有源光器件和无源光器件

合集下载

浅谈光纤通信有源器件与无源器件

浅谈光纤通信有源器件与无源器件

浅谈光纤通信有源器件与无源器件任课教师学院班级姓名学号日期2016年05月18日目录1 引言 (1)2光有源器件 (1)2.1 光有源器件简介 (1)2.2 光纤激光器 (1)2.3光纤放大器 (3)2.4 全光波长变换器 (4)2.5光检测器 (4)3 光无源器件 (5)3.1 光无源器件简介 (5)3.2 光纤活动连接器 (6)3.3 跳线 (6)3.4 转换器 (7)3.5 变换器 (8)3.6光纤活动连接器的表征指标 (9)3.6.1插入损耗 (9)3.6.2回波损耗 (9)3.6.3重复性 (10)3.6.4互换性 (10)3.7光分路器 (10)3.8光衰减器 (12)3.9光隔离器 (14)3.10光开关 (15)3.11波分复用器 (15)3.12光接头盒、光配线箱、光终端盒 (15)结语 (16)参考文献 (16)1引言在光纤通讯行业,光纤系统中所用到的各种器件称为光器件。

而光器件简单来说分为有源光器件与无源光器件两种。

有源光器件也称光有源器件,无源光器件也称光无源器件。

光有源和无源器件都有如下产品:●有源光器件:定义是在光通信系统中能产生或接收光信号的器件。

可以简单的认为有源光器件是需要接上电源才能工作的。

比如:光纤收发器("纤亿通"自主生产),光接收机,光源,光端机,光功率计等。

●无源光器件:定义是在光通信系统中不能产生或接收光信号的器件。

可以简单的认为无源光器件是不需要接上电源就能够工作的。

比如:光纤连接器,光纤适配器,光纤衰减器,光纤终结器,密集波分复用器(DWDM),粗波分复用器(CWDM),光纤耦合器,光开光,光纤准直器,光隔离器,平面波导光分路器(PLCS)等等。

2光有源器件2.1光有源器件简介光有源器件是光纤通信重要的核心器件之一,受到人们普遍的重视和关注。

目前光纤通信领域应用的光有源器件主要有光源(量子阱激光器(QWLD),垂直腔面发射激光器(VCSEI.),量子点激光器(QDI,D)、多波长激光器等),光探测器(光电子二极管(PD)、雪崩光电二极管(APD)等),光调制器(妮酸锉(LiNb03)调制器等。

有源器件和无源器件怎样区别?

有源器件和无源器件怎样区别?

有源器件和无源器件怎样区别?
在新手刚开始了解电子相关的知识时,经常会看到有源器件和无源器件两个概念,如果没有与之相关的基础,可能不知道两者到底是什么意思,今天小编就来详细为大家讲解一下两者具体的意思。

无源器件与有源器件的区别
1、什么是有源器件?
有源器件,需电源来实现其特定功能的电子元件。

主要包括电子管、晶体管、集成电路等。

一般用于信号的放大、转换等。

2、什么是无源器件?
无源器件主要包括电阻,电容,电感,转换器,渐变器,匹配网络,谐振器,滤波器,混频器和开关等。

在不需要外加电源的条件下,就可以显示其特性的电子元件。

有源器件和无源器件怎样区别?
看完上面的解释,估计很多新手还是一头雾水,到底两者有什么区别呢?其实说的再直白一些,需要电源才能显示其特性的就是有源元件,如三极管。

而不用电源就能显示其特性的就叫无源元件。

如果还是分不清,下面就是常用的无源器件和有源器件:
常用的无源器件:电阻器、电阻排、电容器、电感、变压器、继
电器、按键、蜂鸣器、喇叭、开关、连接器、插座、连接电缆、印刷电路板。

