2002年全国高考数学第(20)题简析

合集下载

2002高考数学全国卷及答案理

2002高考数学全国卷及答案理

2002年普通高等学校招生全国统一考试(数学)理及答案本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分.第I 卷1至2页.第II 卷3至9页.共150分.考试时间120分钟.第Ⅰ卷(选择题共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分.第I 卷1至2页.第II 卷3至9页.共150分.考试时间120分钟.第Ⅰ卷(选择题共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.(1)圆1)1(22=+-y x 的圆心到直线3y x =的距离是 (A )21 (B )23 (C )1 (D )3 (2)复数3)2321(i +的值是 (A )i - (B )i (C )1- (D )1 (3)不等式0|)|1)(1(>-+x x 的解集是(A )}10|{<≤x x (B )0|{<x x 且}1-≠x (C )}11|{<<-x x (D )1|{<x x 且}1-≠x (4)在)2,0(π内,使x x cos sin >成立的x 的取值范围是(A ))45,()2,4(ππππ (B )),4(ππ (C ))45,4(ππ (D ))23,45(),4(ππππ (5)设集合},412|{Z k k x x M ∈+==,},214|{Z k k x x N ∈+==,则(A )N M = (B )N M ⊂ (C )N M ⊃ (D )∅=N M(6)点)0,1(P 到曲线⎩⎨⎧==t y t x 22(其中参数R t ∈)上的点的最短距离为(A )0 (B )1 (C )2 (D )2(7)一个圆锥和一个半球有公共底面,如果圆锥的体积恰好与半球的体积相等,那么这个圆锥轴截面顶角的余弦值是 (A )43 (B )54 (C )53 (D )53- (8)正六棱柱111111F E D C B A ABCDEF -的底面边长为1,侧棱长为2,则这个棱柱侧面对角线D E 1与1BC 所成的角是(A )︒90 (B )︒60 (C )︒45 (D )︒30 (9)函数c bx x y ++=2(),0[+∞∈)是单调函数的充要条件是 (A )0≥b (B )0≤b (C )0>b (D )0<b (10)函数111--=x y 的图象是(11)从正方体的6个面中选取3个面,其中有2个面不相邻的选法共有 (A )8种 (B )12种 (C )16种 (D )20种 (12)据2002年3月5日九届人大五次会议《政府工作报告》:“2001年国内生产总值达到95933亿元,比上年增长7.3%”,如果“十•五”期间(2001年-2005年)每年的国内生产总值都按此年增长率增长,那么到“十•五”末我国国内年生产总值约为 (A )亿元 (B )亿元 (C )亿元 (D )亿元第II 卷(非选择题共90分)二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线. (13)函数xa y =在]1,0[上的最大值与最小值这和为3,则a =(14)椭圆5522=+ky x 的一个焦点是)2,0(,那么=k (15)72)2)(1(-+x x 展开式中3x 的系数是(16)已知221)(xx x f +=,那么)41()4()31()3()21()2()1(f f f f f f f ++++++= 三、解答题:本大题共6小题,共74分,解答应写出文字说明、证明过程或演算步骤. (17)已知12cos cos 2sin 2sin 2=-+αααα,)2,0(πα∈,求αsin 、αtg 的值(18)如图,正方形ABCD 、ABEF 的边长都是1,而且平面ABCD 、ABEF 互相垂直点M 在AC 上移动,点N 在BF 上移动,若a BN CM ==(20<<a )(1)求MN 的长;(2)a 为何值时,MN 的长最小;(3)当MN 的长最小时,求面MNA 与面MNB 所成二面角α的大小(19)设点P 到点)0,1(-、)0,1(距离之差为m 2,到x 、y 轴的距离之比为2,求m 的取值范围(20)某城市2001年末汽车保有量为30万辆,预计此后每年报废上一年末汽车保有量的6%,并且每年新增汽车数量相同为保护城市环境,要求该城市汽车保有量不超过60万辆,那么每年新增汽车数量不应超过多少辆?(21)设a 为实数,函数1||)(2+-+=a x x x f ,R x ∈ (1)讨论)(x f 的奇偶性; (2)求)(x f 的最小值(22)设数列}{n a 满足:121+-=+n n n na a a , ,3,2,1=n (I )当21=a 时,求432,,a a a 并由此猜测n a 的一个通项公式; (II )当31≥a 时,证明对所的1≥n ,有 (i )2+≥n a n (ii )2111111111321≤++++++++n a a a a ADE参考答案(13)2 (14)1 (15)1008 (16)27 三、解答题(17)解:由12cos cos 2sin 2sin 2=-+αααα,得0cos 2cos sin 2cos sin 42222=-+ααααα0)1sin sin 2(cos 222=-+ααα 0)1)(sin 1sin 2(cos 22=+-ααα∵)2,0(πα∈∴01sin ≠+α,0cos 2≠=α∴01sin 2=-α,即21sin =α ∴6πα=∴33=αtg (18)解(I )作MP ∥AB 交BC 于点P ,NQ ∥AB 交BE 于点Q ,连结PQ ,依题意可得MP ∥NQ ,且NQ MP =,即MNQP 是平行四边形∴PQ MN =由已知a BN CM ==,1===BE AB CB ∴2==BF AC ,a BQ CP 22== )20( 21)22( )2()21( )1(22222<<+-=+-==+-==a a a a BQ CP PQ MN(II )由(I )21)22( 2+-=a MN 所以,当22=a 时,22=MN 即当M 、N 分别为AC 、BF 的中点时,MN 的长最小,最小值为22(III )取MN 的中点G ,连结AG 、BG , ∵BN BM AN AM ==,,G 为MN 的中点∴MN BG MN AG ⊥⊥,,即AGB ∠即为二面角的平面角α又46==BG AG ,所以,由余弦定理有 31464621)46()46(cos 22-=⋅⋅-+=α 故所求二面角为31arccos-=πα (19)解:设点P 的坐标为),(y x ,依题设得2||||=x y ,即x y 2±=,0≠x 因此,点),(y x P 、)0,1(-M 、)0,1(N 三点不共线,得2||||||||=<-MN PN PM∵0||2||||||>=-m PN PM ∴1||0<<m因此,点P 在以M 、N 为焦点,实轴长为||2m 的双曲线上,故112222=--my m x 将x y 2±=代入112222=--m y m x ,并解得222251)1(mm m x --=,因012>-m 所以0512>-m 解得55||0<<m 即m 的取值范围为)55,0()0,55( -(20)解:设2001年末汽车保有量为1b 万辆,以后各年末汽车保有量依次为2b 万辆,3b 万辆,…,每年新增汽车x 万辆,则301=b ,x b b +⨯=94.012对于1>n ,有)94.01(94.0 94.0211x b xb b n n n ++⨯=+⨯=-+ 所以)94.094.094.01(94.0211n n n x b b +++++⨯=+x b nn06.094.0194.01-+⨯=n x x 94.0)06.030(06.0⨯-+= 当006.030≥-x,即8.1≤x 时 3011=≤≤≤+b b b n n当006.030<-x,即8.1>x 时 数列}{n b 逐项增加,可以任意靠近06.0x 06.0]94.0)06.030(06.0[lim lim 1x x x b n n n n =⨯-+=-+∞→+∞→ 因此,如果要求汽车保有量不超过60万辆,即60≤n b ( ,3,2,1=n )则6006.0≤x,即6.3≤x 万辆 综上,每年新增汽车不应超过6.3万辆(21)解:(I )当0=a 时,函数)(1||)()(2x f x x x f =+-+-=- 此时,)(x f 为偶函数当0≠a 时,1)(2+=a a f ,1||2)(2++=-a a a f ,)()(a f a f -≠,)()(a f a f --≠此时)(x f 既不是奇函数,也不是偶函数(II )(i )当a x ≤时,43)21(1)(22++-=++-=a x a x x x f 当21≤a ,则函数)(x f 在],(a -∞上单调递减,从而函数)(x f 在],(a -∞上的最小值为1)(2+=a a f .若21>a ,则函数)(x f 在],(a -∞上的最小值为a f +=43)21(,且)()21(a f f ≤. (ii )当a x ≥时,函数43)21(1)(22+-+=+-+=a x a x x x f若21-≤a ,则函数)(x f 在],(a -∞上的最小值为a f -=-43)21(,且)()21(a f f ≤-若21->a ,则函数)(x f 在),[+∞a 上单调递增,从而函数)(x f 在),[+∞a 上的最小值为1)(2+=a a f .综上,当21-≤a 时,函数)(x f 的最小值为a -43 当2121≤<-a 时,函数)(x f 的最小值为12+a当21>a 时,函数)(x f 的最小值为a +43.(22)解(I )由21=a ,得311212=+-=a a a 由32=a ,得4122223=+-=a a a 由43=a ,得5133234=+-=a a a由此猜想n a 的一个通项公式:1+=n a n (1≥n ) (II )(i )用数学归纳法证明:①当1=n 时,2131+=≥a ,不等式成立. ②假设当k n =时不等式成立,即2+≥k a k ,那么3521)2)(2(1)(1+≥+=+-++≥+-=+k k k k k k a a a k k k .也就是说,当1+=k n 时,2)1(1++≥+k a k 据①和②,对于所有1≥n ,有2n a n ≥+. (ii )由1)(1+-=+n a a a n n n 及(i ),对2≥k ,有1)1(11++-=--k a a a k k k121)121(11+=++-+-≥--k k a k k a……1)1(2122211211-+=++++≥---a a a k k k k于是11211111-⋅+≤+k k a a ,2≥k2131212211121111111111121111=+≤+≤+=+++≤+∑∑∑=-=-=a a a a a n k k n k k nk k。

