,货物与车厢间的动摩 擦因数 μ=0.4,受摩擦力大小为 f,加速度大小为 a1,则 f+mgsin θ=ma1① f=μmgcos θ② 联立①②式并代入数据得 a1=5 m/s2③ a1 的方向沿制动坡床向下

高考物理 动量定理 动量守恒定律

高考物理 动量定理 动量守恒定律
0

(ⅱ)设玩具悬停时其底面相对于喷口的高度为h,水从喷口喷出后到达玩具
底面时的速度大小为v。对于Δt时间内喷出的水,由能量守恒定律得 ④ 在h高度处,Δt时间内喷射到玩具底面的水沿竖直方向的动量变化量的大小 为
考点一
栏目索引
Δp=(Δm)v ⑤ 设水对玩具的作用力的大小为F,根据动量定理有
FΔt=Δp ⑥
由于玩具在空中悬停,由力的平衡条件得 F=Mg ⑦ 联立③④⑤⑥⑦式得 ⑧
考点一
栏目索引
方法技巧 (1)应用动量定理解题的一般步骤
(2)对于过程较复杂的运动,可分段应用动量定理,也可对整个过程应用动量 定理。
考点二
栏目索引
考点二
动量守恒定律
1.内容:如果一个系统① 不受外力 ,或者所受② 外力的矢量和 为0,这个系 统的总动量保持不变。 2.表达式:m1v1+m2v2=③ m1v'1+m2v'2 或p=p'。 3.适用条件 (1)理想守恒:系统不受外力或所受④ 外力的合力 为零,则系统动量守恒。 (2)近似守恒:系统受到的合力不为零,但当内力远⑤ 大于 外力时,系统的动 量可近似看成守恒。
考点一
栏目索引
2.应用动量定理时的注意事项 (1)动量定理的研究对象是一个质点(或可视为一个物体的系统)。 (2)动量定理的表达式是矢量式,在一维情况下,各个矢量必须选同一个正方 向。 3.动量定理的应用 (1)用动量定理解释现象 ①物体的动量变化一定,力的作用时间越短,力就越大;力的作用时间越长,
考点一
栏目索引
答案 A 解法一:由v2=2gh得v= 2 gh 。对人与安全带作用的过程应用动 量定理,则有(mg-F)t=0-mv,解得F=

高考物理动量守恒定律常见题型及答题技巧及练习题(含答案)

高考物理动量守恒定律常见题型及答题技巧及练习题(含答案)