常用的有源器件:IC、模块等都是有源器件。

三极管、场效应晶体管、晶闸管、模拟集成电路、数字集成电路器件。

第六章 无源与有源光器件—2

第六章 无源与有源光器件—2

6.2.2
光纤定向耦合器
光纤定向耦合器是作为光纤线路的分路、合路、插入以及节 点互连的一种光耦合器件。在光通信及其他光纤系统中,凡涉及 多个光波信号的分、合及相互耦合时,都需要用到光纤定向耦合 器。本节以光纤传输系统中使用最多的定向耦合元件—四端口X 形定向耦合器为典型进行重点分析,介绍其工作原理、制作方法、 主要性能参数,进而扩展到星形耦合器。 1.X形光纤定向耦合器的工作原理与制作方法 光纤定向耦合器依据工作机理可分为三种类型:部分反射式、 波前分割式和模场耦合式。 模场耦合式光纤定向耦合器的工作机理,是基于光纤倏逝场 耦合的模式理论,即依据光纤中传输模式场分布的相互耦合来 实现光信号的分路与合路。当两光纤的纤芯相距足够近时,两 光纤中传输的模式将通过它们的倏逝场相互耦合,即在一根光 纤中传输的模式场分布会扩展到另一根光纤,使在其中激励起
图6.21
2×2熔锥型光纤定向耦合器结构与分路示意图
在理想情况下,当在端口①输入光功率P1时,在③、④端口 将按设计预定的比例输出光功率P3和P4,而无返回端口②的功率 分量,即P2=0。故为定向耦合器。基于定向耦合器的双向性,当 由其他端口输入时,其特性也将以此类推。由于理想的2×2定向 耦合器可视为一个无源且无插入损耗的器件,它有确定的分光比。 根据耦合波方程,可以求得其功率传输函数由如下矩阵确定
输出端口数目 每个输出端口所占的信号功率比 2 4 5 8 10 15 20 25 50 100 0.5 0.25 0.20 0.125 0.1 0.067 0.05 0.04 0.026.99 9.03 10 11.76 13.01 13.98 16.99 20
表6.2
无附加损耗条件下光耦合器中平均分配信号的损耗规律
2.光耦合器的主要类型 光耦合器的用途很多,制造的器件与材料也各异。根据功能 用途、端口排布规律以及制造的器件与材料、结构特点等,可将 光耦合器大致区分为图6.18所示的主要类型。

光器件基础知识

光器件基础知识

波分复用器/解复用器(也称合波器/分波器)这是一种与 波长有关的耦合器,见图3.28(d)。波分复用器的功能是把多 个不同波长的发射机输出的光信号组合在一起,输入到一根 光纤;解复用器是把一根光纤输出的多个不同波长的光信号, 分配给不同的接收机。
2.
耦合器的结构有许多种类型,其中比较实用和有发展前 途的有光纤型、微器件型和波导型,图3.29~图 3.32示出这 三种类型的有代表性器件的基本结构。
对于实现固定连接的接头,国内外大多借助专用自动熔接 机在现场进行热熔接,也可以用V形槽连接。热熔接的接头平 均损耗达0.05 dB/个。
3.3.2
耦合器的功能是把一个输入的光信号分配给多个输出, 或把多个输入的光信号组合成一个输出。这种器件对光纤线 路的影响主要是附加插入损耗,还有一定的反射和串扰噪声 耦合器大多与波长无关,与波长相关的耦合器专称为波分复 用器/解复用器。
Introduction of optical devices used in Communication system
1.Profile 2.Introduction of basic parameters 3.TOSA,ROSA and BOSA (Active devices) 4. Passive devices
SO P 入射 光
偏振 器
阻塞
法拉 弟 旋转 器
偏振 器 反射 光
图 3.34 隔离器的工作原理
法拉弟旋转器后面跟着的是第二个偏振器, 这个偏振 器的透振方向在45°方向上,因此经过法拉弟旋转器旋转 45°后的光能够顺利地通过第二个偏振器,也就是说光信号 从左到右通过这些器件(即正方向传输)是没有损耗的(插入损 耗除外)。另一方面,假定在右边存在某种反射(比如接头的 反射), 反射光的偏振态也在45°方向上,当反射光通过法 拉弟旋转器时再继续旋转45°,此时就变成了水平偏振光。 水平偏振光不能通过左面偏振器(第一个偏振器), 于是就达 到隔离效果。

