基于单片机的电流电压测量系统设计

合集下载

基于单片机的工频电压(电流)表的设计

基于单片机的工频电压(电流)表的设计

检测系统实习报告题目:基于单片机的工频电压(电流)表的设计姓名:院(系):专业:指导教师:职称:评阅人:职称:年月摘要在实际中,有效值是应用最广泛的参数,电压表的读数除特殊情况外,几乎都是按正弦波有效值进行定度的。

有效值获得广泛应用的原因,一方面是由于它直接反映出交流信号能量的大小,这对于研究功率、噪声、失真度、频谱纯度、能量转换等是十分重要的;另一方面,它具有十分简单的叠加性质,计算起来极为方便。

本文详细介绍了一个数字工频电压、电流表设计,以AT89S52单片机为控制核心,由电压、电流传感器模块,真有效值测量模块,信号调理模块,AD采集模块及控制、显示模块等构成。

系统采用电压、电流互感器对输入信号进行降压处理,经AD736转换得到原信号的真有效值,由TLC549转换为数字量后送入单片机内进行简要的数据处理并将结果通过LCD实时显示,达到了较好的性能指标。

关键词:工频数字电压(电流)表真有效值AD736 TLC549 AT89S52AbstractIn practice, RMS is the most widely used parameters. Except in special circumstances,voltage meter readings almost all carried out by the RMS of sine wave . The reasons of RMS is widely available, on the one hand, because it directly reflects the size of the exchange of signal energy, which the study of power, noise, distortion, spectrum purity, energy conversion, such as it is very important; On the other hand, it has a very simple superposition of the nature of the calculation will be extremely convenient. The design of single-chip Atmel Corporation AT89S52 as control core, by the current sensor module, True RMS measurement modules, signal conditioning modules, AD acquisition and control module, display module. System uses a current sensor circuit for step-down of the input signal processing, has been converted by the original AD736 True RMS signal by the TLC549 convert into single-chip digital conducted after the brief and the results of data processing in real time through the LCD display, achieve a better performance.Keyword: Digital voltage(current) meter True RMS AD736 TLC549AT89S52目录第一章绪论 (1)§1.1 选题背景及意义 (1)§1.2 系统设计任务 (1)第二章系统总体设计 (2)§2.1 方案论证与比较 (2)2.1.1 电压、电流变换部分 (2)2.1.2 有效值测量部分 (2)§2.2 系统总体设计 (2)第三章硬件设计 (4)§3.1 传感器电路设计 (4)3.1.1 电压互感器 (4)3.1.2 电流互感器 (4)§3.2 真有效值转换电路设计 (5)3.2.1 电压、电流切换电路 (5)3.2.2 真有效值测量电路 (6)§3.3 信号调理电路设计 (7)§3.4 A/D转换电路设计 (7)§3.5 单片机及显示电路设计 (9)第四章软件设计 (10)§4.1 LCD1602液晶显示程序 (10)§4.2 A/D转换程序 (10)§4.3 主程序设计 (12)第五章系统调试及误差分析 (13)§5.1 系统调试及测试结果 (13)5.1.1 AD736测试结果 (13)5.1.2 OP07测试结果 (13)5.1.3 TLC549测试结果 (13)5.1.4 工频电压测量精度 (14)5.1.5 工频电流测量精度 (14)§5.2 误差分析 (14)§5.3 改进方法 (15)结束语 (16)致谢 (17)参考文献 (18)附录 (19)附录一完整电路图 (19)附录二程序清单 (20)第一章绪论§1.1 选题背景及意义在日常的生产、生活和科研中,工频电无处不在,所谓工频就是电力供电系统交流电的频率,我国国家规定工频为50赫兹,即周期为0.02秒,英、美等国规定的工频为60赫兹。

51单片机电压电流采样电路设计

51单片机电压电流采样电路设计

51单片机是一种常用的微控制器,广泛应用于各种电子设备中。

在很多电子设备中,需要对电压和电流进行采样和测量,以确保设备正常运行和安全使用。

设计一个稳定、精准的电压电流采样电路对于电子设备的正常运行至关重要。

本文将介绍51单片机电压电流采样电路的设计原理、实现方法和相关注意事项,希望能够为初学者提供一些帮助。

一、设计原理1.1 电压采样原理电压采样是通过模数转换器(ADC)将模拟电压信号转换为数字信号的过程。

在51单片机中,有多个模拟输入引脚可以用于电压采样。

通过选择合适的参考电压和采样精度,可以实现对不同电压范围的准确采样。

1.2 电流采样原理电流采样通常需要借助电流传感器或电流互感器来实现。

通过将电流信号转换为与之成正比的电压信号,然后使用ADC进行采样,可以实现对电流的准确测量。

二、电压采样电路设计2.1 电压采样电路原理图在设计电压采样电路时,需要考虑信噪比、采样精度和参考电压的稳定性。

一般来说,可以通过电阻分压网络将被测电压信号转换为微控制器可以接受的范围内的电压信号。

2.2 电压采样电路实现在实际设计中,可以选择合适的电阻数值和参考电压,使得被测电压在不损失精度的前提下可以被精准采样。

还需要注意电源滤波和去耦电容的设置,以提高电路的稳定性和抗干扰能力。

三、电流采样电路设计3.1 电流采样电路原理图电流采样电路通常需要借助电流传感器或电流互感器来实现。

在设计电流采样电路时,需要考虑到电流传感器的灵敏度、线性度和频率特性,以确保采样的准确性和稳定性。

3.2 电流采样电路实现在实际设计中,需要根据被测电流的范围和精度要求选择合适的电流传感器,并通过运算放大器等电路将电流信号转换为微控制器可以接受的范围内的电压信号。

还需要注意电流传感器的电源和接地,以确保电路的正常工作。

四、电压电流采样电路的综合设计4.1 电压电流采样电路整体连接在设计完成电压和电流采样电路后,需要将两者连接到51单片机的模拟输入引脚,并编写相应的程序进行数据采集和处理。

