弦振动实验中驻波波长的测量方法
弦驻波实验报告
弦驻波实验报告引言:弦驻波实验是物理学实验中常见的一种实验方法,通过在一根绷紧的弦上制造驻波,可以研究波动的性质和特征。
本次实验旨在通过调整绷紧弦上的振动频率,观察弦上产生的驻波现象,并探究驻波的特性及其与频率的关系。
实验准备:在进行实验之前,我们准备了一根长且绷紧的弦、一个电子频率计和一个振动源。
首先,我们用钳子夹住一端的弦并将其固定,然后调整另一端的张力,使弦保持绷紧状态。
接下来,我们将电子频率计连接到振动源,以便能够准确地测量频率。
实验准备工作完成后,我们可以开始实验。
实验步骤:1. 调整振动源频率:我们首先将振动源的频率调整到一个较低的值,然后慢慢增加频率,直到产生明显的高频振动。
2. 创建第一个驻波:当振动源频率达到一定值时,我们可以观察到弦上形成了第一个驻波。
驻波由节点和腹部组成,我们可以清楚地看到弦上产生了一系列等间距的节点和腹部。
同时,我们使用电子频率计测量并记录下当前振动源的频率。
3. 增加频率并观察:为了进一步研究驻波的特性,我们逐渐增加振动源的频率,并观察到随着频率的增加,弦上形成的驻波数量也随之增加。
同时,我们不断记录振动源频率和驻波的数量。
4. 记录驻波节点位置:在观察到明显的驻波现象后,我们使用尺子逐个测量并记录下每个驻波节点的位置。
通过这些数据,我们可以计算出弦上每个节点之间的距离,并进一步研究驻波的波长和频率之间的关系。
5. 分析实验数据:将实验数据整理并制作成图表,我们可以清晰地看到频率与驻波数量、波长和速度之间的关系。
通过这些数据的分析,我们可以进一步理解驻波现象的本质以及频率对驻波特性的影响。
实验结果:通过本次实验,我们观察到了弦上形成的驻波现象,并记录了频率、驻波数量以及驻波节点的位置。
通过实验数据的分析,我们发现频率与驻波数量呈现正相关关系,即频率越高,驻波的数量也越多。
此外,我们还观察到驻波节点之间的距离与频率呈反比关系,即频率越高,驻波节点之间的距离越小。
大学物理实验讲义~弦振动和驻波研究方案
⼤学物理实验讲义~弦振动和驻波研究⽅案弦振动与驻波研究【实验⽬的】1.观察在弦上形成的驻波;2.确定弦线振动时驻波波长与张⼒的关系; 3.学习对数作图和最⼩⼆乘法进⾏数据处理。
【实验原理】在⼀根拉紧的弦线上,其中张⼒为T ,线密度为µ,则沿弦线传播的横波应满⾜下述运动⽅程:2222xyT t y ??=??µ (1) 式中x 为波在传播⽅向(与弦线平⾏)的位置坐标,y 为振动位移。
将(1)式与典型的波动⽅程 22222x y V t y ??=?? 相⽐较,即可得到波的传播速度: µTV =若波源的振动频率为f ,横波波长为λ,由于波速λf V =,故波长与张⼒及线密度之间的关系为:µλTf1=(2)为了⽤实验证明公式(2)成⽴,将该式两边取对数,得:11lg lg lg lg 22T f λµ=-- (3)固定频率f 及线密度µ,⽽改变张⼒T ,并测出各相应波长λ,作lg λ-lg T 图,若得⼀直线,计算其斜率值(如为21),则证明了λ∝21T的关系成⽴。
弦线上的波长可利⽤驻波原理测量。
当两个振幅和频率相同的相⼲波在同⼀直线上相向传播时,其所叠加⽽成的波称为驻波,⼀维驻波是波⼲涉中的⼀种特殊情形。
在弦线上出现许多静⽌点,称为驻波的波节。
相邻两波节间的距离为半个波长。
【实验仪器】1、可调频率数显机械振动源;2、振动簧⽚;3、弦线(铜丝);4、可动⼑⽚⽀架;5、可动⼑⼝⽀架;6、标尺;7、固定滑轮;8、砝码与砝码盘;9、变压器;10、实验平台;11、实验桌图1 实验装置⽰意图图2 可调频率数显机械振动源⾯板图(1、电源开关 2、频率调节 3、复位键 4、幅度调节 5、频率指⽰)实验装置如图1所⽰,⾦属弦线的⼀端系在能作⽔平⽅向振动的可调频率数显机械振动源的振簧⽚上,频率变化范围从0-200Hz 连续可调,频率最⼩变化量为0.01Hz ,弦线⼀端通过定滑轮⑦悬挂⼀砝码盘⑧;在振动装置(振动簧⽚)的附近有可动⼑⽚⽀架④,在实验装置上还有⼀个可沿弦线⽅向左右移动并撑住弦线的可动⼑⼝⑤。
弦振动与驻波实验报告
弦振动与驻波实验报告弦振动与驻波实验报告引言:弦振动与驻波是物理学中重要的研究领域,对于理解波动现象和振动特性有着重要的作用。
本次实验旨在通过实验观测和数据分析,探究弦振动和驻波的基本特性,并验证实验结果与理论预期的一致性。
实验装置:实验装置主要由一根细长的弦、固定装置和振动源组成。
弦通过固定装置固定在两端,振动源通过机械手柄产生横向振动,使弦发生振动。
实验过程:1. 调整弦的张力:首先,我们根据实验要求调整弦的张力,使其保持稳定。
通过调节固定装置上的螺钉,可以改变弦的张力,从而影响弦的振动频率和振幅。
2. 观察弦的振动模式:接下来,我们将振动源固定在弦的一个端点,并通过机械手柄产生横向振动。
我们观察到弦在振动过程中形成了不同的振动模式。
当振动源产生的频率与弦的固有频率相等时,弦会形成稳定的驻波。
3. 测量驻波的节点和腹点:我们使用尺子测量弦上的驻波节点和腹点的位置。
节点是弦上振动幅度为零的点,而腹点则是振动幅度最大的点。
通过测量节点和腹点的位置,我们可以计算出弦的波长和振动频率。
4. 计算波长和频率:根据实验测量的数据,我们可以利用以下公式计算弦的波长和频率:波长 = 2 * 节点间距离频率 = 振动源产生的频率实验结果与分析:通过实验观测和数据分析,我们得到了一系列关于弦振动和驻波的结果。
首先,我们发现当振动源产生的频率等于弦的固有频率时,弦会形成稳定的驻波。