光器件基础知识

光器件基础知识

首先介绍一下光偏振(极化)的概念。单模光纤中传输的 光的偏振态(SOP: State of Polarization) 是在垂直于光传输 方向的平面上电场矢量的振动方向。在任何时刻,电场矢量 都可以分解为两个正交分量,这两个正交分量分别称为水平 模和垂直模。
隔离器工作原理如图3.34所示。这里假设入射光只是垂 直偏振光,第一个偏振器的透振方向也在垂直方向, 因此输 入光能够通过第一个偏振器。紧接第一个偏振器的是法拉弟 旋转器,法拉弟旋转器由旋光材料制成,能使光的偏振态旋 转一定角度,例如45°,并且其旋转方向与光传播方向无关。
• 6、波长依存损耗:WDL:Wavelength Dependent
Loss
IL
WDL CH1
10.4
CH2
10.2
CH3
10
CH4
9.8
CH5
9.6 CH6
9.4
1260nm
1360nm
1460nm
1560nm
CH7
W av elen gt h
CH8
• PDL是光器件或系统在所有偏振状态下 的最大传输差值。它是光设备在所有偏 振状态下最大传输和最小传输的比率。
通信用光器件可以分为有源器件和无源器件两种 类型。不依靠外加电源(直流或交流)的存在就能独 立表现出其外特性的器件就是无源器件。否则就称为 有源器件。
有源器件包括光源、光检测器和光放大器,这些 器件是光发射机、 光接收机和光中继器的关键器件, 和光纤一起决定着基本光纤传输系统的水平。
光无源器件主要有连接器、耦合器、波分复用 器、调制器、光开关和隔离器等,这些器件对光纤通 信系统的构成、功能的扩展和性能的提高都是不可缺 少的。
(a) 自 聚 焦透 镜

无源器件和有源器件概念及常见分类技术

无源器件和有源器件概念及常见分类技术

无源器件和有源器件概念及常见分类天缘博客有硬件应用这个栏目,但是很少有硬件知识总结,今天再来一篇,不知道天缘网友有多少做过硬件设计的,当然了硬件里还分数字和模拟,在大公司里还要细分,比如模拟还分高低频、前端后端模块、布板等,数字还分DSP、逻辑CPLD等等,实际上硬件比软件更有意思,对硬件感兴趣的网友可以看看,天缘博客今后一段时间仍会以系统、软件应用为重点,穿插一些硬件基础文章,必要的时候,也会跟网友一同关注硬件设计。天缘之前写过一篇关于dB知识的文章《dB、dBm、dBc、dBi、dBd 单位的区别与比较》,本文似乎算是第二篇纯硬件类,从整体上介绍一下硬件器件的常见分类:有源和无源知识。一、无源器件和有源器件概念无源器件(Passive Device)是指工作时不需要外部能量源(Source Energy)的器件。有源器件(Active Device)则是指工作时需要外部能量源(Source Energy)的器件,该器件有个输出,并且是输入信号的一个函数。备注:1、有源器件和无源器件都是翻译名称,实际上从英文名称更好理解,Active表示活跃、主动、可变之意,而Passive器件则有被动、消极等意思。2、以上说的能量源并不只是指电源,也可能指光、波等,都是天缘根据自己理解下的定义,跟网上的一些说法可能有所出入。二、常见有源器件分立器件:LED二极管(LED)、三极管(Transistor)、场效应管(Field Effective Transistor,FET)、可控硅(SCR)等。模拟集成电路:模拟乘法器(Analog multiplier)、模拟除法器(Analog divider)、模拟开关(Analog Switches)、比较器(Comparator)、控制电源(Controlled Power)、指数放大器(Index Amplifier)、集成运放(Integrated Operational Amplifier)、对数放大器(Logarithmic Amplifier)、稳压器(Regulators)、功率放大器(Power Amplifier,PA)、锁相环(Phase Lock Loop,PLL)、发射器(Transmitter)、波形发生器(Waveform Generator)等。数字集成电路:编码器(Encoder)、比较器(Comparator)、计数器(Counter)、译码器(Decoder)、驱动器(Driver)、逻辑门(Logic Gate)、触发器(Trigger)、寄存器(Register)、可编程逻辑器件(PLD)、单片机(Single-Chip Microcomputer ,SCM)、DSP(Digital Signal Processor,DSP)等。三、常见无源器件电路器件:蜂鸣器(Buzzer)、电容(Capacitor)、理想二极管(Diode)、电阻器(Resistor)、电感(Inductor)、按键(Key)、无源滤波器(Passive Filter)、排阻(Resistor Arrays)、继电器(Relay)、变压器(Transformer)、扬声器(Speaker)、开关(Switch)等。连接器件:连接器(Connector)、电线电缆(Wire)、光纤(Optical Fiber)、印刷电路板(PCB)、插座(Socket)等。四、补充微波类有源和无源器件微波有源器件有:低噪放、移相器、混频器、倍频器、有源滤波器等。微波无源器件有:隔离器、双工器、环行器、耦合器、滤波器、避雷器、功分器、合路器、功率负载等。——由于职业、专业关系,光器件类除了普通的收发模块和单多模光纤、传输距离等几个概念,其它的暂时了解不多,如幸遇到光学专业的网友欢迎赐教。。

