高考数学历年真题及答案详解
高考数学试卷答案及解析
一、选择题(本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
)1. 下列各式中,等式成立的是()A. \( x^2 - y^2 = (x - y)(x + y) \)B. \( \sqrt{x^2} = |x| \)C. \( (a + b)^2 = a^2 + 2ab + b^2 \)D. \( \frac{a}{b} = \frac{c}{d} \Rightarrow a \cdot d = b \cdot c \)答案:B解析:选项A是平方差公式,选项C是完全平方公式,选项D是比例的性质。
只有选项B中的根号和绝对值是等价的,所以选B。
2. 函数 \( y = \sqrt{2x - 1} \) 的定义域是()A. \( x \geq \frac{1}{2} \)B. \( x < \frac{1}{2} \)C. \( x > \frac{1}{2} \)D. \( x \leq \frac{1}{2} \)答案:A解析:由于根号下的表达式必须大于等于0,所以 \( 2x - 1 \geq 0 \),解得 \( x \geq \frac{1}{2} \)。
3. 已知等差数列 \( \{a_n\} \) 的前n项和为 \( S_n = 2n^2 + n \),则该数列的公差是()A. 2B. 3C. 4D. 5答案:A解析:等差数列的前n项和公式为 \( S_n = \frac{n}{2} [2a_1 + (n - 1)d] \),代入 \( S_n = 2n^2 + n \) 解得 \( d = 2 \)。
4. 函数 \( f(x) = x^3 - 3x \) 的单调递增区间是()A. \( (-\infty, -\sqrt{3}) \)B. \( (-\sqrt{3}, \sqrt{3}) \)C. \( (\sqrt{3}, +\infty) \)D. \( (-\infty, \infty) \)答案:C解析:函数的导数 \( f'(x) = 3x^2 - 3 \),令 \( f'(x) > 0 \) 解得\( x > \sqrt{3} \) 或 \( x < -\sqrt{3} \),所以单调递增区间是\( (\sqrt{3}, +\infty) \)。
高考数学试卷及答案解析
一、选择题(本大题共12小题,每小题5分,共60分)1. 已知函数f(x) = 2x - 1,那么f(3)的值为()A. 5B. 7C. 9D. 11答案:C解析:将x=3代入函数f(x) = 2x - 1,得到f(3) = 23 - 1 = 6 - 1 = 5。
2. 若|a| = 3,|b| = 4,则|a + b|的最大值为()A. 7B. 8C. 11D. 12答案:C解析:由三角不等式可知,|a + b| ≤ |a| + |b|,所以|a + b| ≤ 3 + 4 = 7。
当a和b同号时,|a + b|取最大值,即|a + b| = |a| + |b| = 3 + 4 = 7。
3. 若x^2 - 4x + 3 = 0,则x的值为()A. 1B. 3C. 2D. 5答案:A解析:这是一个一元二次方程,可以通过因式分解或使用求根公式来解。
因式分解得(x - 1)(x - 3) = 0,所以x = 1或x = 3。
故选A。
4. 在等差数列{an}中,若a1 = 3,公差d = 2,则a10的值为()A. 21B. 23C. 25D. 27答案:C解析:等差数列的通项公式为an = a1 + (n - 1)d,代入a1 = 3,d = 2,n = 10,得到a10 = 3 + (10 - 1)2 = 3 + 18 = 21。
5. 若log2(x + 1) = 3,则x的值为()A. 7B. 8C. 9D. 10答案:B解析:由对数定义可知,2^3 = x + 1,即8 = x + 1,解得x = 7。
6. 若复数z满足|z - 1| = 2,则复数z在复平面上的轨迹是()A. 圆B. 线段C. 直线D. 双曲线答案:A解析:复数z可以表示为z = x + yi,其中x和y是实数。
由|z - 1| = 2,即|(x - 1) + yi| = 2,表示复数z到点(1, 0)的距离为2,因此z在复平面上的轨迹是以(1, 0)为圆心,2为半径的圆。
高考数学试卷及解析答案
一、选择题(本大题共12小题,每小题5分,共60分)1. 下列各数中,属于有理数的是()A. √2B. πC. -3/5D. 无理数2. 函数y = 2x - 1的图象是()A. 一次函数的图象,斜率为正,y轴截距为负B. 一次函数的图象,斜率为负,y轴截距为正C. 二次函数的图象,开口向上D. 二次函数的图象,开口向下3. 已知等差数列{an}的前n项和为Sn,若S3 = 9,S6 = 27,则第10项a10的值为()A. 6B. 7C. 8D. 94. 在△ABC中,∠A = 60°,∠B = 45°,则∠C的度数为()A. 75°B. 90°C. 105°D. 120°5. 下列命题中,正确的是()A. 若a > b,则a^2 > b^2B. 若a > b,则ac > bcC. 若a > b,则log2a > log2bD. 若a > b,则a + c > b + c6. 函数f(x) = |x - 1| + |x + 1|的值域为()A. [0, +∞)B. [-2, +∞)C. [-1, +∞)D. [0, 2]7. 已知复数z = a + bi(a, b ∈ R),若|z - 3i| = |z + i|,则实数a的值为()A. 0B. 1C. 2D. 38. 下列各点中,在直线3x - 4y + 5 = 0上的是()A. (1, 1)B. (2, 2)C. (3, 3)D. (4, 4)9. 若函数f(x) = ax^2 + bx + c(a ≠ 0)的图象开口向上,且顶点坐标为(-1, 2),则a的值为()A. 1B. 2C. 3D. 410. 已知函数y = log2(x - 1) + log2(x + 1)的定义域为D,则D的值为()A. (-1, 1)B. (-1, +∞)C. (1, +∞)D. (-∞, -1)∪(1, +∞)11. 在等比数列{an}中,若a1 = 2,公比q = 3,则第n项an的值为()A. 2^nB. 3^nC. 6^nD. 9^n12. 若直线y = kx + 1与圆x^2 + y^2 = 1相切,则k的值为()A. 0B. 1C. -1D. 不存在二、填空题(本大题共6小题,每小题5分,共30分)13. 函数y = 2x - 3的图象与x轴的交点坐标为______。
高考数学试卷答案加解析
一、选择题(本大题共10小题,每小题5分,共50分)1. 函数f(x) = 2x - 3的图像是()A. 上升的直线B. 下降的直线C. 水平线D. 垂直线答案:A解析:一次函数f(x) = ax + b的图像是一条直线,其中a为斜率,b为y轴截距。
对于f(x) = 2x - 3,斜率a = 2,大于0,因此图像是上升的直线。
2. 已知等差数列{an}的第一项a1 = 2,公差d = 3,则第10项a10等于()A. 29B. 31C. 33D. 35答案:D解析:等差数列的通项公式为an = a1 + (n - 1)d。
将a1 = 2,d = 3,n = 10代入,得a10 = 2 + (10 - 1)×3 = 2 + 27 = 29。
3. 下列函数中,有最小值的是()A. f(x) = x^2B. f(x) = x^3C. f(x) = -x^2D. f(x) = x^4答案:C解析:函数f(x) = -x^2是一个开口向下的二次函数,其顶点为(0, 0),因此有最小值0。
4. 若复数z满足|z - 1| = 2,则z的取值范围是()A. |z| = 3B. |z| = 2C. |z - 1| = 2D. |z + 1| = 2答案:A解析:复数z的模为|z|,表示z到原点的距离。
由|z - 1| = 2,可知z到点(1, 0)的距离为2,因此z的模|z|也等于3。
5. 在三角形ABC中,若∠A = 30°,∠B = 45°,则∠C等于()A. 75°B. 105°C. 135°D. 150°答案:A解析:三角形内角和为180°,已知∠A = 30°,∠B = 45°,则∠C = 180° - ∠A - ∠B = 180° - 30° - 45° = 105°。
去年高考数学试卷及答案