这是因为当振动源频率与弦的固有频率一致时,反射波和入射波在弦上形成了干涉,导致驻波的形成。
其次,我们发现驻波的节点和腹点位置与振动源产生的频率有关。
当频率增加时,节点和腹点的位置会发生变化,波长也会相应改变。
这是因为频率的增加导致波长的缩短,从而节点和腹点的位置也会随之改变。
最后,通过计算弦的波长和频率,我们发现实验结果与理论预期相符。
这进一步验证了弦振动和驻波的基本原理和公式的准确性。
结论:通过本次实验,我们深入了解了弦振动和驻波的基本特性,并通过实验结果验证了相关理论。
弦振动与驻波实验报告
弦振动与驻波实验报告弦振动与驻波实验报告引言弦振动是物理学中一个经典的实验课题,通过实验可以观察到弦线在不同条件下的振动模式。
本实验旨在通过对弦线振动的研究,探索驻波现象的产生及其特性。
实验目的1. 理解弦振动的基本原理;2. 掌握测量弦线振动频率的方法;3. 观察驻波现象的形成和特性。
实验器材1. 弦线:长度约为2-3米,材质均匀、柔软的弦线;2. 弦线固定装置:用于固定弦线的两端,保持稳定;3. 驱动装置:用于产生弦线的振动;4. 频率计:用于测量弦线的振动频率;5. 各类测量仪器:尺子、计时器等。
实验步骤1. 将弦线固定在实验装置的两端,保持稳定;2. 调整驱动装置,使其产生合适的振动频率;3. 使用频率计测量弦线的振动频率;4. 观察弦线的振动模式,并记录下来;5. 调整驱动装置的频率,观察驻波现象的形成和特性;6. 测量不同驻波节点位置之间的距离,并计算波长。
实验结果与分析通过实验观察,我们可以看到弦线在不同频率下的振动模式。
当驱动频率与弦线固有频率相同时,弦线上形成了驻波现象。
驻波是指波动传播过程中,波峰和波谷相互叠加形成的现象。
在弦线上形成的驻波由一系列波节和波腹组成,波节为振动幅度最小的位置,波腹为振动幅度最大的位置。
在实验中,我们可以通过调整驱动频率,观察驻波现象的形成和特性。
当驱动频率与弦线固有频率相同时,弦线上形成了一个完整的驻波模式。
当驱动频率与弦线固有频率不匹配时,弦线上不会形成驻波,而是呈现出不规则的振动模式。
通过测量不同驻波节点位置之间的距离,我们可以计算出弦线的波长。
波长是指波动中一个完整波动周期所占据的距离。
根据波动理论,波长与频率之间存在着简单的关系,即波速等于波长乘以频率。
因此,通过测量波长和频率,我们可以计算出波速。
实验结论通过本次实验,我们深入了解了弦振动和驻波现象。
弦振动是一种常见的物理现象,通过调整驱动频率可以观察到不同的振动模式。
驻波现象是波动传播中的一个重要现象,通过波节和波腹的叠加形成。
弦线上的驻波实验实验报告
弦线上的驻波实验实验报告实验目的:本实验的目的是通过弦线上的驻波实验,探究驻波的特性及其与弦线长度、振动频率和弦张力的关系。
同时,通过实验观察驻波现象,进一步理解波动的基本原理。
实验原理:驻波是指两个相同频率、振幅相等且沿相反方向传播的波相遇后在同一空间内定向干涉而形成的波动现象。
在弦线上,当两个反向传播的波相遇时,由于波在相接处的叠加,会产生节点和腹部。
节点是波的振动幅度为零的位置,腹部则是波的振动幅度最大的位置。
驻波的性质与弦线的长度、振动频率和弦张力密切相关。
根据弦线的特性,我们可以通过改变弦线的长度、振动频率和弦张力来观察驻波的变化情况。
实验步骤:1.准备实验装置,将一根细弦拴在平直的固定支架上,并通过转动装置与信号发生器连接。
2.设置信号发生器的频率为初始频率,并调整输出幅度使得弦线振幅合适,避免过大过小。
3.轻轻触碰弦线使其产生波动,并观察弦线上是否出现驻波现象。
如果出现驻波,继续调整信号发生器的频率,观察驻波的变化情况。
4.测量弦线上节点(振幅为零的点)的位置,并记录下来。
5.根据测得的节点位置,计算波长,并进一步计算弦线的线密度。
6.固定弦线一端的支架,并用一物体调整弦线的长度。
重复步骤3-5,记录下不同弦线长度下的节点位置,并计算波长。
7.固定弦线长度不变,调整信号发生器的频率,重复步骤3-5,记录下不同频率下的节点位置,并计算波长。
8.固定弦线长度和频率,逐渐调整弦线的张力,重复步骤3-5,记录下不同张力下的节点位置,并计算波长。
实验结果:在本次驻波实验中,我们通过改变弦线的长度、振动频率和弦张力,观察了驻波的变化情况,并记录了节点的位置,计算了波长。
实验讨论:根据实验结果可以得出以下结论:1.当弦线的长度改变时,驻波的节点位置也会发生相应的改变。
节点的位置与弦线长度成正比,即弦线长度越短,节点位置越靠近振动源。
2.频率的变化也会导致驻波节点位置的变化。
频率越大,节点位置越靠近振动源。
大学物理实验讲义-弦振动与驻波研究
大学物理实验讲义-弦振动与驻波研究弦振动与驻波研究【实验目的】1.观察在弦上形成的驻波;2.确定弦线振动时驻波波长与张力的关系; 3.学习对数作图和最小二乘法进行数据处理。
【实验原理】在一根拉紧的弦线上,其中张力为T ,线密度为μ,则沿弦线传播的横波应满足下述运动方程:2222x yT t y ∂∂=∂∂μ(1)式中x 为波在传播方向(与弦线平行)的位置坐标,y 为振动位移。
将(1)式与典型的波动方程22222x y V t y ∂∂=∂∂相比较,即可得到波的传播速度: μTV =若波源的振动频率为f ,横波波长为λ,由于波速λf V =,故波长与张力及线密度之间的关系为:μλTf1=(2)为了用实验证明公式(2)成立,将该式两边取对数,得:11lg lg lg lg 22T f λμ=-- (3)固定频率f 及线密度μ,而改变张力T ,并测出各相应波长λ,作lg λ-lg T 图,若得一直线,计算其斜率值(如为21),则证明了λ∝21T的关系成立。