09无源光器件

09无源光器件
m π 2 2nL m 2 π 2 KL 2
q q 2π2n

2
15
第9章 无源光器件

9.2 平面波导光栅
图9.4 集成光路中使用的无源光栅器件
16
第9章 无源光器件

9.2 平面波导光栅
布拉格光纤光栅(FBG)/反射式光栅:短周期,小于1m。反射 带宽窄,布拉格波长与温度、应力呈线性关系,用作传感器。
闪耀光纤光栅(BFBG):光栅矢量与光纤轴有夹角,引起反射导 波模式,基模包层,用于光纤放大器的增益平坦器。 啁啾光纤光栅(CFG):周期沿轴单调变化,可形成宽反射带
长周期光纤光栅(LPFG)/透射光栅:周期几十至几百m,芯内 导模耦合到包层,微弯传感器、折射率传感器、模式转换器
=2 / q /2

2
净能流
2 P ( z ) P ( z ) c0
K 2 / 4 q2
2 ch2 ( L) q 2 sh2 ( L)
净能流与z无关,光传输时各处净能流不变。
P+ P- P
O
L
z
图9.2 光纤光栅中的能流变化
11
第9章 无源光器件
K 2 / 4 q2
z
z
)e
iqz
z [0 ~ L]:
c (0) c0
c ( L) 0
c0 ( iq )e L A1 ch( L) iq sh( L) 2 c0 iKe L B1 ch( L) iq sh( L) 4
4
第9章 无源光器件

9.1 光纤光栅

图9.1 光纤光栅
光纤光栅的折射率分布:

光无源器件概述

光无源器件概述
光器件是具有上述一种功能的元器件的总称。
类型:无源、有源
无源器件主要包括:光连接器、光衰减器、光耦合器、光 波分复用/解复用器、隔离器、环行器、滤波器、光调制器、 光开光等。
有源器件主要包括:激光器、光探测器、光放大器等。
3
光纤无源器件技术
4
无源器件功能
光无源器件是一种能量消耗型器件,主要功能是对信号或能 量进行连接、合成、分叉、转换以及有目的的衰减等,在光纤通 信系统以及各类光纤传感系统中是必不可少的重要器件。
光纤无源及有源器件 技术及应用
1
主要内容:
光纤无源器件技术
光纤光栅、滤波器、调制器等
光纤放大器技术
掺铒光纤放大器、拉曼放大器等
光纤激光器技术
多波长光纤激光器、锁模光纤激光器、单频 光纤激光器等
2
光器件
用途:
实现光信号的连接、能量分路/合路、波长复用/解复用、光路 转换、能量衰减、方向阻隔、光-电-光转换、光信号放大、光信号 调制等功能,是构成光纤通信系统的必备元件。
光波分复用器和解复用器是WDM光纤通信系统中 的关键部件。
25
熔锥光纤型波分复用器结构和特性
P P1
P2
0
1 2
26
1 2 3
1+ 2+ 3
光纤
透镜
光栅
衍射光栅型波分复用器结构示意图
27
光纤
1 2 3
1+ 2+ 3
棒透镜 光栅
采用棒透镜的光栅型WDM
28
光波导
开角
(a)
波导型波分解复用器
1.3 mm
19
光纤耦合器的技术参数
(6) 工作波长范围