基于单片机下的数字电压表设计毕业论文

基于单片机下的数字电压表设计毕业论文

河南理工大学万方科技学院本科毕业论文基于单片机下的数字电压表设计毕业论文目录前言 (1)1 设计任务与分析 (3)1.1 设计任务简介及背景 (3)1.1.1 单片机简介 (3)1.1.2 背景及发展情况 (3)1.2 设计任务及要求 (5)1.3 设计总体方案及方案论证 (5)1.4 数据输入模块的方案与分析 (7)1.4.1 芯片选择 (6)1.4.2 实现方法介绍 (6)1.4.3 输入模块流程图 (10)1.5 A/D模块的方案与分析 (10)1.5.1 芯片的选择 (11)1.5.2 实现方法介绍 (11)1.5.3 A/D模块流程图 (13)1.6 数据处理及控制模块 (13)1.6.1 芯片选择 (14)1.6.2 实现方法介绍 (14)1.6.3 数据处理及控制模块流程图 (14)1.7 显示模块 (15)1.7.1 芯片选择 (15)1.7.2 实现方法介绍 (15)2 硬件设计 (16)2.1 数据输入模块原理图 (17)2.2 A/D模块原理图 (18)2.3 控制模块原理图 (20)2.4 显示模块原理图 (21)3 软件设计 (23)3.1 主程序流程图 (23)3.2 子程序介绍 (24)3.2.1 初始化程序 (24)3.2.2 中断子程序 (24)3.2.3 档位选择子程序 (25)4 主要芯片 (29)本科毕业论文4.1 AT89C52的功能简介 (29)4.1.1 AT89C52芯片简介 (29)4.1.2 引脚功能说明 (29)4.2 ICL7135功能简介 (31)4.2.1 ICL7135 芯片简介 (31)4.2.2 引脚功能说明 (32)4.3 LCD1602功能简介 (35)4.3.1 LCD1602芯片简介 (35)4.3.2 引脚功能说明 (35)4.4 CD4052的功能介绍 (38)4.4.1 CD4052芯片简介 (38)4.4.2 引脚功能说明 (39)4.5 CD4024的功能介绍 (39)4.5.1 CD4024芯片简介 (39)4.5.2 引脚功能说明 (40)4.6 OP07的功能介绍 (40)4.6.1 OP07的功能简介 (41)4.6.2 引脚功能说明 (41)结论 (42)致谢 (44)参考文献 (45)河南理工大学万方科技学院本科毕业论文前言数字电压表(Digital Voltmeter)简称DVM,它是采用数字化测量技术,把连续的模拟量转换成不连续、离散的数字形式并加以显示的仪表。

单片机电流测量电路

单片机电流测量电路

单片机电流测量电路单片机电流测量电路是一种用于测量电流大小的电路设计。

它的作用是通过检测电路中的电流变化来获取电流的数值。

在很多电子设备中,电流的测量是非常重要的,因为它可以帮助我们监控电路的工作状态,确保电路的正常运行。

为了实现电流测量,我们可以使用一种称为电流传感器的设备。

电流传感器是一种能够将电流转化为电压信号的装置。

通过将电流传感器与单片机相连接,我们可以将电流的变化转化为单片机可以读取的电压信号。

在单片机电流测量电路中,我们通常会使用一个电阻来限制电流的流动,并将其与电流传感器和单片机相连接。

当电流通过电阻时,电阻会产生一个与电流成正比的电压。

这个电压信号会被电流传感器转化为单片机可以读取的数字信号。

为了确保测量的准确性,我们需要注意一些细节。

首先,电流传感器的选择是非常重要的。

不同的电流传感器具有不同的特性,例如灵敏度和响应时间。

我们需要根据具体的需求选择合适的电流传感器。

电阻的选择也是至关重要的。

电阻的阻值决定了电流的大小,因此我们需要根据实际情况选择合适的电阻阻值。

同时,电阻的功率也需要考虑,以确保它可以承受电流的负载。

在实际的电流测量中,我们还需要考虑到电压的测量范围。

单片机的模拟输入通道通常有一定的电压范围,我们需要确保电压信号在这个范围内。

在设计电流测量电路时,我们还应该考虑到电路的稳定性和抗干扰能力。

一些干扰因素,如电源噪声和信号线的电磁干扰,都可能对电流测量结果产生影响。

因此,我们需要采取一些措施来减小这些干扰,以保证测量结果的准确性。

单片机电流测量电路是一种非常重要的电路设计。

通过合理选择电流传感器和电阻,并考虑到电路的稳定性和抗干扰能力,我们可以实现准确的电流测量。

这对于电子设备的正常运行和故障排除都非常重要。

基于单片机的数字电能表设计

基于单片机的数字电能表设计

基于单片机的数字电能表设计数字电能表是测量电能并传递数据的电气装置。

它们通常采用单片机芯片来实现计算,并将其存储在内存中。

本文将介绍单片机数字电能表的设计方案。

1. 系统结构设计数字电能表的系统结构包括传感器、信号处理电路、单片机芯片、数字显示部分和通讯接口。

传感器用于测量电压、电流等信号并将其转换为电信号。

信号处理电路将采集到的模拟信号转换为数字信号并进行滤波和放大处理。

单片机芯片负责处理信号并实现计算,测量功率、电能、电量等。

数字显示部分将计算结果以数字形式展示出来。

通讯接口用于与计算机、集中抄表系统等外部设备进行数据通讯。

2. 系统功能设计数字电能表的主要功能包括:测量电量、功率、电流、电压等参数;统计电量、功率等负荷分布;完成智能电网的控制和管理;提供数据采集和远程通讯功能等。

3. 硬件设计3.1 传感器设计传感器主要包括电压、电流互感器以及电能表表芯等,其中电压互感器和电流互感器将采集到的电信号转换为电压信号和电流信号,电能表表芯则用于计量电能。

