(完整word版)第二章 谓词逻辑
第二章 谓词逻辑

在D上是等值的,记作AB。
定义’ 设A,B是公式,如有AB为永真公式则称其
为等价永真公式,记为AB ,称A与B等值。
31
二、一阶逻辑等值式
三、应用
32
第二节 一、前束范式的概念
一阶逻辑前束范式
定义 一个公式的所有量词均非否定地出现在在公 式的最前面,其辖域延伸到公式的末尾,且其中不 含有→,联结词,则该公式称为前束范式。即具 有下列形式的公式:
xywt(﹁A(x,w)∨﹁A(x,z)∨B(u,v,t))
35
(2)﹁x(yP(x,y)→xy(Q(x,y)∧y(P(y,x)→Q(x,y)))) 解﹁x(yP(x,y)→xy(Q(x,y)∧y(P(y,x) →Q(x,y)))) ﹁x(﹁yP(x,y)∨xy(Q(x,y)∧y(﹁P(y,x)
是确定的。
23
2、改名规则和代入规则
a、改名规则——约束变元的更改
对公式中的约束变元改名时,应遵循下列规则:
(1)改名时需要改的变元符号的范围是量词中的变元 以及该量词辖域中此变元的所有约束出现处,而在 公式的其他部分不变。 (2)改名时所取的符号一定没有在量词辖域内出现过。
24
b、代入规则——自由变元的更改
(3)函数符号:f,g,h…
(4)谓词符号:F,G,H…
(5)联结词: ﹁, ∧, ∨, →, (6)量词: , (7)括号:(,)
18
2、公式概念
(a)项 定义 (1)个体常量是项;(2)个体变量是项;
(3)设f为n元函数符, x1,x2,…,xn是项,则
f(x1,x2,…,xn)是项;
6
三、量词
定义 表示个体常项或变项之间数量关系的词称 为量词。量词分为两类:全称量词x和存在量词 x,分别表示所有的个体x和存在一个个体x。 [注] a)x后面括号内的式子称为全称量词的辖域; x后面括号内的式子称为存在量词的辖域。
第2章 谓词逻辑

例如x(P(x)→Q(x,y))∨(R(x)∧A(x)) 此式中的x 就是以两种形式出现。可以对x改名成 z(P(z)→Q(z,y))∨(R(x)∧A(x)) 对自由变元也可以换名字,此换名叫代入。 对自由变元的代入规则: (1).对谓词公式中的自由变元可以作代入。代入 时需要对公式中出现该变元的每一处,同时作 代入。 (2).代入后的变元名称要与公式中的其它变元名 称不同 上例也可以对自由变元x作代入,改成 x(P(x)→Q(x,y))∨(R(z)∧A(z))
2-1.5 量词
• 例如:有些人是大学生。 所有事物都是发展变化的。 “有些”,“所有的”,就是对客体量化的词。 • 定义:在命题中表示对客体数量化的词,称之 为量词。 • 定义了两种量词: (1).存在量词:记作,表示“有些”、“一 些”、 “某些”、“至少一个”等。 (2).全称量词:记作,表示“每个”、“任 何 一个”、“一切”、“所有的”、“凡是”、
解决这个问题的方法:
在表示命题时,既表示出主语,也表示出谓语, 就可以解决上述问题。这就提出了谓词的概念。 令S(x)表示x是大学生,a:小张,b:小李 命题P表示成S(a):小张是大学生。 命题Q表示成S(b):小李是大学生。 从符号S(a)、S(b)可看出小张和小李都是大学生的共性. 令N(x):x是自然数。I(x):x是整数。 表示所有的。 推理如此实现: A: x(N(x)→I(x)) N(8)→I(8) B :N(8) N(8) C :I(8) I(8) 符号 S(x)、N(x)、I(x)就是所谓的谓词。
(3).一个n元谓词P(x1,x2,…,xn),若在前边添加 k个量词,使其中的 k个客体变元变成约束变 元,则此 n元谓词就变成了n-k元谓词。 • 例如P(x,y,z)表示x+y=z,假设论域是整数集。 xyP(x,y,z)表示“任意给定的整数x,都可 以找到整数y,使得x+y=z” 。 • 如果令 z=1,则xyP(x,y,1)就变成了命题 “任意给定的整数x,都可以找到整数y,使得 x+y=1”,…。 • 可见每当给z指定个整数a后,xyP(x,y,a)就 变成了一个命题。所以谓词公式xyP(x,y,z) 就相当于只含有客体变元 z的一元谓词了。
第二章谓词逻辑

主语一般是客体,可以独立存在,可以是具体的
事物也可以是抽象的概念 用以刻划客体性质或关系的是谓词。 原子命题组成:客体、谓词。
第二章
谓词逻辑
谓词:用来刻划个体词的性质或个体词之间相互关系的词。 例如: ① 在命题“ 2 是无理数”中,“…是无理数”是 谓词。 ② 在命题“x 是有理数”中,“…是有理数”是谓词。 ③ 在命题“小王与小李同岁”中,“…与…同岁”是 谓词。 ④ 在命题“x与y具有关系L”中,“…与…具有关系L” 是谓词。
第二章 2.2
谓词逻辑
命题函数与量词
使用量词时应注意以下几点: 1、不同的个体域中,命题符号化的形式可能不一样; 2、若事先没有给出个体域,都应以全总个体域为个体域; 3、引入特性谓词后,使用全称量词与存在量词形式不同; 4、个体域为有限集时如D={a1、…、an},对任意谓词 A(x)有: A(a1)、A(a2)、…、A(an) 5、多个量词同时出现时,不能随意颠倒它们的顺序。
第二章
谓词逻辑
苏格拉底三段论:
2.1 谓词的概念与表示
所有人都是要死的,苏格拉底是人,所以苏格拉底 是要死的。 用P,Q,R分别表示以上三个命题。 则得到推理的形式结构为: (P∧Q)→R
第二章
谓词逻辑
2.1 谓词的概念与表示
谓词逻辑命题符号化的三个基本要素:客体词、 谓词、量词。 反映判断的句子由主语和谓语组成。
第二章 2.2
谓词逻辑
命题函数与量词
量词: 表示个体常项或变项之间数量关系的词。
量词只有两个:全称量词、存在量词。
(1) 全称量词:表示“全部”含义的词。全称量词统 一符号化为“”。
注:a. 常用语中“全部”、“所有的”、“一 切”、“每一个”、“任何”、“任意的”、“凡”、 “都”等词都是全称量词。
第02章谓词逻辑