光有源器件和无源器件区别小结版

光有源器件和无源器件区别小结版

光器件:分为有源器件和无源器件,简单地讲就是需能(电)源的器件叫有源器件Active Device,无需能(电)源的器件就是无源器件Passive Device。

有源器件一般用来信号放大、变换等,无源器件用来进行信号传输,或者通过方向性进行“信号放大”。

容、阻、感都是无源器件,IC、模块等都是有源器件。

(通俗的说就是需要电源才能显示其特性的就是有源元件,如三极管。

而不用电源就能显示其特性的就叫无源元件)无源器件的定义如果电子元器件工作时,其内部没有任何形式的电源,则这种器件叫做无源器件。

从电路性质上看,无源器件有两个基本特点:(1)自身或消耗电能,或把电能转变为不同形式的其他能量。

(2)只需输入信号,不需要外加电源就能正常工作。

有源器件的定义如果电子元器件工作时,其内部有电源存在,则这种器件叫做有源器件。

从电路性质上看,有源器件有两个基本特点:(1)自身也消耗电能。

(2)除了输入信号外,还必须要有外加电源才可以正常工作。

光有源器件是光通信系统中需要外加能源驱动工作的可以将电信号转换成光信号或将光信号转换成电信号的光电子器件,是光传输系统的心脏。

光纤放大器成为光有源器件的新秀,当前大量应用的是掺铒光纤放大器(EDFA),正在研究并很有应用前景的是拉曼光放大器。

无源器件:电路器件:蜂鸣器(Buzzer)、电容(Capacitor)、理想二极管(Diode)、电阻器(Resistor)、电感(Inductor)、按键(Key)、无源滤波器(Passive Filter)、排阻(Resistor Arrays)、继电器(Relay)、变压器(Transformer)、扬声器(Speaker)、开关(Switch)等。

连接器件:连接器(Connector)、电线电缆(Wire)、光纤(Optical Fiber)、印刷电路板(PCB)、插座(Socket)等。

有源器件:分立器件:LED二极管(LED)、三极管(Transistor)、场效应管(Field Effective Transistor,FET)、可控硅(SCR)等。

第三章-光无源器件

第三章-光无源器件
变换器(Converter):将某一型号的插头变换成另一 型号插头的器件。
裸光纤转接器(Bare Fiber Adaptor ):将裸光纤与光 源、探测器以及各类光仪表进行连接的器件。
光纤(缆)活动连接器:习惯上是指两个连接器插头加 一个转换器。
活动连接器是实现光纤与光纤之间可拆卸连 接的器件,活动连接器件是光纤通信领域 最基本、应用最广泛的无源器件,用于:
研磨抛光法
熔融拉锥法:将两根(或两根以上)除去涂覆层
的光纤以一定的方式靠拢,在高温加热下熔融, 同时向两侧拉伸,最终在加热区形成双锥体形式 的特殊波导结构。
输入臂 背向散射臂
熔融拉锥法
4直通臂 3耦合臂
下图可用来定性地表示熔融拉锥型光纤耦合器的 工作原理。入射光功率在双锥体结构的耦合区发 生功率再分配,一部分光功率从“直通臂”继续 传输,另一部分则由“耦合臂”传到另一光路。
ST型插头:由AT&T公司开发,采用带键的卡 口式锁紧结构,确保连接时准确对准。
•“Jumper cables” to connect devices and instruments
•“Adapter cables” to connect interfaces using different connector styles
光路 旋转轴
光路 旋转轴
为了减小反射光,衰减片与光轴可以倾 斜放置。
光纤
自 聚 焦 透镜
衰减 器
光衰减器的主要技术要求是: 高的衰减精度
好的衰减重复性
低的原始插损
一.光纤定向耦合器 ——简称光纤耦合器
光纤光耦合器的功能:
把一个输入的光信号功率分配给多个输 出,或把多个输入的光信号功率组合成 一个输出。这种光耦合器与波长无关。