一、选择题(本大题共12小题,每小题5分,共60分)1. 已知函数f(x) = x^2 - 2x + 1,则f(3)的值为()A. 4B. 5C. 6D. 7答案:C解析:将x=3代入函数f(x) = x^2 - 2x + 1,得到f(3) = 3^2 - 23 + 1 = 9 - 6 + 1 = 4。
2. 若等差数列{an}的首项a1=3,公差d=2,则第10项an的值为()A. 19B. 21C. 23D. 25答案:C解析:根据等差数列的通项公式an = a1 + (n-1)d,代入a1=3,d=2,n=10,得到an = 3 + (10-1)2 = 3 + 18 = 21。
3. 已知复数z满足|z-2i|=3,则z的实部a的取值范围是()A. [-3, 1]B. [-1, 3]C. [-3, 3]D. [-1, 5]答案:B解析:复数z的实部a加上虚部2i的模长为3,即|a+2i|=3。
由复数的模长公式可得a^2 + 2^2 = 3^2,即a^2 + 4 = 9,解得a^2 = 5,所以a的取值范围为[-√5, √5]。
结合选项,答案为B。
4. 已知函数f(x) = log2(x+1),则f(-1)的值为()A. 0B. 1C. -1D. 不存在答案:D解析:由于对数函数的定义域为正实数,而f(-1)中的x+1=-1+1=0,不在定义域内,所以f(-1)不存在。
5. 已知等比数列{bn}的首项b1=1,公比q=2,则第5项bn的值为()A. 16B. 32C. 64D. 128答案:C解析:根据等比数列的通项公式bn = b1 q^(n-1),代入b1=1,q=2,n=5,得到bn = 1 2^(5-1) = 1 2^4 = 16。
6. 已知函数f(x) = |x-2|,则f(-1)的值为()A. 1B. 3C. 4D. 5答案:B解析:将x=-1代入函数f(x) = |x-2|,得到f(-1) = |-1-2| = |-3| = 3。
数学高考真题答案及解析版
数学高考真题答案及解析版一、选择题1. 本题考查函数的性质和应用。
设函数f(x) = 2^x - 3,若f(x) = 5,则x = 2。
因为f(x)在R上是增函数,所以f(x) > 5 当 x > 2。
因此,选项A正确。
2. 根据题目,我们需要求解不等式。
首先,将不等式整理为标准形式:3x - 2 > 7。
解得x > 3,所以选项C是正确答案。
3. 题目涉及三角函数的图像和性质。
正弦函数y = sin(x)在区间[0,2π]内的最大值为1,最小值为-1。
因此,选项B描述正确。
4. 这是一个关于复数的问题。
设复数z = a + bi,其中a和b是实数。
根据题目条件,z的模长为5,即√(a^2 + b^2) = 5。
又因为z的实部为3,即a = 3。
代入模长公式,解得b = 4。
所以,复数z = 3 +4i,选项D正确。
5. 本题要求我们利用概率的基本原理计算事件的概率。
根据古典概型,事件A的概率P(A) = 事件A的基本事件数 / 总的基本事件数。
这里,事件A是抽取到红色球,有3个红色球和5个蓝色球,总共8个球。
所以,P(A) = 3/8。
选项B是正确答案。
二、填空题1. 题目要求求解几何级数的和。
根据等比数列求和公式,S = a(1 -r^n) / (1 - r),其中a是首项,r是公比,n是项数。
将题目中的数值代入公式,得到S = 1(1 - 2^5) / (1 - 2) = 31/(-1) = -31。
2. 本题考查圆的方程和直线与圆的位置关系。
设圆心为O(0,0),半径r = 3。
直线方程为y = x + 1。
圆心到直线的距离d = |0 - 0 + 1|/ √2 = 1/√2。
因为 d < r,所以直线与圆相交。
根据相交弦的性质,弦长l = 2√(r^2 - d^2) = 2√(9 - 1/2) = √34。
三、解答题1. 首先,我们需要证明函数f(x) = x^3 - 3x^2 + 2x在区间[0,3]上是单调递增的。
高考数学试卷加答案解析
一、选择题(本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
)1. 函数f(x) = ax^2 + bx + c的图象开口向上,且与x轴有两个交点,则下列说法正确的是:A. a > 0, b^2 - 4ac < 0B. a < 0, b^2 - 4ac < 0C. a > 0, b^2 - 4ac > 0D. a < 0, b^2 - 4ac > 02. 已知等差数列{an}的前n项和为Sn,且S5 = 25,S10 = 55,则第25项a25的值为:A. 6B. 7C. 8D. 93. 在△ABC中,角A、B、C的对边分别为a、b、c,且sinA + sinB + sinC = 3,则△ABC为:A. 直角三角形B. 钝角三角形C. 等腰三角形D. 等边三角形4. 函数f(x) = x^3 - 3x + 2在区间[0, 2]上的最大值为:A. 2B. 1C. 0D. -15. 若复数z满足|z - 1| = |z + 1|,则z的实部为:A. 0B. 1C. -1D. 不存在6. 已知数列{an}满足an = 3an-1 + 2n,且a1 = 1,则数列{an}的前n项和为:A. 3^n - 1B. 3^n + 1C. 2^n - 1D. 2^n + 17. 在平面直角坐标系中,点A(1, 2),点B(-2, 1),则线段AB的中点坐标为:A. (-1, 1.5)B. (-1, 0.5)C. (0, 1.5)D. (0, 0.5)8. 若函数f(x) = log2(x + 1) + log2(x - 1)在区间[0, 2]上单调递增,则x的取值范围为:A. 0 < x < 1B. 1 < x < 2C. 0 < x < 2D. x > 29. 已知函数f(x) = ax^2 + bx + c在x = 1时取得极小值,则下列说法正确的是:A. a > 0, b > 0B. a > 0, b < 0C. a < 0, b > 0D. a < 0, b < 010. 若平面α与平面β所成的二面角为θ,则sinθ的最大值为:A. 1B. 0C. 1/2D. 1/√2二、填空题(本大题共5小题,每小题5分,共25分。
高考数学试卷及答案详解
一、选择题(每小题5分,共50分)1. 下列函数中,在定义域内是奇函数的是()A. f(x) = x^2 - 1B. f(x) = |x|C. f(x) = x^3D. f(x) = 2x答案:C解析:奇函数满足f(-x) = -f(x)。
对于选项C,f(-x) = (-x)^3 = -x^3 = -f(x),符合奇函数的定义。
2. 已知等差数列{an}的前n项和为Sn,若S5 = 15,S9 = 27,则该数列的公差d是()A. 1B. 2C. 3D. 4答案:B解析:等差数列的前n项和公式为Sn = n/2 (a1 + an)。
对于S5 = 15,有5/2 (a1 + a5) = 15,同理S9 = 9/2 (a1 + a9) = 27。
由a5 = a1 + 4d,a9 = a1 + 8d,代入得:5/2 (a1 + a1 + 4d) = 15,9/2 (a1 + a1 + 8d) = 27解得d = 2。
3. 若复数z满足|z - 1| = |z + 1|,则复数z的实部是()A. 0B. 1C. -1D. 不确定答案:A解析:复数z在复平面上的几何意义是z对应的点到点(1, 0)和(-1, 0)的距离相等,即z位于这两点连线的垂直平分线上。
因此,z的实部为0。
4. 下列命题中,正确的是()A. 若a > b,则a^2 > b^2B. 若a > b,则log_a b < 0C. 若a > b,则a + c > b + cD. 若a > b,则ac > bc答案:C解析:选项A、B、D均存在反例,只有选项C是正确的,因为对于任意的实数c,加上相同的数不会改变不等式的方向。
5. 函数y = 2^x + 1在定义域内的单调性是()A. 单调递增B. 单调递减C. 不单调D. 不确定答案:A解析:指数函数y = 2^x是单调递增的,因此其加上常数1后,函数y = 2^x + 1仍然保持单调递增。
高考数学试题及答案详解
高考数学试题及答案详解一、选择题(每题4分,共40分)1. 若函数f(x) = 2x^2 - 4x + 1,则f(1)的值为:A. 1B. 2C. 3D. 5答案:B解析:将x=1代入函数f(x) = 2x^2 - 4x + 1中,得到f(1) =2(1)^2 - 4(1) + 1 = 2 - 4 + 1 = -1。
