抽样知识点
抽样技术期末知识点(附考点大题)
抽样期末知识点汇总一.绪论(一)抽样调查抽样调查是指非全面调查的总称。
只要是从研究的对象中抽取部分单位加以调查,用来说明全体,就统称为抽样调查。
(广义)选样方法:非概率抽样&概率抽样1.非概率抽样抽样方法:目的抽样、判断抽样、任意抽样、方便抽样、配额抽样(盖洛普民意测验、自愿样本原因:(1)受客观条件限制,无法进行严格的随机抽样。
(2)为了快速获得调查结果。
(3)在调查对象不确定,或无法确定的情况下采用,例如,对某一突发(偶然)事件进行现场调查等。
(4)总体各单位间离散程度不大,且调查员具有丰富的调查经验时。
优点:成本低,而且容易完成;缺点:不能对估计的精度作出客观、准确的说明。
2.概率抽样(狭义抽样调查)按照概率统计的原理,从研究的总体中按随机原则来抽选样本,通过对样本的调查获取数据,以此来对总体的特征作出估计推断;对推断中可能出现的抽样误差可以从概率的意义上加以控制。
特点:(1)对于一个具体的调查,要求总体中的每一个单元都有一个已知的非零概率被抽中。
(2)抽取样本的方法必须是随机的。
(3)根据样本来计算估计值的方法,应符合抽样的方法确定合适的估计量。
(4)能够以一定的概率控制抽样误差的范围。
概率抽样:等概率抽样&不等概率抽样(二)抽样调查的常用概念1. 目标总体:可简称为总体,是指所要研究对象的全体,或者说是希望从中获取信息的总体,它是由研究对象中所有性质相同的个体所组成,组成总体的各个个体称作总体单元或单位。
2.抽样总体:指从中抽取样本的总体。
3.抽样框:抽样总体的具体表现。
通常抽样框是一份包含所有抽样单元的名单。
4.总体参数:总体的特征。
5. 统计量(估计量):样本观察值的函数。
6.抽样误差:由于抽样的非全面性和随机性所引起的偶然性误差。
7.非抽样误差:由随机抽样的偶然性因素以外的原因所引起的误差。
8.抽样误差表现形式:抽样实际误差、抽样标准误和抽样极限误差。
9. 抽样标准误(S ),抽样方差(V ),V=S 210.偏差:样本估计量的数学期望与总体真值间的离差,ˆˆE()-()ˆB θθθ=。
高一必修二数学知识点抽样
高一必修二数学知识点抽样抽样是统计学中的一项重要技术工具,它可以通过对部分个体进行观察和研究,来推断整体的特征和性质。
在高一必修二数学课程中,我们学习了许多与抽样相关的知识点,本文将对这些知识点进行梳理和总结。
一、抽样方法1. 简单随机抽样简单随机抽样是最常用的一种抽样方法,它是指从总体中随机地抽取若干个个体,使得每个个体被抽取的概率相等。
例如,我们要调查某班级学生的身高,可以使用简单随机抽样方法,先给每个学生编号,然后通过随机抽取编号的方式来选择样本。
2. 系统抽样系统抽样是在总体中按照一定的规则选择样本的方法。
例如,我们要调查某超市一天内的销售情况,可以选择每隔一定时间(如每小时)记录一次销售额,这样得到的样本就是按照系统抽样方法选择的。
3. 分层抽样分层抽样是将总体划分为若干个层次,然后从每个层次中分别进行抽样的方法。
例如,我们要调查某城市不同年龄段人口的健康情况,可以先将人口按年龄分层,然后从每个年龄段中分别进行抽样。
4. 整群抽样整群抽样是将总体划分为若干个互不重叠的群组,选择部分群组进行抽样的方法。
例如,我们要调查某地区的农田面积情况,可以将该地区的农田划分为不同的农场,然后从不同的农场中进行抽样。
二、样本容量与抽样误差样本容量是指进行抽样研究时所选择的样本的大小。
样本容量的大小直接影响到推断性统计的可靠性。
通常情况下,样本容量越大,推断结果越可靠。
确定样本容量时需要考虑抽样误差。
抽样误差是指使用样本估计总体参数时,由于样本的随机性而引起的估计误差。
抽样误差的大小与样本容量、总体的变异程度等因素有关。
在实际抽样研究中,我们需要根据抽样误差的允许范围来确定合适的样本容量。
三、抽样调查的应用抽样调查在各个领域都有广泛的应用,尤其在社会调查、市场调研、医学研究等方面起着重要的作用。
例如,通过抽样调查可以估计某种药物的副作用发生率、了解市场上某种产品的受欢迎程度、探究某个社会问题的普遍性等。
简单随机抽样-高中数学知识点讲解
简单随机抽样1.简单随机抽样【知识点的认识】1.定义:一般地,设一个总体含有N 个个体,从中逐个不放回地抽取n 个个体作为样本(n≤N),如果每次抽取时总体内的各个个体被抽到的机会都相等,就把这种抽样方法叫做简单随机抽样.2.特点:(1)有限性:总体个体数有限;(2)逐个性:每次只抽取一个个体;(3)不放回:抽取样本不放回,样本无重复个体;(4)等概率:每个个体被抽到的机会相等.(如果从个体数为N 的总体中抽取一个容量为n 的样本,则每个个体푛被抽取的概率等于푁)3.适用范围:总体中个数较少.4.注意:随机抽样不是随意或随便抽取,随意或随便抽取都会带有主观或客观的影响因素.【常用方法】1.抽签法(抓阄法)一般地,从个体总数为N 的总体中抽取一个容量为k 的样本,步骤为:(1)编号:将总体中所有个体编号(号码可以为 1﹣N);(2)制签:将编号写在形状、大小相同的号签上(可用小球、卡片、纸条等制作);(3)搅匀:将号签放在同一个箱子中进行均匀搅拌;(4)抽签:每次从箱中取出 1 个号签,连续抽取k 次;(5)取样:从总体中取出与抽到号签编号一致的个体.2.随机数表法.○随机数表:由 0﹣9 十个数字所组成,其中的每个数都是用随机方法产生的,这样的表称为随机数表.实现步骤:(1)编号:对总体中所有个体编号(每个号码位数一致);(2)选数:在随机数表中任选一个数作为开始;(3)取数:从选定的起始数沿任意方向取数(不在号码范围内的数、重复出现的数不取),直到取满为止;(4)取样:根据所得的号码从总体中抽取相应个体.【命题方向】以基本题(中、低档题)为主,多以选择题、填空题的形式出现,以实际问题为背景,综合考查学生学习基础知识、应用基础知识、解决实际问题的能力.(1)考查简单随机抽样的特点例:用简单随机抽样的方法从含有 100 个个体的总体中依次抽取一个容量为 5 的样本,则个体m 被抽到的概率为()1111A.100B.20C.99D.50分析:依据简单随机抽样方式,总体中的每个个体被抽到的概率都是一样的,再结合容量为 5,可以看成是抽 5 次,从而可求得概率.1解答:一个总体含有 100 个个体,某个个体被抽到的概率为,100∴以简单随机抽样方式从该总体中抽取一个容量为 5 的样本,1则指定的某个个体被抽到的概率为100× 5 =1.20故选:B.点评:不论用哪种抽样方法,不论是“逐个地抽取”,还是“一次性地抽取”,总体中的每个个体被抽到的概率都是一样的,体现了抽样方法具有客观公平性.