然而,(P∧Q)R并不是永真式,故上述 推理形式又是错误的。一个推理,得出矛盾的 结论
问题在哪里呢? ? ?
问题就在于这类推理中,各命题之间的逻辑关系 不是体现在原子命题之间,而是体现在构成原子命题 的内部成分之间,即体现在命题结构的更深层次上。
对此,命题逻辑是无能为力的。 所以,在研究某些推理时,有必要对原子命题作
③符号!称为存在唯一量词符,用来表达 “恰有一个”、“存在唯一”等词语;!x称为 存在唯一量词,称 x 为指导变元。
全称量词、存在量词、存在唯一量词统称量 词。
量词记号是由逻辑学家Fray引入的,有了量 词之后,用逻辑符号表示命题的能力大大加强了。
例:(1) 所有的人都是要死的。
(2) 有的人活百岁以上。 一、考虑个体域 D 为人类集合
列规则形成的符号串: P60 ① 原子谓词公式是谓词合式公式;
② 若A是谓词合式公式,则(¬A)是谓词合式公式; ③ 若A、B是谓词合式公式,则(A∧B),(A∨B), (AB)和(AB)都是谓词合式公式; ④ 若A是谓词合式公式,x是个体变元,则(x)A、 (x)A都是谓词合式公式; ⑤ 只有经过有限项次地使用①、②、③、④形成的 才是谓词合式公式。——简称为谓词公式。
例如:令 f(x,y) 表示 x+y,谓词 N(x) 表示x是 自然数,那么 f(2,3) 表示个体自然数 5,而 N(f(2,3))表示 5是自然数。
这里函数是就广义而言的。
例如:P(x): x是教授,f(x): x的父亲,c: 张 强,那么 P(f(c)) 便是表示“张强的父亲是教授” 这一命题。
客体——是指可以独立存在的,它可以是具体
的事物,也可以是抽象的概念。
如:李明,计算机,玫瑰花,自然数,思想,定 理等。
第二章 谓词逻辑

例6 设个体域是人类,
每个人都有人爱,但没有人为所有人爱。 用L(x,y)表示“x爱y” 它可译为 x yL(y,x) ∧┐y x L(x,y)
例7 每人都有自己喜欢的水果,有人喜欢所有的水果。 F(x):x是水果 M(x):x是人 L(x,y):x喜欢y x(M(x)→y (F(y)∧L(x,y)))∧x(M(x)∧y(F(y)→L(x,y)))
F(x,y)x摆满了y。 R(x)x是大红书柜。 Q(y)y是古书。
a这只 b那些 R(a)Q(b)F(a,b)
例5 所有运动员都钦佩一些教练员。
设:S(x):x是运动员; J(x):x是教练员; L(x,y):x钦佩y。 谓词符号化为: (x)(S(x)→(y)(J(y)∧L(x,y)))
A(x)中的约束出现;约束出现的变元称为约束变元; A(x)中不是约束出现的其它变元称为该变元的自由 出现,自由出现的变元成为自由变元。
例1(x)(A(x)(y)Q(x,y)) 解:由x后的(),x是指导变元,x的辖域是 后面整个式子,y是指导变元,辖域仅Q(x,y) 此部分。x两次出现均是约束出现,y的一次出现 是约束出现,故x,y是约束变元,而不是自由变 元。 例2(x)F(x)G(x,y) 解:x的辖域仅F(x),x是指导变元,变元x第一次 出现是约束出现,第二次出现是自由出现,y的出 现是自由出现。所以第一个x是约束变元,第二个x 是自由变元,本质上这两个x的含义是不同的;而y 仅是自由变元。
关于特性谓词的说明
M(x):x是人 B(x):x勇敢 D(x):x是要死的 x (M(x)∧B(x))(有人勇敢) x(M(x)→D(x))(所有人都是要死的) 对全总个体域而言,“有人勇敢”即“有个体不仅 是人而且勇敢”,M(x)与B(x)合取是当然的; 而“所有的人都是要死的”则是指“全总域中是人 的那部分个体都是要死的”,即“是人则要死” 因而M(x)与D(x)是条件关系。
2-123 谓词逻辑(Predicate Logic)

2-2.2 量词(quantifier)
定义:特性谓词 在讨论带有量词的命题函数时,必须确 定其个体域,为了方便,可使用全总个体域。 限定客体变元变化范围的谓词,称作特性谓 词。 利用特性谓词,对以上两个命题进行符 号化 (1) (x)( M(x)→F(x) ) (2) (x)( M(x)∧G(x) )
ax可以表示x是a类型的命题表达了客体的性质称为一元谓词可以表示x小于y类型的命题表达了客体之间的关系称为二元谓词可以表示点x在y与z之间类型的命题表达了客体之间的关系称为三元谓表示n元谓词在这里n个客体变元的顺序不能随意改动
第二章 谓词逻辑 Predicate Logic
前言
苏格拉底三段论(Socrates syllogism): 所有人都是要死的。 苏格拉底是人。 所以苏格拉底是要死的。 ( Socrates, 古希腊哲学家,公元前470~前 399) (孔子,中国伟大哲学家,公元前551~前479)
定义2.存在量词(existential quantifier) 用符号 “ ” 表示。 x 表示存在个体域里的个体。 (x)P(x)表示存在个体域里的个体具有性质P。 符号“”称为存在量词,用以表达“某个”,“存在一 些”,“至少有一个”,“对于一些”等词。 The existential quantifier , a backward E is used to form propositions like (x)P(x), which we read as “there exists an x such that P(x),” “there is an x such that P(x),” or “for some x, P(x).” The compound proposition (x)P(x) has these truth values: ( x ) P(x) is true if P(x) is true for at least one x in U; (x)P(x) is false if P(x) is false for every x in
离散数学第二章谓词逻辑