2002年高考.广东、河南、江苏卷数学试题及解答

2002年高考.广东、河南、江苏卷数学试题及解答

2002年全国普通高等学校招生考试(广东、江苏、河南卷)数学试题 及解答一、选择题(每小题5分,12个小题共计60分)1.函数f(x)=sin2x cosx的最小正周期为(2002年广东、江苏、河南(1)5分) A.π2 B.π C.2π D.4π C2.圆(x -1)2+y 2=1的圆心到直线y =33x 的距离为(2002年广东、江苏、河南(2)5分) A.12 B.32 C.1 D. 3A3.不等式(1+x)(1-|x|)>0的解集是(2002年广东、江苏、河南(3)5分)A.{x|0≤x <1}B.{x|x <0且x ≠-1}C.{x|-1<x <1}D.{x|x <1且x ≠-1}D4.在(0,2π)内,使sinx >cosx 成立的x 的取值范围是(2002年广东、江苏、河南(4)5分) A.(π4,π2)∪(π,5π4) B.(π4,π) C.(π4,5π4) D.(π4,π)∪(5π4,3π2) C5.集合M ={x|x =k 2+14,k ∈Z},N ={x|x =k 4+12,k ∈Z},则(2002年广东、江苏、河南(5)5分) A.M =N B.M ⊂N C.N ⊂M D.M ∩N =φB6.一个圆锥和一个半球有公共底面,如果圆锥的体积恰好与半球的体积相等,那么,这个圆锥轴截面顶角的余弦值是(2002年广东、江苏、河南(6)5分) A.34 B.45 C.35 D.-35 C7.函数f(x)=x|x +a|+b 是奇函数的充要条件是(2002年广东、江苏、河南(7)5分)A.ab =0B.a +b =0C.a =bD.a 2+b 2=0D8.已知0<x <y <a <1,则有(2002年广东、江苏、河南(8)5分)A.log a (xy)<0B.0<log a (xy)<1C.1<log a (xy)<2D.log a (xy)>2D9.函数y =1-1x -1(2002年广东、江苏、河南(9)5分) A.在(-1,+∞)内单调递增B.在(-1,+∞)内单调递减C.在(1,+∞)内单调递增D.在(1,+∞)内单调递减C10.极坐标方程ρ=cos θ与ρcos θ= 12的图形是(2002年广东、江苏、河南(10)5分) A. B. C. D.B11.从正方体的6个面中选取3个,其中有2个面不相邻的选法共有(2002年广东、江苏、河南(11)5分)A.8种B.12种C.16种D.20种B12.据2002年3月9日九届人大五次会议《政府工作报告》:“2001年国内生产总值达到95 933亿元,比上年增长7.3%”,如果“十·五”期间(2001年~2005年)每年的国内生产总值都按此年增长率增长,那么到“十·五”末我国国内年生产总值约为(2002年广东、江苏、河南(12)5分)A.115 000亿元B.120 000亿元C.127 000亿元D.135 000亿元C二、填空题(每小题4分,共计16分)13.椭圆5x 2+ky 2=5的一个焦点是(0,2),那么k =______1_______.(2002年广东、江苏、河南(13)4分)14.(x 2+1)(x -2)7的展开式中x 3项的系数是____1 008_____.(2002年广东、江苏、河南(14)4分)15.已知sin α=cos2α(α∈(π2,π)),则tan α=____- 33_____.(2002年广东、江苏、河南(15)4分) 16.已知函数f(x)=x 21+x 2,那么f(1)+f(2)+f(12)+f(3)+f(13)+f(4)+f(14)=____72____(2002年广东、江苏、河南(16)4分)三、解答题(6各小题共计74分,解答应写出文字说明,证明过程或演算步骤)17.已知复数z =1+i ,求实数a,b 使得az +2b z -=(a +2z)2.(2002年广东、江苏、河南(17)12分) 本题主要考查复数的基础知识和基本运算技能。

2002年全国卷高考理科数学试题及答案

2002年全国卷高考理科数学试题及答案

2002年普通高等学校招生全国统一考试数学试卷(理科)及答案本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分.第I 卷1至2页.第II 卷3至9页.共150分.考试时间120分钟.第Ⅰ卷(选择题共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分.第I 卷1至2页.第II 卷3至9页.共150分.考试时间120分钟.(1)圆1)1(22=+-y x 的圆心到直线y x =的距离是 (A )21(B )23 (C )1 (D )3(2)复数3)2321(i +的值是 (A )i - (B )i (C )1- (D )1 (3)不等式0|)|1)(1(>-+x x 的解集是(A )}10|{<≤x x (B )0|{<x x 且}1-≠x (C )}11|{<<-x x (D )1|{<x x 且}1-≠x (4)在)2,0(π内,使x x cos sin >成立的x 的取值范围是(A ))45,()2,4(ππππY (B )),4(ππ (C ))45,4(ππ (D ))23,45(),4(ππππY (5)设集合},412|{Z k k x x M ∈+==,},214|{Z k k x x N ∈+==,则(A )N M = (B )N M ⊂ (C )N M ⊃ (D )∅=N M I(6)点)0,1(P 到曲线⎩⎨⎧==ty t x 22(其中参数R t ∈)上的点的最短距离为(A )0 (B )1 (C )2 (D )2(7)一个圆锥和一个半球有公共底面,如果圆锥的体积恰好与半球的体积相等,那么这个圆锥轴截面顶角的余弦值是 (A )43 (B )54 (C )53 (D )53- (8)正六棱柱111111F E D C B A ABCDEF -的底面边长为1,侧棱长为2,则这个棱柱侧面对角线D E 1与1BC 所成的角是(A )︒90 (B )︒60 (C )︒45 (D )︒30 (9)函数c bx x y ++=2(),0[+∞∈)是单调函数的充要条件是 (A )0≥b (B )0≤b (C )0>b (D )0<b (10)函数111--=x y 的图象是(11)从正方体的6个面中选取3个面,其中有2个面不相邻的选法共有 (A )8种 (B )12种 (C )16种 (D )20种 (12)据2002年3月5日九届人大五次会议《政府工作报告》:“2001年国内生产总值达到95933亿元,比上年增长7.3%”,如果“十•五”期间(2001年-2005年)每年的国内生产总值都按此年增长率增长,那么到“十•五”末我国国内年生产总值约为(A )115000亿元 (B )120000亿元 (C )127000亿元 (D )135000亿元第II 卷(非选择题共90分)二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线. (13)函数xa y =在]1,0[上的最大值与最小值这和为3,则a = (14)椭圆5522=+ky x 的一个焦点是)2,0(,那么=k (15)72)2)(1(-+x x 展开式中3x 的系数是(16)已知221)(xx x f +=,那么)41()4()31()3()21()2()1(f f f f f f f ++++++= 三、解答题:本大题共6小题,共74分,解答应写出文字说明、证明过程或演算步骤. (17)已知12cos cos 2sin 2sin 2=-+αααα,)2,0(πα∈,求αsin 、αtg 的值(18)如图,正方形ABCD 、ABEF 的边长都是1,而且平面ABCD 、ABEF 互相垂直点M 在AC 上移动,点N 在BF 上移动,若a BN CM ==(20<<a )(1)求MN 的长;(2)a 为何值时,MN 的长最小;(3)当MN 的长最小时,求面MNA 与面MNB 所成二面角α的大小(19)设点P 到点)0,1(-、)0,1(距离之差为m 2,到x 、y 轴的距离之比为2,求m 的取值范围(20)某城市2001年末汽车保有量为30万辆,预计此后每年报废上一年末汽车保有量的6%,并且每年新增汽车数量相同为保护城市环境,要求该城市汽车保有量不超过60万辆,那么每年新增汽车数量不应超过多少辆?(21)设a 为实数,函数1||)(2+-+=a x x x f ,R x ∈ (1)讨论)(x f 的奇偶性; (2)求)(x f 的最小值(22)设数列}{n a 满足:121+-=+n n n na a a ,Λ,3,2,1=n (I )当21=a 时,求432,,a a a 并由此猜测n a 的一个通项公式; (II )当31≥a 时,证明对所的1≥n ,有 (i )2+≥n a n (ii )2111111111321≤++++++++n a a a a Λ ADE参考答案(13)2 (14)1 (15)1008 (16)27 三、解答题(17)解:由12cos cos 2sin 2sin 2=-+αααα,得0cos 2cos sin 2cos sin 42222=-+ααααα0)1sin sin 2(cos 222=-+ααα 0)1)(sin 1sin 2(cos 22=+-ααα∵)2,0(πα∈∴01sin ≠+α,0cos 2≠=α ∴01sin 2=-α,即21sin =α ∴6πα=∴33=αtg (18)解(I )作MP ∥AB 交BC 于点P ,NQ ∥AB 交BE 于点Q ,连结PQ ,依题意可得MP ∥NQ ,且NQ MP =,即MNQP 是平行四边形∴PQ MN =由已知a BN CM ==,1===BE AB CB ∴2==BF AC ,a BQ CP 22== )20( 21)22( )2()21( )1(22222<<+-=+-==+-==a a a a BQ CP PQ MN(II )由(I )21)22( 2+-=a MN 所以,当22=a 时,22=MN 即当M 、N 分别为AC 、BF 的中点时,MN 的长最小,最小值为22(III )取MN 的中点G ,连结AG 、BG , ∵BN BM AN AM ==,,G 为MN 的中点∴MN BG MN AG ⊥⊥,,即AGB ∠即为二面角的平面角α又46==BG AG ,所以,由余弦定理有 31464621)46()46(cos 22-=⋅⋅-+=α 故所求二面角为31arccos -=πα(19)解:设点P 的坐标为),(y x ,依题设得2||||=x y ,即x y 2±=,0≠x 因此,点),(y x P 、)0,1(-M 、)0,1(N 三点不共线,得2||||||||=<-MN PN PM∵0||2||||||>=-m PN PM ∴1||0<<m因此,点P 在以M 、N 为焦点,实轴长为||2m 的双曲线上,故112222=--my m x 将x y 2±=代入112222=--m y m x ,并解得222251)1(mm m x --=,因012>-m 所以0512>-m 解得55||0<<m 即m 的取值范围为)55,0()0,55(Y -(20)解:设2001年末汽车保有量为1b 万辆,以后各年末汽车保有量依次为2b 万辆,3b 万辆,…,每年新增汽车x 万辆,则301=b ,x b b +⨯=94.012对于1>n ,有Λ)94.01(94.0 94.0211x b xb b n n n ++⨯=+⨯=-+ 所以)94.094.094.01(94.0211nn n x b b +++++⨯=+Λx b nn06.094.0194.01-+⨯=n x x 94.0)06.030(06.0⨯-+= 当006.030≥-x,即8.1≤x 时 3011=≤≤≤+b b b n n Λ当006.030<-x,即8.1>x 时 数列}{n b 逐项增加,可以任意靠近06.0x 06.0]94.0)06.030(06.0[lim lim 1x x x b n n n n =⨯-+=-+∞→+∞→ 因此,如果要求汽车保有量不超过60万辆,即60≤n b (Λ,3,2,1=n )则6006.0≤x,即6.3≤x 万辆 综上,每年新增汽车不应超过6.3万辆(21)解:(I )当0=a 时,函数)(1||)()(2x f x x x f =+-+-=- 此时,)(x f 为偶函数当0≠a 时,1)(2+=a a f ,1||2)(2++=-a a a f ,)()(a f a f -≠,)()(a f a f --≠此时)(x f 既不是奇函数,也不是偶函数(II )(i )当a x ≤时,43)21(1)(22++-=++-=a x a x x x f 当21≤a ,则函数)(x f 在],(a -∞上单调递减,从而函数)(x f 在],(a -∞上的最小值为1)(2+=a a f .若21>a ,则函数)(x f 在],(a -∞上的最小值为a f +=43)21(,且)()21(a f f ≤. (ii )当a x ≥时,函数43)21(1)(22+-+=+-+=a x a x x x f若21-≤a ,则函数)(x f 在],(a -∞上的最小值为a f -=-43)21(,且)()21(a f f ≤-若21->a ,则函数)(x f 在),[+∞a 上单调递增,从而函数)(x f 在),[+∞a 上的最小值为1)(2+=a a f .综上,当21-≤a 时,函数)(x f 的最小值为a -43 当2121≤<-a 时,函数)(x f 的最小值为12+a当21>a 时,函数)(x f 的最小值为a +43.(22)解(I )由21=a ,得311212=+-=a a a 由32=a ,得4122223=+-=a a a 由43=a ,得5133234=+-=a a a由此猜想n a 的一个通项公式:1+=n a n (1≥n ) (II )(i )用数学归纳法证明:①当1=n 时,2131+=≥a ,不等式成立. ②假设当k n =时不等式成立,即2+≥k a k ,那么3521)2)(2(1)(1+≥+=+-++≥+-=+k k k k k k a a a k k k .也就是说,当1+=k n 时,2)1(1++≥+k a k 据①和②,对于所有1≥n ,有2n a n ≥+. (ii )由1)(1+-=+n a a a n n n 及(i ),对2≥k ,有1)1(11++-=--k a a a k k k121)121(11+=++-+-≥--k k a k k a……1)1(2122211211-+=++++≥---a a a k k k k Λ于是11211111-⋅+≤+k k a a ,2≥k2131212211121111111111121111=+≤+≤+=+++≤+∑∑∑=-=-=a a a a a nk k nk k nk k。