弦线上的波长可利用驻波原理测量。
当两个振幅和频率相同的相干波在同一直线上相向传播时,其所叠加而成的波称为驻波,一维驻波是波干涉中的一种特殊情形。
在弦线上出现许多静止点,称为驻波的波节。
相邻两波节间的距离为半个波长。
【实验仪器】1、可调频率数显机械振动源;2、振动簧片;3、弦线(铜丝);4、可动刀片支架;5、可动刀口支架;6、标尺;7、固定滑轮;8、砝码与砝码盘;9、变压器;10、实验平台;11、实验桌9123456781011图1 实验装置示意图图2 可调频率数显机械振动源面板图 (1、电源开关 2、频率调节 3、复位键 4、幅度调节 5、频率指示)实验装置如图1所示,金属弦线的一端系在能作水平方向振动的可调频率数显机械振动弦线上驻波实验仪电 源ON复位 幅度 调节上海复旦天欣科教仪器有限公司频率调节H Z1 2 3 45FD-SWE-II源的振簧片上,频率变化范围从0-200Hz 连续可调,频率最小变化量为0.01Hz ,弦线一端通过定滑轮⑦悬挂一砝码盘⑧;在振动装置(振动簧片)的附近有可动刀片支架④,在实验装置上还有一个可沿弦线方向左右移动并撑住弦线的可动刀口⑤。
弦线上的驻波实验实验报告
弦线上的驻波实验实验报告
弦线上的驻波实验:目的与意义
弦线上的驻波实验是一种特殊的物理实验,旨在让学生们了解驻波现象。
驻波是指一种波在传播过程中,由于遇到了阻碍物体的振动,使得波被反射回来的现象。
在这个实验中,学生们将通过对弦线的拉力与振动,观察到驻波现象及其表现形式。
实验过程:
实验中,我们选取了一根粗细均匀的单丝线,并在其一端固定了一个小挂钟。
随着单丝线的振动,我们逐渐对它施加张力,使其与弦线之间的距离不断变化。
在实验过程中,我们发现当单丝线越接近中性位置,张力对其产生的影响越大。
现象观察:
随着张力的逐渐增加,单丝线上的波节越来越短,而波峰变得越来越长。
当张力达到一定程度时,单丝线上的波节和波峰相互叠加,形成明显的驻波现象。
此时,我们可以清楚地看到到波的振幅逐渐增大,而周期却逐渐减小。
结论分析:
弦线上的驻波实验,让我们深入了解了驻波现象及其产生的影响。
通过这一实验,我们可以更好地理解弦线上的波动,并认识到驻波现象在实际应用中的重要性。
例如,在声学领域,驻波现象被广泛应用于声卡、话筒等设备中,以保证信号的稳定传输。
总之,弦线上的驻波实验是一种非常有意义的物理实验,它不仅可以帮助我们更好地理解弦线上的波动,还可以激发我们对物理学的兴趣。
弦振动与驻波实验报告
弦振动与驻波实验报告弦振动与驻波实验报告引言:弦振动是物理学中一个重要的研究领域,对于理解声波、光波等波动现象有着重要的意义。
驻波现象则是弦振动中一个有趣的现象,它产生于两个同频率、相位相反的波在同一介质中相遇并叠加时。
本实验旨在通过观察弦振动和驻波现象,深入理解波动性质以及相关的物理原理。
实验设备与方法:实验中我们使用了一根细而柔软的弦,将其两端固定在实验台上,并通过一个发声装置产生振动。
我们使用一个频率可调的声波发生器,将声波传导到弦上。
同时,我们在弦上设置了一系列固定的振动节点和腹点,用以观察驻波现象的形成。
实验过程与观察:在实验中,我们首先调整发声装置的频率,使其与弦的固有频率相匹配。
随着频率的逐渐增大,我们观察到弦上出现了一系列驻波现象。
通过细致观察,我们发现弦上形成了一些固定的节点和腹点,它们交替出现,并且节点和腹点之间的距离保持不变。
接下来,我们将实验中的发声装置移动到弦的不同位置,重新调整频率,观察到了不同的驻波现象。
我们发现,当发声装置位于弦的中间位置时,形成的驻波现象最为明显,节点和腹点之间的距离也最大。
而当发声装置位于弦的两端时,驻波现象几乎消失,弦上只表现出简单的振动。
实验结果分析:通过实验观察和测量,我们得出了一些结论。
首先,弦上形成的驻波现象是由两个同频率、相位相反的波在弦上相遇叠加形成的。
这两个波分别由弦的两端发出,形成了一个定态的波动模式。
其次,驻波现象的形成与弦的固有频率以及发声装置的频率密切相关。
只有当这两个频率相等时,才能形成稳定的驻波现象。
进一步分析,我们可以得出结论,驻波现象的形成是因为弦两端的波反射与干涉所致。
当波到达弦的固定端时,发生反射并改变相位,然后与原始波相叠加。
如果两个波的相位相反,它们将相互抵消,形成节点。
而如果两个波的相位相同,它们将相互增强,形成腹点。
这种反射与干涉的过程不断重复,最终形成了稳定的驻波现象。
结论:通过本次实验,我们深入理解了弦振动和驻波现象的物理原理。
弦线上的驻波实验报告
一、实验目的1. 观察在两端被固定的弦线上形成的驻波现象;2. 了解弦线达到共振和形成稳定驻波的条件;3. 测定弦线上横波的传播速度;4. 用实验的方法确定弦线作受迫振动时的共振频率与驻波波长、张力和弦线线密度之间的关系;5. 对实验结果进行数据处理,并给出结论。
二、实验原理1. 横波的波速:在弦线上,横波的波速v与弦线的张力T和线密度μ有关,公式为v = √(T/μ)。
2. 驻波的形成:当两列振幅、频率相同,有固定相位差,传播方向相反的简谐波叠加时,可形成驻波。
对于两端固定的弦,驻波满足条件:λ/2 = L/n,其中λ为驻波波长,L为弦长,n为驻波数目。
3. 共振频率:当弦线受到外部驱动力作用时,若驱动力频率等于弦线的固有频率,则弦线发生共振,形成稳定的驻波。