*
第二章 谓 词 逻 辑 命题函数与量词
当个体域为有限集合时,如D={a1, a2 …, an},对任意谓词A(x),有 xA(x)A(a1)∧A(a2)∧…∧A(an ) xA(x)A(a1)∨A(a2)∨…∨A(an )
特性谓词常作合取项,如x(M(x)∧ G(x))。
第二章 谓 词 逻 辑
命题函数与量词
*
第二章 谓 词 逻 辑 2.2 命题函数与量词
例如:在实数域上用H(x,y)表示x+y=5,则命题“对于任意的x,都存在y使得x+y=5”可符号化为:xyH(x,y),其真值为1。若调换量词顺序后为: yxH(x,y) , 其真值为0。
*
第二章 谓 词 逻 辑 2.2 命题函数与量词
*
令S(x): x吸烟。则符号化为:
(x)(M(x)∧S(x))
令D(x): x登上过木星。则符号化为:
令Q(x):x是清华大学的学生。H(x):x是高
第二章 谓 词 逻 辑 2.2 命题函数与量词
*
小结:本节介绍了n元谓词、命题函数、全称量词和存在量词等概念。重点掌握全称量词和存在量词及量化命题的符号化。
添加标题
x(M(x) F(x)).
添加标题
第二章 谓 词 逻 辑
添加标题
命题函数与量词
*
当个体域为全体学生的集合时:
01
令P(x): x要参加考试。则(2)符号化为
02
xP(x).
03
当个体域为全总个体域时:
04
令S(x): x是学生。则(2)符号化为
05
x(S(x) P(x)).
离散数学第2章 谓词逻辑

33
§3 谓词公式与翻译
例5:凡是实数不是大于0,就是等于0或者小于0。 设R(x):x是实数。 P(x,0):x大于0。 Q(x,0):x等于0。 S(x,0):x小于0。 (x) (R(x) → ( P(x,0) Q(x,0) S(x,0) ) )
例:所有的人都是会死的。
设M(x):x是人。S(x):x是会死的。
个体域约定为{人类}:(x) (S(x))
全总个体域:
(x) ( M(x) → S(x) )
例:有一些人是不怕死的。
设M(x):x是人。F(x):x是不怕死的。
个体域约定为{人类}:(x) (F(x))
全总个体域:
(x) ( M(x) ∧ F(x) )
定义:在反映判断的句子中,用以刻划客体的性质或 关系的即是谓词。
5
§1 谓词的概念与表示法
客体,是指可以独立存在的事物,它可以是具体 的,也可以是抽象的,如张明,计算机,精神等。
表示特定的个体,称为客体常元,以a,b,c… 或带下标的ai,bi,ci…表示;
表示不确定的个体,称为客体变元,以x,y, z…或xi,yi,zi…表示。
4. 谓词中通常只写客体变元,因此不是命题,仅当 所有客体变元做出具体指定时,谓词才成为命题, 才有真值。
12
第二章 谓词逻辑
§1 谓词的概念与表示法 §2 命题函数与量词 §3 谓词公式与翻译 §4 变元的约束 §5 谓词演算的等价式与蕴含式 §6 前束范式 §7 谓词演算的推理理论
13
§2 命题函数与量词
第二章 谓词逻辑

离散数学
第一章
例3 设Q(x,y)表示“x比y重”。 当x,y指人或物时,它是一个命题,但 若x,y指实数时,Q(x,y)就不是一个命题。
离散数学
第一章
例4 R(x)表示“x是大学生”。 如果x的讨论范围为某大学里班级中的学 生,则R(x)是永真式。 如果x的讨论范围为某中学里班级中的学 生,则R(x)是永假式。 如果x的讨论范围为一个剧场中的观众, 观众中有大学生也有非大学生,那么,对某些 观众,R(x)为真,对另一些观众,R(x)为假。 真值不理,若L(x,y)表示x小于y,那么 L(2,3) 表示一个命题:“2小于3”, 为真。 而 L(5,1) 表示一个命题:“5小于1”, 为假。 又如,A(x,y,z)表示一个关系“x加上y等于z” 则 A(3,2,5) 表示了真命题“3+2=5”,而A(1,2,4)表示了一个假命题 “1+2=4”。 从上述三个例子中可以看到 H(x),L(x,y),A(x,y,z) 中的x,y,z等都是客体变元。 它们很象数学中的函数,这种函数就是命题函数。
离散数学
第一章
3. 量词 使用上面所讲的一些概念,还不能用符号很好地表达 日常生活中的各种命题。 例如:S(x)表示x是大学生,而x的个体域为某单位的 职工。那么S(x)可以表示某单位职工都是大学生,也可以 表示某单位存在一些职工是大学生。 为了避免这种理解上的混乱,需要引入量词,以刻划 “所有的”和“存在一些’的不同概念。 例如: (1) 所有的人都是要呼吸的。 (2) 每个学生都要参加考试。 (3) 任何整数或是正的或是负的。 这三个例子都需要表示“对所有的x”这样的概念,为此 ,引入符号: (x) 或 (x) 表示“对所有的x”。
离散数学
第一章
离散数学 第2章 谓词逻辑