2002年全国卷高考理科数学试题及答案

2002年全国卷高考理科数学试题及答案

2002年普通高等学校招生全国统一考试数学试卷(理科)及答案本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分.第I 卷1至2页.第II 卷3至9页.共150分.考试时间120分钟.第Ⅰ卷(选择题共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分.第I 卷1至2页.第II 卷3至9页.共150分.考试时间120分钟.(1)圆1)1(22=+-y x 的圆心到直线y x =的距离是 (A )21(B )23 (C )1 (D )3(2)复数3)2321(i +的值是 (A )i - (B )i (C )1- (D )1 (3)不等式0|)|1)(1(>-+x x 的解集是(A )}10|{<≤x x (B )0|{<x x 且}1-≠x (C )}11|{<<-x x (D )1|{<x x 且}1-≠x (4)在)2,0(π内,使x x cos sin >成立的x 的取值范围是(A ))45,()2,4(ππππY (B )),4(ππ (C ))45,4(ππ (D ))23,45(),4(ππππY (5)设集合},412|{Z k k x x M ∈+==,},214|{Z k k x x N ∈+==,则(A )N M = (B )N M ⊂ (C )N M ⊃ (D )∅=N M I(6)点)0,1(P 到曲线⎩⎨⎧==ty t x 22(其中参数R t ∈)上的点的最短距离为(A )0 (B )1 (C )2 (D )2(7)一个圆锥和一个半球有公共底面,如果圆锥的体积恰好与半球的体积相等,那么这个圆锥轴截面顶角的余弦值是 (A )43 (B )54 (C )53 (D )53- (8)正六棱柱111111F E D C B A ABCDEF -的底面边长为1,侧棱长为2,则这个棱柱侧面对角线D E 1与1BC 所成的角是(A )︒90 (B )︒60 (C )︒45 (D )︒30 (9)函数c bx x y ++=2(),0[+∞∈)是单调函数的充要条件是 (A )0≥b (B )0≤b (C )0>b (D )0<b (10)函数111--=x y 的图象是(11)从正方体的6个面中选取3个面,其中有2个面不相邻的选法共有 (A )8种 (B )12种 (C )16种 (D )20种 (12)据2002年3月5日九届人大五次会议《政府工作报告》:“2001年国内生产总值达到95933亿元,比上年增长7.3%”,如果“十•五”期间(2001年-2005年)每年的国内生产总值都按此年增长率增长,那么到“十•五”末我国国内年生产总值约为(A )115000亿元 (B )120000亿元 (C )127000亿元 (D )135000亿元第II 卷(非选择题共90分)二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线. (13)函数xa y =在]1,0[上的最大值与最小值这和为3,则a = (14)椭圆5522=+ky x 的一个焦点是)2,0(,那么=k(15)72)2)(1(-+x x 展开式中3x 的系数是(16)已知221)(x x x f +=,那么)41()4()31()3()21()2()1(f f f f f f f ++++++= 三、解答题:本大题共6小题,共74分,解答应写出文字说明、证明过程或演算步骤. (17)已知12cos cos 2sin 2sin 2=-+αααα,)2,0(πα∈,求αsin 、αtg 的值(18)如图,正方形ABCD 、ABEF 的边长都是1,而且平面ABCD 、ABEF 互相垂直点M 在AC 上移动,点N 在BF 上移动,若a BN CM ==(20<<a )(1)求MN 的长;(2)a 为何值时,MN 的长最小;(3)当MN 的长最小时,求面MNA 与面MNB 所成二面角α的大小(19)设点P 到点)0,1(-、)0,1(距离之差为m 2,到x 、y 轴的距离之比为2,求m 的取值范围(20)某城市2001年末汽车保有量为30万辆,预计此后每年报废上一年末汽车保有量的6%,并且每年新增汽车数量相同为保护城市环境,要求该城市汽车保有量不超过60万辆,那么每年新增汽车数量不应超过多少辆?(21)设a 为实数,函数1||)(2+-+=a x x x f ,R x ∈ (1)讨论)(x f 的奇偶性; (2)求)(x f 的最小值(22)设数列}{n a 满足:121+-=+n n n na a a ,Λ,3,2,1=n (I )当21=a 时,求432,,a a a 并由此猜测n a 的一个通项公式; (II )当31≥a 时,证明对所的1≥n ,有 (i )2+≥n a n (ii )2111111111321≤++++++++n a a a a Λ ADE参考答案(13)2 (14)1 (15)1008 (16)27 三、解答题(17)解:由12cos cos 2sin 2sin 2=-+αααα,得0cos 2cos sin 2cos sin 42222=-+ααααα0)1sin sin 2(cos 222=-+ααα 0)1)(sin 1sin 2(cos 22=+-ααα∵)2,0(πα∈∴01sin ≠+α,0cos 2≠=α ∴01sin 2=-α,即21sin =α ∴6πα=∴33=αtg (18)解(I )作MP ∥AB 交BC 于点P ,NQ ∥AB 交BE 于点Q ,连结PQ ,依题意可得MP ∥NQ ,且NQ MP =,即MNQP 是平行四边形∴PQ MN =由已知a BN CM ==,1===BE AB CB ∴2==BF AC ,a BQ CP 22== )20( 21)22( )2()21( )1(22222<<+-=+-==+-==a a a a BQ CP PQ MN(II )由(I )21)22( 2+-=a MN 所以,当22=a 时,22=MN 即当M 、N 分别为AC 、BF 的中点时,MN 的长最小,最小值为22(III )取MN 的中点G ,连结AG 、BG , ∵BN BM AN AM ==,,G 为MN 的中点∴MN BG MN AG ⊥⊥,,即AGB ∠即为二面角的平面角α又46==BG AG ,所以,由余弦定理有 31464621)46()46(cos 22-=⋅⋅-+=α 故所求二面角为31arccos -=πα(19)解:设点P 的坐标为),(y x ,依题设得2||||=x y ,即x y 2±=,0≠x 因此,点),(y x P 、)0,1(-M 、)0,1(N 三点不共线,得2||||||||=<-MN PN PM∵0||2||||||>=-m PN PM ∴1||0<<m因此,点P 在以M 、N 为焦点,实轴长为||2m 的双曲线上,故112222=--my m x 将x y 2±=代入112222=--m y m x ,并解得222251)1(mm m x --=,因012>-m 所以0512>-m 解得55||0<<m 即m 的取值范围为)55,0()0,55(Y -(20)解:设2001年末汽车保有量为1b 万辆,以后各年末汽车保有量依次为2b 万辆,3b 万辆,…,每年新增汽车x 万辆,则301=b ,x b b +⨯=94.012对于1>n ,有Λ)94.01(94.0 94.0211x b xb b n n n ++⨯=+⨯=-+ 所以)94.094.094.01(94.0211nn n x b b +++++⨯=+Λx b nn06.094.0194.01-+⨯=n x x 94.0)06.030(06.0⨯-+= 当006.030≥-x,即8.1≤x 时 3011=≤≤≤+b b b n n Λ当006.030<-x,即8.1>x 时 数列}{n b 逐项增加,可以任意靠近06.0x 06.0]94.0)06.030(06.0[lim lim 1x x x b n n n n =⨯-+=-+∞→+∞→ 因此,如果要求汽车保有量不超过60万辆,即60≤n b (Λ,3,2,1=n )则6006.0≤x,即6.3≤x 万辆 综上,每年新增汽车不应超过6.3万辆(21)解:(I )当0=a 时,函数)(1||)()(2x f x x x f =+-+-=- 此时,)(x f 为偶函数当0≠a 时,1)(2+=a a f ,1||2)(2++=-a a a f ,)()(a f a f -≠,)()(a f a f --≠此时)(x f 既不是奇函数,也不是偶函数(II )(i )当a x ≤时,43)21(1)(22++-=++-=a x a x x x f 当21≤a ,则函数)(x f 在],(a -∞上单调递减,从而函数)(x f 在],(a -∞上的最小值为1)(2+=a a f .若21>a ,则函数)(x f 在],(a -∞上的最小值为a f +=43)21(,且)()21(a f f ≤. (ii )当a x ≥时,函数43)21(1)(22+-+=+-+=a x a x x x f若21-≤a ,则函数)(x f 在],(a -∞上的最小值为a f -=-43)21(,且)()21(a f f ≤-若21->a ,则函数)(x f 在),[+∞a 上单调递增,从而函数)(x f 在),[+∞a 上的最小值为1)(2+=a a f .综上,当21-≤a 时,函数)(x f 的最小值为a -43 当2121≤<-a 时,函数)(x f 的最小值为12+a当21>a 时,函数)(x f 的最小值为a +43.(22)解(I )由21=a ,得311212=+-=a a a 由32=a ,得4122223=+-=a a a 由43=a ,得5133234=+-=a a a由此猜想n a 的一个通项公式:1+=n a n (1≥n ) (II )(i )用数学归纳法证明:①当1=n 时,2131+=≥a ,不等式成立. ②假设当k n =时不等式成立,即2+≥k a k ,那么3521)2)(2(1)(1+≥+=+-++≥+-=+k k k k k k a a a k k k .也就是说,当1+=k n 时,2)1(1++≥+k a k 据①和②,对于所有1≥n ,有2n a n ≥+. (ii )由1)(1+-=+n a a a n n n 及(i ),对2≥k ,有1)1(11++-=--k a a a k k k121)121(11+=++-+-≥--k k a k k a……1)1(2122211211-+=++++≥---a a a k k k k Λ于是11211111-⋅+≤+k k a a ,2≥k2131212211121111111111121111=+≤+≤+=+++≤+∑∑∑=-=-=a a a a a nk k nk k nk k。