因此,正确答案为B。
2. 已知等差数列{an}的首项a1 = 3,公差d = 2,求第10项a10的值:A. 23B. 25C. 27D. 29答案:A解析:根据等差数列的通项公式an = a1 + (n-1)d,将n=10,a1=3,d=2代入公式,得到a10 = 3 + (10-1)×2 = 3 + 18 = 21。
因此,正确答案为A。
...20. 已知函数g(x) = x^3 - 6x^2 + 9x + 1,求g(x)的导数g'(x):A. 3x^2 - 12x + 9B. x^3 - 6x^2 + 9C. 3x^2 - 12x + 1D. 3x^2 - 6x + 9答案:A解析:根据导数的定义,对函数g(x) = x^3 - 6x^2 + 9x + 1求导,得到g'(x) = 3x^2 - 12x + 9。
因此,正确答案为A。
二、填空题(每题5分,共30分)1. 若复数z满足|z| = √2,且z的实部为1,则z的虚部为____。
答案:±1解析:设复数z = 1 + bi,其中b为虚部。
根据复数的模长公式,|z| = √(1^2 + b^2) = √2,解得b^2 = 1,因此b = ±1。
...5. 已知直线l的方程为y = 2x + 3,求直线l与x轴的交点坐标。
答案:(-3/2, 0)解析:令y=0,代入直线方程y = 2x + 3,得到0 = 2x + 3,解得x = -3/2。
因此,直线l与x轴的交点坐标为(-3/2, 0)。
高考数学试卷及详细答案
一、选择题(本大题共12小题,每小题5分,共60分)1. 下列函数中,在定义域内单调递增的是()A. y = x^2B. y = 2x - 1C. y = -x^3D. y = 3x^2 - 2x + 12. 若复数z满足|z - 1| = 2,则复数z的实部a的取值范围是()A. a ≤ 1B. a ≤ 3C. a ≥ 1D. a ≥ 33. 已知数列{an}的前n项和为Sn,且S1 = 1,S2 = 3,S3 = 6,则数列{an}的通项公式是()A. an = nB. an = n - 1C. an = n^2D. an = n(n + 1)/24. 已知函数f(x) = x^3 - 3x,则f'(x) = ()A. 3x^2 - 3B. 3x^2 + 3C. 3x^2 - 6xD. 3x^2 + 6x5. 在直角坐标系中,直线y = 2x + 1与圆x^2 + y^2 = 4的位置关系是()A. 相离B. 相切C. 相交D. 在圆内6. 若向量a = (1, 2),向量b = (2, -1),则向量a与向量b的数量积是()A. 5B. -5C. 3D. -37. 已知函数y = log2(x - 1),则函数的定义域是()A. x > 1B. x ≥ 1C. x < 1D. x ≤ 18. 若等差数列{an}的前n项和为Sn,且a1 = 2,d = 3,则S10 = ()A. 210B. 220C. 230D. 2409. 已知函数f(x) = x^2 - 4x + 4,则f(x)的对称轴是()A. x = 2B. x = -2C. y = 2D. y = -210. 在三角形ABC中,若∠A= 60°,∠B = 45°,则∠C = ()A. 75°B. 120°C. 15°D. 135°11. 已知函数y = |x - 1| + |x + 1|,则函数的最小值是()A. 0B. 1C. 2D. 312. 若等比数列{an}的公比q > 1,且a1 = 1,则数列{an}的第n项an是()A. 2^nB. n^2C. n^3D. n^4二、填空题(本大题共6小题,每小题5分,共30分)13. 若复数z满足|z - 1| = √2,则复数z的实部a的取值范围是__________。
高考数学真题及答案解析版
高考数学真题及答案解析版一、选择题1. 题目内容:已知函数f(x) = ax^2 + bx + c在点x=1取得最小值3,且知道a>0,求a+b+c的值。
答案解析:根据题意,函数f(x) = ax^2 + bx + c在x=1处取得最小值,可以得出f(x)的对称轴为x=-b/2a=1,由此可得b=-2a。
又因为f(1)=3,代入得a+b+c=3。
将b=-2a代入,得到a-2a+c=3,即c=5-a。
由于a>0,所以c>5。
综合以上信息,我们可以得出a+b+c=a-2a+5-a=3,解得a=1,进而得到b=-2,c=4。
所以a+b+c=1+(-2)+4=3。
2. 题目内容:设集合A={x|x^2 < 4},B={x|x < 0},求A∪B的值。
答案解析:集合A表示的是所有满足x^2 < 4的x值的集合,即-2 <x < 2。
集合B表示的是所有小于0的x值的集合。
求A∪B,即求A和B的并集,也就是所有属于A或属于B的元素构成的集合。
由于A的范围是-2到2之间,而B是小于0的所有数,因此A∪B的范围是从负无穷到2,即A∪B={x|x < 2}。
3. 题目内容:已知数列{an}满足a1=1,an=3an-1+2(n≥2),求a5的值。
答案解析:根据递推公式an=3an-1+2,我们可以逐步计算数列的前几项。
首先a1=1,然后a2=3a1+2=5,a3=3a2+2=17,a4=3a3+2=53,最后a5=3a4+2=161。
所以a5的值为161。
二、填空题1. 题目内容:若sinθ=0.6,则cosθ的值为______。
答案解析:根据三角函数的基本关系,sin^2θ+cos^2θ=1。
已知sinθ=0.6,所以0.6^2+cos^2θ=1,解得cos^2θ=1-0.36=0.64。
由于cosθ的值在-1到1之间,所以cosθ的值为±√0.64=±0.8。
高考数学真题答案解析版
高考数学真题答案解析版一、选择题1. 答案:C解析:本题考查了函数的奇偶性。
首先,我们需要判断函数f(x)=x^2-2x+1的奇偶性。
由于f(-x)=(-x)^2-2(-x)+1=x^2+2x+1,可以看出f(-x)=f(x),所以f(x)是一个偶函数。
偶函数的图像关于y轴对称,因此选项C正确。
2. 答案:B解析:此题涉及数列的通项公式与求和。
根据等差数列的求和公式S_n = n(a_1 + a_n)/2,我们可以计算出数列的前n项和。
将n=8代入公式,得到S_8 = 8(a_1 + a_8)/2。
又因为a_n = a_1 + (n-1)d,我们可以求出a_8 = a_1 + 7d。
将a_8的表达式代入S_8的公式中,得到S_8 = 8(a_1 + a_1 + 7d)/2 = 4(2a_1 + 7d)。
由于S_8 = 20,我们可以解出a_1 = 1,d = 2。
因此,a_9 = a_1 + 8d = 17,选项B正确。
3. 答案:A解析:本题考查了三角函数的图像与性质。
根据三角函数的周期性,我们知道sin(2x)的周期为π,而cos(2x)的周期为2π。
因此,sin(2x)在区间[0, π/2]上单调递增,cos(2x)在区间[0, π/4]上单调递增。
结合选项,我们可以得出在x=π/4时,sin(2x)取得最大值1,而cos(2x)取得最大值1/√2,所以选项A正确。
4. 答案:D解析:此题考查了概率的计算。
首先,我们需要计算基本事件的总数,即从5个红球和3个白球中各取一个球的组合数,为C(5,1)*C(3,1)=15。
然后,我们计算事件A发生的情况,即从5个红球中取两个球的组合数,为C(5,2)=10。
根据概率公式P(A) = 事件A 的基本事件数 / 基本事件总数,我们可以得出P(A) = 10/15 = 2/3,所以选项D正确。
二、填空题1. 答案:3解析:本题考查了等差数列的通项公式。
新高考历年数学试卷及答案
一、选择题1. 已知函数f(x) = x^2 - 4x + 3,若存在实数a,使得f(a) = 0,则a的取值范围是()A. a ≤ 1 或 a ≥ 3B. a > 1 或 a < 3C. a ∈ (-∞, 1] ∪ [3, +∞)D. a ∈ (-∞, 1) ∪ (3, +∞)答案:C解析:因为f(x) = x^2 - 4x + 3,所以f(a) = a^2 - 4a + 3。
要使f(a) = 0,即a^2 - 4a + 3 = 0。
解这个一元二次方程,得到a = 1 或 a = 3。
因此,a的取值范围是a ∈ (-∞, 1] ∪ [3, +∞)。
2. 已知等差数列{an}的前n项和为Sn,若a1 = 1,d = 2,则S10的值为()A. 55B. 65C. 80D. 100答案:C解析:等差数列的前n项和公式为Sn = n/2 (a1 + an)。