(2)判断抽样方法是否为简单随机抽样常见与分层抽样、系统抽样对比,注意掌握各种抽样方法的区分.例:下面的抽样方法是简单随机抽样的是()A.在某年明信片销售活动中,规定每 100 万张为一个开奖组,通过随机抽取的方式确定号码的后四位为 2709 的2/ 4B.某车间包装一种产品,在自动包装的传送带上,每隔 30 分钟抽一包产品,称其重量是否合格C.某学校分别从行政人员、教师、后勤人员中抽取 2 人、14 人、4 人了解学校机构改革的意见D.用抽签法从 10 件产品中选取 3 件进行质量检验.分析:从所给的四个选项里观察因为抽取的个体间的间隔是固定的;得到A、B 不是简单随机抽样,因为总体的个体有明显的层次,C 不是简单随机抽样,D 是简单随机抽样.解答:A、B 不是简单随机抽样,因为抽取的个体间的间隔是固定的;C 不是简单随机抽样,因为总体的个体有明显的层次;D 是简单随机抽样.故选D.点评:本题考查简单随机抽样,考查分层抽样,考查系统抽样,是一个涉及到所学的所有抽样的问题,注意发现各种抽样的特点,分析清楚抽样的区别.(3)考查简单随机抽样的抽样方法操作例:利用随机数表法对一个容量为 500 编号为 000,001,002,…,499 的产品进行抽样检验,抽取一个容量为 10 的样本,若选定从第 12 行第 5 列的数开始向右读数,(下面摘取了随机数表中的第 11 行至第 15 行),根据下图,读出的第 3 个数是()A.841B.114C.014D.146分析:从随机数表 12 行第 5 列数开始向右读,最先读到的 1 个的编号是 389,再向右三位数一读,将符合条件的选出,不符合的舍去,继续向右读取即可.解答:最先读到的 1 个的编号是 389,向右读下一个数是 775,775 它大于 499,故舍去,再下一个数是 841,舍去,再下一个数是 607,舍去,再下一个数是 449,再下一个数是 983.舍去,再下一个数是 114.读出的第 3 个数是 114.故选B.点评:本题主要考查了抽样方法,随机数表的使用,在随机数表中每个数出现在每个位置的概率是一样的,所以每个数被抽到的概率是一样的,属于基础题.。
抽样知识点
1. 抽样调查广义的抽样调查:是从研究对象的全体(总体) 中抽取一部分单位作为样本,根据对所抽取的样本进行调查,获得有关总体目标量的了解。
从总体中抽取样本的方法看,抽取方法可以分为两类:一类是非随机抽样(非概率抽样);一类是随机抽样(概率抽样),狭义上的抽样就是随机抽样。
2. 随机抽样(概率抽样)随机抽样是从总体中按随机原则抽取样本,并依据样本观察值对总体的数量特征取得具有一定可靠性的推断,从而达到对总体的认识。
随机抽样的特点:1.所谓随机原则就是在抽取样本时排除主观上有意识地抽取调查单元,使每个单元都以一个事先已知的非零概率有机会被抽中。
2.每个单元被抽中的概率是已知的,或是可以计算出来的,按照给定的入样概率通过一定的随机化程序进行抽样。
3.估计量不仅与样本单元的观测值有关,也与其入样概率有关。
随机抽样的主要优点是:随机抽样比非随机抽样更具有客观性,而且随机抽样可以依据调查结果计算抽样误差,从而得到对总体目标量进行推断的可靠程度。
3. 非随机抽样(非概率抽样)非随机抽样是相对于随机抽样而言的。
非随机抽样的共同特点是:抽取样本时,是依据主观判断有目的、有意识地进行,或根据方便的原则进行。
⎪⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎪⎨⎧⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎨⎧⎪⎪⎩⎪⎪⎨⎧⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧滚雪球抽样判断抽样定额抽样便利抽样)随意调查非随机调查系统抽样不等概率抽样多阶抽样整群抽样分层抽样简单随机抽样随机调查非全面调查全面调查统计调查(4. 抽样调查的基本程序 一、确定调研问题——二、抽样调查设计(抽样设计、问卷设计)——三、实施调查过程——四、数据处理分析——五、撰写调查报告——六、总结评估5. 总体、目标总体与抽样总体、抽样框、样本(包含第十章抽样框误差定义)所要研究对象的全体称为总体,组成这个总体的每个个别对象就称为总体单元或总体单位。
总体又有目标总体与抽样总体之分。
目标总体就是抽样调查预先确定的所要认识的对象的全体,也就是从样本中得到信息对之进行说明的总体。
高中数学知识点:抽样方法
高中数学知识点:抽样方法
一、简单随机抽样
设一个总体的个体数为N,如果通过逐个抽取的方法从中抽取一个样本,且每次抽取时,各个体被抽到的概率相等,就称这样的抽样为简单随机抽样。
一般地如果用简单随机抽样从个体数为N的总体中抽取一个容量为n的样本那么每个个体被抽到的概率等于n/N.常用的简单随机抽样方法有:抽签法、随机数法。
1.抽签法
一般地,抽签法就是把总体中的N个个体编号,把号码写在号签上,将号签放在一个容器中,搅拌均匀后,每次从中抽取一个号签,连续抽取n次,就得到一个容量为n的样本。
2.随机数法
随机抽样中,另一个经常被采用的方法是随机数法,即利用随机数表、随机数骰子或计算机产生的随机数进行抽样。
二、活用随机抽样
系统抽样的最基本特征是“等距性”,每组内所抽取的号码需要依据第一组抽取的号码和组距是唯一确定,每组抽取样本的号码依次构成一个以第一组抽取的号码m为首项,组距d为公差的等差数列{an},第k组抽取样本的号码,
ak=m+(k-1)d,如本题中根据第一组的样本号码和组距,可
得第k组抽取号码应该为9+30*(k-1)
三、系统抽样
当总体中的个体数较多时,采用简单随机抽样显得较为费事,这时,可将总体分成均衡的几个部分,然后按照预先定出的规则,从每一部分抽取一个个体,得到所需要的样本,这种抽样叫做系统抽样。
四、分层抽样。
抽样的基本概念1:总体、样本、抽样、抽样单位、抽样框
抽样框(Sampling Frame):又称作抽样范围,一 次直接抽样中总体中所有抽样单位的名单。
抽样框的经典例子
《文学摘要》杂志在1920年、1924年、1928年和1932 年,以邮寄明信片的方式对美国总统大选,进行了民 意测验,并准确预测出这4次选举的结果。当1936年总 统大选来临时,杂志回收了200多万份明信片。测验结 果显示57%的人支持共和党的候选人兰登,民主党候 选人、在任总统罗斯福的支持率为43%。然而,两星 期后的选举结果,罗斯福以62%的得票率当选。杂志 因此声誉扫地,不久就关门大吉了。
选民的地址与姓名大都取自于电话簿与汽车俱乐部会 员名单
THE END
谢 谢 观 看!