三、实验仪器1. 弦音计装置一套(包括驱动线圈和探测线圈各一个、1 kg硅码和6根不同线密度的吉他弦)2. 信号(功率函数)发生器3. 数字示波器4. 千分尺5. 米尺四、实验内容与步骤1. 认识和调节仪器:熟悉弦音计装置、信号发生器、数字示波器等仪器的使用方法。
2. 测定弦线的线密度:使用千分尺测量吉他弦的直径,根据公式μ = m/L计算弦线线密度,其中m为弦线质量,L为弦长。
3. 固定外力和弦线长度,测定弦线共振频率和驻波数目的关系:a. 调节信号发生器,使输出频率逐渐增加;b. 观察弦线上的驻波,记录共振频率和对应的驻波数目;c. 改变弦线长度,重复上述步骤。
4. 固定驻波数目和弦线长度,测定弦线振振频率和外力的关系:a. 调节砝码盘上的砝码,改变弦线的张力;b. 观察弦线上的驻波,记录不同张力下的共振频率;c. 改变砝码质量,重复上述步骤。
5. 固定驻波数目和弦线长度,测定弦线共振频率和弦线长度的关系:a. 改变弦线长度;b. 观察弦线上的驻波,记录不同弦线长度下的共振频率;c. 重复上述步骤。
五、实验数据及数据处理1. 记录实验数据,包括弦线长度、张力、驻波数目、共振频率等。
弦驻波实验报告
弦驻波实验报告1. 实验目的本实验旨在通过观察和测量弦上的驻波现象,探究弦驻波的基本原理和特性,并验证驻波的产生与实验条件的关系。
2. 实验原理当一根悬挂固定在两端的弦被固定振动时,会在弦上形成一系列固定的干涉图案,这种干涉现象即为弦的驻波。
驻波是由来自于振动源的波与来自于反射的波相互叠加形成的,产生驻波所需的条件是:波源频率固定、弦两端固定、传播介质均匀。
根据物理学原理,驻波的波节与波腹之间的距离等于波长的一半。
因此,通过测量驻波的节点位置,可以求得驻波的波长,从而计算出波速。
3. 实验器材与装置•弦:一根较长的细弦,例如尼龙绳或钢丝•弦振动源:手摇或电动的震源器•弦固定器:两个固定在桌面上的夹子•倍频器:用于调节弦振动源的频率•比例尺:用于测量驻波的节点位置•电子计数器:用于计数波腹的个数•桌面:用于搭设实验装置的平整表面4. 实验步骤步骤一:搭设实验装置1.将两个夹子固定在桌面上,使得弦的两个端点可以夹在夹子之间。
2.将弦紧绷在两个夹子之间,并确保弦的振动自由,并不会与桌面摩擦。
步骤二:调节振动源的频率1.将振动源固定在弦的一端,并使其振动垂直于弦的方向。
2.调节振动源的频率,使得弦能够产生明显的驻波图案。
3.使用倍频器,可以将驻波的节点位置调整到合适的位置,以便观察和测量。
步骤三:测量节点位置1.使用比例尺,从弦的一端开始,依次测量每个波节的位置,并记录下来。
2.使用电子计数器,记录下波腹的个数。
步骤四:数据分析1.根据测得的节点位置,计算出驻波的波长。
2.根据波腹的个数和驻波的波长,计算出波速。
5. 实验结果与分析根据实验数据,我们计算得到了驻波的波长和波速。
通过测量节点位置并计算波长,我们得到了驻波的波长分布图。
从图中可以看出,驻波的波长不均匀分布,且波长随节点位置的增加而增加。
通过测量波腹的个数和驻波的波长,我们计算得到了驻波的波速。
根据实验数据,我们发现驻波的波速与振动源的频率有关,频率越高,波速越大。
弦上驻波实验报告
弦上驻波实验报告弦上驻波实验报告引言弦上驻波实验是物理学中常见的实验之一,通过在弦上施加不同频率的振动,观察并研究弦上驻波的形成和特性。
本文将详细介绍弦上驻波实验的原理、实验装置、实验步骤以及实验结果的分析和讨论。
一、实验原理弦上驻波是指当一根弦的两端固定时,在弦上产生的一种特殊的波动现象。
当弦的两端施加相同频率的振动时,由于波的叠加效应,形成了驻波。
驻波的特点是波节和波腹交替出现,波节处振幅为零,波腹处振幅较大。
二、实验装置本次实验所用的实验装置包括一根细弦、一个固定的支架和一个频率可调的振动源。
实验中,我们使用了一根细而均匀的弦,将其两端固定在支架上,并通过振动源施加不同频率的振动。
三、实验步骤1. 将弦的一端固定在支架上,确保弦的拉紧度适中。
2. 通过振动源施加不同频率的振动,使弦产生波动。
3. 观察弦上的波动,并记录下波节和波腹的位置。
4. 改变振动源的频率,重复步骤3,直到观察到不同频率下的驻波现象。
四、实验结果分析根据实验所得数据,我们可以绘制出不同频率下的驻波图像。
通过观察图像,我们可以发现以下几个规律:1. 驻波的节点位置与频率呈反比关系。
频率越高,节点位置越靠近弦的两端。
2. 驻波的波腹位置与频率成正比关系。
频率越高,波腹位置越靠近弦的中央。
3. 驻波的振幅在弦的中央最大,在两端逐渐减小。
根据以上规律,我们可以得出结论:驻波的形成与弦的长度和振动频率有关。
频率越高,弦的长度越短,波节位置越靠近两端;频率越低,弦的长度越长,波节位置越靠近中央。
五、实验误差和改进在实验过程中,可能会存在一些误差,例如弦的固定度不够稳定,振动源的频率不够准确等。
为了减小这些误差,可以采取以下改进措施:1. 使用更稳固的支架,确保弦的固定度。
2. 使用更精确的频率可调振动源,提高频率的准确性。
3. 多次重复实验,取平均值,减小误差的影响。
六、实验应用弦上驻波实验是物理学中重要的实验之一,不仅可以帮助我们理解波动现象的基本原理,还可以应用于其他领域。
大物实验报告 弦振动与驻波实验
物理实验报告哈工大物理实验中心班号33006学号1190501917姓名刘福田教师签字实验日期2020.4.19预习成绩学生自评分总成绩(注:为方便登记实验成绩,班号填写后5位,请大家合作。