2002年全国卷高考理科数学试题及标准答案

2002年全国卷高考理科数学试题及标准答案

2002年普通高等学校招生全国统一考试数学试卷(理科)及答案本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分.第I卷1至2页.第II卷3至9页.共150分.考试时间120分钟.第Ⅰ卷(选择题共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.本试卷分第I卷(选择题)和第II 卷(非选择题)两部分.第I卷1至2页.第II 卷3至9页.共150分.考试时间120分钟.(1)圆1)1(22=+-y x 的圆心到直线y x =的距离是 (A)21 (B )23 (C)1 (D )3 (2)复数3)2321(i +的值是 (A )i - (B)i (C )1- (D )1(3)不等式0|)|1)(1(>-+x x 的解集是(A)}10|{<≤x x (B )0|{<x x 且}1-≠x(C )}11|{<<-x x (D )1|{<x x 且}1-≠x(4)在)2,0(π内,使x x cos sin >成立的x 的取值范围是(A ))45,()2,4(ππππ (B)),4(ππ (C))45,4(ππ (D))23,45(),4(ππππ (5)设集合},412|{Z k k x x M ∈+==,},214|{Z k k x x N ∈+==,则 (A)N M = (B )N M ⊂ (C )N M ⊃ (D)∅=N M(6)点)0,1(P 到曲线⎩⎨⎧==ty t x 22(其中参数R t ∈)上的点的最短距离为(A)0 (B)1 (C )2 (D)2(7)一个圆锥和一个半球有公共底面,如果圆锥的体积恰好与半球的体积相等,那么这个圆锥轴截面顶角的余弦值是(A )43 (B )54 (C)53 (D)53- (8)正六棱柱111111F E D C B A ABCDEF -的底面边长为1,侧棱长为2,则这个棱柱侧面对角线D E 1与1BC 所成的角是(A)︒90 (B )︒60 (C)︒45 (D)︒30(9)函数c bx x y ++=2(),0[+∞∈)是单调函数的充要条件是(A )0≥b (B)0≤b (C)0>b (D)0<b(10)函数111--=x y 的图象是(11)从正方体的6个面中选取3个面,其中有2个面不相邻的选法共有(A )8种 (B)12种 (C)16种 (D )20种(12)据2002年3月5日九届人大五次会议《政府工作报告》:“2001年国内生产总值达到95933亿元,比上年增长7.3%”,如果“十•五”期间(2001年-2005年)每年的国内生产总值都按此年增长率增长,那么到“十•五”末我国国内年生产总值约为(A)115000亿元 (B)120000亿元 (C )127000亿元 (D)135000亿元第II 卷(非选择题共90分)二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线.(13)函数x a y =在]1,0[上的最大值与最小值这和为3,则a =(14)椭圆5522=+ky x 的一个焦点是)2,0(,那么=k(15)72)2)(1(-+x x 展开式中3x 的系数是。