知识点1抽样的基本概念1总体样本抽样抽样单位抽样框抽样的基本概念总体样本抽样抽样单位抽样框总体50000人样本400人抽样研究结果推断抽样sampling就是从总体中按照一定方式抽取样本的过程
《社会调查与统计分析》
第四章 抽样
知识点1 抽样的基本概念1
总体、样本、抽样、抽样单位、抽样框
学习导航
抽样的基本概念 总体 样本 抽样 抽样单位 抽样框
元素:每一个大学生
元素:每一户家庭
样本(Sample):从总体中按一定方式抽取出的一部 分元素的集合。
总体用N表示,样本用n表示。
抽样的基本概念
抽样单位(Sampling Unit):素:每一个大学生 抽样单位:每一个大学生
调查1000名大学生的价值 观念(直接从200个班级中 抽取40个班级) 元素:每一个大学生 抽样单位:班级
抽样的基本概念
总体 50000人
抽样 推断
样本 400人
研究结果
抽样的基本概念
数学抽样相关知识点总结
数学抽样相关知识点总结1. 抽样方法在进行抽样时,我们需要选择适合的抽样方法。
常见的抽样方法包括:- 简单随机抽样:从总体中随机地选择样本,每个样本有相等的概率被选中。
- 分层抽样:将总体按照某种特征分成几个层,然后从每个层中分别抽取样本。
- 系统抽样:从总体中随机地选择一个起始点,然后以固定的间隔选择样本。
- 整群抽样:将总体分成若干群,然后随机选择几个群作为样本。
选择合适的抽样方法取决于总体的特点和研究目的,不同的抽样方法会影响到最后推断的精确性和可靠性。
2. 抽样误差抽样误差是指由于样本选择不足或者样本选择方法不当而引入的误差。
抽样误差的大小直接影响到我们对总体特征的推断。
通常情况下,抽样误差可以通过增加样本量或改进抽样方法来减小。
在进行统计推断时,我们需要注意到由于抽样误差引入的不确定性,因此对抽样误差进行合理的估计和控制是十分重要的。
3. 抽样分布抽样分布是指在不同的抽样中,统计量的取值分布。
常见的抽样分布包括正态分布、t-分布、F-分布等。
这些抽样分布在统计推断中有着重要的作用,可以帮助我们进行假设检验、置信区间估计等。
通过对不同的抽样分布的性质和特点的了解,我们可以更好地进行统计推断,并对不同的问题做出合理的判断。
4. 实际应用中的注意事项在实际应用中,抽样是统计研究中一个至关重要的步骤。
在进行抽样时,我们需要注意以下几个方面:- 样本的代表性:要确保选择的样本能够代表总体的特征,避免样本偏差。
- 样本的大小:要根据研究问题的复杂程度和样本特点选择合适的样本大小。
- 抽样方法的合理性:要根据总体的特点和研究目的选择合适的抽样方法,尽量减小抽样误差。
总之,抽样是统计学中一个重要的概念,它在统计推断和研究中都有着重要的应用。
通过合理地选择抽样方法、控制抽样误差、了解抽样分布等,我们可以更准确地对总体特征进行推断,并做出科学的决策。
七年级抽样调查知识点
七年级抽样调查知识点抽样调查是在统计学中常用的一种方法,用于对总体进行估计或推断,通过样本数据来推断总体的特征。
在学生们所学习的数学课程中,抽样调查也是一个重要的知识点,今天我们就来探究一下七年级数学课本中的抽样调查知识点。
一、抽样调查的基本概念抽样调查是指从总体中抽取一部分样本,以此来推断总体特征的一种统计方法。
当统计总体特征时,我们经常无法对整个总体进行调查,而是通过对部分样本的调查来了解总体的情况。
二、抽样调查的方法1. 简单随机抽样调查简单随机抽样调查是指从总体中任意地随机抽取若干个样本的方法。
这种方法不需要考虑总体的各个个体的特征,每个样本抽选的概率都是相等的。
2. 系统抽样调查系统抽样调查是指将总体按照一定规则排成序列,然后按照一定间隔依次抽取样本的方法。
这种方法适用于总体无规律的情况下,比如学校内的学生排成一行,按照每隔10个学生抽取1个样本。
3. 分层抽样调查分层抽样调查是指先将总体按照某种方法分成若干层,然后从各层中抽取相应的样本。
这种方法适用于各层之间特征差异较大的情况下,比如对一所学校的统计调查,可以按照每个年级作为一层进行抽样调查。
三、抽样调查的误差抽样调查过程中,由于样本数据不可能完全等同于总体数据,所以会存在一定的误差。
这个误差可以通过计算标准误、置信区间等方法进行估计。
当误差越小时,则说明总体估计越准确。
四、注意事项在进行抽样调查时,需要注意以下几点:1. 样本的大小应该足够大,且样本的选择应该具有代表性。
2. 抽样的方法应该合理,不能出现选择性偏差。
3. 在进行误差估计时,应该采用正确的方法,避免低估或高估误差。
通过对七年级数学课本中的抽样调查知识点的学习、了解和掌握,对我们更好地理解统计学,有效地进行抽样调查具有积极意义。
同时,在实际生活中,也应该宏观地了解与抽样调查相关的知识,为我们的生活和学习带来更多的便利。
第四节抽样调查
共同定义:总体是构成它的所有元素的集合,而元 素则是构成总体的最基本单位。 样本(Sample)样本就是从总体中按一定方式抽取出 的一部分元素的集合。 抽样(Sampling) 指从组成某个总体的所有元素的集 合中,按一定的方式选择或抽取一部分元素的过程, 或者说抽样是从总体中按一定方式选择或抽取样本 的过程。
第二节 概率抽样的原理与程序
统计值(Statistic)也称为样本值,它是关于样本中某
一变量的综合描述。统计值是从样本中计算出来的, 它是相应的参数值的估计量。 置信度(Confidence level)与置信区间 (Confidence Interval)。置信度也称为置信水平,它是指总体参 数值,落在样本统计值某一区间内的概率,或者说 是总体参数值落在样本统计值某一区间中的把握性 程度。它反映的是抽样的可靠性程度。例子:P64。 置信区间指的是样本统计值与总体参数值之间的误 差范围,置信区间反映的是抽样的精确性程度。
第二节 概率抽样的原理与程序
确定抽样框:确立总体后,收集总体中全部
抽样单位的名单。有两种确立方法:一是全 选法,一个不能漏。如大学生社会实习调查。 选定总体为全日制大学在校本科生与研究生, 就要从各院系花名册中统一编号。 另一种是分层次的样本框:如调查一个城市 小学生的学习状况。全市500小学,选10所, 再从10所中每个学校选3个班;最后每个班选 10名学生。
第一节 抽样的意义与作用
(3)所抽选的调查样本数量,是根据调查误差的要求,
经过科学的计算确定的,在调查样本的数量上有可 靠的保证。 (4)抽样调查的误差,是在调查前就可以根据调查样 本数量和总体中各单位之间的差异程度进行计算, 并控制在允许范围以内,调查结果的准确程度较高。 基于以上特点,抽样调查被公认为是非全面调查方 法中用来推算和代表总体的最完善、最有科学根据 的调查方法。