对于一个谓词,如其中的每一个变量都在一个量词的作用之下, 对于一个谓词,如其中的每一个变量都在一个量词的作用之下,则它就 不再是一个命题函数,而是一个命题了 不再是一个命题函数, 如论域D={a1,a2,…,an} 如论域 则 ∀ xG(x)为G(a1) ∧G(a2) ∧… ∧G(an) 为
∃ xG(x)为G(a1) ∨G(a2) ∨… ∨G(an)
数学分析中极限定义为: 数学分析中极限定义为:任给小正数 ε ,则存在一个正数 δ,使得当 0<|x-a|< δ 时有 时有|f(x)-b|< ε,此时即 limf f ( x) = b
x→a
解设P(x,y)表示“x大于y” Q(x,y)表示”x小于y” 则
limf f ( x) = b
x→a
表示
例如:函数f(x)表示“x的父亲”,谓词P(x)表示“x是教授”,c表示 个体李四。则P(f(c))表示“李四的父亲是教授”。这里c是项, f(c)也是项。 函数f(x, y)表示x+y,谓词N(x)表示“x是自然数”,f(2, 3)表示5,则 N(f(2, 3))表示5是自然数。这里x, y是项, f(x, y)也是项。
2.1 谓词逻辑的基本概念
2.1.1 个体、谓词 2.1.2 命题函数 2.1.3 量词
2.1.2 命题函数
定义2.1.2 由一个谓词(如P)和n个个体变元(x1, x2, …, xn)组成的P(x1, 定义 x2, … , xn),称为n元原子谓词或n元命题函数,简称n元谓词。 当n=1时,P称为一元谓词;当n=2时,P称为二元谓词;当n=0时,P称为 零元谓词。零元谓词即是命题。一元谓词刻划了个体的性质,多元谓词刻划 了个体之间的关系。 个体变元的取值范围D称为个体域或论域。如果不事先指明,认为论域 是一切可以作为对象的东西的集合,这样的论域称为全总个体域。 例2.1.1 设S(x)表示“x是田径运动员”,B(x)表示“x是篮球运动员”,则 ¬S(x)表示“x不是田径运动员”,S(x)∨B(x)表示“x是田径运动员或篮球运动 员”。 命题函数不是命题,只有当其中的个体变元用特定个体或个体常量替换 时,才能成为一个命题。但个体变元在哪些范围内取特定值,对是否成为命 题及命题的真值极有影响。 例2.1.3 设S(x)表示“x是大学生”。若x的取值范围为某大学的计算机系 的全体学生,则S(x)是永真式。若x的取值范围为某中学的全体学生,则S(x) 是永假式。若x的取值范围为某电影院的观众,则S(x)的真值不能确定。
第2章 谓词逻辑

(3)不是所有的人都喜欢看电影。 解:令F(x):x是人,G(x):x喜欢看电影。 则命题表示为:(x)(F(x)G(x))
21
第二章 谓词逻辑
练习
在谓词逻辑中将下列命题符号化(个体域为全体鸟类): (1) 所有蜂鸟都有鲜艳的羽毛。 (2) 没有大鸟以蜂蜜为食。 (3) 不以蜂蜜为食的鸟类有灰暗的羽毛。 (4) 蜂鸟是小鸟。 解:设P(x):x是蜂鸟, Q(x):x是大鸟,R(x):x以蜂蜜为 食。S(x):x有鲜艳的羽毛。
16
第二章 谓词逻辑
6. 多个量词同时出现时,不能随意颠倒它们 的顺序,颠倒后会改变原命题的含义
例:取个体域为实数集:
考虑命题: 对任意的x,存在着y,使得x+y=5
H(x,y): x+y=5 真命题 符号化为:∀x∃yH(x,y),
但颠倒量词顺序得:∃y∀xH(x,y),表示的含义:
存在着y,对任意的x,都有x+y=5,假命题
18
第二章 谓词逻辑
§2-1-3 谓词逻辑命题符号化
例2-1.3 用谓词逻辑符号化下列命题。 (1)所有大学生都爱学习。 解:令S(x):x是大学生,L(x):x爱学习,(x)(S(x)L(x)) (2)每个自然数都是实数。 解:令N(x):x是自然数,R(x):x是实数,(x)(N(x)R(x))
6
第二章 谓词逻辑 定义2-1.1 一个原子命题用一个谓词(如P)和n个有次 序的个体常元(如a1,a2,…,an)表示成P(a1,a2,…, an),称它为该原子命题的谓词形式或命题的谓词形式。 定义2-1.2 由一个谓词(如P)和n个体变元(如x1, x2,…,xn)组成的P(x1,x2,…,xn),称为n元原子谓词 或n元命题函数,简称n元谓词。 • n=1,一元谓词——表示性质 • n2,多元谓词——表示事物之间的关系, • 例如:L(x,y):xy • 0元谓词——不含个体变元的谓词——命题常元或变元; 例如:ab:a取为2,b取为3 命题看成谓词的特殊情况,命题逻辑的联结词均可应用。
第二章谓词逻辑法

