中考《函数图象中简单的动点问题》教学设计

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中考《函数图象中简单的动点问题》教学设计

〖课时安排〗1 课时

〖教学对象〗九年级学生

〖背景分析〗近几年来,基于函数图形的数学问题由于既包含了数形结合,分类讨论等重要思想,又与生活中的实际问题密切相关,形成了中考的热点,在最近几年各地的中考试卷中时常出现。

〖学情分析〗学生已经学习了一次函数和二次函数的概念、图象和性质,能采用待定系数法求函数解析式;这些内容为解决实际问题中函数图象问题提供了建模能力的基石。但是建立函数模型去解决实际问题的图象,具有很强的灵活性、综合性,对学生的思维能力具有一定的挑战性。

〖教学目标〗

◇知识与技能

通过实际问题的探究,让学生掌握动点问题中两个变量之间的关系,利用函数解析式解决图象问题。

◇过程与方法

1.通过对实际问题的探究,让学生经历数学建模的基本过程,体会数学建模数学。

2.通过学习和探究动态问题中两个变量之间的函数关系,渗透转化和分类的数学思想。

◇情感态度价值观

体会函数图象是一种最直观的重要数学模型,感受数学的运用价值,提高学生用数学的意识。

〖教学重点〗

根据实际问题找出两个变量之间的函数关系式

〖教学难点〗

根据两个变量之间的函数关系式确定相应的函数图象

〖教学过程设计〗

一、教学流程设计

练习强化,

巩固提高

要点复习, 回顾旧知

设计意图:

引导学生思考,回顾所学知识

课堂小结, 观点提炼

设计意图:

1.让学生学以致用,进一步巩固所学知识。

2.让学生了解此类试题是近几年常见的中考题。

3.享受收获的喜悦。

完成作业, 体会收获

设计意图:

归纳总结解简单动点问题中函数图象的方法技巧

设计意图:

1. 巩固解题的方法技巧,体会建模的数学思想。

2. 享受收获的喜悦。

变式训练, 掌握技巧

设计意图: 1. 学生通过上面的学习,在知识和方法上有一定的积累,这时趁热打铁,让学生学以致用,进一步巩固学习。

2. 体会建模的数学思想。

探究学习, 用中悟理

设计意图:

1. 落实解题步骤的规范性,关注不同的思维方式。

2. 从图形的角度引导学生要关注动态过程中的静态图形,从而降低题目难度,突出重点,突破难点,进一步理解数形结合的含义。

3. 通过探究过程体会分类讨论的数学思想。

4. 体会建模的数学思想。

问题牵引, 乐中深化

设计意图:

这个题目背景比较简单,只有一个动点,学生都能解决,这样可以增强学生学习的信心,消除恐惧感,也可以让学生体会到学习的快乐。

二、教学过程设计

1.一次函数的图象是什么?二次函数的图象是

什么(直线、抛物线。)

2.三角形的面积公式呢?()

问题:如图,矩形 ABCD 中,AB=4,BC=3,动

点 E 从B 点出发,沿 B-C-D-A 运动至 A 点停

止,设运动的路程为 x,△ABE的面积为y,

则y 与x 的函数关系用图象表示正确的是

()(2017 年汕头朝南区模拟试题)

A. B.

C. D.

方法技巧:分别找出动点 E 在BC、CD、DA 边

运动时△ABE的面积 y 与x 的函数关系式;

从而找出对应的函数图象。

A B

C D

思路:设疑 1.在运动过程中共有几种情况?

2.列出各种情况下的函数关系式,画出对应的图象;结合选项的图形作出选择。

例2.如图,边长为 l 的正方形 ABCD,点M 从点 A 出发以每秒 1 个单位长度的速度向点B 运动,点 N 从点A 出发以每秒 3 个单位长度的速度沿A→D→C→B的路径向点 B 运动,当一个点到达点 B 时,另一个点也随之停止运动,设△AMN的面积为 s,运动时间为 t 秒,则能大致反映 s 与t 的函数关系的图象是

()(2017 年河源市模拟试题)

A B

C D

思路:当点 N 在AD、DC、CB 上运动时,△AMN 的面积 s 随运动时间 t 变化的函数关系式?能大致反映的函数图象是?

1.如图,已知△ABC为等边三角形,AB=2,点

D 为边AB 上一点,过点D 作DE∥AC,交BC 于

E 点;过E 点作EF⊥DE,交AB 的延长线于

F 点.设AD=x,△DEF的面积为y,则能大致反映y 与x 函数关系的图象是()

(2017 年东莞市中考题)

A B

C D

2.如图所示,△ABC是等腰直角三角形,∠ACB=90°,直角边与正方形 DEFG 的边长均为2,且 AC 与DE 在同一直线上,开始时点 C 与点 D 重合,让△ABC沿这条直线向右平移,直到点 A 与点E 重合为止.设 CD 的长为 x,△ABC与正方形DEFG 重合部分(图中阴影部分)的面积为y,则y 与x 之间的函数关系的图象大致是()(2017 年汕头濠江区模拟试题)

A B

C D.

(六)、课堂小结,方法提炼设疑:解决此类简单动点问题中函数图象的

方法技巧是什么?

提出

问题

归纳

总结

技巧

总结解动点

问题中函数

图象的技巧

(七)、完成作业,体会收获1.如图,在正方形ABCD 中,点P 从点A 出发,

沿着正方形的边顺时针方向运动一周,则△

APC 的面积y 与点P 运动的路程x 之间形成

的函数关系图象大致是()

(2016 年广东中考第 10 题)

A. B.

C. D.

2.如图,已知等边三角形ABC 的边长为2,E、

F、G 分别是边AB、BC、CA 的点,且AE=BF=

CG,设△EFG的面积为y,AE 的长为x,则y

与 x 的函数图象大致是()

(2015 年广东中考第 10 题)

A B

C D

让学

生了

解此

类试

题是

近几

年常

见的

中考

题。

独立

完成

作业,

体会

收获

成功

的喜

悦。

1.让学生学

以致用,进一

步巩固所学

知识。

2.让学生了

解此类试题

是近几年常

见的中考题。

3.享受成功

收获的喜悦。

附板书设计:

函数图象中简单的动点问题

1.一次函数的图象是一条直线,二次函数的图象是抛物线。

2.三角形面积公式:

3.例1 例2

相关文档
最新文档