)实验(三)弦振动和驻波实验一.实验目的1、在弦线张力不变时,用实验确定驻波波长与振动频率的关系;2、在振动源频率不变时,用实验确定驻波波长与张力的关系;3、观察弦振动及驻波的形成。
二.实验原理在一根拉紧的弦线上,张力为T,线密度为μ,则沿弦线传播的横波应满足运动方程其中x:波在传播方向(与弦线平行)的位置坐标;y:振动位移;而典型的波动方程为通过比较(1)、(2),可得到波的传播速度;若波源的振动频率为f,横波波长为λ,则横波沿弦线传播的速度可表示为波长与张力及线密度之间的关系可表示为两边取对数,得到公式波长的测量:驻波方法图像如图所示三.实验主要步骤或操作要点1、在弦线张力不变时,用实验确定驻波波长与振动频率的关系;①将弦线一端固定在鞋盒侧面,线跨过鞋盒沿,另一端下垂并悬挂一水瓶。
实验装置如图3-1图3-1②在保持张力不变的情况下,移动筷子位置,使半波长λ/2分别为10、15、20、25、30c m。
③用牙签波动弦线发出声音,利用P h y p h o x分别测出线的振动频率f2、在振动源频率不变时,用实验确定驻波波长与张力的关系①固定A B之间的距离并测量②利用小量杯等量地增加水瓶中水的体积,即等量地改变弦线的张力T③波动弦线,用软件p h y p h o x测量不同张力下弦线的振动频率f3、验证三分损益法①保持弦线张力不变,先将A B的距离固定,测出此时的频率,并将音调定为基准音D o,算出相应的F a,S o l,L a,高音D o的理论频率。
②移动筷子,缩短A B距离,波动弦线,先粗略听出F a音,再微调距离使得P h y p h o x 测出的频率恰为理论的F a音频率。
测出相应的A B距离。
标记F a位置。
弦线上的驻波实验
弦线上的驻波实验弦线上的驻波实验是一种基本的物理实验,旨在研究弦线中产生的驻波现象。
驻波是指在一定边界条件下,由两个同频率、同振幅的波相遇而产生的几乎不移动的波。
弦线上的驻波实验通过在一条拉紧的弦线上固定一端,另一端通过机械振荡器产生振动,观察弦线产生的驻波现象,并通过实验数据计算弦线的基频和波长等物理量。
一、实验原理实验中使用的弦线是一种能承受瞬时大强度冲击的、具有高弹性和高强度的材料。
实验中先将弦线固定在实验平台上,并通过一台机械振荡器将一定频率的振动传递到弦线上。
由于弦线同一端被固定,另一端产生的振动波将反射回来,在传播的过程中与产生振动的波相遇,在一定的条件下产生驻波现象。
驻波的产生需要满足一些特定的条件。
其中一个重要的条件是产生波的两端固定,这样产生的波会反射回来,与另一组波相遇,从而形成驻波。
由此,实验需要满足弦线的一端固定,另一端振动的条件。
另一个重要的条件是两组波的频率与振幅相同,如果频率或振幅不同,则波将不会相遇,并不会产生驻波。
在实验中,可以通过改变弦线的长度或振动机械振荡器的频率,来控制产生驻波的条件。
二、实验器材1.弦线:使用高强度、高弹性的弦线,在实验平台上固定弦线的一端。
2.机械振荡器:通过发射一定频率的振动波传递到弦线上,产生驻波。
3.频率计:用于测量机械振荡器发射出的振动波的频率。
5.示波器:用于观察产生的驻波现象,并测量弦线的波长。
三、实验步骤3.将机械振荡器的另一端与弦线相连,并调整振幅的大小。
4.观察弦线上的波动情况,利用振动传感器测量弦线上的振动波的频率和振幅。
四、实验注意事项1.实验中要保持弦线的张力稳定。
2.调整机械振荡器的频率时,要注意避免产生共振现象。
3.在测量振动波的频率时,要避免相关干扰引起的误差。
4.在观察驻波现象时,要注意不要将示波器的灵敏度调得太高,以避免产生过量的噪声。
5.实验中要注意安全,防止机械振荡器对实验者造成伤害。
五、实验结果分析通过实验数据的分析,可以计算出弦线的基频和波长等物理量。
驻波的实验方法
驻波的实验方法驻波是物理学中一个重要的现象,它在声学、光学和电磁学等学科中都有广泛的应用。
驻波实验是研究驻波现象的一种有效方法。
本文将介绍两种常见的驻波实验方法:弦上驻波实验和声管中驻波实验。
一、弦上驻波实验弦上驻波实验是通过在一根张紧的弦上激发驻波来观察和研究驻波现象的。
实验器材包括一根弦、一个张紧装置和一个振动源。
1. 准备工作首先,固定一边的弦于支架上,并用张紧装置将另一端的弦绷紧。
确保弦的张力均匀且适度,以避免弦的过度松弛或过度紧绷。
2. 振动源的设置在弦的中央位置处,将一振动源固定于弦上。
振动源可以是一个音叉,也可以是一段产生连续波的发声装置。
确保振动源能够将足够的振动能量传递给弦。
3. 观察和记录打开振动源,使其发出声音或振动。
观察弦上的波动情况,并记录下弦上形成的驻波图案。
可以使用相机或者手机来拍摄驻波图案以便进一步分析和研究。
二、声管中驻波实验声管中驻波实验是通过在一个封闭的管道中形成声波的驻波来研究驻波现象的。
实验器材包括一个封闭的管道、一个声源和一个频率调节器。
1. 实验装置的准备首先,准备一个封闭的管道,可以是一个玻璃管或金属管。
确保管道的密封性良好,以避免泄漏声音和气体。
2. 声源和频率调节器的设置将一个声源放置在管道的一端,并将频率调节器连接到声源上。
频率调节器可以调节声源发出的声音的频率,以便产生不同频率的声波。
3. 观察和记录打开声源,调节频率调节器,改变声波的频率。
观察管道内的压强分布,以及形成的驻波现象。
利用压强传感器等设备进行实时数据采集,并记录下实验过程中不同频率下的驻波情况。
总结:驻波的实验方法包括了弦上驻波实验和声管中驻波实验。