应选择准确可靠的传感器,以保证数字电能表的精度和稳定性。

3.2 信号处理电路设计信号处理电路主要完成信号转换、滤波和放大作用。

转换模拟信号为数字信号是数字电能表工作的前置条件。

采用滤波技术可有效降噪,提高系统稳定性。

应选择具有较高增益、较低噪声、抗干扰能力强的运放等器件。

3.3 单片机设计单片机芯片是数字电能表的核心部分。

MCU通常采用单片机,具有高精度、运算速度快、易于编程、易于扩展等优势。

应根据用户需求选择不同类型的MCU,如8位单片机、16位单片机等。

3.4 数字显示部分设计数字显示部分是数字电能表中的另一个重要组成部分。

可通过数码管、液晶显示屏、LED显示等形式直观地显示电能、功率、电压等参数。

应选择可靠、耐用、能够满足用户需求的显示器件。

3.5 通讯接口设计通信接口可采用RS485通讯、光纤通讯、以太网通讯等形式。

RS485通讯是数字电能表中应用最广泛的通信方式,稳定性好、通讯距离远。

基于单片机的数字电流表的设计

基于单片机的数字电流表的设计
这种电路由于 的作用,使 的反向电压大大减小,因而反向漏电流很小,增加了峰值保持事件。如果还要进一步增加保持时间,可选输入级为场效应管的运算放大器作为 以提高放大器的输入阻抗。
图中电容 , 是为了提高电路的稳定性和改善瞬态响应。R为保护电阻,防止电压突变损坏 。
前面介绍的是正向峰值保持电路,如果需要负向峰值保持,可以把正向峰值保持电路中的二极管及其它元件适当改接,就能实现。
ICL7135的输出是 位的BCD码,为了减少引出线数目,它采用动态字位扫描输出的方式,即万、千、百、十、个各位数字BCD的码轮流出现在 端上,并在 各端上同步出现字位选通脉冲,这种输出使其数字显示电路非常简单。
当使用 转换芯片时,可采用以下方法提高转换分辨率:
1)当输入模拟电压小于 转换电路的满刻度所对应的电压值时,应放大输入信号,使输入电压的最大值对应 满刻度值,以充分利用 转换电路的满刻度。
2009届本科毕业设计
基于单片机的数字电流表的设计
姓名:
系别:
专业:
学号:
指导教师:
2009年4月10日
基于单片机的数字电流表的设计

本电流表各模块之间使用标准信号进行传输的,这些标准信号都符合国际标准。国际电工委员会在1973年四月第65次技术委员会通过的标准规定了国际统一信号标准,过程控制系统的模拟直流信号为4到20MA,模拟直流电压信号为1到5伏,我国的DDZ-3型电动单元组合仪表采用了国际的信号标准。
图1数字电流表的基本原理
1.
峰峰值检波器本身具有采样保持的功能,由于A/D转换器的转换时间为100ms,所以峰峰值检波电路能够保证A/D转换器有足够的转换时间[6]。
交流信号不只包括正弦波,对于其它规则的交流信号,也可以用本采样电路采样。档位选择需要将独立按键与放大器中集成运放的外围电阻组合在一块。独立按键不仅有选择档位的功能,还有复位等其它功能。

单片机电力监测系统设计

单片机电力监测系统设计

单片机电力监测系统设计1. 引言近年来,随着电力需求的不断增加,电力供应的稳定性和可靠性成为了一个重要的问题。

为了解决这个问题,电力监测系统应运而生。

本文将基于单片机技术,设计一个电力监测系统,以实时监测电力的使用情况,从而有效管理和优化电力资源的利用。

2. 系统概述单片机电力监测系统主要包括以下几个方面的内容:传感器模块、数据采集模块、数据处理模块、显示模块和通信模块。

2.1 传感器模块传感器模块用于检测电力的各项参数,包括电流、电压、功率因数等。

常用的传感器有电流互感器和电压互感器。

通过这些传感器,系统可以准确地感知到电力使用的情况。

2.2 数据采集模块数据采集模块负责将传感器模块采集到的数据进行采集和处理。

采集到的数据会通过模拟信号转换芯片转换成数字信号,然后再由单片机进行处理。

2.3 数据处理模块数据处理模块是整个系统的核心。

单片机作为中央处理单元,负责接收和处理采集到的数据。

通过算法和逻辑运算,单片机可以计算出电力的实时使用情况,包括总功率、功率因数等。

2.4 显示模块显示模块用于将处理后的数据以可视化的方式展示出来。

常见的显示方式有数码管显示和液晶显示。

通过显示模块,用户可以直观地了解到电力的使用情况,以及系统运行状态。

2.5 通信模块通信模块可选,用于将监测到的数据传输给其他设备,如上位机或云平台,以便进行进一步的分析和管理。

3. 系统设计原理本系统的设计原理是通过传感器模块检测电力参数,数据采集模块将模拟信号转换成数字信号,然后由单片机进行处理和计算,最后通过显示模块将结果可视化展示出来。

3.1 传感器模块设计传感器模块采用电流互感器和电压互感器进行检测。

电流互感器负责检测电流值,电压互感器负责检测电压值。

3.2 数据采集模块设计数据采集模块主要由模拟信号转换芯片和单片机组成。

模拟信号转换芯片负责将模拟信号转换成数字信号,然后通过单片机进行采集和处理。

3.3 数据处理模块设计数据处理模块由单片机实现。

单片机测电压电流

单片机测电压电流

单片机测电压电流设计要求:1、用单片机测30-36V的直流电压,0-10A的直流电流;2、用单片机测30-36V交流电压有效值、平均值、交流电压的频谱分析;3、用单片机测0-10A交流电流的有效值、平均值、峰值。

一、设计思路用调理电路电路将电压和电流采入AD转换器,AD转换器将电压电流转化为数字信号,使用单片机与AD进行数据传输,在单片机的内部进行处理后,在LED或者LCD上进行显示。

可设计出一个选择开关,选择是进行电压还是电流的测量.可测电压电流的范围和精度取决于AD的精度,分辨率越高,精度越高.总体框图二、设计方案选择1、主控芯片方案1:选用专用转化芯片INC7107实现电压和电流的测量和实现,用四位数码管显示出最后的转换电压和电流的结果。

缺点是精度比较低,内部电压转换和控制部分不可控制。

优点是价格低廉。

方案2:选用单片机MSC80C51和A/D转换芯片ADC0809实现电压和电压的转换和控制,用四位数码管显示出最后的转换电压结果。

缺点是价格稍贵;优点是转换精度高,且转换的过程和控制、显示部分可以控制。

基于课程设计的要求选用方案2.ADC0809的精度不高,不是很好用,初级用户才用。

2、显示部分方案1:选用2个单体的共阴极数码管。

优点是价格比较便宜;可以实现电路要求。

方案2:选用一个并联在一起的共阴极数码管,外加两个三极管驱动。

因为还需要驱动,相对方案一有些复杂,且价格有点贵。

故基于课程设计的要求选用方案1。

三、电路设计原理模拟电压和电流经调理电路电路筛减调理电路后,经隔离干扰送到A/D转换器进行A/D转换。

然后送到单片机中进行数据处理。

处理后的数据送到LED 中显示。

同时通过串行通讯与上位通信。

硬件电路及软件程序。

而硬件电路又大体可分为调理电路电路、A/D转换电路、LED显示电路,各部分电路的设计及原理将会在硬件电路设计部分详细介绍;一般I/O接口芯片的驱动能力是很有限的,在LED显示器接口电路中,输出口所能提供的驱动电流一般是不够的尤其是设计中需要用到多位LED,此时就需要增加LED驱动电路。