由题意知,a1 = 1,d= 2,所以an = a1 + (n - 1)d = 1 + 2(n - 1) = 2n - 1。
将a1和an代入公式,得到S10 = 10/2 (1 + 29) = 5 19 = 95。
但是,因为题目中要求S10的值,所以需要将S10除以2,得到S10 = 95 / 2 = 47.5。
由于选项中没有小数,所以取最接近的整数,即S10 = 80。
3. 已知等比数列{bn}的前n项和为Tn,若b1 = 1,q = 2,则T4的值为()A. 14B. 28C. 56D. 112答案:A解析:等比数列的前n项和公式为Tn = b1 (q^n - 1) / (q - 1)。
将b1和q代入公式,得到T4 = 1 (2^4 - 1) / (2 - 1) = 15。
二、填空题4. 已知函数f(x) = ax^2 + bx + c,若f(-1) = 0,f(1) = 3,且f(x)的图像开口向上,则a、b、c的值分别为()答案:a = 1,b = -2,c = 1解析:因为f(-1) = 0,所以a(-1)^2 + b(-1) + c = 0,即a - b + c = 0。
高三数学试卷真题及解析
一、选择题(每题5分,共50分)1. 已知函数f(x) = x^2 - 4x + 3,则f(x)的图像的对称轴为()A. x = 2B. x = 1C. x = 3D. x = 4解析:函数f(x) = x^2 - 4x + 3是一个二次函数,其标准形式为f(x) = a(x-h)^2 + k,其中(h, k)为顶点坐标。
由f(x) = x^2 - 4x + 3可知,h = 2,k = -1,因此对称轴为x = 2。
答案为A。
2. 在△ABC中,a = 3,b = 4,c = 5,则sinA + sinB + sinC的值为()A. 6B. 8C. 10D. 12解析:根据正弦定理,sinA = a/c,sinB = b/c,sinC = c/a。
代入已知数据,得sinA = 3/5,sinB = 4/5,sinC = 5/3。
因此,sinA + sinB + sinC = 3/5 + 4/5 + 5/3 = 6。
答案为A。
3. 下列不等式中,正确的是()A. x^2 + 1 > 0B. x^2 - 1 < 0C. x^2 + 1 < 0D. x^2 - 1 > 0解析:对于任何实数x,x^2总是非负的,因此x^2 + 1 > 0恒成立。
而x^2 - 1< 0表示x在(-1, 1)区间内,x^2 - 1 > 0表示x在(-∞, -1)和(1, +∞)区间内。
因此,正确答案为A。
4. 设复数z = a + bi(a, b∈R),若|z - 1| = |z + 1|,则a + b的值为()A. 0B. 2C. -2D. 4解析:复数z = a + bi,|z - 1| = |a - 1 + bi|,|z + 1| = |a + 1 + bi|。
由|z - 1| = |z + 1|,得(a - 1)^2 + b^2 = (a + 1)^2 + b^2。
展开后简化,得a = 0。
高考数学试题真题及答案
高考数学试题真题及答案一、选择题(每题5分,共20分)1. 若函数\( f(x) = x^2 - 4x + 3 \)在区间\( (1, +\infty) \)上单调递增,则下列说法正确的是:A. 函数的最小值为2B. 函数的最小值为1C. 函数在\( x = 2 \)处取得最小值D. 函数在\( x = 1 \)处取得最小值答案:C2. 已知向量\( \vec{a} = (3, -2) \)和\( \vec{b} = (2, 1) \),则\( \vec{a} \cdot \vec{b} \)的值为:A. 4B. 2C. -2D. -4答案:B3. 若\( \sin \alpha = \frac{3}{5} \)且\( \alpha \)为锐角,则\( \cos \alpha \)的值为:A. \( \frac{4}{5} \)B. \( \frac{3}{5} \)C. \( -\frac{4}{5} \)D. \( -\frac{3}{5} \)答案:A4. 已知等比数列\( \{a_n\} \)的首项\( a_1 = 2 \),公比\( q = 2 \),则\( a_5 \)的值为:A. 16B. 32C. 64D. 128答案:C二、填空题(每题5分,共20分)5. 已知双曲线的方程为\( \frac{x^2}{9} - \frac{y^2}{16} = 1 \),其渐近线方程为\( \pm \frac{4}{3}x \)。
6. 若从5名男生和3名女生中选出3人参加比赛,其中至少有1名女生,则不同的选法共有多少种?答案:307. 函数\( f(x) = \ln(x+1) - x \)在区间\( (0, +\infty) \)上是减函数。
8. 已知\( \tan \theta = \frac{1}{2} \),则\( \sin \theta \cos \theta \)的值为\( \frac{1}{5} \)。
2012年-2021年(10年)全国高考数学真题分类汇编 集合(精解精析版)
2012-2021十年全国高考数学真题分类汇编集合(精解精析版)1.(2021年高考全国乙卷理科)已知集合{}21,S s s n n ==+∈Z ,{}41,T t t n n ==+∈Z ,则S T Ç=()A .∅B .SC .TD .Z【答案】C解析:任取t T ∈,则()41221t n n =+=⋅+,其中n Z ∈,所以,t S ∈,故T S ⊆,因此,S T T = .故选:C .2.(2021年高考全国甲卷理科)设集合{}104,53M x x N xx ⎧⎫=<<=≤≤⎨⎬⎩⎭,则M N = ()A .103x x ⎧⎫<≤⎨⎬⎩⎭B .143xx ⎧⎫≤<⎨⎬⎩⎭C .{}45x x ≤<D .{}05x x <≤【答案】B解析:因为1{|04},{|5}3M x x N x x =<<=≤≤,所以1|43M N x x ⎧⎫⋂=≤<⎨⎬⎩⎭,故选:B .【点睛】本题考查集合的运算,属基础题,在高考中要求不高,掌握集合的交并补的基本概念即可求解.3.(2020年高考数学课标Ⅰ卷理科)设集合A ={x |x 2–4≤0},B ={x |2x +a ≤0},且A ∩B ={x |–2≤x ≤1},则a =()A .–4B .–2C .2D .4【答案】B【解析】求解二次不等式240x -≤可得:{}2|2A x x -=≤≤,求解一次不等式20x a +≤可得:|2a B x x ⎧⎫=≤-⎨⎬⎩⎭.由于{}|21A B x x ⋂=-≤≤,故:12a-=,解得:2a =-.故选:B .【点睛】本题主要考查交集的运算,不等式的解法等知识,意在考查学生的转化能力和计算求解能力.4.(2020年高考数学课标Ⅱ卷理科)已知集合U ={−2,−1,0,1,2,3},A ={−1,0,1},B ={1,2},则()U A B ⋃=ð()A .{−2,3}B .{−2,2,3}C .{−2,−1,0,3}D .{−2,−1,0,2,3}【答案】A解析:由题意可得:{}1,0,1,2A B ⋃=-,则(){}U 2,3A B =- ð.故选:A.【点睛】本题主要考查并集、补集的定义与应用,属于基础题.5.(2020年高考数学课标Ⅲ卷理科)已知集合{(,)|,,}A x y x y y x =∈≥*N ,{(,)|8}B x y x y =+=,则A B 中元素的个数为()A .2B .3C .4D .6【答案】C解析:由题意,A B 中的元素满足8y xx y ≥⎧⎨+=⎩,且*,x y N ∈,由82x y x +=≥,得4x ≤,所以满足8x y +=的有(1,7),(2,6),(3,5),(4,4),故A B 中元素的个数为4.故选:C .【点晴】本题主要考查集合的交集运算,考查学生对交集定义的理解,是一道容易题.6.(2019年高考数学课标Ⅲ卷理科)已知集合{}1,0,1,2A =-,2{|1}B x x =≤,则A B =()A .{}1,0,1-B .{}0,1C .{}1,1-D .{}0,1,2【答案】A 【解析】因为{}1,0,1,2A =-,{}11B x x =-≤≤,所以{}1,0,1A B =- ,故选A .【点评】本题考查了集合交集的求法,是基础题.7.(2019年高考数学课标全国Ⅱ卷理科)设集合{}2560A x x x =-+>,{}10B x x =-<,则A B =()A .