弦上驻波实验适用于研究机械波的驻波现象,而声管中驻波实验适用于研究声波的驻波现象。
通过观察和记录实验过程中的驻波图案和数据,可以深入理解驻波现象的形成和特点,并进一步研究其在不同学科中的应用。
(字数:555字)。
弦上驻波实验实验报告
弦上驻波实验-实验报告弦上驻波实验实验报告一、实验目的本实验旨在通过弦上驻波的方法,研究弦的振动特性,包括弦的频率、波长、振幅等参数。
通过此实验,我们期望能深入理解驻波的概念及其在物理学中的应用。
二、实验原理驻波是由振源振动引发,在介质中传播,但振幅不随时间变化的一种特殊波。
在弦上,驻波的形状由弦的长度和张力决定。
弦上的驻波可以激发出各种模态,这些模态的频率与弦的长度和张力有关。
弦上驻波的基本公式为:f = (1 + π^2 * v * T^2 / L^2)^(1/2)其中 f 是模态频率,v 是声速,T 是弦的张力,L 是弦的长度。
三、实验步骤1.准备实验器材:弦线、张力测量仪、声速测量仪、信号发生器、放大器、示波器等。
2.将弦线悬挂于张力测量仪上,调整弦线的张力至预定值。
3.使用信号发生器在弦线上产生激振信号,通过放大器将信号放大,再通过示波器观测弦线的振动响应。
4.调整信号发生器的频率,观察示波器中的振动图形。
当弦线振动稳定时,记录此时的激振频率和振动模态。
5.逐步改变激振频率,观察并记录每个激振频率下弦线的振动模态。
四、数据分析在实验过程中,我们记录了不同激振频率下弦线的振动模态。
通过分析这些数据,我们可以得到以下结论:1.随着激振频率的增加,弦线的振动幅度逐渐增大。
这是因为在相同时间内,高频率的振动意味着更多的振动能量。
2.当激振频率增加到一定值时,弦线的振动幅度开始减小。
这是因为在高频率下,弦线的阻尼开始起作用,消耗了部分振动能量。
3.通过对比不同激振频率下的振动模态,我们可以发现振动模态的形状与弦线的长度和张力有关。
当激振频率一定时,增加弦线的张力会使振动幅度增大,而减小弦线的长度则会减小振动幅度。
4.根据实验数据,我们可以验证上述公式。
通过测量声速、张力、长度等参数,我们可以计算出理论模态频率与实验结果进行比较。
发现两者较为接近。
五、实验结论通过本次实验,我们研究了弦上驻波的振动特性。
大物实验报告 弦振动与驻波实验
物理实验报告哈工大物理实验中心班号33006学号1190501917姓名刘福田教师签字实验日期2020.4.19预习成绩学生自评分总成绩(注:为方便登记实验成绩,班号填写后5位,请大家合作。
)实验(三)弦振动和驻波实验一.实验目的1、在弦线张力不变时,用实验确定驻波波长与振动频率的关系;2、在振动源频率不变时,用实验确定驻波波长与张力的关系;3、观察弦振动及驻波的形成。
二.实验原理在一根拉紧的弦线上,张力为T,线密度为μ,则沿弦线传播的横波应满足运动方程其中x:波在传播方向(与弦线平行)的位置坐标;y:振动位移;而典型的波动方程为通过比较(1)、(2),可得到波的传播速度;若波源的振动频率为f,横波波长为λ,则横波沿弦线传播的速度可表示为波长与张力及线密度之间的关系可表示为两边取对数,得到公式波长的测量:驻波方法图像如图所示三.实验主要步骤或操作要点1、在弦线张力不变时,用实验确定驻波波长与振动频率的关系;①将弦线一端固定在鞋盒侧面,线跨过鞋盒沿,另一端下垂并悬挂一水瓶。
实验装置如图3-1图3-1②在保持张力不变的情况下,移动筷子位置,使半波长λ/2分别为10、15、20、25、30c m。
③用牙签波动弦线发出声音,利用P h y p h o x分别测出线的振动频率f2、在振动源频率不变时,用实验确定驻波波长与张力的关系①固定A B之间的距离并测量②利用小量杯等量地增加水瓶中水的体积,即等量地改变弦线的张力T③波动弦线,用软件p h y p h o x测量不同张力下弦线的振动频率f3、验证三分损益法①保持弦线张力不变,先将A B的距离固定,测出此时的频率,并将音调定为基准音D o,算出相应的F a,S o l,L a,高音D o的理论频率。
②移动筷子,缩短A B距离,波动弦线,先粗略听出F a音,再微调距离使得P h y p h o x 测出的频率恰为理论的F a音频率。
测出相应的A B距离。
标记F a位置。
弦振动和驻波实验
弦振动和驻波实验弦振动和驻波实验【实验目的】1、观察固定均匀弦振动传播时形成的驻波波形;2、测量均匀弦线上横波的传播速度及均匀弦线的线密度。
【实验器材】XZDY-B型固定均匀弦振动仪、磁铁、钩码、滑轮、电子天平等。
【实验原理】驻波是一种波的叠加现象,它广泛存在于各种振动现象中。
本实验通过通有交流电的铜导线在磁场中的振动,观察弦振动驻波的形成,验证横波的波长与弦线中的张力平方根成正比,与线密度的平方根成反比,并利用弦线上产生的驻波,测出驻波的波长。
横波沿弦线传播时,在维持弦线张力不变的情况下,横波的传播速度卩与张力T及弦线的线密度p (即单位长度的质量)之间的关系为:心石⑴。
设弦线的振动频率为八横波在弦线上传播的波长为2,则根据v = /2,有八丄上⑵。
根据式(2)可f\P 知,若弦线的振动频率/和线密度。
一定,则波长兄与张力T的平方根成正比。
如图所示,弦线的一端通过劈尖A ,另一端跨过劈尖B后通过滑轮挂钩码,当铜导线振动时,振动频率为交流电的频率。
随着振动产生向右传播的横波,此波由A点传到B点时发生反射。
由于前进波和反射波的振幅相同、频率相同、振动方向相同,但传播弦振动和驻波实验方向相反,所以可互相干涉形成驻波。