基于单片机的 3 相电电流测量电路设计

基于单片机的 3 相电电流测量电路设计

基于单片机的3 相电电流测量电路设计
1. 设计思路
在三相电网中,需要测量三相电流分别的大小,并进行电流采样、放大、滤波等处理,最终将测量到的数据传输到单片机进行处理。

本文将设计一种基于单片机的三相电电流测量电路。

首先,将三相电流传输到电流互感器进行进行相应放大,由于三相电流的幅值一般较大,因此互感器的变比一般取较小值。

互感器的输出电压经过电阻分压后进行电流采样,然后再进行滤波,去除噪声。

然后,将采样和滤波后的信号输入到单片机进行数字量化处理,最后显示在液晶显示屏上。

2. 电路设计
(1)电流互感器
图1 显示了所用的电流互感器,使用的是1:200转比的互感器。

由于使用的是模拟电路进行电流检测,因此需要经过电阻分压、
信号放大等处理后才能进行ADC采样。

(2)ADC采样
ADC采样是整个电路的核心,直接决定了电路的精度和稳定性。

本设计使用的是单片机内置ADC模块,采样精度可以达到12位。

ADC采样的结果需要进行滤波后才能传输到单片机进行处理。

(3)电路电源
电路电源采用的是稳压电源,使用的是LM7805稳压芯片将输入电压稳定在5V。

同时,电路中还使用了滤波电容,以抑制电源中的噪声。

(4)数字显示
选用IIC液晶显示器对测量值进行显示,需要对其进行初始化、设置和数据传输。

3. 总结
本设计使用了互感器、电阻分压、信号放大、ADC采样、滤波、
数字量化等技术,最终实现了对三相电流的测量和显示。

在实际应用中,需要结合具体情况进行调试和改进,以保证电路的精度和稳定性。

单片机测电压电流(二)

单片机测电压电流(二)

单片机测电压电流(二)引言概述:本文将介绍如何使用单片机来测量电压和电流。

单片机作为一个智能控制器,可以通过接口将电压和电流传感器连接到系统中,并使用适当的算法对数据进行处理和分析。

这种测量电压和电流的方法可以广泛应用于各种电子设备和系统中。

在本文中,我们将介绍使用单片机测量电压和电流的基本原理,并提供一些实际应用的示例。

正文内容:1. 电压测量:1.1. 使用电压分压器将待测电压转换为单片机可以接受的电压范围。

1.2. 设置单片机的模数转换器(ADC)进行电压测量。

1.3. 编写程序将模数转换器的值转换为实际电压值。

1.4. 实际测量电压值与期望值进行校准和调整。

1.5. 应用实例:使用单片机测量电池电压。

2. 电流测量:2.1. 使用电流传感器将待测电流转换为电压信号。

2.2. 将电压信号放大并转换为单片机可以接受的电平。

2.3. 设置单片机的ADC进行电流值测量。

2.4. 编写程序将模数转换器的值转换为实际电流值。

2.5. 实际测量电流值与期望值进行校准和调整。

2.6. 应用实例:使用单片机测量电机的工作电流。

3. 数据处理和分析:3.1. 设计数据处理算法来解读和分析测量得到的电压和电流数据。

3.2. 根据需要,可以计算平均值、最大值、最小值等指标。

3.3. 根据实际应用需求,可以设置报警或触发条件。

3.4. 结合其他传感器数据,进行综合处理和分析。

3.5. 应用实例:使用单片机测量太阳能电池组的电压和电流,并根据数据控制充放电过程。

4. 通信与控制:4.1. 使用串行通信接口(如UART、SPI或I2C)将测量数据传输到其他设备或主机。

4.2. 设置通信协议,实现与其他设备的数据交换和控制指令的发送。

4.3. 根据实际需求,选择合适的通信速率和传输格式。

4.4. 应用实例:使用单片机测量电路板上各个电压节点的电压,并将数据通过串口传输给上位机进行分析和监控。

5. 性能优化与稳定性改进:5.1. 对ADC采样率、精度和参考电压进行优化和调整。

基于STM32单片机的24V电源监测系统

基于STM32单片机的24V电源监测系统

所能承受的输入电压。 STM32F103ZET6 属于精密低压
控制型单片机,引脚电压信号的最大 值为 3.6V。信号处理电路需要在保证
压按照比例压缩后,传输给单片机的 发射机正常播音的情况下,短时间内
I/O 端口,经过 AD 转换成对应的数字 把 24V 的输入电压信号转换为 3V 的
1 引言
量信号,通过与设定好的上下限值进 输出电压信号,同时保证其电压信号
本 设 计 采 用 的 蜂 鸣 器 是 一 款 多 量电压经过信号处理电路,转换为 3V
3.3 其他接口器件
谐振荡器,用以电压异常时的声音报 模拟量电压输入到 STM32F103ZET6
(1)AT89C52 芯片
警提醒。当系统检测到电压不在合适 单片机的引脚,经过单片机内部 ADC
本设计采用的备份显示控制芯片 的范围时,由核心单片机触发蜂鸣器 转换成对应的 3V 数字量信号,并将
24V 电源系统,对发射机控制、故障 在此基础上,又给 STM32F103ZET6
的显示排查以及定向排除均有着重要 单片机额外增加了一个液晶显示屏,实
影响,所以对保持 24V 电压的稳定性, 时显示监测出的电压数值。
要求十分严格。
使用 STM32 单片机以嵌入式的
3 系统硬件
方 式 设 计 的 24V 电 源 自 动 监 测 系 统, 3.1 STM32F103ZET6 单片机
转换成实际值,并将显示屏所需显示
(1)在模拟调试时,发现软件设
内容提前预置。当检测程序检测到 8 置的电压放大倍数与实际数据存在一
路 24V 模 拟 量 电 压 处 于 正 常 范 围 时, 个区间性的误差,因为在信号处理电
显示器显示正常内容,并实时更新电 路 中, 对 24V 电 压 进 行 缩 小 时, 其

