2020-2021学年上海交大附中高一(上)期末数学试卷
上海市宝山区上海交通大学附属中学2020-2021学年高一上学期期末考试物理试题 Word版含答案
上海交通大学附属中学2020-2021学年度第一学期高一物理期末考试卷一、单项选择题(共40分。
第1-8小题,每小题3分;第9-12题,每小题4分。
)1. 一个物体作竖直上抛运动则下列说法正确的是()A. 上升和下落过程的位移相同B. 上升到最高点时,瞬时速度为零,加速度也为零C. 运动过程中,任何相等时间内的速度变化量都相同D. 运动过程中,相等时间内的位移相同2. 如图所示,羽毛球运动员在比赛过程中用球拍回击飞过来的羽毛球,下列说法正确的()A. 球拍击羽毛球的力大于羽毛球撞击球拍的力B. 羽毛球先对球拍有力的作用,球拍才对羽毛球有力的作用C. 羽毛球撞击球拍的力是由羽毛球发生形变引起的D. 羽毛球对球拍的力和球拍对羽毛球的力是一对平衡力3. 如图,一机械臂铁夹夹起质量为m的小球,机械臂与小球沿水平方向做加速度为a的匀加速直线运动,则铁夹对球的作用力()A. 大小为mg,方向竖直向上B. 大小为ma,方向水平向右C. 大小与小球加速度大小无关D. 方向与小球的加速度大小有关4. 伽利略相信,自然界的规律是简单明了的。
他从这个信念出发,猜想落体的速度应该是均匀变化的。
为验证自己的猜想,他做了“斜面实验”,如图所示。
发现铜球在斜面上运动的位移与时间的平方成正比,改变球的质量或增大斜面倾角,上述规律依然成立。
于是,他外推到倾角为90°的情况,得出落体运动的规律。
结合以上信息,判断下列说法正确的是( )A. 伽利略通过“斜面实验”来研究落体运动规律时为了便于测量速度B. 伽利略通过“斜面实验”来研究落体运动规律时为了便于测量加速度C. 由“斜面实验”的结论可知,铜球运动的速度随位移均匀增大,说明速度均匀变化成立。
D. 由“斜面实验”的结论可知,铜球运动的速度随时间均匀增大,说明速度均匀变化成立。
5. 一辆公交车在平直的公路上从A 站出发运动至B 站停止,经历了匀加速、匀速、匀减速三个过程,设加速和减速过程的加速度大小分别为1a 、2a ,匀速过程的速度大小为0v ,则( )A. 增大1a ,保持2a 、0v 不变,加速过程的平均速度不变B. 减小1a ,保持2a 、0v 不变,匀速运动过程的时间将变长C. 增大0v ,保持1a 、2a 不变,全程时间变长D. 只要0v 不变,不论1a 、2a 如何变化,全程平均速度不变6. 如图所示为一边长为1m 的立方体包装纸箱,有一只聪明的蚂蚁沿纸箱表面以最短的路程从顶点A 到达顶点G 用了10s 时间,则该过程中蚂蚁的平均速度大小和平均速率分别是( )A. 3/s 、5/s 10B. 3m /s 、3m /s 10C. 5/s 、21m /s 10D. 3m /s 、21m /s 10+7. 如图甲,某同学在实验中通过定滑轮将质量为m 的物体提升到高处,并在这过程中测量物体获得的加速度a 与绳子对货物竖直向上的拉力T 的关系.若滑轮的质量和摩擦均不计,物体获得的加速度a 与绳子对货物竖直向上的拉力T 之间的函数关系如图乙所示.由图可以判断不正确的是( )A. 图线与纵轴的交点M 的值M a g =-B. 图线与横轴的交点N 的值M T mg =C. 图线的斜率等于物体的质量mD. 改变拉力T 的方向,图线的斜率不变8. 如图,悬挂物体甲的细线拴牢在一不可伸长的轻质细绳上O 点处;轻绳的一端固定在墙上,另一端跨过光滑的定滑轮后悬挂乙物体。
上海交通大学附属中学2021-2022学年高一上学期期末数学试题
交大附中高一期末数学试卷2022.01一、填空题(第1-6题每题4分,第7-12题每题5分,满分54分)1. 函数1sin 22y x =的最小正周期T =__________; 【答案】π 【解析】【详解】分析:直接利用三角函数的周期公式,求出函数的周期即可 详解:由三角函数的周期公式可知: 函数122y sin x =的最小正周期22T ππ== 故答案为π点睛:本题主要考查了三角函数的周期性及其求法,属于基础题. 2. 已知函数()22f x ax x =+是奇函数,则实数a =______.【答案】0 【解析】【分析】由奇函数定义入手得到关于变量的恒等式后,比较系数可得所求结果. 