在驻波中,弦上各点的振幅出现周期性的变化, 有些点振幅最大,称为波腹;有些点振幅为零,称为波节。
两相邻波腹(或波节)之间的距离等于形成驻波的相干波波长的一半。
当弦的长度厶(A、B两劈尖之间的距离)恰为半波长(△)的整数倍时产生共振。
此时驻波的振2幅最大且稳定,因此均匀弦振动产生驻波的条件为:厶=“4(" = 1,2,3......)(3),式中"为2半波数。
可见,由驻波的半波长的波段数“和弦长厶,即可求出波长兄,则2 = % = 1,2,3......)(4)o由公式(2)和(4)可得弦线的线密度戶=车(5)0 n" 4L2/2【实验内容】1、打开电源,启动弦振动仪,观察均匀弦振动传播时形成的驻波波形。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
弦振动实验中驻波波长的测量方法张宇亭;赵斌;王茂香【摘要】弦驻波实验是大学物理实验之一。
相比于早期的音叉,该实验采用了钢质弦线,不仅能观察到弦线上的驻波,而且还能听到弦线振动的声音,便于研究振动与声音的关系,有助于理解弦乐器的工作原理。
文中基于新型弦振动实验仪器,对弦线上的驻波进行了研究,给出了驻波波长的两种测量方法,即驻波公式计算求波长和直接观察驻波求波长的方法,通过大量数据处理与分析,对两种方法进行了对比,为实验仪器的测评和改进提供一定的参考。
%Standing wave experiment is one of experiments of college paring to the tuning fork in the earlier time, metallic string is applied in the new experimental instruments.The standing waves can not only be observed on the string,but also the voice of string vibration can be heard.It will be convenient to study the relationship between vibration and voice,and this will help to understand the mechanics of string instruments.In this paper,we studied the standing waves on the metallic string and gave two meth-ods on the measurement of standing wavelength using the new experimental instrument.One was based on the formula of standing wave and the other was directly observing standing waves to get the wavelength.Through a lot of data processing and analysis,we compared these two methods and gave definite reference for determining and improving the experimental instrument.【期刊名称】《实验科学与技术》【年(卷),期】2016(014)001【总页数】4页(P42-45)【关键词】关;键;词;弦振动;驻波;弦线张力【作者】张宇亭;赵斌;王茂香【作者单位】南京理工大学物理实验中心,南京 210094;南京理工大学物理实验中心,南京 210094;南京理工大学物理实验中心,南京 210094【正文语种】中文【中图分类】O4-34;O321弦振动实验一直是高等学校普通物理实验中的基础实验之一,是帮助学生理解波的形成、传播和干涉的一个重要实验[1-3]。
以前采用半柔性或柔性的弦线来观察弦线上的驻波,但在实验过程中基本听不到弦线振动的声音。
现在都改用钢质弦线,虽然弦线的振动不太明显,但通过示波器很容易得到弦线上每点的振幅,最重要的是弦线振动时可以听到清楚的声音。
在如图1所示的DH4618型弦振动研究实验仪中,驱动线圈与函数信号发生器相连接,接收线圈与示波器连接。
弦线的张力大小和砝码质量有关,也与砝码所悬挂的位置有关。
如当砝码悬挂在中央第三个沟槽时,张力大小为3倍砝码的重力。
通有交流电的金属弦线在磁场中受到安培力的作用并发生振动,当满足一定的条件时可形成驻波。
结合示波器可以进行驻波波形的观测与研究,而且通过相关测量可得到弦线的线密度以及横波传播的波长和波速,进而了解驻波传播的规律。
实验中,我们把振源定为驱动器对应的弦线处,振动沿着弦线向两边传播,当到达劈尖后通过反射又沿弦线相向传播,稳定后即可形成驻波,示意图如图2所示。
我们将入射波定义为沿x轴的正方向传播,如图2中细实线;沿轴负方向传播的波为反射波,如图2中细虚线;两列简谐波合成的驻波,如图2中的粗实线。
把原点“O”建立在入射波和反射波振动时相位始终相同的点。
在原点处振动的质点向上达到最大位移时开始计时,我们可以得到该质点的波动方程:式中,A为简谐波的振幅,x为质点在弦线上的坐标位置,λ为波长,f为频率。
驻波是由两列波叠加后产生的,方程是:弦线上各个质点的振幅大小为,可见驻波的振幅只与质点的位置x有关,与时间t 无关。