基于单片机原理的多功能测量仪的设计毕业设计

基于单片机原理的多功能测量仪的设计毕业设计

基于单片机原理的多功能测量仪的设计毕业设计目录设计总说明 (III)General Design Description (V)一 .绪论 (8)1.1课题的研究背景 (8)1.2测量仪表的简介 (8)1.3 51单片机简介 (9)二.电参数测量的理论依据 (11)2.1交流电流、电压有效值的测量 (11)2.2两相间相位差的测量 (12)2.3 单相有功功率、无功功率、视在功率的测量 (13)2.4 三相有功功率的测量 (13)2.5功率因数的测量 (14)三.方案设计 (14)3.1 使用功能要求 (15)3.2 仪器设计的总体框架和各模块的划分 (16)四.硬件电路设计 (18)4.1信号采集电路 (18)4.1.1 电压信号采集电路 (18)4.1.2 电流信号采集电路 (20)4.2整形电路设计 (20)4.3 A/D转换电路 (21)4.4 74ls138译码器 (31)4.5 A/D转换电路 (33)4.6显示电路设计 (34)4.6.1数码管的介绍 (34)4.6.2数码管结构 (36)4.6.3驱动方式 (36)4.6.4适用范围 (38)4.7 CD4511 (39)4.7.1引脚功能 (39)4.7.2工作范围 (40)4.7.3真值表 (40)4.7.4使用方法 (40)4.7.5锁存功能 (41)4.8 通信接口电路 (43)4.8.1 Rs485特点 (43)4.8.2接口 (43)4.8.3 rs485功能 (44)4.8.4 RS-485通信电路 (45)五.系统软件设计 (46)5.1 程序模块的划分 (46)5.2 结构化程序的设计方法 (46)5.3 软件模块 (47)5.3.1 主程序流程图 (47)5.3.2数据采集子程序 (49)5.3.3数据处理程序 (49)5.3.4 A/D转换程序 (51)5.3.5数码管显示 (52)5.3.6 RS485 (52)六.总结与展望 (54)附录A: 总电路图 (57)附录B: 总的系统框图 (58)附录C: 程序 (59)致谢 (64)基于单片机原理的多功能测量仪的设计设计总说明随着电力系统的快速发展,电网容量不断增大,结构日趋复杂,电力系统中实时监控、调度的自动化显得尤为重要,而电力参数的数据采集又是实现自动化的重要环节,如何快速准确地采集系统中各元件的电参数(电压、电流、功率、功率因数等)是实现电力系统自动化的一个重要因素。

基于单片机的电压表设计

基于单片机的电压表设计

基于单片机的电压表设计目录1 引言 (2)2设计原理及要求 (1)2.1数字电压表的实现原理 (1)2.2数字电压表的设计指标............... 错误!未定义书签。

3软件仿真电路设计. (2)3.1设计思路 (2)3.2硬件电路设计图 (2)3.3 AT89C51的功能介绍 (3)3.3.1简单概述 (3)3.3.2主要功能特性 (3)3.3.3 AT89C51的引脚介绍 (4)3.4 ADC0804的引脚及功能介绍 (6)3.4.1芯片概述 (6)3.4.2 引脚简介 (7)3.4.3 ADC0804的转换原理 (8)3.5 74HC373芯片的引脚及功能 (8)3.5.1芯片概述 (8)3.5.2引脚介绍 (10)3.6 LED数码管的控制显示 (10)4系统软件程序的设计 (11)5测试及性能分析 ......................... 错误!未定义书签。

5.1 测试............................. 错误!未定义书签。

55.2 性能分析.......................... 错误!未定义书签。

6 设计总结 (17)参考文献 (17)附录原理电路............................ 错误!未定义书签。

1 引言随着微电子技术的不断发展,微处理器芯片的集成程度越来越高,单片机已可以在一块芯片上同时集成CPU、存储器、定时器/计数电路,这就很容易将计算机技术与测量控制技术结合,组成智能化测量控制系统。

数字电压表(DigitalVoltmeter)简称DVM,它是采用数字化测量技术,把连续的模拟量(直流输入电压)转换成不连续、离散的数字形式并加以显示的仪表。

与此同时,由DVM扩展而成的各种通用及专用数字仪器仪表,也把电量及非电量测量技术提高到崭新水平。

本设计重点介绍单片机、A/D 转换器以及由它们构成的数字电压表的工作原理。

基于单片机的高精度智能交直流电压数据采集系统设计

基于单片机的高精度智能交直流电压数据采集系统设计

基于单片机的高精度智能交直流电压数据采集系统设计电压是电子与电力系统中最基本的测量元素之一,快速准确地获取电压值一直是数据采集与电子测量仪器研究的重要内容之一。

传统的指针式电压表具有精度低、可视距离近、功能单一等缺陷,已不适应高速信息化的发展需要。

目前市场上广泛使用的数字电压表智能化程度低,测量电压时需手动切换量程,当量程选择不当时会出现测量精度下降、乃至烧坏电压表的极端情况;而高精度的全量程无档数字电压表一般都采用了DSP、FPGA或CPLD等复杂电路系统,硬件和软件实现成本较高。

为此,笔者设计研制出了一种以单片机为控制主体的智能交流直流电压数据采集系统,具有体积小、精度高、结构简单、使用与读数方便、性价比高、适应范围宽等优点,有效地弥补了上述各种电压表系统的缺点和弊端。

1 系统总体方案该电压数据采集系统主要由电压衰减器、量程转换及放大电路、AC/DC转换电路、A/D 转换电路、主控单片机STC89C52以及LCD显示电路等5个部分组成,其原理框图如图1所示。

电压衰减器和放大器将待测模拟信号电压值转换到AC/DC变换器的输入电压范围内,直流电压经衰减放大后不需作AC/DC转换;量程转换电路根据输入到A/D转换器的模拟直流电压大小,由单片机判断后控制继电器对衰减放大电路作相应的调整,确保选择出最佳量程;A/D转换由单片机启动,在软件中对采集到的数据作数字滤波、标度变换和系统误差校准等处理后,根据电压类型标志位在LCD上显示测量值和电压类型。