(),1-∞B .()2,1-C .()3,1--D .()3,+∞【答案】A【解析】{}{25602A x x x x x =-+>=≤或}3x ≥,{}{}101B x x x x =-<=<,故{}1A B x x =< ,故选A .【点评】本题主要考查一元二次不等式,一元二次不等式的解法,集合的运算,属于基础题.本题考点为集合的运算,为基础题目,难度偏易.不能领会交集的含义易致误,区分交集与并集的不同,交集取公共部分,并集包括二者部分.8.(2019年高考数学课标全国Ⅰ卷理科)已知集合{42}M x =-<<,2{|60}N x x x =--<,则M N = ()A .{|43}x x -<<B .{|42}x x -<<-C .{|22}x x -<<D .{|23}x x <<【答案】C 解析:2{|60}{|(2)(3)0}{|23},{|22}N x x x x x x x x M N x x =--<=+-<=-<<∴=-<< .9.(2018年高考数学课标Ⅲ卷(理))已知集合{}|10A x x =-≥,{}0,1,2B =,则A B = ()A .{}0B .{}1C .{}1,2D .{}0,1,2【答案】C解析:{}{}|10|1A x x x x =-≥=≥,{}0,1,2B =,故{}1,2A B = ,故选C .10.(2018年高考数学课标Ⅱ卷(理))已知集合(){}223A x y xy x y =+∈∈Z Z ,≤,,,则A 中元素的个数为()A .9B .8C .5D .4【答案】A 解析:(){}{}223(1,1),(1,0),(1,1),(0,1),(0,0),(0,1),(1,1),(1,0),(1,1)A x y xy x y =+∈∈=-------Z Z ,≤,,,故选A .11.(2018年高考数学课标卷Ⅰ(理))己知集合{}220A x x x =-->,则R A =ð()A .{}12x x -<<B .{}12x x -≤≤C .{}{}12x x x x <-> D .{}{}12x x x x ≤-≥解析:集合{}220A x x x =+->,可得{}12A x x x =<->或,则{}-12R A x x =≤≤ð,故选:B .12.(2017年高考数学新课标Ⅰ卷理科)已知集合{}|1A x x =<,{}|31x B x =<,则()A .{|0}AB x x =< B .A B =RC .{|1}A B x x =>D .A B =∅【答案】A【解析】由31x<得033x<,所以0x <,故{|1}{|0}{|0}A B x x x x x x ⋂=<⋂<=<,故选A .【考点】集合的运算,指数运算性质.【点评】集合的交、并、补运算问题,应先把集合化简再计算,常常借助数轴或韦恩图进行处理.13.(2017年高考数学课标Ⅲ卷理科)已知集合A ={}22(,)1x y x y +=│,B ={}(,)x y y x =│,则A B 中元素的个数为().A .3B .2C .1D .0【答案】B【解析】法1:集合中的元素为点集,由题意,结合A 表示以(0,0)为圆心,1为半径的单位圆上所有点组成的集合,集合B 表示直线y x =上所有点组成的集合,联立圆与直线的方程,可得圆221x y +=与直线y x =相交于两点22⎛⎝⎭,,22⎛⎫- ⎪ ⎪⎝⎭,所以A B 中有两个元素.法2:结合图形,易知交点个数为2,即A B 的元素个数为2.故选B【考点】交集运算;集合中的表示方法.【点评】求集合的基本运算时,要认清集合元素的属性(是点集、数集或其他情形)和化简集合,这是正确求解集合运算的两个先决条件.集合中元素的三个特性中的互异性对解题影响较大,特别是含有字母的集合,在求出字母的值后,要注意检验集合中的元素是否满足互异性.14.(2017年高考数学课标Ⅱ卷理科)设集合{}1,2,4A =,{}240x x x m B =-+=.若{}1A B = ,则B =()A .{}1,3-B .{}1,0C .{}1,3D .{}1,5【命题意图】本题主要考查一元二次方程的解法及集合的基本运算,以考查考生的运算能力为目的.【解析】解法一:常规解法∵{}1A B = ∴1是方程240x x m -+=的一个根,即3m =,∴{}2430B x x x =-+=故{}1,3B =解法二:韦达定理法∵{}1A B = ∴1是方程240x x m -+=的一个根,∴利用伟大定理可知:114x +=,解得:13x =,故{}1,3B =解法三:排除法∵集合B 中的元素必是方程方程240x x m -+=的根,∴124x x +=,从四个选项A ﹑B ﹑C ﹑D 看只有C 选项满足题意.【知识拓展】集合属于新课标必考点,属于函数范畴,常与解方程﹑求定义域和值域﹑数集意义相结合,集合考点有二:1.集合间的基本关系;2.集合的基本运算.15.(2016高考数学课标Ⅲ卷理科)设集合{}(2)(3)0S x x x =--≥,{}0T x x =>,则S T =()A .[]2,3B .(][),23,-∞+∞ C .[)3,+∞D .(][)0,23,+∞ 【答案】D【解析】由(2)(3)0x x --≥解得3x ≥或2x ≤,所以{}23S x x x =或≤≥,所以{}023S T x x x =< 或≤≥,故选D .16.(2016高考数学课标Ⅱ卷理科)已知集合{1,2,3}A =,{|(1)(2)0,}B x x x x =+-<∈Z ,则A B =()A .{1}B .{12},C .{0123},,,D .{10123}-,,,,【答案】C【解析】{|(1)(2)0,}={0,1}B x x x x Z =+-<∈,又{1,}A =2,3,所以{0,1,2,3}A B =,故选C .17.(2016高考数学课标Ⅰ卷理科)设集合2{|430}A x x x =-+<,{|230}B x x =->,则A B =()(A )3(3,)2--(B )3(3,)2-(C )3(1,)2(D )3(,3)2【答案】D【解析】{}{}243013A x x x x x =-+<=<<,{}32302B x x x x ⎧⎫=->=>⎨⎬⎩⎭.故332A B xx ⎧⎫=<<⎨⎬⎩⎭.故选D .18.(2015高考数学新课标2理科)已知集合21,0,1,2A =--{,},{}(1)(20B x x x =-+<,则A B = ()A .{}1,0A =-B .{}0,1C .{}1,0,1-D .{}0,1,2【答案】A解析:由已知得{}21B x x =-<<,故{}1,0A B =- ,故选A .考点:集合的运算.19.(2014高考数学课标2理科)设集合0,1,2M ={},2{|320}N x x x =-+≤,则M N = ()A .{1}B .{2}C .{0,1}D .{1,2}【答案】D解析:因为N ={x|1x 2}≤≤,所以M N={12},⋂,故选D .考点:(1)集合的基本运算;(2)一元二次不等式的解法,难度:B 备注:常考题20.(2014高考数学课标1理科)已知集合A ={x |2230x x --≥},B ={}22x x -≤<,则A B ⋂=()A .[-2,-1]B .[-1,2)C .[-1,1]D .[1,2)【答案】A解析:∵A ={x |2230x x --≥}={}13x x x ≤-≥或,B ={}22x x -≤<,∴A B ⋂={}21x x -≤≤,选A .考点:(1)集合间的基本运算;(2)一元二次不等式的解法;(3)数形结合思想难度:A 备注:高频考点21.(2013高考数学新课标2理科)已知集合=2{|(1)4,},N {1,0,1,2,3}M x x x R -<∈=-,则M N ⋂=()A .{0,1,2}B .{1,0,1,2}-C .{1,0,2,3}-D .{0,1,2,3}【答案】A解析:化简集合M 得{|13,}M x x x R =-<<∈,则{0,1,2}M N ⋂=.考点:(1)7.2.1一元二次不等式的解法;(2)1.1.3集合的基本运算.难度:A 备注:高频考点22.(2013高考数学新课标1理科)已知集合A =2{|20}x x x ->,B ={|x x <<,则()A .AB =∅ B .A B R= C .B A⊆D .A B⊆【答案】D解析:(,0)(2,),A A B R =-∞+∞∴= ,故选B .考点:(1)1.1.3集合的基本运算;(2)7.2.1一元二次不等式的解法.难度:A备注:高频考点23.(2012高考数学新课标理科)已知集合{1,2,3,4,5}A =,{(,),,}B x y x A y A x y A =∈∈-∈;,则B 中所含元素的个数为()A .3B .6C .8D .10【答案】D解析:以x 为标准进行分类:当x =5时,满足A y x ∈-的y 的可能取值为1,2,3,4,共有4个,(确定y 的个数)当x =4时,满足A y x ∈-的y 的可能取值为1,2,3,共有3个,(确定y 的个数)当x =3时,满足A y x ∈-的y 的可能取值为1,2,共有2个,(确定y 的个数)当x =2时,满足A y x ∈-的y 的可能取值为1,共有1个,(确定y 的个数)得B 中所含元素(x ,y )的个数为4+3+2+1=10个。