波节处,即:可得波节位置:而相邻两波节之间的距离为:波腹处=1,故波腹位置为:两个相邻波腹的间距为:由式(3)和式(4)可知,测出相邻的两个波腹或者波节间的距离即可得到波长。
在本实验中,我们用劈尖的位置来确定弦的长度,在两个劈尖处为波节。
所以只有当弦长L为半波长的整数倍时,才能形成驻波。
其应满足的数学表达式为:由此得横波波长为:式中:n为弦线上波腹数,即半波数;L为弦长。
由波动理论可知,弦线上横波的传播速度为:那么,式(6)可变型为:T=ρv2式中:ρ为弦线单位长度的质量,也叫线密度;T为弦线中张力。
根据波长、波速和频率之间具有普遍关系式v=fλ,将式(5)代入可算出横波波速为:由式(6)和式(8)可得:再由式(9)可得频率:通过式(10)分析可以知道,要形成驻波,需频率f满足一定条件。
所以,对于固定的T、ρ、L,我们要通过调节信号发生器的频率使弦线发生共振。
调节好实验装置,放上一根弦线,固定两个劈尖的位置即固定弦长,通过改变砝码的质量来改变弦线所受到的张力。
分别观察弦线上的驻波波形,并在信号发生器上读出形成稳定驻波时对应的频率f。
根据式(10)即可求出横波的波长。
本文将给出波长测量的两种方法,并给出相应的评价,为后续研究提供参考。
1)公式计算求波长。
在大学物理实验教学过程中,弦振动实验除了帮助学生理解驻波的形成规律外,还着重培养学生的数据分析和处理能力。
在课堂上,主要是观测实验现象,记录实验数据;课后要求学生对数据进行处理,根据式(10)求出波长(弦线的线密度ρ=1.03 kg/m,南京的重力加速度g=9.794 m/s2)。
为减小实验误差,常规做法就是多次测量求平均来进行数据处理。
当弦线的长度L=0.6 m时,由公式可计算出波长,实验计算结果如表1所示。
误差u=|(测量值-理论值)|×100/理论值,通过表1带入误差公式计算可以得出:当n=2时,u=|(0.563-0.600)|×100/0.600=6;当n=3时,u=|(0.375-0.400)|×100/0.400=6;当n=4时,u=|(0.281-0.300)|×100/0.300=6;当n=5时,u=|(0.225-0.250)|×100/0.250=10;当n=6时,u=|(0.186-0.200)|×100/0.200=7。
表1的测量数据量大,耗时长,在时间有限的课堂教学中难以完成。
另一方面,为了培养学生的数据处理能力,一般要求读3次频率再取平均值,课后用作图法或相关软件对数据进行处理。
当固定弦线的长度L=0.6 m,波腹数为3,实验数据及处理见表2。
根据,两边取对数得到:根据Origin拟合可以得出截距[4-5],如图3所示。
计算得到弦长L=0.568 m,理论设定的波长为0.6 m,相对误差为5。
上述两种数据处理方法,都是根据式(10)间接得到横波的波长,相对误差都在5 以上,而且实验测量值都比理论值小。
初步推断存在系统误差。
为此我们仔细察看了实验中的钢丝弦线,发现经过一段时间实验以后,在两个劈尖支起的地方,弦线的形变非常大,几乎不再是直线了,而且这个形变不会随张力的撤销而恢复[5]。
为了探测形变对波长测量的影响,我们设计了另一种测量方法。
2)直接观测求波长。
为了分析弦线两端的形变情况,我们比较了信号发射器的位置对实验结果的影响。
将驱动线圈分别移到靠近和远离砝码端进行对比。
当弦线上形成驻波时,移动接收端,在示波器上会看到电压幅度由小到大周期性地改变,幅度最小时弦线的位置就对应着驻波的波节,分别记录弦线上的波节位置,就可得到半波长。
当弦长L=0.6 m,波腹数为6 ,且发射端靠近砝码端时,实验数据见表3。
当弦长L=0.6 m,波腹数为6 ,且发射端远离砝码端时,实验数据见表4。
由表3和表4可以看出,两端的半波长的确偏大,与信号发射器的位置无关,说明弦线形变确实影响横波波长的测量。
而且两端的半波长比较接近,说明弦线上的张力分布基本均匀,在两端引起的形变也相近。
误差u=|(测量值-理论值)|×100/理论值:表3中,u=|((10.05+9.99+9.97+9.99+9.98+10.03/6-10.00)|×100/10.00=0.02;表4中,u=|((10.04+10.00+9.96+9.98+9.98+10.05)/6-10.00)|×100/10.00=0.02。
如果舍弃两端形变所影响的半波长,则:表3中,u=|((9.99+9.97+9.99+9.98)/4-10.00)|×100/10.00=0.2;表4中,u=|((10.00+9.96+9.98+9.98)/4-10.00)|×100/10.00=0.2。
本文通过反复多次实验,对大量数据进行对比分析发现,直接观测所得的波长比间接通过公式计算所得的数据更精确,而且免除了大量复杂的数据处理过程,同时还能更加直观地反映弦线形变对横波波长测量的影响。
【相关文献】[1]李相银,徐永祥,王海林,等.大学物理实验[M].2版.北京:高等教育出版社,2009.[2]苗锟,黄育红,李康,等. 弦振动形成驻波的规律和数据的Matlab处理[J].大学物理实验,2010,23(4):75-79.[3]贾金萍,张鹏. 弦线上的波动问题研究[J]. 内蒙古师范大学学报(自然科学汉文版),2007,36(2):153-159.[4]王茂香,李相银. 利用Origin软件处理霍尔效应实验数据[J]. 实验科学与技术,2011,9(5):43.[5]黄莘,王茂香.弦振动实验数据处理与分析[J]. 大学物理实验,2013,26(6):89-91.。