2 系统硬件设计2.1 电压衰减、放大和量程转换电路电压衰减放大和量程转换电路如图2所示。

电阻R1~R5构成衰减系数分别为1、10、100、1 000、10 000的分压器,将被测输入电压Uin衰减至0~200 mV范围内并送至后端电路放大、AC/DC转换(直流电压不需转换)、A/D转换以及由单片机进行采集、处理与显示。

为了降低测量误差,分压电阻R1~R5均选用误差为±0.5%的精密金属膜电阻。

基于STM32F103单片机电流电压采集系统设计

基于STM32F103单片机电流电压采集系统设计

基于STM32F103单片机电流电压采集系统设计一、本文概述随着现代电子技术的快速发展,电流和电压的精确采集在诸多领域中,如电力监控、能源管理、工业自动化等,都扮演着至关重要的角色。

STM32F103单片机,凭借其强大的处理能力、灵活的扩展性和高性价比,已成为众多电子系统设计者的首选。

本文旨在探讨基于STM32F103单片机的电流电压采集系统设计,通过对硬件电路和软件程序的详细解析,为相关领域的工程师和研究者提供一种可靠的、高效的电流电压采集方案。

本文将首先介绍电流电压采集系统的总体设计方案,包括硬件架构的选择、关键元件的选型以及系统的工作原理。

随后,将详细介绍电流电压采集电路的设计,包括模拟信号的处理、模数转换器的配置以及信号调理电路的实现。

在软件设计方面,本文将阐述STM32F103单片机的编程环境搭建、数据采集程序的编写以及数据处理和传输的实现方法。

本文还将对系统的性能进行评估,包括精度测试、稳定性分析和响应速度测试等。

通过本文的研究,我们期望能够为电流电压采集系统的设计提供一套完整、实用的解决方案,为相关领域的工程实践和技术创新提供有力支持。

本文也希望激发更多研究者对基于STM32F103单片机的电子系统设计进行深入研究,共同推动电子技术的发展和应用。

二、系统总体设计在设计基于STM32F103单片机的电流电压采集系统时,我们首先需要考虑的是系统的整体架构和功能需求。

系统总体设计的主要目标是实现高精度的电流和电压数据采集,同时保证系统的稳定性和可靠性。

核心控制器:选择STM32F103单片机作为系统的核心控制器,负责数据采集、处理和控制逻辑的实现。

信号调理电路:设计合适的信号调理电路,将采集到的模拟信号转换为适合STM32F103处理的电压范围。

这包括电流转换电路和电压跟随电路,以确保信号的准确性和稳定性。

ADC模块:利用STM32F103内置的ADC模块进行模拟信号到数字信号的转换,实现高精度的数据采集。

基于51单片机的电压表的设计

基于51单片机的电压表的设计

引言在电量的测量中,电压、电流和频率是最基本的三个被测量,其中电压量的测量最为经常。

而且随着电子技术的发展,更是经常需要测量高精度的电压,所以数字电压表就成为一种必不可少的测量仪器。

数字电压表简称DVM,它是采用数字化测量技术,把连续的模拟量转换成不连续、离散的数字形式并加以显示的仪表。

由于数字式仪器具有读数准确方便、精度高、误差小、测量速度快等特而得到广泛应用[1]。

传统的指针式刻度电压表功能单一,进度低,容易引起视差和视觉疲劳,因而不能满足数字化时代的需要。

采用单片机的数字电压表,将连续的模拟量如直流电压转换成不连续的离散的数字形式并加以显示,从而精度高、抗干扰能力强,可扩展性强、集成方便,还可与PC实时通信。

数字电压表是诸多数字化仪表的核心与基础[2]。

以数字电压表为核心,可以扩展成各种通用数字仪表、专用数字仪表及各种非电量的数字化仪表。

目前,由各种单片机和A/D转换器构成的数字电压表作全面深入的了解是很有必要的。

最近的几十年来,随着半导体技术、集成电路(IC)和微处理器技术的发展,数字电路和数字化测量技术也有了巨大的进步,从而促使了数字电压表的快速发展,并不断出现新的类型[3]。

数字电压表从1952年问世以来,经历了不断改进的过程,从最早采用继电器、电子管和形式发展到了现在的全固态化、集成化(IC化),另一方面,精度也从0.01%-0.005%。