历年(2019-2024)全国高考数学真题分类(排列组合与二项式定理)汇编(附答案)
历年(2019-2024)全国高考数学真题分类(排列组合与二项式定理)汇编考点01 排列组合综合1.(2024∙全国甲卷∙高考真题)甲、乙、丙、丁四人排成一列,则丙不在排头,且甲或乙在排尾的概率是( ) A .14 B .13C .12D .232.(2023∙全国甲卷∙高考真题)现有5名志愿者报名参加公益活动,在某一星期的星期六、星期日两天,每天从这5人中安排2人参加公益活动,则恰有1人在这两天都参加的不同安排方式共有( ) A .120B .60C .30D .203.(2023∙全国甲卷∙高考真题)某校文艺部有4名学生,其中高一、高二年级各2名.从这4名学生中随机选2名组织校文艺汇演,则这2名学生来自不同年级的概率为( )A .16B .13C .12D .234.(2023∙全国乙卷∙高考真题)甲乙两位同学从6种课外读物中各自选读2种,则这两人选读的课外读物中恰有1种相同的选法共有( ) A .30种B .60种C .120种D .240种5.(2023∙全国新Ⅱ卷∙高考真题)某学校为了解学生参加体育运动的情况,用比例分配的分层随机抽样方法作抽样调查,拟从初中部和高中部两层共抽取60名学生,已知该校初中部和高中部分别有400名和200名学生,则不同的抽样结果共有( ). A .4515400200C C ⋅种 B .2040400200C C ⋅种C .3030400200C C ⋅种D .4020400200C C ⋅种6.(2022∙全国新Ⅱ卷∙高考真题)有甲、乙、丙、丁、戊5名同学站成一排参加文艺汇演,若甲不站在两端,丙和丁相邻,则不同排列方式共有( ) A .12种B .24种C .36种D .48种7.(2022∙全国新Ⅰ卷∙高考真题)从2至8的7个整数中随机取2个不同的数,则这2个数互质的概率为( )A .16B .13C .12D .238.(2021∙全国乙卷∙高考真题)将5名北京冬奥会志愿者分配到花样滑冰、短道速滑、冰球和冰壶4个项目进行培训,每名志愿者只分配到1个项目,每个项目至少分配1名志愿者,则不同的分配方案共有( ) A .60种B .120种C .240种D .480种9.(2021∙全国甲卷∙高考真题)将3个1和2个0随机排成一行,则2个0不相邻的概率为( ) A .0.3B .0.5C .0.6D .0.810.(2021∙全国甲卷∙高考真题)将4个1和2个0随机排成一行,则2个0不相邻的概率为( )A .13B .25C .23D .4511.(2020∙海南∙高考真题)要安排3名学生到2个乡村做志愿者,每名学生只能选择去一个村,每个村里至少有一名志愿者,则不同的安排方法共有( )A .2种B .3种C .6种D .8种12.(2020∙山东∙高考真题)6名同学到甲、乙、丙三个场馆做志愿者,每名同学只去1个场馆,甲场馆安排1名,乙场馆安排2名,丙场馆安排3名,则不同的安排方法共有( )A .120种B .90种C .60种D .30种13.(2019∙全国∙高考真题)我国古代典籍《周易》用“卦”描述万物的变化.每一“重卦”由从下到上排列的6个爻组成,爻分为阳爻“——”和阴爻“— —”,如图就是一重卦.在所有重卦中随机取一重卦,则该重卦恰有3个阳爻的概率是A .516B .1132C .2132D .1116考点02 二项式定理综合1.(2024∙北京∙高考真题)在(4x 的展开式中,3x 的系数为( ) A .6B .6-C .12D .12-2.(2022∙北京∙高考真题)若443243210(21)x a x a x a x a x a -=++++,则024a a a ++=( )A .40B .41C .40-D .41-3.(2020∙北京∙高考真题)在52)-的展开式中,2x 的系数为( ). A .5-B .5C .10-D .104.(2020∙全国∙高考真题)25()()x x y x y ++的展开式中x 3y 3的系数为( )A .5B .10C .15D .205.(2019∙全国∙高考真题)(1+2x 2)(1+x )4的展开式中x 3的系数为 A .12 B .16 C .20 D .24参考答案考点01 排列组合综合1.(2024∙全国甲卷∙高考真题)甲、乙、丙、丁四人排成一列,则丙不在排头,且甲或乙在排尾的概率是( ) A .14 B .13C .12D .23【答案】B【详细分析】解法一:画出树状图,结合古典概型概率公式即可求解.解法二:分类讨论甲乙的位置,结合得到符合条件的情况,然后根据古典概型计算公式进行求解. 【答案详解】解法一:画出树状图,如图,由树状图可得,甲、乙、丙、丁四人排成一列,共有24种排法, 其中丙不在排头,且甲或乙在排尾的排法共有8种, 故所求概率81=243P =. 解法二:当甲排在排尾,乙排第一位,丙有2种排法,丁就1种,共2种; 当甲排在排尾,乙排第二位或第三位,丙有1种排法,丁就1种,共2种;于是甲排在排尾共4种方法,同理乙排在排尾共4种方法,于是共8种排法符合题意;基本事件总数显然是44A 24=,根据古典概型的计算公式,丙不在排头,甲或乙在排尾的概率为81243=. 故选:B2.(2023∙全国甲卷∙高考真题)现有5名志愿者报名参加公益活动,在某一星期的星期六、星期日两天,每天从这5人中安排2人参加公益活动,则恰有1人在这两天都参加的不同安排方式共有( ) A .120B .60C .30D .20【详细分析】利用分类加法原理,分类讨论五名志愿者连续参加两天公益活动的情况,即可得解. 【答案详解】不妨记五名志愿者为,,,,a b c d e ,假设a 连续参加了两天公益活动,再从剩余的4人抽取2人各参加星期六与星期天的公益活动,共有24A 12=种方法,同理:,,,b c d e 连续参加了两天公益活动,也各有12种方法, 所以恰有1人连续参加了两天公益活动的选择种数有51260⨯=种. 故选:B.3.(2023∙全国甲卷∙高考真题)某校文艺部有4名学生,其中高一、高二年级各2名.从这4名学生中随机选2名组织校文艺汇演,则这2名学生来自不同年级的概率为( )A .16B .13C .12D .23【答案】D【详细分析】利用古典概率的概率公式,结合组合的知识即可得解.【答案详解】依题意,从这4名学生中随机选2名组织校文艺汇演,总的基本事件有24C 6=件, 其中这2名学生来自不同年级的基本事件有1122C C 4=,所以这2名学生来自不同年级的概率为4263=. 故选:D.4.(2023∙全国乙卷∙高考真题)甲乙两位同学从6种课外读物中各自选读2种,则这两人选读的课外读物中恰有1种相同的选法共有( ) A .30种 B .60种 C .120种 D .240种【答案】C【详细分析】相同读物有6种情况,剩余两种读物的选择再进行排列,最后根据分步乘法公式即可得到答案.【答案详解】首先确定相同得读物,共有16C 种情况,然后两人各自的另外一种读物相当于在剩余的5种读物里,选出两种进行排列,共有25A 种,根据分步乘法公式则共有1265C A 120⋅=种,故选:C.5.(2023∙全国新Ⅱ卷∙高考真题)某学校为了解学生参加体育运动的情况,用比例分配的分层随机抽样方法作抽样调查,拟从初中部和高中部两层共抽取60名学生,已知该校初中部和高中部分别有400名和200名学生,则不同的抽样结果共有( ). A .4515400200C C ⋅种 B .2040400200C C ⋅种C .3030400200C C ⋅种D .4020400200C C ⋅种【详细分析】利用分层抽样的原理和组合公式即可得到答案. 【答案详解】根据分层抽样的定义知初中部共抽取4006040600⨯=人,高中部共抽取2006020600⨯=, 根据组合公式和分步计数原理则不同的抽样结果共有4020400200C C ⋅种. 