3 谓词演算 predicate calculus
3.1 语法和符号 syntax and notation 3.2 连词 conjunctions 3.3 量词 quantifiers
谓词
谓词
在谓词逻辑中,命题是用形如P(x1,x2,…,xn)的谓词来表 述的。一个谓词可分为谓词名与个体两个部分
3.1.2 原子公式(atomic formulas)
谓词公式
原子谓词公式:
是由谓词符号和若干项组成的谓词演算。 若t1,t2,…,tn是项,P是谓词,则称P(t1,t2,…,tn)为原子 谓词公式。
分子谓词公式:
可以用连词把原子谓词公式组成复合谓词公式,并 把它叫做分子谓词公式。
3.1.2 原子公式(atomic formulas)
只有当其对应的语句在定义域内为真时,才具 有值T(真);而当其对应的语句在定义域内为假 时,该原子公式才具有值F(假)。
“老张是一个教师”:一元谓词 Teacher (Zhang) “机器人在1号房间中” :INRoom(Robot,r1). “Smith作为一个工程师为IBM工作”: 三元谓词 Works (Smith, IBM, engineer)
谓词
谓词
在n元谓词 P(x1,x2,…,xn)中,若每个个体均为常量、变 元或函数,则称它为一阶谓词。 如果某个个体本身又是一个一阶谓词,则称它为二阶 谓词,如此类推。 个体变元的取值范围称为个体域。个体域可以是有限 的,也可以是无限的。例如用I(x)表示“x是整数” ,则个体域为所有整数,是无限的。 谓词与函数不同,谓词的真值是”T“或”F“,而函数 的值是个体域中的一个个体,无真值可言。
例如:( x ) INROOM(x,r1) (1号房间内有个物体)
第二章谓词逻辑

(2)存在量词 “”为存在量词符号,读作“存在一个”,“对 于一些”,“对于某些”,“至少存在一个”等 等。 例:(a)存在一个数是素数; (b)某些人很聪明; (c)有些人早饭吃面包。 设: S(x): x是数; P(x): x是素数; M(x):x是人; C(x):x是很聪明; B(x):早饭吃面包。 则 (a) (x)(S(x) ∧ P(x)) ; (b)(x)(M(x) ∧C(x)); (c)(x)(M(x) ∧ B(x)) 。
(x)(y)A(x,y) (y)(x)A(x,y) (x)(y)A(x,y) (y)(x)A(x,y)
不相同的量词不可以交换,但是有时存在蕴含
(x)(y)A(x,y) (y)(x)A(x,y) (y)(x)A(x,y) (x)(y)A(x,y) (x)(y)A(x,y) (y)(x)A(x,y)
第二章 谓词逻辑
§1 谓词的概念与表示法 §2 命题函数与量词 §3 谓词公式与翻译 §4 变元的约束 §5 谓词演算的等价式与蕴含式 §6 前束范式 §7 谓词演算的推理理论
§1 谓词的概念与表示法
在研究命题逻辑中,原子命题是命题演算中最基本 的单位,不再对原子命题进行分解, 这样会产生二大缺点: (1)不能研究命题的结构,成分和内部逻辑的特 征; (2)不能表达局部与整体, 一般与个别的关系, 甚至在命题逻辑中无法处理一些简单又常见的推 理过程。 例:苏格拉底论证是正确的,但不能用命题逻辑 的推理规则推导出来。 “所有的人总是要死的。“ A “苏格拉底是人。” B “所以苏格拉底是要死的。” C
例3:尽管有人聪明,但未必一切人都聪明。 (x)(M(x)∧P(x)) ∧ ((x)(M(x) P(x)) ) 例4: 极限的定义: 任给小正数,则存在一个正数,使得当0<|x-a|< 时, 有|f(x)-b|< . 此时称 f ( x) b
离散数学_谓词逻辑

(3) 当个体域为全体整数的集合时: 令P(x): x是正的。N(x): x是负的。则(3)符 号化为 (x)(P(x)∨N(x)) 当个体域为全总个体域时: 令I(x): x是整数。则(3)符号化为 (x)(I(x)(P(x)∨N(x))).
全称量词的一些重要性质: 设P是任意的命题,F(x)与A(x,y)均为谓词, 则有:
【例】设 P 表示命题:张辉是工人。 Q 表示命题:李明是工人。 仅仅从命题符号 P 和 Q 看不出张辉和李明 都是工人这一特性。 【例】 x=3 ? x+y=z ? f(x)=0 ?
第二章 谓词逻辑(Predicate Logic)
2.1 谓词的概念与表示(Predicate and Its Expression)
2.1 谓词的概念与表示(Predicate and Its Expression) 谓词:用来刻划个体的性质或个体之间的相互关系的词。 例如在下面命题中: (1)张明是个劳动模范。 (2)李华是个劳动模范。 刻划客体的性质 (3)王红是个大学生。 (4)小李比小赵高2cm。 (5)点a在b与c之间。 刻划客体之间的相互关系 (6)阿杜与阿寺同岁。 (7) x与y具有关系L。 “是个劳动模范”、“是个大学生”、“…比…高2cm”、 “… 在…与…之间”、“…与…具有关系L”都是谓词。
2.1 谓词的概念与表示(Predicate and Its Expression)
(2)当个体域为人类集合时: 令G(x): x活百岁以上。则(2)符号化为 ( x)G(x) 当个体域为全总个体域时: 令M(x): x是人。则(2)符号化为 (x) (M(x) ∧ G(x))
存在量词的一些重要性质: 设P是任意的命题,F(x)与A(x,y)均为谓词, 则有:
离散数学第2章 谓词逻辑