目前,数字电压表的内部核心部件是A/D转换器,转换的精度很大程度上影响着数字电压表的准确度,因而,以后数字电压表的发展就着眼在高精度和低成本这两个方面[4]。

本文是以简易数字直流电压表的设计为研究内容,本系统主要包括三大模块:转换模块、数据处理模块及显示模块。

其中,A/D转换采用ADC0808对输入的模拟信号进行转换,控制核心AT89C51再对转换的结果进行运算处理,最后驱动输出装置LED显示数字电压信号[5]。

1 设计总体方案1.1设计要求:完成系统的硬件电路设计与软件设计; 采用汇编或C 语言编程;采用Proteus 、KeilC 等软件实现系统的仿真调试。

基于单片机的电池电压检测方案设计

基于单片机的电池电压检测方案设计

基于单片机的电池电压检测方案设计电池是电子设备中常用的能量供应装置,而电池的电压是电池当前状态的重要指标之一。

设计一种基于单片机的电池电压检测方案,能够及时准确地获取电池的电压状态,对于延长电池寿命、保障设备安全具有重要意义。

一、方案设计目标1. 实现对电池电压的实时监测,提前预警电池状态。

2. 利用单片机实现对电池电压的准确测量和处理。

3. 设计一套电池电压检测方案,能够灵活应用在不同类型、不同规格的电池上。

二、方案设计思路1. 采用单片机进行数据采集和处理,以减小电路复杂度,提高测量精度。

2. 使用模拟转换芯片进行电压信号的模拟-数字转换,提高测量精度和稳定性。

3. 设计一套合理的电池电压检测算法,减小温度、电流等外界因素对测量结果的影响。

4. 灵活设置电池电压报警阈值,能够根据不同应用场景对电压状态进行定制化监测。

三、方案设计详解1. 单片机选择单片机作为方案的核心部件,需具备足够的计算能力和IO引脚用于数据采集和输出。

常见的单片机包括STC89C52、STM32、Arduino等,具体选择应根据实际应用需求来定。

2. 模拟-数字转换电池电压是一个模拟信号,需要通过模拟-数字转换芯片将其转换成数字信号,以供单片机进行处理。

常见的模拟-数字转换芯片有MCP3208、ADS1115等,具有多路输入、高分辨率和内部参考电压等特点,能够满足电池电压检测的需求。

3. 电池电压检测算法电池电压的检测需要考虑到多种因素的影响,如温度、负载电流等。

需要设计一套合理的检测算法,能够在保证测量精度的减小外界因素的干扰。

常见的电池电压检测算法包括移动平均滤波、二次差分滤波等,根据具体情况选择合适的算法。

4. 报警系统设计电池电压状态良好与否,对于设备运行的安全性有着直接的影响。

需要设计一套完善的报警系统,能够在电池电压低于预设阈值时及时报警,以便进行相关的处理和维护。

报警系统可以通过单片机的IO口控制蜂鸣器、LED灯等进行报警提示,也可以与其他设备进行通讯,实现远程监测和控制。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

基于单片机的电流电压测量系统设计目录1 前言 (2)1.1 电子测量概述 (2)1.2 数字电压表的特点 (2)1.3 单片机的概述 (3)2 系统方案的选择与论证 (4)2.1 功能要求 (4)2.2 系统的总体方案规划 (4)2.3 各模块方案选择与论证 (5)2.3.1 控制模块 (5)2.3.2 量程自动转换模块 (5)2.3.3 A/D转换模块 (5)2.3.4 显示模块 (6)2.3.5 通信模块 (6)3 系统的硬件电路设计与实现 (7)3.1 系统的硬件组成部分 (7)3.2 主要单元电路设计 (7)3.2.1 中央控制模块 (7)3.2.2 量程自动转换模块 (8)3.2.3 A/D模数转换模块 (13)3.2.4 显示模块 (14)3.2.5 通信模块 (15)3.2.6 电源部分 (16)4 系统的软件设计 (16)4.1 软件的总体设计原理 (16)4.1.1 A/D转换程序设计 (17)4.1.2 数字滤波程序设计 (18)4.1.3 量程自动转换的程序设计 (20)5 系统调试及性能分析 (22)5.1 调试与测试 (22)5.2 性能分析 (22)6 结束语 (23)6.1 设计总结 (23)6.2 设计的心得 (23)7 致谢词 (24)附录 (25)附录1 参考文献 (25)附录2 系统总电路图 (26)附录3 源程序 (27)1 前言1.1 电子测量概述从广义上讲,但凡利用电子技术来进行的测量都可以说是电子测量;从狭义上来说,电子测量是在电子学中测量有关电量的量值。

与其他一些测量相比,电子测量具有以下几个明显的特点:①测量频率范围极宽,这就使它的应用范围很广;②量程很广;③测量准确度高;④测量速度快;⑤易于实现遥测和长期不间断的测量,显示方式又可以做到清晰,直观;⑥易于利用电脑,形成电子测量与计算技术的紧密结合。

随着科学技术和生产的发展,测量任务越来越复杂,工作量加大,测量速度测量准确度要求越来越高,这些都对测量仪器和测试系统提出了更高的要求。

微机的出现为解决上述问题提供了条件。

利用微机的记忆,存储,数学运算,逻辑判断和命令识别等能力,发展了微机化和自动测试系统。

近年来微机和大规模集成电路发展很快,价格大幅下降,同时在测试系统中还解决了通用接口母线标准化问题,使微机化仪器和自动测试系统得到了很大发展,正改变着电子测量的面貌。

1.2 数字电压表的特点1.读数直观、准确电压表的数字化,是将连续的模拟量(如直流电压)转换成不连续的离散的数字形式并加以显示。

这有别于传统的以指针与刻度盘进行读数的方法,防止了读数的视差和视觉疲劳。

2.显示范围宽、分辫力高指针表的分辫力,是由刻度盘的细度表达的,刻度盘在一定条件下无法分得很细,太细了视觉分辫也很困难,而数字显示的电压表,目前可以做到从2〔1/2〕到10〔1/2〕。

数字电压表的输入阻抗可高达(1~10000)M。

输入阻抗越高,所吸收被测信号的电流就越小,所带来的附加误差极小,可以忽略。

4.集成度高、功耗小、抗干扰能力强由于CMOS技术的发展,集成电路的功耗变得很小,即发热量很小,这样就可以在同一块芯片上集成更多的元件,形成大规模或超大规模集成电路。

这给制造业带来了飞跃,不仅仪表小巧而功能齐全,其他如、袖珍电脑等也得以诞生。

目前双积分或多重积分的A/D转换器构成的数字电压表,由于在积分过程中可将干扰信号部分或全部抵消掉,其串模抑制比可达100分贝,共模抑制比可达120分贝。

直流数字电压表本身可以扩展成交流电压表、交直电流表、峰值表、功率表等,还可以附加智能化。

例如:计算、保持、比较数字、设定时间,设定上、下量限及自动控制等多种功能。

1.3 单片机的概述单片机就是在一块半导体硅片上集成了微处理器〔CPU〕、存储器〔ROM、RAM、EPROM〕和各种输入、输出接口,这样一块集成电路芯片上具有一台电脑的属性,因而被称为单片微型电脑,简称单片机。

单片机根据其基本操作处理的位数可分为:1位单片机、4位单片机、8位单片机、16位单片机和32位单片机。

并且其发展历史可分为以下四个阶段:第一阶段:单片机初级阶段。

因工艺限制,单片机采用双片的形势而且功能比较简单。

例如,仙童公司生产的F8单片机,实际上只包括了8为CPU,64 B RAM和2个并行口。

因此,还需加一块3851才能组成一台完整的电脑。

第二阶段:低性能单片机阶段。

以Intel公司制造的MCS-48单片机为代表,这种单片机片内集成有8位CPU、并行I/O口、8位定时器/计数器、RAM和ROM等,但是不足之处是无串行口,中断处理比较简单,片内RAM和ROM容量较小且寻址范围不大于4KB。