高中数学知识点:抽样方法
高中数学知识点:抽样方法一、简单随机抽样设一个总体的个体数为N,如果通过逐个抽取的方法从中抽取一个样本,且每次抽取时,各个体被抽到的概率相等,就称这样的抽样为简单随机抽样。
一般地如果用简单随机抽样从个体数为N的总体中抽取一个容量为n的样本那么每个个体被抽到的概率等于n/N.常用的简单随机抽样方法有:抽签法、随机数法。
1.抽签法一般地,抽签法就是把总体中的N个个体编号,把号码写在号签上,将号签放在一个容器中,搅拌均匀后,每次从中抽取一个号签,连续抽取n次,就得到一个容量为n的样本。
2.随机数法随机抽样中,另一个经常被采用的方法是随机数法,即利用随机数表、随机数骰子或计算机产生的随机数进行抽样。
二、活用随机抽样系统抽样的最基本特征是“等距性”,每组内所抽取的号码需要依据第一组抽取的号码和组距是唯一确定,每组抽取样本的号码依次构成一个以第一组抽取的号码m为首项,组距d 为公差的等差数列{an},第k组抽取样本的号码,ak=m+(k-1)d,如本题中根据第一组的样本号码和组距,可得第k组抽取号码应该为9+30*(k-1)三、系统抽样要练说,先练胆。
说话胆小是幼儿语言发展的障碍。
不少幼儿当众说话时显得胆怯:有的结巴重复,面红耳赤;有的声音极低,自讲自听;有的低头不语,扯衣服,扭身子。
总之,说话时外部表现不自然。
我抓住练胆这个关键,面向全体,偏向差生。
一是和幼儿建立和谐的语言交流关系。
每当和幼儿讲话时,我总是笑脸相迎,声音亲切,动作亲昵,消除幼儿畏惧心理,让他能主动的、无拘无束地和我交谈。
二是注重培养幼儿敢于当众说话的习惯。
或在课堂教学中,改变过去老师讲学生听的传统的教学模式,取消了先举手后发言的约束,多采取自由讨论和谈话的形式,给每个幼儿较多的当众说话的机会,培养幼儿爱说话敢说话的兴趣,对一些说话有困难的幼儿,我总是认真地耐心地听,热情地帮助和鼓励他把话说完、说好,增强其说话的勇气和把话说好的信心。
三是要提明确的说话要求,在说话训练中不断提高,我要求每个幼儿在说话时要仪态大方,口齿清楚,声音响亮,学会用眼神。
抽样设计知识点总结
抽样设计知识点总结一、抽样的定义抽样是指从总体中选取一部分个体作为样本进行研究的过程。
总体是指研究对象的全体,而样本是从总体中选取的部分个体。
在实际的研究中,很难对整个总体进行研究,因此需要通过抽样的方法来选取代表性的样本,从而对总体进行推断。
二、抽样的类型1. 无偏抽样:无偏抽样是指在进行抽样时,每个个体被选取为样本的概率是相等的。
常见的无偏抽样方法有简单随机抽样、分层抽样、整群抽样等。
2. 有偏抽样:有偏抽样是指在进行抽样时,每个个体被选取为样本的概率是不相等的。
有偏抽样在实际的研究中很少使用,因为这种抽样方法可能会导致样本的代表性受到影响,从而影响到研究结果的可靠性。
三、抽样误差抽样误差是指由于抽样方法不恰当或者由于抽取样本所造成的误差。
抽样误差的大小直接影响到研究结果的可信度,因此在进行抽样设计时,需要注意尽量减小抽样误差。
常见的抽样误差有抽样偏差、非抽样误差等。
四、抽样设计的步骤1. 确定研究目的:在进行抽样设计时,首先需要明确研究的目的和问题,以便确定所需的样本类型和抽样方法。
2. 确定研究总体:确定研究总体的范围和特征,以便在抽样时准确地选取代表性样本。
3. 选择抽样方法:根据研究目的和研究总体的特点,选择合适的抽样方法,如简单随机抽样、分层抽样、整群抽样等。
4. 确定样本量:确定所需的样本量是抽样设计的关键步骤,样本量的大小直接影响到研究结果的可靠性。
5. 进行抽样实施:在确定了抽样方法和样本量后,就需要进行实际的抽样实施,从而得到代表性的样本。
6. 分析抽样结果:对抽样所得的样本进行分析,以评估样本的代表性和有效性,从而为研究结果的推断提供依据。
五、抽样设计的注意事项1. 样本的代表性:抽样设计的最终目的是获取代表性的样本,以此推断整个总体的特征。
因此在进行抽样设计时,需要注意保证样本的代表性。
2. 样本的可靠性:样本的可靠性是指样本所反映的总体特征与总体本身实际特征之间的一致性。
概率与统计中的抽样方法知识点
概率与统计中的抽样方法知识点概率与统计作为一门重要的学科,研究的是根据样本数据推断总体特征的方法与理论。
在实践中,我们通常使用抽样方法来获取样本数据。
抽样方法是指从总体中选取一部分个体进行观察和测量的过程。
本文将介绍概率与统计中常用的抽样方法及其相关知识点。
一、简单随机抽样简单随机抽样是指从总体中选择个体时,每个个体被选中的概率相等且相互独立。
简单随机抽样常用于总体规模较小、均匀性较好的情况,可以有效地代表总体。
简单随机抽样的过程主要包括以下几个步骤:1. 确定总体:首先需要明确总体是指哪些个体或对象。
2. 构建抽样框:抽样框是指包含总体中所有个体的清单或名单。
3. 确定样本容量:通过确定抽样容量来确定需要抽取的个体数量。
4. 抽取样本:通过随机抽取的方法从抽样框中选取样本。
二、系统抽样系统抽样是指将总体中的个体按照一定的规则排列顺序后,选择固定间隔的个体作为样本。
系统抽样适用于样本数量较大的总体,能够简化样本选择过程,降低抽样误差。
系统抽样的步骤如下:1. 确定总体和样本容量。
2. 确定抽样间隔:通过总体容量与样本容量的比例计算得出。
3. 随机确定起始个体:通过随机选择一个个体作为起始点。
4. 依次抽取样本:从起始个体开始,每隔一定间隔抽取一个个体,直到达到抽样容量。
三、整群抽样整群抽样是指将总体划分为若干个互不相交的群组,然后从每个群组中选择部分个体作为样本。
整群抽样常用于总体具有明显群组结构的情况,能够更好地保持总体的内部相似性。
整群抽样的步骤如下:1. 确定总体及群组:将总体划分为若干个互不相交的群组。
2. 确定样本群组:根据群组之间的差异性和相似性选择样本群组。
3. 随机选择群组内个体:从所选样本群组中随机选择部分个体组成样本。
四、分层抽样分层抽样是指将总体划分为若干个层次,并从每个层次中抽取部分个体作为样本。
分层抽样常用于总体具有明显层次结构的情况,在保持总体多样性的同时,还能更好地控制样本误差。
抽样知识点总结
抽样知识点总结一、抽样的基本概念1.1 总体和样本总体是指研究对象的全体,样本是从总体中抽取的一部分个体。
总体是研究的对象,样本是研究的实际观察单位。
1.2 抽样误差抽样误差是指由于抽样方法所导致的样本与总体之间的偏差。
抽样误差分为随机误差和系统误差两种,随机误差是由抽样本身的不确定性所引起,系统误差是由于抽样方法的偏差或者样本数据的不准确性所引起。