2002年全国卷高考理科数学试题与答案

2002年全国卷高考理科数学试题与答案

2002 年普通高等学校招生全国统一考试数学试卷(理科)及答案本试卷分第 I 卷 (选择题 )和第 II 卷 (非选择题 ) 两部分.第 I 卷 1至2页.第 II 卷 3至 9页.共 150分.考试时间 120分钟.第Ⅰ卷 (选择题共60 分 )一、选择题:本大题共 12 小题,每小题5 分,共 60 分.在每小题给出的四个选项中,只有一项是符合题目要求的.本试卷分第 I 卷 (选择题 ) 和第 II卷 (非选择题 )两部分.第 I 卷 1至2页.第 II 卷3 至 9页.共 150 分.考试时间 120 分钟.(1)圆 ( x 1) 2y 21 的圆心到直线 y3x 的距离是3(A )1( B ) 3(C )1(D ) 322(2)复数 (13 i )3 的值是22(A ) i( B ) i (C ) 1(D )1(3)不等式 (1 x)(1 | x |) 0 的解集是(A ) { x | 0 x 1}( B ) { x | x 0 且 x 1}(C ) { x | 1 x 1}( D ) { x | x 1且 x1}(4)在 (0,2 ) 内,使 sin x cosx 成立的 x 的取值范围是(A )( ,2)( ,5)(B ) (, ) (C ) ( ,5)(D )(,)(5,3) 4444 444 2(5)设集合 M { x | xk 1, k Z},N{ x | xk 1,kZ} ,则2442(A )MN(B )MN(C )MN(D )MN(6)点 P(1,0) x t 2 R )上的点的最短距离为到曲线(其中参数 ty2t(A )0(B ) 1(C ) 2(D )2( 7)一个圆锥和一个半球有公共底面,如果圆锥的体积恰好与半球的体积相等,那么这个圆锥轴截面顶角的余弦值是 (A )3(B )4(C )3(D )34555(8)正六棱柱ABCDEF A 1 B 1C 1 D 1E 1 F 1 的底面边长为 1,侧棱长为2 ,则这个棱柱侧面对角线 E 1 D 与 BC 1 所成的角是(A ) 90(B ) 60(C ) 45(D ) 30(9)函数 y x 2bx c ([0, ) )是单调函数的充要条件是(A ) b 0( B ) b 0( C ) b( D ) b 0(10)函数 y11的图象是x 1yyyy1111-1O1O1x-1OxOxx(A)(B)(C)(D)(11)从正方体的 6 个面中选取 3 个面,其中有 2 个面不相邻的选法共有(A )8种(B )12 种(C )16 种 (D )20 种(12)据 2002 年 3 月 5 日九届人大五次会议《政府工作报告》 :“ 2001 年国内生产总值达到95933 亿元,比上年增长 7.3%”,如果“十 ?五”期间( 2001 年- 2005 年)每年的国内生产总值都按此年增长率增长,那么到“十 ?五”末我国国内年生产总值约为 (A ) 115000 亿元 ( B ) 120000 亿元 ( C ) 127000 亿元( D ) 135000 亿元第 II 卷(非选择题共 90 分 )二、填空题:本大题共 4 小题,每小题 4 分,共 16 分.把答案填在题中横线.(13 )函数 y a x在 [0,1] 上的最大值与最小值这和为3,则 a =(14 )椭圆 5x 2ky 25 的一个焦点是 (0,2) ,那么 k(15 ) ( x21)( x 2) 7 展开式中 x 3 的系数是(16 )已知 f ( x)x 2,那么 f (1) f (2) f ( 1)f (3) f (1)f (4)f ( 1) =1 x 2234三、解答题:本大题共6 小题,共74 分,解答应写出文字说明、证明过程或演算步骤.(17 )已知 sin 22sin 2 coscos 21,(0, ) ,求 sin、 tg的值2(18 )如图,正方形 ABCD 、 ABEF 的边长都是 1,而且平面 ABCD 、 ABEF 互相垂直 点M 在 AC 上 移 动 , 点 N 在 BF 上 移 动 , 若 CM BN aC( 0a 2 )(1)求 MN 的长;DP(2) a 为何值时, MN 的长最小;MBQ(3)当 MN 的长最小时,求面 MNA 与面 MNB 所成二面角的E大小N(19)设点 P 到点 ( 1,0) 、 (1,0) 距离之差为 2m ,到 x 、 y 轴的A F距离之比为 2,求 m 的取值范围(20)某城市 2001 年末汽车保有量为 30 万辆,预计此后每年报废上一年末汽车保有量的6%,并且每年新增汽车数量相同为保护城市环境,要求该城市汽车保有量不超过60 万辆,那么每年新增汽车数量不应超过多少辆?(21)设 a 为实数,函数 f (x)x 2| x a | 1 , xR(1)讨论 f (x) 的奇偶性;(2)求 f ( x) 的最小值(22)设数列 {a n } 满足: aa2na1 , n 1,2,3,n 1 nn(I )当 a 1 2 时,求 a 2 , a 3 , a 4 并由此猜测 a n 的一个通项公式;(II )当 a 1 3 时,证明对所的 n 1 ,有(i ) a nn 2(ii )11 11 11 a 11 a2 1 a 31 a n2参考答案 一、选择题题号1 2 3 4 5 6 7 8 9 10 11 12 答案ACDCBBCBABBC二、填空题 (13) 2(14)1(15) 1008(16)72三、解答题(17)解:由 sin 2 2sin 2 coscos2 1,得 4 sin 2 cos 2 2sin cos 22cos 22 cos 2 (2 sin 2 sin 1) 02 cos 2 (2 sin1)(sin1)∵(0, )2∴ sin 1 0 , cos 2∴ 2sin10 ,即 sin1 2∴6∴ tg33(18)解( I )作 MP ∥ AB 交BC 于点 P ,NQ ∥ AB 交BE 于点 Q ,连结 PQ ,依题意可得 MP ∥NQ ,且 MP NQ ,即 MNQP 是平行四边形∴ MN PQ由已知 CM BN a , CB ABBE1∴ ACBF2 , CP BQ2 a2MNPQ(1 CP)2 BQ 2 (1a )2 (a)222(a2 ) 2 1 ( 0 a2)2 2(II )由( I )MN(a 2 )2122所以,当 a22时, MN22即当M、N分别为 AC、 BF 的中点时, MN 的长最小,最小值为2 2(III )取MN的中点G,连结AG、BG,∵ AM AN,BM BN,G为MN的中点∴ AG MN,BG MN ,即AGB即为二面角的平面角又AG BG 6,所以,由余弦定理有4( 6 )2(6 )21cos441663244故所求二面角为arccos13(19)解:设点P的坐标为( x, y),依题设得| y |2 ,即 y 2 x ,x 0| x |因此,点 P( x, y) 、 M (1,0) 、 N (1,0) 三点不共线,得||PM ||PN || |MN |2∵||PM ||PN|| 2 | m | 0∴0 | m | 1因此,点 P 在以 M 、N为焦点,实轴长为 2 | m |的双曲线上,故x2y21m21m2将 y2x 代入x2y 21,并解得m 2 1 m22m 2 (2 )2x1 m,因 1 m1 5m2所以 1 5 m 2解得 0 | m |55即 m 的取值范围为 (5,0)(0, 5 )55(20)解:设 2001 年末汽车保有量为 b 1 万辆, 以后各年末汽车保有量依次为 b 2 万辆, b 3 万辆,⋯,每年新增汽车x 万辆,则b 1 30 , b 2 b 1 0.94 x对于 n 1 ,有bn 1b n 0.94 xb n 1 0.942 (1 0.94)x所以 b n1b10.94 n x (1 0.94 0.942b 1 0.94 n 1 0.94 n x0.06 x(30x ) 0.94 n0.060.06当 30x 0 ,即 x 1.8 时0.06b n 1bnb 130当 30x0 ,即 x1.8时0.06x数列 { b n } 逐项增加,可以任意靠近0.06xxlim b nlim [ (30) 0.94n 1]nn0.060.0660 万辆,即因此,如果要求汽车保有量不超过0.94 n )x0.06b n 60 ( n 1,2,3, )则 x60 ,即 x 3.6 万辆0.06综上,每年新增汽车不应超过3.6 万辆(21)解:( I )当 a0 时,函数 f ( x) ( x) 2 | x | 1f ( x)此时, f (x) 为偶函数当 a 0 时, f (a)a 2 1, f ( a)a 22 | a |1,f (a) f ( a) , f (a)f ( a)此时 f (x) 既不是奇函数,也不是偶函数(II )(i )当 x a 时, f ( x) x 2x a 1 ( x1 )2 a 3124当 af (x) 在 (, a] 上单调递减,从而函数f ( x) 在 ( , a] 上的最小值为,则函数2f ( a) a 21.若 a1 ,则函数 f (x) 在 ( , a] 上的最小值为f (1)22(ii )当 xa 时,函数 f ( x) x 2 x a 1( x 1 )223 a ,且 f ( 1) f ( a) . 4 23a4若 a1 ,则函数 f ( x) 在 ( , a] 上的最小值为 f (1 )3 a ,且 f ( 1) f (a)2 2 4 2若 a1 ,则函数 f (x) 在 [ a,) 上单调递增,从而函数f (x) 在 [ a,) 上的最小值为2f ( a) a 21.综上,当 a1时,函数 f (x) 的最小值为 3a2 411 当a时,函数 f ( x) 的最小值为 a 2 121 2 3当 a 的最小值为a .时,函数 f ( x)42(22)解( I )由 a 12 ,得 a2a 2a1 1 31由 a 2 3 ,得 a 3 a 2 22a 2 1 4 由 a 34 ,得 a 423a 3 1 5a 3由此猜想 a n 的一个通项公式: a nn1 ( n 1)(II )(i )用数学归纳法证明:①当 n1时, a 1 3 1 2 ,不等式成立.②假设当 nk 时不等式成立,即 a kk2 ,那么a k 1 a k (a kk) 1 (k 2)( k 2 k ) 1 2k 5 k 3 . 也就是说,当 n k 1时, a k 1 (k 1) 2据①和②,对于所有n 1,有 a nn 2 .(ii )由 a n 1 a n ( a n n) 1及( i ),对 k 2 ,有a kak 1(ak 1k 1) 1a k 1 (k 1 2 k 1) 1 2a k 1 1⋯⋯ak2k 1 a2k 22 1 2k 1( a 1) 111于是11 1 , k 21 a k 1 a 1 2k 1n11 1n1 1 n1 2 2 1k 11 a k1 a 11 a 1 k2 2 k 1 1 a 1 k 1 2k 11 a 11 3 2。

2002年高考数学试卷

2002年高考数学试卷

2002年高考数学试题(文史类答案)一.选择题:本大题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

DCDBC BBCDA DB二.填空题:本大题共4小题,每小题4分,共16分。

把答案填在题中横线上。

(13)1995 2000;(14))0,0(,)1,1(;(15)1008;(16)○2,○5。

三.解答题:本大题共6小题,共74分。

解答应写出文字说明,证明过程或演算步骤。

(17)本小题主要考查正弦函数的基本概念、基本性质等基础知识,考查读图识图能力和基本的运算技能。

满分12分。

解:(Ⅰ)由图示知,这段时间的最大温差是201030=-(C )………2分(Ⅱ)图中从6时到14时的图象是函数b x A y ++=)sin(ϕω的半个周期的图象, ∴614221-=⋅ωπ,解得8πω=………5分 由图示,10)1030(21=-=A 20)1030(21=+=b ………7分 这时20)8sin(10++=ϕπx y将6=x ,10=y 代入上式,可取43πϕ=………10分 综上,所求的解析式为20)438sin(10++=ππx y ,]14,6[∈x 。