光通信系统中的重要有源光器件和无源光器件有源器件光

光通信系统中的重要有源光器件和无源光器件有源器件光

谐振型和传输型半导体光放大器的光谱特性
半导体光放大器的串音特性
光放大器增益的偏振特性
光放大器增益的偏振特性的消除
2。掺铒光纤光放大器的结构
Signal in λ = 1550 nm
Optical isolator
Er 3+ -doped fiber (10 - 20 m)
Wavelength-selective
couplerຫໍສະໝຸດ SpliceSplice
Optical isolator
Signal out λ = 1550 nm
Pump laser diode λ = 980 nm
Termination
掺铒光纤光放大器的特性
掺铒光纤光放大器的原理
Energy of the Er in the glass fiber
3 + ion
1.54 eV 1.27 eV
E 3
E3
Non-radiative decay
980 nm
Pump
0.80 eV 1550 nm
In
0
E2
1550 nm
Out E1
掺铒光纤光放大器增益谱特性
掺铒光纤结构
两种实际掺铒光纤光放大器结构
光通信系统中的重要 有源光器件和无源光器件
有源器件: 光放大器等
无源器件: 耦合器,波分复用器,滤波器, 隔离器,环行器等
光有源器件:光放大器
光通信系统中的几种光放大器
1。半导体光放大器
谐振型和传输型半导体光放大器
谐振型半导体光放大器
传输型半导体光放大器I
传输型半导体光放大器II
光放大器的增益饱和特性