【详解】∵函数()f x 为奇函数, ∴()()f x f x -=-, 即2222ax x ax x -=--, 整理得20ax =在R 上恒成立, ∴0a =. 故答案为0.【点睛】本题考查奇函数定义,解题时根据奇函数的定义得到恒等式是解题的关键.另外,取特殊值求解也是解决此类问题的良好方法,属于基础题. 3. 若集合{}2A x x =<,101B xx ⎧⎫=>⎨⎬+⎩⎭,则A B =______.【答案】{}12x x -<<## ()1,2- 【解析】【分析】求解绝对值不等式解得集合A ,求解分式不等式求得集合B ,再求交集即可. 【详解】因为{}2A x x =<{|22}x x =-<<,101B xx ⎧⎫=>⎨⎬+⎩⎭{}1x x =-,故可得A B ={|12}x x -<<.故答案:{}12x x -<<.4. 方程()lg 21lg 1x x ++=的解为______. 【答案】2. 【解析】 【分析】由对数的运算性质可转化条件为()21100210x x x x ⎧+=⎪>⎨⎪+>⎩,即可得解.【详解】方程()lg 21lg 1x x ++=等价于()lg 2110210x x x x ⎧+=⎪>⎨⎪+>⎩,所以()21100210x x x x ⎧+=⎪>⎨⎪+>⎩,解得2x =.故答案为:2.【点睛】本题考查了对数方程的求解,考查了运算求解能力,属于基础题.5. 设函数21(0)()2(0)x x f x x x ⎧+≥=⎨<⎩,那么1(10)f -=_____【答案】3 【解析】 【分析】欲求1(10)f-,根据原函数的反函数为1()f x -知,只要求满足于()10f x =的值即可,故只解方程()10f x =即得.【详解】解答:令()10f t =,则1(10)t f -=,当0t <有2105t t =⇒=不合,当0t ≥有21103t t +=⇒=±,3t =-(舍去) 那么1(10)3f-=故答案为3【点睛】本题主要考查了反函数,一般地,设函数()()y f x x A =∈的值域是C ,根据这个函数中,x y 的关系,用y 把x 表示出,得到()x f y =.6. 若集合{}3cos23,xA x x x R π==∈,{}21,B y y y R ==∈,则A B ⋂=_______.【答案】{}1 【解析】【分析】易知{}1,1B =-,分别验证1,1-和集合A 的关系即可得结果. 【详解】因为{}{}21,1,1B y y y R ==∈=-,13cos 23π=,()13cos 23π--≠,即1A ∈,1A -∉,所以{}1A B ⋂=, 故答案为:{}1.7. 幂函数y x α=,当α取不同的正数时,在区间[0,1]上它们的图像是一族美丽的曲线(如图).设点(1,0)(0,1)A B 、,连接AB ,线段AB 恰好被其中的两个幂函数12y x y x αα==、的图像三等分,即有BM MN NA ==.那么12αα=_______.【答案】1 【解析】【分析】求出,M N 的坐标,不妨设1y x =α,2y x =α,分别过12(,)33M ,21(,)33N ,分别代入点的坐标,变形可解得结果.【详解】因为(1,0)A ,(0,1)B ,BM MN NA ==, 所以12(,)33M ,21(,)33N ,不妨设1y x =α,2y x =α,分别过12(,)33M ,21(,)33N ,则12133⎛⎫= ⎪⎝⎭α,21233⎛⎫= ⎪⎝⎭α,则112212333⎛⎫⎛⎫⎛⎫== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭ααα1223⎛⎫= ⎪⎝⎭αα,所以121=αα. 故答案为:18. 已知函数()()1201x f x a a a +=->≠,,的图象不经过第四象限,则a 的取值范围为__________. 【答案】[2,)+∞. 【解析】 【分析】根据01a <<和1a >两种情况讨论,令()0f x ≥,得出不等式,即可求解.【详解】当01a <<时,令()0f x ≥,可得20a -≥,此时不等式的解集为空集,(舍去);当1a >时,令()0f x ≥,可得20a -≥,即2a ≥,即实数a 的取值范围[2,)+∞, 综上可得,实数a 的取值范围[2,)+∞. 