………12分 (18)本小题主要考查等差数列求和等知识,以及分析和解决问题的能力。

满分12分。

解:(Ⅰ)设n 分钟后第1次相遇,依题意,有7052)1(2=+-+n n n n ………3分 整理得0140132=-+n n解得7=n ,20-=n (舍去)第1次相遇是在开始运动后7分钟。

………6分(Ⅱ)设n 分钟后第2次相遇,依题意,有70352)1(2⨯=+-+n n n n ………9分 整理得0706132=⨯-+n n解得15=n ,28-=n (舍去)第2次相遇是在开始运动后15分钟。

(19)本小题考查线面关系和二面角的概念,已经空间想象能力和逻辑推理能力。

满分12分。

(Ⅰ)解:∵PB ⊥面ABCD∴BA 是PA 在面ABCD 上的射影又DA ⊥AB ,∴PA ⊥DA∴∠PAB 是面PAD 与面ABCD 所成的二面角的平面角,∠PAB60=………3分而PB 是四棱锥ABCD P -的高,a AB PB 360tan =⋅= ∴锥V 3233331a a a =⋅=………6分(Ⅱ)证明:不论棱锥的高怎样变化,棱锥侧面PAD 与PCD 恒为全等三角形, 作AE ⊥DP ,垂足为E ,连结EC ,则⊿ADE ≌⊿CDE , ∴AE =EC ,∠CED = 90,故∠CEA 是面PAD 与面PCD 所成的二面角的平面角。

2002年江苏高考数学试题及答案(无错版)

2002年江苏高考数学试题及答案(无错版)

O 21 x O 21 xO 21 x O 21 xA B C D PB AC D 2002年普通高等学校招生全国统一考试(江苏卷)数学一、选择题:本大题共12小题,每小题5分,共60分。

(1)函数xx x f cos 2sin )(=的最小正周期是( )。

A.2πB. πC. π2D. π4(2)圆1)1(22=+-y x 的圆心到直线x y 33=的距离是( )。

A.21 B.23C. 1D. 3(3)不等式0|)|1)(1(>-+x x 的解集是( )A. }10|{<≤x xB. }10|{-≠<x x x 且C. }11|{<<-x xD. }11|{-≠<x x x 且 (4)在)2,0(π内,使x x cos sin >成立的x 取值范围为( ) A. )45,()2,4(ππππ⋃ B. ),4(ππC. )45,4(ππ D. )23,45(),4(ππππ⋃(5)设集合},214|{},,412|{Z k kx x N Z k k x x M ∈+==∈+==,则( )A. N M =B. N M ⊂C. N M ⊃D. φ=N M(6)一个圆锥和一个半球有公共底面,如果圆锥的体积恰好与半球的体积相等,那么,这个圆锥轴截面顶角的余弦值是( )。

A.43 B.54C.53D. 53-(7)函数b a x x x f ++=||)(是奇函数的充要条件是( )A.ab=0B. a+b=0C. a=bD. 022=+b a (8)已知10<<<<a y x ,则有( )。

A. 0)(log <xy aB. 1)(log 0<<xy aC. 2)(log 1<<xy aD.2)(log >xy a (9)函数111--=x yA. 在(+∞-,1)内单调递增B. 在(+∞-,1)内单调递减C. 在(+∞,1)内单调递增D. 在(+∞,1)内单调递减(10) 极坐标方程θρcos =与21cos =θρ的图形是( )。

2002年成人高考数学试题及答案(高起点文史类)

2002年成人高考数学试题及答案(高起点文史类)
开开开开发
发发发发网
网网网网

中中中中国
国国国国特级
特级特级特级特级教
教教教教师
师师师师高考
高考高考高考高考复
复复复复习
习习习习方法
方法方法方法方法指
指指指指导
导导导导〈
〈〈〈〈数
数数数数学复
学复学复学复学复习
习习习习版
版版版版〉
〉〉〉〉
1图
图2
(A)
34
(B)
54(C)
53(D)
.
53
(9)已知
0<
x<
y
<
a
<
1,则有
(A)
loga(xy)
<
0(B)
0<
loga(xy)
<
1(C)1<
loga(xy)
<
2(D)
loga(xy)
>
2

中中中中国
国国国国教育
教育教育教育教育开
开开开开发
发发发发网
网网网网
Hale Waihona Puke (A){}10|<≤xx(B){}10|.≠<xxx且(C){}11|<<.xx(D){|<xx(4)函数xay=在]1,0[上的最大值与最小值的和为3,则=a(A)
21(B)2(C)4(D)
41(5)在)2,0(π内,使xxcossin>成立的x取值范围为
(A)..
.
..
.