故选:D.6.(2022∙全国新Ⅱ卷∙高考真题)有甲、乙、丙、丁、戊5名同学站成一排参加文艺汇演,若甲不站在两端,丙和丁相邻,则不同排列方式共有( ) A .12种 B .24种C .36种D .48种【答案】B【详细分析】利用捆绑法处理丙丁,用插空法安排甲,利用排列组合与计数原理即可得解【答案详解】因为丙丁要在一起,先把丙丁捆绑,看做一个元素,连同乙,戊看成三个元素排列,有3!种排列方式;为使甲不在两端,必须且只需甲在此三个元素的中间两个位置任选一个位置插入,有2种插空方式;注意到丙丁两人的顺序可交换,有2种排列方式,故安排这5名同学共有:3!2224⨯⨯=种不同的排列方式, 故选:B7.(2022∙全国新Ⅰ卷∙高考真题)从2至8的7个整数中随机取2个不同的数,则这2个数互质的概率为( )A .16B .13C .12D .23【答案】D【详细分析】由古典概型概率公式结合组合、列举法即可得解.【答案详解】从2至8的7个整数中随机取2个不同的数,共有27C 21=种不同的取法,若两数不互质,不同的取法有:()()()()()()()2,4,2,6,2,8,3,6,4,6,4,8,6,8,共7种, 故所求概率2172213P -==. 故选:D.8.(2021∙全国乙卷∙高考真题)将5名北京冬奥会志愿者分配到花样滑冰、短道速滑、冰球和冰壶4个项目进行培训,每名志愿者只分配到1个项目,每个项目至少分配1名志愿者,则不同的分配方案共有( ) A .60种 B .120种 C .240种 D .480种【答案】C【详细分析】先确定有一个项目中分配2名志愿者,其余各项目中分配1名志愿者,然后利用组合,排列,乘法原理求得.【答案详解】根据题意,有一个项目中分配2名志愿者,其余各项目中分配1名志愿者,可以先从5名志愿者中任选2人,组成一个小组,有25C 种选法;然后连同其余三人,看成四个元素,四个项目看成四个不同的位置,四个不同的元素在四个不同的位置的排列方法数有4!种,根据乘法原理,完成这件事,共有2 54!240C⨯=种不同的分配方案,故选:C.【名师点评】本题考查排列组合的应用问题,属基础题,关键是首先确定人数的分配情况,然后利用先选后排思想求解.9.(2021∙全国甲卷∙高考真题)将3个1和2个0随机排成一行,则2个0不相邻的概率为() A.0.3 B.0.5 C.0.6 D.0.8【答案】C【详细分析】利用古典概型的概率公式可求概率.【答案详解】解:将3个1和2个0随机排成一行,可以是:00111,01011,01101,01110,10011,10101,10110,11001,11010,11100,共10种排法,其中2个0不相邻的排列方法为:01011,01101,01110,10101,10110,11010,共6种方法,故2个0不相邻的概率为6=0.6 10,故选:C.10.(2021∙全国甲卷∙高考真题)将4个1和2个0随机排成一行,则2个0不相邻的概率为()A.13B.25C.23D.45【答案】C【答案详解】将4个1和2个0随机排成一行,可利用插空法,4个1产生5个空,若2个0相邻,则有155C=种排法,若2个0不相邻,则有2510C=种排法,所以2个0不相邻的概率为102 5103=+.故选:C.11.(2020∙海南∙高考真题)要安排3名学生到2个乡村做志愿者,每名学生只能选择去一个村,每个村里至少有一名志愿者,则不同的安排方法共有()A.2种 B.3种 C.6种 D.8种【答案】C【详细分析】首先将3名学生分成两个组,然后将2组学生安排到2个村即可.【答案详解】第一步,将3名学生分成两个组,有12323C C=种分法第二步,将2组学生安排到2个村,有222A=种安排方法所以,不同的安排方法共有326⨯=种 故选:C【名师点评】解答本类问题时一般采取先组后排的策略.12.(2020∙山东∙高考真题)6名同学到甲、乙、丙三个场馆做志愿者,每名同学只去1个场馆,甲场馆安排1名,乙场馆安排2名,丙场馆安排3名,则不同的安排方法共有( )A .120种B .90种C .60种D .30种【答案】C【详细分析】分别安排各场馆的志愿者,利用组合计数和乘法计数原理求解. 【答案详解】首先从6名同学中选1名去甲场馆,方法数有16C ; 然后从其余5名同学中选2名去乙场馆,方法数有25C ; 最后剩下的3名同学去丙场馆.故不同的安排方法共有126561060C C ⋅=⨯=种.故选:C【名师点评】本小题主要考查分步计数原理和组合数的计算,属于基础题.13.(2019∙全国∙高考真题)我国古代典籍《周易》用“卦”描述万物的变化.每一“重卦”由从下到上排列的6个爻组成,爻分为阳爻“——”和阴爻“— —”,如图就是一重卦.在所有重卦中随机取一重卦,则该重卦恰有3个阳爻的概率是A .516B .1132C .2132D .1116【答案】A【详细分析】本题主要考查利用两个计数原理与排列组合计算古典概型问题,渗透了传统文化、数学计算等数学素养,“重卦”中每一爻有两种情况,基本事件计算是住店问题,该重卦恰有3个阳爻是相同元素的排列问题,利用直接法即可计算.【答案详解】由题知,每一爻有2种情况,一重卦的6爻有62情况,其中6爻中恰有3个阳爻情况有36C ,所以该重卦恰有3个阳爻的概率为3662C =516,故选A .【名师点评】对利用排列组合计算古典概型问题,首先要详细分析元素是否可重复,其次要详细分析是排列问题还是组合问题.本题是重复元素的排列问题,所以基本事件的计算是“住店”问题,满足条件事件的计算是相同元素的排列问题即为组合问题.考点02 二项式定理综合1.(2024∙北京∙高考真题)在(4x 的展开式中,3x 的系数为( ) A .6 B .6- C .12 D .12-【答案】A【详细分析】写出二项展开式,令432r-=,解出r 然后回代入二项展开式系数即可得解.【答案详解】(4x 的二项展开式为(()()442144C C 1,0,1,2,3,4r rrr rr r T x xr --+==-=,令432r-=,解得2r =, 故所求即为()224C 16-=. 故选:A.2.(2022∙北京∙高考真题)若443243210(21)x a x a x a x a x a -=++++,则024a a a ++=( )A .40B .41C .40-D .41-【答案】B【详细分析】利用赋值法可求024a a a ++的值. 【答案详解】令1x =,则432101a a a a a ++++=, 令=1x -,则()443210381a a a a a -+-+=-=, 故420181412a a a +++==, 故选:B.3.(2020∙北京∙高考真题)在52)-的展开式中,2x 的系数为( ). A .5- B .5C .10-D .10【答案】C【详细分析】首先写出展开式的通项公式,然后结合通项公式确定2x 的系数即可.【答案详解】)52展开式的通项公式为:()()55215522r rrrr r r T CC x--+=-=-,令522r -=可得:1r =,则2x 的系数为:()()11522510C -=-⨯=-. 故选:C.【名师点评】二项式定理的核心是通项公式,求解此类问题可以分两步完成:第一步根据所给出的条件(特定项)和通项公式,建立方程来确定指数(求解时要注意二项式系数中n 和r 的隐含条件,即n ,r 均为非负整数,且n ≥r ,如常数项指数为零、有理项指数为整数等);第二步是根据所求的指数,再求所求解的项.4.(2020∙全国∙高考真题)25()()x x y xy ++的展开式中x 3y 3的系数为( )A .5B .10C .15D .20【答案】C【详细分析】求得5()x y +展开式的通项公式为515rrrr T C xy -+=(r N ∈且5r ≤),即可求得2y x x ⎛⎫+ ⎪⎝⎭与5()x y +展开式的乘积为65r rr C xy -或425r r r C x y -+形式,对r 分别赋值为3,1即可求得33x y 的系数,问题得解.【答案详解】5()x y +展开式的通项公式为515r rr r T C xy -+=(r N ∈且5r ≤)所以2y x x ⎛⎫+ ⎪⎝⎭的各项与5()x y +展开式的通项的乘积可表示为:56155r rrr rrr xT xC xy C xy --+==和22542155r r rr r r r T C x y xC y y y x x --++==在615rrr r xT C xy -+=中,令3r =,可得:33345xT C x y =,该项中33x y 的系数为10,在42152r r r r T C x x y y -++=中,令1r =,可得:521332T C y x x y =,该项中33x y 的系数为5所以33x y 的系数为10515+= 故选:C【名师点评】本题主要考查了二项式定理及其展开式的通项公式,还考查了赋值法、转化能力及详细分析能力,属于中档题.5.(2019∙全国∙高考真题)(1+2x 2)(1+x )4的展开式中x 3的系数为 A .12 B .16 C .20 D .24【答案】A【详细分析】本题利用二项展开式通项公式求展开式指定项的系数.【答案详解】由题意得x 3的系数为314424812C C +=+=,故选A .【名师点评】本题主要考查二项式定理,利用展开式通项公式求展开式指定项的系数.。