1.3 抽样分布抽样分布是一组样本统计量的概率分布,它反映了在不同样本情况下的统计量的变动情况。
1.4 抽样方法常见的抽样方法包括简单随机抽样、分层抽样、整群抽样、系统抽样、多阶段抽样等。
不同的抽样方法适用于不同的研究问题和数据特点。
二、抽样的基本原则2.1 代表性原则样本应当具有代表性,即能够准确地反映总体的特征和变动情况。
2.2 随机性原则抽样过程应当具有一定的随机性,以消除个体之间的偏好或者主观意愿。
2.3 独立性原则各个样本之间应当是相互独立的,互不影响,以确保样本数据的独立性和可靠性。
2.4 信息量原则样本应当具有足够的信息量,即能够为研究问题提供充足的数据支持。
三、抽样的实施步骤3.1 确定研究目标首先需要确定研究问题,明确所需的样本特征和数据信息。
3.2 制定抽样方案根据研究目标和总体特征,选择合适的抽样方法,并确定抽样的规模和抽样的程序。
3.3 抽取样本按照抽样方案进行抽样,获取符合要求的样本数据。
3.4 数据分析与推断对抽样数据进行分析和推断,从而得出关于总体特征和规律的结论。
3.5 结果解释与应用根据抽样研究的结论和推断结果,进行结果的解释和应用,为决策和实践提供支持和参考。
四、抽样的应用4.1 统计调查抽样是统计调查中常用的一种数据收集方法,可以节省人力物力,减小成本,提高工作效率。
4.2 市场调查在市场营销中,抽样可以帮助企业更加准确地了解消费者的需求和偏好,指导产品开发和促销策略。
4.3 健康调查抽样在健康调查中发挥着重要作用,可以了解社会群体的健康状况和问题,为政府和企业提供决策支持。
小学抽样知识点总结
小学抽样知识点总结抽样是统计学中的一项重要概念,它指的是从总体中抽取一部分个体进行观察或者实验,从而得到对总体特征的估计或者推断。
在实际应用中,抽样是非常常见的方法,尤其在调查、研究和统计分析中。
因此,小学生也应该了解和掌握相关的抽样知识,以便在日常生活中更好地应用这些知识。
一、抽样的基本概念1. 总体和样本总体是指研究对象的全部个体的集合,而样本是从总体中抽取的一部分个体。
在统计学中,总体通常是一个很大的集合,我们很难对其进行全面观测或者测试,因此我们会从总体中抽取一部分个体进行观察或者实验,从而得到总体特征的估计或者推断。
2. 抽样方法抽样方法是指从总体中抽取样本的具体方法,主要包括简单随机抽样、分层抽样、整群抽样、系统抽样等。
不同的抽样方法适用于不同的实际情况,我们需要根据研究目的和总体特点来选择合适的抽样方法。
3. 误差和置信度在抽样过程中,由于样本的限制和抽样方法的随机性,我们得到的样本估计值与总体真值之间会存在一定的偏差,这种偏差称为抽样误差。
为了度量样本估计值与总体真值之间的差异,我们通常会使用置信度来描述,它是指样本估计值与总体真值之间的可信程度。
二、常用的抽样方法1. 简单随机抽样简单随机抽样是指从总体中按照简单随机抽样的方法随机抽取样本个体,使得每一个个体被抽取为样本的概率相等。
这样可以保证样本具有代表性,从而能够对总体特征进行较为准确的估计。
2. 分层抽样分层抽样是指根据总体的某些特征将总体分成若干层,然后在每一层中按照简单随机抽样的方法抽取样本个体。
这种方法可以保证样本在各个层次上都具有代表性,适用于各层次人群特征不同的情况。
3. 整群抽样整群抽样是指将总体分成若干个群体,然后随机抽取若干个群体作为样本。
这种方法可以减少抽样成本,适用于群体特征类似的情况。
4. 系统抽样系统抽样是指按照一定的规律从总体中抽取样本个体,例如每隔k个个体抽取一个样本。
这种方法适用于总体是有序的情况,可以减小随机性带来的误差。
抽样技术知识点总结
抽样技术知识点总结一、引言抽样是统计学的重要内容之一,它是指从总体中选取出一部分个体,通过对这部分个体的观察和研究来推断总体的性质和规律的一种统计方法。
抽样技术的合理性和科学性对于统计结果的准确性和可靠性具有重要的保障作用。
抽样技术的研究涉及概率论、数理统计等领域,是统计学中的一个重要分支。
二、抽样技术的基本概念1. 总体和样本总体是指研究对象的全体,样本是指从总体中抽取出来的一部分个体。
抽样研究的目的是通过对样本进行观察和研究,得出关于总体的统计推断。
2. 抽样误差抽样误差是指由于抽样方法的随机性和样本容量的有限性而导致的估计值与总体参数之间的差异。
减小抽样误差是抽样研究的一个重要目标。
3. 抽样框架抽样框架是指总体中每一个个体在抽样过程中都有明确的身份和位置的集合,这是进行抽样的前提条件之一。
4. 抽样概率抽样概率是指进行抽样的每一个个体被选中的概率。
抽样概率对于抽样结果的合理性和可靠性具有重要的影响。
三、抽样方法1. 简单随机抽样简单随机抽样是指从总体中按完全随机的原则抽取出相同容量的样本的方法。
简单随机抽样是抽样方法中最基本的一种方法,它具有抽样误差小、可比较性强的特点。
2. 分层抽样分层抽样是指将总体按照某种特征分成若干层,然后从每一层中分别抽取样本的方法。
分层抽样能够有效地减小抽样误差,提高估计的准确性。
3. 整群抽样整群抽样是指将总体按照某种特征分成若干群,然后选择其中的若干群作为样本的方法。
整群抽样能够简化抽样过程,提高抽样效率。
4. 系统抽样系统抽样是指按照一定规则从总体中选择个体的方法。
系统抽样能够简化抽样过程,减小抽样误差。
5. 整群分层抽样整群分层抽样是指将总体按照某种特征首先分成若干群,然后再从每一群中按照某种分层方法抽取样本的方法。
整群分层抽样是一种比较复杂的抽样方法,但具有较高的抽样精度。
6. 多阶段抽样多阶段抽样是指在抽样过程中采用多个抽样阶段的方法。
多阶段抽样能够逐步缩小抽样范围,提高抽样效率。
抽样设计知识点总结
抽样设计知识点总结抽样设计是研究中常用的一种调查方法,在统计学和市场研究领域有着广泛的应用。
本文将总结抽样设计的基本概念、常见的抽样方法以及其优缺点,以帮助读者全面了解抽样设计的知识点。
以下是对抽样设计的详细总结:一、抽样设计的基本概念抽样设计是指在研究中通过对样本的选择和观察来对总体进行推断的过程。
其目的是通过从总体中抽取一部分个体进行观察和研究,从而推断出总体的特征和性质。
二、简单随机抽样简单随机抽样是指从总体中以等概率的方式随机选择样本的方法。
在简单随机抽样中,每个个体被选择为样本的概率是相等的,且相互之间是独立的。
简单随机抽样具有理论上的可行性和可重复性,但是在总体分布不均匀或者样本容量较大时,可能存在样本代表性不足的问题。
三、分层抽样分层抽样是将总体按照某些特征进行划分,然后在每个层次中进行独立的抽样。
分层抽样可以提高样本的代表性,并减小样本误差。
在分层抽样中,要根据总体的特征和目标确定划分的层次和样本容量,以确保每个层次都能充分代表总体。