第3章光无源器件

第3章光无源器件

主要性能指标
插入损耗
指光纤中的光信号通过连接器后,其输出光功率相对输入 光功率的比率的分贝数,其表达式为:
光缆跳线(Jumper Cable):将一根光纤的两头都装上插头, 称为跳线。连接器插头是其特殊情况,即只在光纤一头装有插
头。
跳线可以是
单芯的或多芯的。 光纤
套管
插针 粘结剂
转换器(Adaptor):把光纤插头连接在一起,从而使 光纤接通的器件。转换器俗称插座或法兰盘。
转换器可以连接同型号或不同型号的插头。可以连接一 对或几对或多芯插头。
Optical Fiber Communication technology
光纤通信技术 主讲人: 何兴道: Xd2@ ➢万生鹏: sp_wan@
第三章 光无源器件 (Passive Components)
内容提要 连接性器件 功能性器件
光衰减器 光隔离器与光环行器 光开关 偏振控制器 光调制器
光纤线路与光发射机输出或光接收机输入之间
光纤线路与其他光无源器件之间的连接
光纤与测试仪表之间
光纤固定接头是实现光纤与光纤之间的永久性(固定)连接 ,主要用于光纤线路的构成,通常在工程现场实施。
活动连接器的型号一般由两部分组成: 结构形式/端面形式, 如FC/APC表示连接结构是金属双重螺纹终止形式,端面采用 斜面、球形连接。
FC/SC型活动连接器(用于FC和SC型插头互连)
SC型插头
SC型插头:由日本NTT研制,插针不用螺纹连接,可 以直接插拔。
FC/ST型活动连接器 (用于FC和ST型插头互连)
ST型插头:由AT&T公司开发,采用带键的卡口式锁紧结构, 确保连接时准确对准。
光无源器件按结构形式分:
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
其中L是镜间距, N 是一个整数, n为谐振腔内折射率,λ是光波长。
a)任意波注入时的FP-LD
b)驻波注入时的FP-LD
例如:
如果L= 0.4mm = 400 μm, n=1
而λ= 1300 nm= 1.3 μm
则N = 615
谐振器支持的波长为1300 nm =2 n L/ N,但其
也支持:2L(N ±1), 2L(N ±2),等等波长。这些 谐振器选择的波长叫纵模。当谐振器的长度增 加或减少时,激光器就从一个纵模转向另一个, 被称之为跳模。
第三章 有源光器件和无源光器件
光有源器件
定义:需要外加能源驱动工作的光电子器件 –半导体光源(LD,LED,DFB,QW,SQW,VCSEL) –半导体光探测器(PD,PIN,APD) –光纤激光器(OFL:单波长、多波长) –光放大器(SOA,EDFA) –光波长转换器(XGM,XPM,FWM) –光调制器(EA) –光开关/路由器
N2
E2 E1
e kT
1
N2
N1
k=1.38×10-23J/K
N1
为玻耳兹曼常量
粒子数反转(N2 >N1)是实现激光放大的必要条件。
N2
N1
为了实现粒子数反转,就需要大量电子跃迁到导带, 为此,需要泵浦为跃迁提供能量。 此外,还需要亚稳态能级使激发的电子保持一段时 间,形成粒子数反转。
例如:T ~103 K; kT~1.38×10-20 J ~ 0.086 eV; 在可见光和近红外,Eg=hv=E 2-E 1~1eV;
光波长转换
OADM DWDM 光隔离器 光环行器
光开关
多波长光源
DWDM 光调制器 光隔离器 光耦合器 光波长转换
可调谐滤波
DWDM OXC 光耦合器 光调制解调
光器件的分类
• 光电变换器件 • 光开关与调制器件 • 光放大器件 • 光色散补偿器件 • 光网络器件
光电变换器件
• F-P腔激光二极管(LD) • 分布反馈布拉格激光器(DFB) • 分布布拉格反射激光器(DBR) • 外腔激光器与Q开关激光器 • 发光二极管(LED) • 光纤激光器(OFL) • 垂直腔表面发射激光器(ECSEL)
E2 N2
h
E1 N1
E p h E2 E1
处于高能级的原子自发的辐射一个频率为ν、能量 为E的光子,跃迁到低能级,这一过程称为自发辐 射。是相位、偏振方向不同的非相干光。
3.1.3 .2 受激辐射 (stimulated radiation)
E2 N2 E h E2 E1
h
E1 N1
自发辐射和受激辐射、吸收的区别:
•自发辐射是单向性的; •受激跃迁是双向的; •自发辐射概率与光强无关; •受激跃迁概率正比于光强。
3.1.4 粒子数反转
在热平衡时,各能级的粒子数目服从玻耳兹曼统计分布:
N2 / N1 exp( Eg / kT) exp( h / kT)
即若 E2 > E 1,则两能级上的原子数目之比
光器件与电器件的类比
电线 电阻 二极管 放大器 滤波器 电接插件 开关
光纤 光衰减器 光隔离器 光放大器 光滤波器 光连接器 光开关
调制器
光调制器
三通(多通) 光耦合器
混频器
光波分复用器
频率转换器 光波长转换器
电源
光源
探头
光探测器
集成电路
集成光路
光器件的应用
光放大
DWDM 光色散补偿 光隔离器 光环行器
全同光子
在能量为E的入射光子的激励下,原子从高能级向 低能级跃迁,同时发射一个与入射光子频率、相位、 偏振方向和传播方向都相同的另一个光子,这一过 程称为受激辐射。
3.1.3 .3 受激吸收 (stimulated absorption)
E2 N2
h
E h E2 E1 E1 N1
上述外来光也有可能被低能级吸收,使原子从E1E2。 在入射光子的激励下,原子从低能级向高能级跃迁, 称为受激吸收。