故答案为:[2,)+∞.9. 已知函数()sin cos f x a x x =+在0,2π⎡⎤⎢⎥⎣⎦上的最小值为2-,则实数a 的值为_________. 【答案】-2 【解析】【分析】根据函数()sin cos f x a x x =+在0,2π⎡⎤⎢⎥⎣⎦上的最小值为2-,分()f x 在0,2π⎡⎤⎢⎥⎣⎦上递增,递减和不单调,利用三角函数的性质求解. 【详解】因为函数()sin cos f x a x x =+在0,2π⎡⎤⎢⎥⎣⎦上的最小值为2-,所以当()f x 在0,2π⎡⎤⎢⎥⎣⎦上递增时,()f x 的最小值为(0)12f =≠-,不成立; 当()f x 在0,2π⎡⎤⎢⎥⎣⎦上递减时,()f x 的最小值为()22f a π==- , 此时()()2sin cos 5,04f x x x x πϕϕ⎛⎫=-+=--<< ⎪⎝⎭, 因为 0,2x π⎡⎤∈⎢⎥⎣⎦,则,22x ππϕ⎡⎤-∈-⎢⎥⎣⎦,而sin y x =在 ,22ππ⎡⎤-⎢⎥⎣⎦上递增,成立; 当()f x 在0,2π⎡⎤⎢⎥⎣⎦上不单调时,()2()sin cos 1sin ϕ=+=++f x a x x a x , 令212a -+=-,解得 3a =3a =当 3a =()2sin 6f x x π⎛⎫=+⎪⎝⎭,因为 0,2x π⎡⎤∈⎢⎥⎣⎦,所以 2,663x πππ⎡⎤+∈⎢⎥⎣⎦,所以 min ()1f x =,不成立;当3a = ()2sin 6f x x π⎛⎫=--⎪⎝⎭,因为 0,2x π⎡⎤∈⎢⎥⎣⎦,所以 ,663x πππ⎡⎤-∈-⎢⎥⎣⎦,min ()3f x =-,不成立;故实数a 的值为-2, 故答案为:-210. 给出四个命题:①存在实数α,使sin cos 1αα=;②存在实数α,使3sin cos 2αα+=;③5sin 22y x π⎛⎫=- ⎪⎝⎭是偶函数;④8x π=是函数5sin 24y x π⎛⎫=+ ⎪⎝⎭的一条对称轴方程;⑤若αβ、是第一象限角,且αβ>,则sin sin αβ>. 其中所有正确命题的序号是_____________. 【答案】③④ 【解析】【分析】利用二倍角的降幂公式结合正弦函数的有界性可判断①的正误;利用辅助角公式结合正弦函数的有界性可判断②的正误;化简函数解析式,结合余弦函数的奇偶性可判断③的正误;利用代入检验法可判断④的正误;利用特殊值法可判断⑤的正误.【详解】对于命题①,111sin cos sin 2,222ααα⎡⎤=∈-⎢⎥⎣⎦,所以,不存在实数α使得sin cos 1αα=,①错误;对于命题②,sin cos 22,24πααα⎛⎫⎡+=+∈ ⎪⎣⎝⎭,所以,不存在实数α使得3sin cos 2αα+=,②错误; 对于命题③,si o 5s 2n c 2i s n 222x y x x ππ⎛⎫⎛⎫== ⎪⎪⎝-⎭-⎭=⎝,因为()cos 2cos2x x -=, 所以函数5sin 22y x π⎛⎫⎪⎝=⎭-是偶函数,③正确;对于命题④,当8x π=时,min 53sin 2sin 1842y y πππ⎛⎫=⨯+==-= ⎪⎝⎭, 所以,8x π=是函数5sin 24y x π⎛⎫=+⎪⎝⎭的图象的一条对称轴方程,命题④正确;对于命题⑤,取9244παππ=+=,4πβ=,αβ>,但2sin sin 2==αβ,⑤错误.因此,正确命题的序号为③④. 故答案为:③④.11. 某同学向王老师请教一题:若不等式4ln 1x x e a x x --≥+对任意()1,x ∈+∞恒成立,求实数a 的取值范围.王老师告诉该同学:“1x e x ≥+恒成立,当且仅当0x =时取等号,且()4ln g x x x =-在()1,+∞有零点”.根据王老师的提示,可求得该问题中a 的取值范围是__________. 【答案】(],4-∞- 【解析】 【分析】由参变量分离法可得出41ln x x e x a x---≤,利用已知条件求出函数41ln x x e x y x ---=在()1,+∞上的最小值,由此可得出实数a 的取值范围.