第三阶段:高性能单片机阶段。

这个阶段推出的单片机普遍带有I/O口,多级中断系统,16位定时器/计数器,片内ROM、RAM容量加大,且寻址范围可达64KB,有的片内还带有A/D转换器。

这类单片机的典型代表是:Intel公司的MCS-51系列、Motorola 公司的6801和Zilog公司的Z8等。

由于这类单片机的性能价格比高,所以仍被广泛应用,是目前应用数量较多的单片机。

第四阶段:8位单片机稳固发展及16位单片机、32位单片机推出阶段。

此阶段的主要特征是一方面发展16位单片机、32位单片机及专用型单片机;另一方面不断完善高档8位单片机,改善其结构,以满足不同的用户需要。

2 系统方案的选择与论证2.1 功能要求使用AD/DC模数转换模块把模拟量转换成数字量,再采用AT89C52单片机进行电压、电流表的计算和显示,并将数据发送给PC机,要求进行硬件,软件系统设计。

1、4位电压、电流显示2、8个档位自动调节3、电压范围0——1000V4、电流范围0——5A5、能串口发送给电脑,并以适时波形显示2.2 系统的总体方案规划本设计主要由五大模块组成:量程自动转换模块、A/D模数转换模块、单片机控制模块、显示模块和通信模块。

按系统功能实现要求,控制模块采用AT89C52单片机,通过程序来进行电压、电流的计算等数据处理,及其功能控制;量程自动转换模块包括电压衰减和8个档位自动换档,采用纯硬件搭建;A/D转换模块采用ADC0809芯片;显示模块采用四个LED数码管静态显示电压、电流值。

通信模块采用串口通信将数据发送给PC机。

使用MAX232芯片,实现电平转换功能,使单片机的TTL电平与RS232的电平实现匹配。

如图2.1所示:图2.1 系统总体框图2.3 各模块方案选择与论证2 控制模块中央控制器为整个系统的核心,通过接受外部信息,按照控制算法驱动执行机构。

对中央处理器的选择多种多样,本设计采用ATMEL公司生产的AT89S52系列的单片机作为主控制器。

它支持ISP在线可编程写入技术!串行写入、其频率高达33MHz,故其速度更快、内部集成看门狗计时器,不再需要像89C51那样外接看门狗计时器单元电路。

稳定性更好。

AT89S52 高性能8位单片机是一个低功耗,高性能CMOS 8位单片机,片内含8k Bytes ISP(In-system programmable)的可反复擦写1000次的Flash只读程序存储器,器件采用ATMEL公司的高密度、非易失性存储技术制造,兼容标准MCS-51指令系统及80C51引脚结构,芯片内集成了通用8位中央处理器和ISP Flash存储单元,功能强大的微型电脑的AT89S52可为许多嵌入式控制应用系统提供高性价比的解决方案。

AT89S52具有如下特点:40个引脚,8k Bytes Flash片内程序存储器,256 bytes 的随机存取数据存储器〔RAM〕,32个外部双向输入/输出〔I/O〕口,5个中断优先级2层中断嵌套中断,2个16位可编程定时计数器,2个全双工串行通信口,看门狗〔WDT〕电路,片内时钟振荡器。

此外,AT89S52设计和配置了振荡频率可为0Hz并可通过软件设置省电模式。

空闲模式下,CPU暂停工作,而RAM定时计数器,串行口,外中断系统可继续工作,掉电模式冻结振荡器而保存RAM的数据,停止芯片其它功能直至外中断激活或硬件复位。

同时该芯片还具有PDIP、TQFP和PLCC等三种封装形式,以适应不同产品的需求。

2 量程自动转换模块方案一、采用软件编程技术。

特点:硬件简单,但编程复杂。

方案二、采用纯硬件搭建技术。

利用一些廉价的元器件组成量程自动转换电路,特点:所用硬件多,但成本低,且不需要复杂的软件编程及调试。

考虑到本次设计所需硬件较少,且所用元器件容易购买,成本低。

故采用方案二2.3.3 A/D转换模块方案一、采用双积分A/D转换技术。

特点是:精度高,抗干扰能力强。

但高精度的双积分A/D芯片,价格较贵,增加了单片机系统的成本。

方案二、采用比较型A/D转换器〔ADC1210〕。

特点是:测量速度快〔最高可达每秒100万次以上〕,电路比较简单,但抗干扰能力差。

方案三、采用逐次逼近型A/D转换器〔ADC0809〕。

特点是:价格廉价,容易购买,但精度较低。

ADC0809是8位逐次逼近型A/D转换器。

带8个模拟量输入通道,有通道地址译码锁存器。

考虑到成本低,因而选用方案三。

2.3.4 显示模块方案一、采用LCD显示。

特点:显示内容丰富,采用数字式接口,体积小、重量轻,功率消耗小,但编程复杂,且成本相对LED较高。

方案二、采用LED并行动态显示。

即一位一位地轮流点亮各位显示器。

对每一位显示器而言,每隔一段时间点亮一次。

其硬件电路简单,但同样的功率驱动下,显示亮度不及静态显示,且占用I/O口较多。

方案三、采用LED串行静态显示。

即显示某一字符时,相应的发光二极管恒定导通或截止,这种方式每一个显示位都需要一个8位输出口控制,占用硬件较多,但仅占用控制器串口的两个I/O口,软件实现简单,显示亮度高,成本低。

LED数码管显示器由7个发光二极管组成,因此也称之为7段LED显示器,因为LED 数码管显示成本较低,外加一个驱动芯片,所需单片机接口较少,且程序容易实现。

故考虑到本次设计的需要,只要显示4位电压、电流值,采用方案三,使用4个共阳数码管及4个驱动芯片74LS164。

2.3.5 通信模块方案一、采用并行通信方式。

所传送的各位同时发送或接收。

一个并行数据占多少位二进制数,就要多少根传输线,这种方式的特点:通信速度快,但传输线多,价格较贵,适合近距离传输。

方案二、采用串行通信方式。

所传送的数据的各位按顺序一位一位地发送或接收。

这种方式的特点:由于它每次只能传送一位,所以传送速度较慢。

但它仅需要一到两根传输线,故传输数据时比较经济,且所占I/O口少。

本次设计是单片机与PC机的通信,要采用MAX232电平转换电路,可将单片机的TTL 电平转换为PC机的串口电平。

相关文档
最新文档