高考物理动量守恒定律常见题型及答题技巧及练习题(含答案)一、高考物理精讲专题动量守恒定律1.如图所示,在水平地面上有两物块甲和乙,它们的质量分别为2m 、m ,甲与地面间无摩擦,乙与地面间的动摩擦因数恒定.现让甲以速度0v 向着静止的乙运动并发生正碰,且碰撞时间极短,若甲在乙刚停下来时恰好与乙发生第二次碰撞,试求:(1)第一次碰撞过程中系统损失的动能 (2)第一次碰撞过程中甲对乙的冲量 【答案】(1)2014mv ;(2) 0mv 【解析】 【详解】解:(1)设第一次碰撞刚结束时甲、乙的速度分别为1v 、2v ,之后甲做匀速直线运动,乙以2v 初速度做匀减速直线运动,在乙刚停下时甲追上乙碰撞,因此两物体在这段时间平均速度相等,有:212v v =而第一次碰撞中系统动量守恒有:01222mv mv mv =+ 由以上两式可得:012v v =,20 v v = 所以第一次碰撞中的机械能损失为:222201201111222224E m v m v mv mv ∆=--=gg g g (2)根据动量定理可得第一次碰撞过程中甲对乙的冲量:200I mv mv =-=2.如图:竖直面内固定的绝缘轨道abc ,由半径R =3 m 的光滑圆弧段bc 与长l =1.5 m 的粗糙水平段ab 在b 点相切而构成,O 点是圆弧段的圆心,Oc 与Ob 的夹角θ=37°;过f 点的竖直虚线左侧有方向竖直向上、场强大小E =10 N/C 的匀强电场,Ocb 的外侧有一长度足够长、宽度d =1.6 m 的矩形区域efgh ,ef 与Oc 交于c 点,ecf 与水平向右的方向所成的夹角为β(53°≤β≤147°),矩形区域内有方向水平向里的匀强磁场.质量m 2=3×10-3 kg 、电荷量q =3×l0-3 C 的带正电小物体Q 静止在圆弧轨道上b 点,质量m 1=1.5×10-3 kg 的不带电小物体P 从轨道右端a 以v 0=8 m/s 的水平速度向左运动,P 、Q 碰撞时间极短,碰后P 以1 m/s 的速度水平向右弹回.已知P 与ab 间的动摩擦因数μ=0.5,A 、B 均可视为质点,Q 的电荷量始终不变,忽略空气阻力,sin37°=0.6,cos37°=0.8,重力加速度大小g =10 m/s 2.求:(1)碰后瞬间,圆弧轨道对物体Q 的弹力大小F N ;(2)当β=53°时,物体Q 刚好不从gh 边穿出磁场,求区域efgh 内所加磁场的磁感应强度大小B 1;(3)当区域efgh 内所加磁场的磁感应强度为B 2=2T 时,要让物体Q 从gh 边穿出磁场且在磁场中运动的时间最长,求此最长时间t 及对应的β值.【答案】(1)24.610N F N -=⨯ (2)1 1.25B T = (3)127s 360t π=,001290143ββ==和 【解析】 【详解】解:(1)设P 碰撞前后的速度分别为1v 和1v ',Q 碰后的速度为2v 从a 到b ,对P ,由动能定理得:221011111-22m gl m v m v μ=- 解得:17m/s v =碰撞过程中,对P ,Q 系统:由动量守恒定律:111122m v m v m v '=+取向左为正方向,由题意11m/s v =-', 解得:24m/s v =b 点:对Q ,由牛顿第二定律得:2222N v F m g m R-=解得:24.610N N F -=⨯(2)设Q 在c 点的速度为c v ,在b 到c 点,由机械能守恒定律:22222211(1cos )22c m gR m v m v θ-+=解得:2m/s c v =进入磁场后:Q 所受电场力22310N F qE m g -==⨯= ,Q 在磁场做匀速率圆周运动由牛顿第二定律得:2211c c m v qv B r =Q 刚好不从gh 边穿出磁场,由几何关系:1 1.6m r d == 解得:1 1.25T B = (3)当所加磁场22T B =,2221m cm v r qB == 要让Q 从gh 边穿出磁场且在磁场中运动的时间最长,则Q 在磁场中运动轨迹对应的圆心角最大,则当gh 边或ef 边与圆轨迹相切,轨迹如图所示:设最大圆心角为α,由几何关系得:22cos(180)d r rα-︒-= 解得:127α=︒ 运动周期:222m T qB π=则Q 在磁场中运动的最长时间:222127127•s 360360360m t T qB παπ===︒此时对应的β角:190β=︒和2143β=︒3.如图所示,在倾角30°的斜面上放置一个凹撸B,B 与斜面间的动摩擦因数3μ=;槽内靠近右侧壁处有一小物块A(可视为质点),它到凹槽左侧壁的距离d =0.1m ,A 、B 的质量都为m=2kg ,B 与斜面间的最大静摩擦力可认为等于滑动摩摞力,不计A 、B 之间的摩擦,斜面足够长.现同时由静止释放A 、B,经过一段时间,A 与B 的侧壁发生碰撞,碰撞过程不计机械能损失,碰撞时间极短,g 取210/m s .求:(1)释放后物块A 和凹槽B 的加速度分别是多大?(2)物块A 与凹槽B 的左侧壁第一次碰撞后瞬间A 、B 的速度大小;(3)从初始位置到物块A 与凹糟B 的左侧壁发生第三次碰撞时B 的位移大小. 【答案】(1)(2)v An =(n-1)m∙s -1,v Bn ="n" m∙s -1(3)x n 总=0.2n 2m 【解析】 【分析】 【详解】(1)设物块A 的加速度为a 1,则有m A gsin θ=ma 1,解得a 1=5m/s 2凹槽B 运动时受到的摩擦力f=μ×3mgcos θ=mg 方向沿斜面向上; 凹槽B 所受重力沿斜面的分力G 1=2mgsin θ=mg 方向沿斜面向下; 因为G 1=f ,则凹槽B 受力平衡,保持静止,凹槽B 的加速度为a 2=0 (2)设A 与B 的左壁第一次碰撞前的速度为v A0,根据运动公式:v 2A0=2a 1d 解得v A0=3m/s ;AB 发生弹性碰撞,设A 与B 第一次碰撞后瞬间A 的速度大小为v A1,B 的速度为v B1,则由动量守恒定律:0112A A B mv mv mv =+ ;由能量关系:2220111112222A AB mv mv mv =+⨯ 解得v A1=-1m/s(负号表示方向),v B1=2m/s4.如图所示,光滑水平直导轨上有三个质量均为m 的物块A 、B 、C ,物块B 、C 静止,物块B 的左侧固定一轻弹簧(弹簧左侧的挡板质量不计);让物块A 以速度v 0朝B 运动,压缩弹簧;当A 、B 速度相等时,B 与C 恰好相碰并粘接在一起,然后继续运动.假设B 和C 碰撞过程时间极短.那么从A 开始压缩弹簧直至与弹簧分离的过程中,求.(1)A 、B 第一次速度相同时的速度大小; (2)A 、B 第二次速度相同时的速度大小; (3)弹簧被压缩到最短时的弹性势能大小 【答案】(1)v 0(2)v 0(3)【解析】试题分析:(1)对A 、B 接触的过程中,当第一次速度相同时,由动量守恒定律得,mv 0=2mv 1, 解得v 1=v 0(2)设AB 第二次速度相同时的速度大小v 2,对ABC 系统,根据动量守恒定律:mv 0=3mv 2 解得v 2=v 0(3)B 与C 接触的瞬间,B 、C 组成的系统动量守恒,有:解得v 3=v 0 系统损失的机械能为当A 、B 、C 速度相同时,弹簧的弹性势能最大.此时v 2=v 0根据能量守恒定律得,弹簧的最大弹性势能.考点:动量守恒定律及能量守恒定律【名师点睛】本题综合考查了动量守恒定律和能量守恒定律,综合性较强,关键合理地选择研究的系统,运用动量守恒进行求解。