四、整群抽样整群抽样是将总体按照某些特征划分为若干个互不重叠的群组,然后从选定的群组中进行全员抽样或随机抽样。
整群抽样能够简化抽样过程,减少抽样误差。
但是要注意群内的个体异质性,以保证样本的代表性。
五、多阶段抽样多阶段抽样又称为层级抽样,是将总体按照多个层次进行分层抽样的方法。
每个层次的样本数量和抽样方式可以根据实际情况进行调整,以提高样本的效率和代表性。
多阶段抽样常用于大规模调查和复杂样本选择的研究中。
六、配额抽样配额抽样是根据总体中各类别的比例,按照某些特征设定的配额进行抽样的方法。
配额抽样通常比较适用于面对有限数量的个体,且可以根据特定需求确定配额比例。
但是配额抽样不能保证每个个体被选择为样本的概率是相等的,可能导致样本的偏倚。
七、系统抽样系统抽样是按照某种规则从总体中依次选择样本的方法。
在系统抽样中,可以根据需要选择第一个样本的位置,然后按照固定的间隔选择后续的样本。
抽样检的基础必学知识点
抽样检的基础必学知识点
抽样检的基础知识点包括以下内容:
1. 抽样方法:在进行抽样检时,需要选择适当的抽样方法,常见的抽
样方法有简单随机抽样、系统抽样、分层抽样、整群抽样等。
2. 抽样误差:抽样误差是指抽样所引入的估计误差,其大小通常取决
于样本容量的大小和抽样方法的选择。
抽样误差越小,样本代表性越好,估计结果越可靠。
3. 样本容量:样本容量是指进行抽样检的样本数量,通常样本容量越大,估计结果越可靠。
样本容量的确定需要考虑抽样误差允许范围、
资源和时间等因素。
4. 抽样分布:抽样分布是指某一统计量在大量独立抽样情况下的分布。
常见的抽样分布有正态分布、t分布、卡方分布等。
根据不同的情况选择适当的抽样分布进行参数估计和假设检验。
5. 抽样误差的控制:为了减小抽样误差,可以采取增加样本容量、改
进抽样方法、增加抽样次数等方法进行控制。
合理选择抽样方法和样
本容量可以有效控制抽样误差。
以上是抽样检的基础必学知识点,通过学习这些知识点可以帮助我们
正确进行抽样检,得到可靠的估计结果。
高中抽样知识点总结
高中抽样知识点总结一、概念抽样是指从研究对象中抽取一部分代表性的样本进行观察和测量,用以推断总体特征的一种统计方法。
在实际研究中,总体往往是巨大而复杂的,很难进行全面的观察和测量,因此需要从总体中抽取一部分样本进行研究。
抽样是统计学中的重要概念,在各个领域的实证研究中都有着广泛的应用。
二、抽样原则1. 代表性:样本应当具有代表性,能够反映总体的特征。
2. 随机性:抽样过程应当是随机的,每个元素都有被抽中的可能性,不应当存在抽样偏差。
3. 独立性:每个样本应当是相互独立的,即一个样本的抽取不应当影响其他样本的抽取。
4. 样本大小:样本大小应当足够大,以确保能够准确地反映总体特征。
5. 抽样方法:抽样方法应当符合研究目的和数据类型的特点,选择适合的抽样方法。
三、抽样方法1. 随机抽样:是指通过简单随机抽样、分层随机抽样、整群随机抽样等方法进行样本抽取,以确保样本具有代表性和随机性。
2. 整群抽样:是指将总体按一定特征划分成若干类群,然后从这些类群中随机抽取若干类群作为样本。
3. 有系统抽样:是指按照一定的系统规则从总体中抽取样本,例如每隔若干个元素抽取一个样本。
4. 整群抽样:是指将总体按某种标准划分成若干类群,然后从这些类群中随机抽取若干类群作为样本。
5. 概率抽样:是指按照已知概率分布进行抽样,例如使用伯努利分布进行抽样。
6. 非概率抽样:是指不按照已知概率分布进行抽样,例如方便抽样、判断抽样等方法。
四、抽样误差在抽样过程中,由于各种原因可能导致样本与总体之间存在一定的差异,这种差异称为抽样误差。
抽样误差是抽样过程中的重要问题,对研究结果的准确性和可信度都有着重要影响。
五、样本容量样本容量是指抽取的样本数量,样本容量的大小直接影响到抽样结果的精确度和可信度。
一般来说,样本容量越大,抽样结果的可信度越高。
根据总体的大小和特征,确定合适的样本容量是抽样过程中的重要问题。
六、应用抽样方法在社会科学、自然科学、工程技术等领域都有着广泛的应用,是进行实证研究的基础方法。
第二章第一节简单随机抽样
第二章第一节简单随机抽样一、重点难点:1.正确理解随机抽样的概念,会描述抽签法、随机数表法的一般步骤.2.能够根据样本的具体情况选择适当的方法进行抽样.二、知识点讲解:一、简单随机抽样的概念:一般地,设一个总体含有N个个体,从中逐个不放回地抽取n个个体作为样本(n≤N),如果每次抽取时总体内的各个个体被抽到的机会都相等,就把这种抽样方法叫做简单随机抽样。
思考:简单随机抽样的每个个体入样的可能性为多少?(n/N)二、抽签法和随机数法:1、抽签法一般地,抽签法就是把总体中的N个个体编号,把号码写在号签上,将号签放在一个容器中,搅拌均匀后,每次从中抽取一个号签,连续抽取n次,就得到一个容量为n的样本。
抽签法的一般步骤:(1)将总体的个体编号;(2)连续抽签获取样本号码.思考:你认为抽签法有什么优点和缺点;当总体中的个体数很多时,用抽签法方便吗?解析:操作简便易行,当总体个数较多时工作量大,也很难做到“搅拌均匀”2、随机数法利用随机数表、随机数骰子或计算机产生的随机数进行抽样,叫随机数表法.怎样利用随机数表产生样本呢?下面通过例子来说明,假设我们要考察某公司生产的500克袋装牛奶的质量是否达标,现从800袋牛奶中抽取60袋进行检验,利用随机数表抽取样本时,可以按照下面的步骤进行。
第一步,先将800袋牛奶编号,可以编为000,001, (799)第二步,在随机数表中任选一个数,例如选出第8行第7列的数7(为了便于说明,下面摘取了附表1的第6行至第10行)。
16 22 77 94 39 49 54 43 54 82 17 37 93 23 7884 42 17 53 31 57 24 55 06 88 77 04 74 47 6763 01 63 78 59 16 95 55 67 19 98 10 50 71 7533 21 12 34 29 78 64 56 07 82 52 42 07 44 3857 60 86 32 44 09 47 27 96 54 49 17 46 09 6287 35 20 96 43 84 26 34 91 6421 76 33 50 25 83 92 12 06 7612 86 73 58 07 44 39 52 38 7915 51 00 13 42 99 66 02 79 5490 52 84 77 27 08 02 73 43 28第三步,从选定的数7开始向右读(读数的方向也可以是向左、向上、向下等),得到一个三位数785,由于785<799,说明号码785在总体内,将它取出;继续向右读,得到916,由于916>799,将它去掉,按照这种方法继续向右读,又取出567,199,507,…,依次下去,直到样本的60个号码全部取出,这样我们就得到一个容量为60的样本。