(详细解析版)2002年普通高等学校招生全国统一考试(旧课程)(数学)文及答案

(详细解析版)2002年普通高等学校招生全国统一考试(旧课程)(数学)文及答案

2002年普通高等学校招生全国统一考试(数学)文及答案本试卷分第I 卷(选择题)和第II 卷(非选择题)两部分.第I 卷1至2页.第II 卷3至9页.共150分.考试时间120分钟.第Ⅰ卷(选择题共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.直线01)1(=+++y x a 与圆0222=-+x y x 相切,则a 的值为 A .1,1- B .2,2- C .1 D .1- 【答案】D【解析】圆的标准方程为22(1)1x y -+=,显然当1a =-时直线为1y =-与圆相切.2.(同理科2)复数3)2321(i +的值是 A .i - B .i C .1- D .1 【答案】C【解析】方法一:332231111()()3())3))12222=+⨯+⨯+=-.方法二:331()(cos sin )cos3sin 3123333i i ππππ+=+=⨯+⨯=-. 【编者注】方法二《新课标》不作要求.3.(同理科3)不等式0|)|1)(1(>-+x x 的解集是 A .}10|{<≤x x B .0|{<x x 且}1-≠x C .}11|{<<-x x D .1|{<x x 且}1-≠x 【答案】D【解析】显然1x ≠±.①若0x ≥,则不等变形式为(1)(1)0x x +->,解得11x -<<,解为01x ≤<;②若0x <且1x ≠-,不等式变形为(1)(1)0x x ++>恒成立,所以不等式0|)|1)(1(>-+x x 的解集是1|{<x x 且}1-≠x .4.(同理科填空13)函数xa y =在]1,0[上的最大值与最小值这和为3,则a = A .21 B .2 C .4 D .41【答案】2【解析】不论函数是增函数还是减函数,都有013a a +=,所以2a =.5.(同理科4)在)2,0(π内,使x x cos sin >成立的x 的取值范围是 A .)45,()2,4(ππππ B .),4(ππ C .)45,4(ππ D .)23,45(),4(ππππ 【答案】C【解析】方法一:结合函数的图象易知C 正确,详解略. 方法二:不等式化为sin cos )04x x x π-=->,则04x ππ≤-≤,于是得544x ππ≤≤.6.(同理科5)设集合11{|,},{|,}2442k k M x x k Z N x x k Z ==+∈==+∈,则 A .N M = B .N M ⊂ C .N M ⊃ D .∅=N M【答案】B【解析】由于212{|,},{|,}44k k M x x k Z N x x k Z ++==∈==∈,21k +可以取所有的奇数,而2k +可以取所有的整数,所以N M ⊂.7.(同理科填空14)椭圆5522=+ky x 的一个焦点是)2,0(,那么=k A .1- B .1 C .5 D .5- 【答案】1【解析】椭圆焦点在y 轴上,标准方程为22151y x k+=,所以514k -=,即1k =. 8.(同理科7)一个圆锥和一个半球有公共底面,如果圆锥的体积恰好与半球的体积相等,那么这个圆锥轴截面顶角的余弦值是A .43 B .54 C .53 D .53- 【答案】C【解析】设圆锥的底面半径和高分别为,r h ,轴截面顶角为θ,由题设可得231233r h r ππ=,得2h r =,则1tan22θ=,所以221tan 32cos 51tan 2θθθ-==-.9.(同新理科9)已知10<<<<a y x ,则有 A .()log 0a xy < B .()0log 1a xy << C .()1log 2a xy << D .()log 2a xy > 【答案】D【解析】由已知得20xy a <<,而函数log a y x =为减函数,则()2log log 2a a xy a >=.10.(同理科9)函数2([0,))y x bx c x =++∈+∞是单调函数的充要条件是 A .0≥b B .0≤b C .0>b D .0<b 【答案】A【解析】函数的对称轴为2b x =-,显然函数2([0,))y x bx c x =++∈+∞是单调函数的充要条件是02b-≤,即0≥b .11.设)4,0(πθ∈,则二次曲线22cot tan 1x y θθ-=的离心率取值范围A .1(0,)2B .)22,21( C .)2,22( D .),2(+∞ 【答案】D【解析】由题设得二次曲线方程为22111cot tan x y θθ-=,即2211,cot tan a b θθ==,所以离心率c a===)4,0(πθ∈,所以22cos 1sin θθ>,则)c a ∈+∞.12.(同理11)从正方体的6个面中选取3个面,其中有2个面不相邻的选法共有 A .8种 B .12种 C .16种 D .20种 【答案】B【解析】使用间接法,首先分析从6个面中选取3个面,共36C 种不同的取法,而其中有2个面相邻,即8个角上3个相邻平面,选法有8种,则选法共有36812C -=种;故选B .第II 卷(非选择题共90分)二、填空题:本大题共4小题,每小题4分,共16分.把答案填在题中横线.13.据新华社2002年3月12日电,1985年到2000年间.我国农村人均居住面积如图所示,其中,从 年到 年的五年间增长最快.【答案】1995;2000【解析】连续3个5年的增长量分别为3.1,3.2,3.7, 显然从1995年到2000年的五年间增长最快.14.(同新理科13)函数xxy +=12(),1(+∞-∈x )图象与其反函数图象的交点为 . 【答案】(0,0),(1,1)【解析】原函数与他的反函数的图象关于y x =对称,原函数与他的反函数如果有交点,那么交点一定在y x =上,联立方程21x y x=+与y x =解得交点坐标为(0,0),(1,1),注意到()1,x ∈-+∞,均符合条件.15.(同理科15)72)2)(1(-+x x 展开式中3x 的系数是 . 【答案】1008【解析】3x 的系数是164477(2)(2)1008C C -+-=.16.对于顶点在原点的抛物线,给出下列条件: ①焦点在y 轴上; ②焦点在x 轴上;③抛物线上横坐标为1的点到焦点的距离等于6;④抛物线的通径的长为5;⑤由原点向过焦点的某条直线作垂线,垂足坐标为)1,2(.能使这抛物线方程为x y 102=的条件是第 .(要求填写合适条件的序号) 【答案】②⑤【解析】抛物线方程为x y 102=的焦点在x 轴上;抛物线的焦点坐标为5(,0)2,则由抛物线的定义可知横坐标为1的点到焦点的距离等于57122+=;抛物线的通径的长为10;⑤中两直线斜率满足关系11015222-⨯=--.故②⑤符合题设.三、解答题:本大题共6小题,共74分,解答应写出文字说明、证明过程或演算步骤. 17.(本小题12分)如图,某地一天从6时至14时的温度变化曲线近似满足函数b x A y ++=)sin(ϕω (Ⅰ)求这段时间的最大温差;(Ⅱ)写出这段时间的函数解析式. 【解】(Ⅰ)由图示,这段时间的最大温差是301020C -=︒.(Ⅱ)图中从6时到14时的图象是函数b x A y ++=)sin(ϕω的半个周期的图象.∴614221-=⋅ωπ,解得8πω=. 由图示,11(3010)10,(1030)2022A b =-==+=.这时,20)8sin(10++=ϕπx y .将10,6==y x 代入上式,可取43πϕ=. 综上,所求的解析式为310sin()20([6,14])84y x x ππ=++∈.18.(本小题12分)甲、乙物体分别从相距70米的两处同时相向运动.甲第1分钟走2米,以后每分钟比前1分钟多走1米,乙每分钟走5米.(Ⅰ)甲、乙开始运动后几分钟相遇?(Ⅱ)如果甲、乙到达对方起点后立即折返,甲继续每分钟比前1分钟多走1米,乙继续每分钟走5米,那么开始运动几分钟后第二相遇?【解】(Ⅰ)设n 分钟后第1次相遇,依题意,有7052)1(2=+-+n n n n , 整理得0140132=-+n n ,解得7,20n n ==-(舍). 第一次相遇是在开始后7分钟.(Ⅱ)设n 分钟后第2次相遇,依题意,有70352)1(2⨯=+-+n n n n , 整理得0420132=-+n n ,解得15,28n n ==-(舍). 第二次相遇是在开始后15分钟. 19.(同广东19)(本小题12分)四棱锥P ABCD -的底面是边长为a 的正方形,PB ⊥面ABCD . (Ⅰ)若面PAD 与面ABCD 所成的二面角为 60,求这个四棱锥的体积; (Ⅱ)证明无论四棱锥的高怎样变化,面PAD 与面PCD 所成的二面角恒大于 90.【解】本小题考查线面关系和二面角的概念,以及空间想象能力和逻辑推理能力,满分12分.(I )因为⊥PB 面ABCD .所以BA 是PA 在面ABCD 上的射影, 又AB DA ⊥,所以DA PA ⊥.∴PAB ∠是面PAD 与面ABCD 所成的二面角的平面角,∴ 60=∠PAB . 而PB 是四棱锥ABCD P -的高,tan 603PB AB a ==.3233331a a a V =⨯⨯=∴锥. (II )证:不论棱锥的高怎样变化,棱锥侧面PAD 与PCD 恒为全等三角形.作DP AE ⊥,垂足为E ,连结EC ,则CDE ADE ∆≅∆,90,=∠=∴CED CE AE .故CEA ∠是面PAD 与面PCD 所成的二面角的平面角. 设AC 与DB 相交于点O ,连结EO ,则AC EO ⊥. a AD AE OA a =<<=∴22. 在AEC ∆中,EC AE OA EC AE AEC ⨯⨯-+=∠2)2(cos 2220)2)(2(2<-+=AEOA AE OA AE . 所以,面PAD 与面PCD 所成的二面角恒大于90度.20.(本小题12分)设函数2()|2|1,f x x x x R =+-+∈. (Ⅰ)讨论)(x f 的奇偶性; (Ⅱ)求)(x f 的最小值.【解】(Ⅰ)3)2(=f ,7)2(=-f ,由于)2()2(f f ≠-,)2()2(f f -≠-, 故)(x f 既不是奇函数,也不是偶函数.(Ⅱ)223, 2,()1, 2.x x x f x x x x ⎧+-≥⎪=⎨-+<⎪⎩由于)(x f 在),2[+∞上的最小值为3)2(=f ,在)2,(-∞内的最小值为43)21(=f . 故函数)(x f 在),(∞-∞内的最小值为43.21.(本小题14分)已知点P 到两定点(1,0),(1,0)M N -距离的比为2,点N 到直线PM 的距离为1,求直线PN 的方程.【解】设P 的坐标为),(y x ,由题意有2||||=PN PM ,即2222)1(2)1(y x y x +-⋅=++,整理得01622=+-+x y x . ①因为点N 到PM 的距离为1,2||=MN .所以30PMN ∠=︒,直线PM 的斜率为33±. 直线PM 的方程为)1(33+±=x y . ② 将②代入①,整理得0142=+-x x .解得32+=x ,32-=x .则点P 坐标为)31,32(++或)31,32(+--,)31,32(--+或(23,13)--.直线PN 的方程为1-=x y 或1+-=x y .22.(同广东21)(本小题满分12分,附加题满分4分)(Ⅰ)给出两块面积相同的正三角形纸片(如图1,图2),要求用其中一块剪拼成一个正三棱锥模型,另一块剪拼成一个正三棱柱模型,使它们的全面积都与原三角形的面积相等,请设计一种剪拼方法,分别用虚线标示在图1、图2中,并作简要说明.(Ⅱ)试比较你剪拼的正三棱锥与正三棱柱的体积的大小. (Ⅲ)(本小题为附加题,如果解答正确,加4分,但全卷总分不超过150分.) 如果给出的是一块任意三角形的纸片(如图3),要求剪拼成一个直三棱柱模型,使它的全面积与给出的三角形的面积相等,请设计一种剪拼方法,用虚线标示在图3中,并作简要说明.【解】本小题主要考查空间想象能力、动手操作能力、探究能力和灵活运用所学知识解决现实问题的能力,满分12分,附加题4分.(I )如图1,沿正三角形三边中点连线折起,可拼得一个正三棱锥.如图2,正三角形三个角上剪出三个相同的四边形,其较长的一组邻边边长为三角形边长的41,有一组对角为直角,余下部分按虚线折起,可成为一个缺上底的正三棱柱,而剪出的三个相同的四边形恰好拼成这个正三棱柱的上底.(II )依上面剪拼的方法,有锥柱V V >.推理如下:设给出正三角形纸片的边长为2,那么,正三棱锥与正三棱柱的底面都是边长为1的正三角形,其面积为43,现在计算它们的高: 2236131(),tan 3032326h h =-⨯===锥柱. 13633()()34964V V h h ∴-=-⨯=-⨯锥柱锥柱024322<-=. 所以锥柱V V >. (III )(附加题,满分4分)如图3,分别连结三角形的内心与各顶点,得到三条线段,再以这三条线段的中点为顶点作三角形,以新作的三角形为直三棱柱的底面,过新三角形的三个顶点向原三角形三边作垂线,沿六条垂线剪下三个四边形,可以拼接成直三棱柱的上底、余下部分按虚线折起,成为一个缺上底的直三棱柱,即可得到直三棱柱模型.注:考生如有其他的剪拼方法,可比照本标准评分.。

2002年高考数学试题(江苏卷)及答案

2002年高考数学试题(江苏卷)及答案

2002年高考数学试题(江苏卷)及答案2002年普通高等学校招生全国统一考试(江苏卷)数学第I 卷(选择题共60分)一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的。

(1)函数xxx f cos 2sin )(=的最小正周期是( )。

A. 2π B. π C. π2 D.π4 (2)圆1)1(22=+-y x 的圆心到直线x y 33=的距离是( )。

A. 21 B. 23 C. 1 D.3(3)不等式0|)|1)(1(>-+x x 的解集是( )A. }10|{<≤x xB. }10|{-≠<x x x 且C. }11|{<<-x xD. }11|{-≠<x x x 且(4)在)2,0(π内,使x x cos sin >成立的x 取值范围为( )A. )45,()2,4(ππππ⋃B. ),4(ππC. )45,4(ππ D.)23,45(),4(ππππ⋃(5)设集合},214|{},,412|{Z k k x x N Z k k x x M ∈+==∈+==,则( ) A. N M = B. N M ⊂ C. N M ⊃ D. φ=N M I(6)一个圆锥和一个半球有公共底面,如果圆锥的体积恰好与半球的体积相等,那么,这个圆锥轴截面顶角的余弦值是( )。