高中物理动量守恒定律常见题型及答题技巧及练习题(含答案)含解析

高中物理动量守恒定律常见题型及答题技巧及练习题(含答案)含解析

高中物理动量守恒定律常见题型及答题技巧及练习题(含答案)含解析一、高考物理精讲专题动量守恒定律1.如图,光滑冰面上静止放置一表面光滑的斜面体,斜面体右侧一蹲在滑板上的小孩和其面前的冰块均静止于冰面上.某时刻小孩将冰块以相对冰面3 m/s 的速度向斜面体推出,冰块平滑地滑上斜面体,在斜面体上上升的最大高度为h="0.3" m (h 小于斜面体的高度).已知小孩与滑板的总质量为m 1="30" kg ,冰块的质量为m 2="10" kg ,小孩与滑板始终无相对运动.取重力加速度的大小g="10" m/s 2.(i )求斜面体的质量;(ii )通过计算判断,冰块与斜面体分离后能否追上小孩? 【答案】(i )20 kg (ii )不能 【解析】试题分析:①设斜面质量为M ,冰块和斜面的系统,水平方向动量守恒:222()m v m M v =+系统机械能守恒:22222211()22m gh m M v m v ++= 解得:20kg M =②人推冰块的过程:1122m v m v =,得11/v m s =(向右)冰块与斜面的系统:22223m v m v Mv '=+ 22222223111+222m v m v Mv ='解得:21/v m s =-'(向右) 因21=v v ',且冰块处于小孩的后方,则冰块不能追上小孩. 考点:动量守恒定律、机械能守恒定律.2.光滑水平轨道上有三个木块A 、B 、C ,质量分别为3A m m =、B C m m m ==,开始时B 、C 均静止,A 以初速度0v 向右运动,A 与B 相撞后分开,B 又与C 发生碰撞并粘在一起,此后A 与B 间的距离保持不变.求B 与C 碰撞前B 的速度大小.【答案】065B v v = 【解析】 【分析】【详解】设A 与B 碰撞后,A 的速度为A v ,B 与C 碰撞前B 的速度为B V ,B 与C 碰撞后粘在一起的速度为v ,由动量守恒定律得: 对A 、B 木块:0A A A B B m v m v m v =+对B 、C 木块:()B B B C m v m m v =+由A 与B 间的距离保持不变可知A v v = 联立代入数据得:065B v v =.3.(1)恒星向外辐射的能量来自于其内部发生的各种热核反应,当温度达到108K 时,可以发生“氦燃烧”。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第2讲动量守恒定律及“三类模型”问题一、动量守恒定律1.内容如果一个系统不受外力,或者所受外力的矢量和为0,这个系统的总动量保持不变。