2-2 命题函数与量词
这里有一些人,Exist x,用反写 — 存在变量词, 用于表示个体域中的某些客体 (1)(x)(N(x) P(x))
(2)(x)(M(x) R(x)) (3)(x)(M(x) E(x)) 全称量词与存在量词统称为量词,每个由量词确定的表达式, 都与个体域有关,如: (x)(M(x) H(x)) M(x)是用于限定H(x)中的个体域, M (x)称为特性谓词,限定客体变元变化范围的谓词 当限定范围为M(x)中时,可简写为:(x)(H(x)) 此命题对于论域为人类时,是正确的,而对于自然数则是FALSE, 因为我们是讨论带有量词的命题函数时,必须确定其个体域,把 特性谓词写出来。并且,为了方便,我们将所有命题函数的个体域 全都统一,使用全总个体域。对变化范围用特性谓词加以限制。 一般地,对全称量词,将特性谓词作为前提条件,命题通常写成 条件式,对存在量词,常将之作为合取项。
定义:H是n元谓词,a1,a2,a3……an是n个客体,H(a1,a2……an)所代 表的式子是一个命题,称为谓词填式。(当ai是客体时,A(a1…an) 才是命题。)
3 除了谓词,我们今后还要用到函数这一概念 例:老张是小张的父亲。 小张的父亲=老张
f:….的父亲; a:小张; b:老张; 则b=f(a)
所以 (x)(M (x) F(x))也就是(x)(M (x) F(x))
(5)肖阳的爸爸到北京去了。 “…到…去了”是谓词。F(x,y): x到y去了。a:肖阳, f(x):x的爸爸, b:北京 所以F(f(a),b) (6)谢世平和他的父亲及祖父三人一起去看演出。
F(x,y,z): x,y和z一起去看演出
H(1,c) H(c,1) :张三、李四一样高
例3:P(x): x是大学生 x的个体域:某大学中某班 P(x)永真 x的个体域:某中学中某班 P(x)永假 x的个体域:某剧场中观众 P(x)有真有假
第二章 谓词逻辑与归结原理

∀x ( P ( x ) → Q ( x )); P (a ) P (a ) → Q(a ); P (a ) ( P (a ) → Q(a )) ∧ P (a ) 词逻辑------谓词知识表示 谓词知识表示
定义谓词 例1、小李与小张打网球 、
Play(x,y,z)表示 在进行 运动 表示x,y在进行 表示 在进行z Play ( Li, Zhang, tennis)
2、我在长安大学当教师 、
Work ( x, y, z)表示 在y单位从事 工作 表示x在 单位从事 单位从事z 表示 Work ( I, Chd, teacher)
2.1 谓词逻辑
谓词知识表示法概念
谓词逻辑表达的规范形式 P ( x , x , x ,⋯) 1 2 3 表示个体(主体或者客体), 是谓词 是谓词, x1 , x2 , x3 ,⋯表示个体(主体或者客体), P是谓词, 描述个体词性质或个体之间关系的词。 描述个体词性质或个体之间关系的词。 谓词:描述个体词性质或个体之间关系的词 谓词: 个体域:个体变量的取值范围, 个体域:个体变量的取值范围,用D(domain)表示 ) 常量: 常量:具体性质或关系的个体或者谓词 变量:抽象或泛指的个体或者谓词。 变量:抽象或泛指的个体或者谓词。 量词:表示数量的词。 量词:表示数量的词。 • 任意量词∀:表示“任意”,“所有”,全称量词 任意量词∀ 表示“任意” 所有” • 存在量词∃:表示“存在” 存在量词∃ 表示“存在”
• 定义谓词 Table(A) EmptyHanded(Robot) At(Robot, A) Holds(Robot, Box) On(Box,A)
A是桌子 是桌子 机器人空手 机器人位置在A旁 机器人位置在 旁 机器人拿着Box 机器人拿着 Box在桌子 上 在桌子A上 在桌子
第二章谓词逻辑

(1).对应全称量词,刻划其对应个体域的特性 谓词作为蕴含式的前件加入;
(2).对应存在量词,刻划其对应个体域的特性 危险作为合取项加入。
16/86
2.1 谓词逻辑的基本概念与表示
•例2-5:符号化下列语句。
(1).天下乌鸦一般黑; (2).那位身体强健的,用功的,肯于思考问题的大学
9/86
Hale Waihona Puke 2.1 谓词逻辑的基本概念与表示
•例2-2:符号化如下命题。
P:上海是一个现代化城市; Q:甲是乙的父亲; R:3介于2和5之间; T:布什和萨达姆是同班同学。
• 注意:
(1).谓词中个体词的顺序是十分重要的,不能随意变 更。如前面的F (b, c)与F (c, b)的真值就不同;
(2).一元谓词用以描述一个个体的某种特性,而n元 谓词则用以描述n个个体之间的关系;
19/86
2.1 谓词逻辑的基本概念与表示
2.1.3谓词的语言翻译
设G (x)是关于x的一元谓词,D是其个体域, 任取x0∈D,则G (x0)是一个命题。
(x)G(x)是这样的一个命题:“对任意x, x∈D,G(x)都成立”其真值规定如下:
1对所 x 有 D ,的 都 G( 有 x 1) ( x)G (x) 0否则。
任意的n个项,则f(t1, t2, …, tn)是项; (3).所有的项都是有限次使用(1),(2)得到的。
25/86
2.2 谓词的合式公式及解释
我们定义的项,包括了常量,变量及函数。 例如,x,a,f(x, a),f(g(x, a),b),h(x)均是项。
函数的使用,能给谓词表示带来很大的方便。
5/86
离散数学第二章谓词逻辑