A. 43B. 54C. 53D. 53- (7)函数b a x x x f ++=||)(是奇函数的充要条件是( )A.ab=0B. a+b=0C. a=bD. 022=+b a(8)已知10<<<<a y x ,则有( )。

A. 0)(log <xy aB. 1)(log 0<<xy aC. 2)(log 1<<xy aD.2)(log >xy aO21 x O21xO21 x O21xA (9)函数111--=x y A. 在(+∞-,1)内单调递增 B. 在(+∞-,1)内单调递减C. 在(+∞,1)内单调递增D. 在(+∞,1)内单调递减(10) 极坐标方程θρcos =与21cos =θρ的图形是( )。

2002年高考数学试题

2002年高考数学试题

二、试题特点
1、试题特点
(1) 主要特点是稳中求变,能力考查 仍然是重点,整卷分类讨论的成份比较 多,入门容易,做完全不容易。(2)另一 个特点是突出数学在实际问题中的应用, 鼓励创新。在稳定的结构中追求变化。 在题型结构、题目总数、分值比例上基 本稳定;在过渡期保持必要的文理差异; 在全面考查中突出重点内容。
综合实践活动课作为必修课是新 一轮课程改革的一个亮点
学数学、做数学完全符合当前新课程改革的理念。
这道题的第3小问作为附加题要求将一块任意三角 形的纸片剪拼成一个直三棱柱模型,如果解答正确, 加4分,但全卷不超过150分。 附加分进入总分,这也是以前高考中从未有过的 ,这是对学生创新意识、创新思维和创新能力的一种 奖励,这正是代表了当前素质教育的方向。
(6) 突出归纳探索能力的考查是2002年数学试题的一大 特色。“归纳—探索—发现”是创新思维的一种重要形 式,在今年的高考试题中突出了对归纳、探索能力的考 a1的值,并由此 、a2、a3、a4 查。理科第(22)题,采用求 an 猜想出 一个通项公式的形式,考查归纳、探索、发现 的能力。第(16)题,从题面上是求几个函数值的和, 并没有要求进行归纳猜想,但在解决的过程中会发现 1 1 1 f ( 2), f ( ); f (3), f ( ); f ( 4), f ( ) 之间有可能存在一定的规律,于是猜想 2 3 4 1 f (n) f ( ) 有可能是定值。通过计算的确有 n 1 f ( n) f ( ) 1 猜想正确,为计算铺平了道路。体现了由特殊到一般再 n 一般到特殊的思维过程。文科第(22)题,由第(Ⅰ) 问到第(Ⅲ)问,由剪拼正三角形为正三棱柱到由剪拼 任意三角形为直三棱柱,体现出由特殊到一般的思维过 程,存在着由特殊到一般的思维飞跃,考查的仍然是探 索—猜想—发现的能力。

2002年高考全国卷理科数学试题及答案

2002年高考全国卷理科数学试题及答案

0.06
bn 1 bn
b1
30 奎奎奎奎奎
当 30 x 0 ,即 x 1.8时 0.06
数列{bn
}
逐项增加,可以任意靠近
x 0.06
因nlim此,bn如果nli要m求[0汽.x0车6 保(有30量不0超.x0过6)
0.94 n
1]
60 万辆,即
x 0.06
bn 60 ( n 1,2,3, )
x 则 0.06
2
24
2
(ii)当 x a 时,函数 f (x) x2 x a 1 (x 1 )2 a 3
2
4
若 a 1 ,则函数 f (x) 在 ( , a]上的最小值为 f ( 1 ) 3 a ,且 f ( 1 ) f (a)
2
24
2
若 a 1 ,则函数 f (x) 在[a, ) 上单调递增,从而函数 f (x) 在[a, ) 上的最小值为 2
f (a) a2 1.
综上,当 a
1 时,函数 f (x) 的最小值为 3 a
2
4
当 1 a 1 时,函数 f (x) 的最小值为 a 2 1
2
2
当 a 1 时,函数 f (x) 的最小值为 3 a .
2
4
(22)解(I)由 a1 2 ,得 a2 a12 a1 1 3
由 a2 3 ,得 a a2 2 2a 1 4
(A)0
(B)1
(C) 2
(D)2
(7)一个圆锥和一个半球有公共底面,如果圆锥的体积恰好与半球的体积相等,那么这个
圆锥轴截面顶角的余弦值是
3 (A) 4
(B)
4 5
(C) 3 5
(D) 3 5
(8)正六棱柱 ABCDEF A1B1C1D1E1F1 的底面边长为 1,侧棱长为 2 ,则这个棱柱侧

2002年高考数学试题 .doc

2002年高考数学试题 .doc

2002年高考数学试题(文史类)一.选择题:本大题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

(1)若直线01)1(=+++y x a 与圆0222=-+x y x 相切,则a 的值为(A )1,1-(B )2,2-(C )1(D )1- (2)复数32321⎪⎪⎭⎫ ⎝⎛+i 的值是(A )i -(B )i (C )1-(D )1(3)不等式0|)|1)(1(>-+x x 的解集是(A ){}10|<≤x x (B ){}10|-≠<x x x 且(C ){}11|<<-x x (D ){}11|-≠<x x x 且(4)函数x a y =在]1,0[上的最大值与最小值的和为3,则=a (A )21(B )2(C )4(D )41 (5)在)2,0(π内,使x x cos sin >成立的x 取值范围为(A )⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛45,2,4ππππY (B )⎪⎭⎫ ⎝⎛ππ,4(C )⎪⎭⎫ ⎝⎛45,4ππ(D )⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛23,45,4ππππY (6)设集合⎭⎬⎫⎩⎨⎧∈+==Z k k x x M ,412|,⎭⎬⎫⎩⎨⎧∈+==Z k k x x N ,214|,则 (A )N M =(B )N M ⊂(C )N M ⊃(D )φ=N M I(7)椭圆5522=+ky x 的一个焦点是)2,0(,那么=k(A )1-(B )1(C )5(D )5-(8)一个圆锥和一个半球有公共底面,如果圆锥的体积恰好与半球的体积相等,那么这个圆锥截面顶角的余弦值是(A )43(B )54(C )53(D )53- (9)已知10<<<<a y x ,则有(A )0)(log <xy a (B )1)(log 0<<xy a (C )2)(log 1<<xy a (D )2)(log >xy a(10)函数)),0[(2+∞∈++=x c bx x y 是单调函数的充要条件是(A )0≥b (B )0≤b (C )0<b (D )0>b(11)设⎪⎭⎫ ⎝⎛∈4,0πθ,则二次曲线1tan cot 22=-θθy x 的离心率的取值范围为 (A )⎪⎭⎫ ⎝⎛21,0(B )⎪⎪⎭⎫ ⎝⎛22,21(C )⎪⎪⎭⎫ ⎝⎛2,22(D )),2(+∞ (12)从正方体的6个面中选取3个面,其中有2个面不相邻的选法共有(A )8种(B )12种(C )16种(D )20种二.填空题:本大题共4小题,每小题4分,共16分。

2002年全国卷高考理科数学试题及答案

2002年全国卷高考理科数学试题及答案

(II)当 a1 3 时,证明对所的 n 1,有
(i) an n 2
1
1
1
(ii) 1 a1 1 a2 1 a3
11 1 an 2
参考答案
一、选择题
题号 1
2
3
4
5
6
7
8
9 10 11 12
答案 A C D C B B C B A B B C
二、填空题
(13)2
(14)1
(15)1008
7 (16) 2
( B) ( 4 , )

C)
(4
5 ,4
)
( D)
(4,
)
5 (4
,
3 2
)
(5)设集合 M {x | x k 1 , k Z} , N {x | x k 1 , k Z} ,则
24
42
(A) M N (B) M N
(C) M N
(D) M N
2
(6)点 P(1,0) 到曲线 xy t2t (其中参数t R )上的点的最短距离为
本试卷分第 I 卷(选择题)和第 II 卷(非选择题)两部分.第 I 卷 1 至 2 页.第 II 卷 3 至 9 页.共 150 分.考试时间 120 分钟.
(1)圆 (x 1)2 y 2 1的圆心到直线 y 3 x 的距离是 3
1 (A) 2
3 (B) 2
(C)1
(D) 3
(2)复数
(
1 2
3 i)3 的值是 2
(A)0
(B)1
(C) 2
(D)2
(7)一个圆锥和一个半球有公共底面,如果圆锥的体积恰好与半球的体积相等,那么这个
圆锥轴截面顶角的余弦值是
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2002年全国高考数学第(20)题简析
王晓敏
【期刊名称】《福建中学数学》
【年(卷),期】2003(000)002
【总页数】3页(P27-29)
【作者】王晓敏
【作者单位】福建福州二中
【正文语种】中文
【中图分类】G633.6
【相关文献】
1.立足三基拓展能力--2002年全国高考数学卷简析 [J], 施储
2.改造陈题推陈出新——2016年全国卷Ⅰ理科20题简析 [J], 章金玲
3.思题所解叙己所思——2015年高考数学全国新课标Ⅱ理科第20题的拓展研究[J], 孔德泉
4.2002年高考数学20题的多种解法 [J], 胡喜才
5.2017年高考全国卷Ⅰ理科数学第20题结论的推广及其简证——该题的结论是《高考数学真题解密》定理6-22的特例 [J], 甘志国
因版权原因,仅展示原文概要,查看原文内容请购买。

相关文档
最新文档