2.表达式(1)p=p′,系统相互作用前的总动量p等于相互作用后的总动量p′。

(2)m1v1+m2v2=m1v1′+m2v2′,相互作用的两个物体组成的系统,作用前的动量和等于作用后的动量和。

(3)Δp1=-Δp2,相互作用的两个物体动量的变化量等大反向。

(4)Δp=0,系统总动量的增量为零。

3.适用条件(1)理想守恒:不受外力或所受外力的合力为零。

(2)近似守恒:系统内各物体间相互作用的内力远大于它所受到的外力。

(3)某一方向守恒:如果系统在某一方向上所受外力的合力为零,则系统在这一方向上动量守恒。

【自测1】(多选)如图1所示,小车与木箱紧挨着静止放在光滑的水平冰面上,现有一男孩站在小车上用力向右迅速推出木箱。

关于上述过程,下列说法中正确的是()图1A.男孩和木箱组成的系统动量守恒B.小车与木箱组成的系统动量守恒C.男孩、小车与木箱三者组成的系统动量守恒D.木箱的动量增量与男孩、小车的总动量增量大小相同答案CD解析男孩和木箱组成的系统受小车的摩擦力,所以动量不守恒,A错误;小车与木箱组成的系统受男孩的力为外力,所以动量不守恒,B错误;男孩、小车与木箱三者组成的系统,所受合外力为0,所以动量守恒,C正确;木箱的动量增量与男孩、小车的总动量增量大小相同,但方向相反,D正确。

二、“三类”模型问题1.“子弹打木块”模型(1)“木块”放置在光滑的水平面上①运动性质:“子弹”对地在滑动摩擦力作用下做减速直线运动;“木块”在滑动摩擦力作用下做加速直线运动。

②处理方法:通常由于“子弹”和“木块”的相互作用时间极短,内力远大于外力,可认为“子弹”与“木块”组成的系统在这一过程中动量守恒。

把“子弹”和“木块”看成一个系统,系统水平方向动量守恒;机械能不守恒;对“木块”和“子弹”分别应用动能定理。

(2)“木块”固定在水平面上①运动性质:“子弹”对地在滑动摩擦力作用下做减速直线运动;“木块”静止不动。

②处理方法:对“子弹”应用动能定理或牛顿第二定律列方程求解。

2.“反冲”和“爆炸”模型(1)反冲①定义:当物体的一部分以一定的速度离开物体向前运动时,剩余部分必将向后运动,这种现象叫反冲运动。

②特点:系统内各物体间的相互作用的内力远大于系统受到的外力。

实例:发射炮弹、发射火箭等。

③规律:遵从动量守恒定律。

(2)爆炸问题爆炸与碰撞类似,物体间的相互作用时间很短,作用力很大,且远大于系统所受的外力,所以系统动量守恒。

如爆竹爆炸等。

3.“人船模型”问题(1)模型介绍两个原来静止的物体发生相互作用时,若整体所受外力的矢量和为零,则两物体组成的系统动量守恒。

在相互作用的过程中,任一时刻两物体的速度大小之比等于质量的反比。

这样的问题即为“人船模型”问题。

(2)模型特点①两物体相互作用过程满足动量守恒定律m 1v 1-m 2v 2=0。

②运动特点:人动船动,人静船静,人快船快,人慢船慢,人左船右;人与船的位移比等于它们质量比的倒数;人与船的平均速度(瞬时速度)比等于它们质量比的倒数,即x 1x 2=v 1v 2=m 2m 1。