则xP和xP都是谓词公式
(5)当且仅当能够有限次地应用(1)-(4)所得到的
式子是谓词公式
二、谓词公式的概念
谓词公式是命题公式的扩展,约定最外层圆括号可 以省略,但量词后面若有括号则不省略。
例如 (P(x,y)→(Q(x)→R(y,z)))
P(x,y,z)∧(P(x,y,z)→Q)
y((A(x)∧A(y))→F(x,y,0))
2.2 命题函数与量词
例2.2.6 翻译命题
甲村人与乙村人都同姓。
解 设A(x):x是甲村人。 B(y):y是乙村人。 P(x,y):x与y同姓。 (1)全总个体域 xy((A(x)∧B(y))→P(x,y)) (2)x的论域:甲村人 xy(P(x,y)) y的论域:乙村人
1.令F(x):x是金属。G(y):y是液体。H(x,y):x可以溶解在y 中。则命题“任何金属可以溶解在某种液体中。”可翻译 为( )。 A.x(F(x)∧y(G(y)∧H(x,y))) B.xy(F(x)→(G(y)→H(x,y))) C.x(F(x)→y(G(y)∧H(x,y))) D.x(F(x)→y(G(y)→H(x,y))) 2.令F(x):x是火车。G(y):y是汽车。H(x,y):x比y快。则命 题“某些汽车比所有火车慢。”可翻译为( )。 A.y(G(y)→x(F(x) ∧H(x,y))) B.y(G(y)∧x(F(x)→H(x,y))) C.xy(G(y)→(F(x)∧H(x,y))) D.y(G(y)→x(F(x)→H(x,y)))
由一个谓词常量或谓词变量A,n(n≥0)个个体变量 x1,x2,…,xn组成的表达式A(x1,x2,…,xn) 注意:0元谓词是命题,谓词逻辑是命题逻辑的扩 展。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二章谓词逻辑1.什么叫做客体和客体变元?如何表示客体和客体变元?2.么叫做谓词?3.什么叫做论域?我们定义一个“最大”的论域叫做什么?4.填空题:1.存在量词:记作(),表示( )或者()或者( )。
2.全称量词:记作( ),表示( )或者()或者( )。
5。
什么叫做量词的作用域?指出下面两个谓词公式中各个量词的作用域。
”x(F(x,y)→$yP(y))∧Q(z)∧$xA(x)”x$y”z(A(x,y)→B(x,y,z))∧C(t)6。
什么叫做约束变元?什么叫做自由变元?指出下面公式中哪些客体变元是约束变元?哪些客体变元是自由变元?”x(F(x,y)→$yP(y))∧Q(z)∧$xA(x)7.填空:一个谓词公式如果无自由变元,它就表示一个( )。
8.给出的谓词 J(x):x是教练员, L(x) :x是运动员, S(x) :x是大学生,O(x) :x是年老的,V(x) :x是健壮的,C(x):x是国家选手,W(x) :x是女同志, H(x):x是家庭妇女,A (x,y):x钦佩y。
客体 j:金某人.用上面给出的符号将下面命题符号化。
1.所有教练员是运动员。
2.某些运动员是大学生.3.某些教练是年老的,但是健壮的.4.金教练既不老,但也不是健壮的。
5.不是所有运动员都是教练。
6.某些大学生运动员是国家选手。
7.没有一个国家选手不是健壮的。
8.所有老的国家选手都是运动员。
9.没有一位女同志既是国家选手又是家庭妇女。
10.有些女同志既是教练又是国家选手。
11.所有运动员都钦佩某些教练。
12.有些大学生不钦佩运动员.9。
将下面命题符号化1.金子闪光,但闪光的不一定都是金子.2.没有大学生不懂外语.3.有些液体可以溶解所有固体.4.每个大学生都爱好一些文体活动。
5.每个自然数都有唯一的后继数。
10.令P表示天气好.Q表示考试准时进行。
A(x)表示x是考生.B(x)表示x提前进入考场。
C(x)表示x取得良好成绩.E(x,y)表示x=y.利用上述符号,分别写出下面各个命题的符号表达式。
1.如果天气不好,则有些考生不能提前进入考场。
2.只有所有考生提前进入考场,考试才能准时进行。
3.并非所有提前进入考场的考生都取得良好成绩。
4.有且只有一个提前进入考场的考生未能取得良好成绩。
11.将下面命题符号化。
1.对一个大学生来说,仅当他刻苦学习,才能取得优异成绩。
(S(x):x是大学生;Q(x):x取得了优异成绩;H(x):x刻苦学习。
) 2.每个不等于0的自然数,都有唯一的前驱数。
(Z(x):x是自然数; E(x,y):x=y; Q(x,y):y是x的前驱数。
)12.<A,≤>是偏序集,B是A的非空子集.在括号内分别写入y是B的极小元、最小元、下界相应的谓词表达式.y是B的极小元Û()y是B的最小元Û()y是B的下界Û( )13.设论域D={1,2}又已知a=1 b=2 f(1)=2 f(2)=1P(1,1)=T P(1,2)=T P(2 ,1)=F P(2,2)=F求谓词公式”x$y(P(x,y)®P(f(x),f(y)))的真值。
(要求有解题的过程)14设论域为{2,3},A(x,y)表示 x+y=xy。
求谓词公式Ø”x$yA(x,y)的真值。
(要求有解题的过程。
)15。
设谓词P(x,y)表示x是y的因子,论域是{1,2,3}。
求谓词公式”x$yØA(x,y)的真值。
(要求有解题过程)16。
令论域D={a,b},P(a,a):F, Pa,b):T, P(b,a):T, P(b,b):F。
公式( )的真值为真。
A:”x$yP(x,y) B:$x”yP(x,y) C:”x”yP(x,y) D:Ø$x$yP(x,y)17.令论域D={a,b},P(a,a):F,P(a,b):T,P(b,a):T,P(b,b):F,公式( )的真值为真。
a:Ø$x$yP(x,y) b:$x”yP(x,y) c:”x"yP(x,y) d:"x$yP(x,y)18。