小学抽样知识点
小学抽样知识点抽样是统计学中非常重要的一个概念,它可以帮助我们从一个庞大的群体中获取有代表性的样本数据,从而进行统计分析和推断。
在小学数学课程中,学生通常会接触到一些简单的抽样问题。
本文将介绍小学阶段常见的抽样知识点,并以逐步思考的方式详细解释每个知识点。
1.定义抽样抽样是从一个大的群体中选取一部分个体或物品,以代表整个群体的特征。
抽样的目的是为了通过样本数据来推断总体的特征。
2.抽样方法小学阶段主要使用的抽样方法有以下几种:–随机抽样:每个个体被选中的机会相等,可以使用抽签、投骰子等方式进行。
–方便抽样:选择容易获得的个体作为样本,不具有代表性,结果可能有偏差。
–系统抽样:按照一定的规则选择个体作为样本,例如每隔一定间隔选取一个个体。
–分层抽样:将总体分成几个层次,然后在每个层次中进行随机抽样。
3.抽样调查问题抽样调查是使用抽样方法来获取信息的一种方式。
在小学中,常见的抽样调查问题包括:–调查学生的喜好:例如,调查学生最喜欢的水果是什么?–调查学生的兴趣爱好:例如,调查学生喜欢哪种运动?–调查学生的学习习惯:例如,调查学生每天花在做作业上的时间是多少?4.数据收集和整理进行抽样调查后,需要将收集到的数据进行整理。
可以使用表格、图表等方式来展示数据,以便更好地理解和分析。
5.数据分析通过对抽样数据的分析,可以得出一些结论和推断。
例如,通过分析抽样调查数据,我们可以得出学生最喜欢的水果是苹果。
但需要注意的是,这些结论只是对总体的推断,并不代表每个学生都喜欢苹果。
6.结论的可靠性在进行抽样调查时,我们需要考虑样本的大小和代表性,以确保得出的结论具有一定的可靠性。
样本越大、越具有代表性,得出的结论就越可靠。
7.抽样的应用抽样在日常生活中有很多应用。
除了用于调查和统计分析,抽样也被广泛应用于市场调研、医学研究、社会调查等领域。
例如,在市场调研中,可以通过抽样方法来了解消费者对产品的需求和喜好,从而制定相应的市场营销策略。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1. 抽样调查广义的抽样调查:是从研究对象的全体(总体) 中抽取一部分单位作为样本,根据对所抽取的样本进行调查,获得有关总体目标量的了解。
从总体中抽取样本的方法看,抽取方法可以分为两类:一类是非随机抽样(非概率抽样);一类是随机抽样(概率抽样),狭义上的抽样就是随机抽样。
2. 随机抽样(概率抽样)随机抽样是从总体中按随机原则抽取样本,并依据样本观察值对总体的数量特征取得具有一定可靠性的推断,从而达到对总体的认识。
随机抽样的特点:1.所谓随机原则就是在抽取样本时排除主观上有意识地抽取调查单元,使每个单元都以一个事先已知的非零概率有机会被抽中。
2.每个单元被抽中的概率是已知的,或是可以计算出来的,按照给定的入样概率通过一定的随机化程序进行抽样。
3.估计量不仅与样本单元的观测值有关,也与其入样概率有关。
随机抽样的主要优点是:随机抽样比非随机抽样更具有客观性,而且随机抽样可以依据调查结果计算抽样误差,从而得到对总体目标量进行推断的可靠程度。
3. 非随机抽样(非概率抽样)非随机抽样是相对于随机抽样而言的。
非随机抽样的共同特点是:抽取样本时,是依据主观判断有目的、有意识地进行,或根据方便的原则进行。
⎪⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎪⎨⎧⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎨⎧⎪⎪⎩⎪⎪⎨⎧⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧滚雪球抽样判断抽样定额抽样便利抽样)随意调查非随机调查系统抽样不等概率抽样多阶抽样整群抽样分层抽样简单随机抽样随机调查非全面调查全面调查统计调查(4. 抽样调查的基本程序 一、确定调研问题——二、抽样调查设计(抽样设计、问卷设计)——三、实施调查过程——四、数据处理分析——五、撰写调查报告——六、总结评估5. 总体、目标总体与抽样总体、抽样框、样本(包含第十章抽样框误差定义)所要研究对象的全体称为总体,组成这个总体的每个个别对象就称为总体单元或总体单位。
总体又有目标总体与抽样总体之分。
目标总体就是抽样调查预先确定的所要认识的对象的全体,也就是从样本中得到信息对之进行说明的总体。
抽样总体就是从中进行抽样的总体,是抽取样本的依据,从样本中得到的结论只适用于抽样总体。
抽样总体应该与目标总体完全一致,但实践中两者不一致的情况时常发生。
抽样框是一份包含所有抽样单元的名单、清册或地图。
抽样单元是构成抽样框的基本要素。
理想的抽样框标志是目标总体和抽样总体完全重合,就是说目标总体单元和抽样总体单元完全是一一对应的关系。
否则,抽样框就是不完善的,这意味着有可能出现抽样框误差。
这种误差并不是来自于抽样的随机性,而是产生于不完善的抽样框,所以抽样框误差是一种非抽样误差。
把从总体中按一定程序抽出的部分总体基本单元的集合称为样本。
样本n 对总体单元数N 的比称为抽样比,即抽样比Nn f =。
6. 几种基本的抽样方法简单随机抽样、分层抽样、整群抽样、系统抽样、多阶抽样、不等概率抽样 7. 抽样误差与非抽样误差(包含第十章内容:非抽样误差的定义及分类)由于样本的随机性引起的误差称为抽样误差,确切地讲,就是用样本数据估计总体指标而引起的总体指标估计值与总体指标真值之间的离差。
非抽样误差是相对于抽样误差而言的,是指除抽样以外的,由于其他多种原因引起的总体指标估计值与总体指标真值之间的差异。
非抽样误差分类:1.抽样框误差,即由不完善的抽样框引起的误差。
2. 无回答误差,即由于种种原因没有能够从调查单元获得调查结果,造成调查数据的缺失。
3.计量误差,即所获得的调查数据与调查项目的真值之间不一致造成的误差。
8. 精度与费用、最优设计抽样误差的精度通常用给定置信度下的绝对误差限或相对误差限表示,也可以以估计量的方差、标准差或变异系数形式提出。
抽样调查的精度取决于误差的大小。
抽样误差越小,说明用样本统计量对总体指标进行估计时的精度越高。
抽样误差与样本量有关,样本量越大,在其它条件相同情况下,抽样误差就越小,抽样调查的精度就越高。
同时,样本量也与调查费用有关,样本量越大,调查费用就越高。