射→同步的。
•形成正反馈的方法:用两个镜面、光栅形成谐振器。 •受激光子快速增加需要导带中有无数受激电子来维持这 个动态过程。因此需要比LED快得多的速度来激活电子, 需要粒子数反转。为了实现粒子数反转,需要在激活区加 大的正向电流。 •为了使激光二极管产生光,增益必须大于损耗。
综上所述,半导体激光器的激射条件为: 粒子数反转 受激辐射 正反馈
分布反馈激光器
Distributed Feedback (DFB) Laser
P peak
单纵模 (SLM)光谱
SMSR
高性能的通信激光器
*价格贵 (难于制造)
λ
*长距离干线 或 DWDM 系统
主要性能指标
*主要用于1550 nm *总输出功率 3 to 50 mw *谱线宽度10 to 100 MHz (0.08 to 0.8 pm) *边模抑制比 (SMSR): > 50 dB *相干长度约为 1 to 100 m *小的 NA (光易于耦合进光纤)
半导体激光器(LD)的特点:
干长度长,输出 NA小 ( 光易于耦 合进光纤)
半导体激光器(LD)的应用:
光纤通信、医学、测量、加工和军事等。
3.2.2 半导体激光器(LD)
FP-LD----法不里-泊罗激光器 DFB-LD—分布反馈激光器 DBR -LD ---分布反射激光器 QW –LD----量子阱激光器
光放大器件
• 掺铒光纤放大(EDFA) • 掺镨光纤放大(PDFA) • 掺钕光纤放大(NDFA) • 分布式光纤放大
– 喇曼光纤放大(SRFA) – 布里渊光纤放大(SBFA) • 半导体光放大(SOA)
系统:Systems 模块:Modules 器件:Devices 元件:Components
N2
E2 E1
e kT
1
e 0.086
105
1
N1
说明基态上粒子数最多。此时 受激辐射概率<受 激吸收概率,不能产生光放大。
eV 1.60221019 J
例题
1、假设一个激光二极管发出的红光的波长λ=650nm,那么单个光 子的能量是多少?
解: Ep =h ν =h•c/λ={[6.6 × 10-34 J • S] ×[3 ×108 m/s]}/650 ×10-9m=3.04 × 10-19 J
*光谱宽度 3 to 20 nm
*Mode spacing 0.7 to 2 nm *高偏振 *相干长度约为 1 to 100 mm *小的 NA ( 光易于耦合进光纤)
λ (nm)
I(mA)
➢FP-LD的结构
FP-LD管芯示意图
➢FP-LD的工作原理
要实现FP-LD激射,必须满足几个基本条件: 要有能实现电子和光场相互作用的物质; 要有注入能量的泵浦源; 要有一个F-P谐振腔; 必须增益大于损耗 要满足振荡条件: λ= 2nL/N。
p-DBR active n-DBR
量子阱激光器
为了提高发射效率,使用特殊制造技术来得到特别薄的激 活区(4nm—20nm),称为量子阱(QW)激光器。
h E2 E1
h =6.6261×10-34 Js
其中E2和E1分别为跃迁前、后的原子能级能量,h为普朗克常 数,ν为电磁辐射的频率。
3.1.2 光子
若原子从E2 → E 1 ,△ E=E2 – E 1 , 这个差△ E将以一个量子的能量形式释放,一个量子的能
量被称为光子(photon)。
一个光子的能量Ep由下面的公式定义
• 多波长光源与波长可调谐激光器
• 光电探测器(PD、PIN、APD)
光调制器件
• 幅度调制
– 机械调制 – 电光调制 – 直接调制 – 电吸收光调制(EA)
• 相位调制 • 偏振调制 • 光电集成芯片(OEIC) • 光子集成芯片(PIC)
光色散补偿器件
• 色散控制
– 色散位移单模光纤 – 非零色散位移单模光纤 – 大有效截面单模光纤 – 色散平坦单模光纤
为了减少线宽,需要激光管只发射一个纵模。分布反馈激 光器实现这个功能。 其在激活区附近的异质结中合并了光栅,其工作原理与镜
子类似,但他仅选择反射波长为λB 的光。
2∧ neff= λB
“反馈”是指;使受激光子返回活性介质; “分布”是指;反射并不仅仅发生在一个点上。 二十世纪六十年代提出,二十世纪八十年代商品化。 改进方案:DBR
第三章 有源光器件和 无源光器件
3.1 激光原理的基础知识 3.2 半导体光源 3.3 光电探测器 3.4 无源光器件
3.1 激光的基础知识
3.1.1 玻尔的能级假说 3.1.2 光子 3.1.3 自发辐射 受激辐射和受激吸收 3.1.4 粒子数反转
3.1.1 玻尔的能级假说
能量最低的原子能级称为基态能级,其它 能量较高的原子能级称为激发态能级。
a) 分布反馈激光器
b) 分布反馈工作原理
c) 实际单模辐射
分布布拉格反射 (DBR) 镜
*交替的半导体材料层 *40到60层,每层厚度 / 4 *光束的匹配与光纤更接近
主要性能指标
*波长范围780 to 980 nm (gigabit ethernet) *谱线宽度 <1nm *输出功率 >-10 dBm *相干长度10 cm to10 m *NA 0.2 to 0.3
Ep =hν( 3.1.3-1 )
h是普朗克常数(h=6.626 ×10-34 J • S),而ν是光子的频率。
原子从高能级→低能级,对应于光子的辐射;原子从低能级 →高能级,对应于光子的吸收。
3.1.3 自发辐射 受激辐射和受激吸收
3.1.4 .1 自发辐射(spontaneous radiation)
相关文档
最新文档