令Lx,y)表示x<y,当论域为( )时,公式”x$yL(x,y)的真值为假.a:自然数集合 b:整数集合 c:有理数集合 d:实数集合19.设论域为{1,2,3},已知谓词公式 $xP(x,3) ®(”yØP(3,y) ®$zP(1,z)) 的真值为假,则x=2时,使P(x,3)为真。
此说法是否正确?针对你的答案说明原因。
20。
什么叫做对谓词公式赋值?21。
什么叫做谓词公式的永真式?22。
什么叫做谓词公式A与B等价?23。
什么叫做谓词公式A永真蕴含B?24。
设B是个不含客体变元x的谓词公式,在下面的等价公式中,哪些是不正确?说明不正确的原因。
1。
”xA(x)∨BÛ”x(A(x)∨B)2. ”xA(x)∧BÛ"x(A(x)∧B)3。
B→”xA(x)Û"x(B→A(x))4. "xA(x)→BÛ”x(A(x)→B)25.证明下面等价公式 $x(A(x)→B(x))Û”xA(x)→$xB(x)26。
证明下面等价公式 $xA(x)→"xB(x)Þ"x(A(x)→B(x))27.下面谓词公式等价成立吗?对你的回答给予证明或者举反例。
$xA(x)∧$xB(x) Û$x(A(x)∧B(x))28.下面谓词公式等价成立吗?对你的回答给予证明或者举反例。
”x(A(x)∨B(x))Û”xA(x)∨"xB(x)29。
下面永真蕴涵式成立吗?对你的回答给予证明或者举反例.$xA(x)∧$xB(x) Þ$x(A(x)∧B(x))30。
下面永真蕴涵式成立吗?对你的回答给予证明或者举反例。
"x(A(x)∨B(x)) Þ”xA(x)∨"xB(x)31.什么叫做谓词公式的前束范式?32.不是谓词公式”x(A(x,y)®$yB(x,y))的前束范式的为()a: "x$y(A(x,t)® B(x,y)) b: ”x$t(A(x,y)® B(x,t))c:”x$y(A(x,y)® B(x,y)) d:”t$y(A(t,x)® B(t,y))33.写出谓词公式 "x(P(x)∧R(x))→(Ø$xP(x)∧Q(x))的前束范式.34。
分别指出推理规则US、ES、的名称、形式、作用以及使用这些规则时的注意事项。
35.举例说明在谓词推理时,使用ES时所指定的客体c不应该是在此之前用US规则所指定的客体c (即本次用ES特指客体c,不应该是以前特指的客体)。
并分析发生的错误.36.举例说明在谓词推理时,使用ES时所指定的客体c不应该是在此之前用ES规则所指定的客体c (即本次用ES特指客体c,不应该是以前特指的客体)。
并分析发生的错误.37。
分别指出推理规则EG、UG的名称、形式、作用以及使用这些规则时的注意事项。
38.用谓词逻辑推理的方法证明下面推理的有效性。
(要求按照推理的格式书写推理过程.)"xC(x), $x(A(x)ÚB(x)), "x(B(x)®ØC(x)) Þ$xA(x)39。
用谓词逻辑推理的方法证明下面推理的有效性。
(要求按照推理的格式书写推理过程。
)“不认识错误的人,也不能改正错误.有些诚实的人改正了错误。
所以有些诚实的人是认识了错误的人。
”设A(x):x是认识错误的人. B(x):x改正了错误.C(x):x是诚实的人。
命题符号化为:”x(ØA(x)→ØB(x)),$x(C(x)∧B(x)), Þ$x(C(x)∧A(x))40。
用谓词逻辑推理证明下面推理的有效性.(要求按照推理格式书写推理过程。
)"x(A(x)®(ØB(x)ÚØC(x))),”x(A(x)®(ØC(x)®D(x))), $x(A(x)ÙØD(x))Þ $x(A(x)ÙØB(x))41。
用谓词逻辑推理证明下面推理的有效性.$x(A(x)Ù(B(x)®ØC(x))), "x(A(x)®(C(x)ÚØD(x))), ”x(A(x)®D(x))Þ $x(A(x)ÙØ B(x))42。
用谓词逻辑推理证明下面推理的有效性。
(要求按照推理格式书写推理过程。
)“鸟都会飞。
猴子都不会飞.所以,猴子都不是鸟。
”43。
用谓词逻辑推理证明下面推理的有效性。
(要求按照推理格式书写推理过程。
)“一些病人喜欢所有医生。
任何病人都不喜欢庸医。
所以没有医生是庸医。
”44. 给定谓词如下:S(x):x是学生;L(x):x是校领导; G(x):x是好的;T(x):x是老师;P(x):x受过处分; C(x,y):y表扬x。
用上述谓词表达下面各个命题,并且用谓词逻辑推理方法证明下面推理的有效性。
“没有受过处分的学生,都受到过校领导的表扬;有些好学生,仅仅受到老师的表扬;所有好学生,都没有受过处分.所以,有的老师是校领导.”45.用谓词逻辑推理证明下面推理的有效性。
(要求按照推理格式书写推理过程。
)“任何人如果他喜欢步行,他就不喜欢乘汽车;每个人或者喜欢乘汽车或者喜欢骑自行车。
有的人不爱骑自行车,因此有的人不爱步行.”46。
给定谓词 M(x):x是高山俱乐部成员。
H(x):x是滑雪者. D(x):x是登山者。
L(x,y):x喜欢y。
客体:a:小杨;b:小刘;c:小林;d:雨;e:雪.用谓词逻辑推理证明方法,解决下面问题。
(要求按照推理格式书写推理过程。
)“小杨、小刘和小林为高山俱乐部成员,该俱乐部的每个成员是个滑雪者或登山者。
没有一个登山者喜欢雨。
而所有滑雪者都喜欢雪。
凡是小杨喜欢的,小刘就不喜欢。
小杨喜欢雨和雪。
试证明该俱乐部是否有个是登山者而不是滑雪者的成员.如果有,他是谁?"47.用谓词逻辑推理证明下面推理的有效性.(要求按照谓词逻辑推理格式,书写推理过程。
)$x(ØP(x)® Q(x)), ”x(ØQ(x)ÚØR(x)), "xR(x) Þ$xP(x)48。
用谓词逻辑推理证明下面推理的有效性。
(要求按照谓词逻辑推理格式,书写推理过程.)”x(P(x)®(Q(x)ÙR(x))), Ø"x(R(x)®Q(x))Þ$x(R(x)ÙØP(x))49。