③应用x 1x 2=v 1v 2=m 2m 1时要注意:v 1、v 2和x 1、x 2一般都是相对地面而言的。

【自测2】 如图2所示,长为L 、质量为m 船的小船停在静水中,质量为m 人的人由静止开始从船的一端走到船的另一端,不计水的阻力。

则船和人相对地面的位移各为多少?图2答案 m 人m 人+m 船L m 船m 人+m 船L 解析 以人和船组成的系统为研究对象,在人由船的一端走到船的另一端的过程中,系统水平方向不受外力作用,所以整个系统水平方向动量守恒,可得m船v 船=m 人v 人,因人和船组成的系统动量始终守恒,故有m 船x 船=m 人x 人,由题图可看出,x 船+x 人=L ,可解得x 人=m 船m 人+m 船L ,x 船=m 人m 人+m 船L 。

命题点一动量守恒定律的理解和基本应用题型1动量守恒的理解【例1】如图3所示,A、B两物体的质量之比为m A∶m B=1∶2,它们原来静止在平板车C上,A、B两物体间有一根被压缩了的水平轻质弹簧,A、B两物体与平板车上表面间的动摩擦因数相同,水平地面光滑。

当弹簧突然释放后,A、B 两物体被弹开(A、B两物体始终不滑出平板车),则有()图3A.A、B系统动量守恒B.A、B、C及弹簧组成的系统机械能守恒C.小车C先向左运动后向右运动D.小车C一直向右运动直到静止答案 D解析A、B两物体和弹簧、小车C组成的系统所受合力为零,所以系统的动量守恒。

在弹簧释放的过程中,因m A∶m B=1∶2,由滑动摩擦力公式F f=μF N=μmg 知,A、B两物体所受的摩擦力大小不等,所以A、B两物体组成的系统合力不为零,A、B两物体组成的系统动量不守恒,故A错误;A物体对小车向左的滑动摩擦力小于B物体对小车向右的滑动摩擦力,在A、B两物体相对小车停止运动之前,小车所受的合力向右,会向右运动,因滑动摩擦力做负功,则系统的机械能不守恒,最终整个系统将静止,故B、C错误,D正确。

【变式1】(2021·1月湖北学业水平选择性考试模拟演练,1)如图4所示,曲面体P静止于光滑水平面上,物块Q自P的上端静止释放。

Q与P的接触面光滑,Q在P上运动的过程中,下列说法正确的是()图4A.P对Q做功为零B.P和Q之间相互作用力做功之和为零C.P和Q构成的系统机械能守恒、动量守恒D.P和Q构成的系统机械能不守恒、动量守恒答案 B解析根据题意可知,物块Q从光滑曲面体P滑下,两者组成的系统没有重力以外的其他力做功,系统的机械能守恒,故D错误;物块Q滑下,曲面体向后运动,说明滑块Q对曲面体P做正功,则曲面体P对滑块Q做负功,且P和Q之间的相互作用力做功之和为零,故B正确,A错误;P和Q组成的系统所受外力不为零,动量不守恒,但在水平方向的外力为零,系统在水平方向的动量守恒,故C 错误。

题型2动量守恒定律的基本应用【例2】(2020·山东青岛市上学期期末)在靶场用如图5所示的简易装置测量某型号步枪子弹的出膛速度。

在平坦靶场的地面上竖直固定一根高h=1.25 m的直杆,在杆的顶端放置质量m1=0.2 kg 的实心橡皮球,测试人员水平端枪,尽量靠近并正对着橡皮球扣动扳机,子弹穿过球心,其他测试人员用皮尺测得橡皮球和子弹的着地点离杆下端的距离分别为x1=20 m、x2=100 m。

子弹质量m2=0.01 kg,重力加速度g=10 m/s2,求该型号步枪子弹的出膛速度大小。

图5答案 1 000 m/s解析设步枪子弹的出膛速度大小为v0,子弹穿过球后瞬间,橡皮球的速度为v1,子弹的速度为v2,有m2v0=m1v1+m2v2,h=12,x1=v1t,x2=v2t,解得v0=1 0002gtm/s。

【变式2】(2020·江苏扬州市5月调研)如图6所示,在足够长的光滑水平面上,用质量分别为2 kg和1 kg的甲、乙两滑块,将轻弹簧压紧后处于静止状态,轻弹簧仅与甲拴接,乙的右侧有一挡板P。