样本量与调查费用大致呈线性关系,但样本量与精度却成非线性关系。
对于一个具体的抽样设计,在核定的费用内达到最高的精度,或在达到精度要求的条件下使调查的费用最少,则称这样的抽样设计为最优设计。
9. 简单随机抽样(定义、作用、局限性)及其抽选方法简单随机抽样(或单纯随机抽样)是一种等概率的抽样方法,即每一个总体单元进入样本的概率都是相同的,一般局限于不放回随机抽样。
简单随机样本的抽选通常有两种做法:抽签法和随机数法。
简单随机抽样在抽样理论中占有重要的地位,其他抽样方法技术都是在它的基础上建立发展起来的。
简单随机抽样的局限性主要表现在:首先,当总体单位数N 很大时,则编制抽样框比较困难;其次,简单随机抽样也不利用其他辅助信息,使得它的效率较其他利用辅助信息的抽样设计方法低。
最后,由于样本在总体中的地理分布很广,如果采取面访,就费时费力,实际操作难度很大,完全有可能得到一个代表性很差的样本。
10. 设计效应一个特定的抽样设计(包括抽样设计方法以及对总体目标量的估计方法)估计量的方差对相同样本量下(不放回)简单随机抽样的(简单)估计量的方差之比,即效率越低。
值越大,抽样估计量的方差相同样本量下简单随机的方差所考虑抽样设计估计量,deff deff =11. 分层抽样的定义、特点、划分原则将容量为N 的总体分成L 个不相重叠的子总体,子总体的大小分别为N1、 N2、… NL ,皆已知,且每个子总体就称为层。
从每层中独立地进行抽样,这样的抽样方法称为分层抽样。
分层随机抽样:在分层抽样中,如果每层中的抽样都是简单随机抽样,则这样的分层抽样称为分层随机抽样。
分层随抽样的特点:1.分层抽样的抽样效率较高,也就是说分层抽样的估计精度较高。
2.分层抽样不仅能对总体指标进行推算,而且能对各层指标进行推算。
3.层内抽样方法可以不同,而且便于抽样工作的组织。
4.为了组织调查的方便,各层可以根据层内的特点,分别采取不同的抽样方法。
层的划分原则:1.层内单元具有相同性质,通常按调查对象的不同类型进行划分。
2.尽可能使层内单元的标志值相近,层间单元的差异尽可能大(层间方差大,层内方差小),从而达到提高抽样估计精度的目的。
3.既按类型又按层内单元标志值相近的原则进行多重分层,同时达到实现估计类值以及提高估计精度的目的。
4.抽样组织实施的方便,通常按行政管理机构设置进行分层。
12. 比率估计与回归估计概念与应用条件XYX Y R ==即均值)之比值体的两个指标总量(或所需估计的目标值是总,。
比率估计量又称比估计。
在简单随机条件下,若分别以y ,x 表示两个指标均值,以Rˆ表示样本比率,则∑∑==ii xy xyRˆ,若以R ˆ作为总体比率R 的估计,就称为R 的比率估计。
在简单随机抽样下,总体均值与总体总量的线性回归估计量定义为:()x X y ylr -+=βˆ,tr y N Y ˆˆ=,其中,y 、x 分别为调查变量、辅助变量的样本均值,X 是辅助变量的总体均值,β称为回归系数。
有两种情况需要应用比率估计量。
一是利用两种变量样本对总体比率进行估计时需要应用比率估计量;二是一个变量为调查变量,另一个变量表现为与调查变量有密切关系的辅助变量,在对调查变量总体总量、总体均值等目标量进行估计时,利用已知的辅助变量信息构造比率估计量可以提高估计的精度。
比率估计、回归估计是非线性估计,于简单估计相比,其优劣取决于辅助变量的选择,也就是辅助变量应该与调查指标有较好的正相关关系,例如正比例关系或线性回归估计。
13. 不等概率抽样定义与适用场合总体单元差异特别大的情况时,通常是牺牲“简单”来提高抽样效率。
一是将总体单元按规模(大小)分层,对较大单元的层抽样比定的高些,抽样比甚至可以是100%,而较小单元的层抽样比定的低些。
二是赋予每个单元与其规模(或辅助变量)成比例的入样概率,这样一来,大单元入样概率大,小单元入样概率小。
这就是不等概率抽样。
实际工作中,以下情况可以考虑使用不等概率抽样:1.需要估计总体总量但总体单元规模相差很大的情况,抽样单元在总体中所占的地位不一致。
2.由于种种原因不能直接对基本的较小的单元抽样的情形。
14. 整群抽样的定义与特点整群抽样是将总体单元归并成数量较少而规模较大的初级单元也称为群,二级单元即为基本单元。
然后以群为抽样单元,按某种方式从中抽取部分群,对抽中的群中的所有基本单元进行调查的一种抽样方法。
优点:1.构造抽样框比较容易。
2.实施调查便利,节省费用。
缺点:在多数情况下,与简单随机抽样相比,其抽样误差较大。
但是,对于某些特殊结构的总体,整群抽样反而有较高的精度,例如总体中各个群的结构相似时。
15. 整群抽样的设计效应和群的划分原则整群抽样的设计效应为:[]c c srs M SnMf M S nM f Y V y V deff ρρ)1(11)1(11)ˆ()(22-+≈--+-≈=划分群的原则:群内方差尽可能大,而群间方差尽可能小(群内单元差异大,群间差异小)。
16. 多阶抽样的定义和优点将一个很大的总体划分为N 个初级单元,每个初级单元又划分为若干二级单元(或次级单元),若在总体中按一定方法抽取n 个初级单元,对每个被抽中的初级单元再相互独立地抽取若干二级单元进行调查,这种抽样称为二阶抽样。
在二阶抽样中,全部抽样是分两步实施的:第一步是从总体中抽初级单元,称为第一阶抽样;第二步是从每个被抽中的初级单元中抽二级单元,称为第二阶抽样。
优点:1.多阶抽样一方面保持了整群抽样的样本比较集中、便于调查、节省费用等优点,同时又避免了对小单元过多调查造成的浪费,充分发挥调查抽样的优点。
2.大大降低编制抽样框的工作量。
3.能够提高估计精度。
4.多阶抽样每一阶的抽样方法更加灵活和多样化。
二阶抽样与分层抽样、整群抽样的关系:如果第一阶抽样采用全面调查,二阶抽样就成了分层抽样;如果第二阶抽样采用全面调查,二阶抽样就成了整群抽样。
17. 系统抽样的定义、特点及局限性系统抽样是将总体单元按一定顺序排列,在规定的范围内随机抽取一个单元作为样本的第一单元,即起始单元,然后按照某种特定的规则抽取其他样本单元的一种抽样方法。
特点:1.简便易行,简化抽样手续。
2.对抽样框的要求比较简单。
3.系统抽样的精度与总体单元的排列顺序密切相关。
局限性:1.如果单元的排列存在周期性的变化,而抽样者对此缺乏了解或缺乏处理的经验,抽取的样本的代表性就可能很差。
2.一般系统抽样没有设计意义下的无偏估计量,且系统抽样的方差估计较为复杂。
18. 无回答误差、计量误差与离群值的概念无回答误差是指在调查中由于各种原因,调查人员没能够从入样的单元处获得所需要的信息,由于数据缺失造成估计量的偏误。