高考真题数学答案及解析
高考真题数学答案及解析一、选择题1. 题目:若函数f(x) = ax^2 + bx + c在点x=2处取得极小值,且已知f(1)=3,f(3)=15,则a的值为____。
解析:由题意可知,函数f(x) = ax^2 + bx + c在x=2处取得极小值,所以f'(x)在x=2处为0。
首先求导数f'(x) = 2ax + b。
将x=2代入得到4a + b = 0。
又已知f(1)=3,f(3)=15,将x=1和x=3分别代入原函数得到两个方程:a + b + c = 3和9a + 3b + c = 15。
联立这三个方程解得a=1,b=-2,c=4。
所以a的值为1。
2. 题目:设集合A={x|x=2n, n∈Z},B={x|x=2n+1, n∈Z},则A∪B的元素个数为____。
解析:集合A表示所有偶数的集合,集合B表示所有奇数的集合。
由于整数集包括所有的偶数和奇数,所以A∪B就是整个整数集。
因此,A∪B的元素个数为无穷多个。
3. 题目:已知三角形ABC中,∠A=90°-∠B,AB=AC,点D为BC中点,连接AD,若∠BAD=15°,则∠BAC的度数为____。
解析:由于AB=AC,所以三角形ABC为等腰直角三角形,∠BAC=45°。
又因为∠A=90°-∠B,所以∠B=45°。
由于点D为BC中点,AD为中线,所以AD=BD=CD。
又因为∠BAD=15°,所以∠DAC=∠BAC-∠BAD=45°-15°=30°。
因此,∠BAC的度数为30°。
二、填空题1. 题目:若等差数列{an}的前n项和为Sn,已知a1=2,公差d=3,求S10的值为____。
解析:等差数列的前n项和公式为Sn = n/2 * (2a1 + (n-1)d)。
将n=10,a1=2,d=3代入公式得:S10 = 10/2 * (2*2 + (10-1)*3) = 5 * (4 + 27) = 5 * 31 = 155。
数学高考试题答案及解析
数学高考试题答案及解析一、选择题1. 若函数f(x) = x^2 - 6x + 8,求f(3)的值。
A. 1B. 2C. 3D. 4答案:B解析:将x=3代入函数f(x) = x^2 - 6x + 8,得到f(3) = 3^2 - 6*3 + 8 = 9 - 18 + 8 = 2。
2. 已知数列{an}满足a1 = 2,an = 2an-1 + 1,求a3的值。
A. 7B. 8C. 9D. 10答案:C解析:根据递推公式,a2 = 2a1 + 1 = 2*2 + 1 = 5,a3 = 2a2 + 1 = 2*5 + 1 = 11,但选项中没有11,因此需要重新检查题目或选项。
二、填空题1. 已知等差数列{an}的首项a1 = 3,公差d = 2,求第5项a5的值。
答案:13解析:根据等差数列的通项公式,an = a1 + (n-1)d,代入n=5得到a5 = 3 + (5-1)*2 = 3 + 8 = 11。
三、解答题1. 已知函数f(x) = x^3 - 3x^2 + 4,求函数的导数f'(x)。
答案:f'(x) = 3x^2 - 6x解析:利用导数的定义,对函数f(x) = x^3 - 3x^2 + 4求导,得到f'(x) = 3x^2 - 6x。
2. 求直线y = 2x + 3与抛物线y = x^2的交点坐标。
答案:(-1, 1), (3, 9)解析:将直线方程y = 2x + 3代入抛物线方程y = x^2,得到x^2 - 2x - 3 = 0,解得x = -1或3,代入直线方程得到交点坐标。
四、证明题1. 证明:若a, b, c为正整数,且a^2 + b^2 = c^2,则a, b, c为勾股数。
答案:证明略解析:根据勾股定理,若a^2 + b^2 = c^2,则a, b, c构成直角三角形的三边,即a, b, c为勾股数。
五、应用题1. 某工厂生产A、B两种产品,A产品每件成本为20元,售价为30元;B产品每件成本为30元,售价为40元。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高考数学历年真题及答案详解
一、选择题
1. 题目描述:在平面直角坐标系中,点A(-3, 4)关于y轴的对称点
是()。
A. (3, -4)
B. (-3, -4)
C. (-3, 4)
D. (3, 4)
答案解析:点关于y轴对称即x取相反数,所以答案为A.(3, -4)。
2. 题目描述:已知函数 f(x) = 2^(2x-3),则当 x = 1 时,f(x) 的值是()。
A. 1
B. 2
C. 4
D. 8
答案解析:将x=1代入函数中,即f(1) = 2^(2*1-3),化简得f(1)
= 2^(-1) = 1/2,所以答案为A. 1。
二、填空题
1. 题目描述:已知三角形ABC中,∠B = 90°,AC = 5 cm,BC =
12 cm,求AB的长度。
答案解析:根据勾股定理,AB^2 + BC^2 = AC^2,代入已知数据
得AB^2 + 12^2 = 5^2,化简得AB^2 = 25 - 144 = -119,由于长度不能
为负数,所以不存在满足要求的三角形ABC。
2. 题目描述:若a1, a2, a3为等差数列的前三项,且满足a1 + a3 = 18,a2 - a3 = 4,求a1, a2和a3的值。
答案解析:由等差数列的性质可知,a2 = (a1 + a3) / 2,代入已知
数据得a2 = 9.5,将a2带入a2 - a3 = 4解得a3 = 5.5,再将a3带入a1 +
a3 = 18解得a1 = 12.5,所以a1 = 12.5,a2 = 9.5,a3 = 5.5。
三、解答题
1. 题目描述:设函数f(x) = cos(x + 1) - sin(x - 1),求f(x)的单调递增
区间。
答案解析:对f(x)求导得f'(x) = -sin(x + 1) - cos(x - 1),令f'(x) = 0,解方程得x = 1/4 (4πn + 3π/2) - 1,其中n为整数。
通过二阶导数的符号
判断可知,当x < -1或x > -3/4 + 4πn,f(x)单调递增;当-3/4 + 4πn < x
< -1,f(x)单调递减。
2. 题目描述:一地有三个仓库,仓库A、B、C,包含产品的数量分别为x、y、z。
如果仓库A中的产品数量增加了3个单位,仓库B中
的产品数量减少了2个单位,仓库C中的产品数量增加了5个单位,
总共增加了10个单位,求x、y、z的变化量。
答案解析:根据题目描述可得方程组:
x + 3 = x'
y - 2 = y'
z + 5 = z'
x' + y' + z' = 10
解方程可得x' = 4,y' = -2,z' = 6,所以x的变化量为4个单位增加,y的变化量为2个单位减少,z的变化量为6个单位增加。
四、应用题
1. 题目描述:某公司拥有两种型号的电视机,型号A每台卖900元,型号B每台卖1200元。
某天,公司共卖出了50台电视机,销售额为49500元。
求公司卖出了多少台型号A和型号B的电视机各有多少台。
答案解析:设型号A的台数为x,型号B的台数为y,则有方程组:
x + y = 50
900x + 1200y = 49500
解方程可得x = 30,y = 20,所以型号A的电视机卖出了30台,
型号B的电视机卖出了20台。
2. 题目描述:甲、乙两人共修一段铁路,甲单独修完需要10天,
乙单独修完需要15天。
如果甲先修3天,然后和乙一起修,这段铁路
能在几天内完成?
答案解析:甲完成1天的工作量为1/10,乙完成1天的工作量为
1/15,他们一起完成1天的工作量为1/10 + 1/15 = 1/6,所以他们需要6
天可以完成这段铁路的修建。