现将两滑块由静止释放,当弹簧恢复原长时,甲的速度大小为2 m/s,此时乙尚未与P相撞。

图6(1)求弹簧恢复原长时乙的速度大小;(2)若乙与挡板P碰撞反弹后不能再与弹簧发生碰撞。

求挡板P对乙的冲量的最大值。

答案(1)4 m/s(2)6 N·s解析(1)设向左为正方向,由动量守恒定律得m甲v甲-m乙v乙=0,代入数据解得v乙=4 m/s。

(2)要使乙反弹后不能再与弹簧发生碰撞,碰后最大速度为v甲,设向左为正方向,由动量定理得I=m乙v甲-m乙(-v乙),解得I=6 N·s。

命题点二“子弹打木块”模型1.木块放在光滑水平面上,子弹水平打进木块,系统所受的合力为零,因此系统动量守恒。

2.两者发生的相对位移为子弹射入木块的深度x相。

3.根据能量守恒定律,系统损失的动能等于系统增加的内能。

4.系统产生的内能Q=F f x相,即两物体由于相对运动而摩擦产生的内能,等于摩擦力大小与两物体相对滑动的路程的乘积。

5.当子弹速度很大时,可能射穿木块,这时末状态子弹和木块的速度大小不再相等,但穿透过程中系统的动量仍守恒,系统损失的动能为ΔE k =F f L (L 为木块的长度)。

【例3】 (2020·北京市昌平区二模练习)冲击摆可以测量子弹的速度大小。

如图7所示,长度为l 的细绳悬挂质量为M 的沙箱,质量为m 的子弹沿水平方向射入沙箱并留在沙箱中。

测出沙箱偏离平衡位置的最大角度为α。

沙箱摆动过程中未发生转动。

图7(1)自子弹开始接触沙箱至二者共速的过程中,忽略沙箱的微小偏离。

求: ①子弹射入沙箱后的共同速度大小v ;②子弹射入沙箱前的速度大小v 0;(2)自子弹开始接触沙箱至二者共速的过程中,沙箱已经有微小偏离。

子弹入射沙箱的过程是否可以认为水平方向动量守恒?并简要说明理由。

答案 (1)①2gl (1-cos α) ②m +M m 2gl (1-cos α)(2) 守恒,理由见解析解析 (1)①在子弹与沙箱共速至沙箱偏离平衡位置的角度为α过程中,由机械能守恒定律得12(m +M )v 2=(m +M )gl (1-cos α) 解得v =2gl (1-cos α)。

②对子弹与沙箱组成的系统,由水平方向动量守恒得m v 0=(M +m )v解得v 0=m +M m 2gl (1-cos α)。

(2)可以认为水平方向动量守恒。

自子弹开始接触沙箱至二者共速的过程中,由于沙箱偏离平衡位置的距离很小,受到细绳拉力在水平方向的分力远小于子弹与沙箱相互作用的内力,因此子弹入射沙箱的过程可以认为水平方向动量守恒。

【变式3】如图8所示,质量为M的木块位于光滑水平面上,在木块与墙之间用轻弹簧连接,开始时木块静止在A位置。

现有一质量为m的子弹以水平速度v0射向木块并嵌入其中,则当木块回到A位置时的速度v以及此过程中墙对弹簧的冲量I的大小分别为()图8A.v=m v0M+m,I=0 B.v=m v0M+m,I=2m v0C.v=m v0M+m,I=m2v0M+mD.v=m v0M,I=2m v0答案 B解析子弹射入木块过程,由于时间极短,子弹与木块间的内力远大于系统外力,以v0的方向为正方向,由动量守恒定律得m v0=(M+m)v,解得v=m v0M+m子弹和木块组成的系统在弹簧弹力的作用下先做减速运动,后反向做加速运动,回到A位置时速度大小为m v0M+m。

子弹、木块和弹簧组成的系统受到的合力即为墙对弹簧的作用力,系统初动量为m v0,末动量为-(M+m)v,根据动量定理得I=-(M+m)v-m v0=-2m v0所以墙对弹簧的冲量I的大小为2m v0,选项B正确。

相关文档
最新文档