【详解】1x >,ln 0x ∴>,由4ln 1x x e a x x --≥+可得44ln 11ln ln x x x x e x e x a x x------≤=, 由于不等式1x e x ≥+恒成立,当且仅当0x =时取等号,且存在01x >,使得()0004ln 0g x x x =-=,所以,()4ln 4ln 1114ln ln x x x x x e x x x--+----≥=-,当且仅当0x x =时,等号成立,4a ∴≤-.因此,实数a取值范围是(],4-∞-.故答案为:(],4-∞-.【点睛】结论点睛:利用参变量分离法求解函数不等式恒(能)成立,可根据以下原则进行求解:(1)x D ∀∈,()()min m f x m f x ≤⇔≤; (2)x D ∀∈,()()max m f x m f x ≥⇔≥; (3)x D ∃∈,()()max m f x m f x ≤⇔≤; (4)x D ∃∈,()()min m f x m f x ≥⇔≥.12. 设二次函数()()22,f x mx x n m n =-+∈R ,若函数()f x 的值域为[)0,∞+,且()12f ≤,则222211m n n m +++的取值范围为___________. 【答案】[1,13] 【解析】【分析】根据二次函数的性质和已知条件得到m 与n 的关系,化简222211m n n m +++后利用不等式即可求出其范围.【详解】二次函数f (x )对称轴为1x m=, ∵f (x )值域为[]0,∞+,∴0m >且21121001f m n n mn m m mm ⎛⎫⎛⎫=⇒⋅-+=⇒=⇒= ⎪ ⎪⎝⎭⎝⎭,n >0.()12224f m n m n ≤⇒-+≤⇒+≤,∵()()()()2222224422222222221111111m m n n m n m n m n n m m n m n m n +++++++==+++++++ =()22222222222m n m n m n m n +-++++=()()222222222m n mn m n +++-++=()()222222212mn m n m n +++-++=221mn +-∴221211m n mn +-≥-=,22221()34313m n m n +-=+-≤-=,∴222211m n n m +++∈[1,13]. 故答案为:[1,13].二、选择题(本大题共4题,满分20分)13. 一个扇形的面积是1平方厘米,它的周长是4厘米,则它的圆心角是( )弧度 A. 2B. 3C. 4D. 5【答案】A 【解析】【分析】结合扇形面积公式及弧长公式可求l ,r ,然后结合扇形圆心角公式可求.【详解】设扇形半径r ,弧长l ,则24 112l r lr +=⎧⎪⎨=⎪⎩,解得1r =,2l =, 所以圆心角为 2lr=, 故选:A.14. 对于函数f (x )=asinx+bx+c(其中,a,b ∈R,c ∈Z),选取a,b,c 的一组值计算f (1)和f (-1),所得出的正确结果一定不可能是 A. 4和6 B. 3和1C. 2和4D. 1和2【答案】D 【解析】【详解】试题分析:求出f (1)和f (﹣1),求出它们的和;由于c和Z ,判断出f (1)+f (﹣1)为偶数.解:f (1)=asin1+b+c 和 f (﹣1)=﹣asin1﹣b+c 和 和+和得:f (1)+f (﹣1)=2c 和c和Z和f (1)+f (﹣1)是偶数 故选D考点:函数的值.15. 设函数21(),()(,,0)f x g x ax bx a b R a x==+∈≠,若()y f x =的图象与()y g x =图象有且仅有两个不同的公共点1122(,),(,)A x y B x y ,则下列判断正确的是 A. 当0a <时,12120,0x x y y +<+> B. 当0a <时,12120,0x x y y +>+< C. 当0a >时,12120,0x x y y +<+< D. 当0a >时,12120,0x x y y +>+> 【答案】B 【解析】【详解】令()()f x g x =,可得21ax b x =+. 设21(),F x y ax b x ==+ 根据题意()F x 与直线y ax b =+只有两个交点, 不妨设12x x <,结合图形可知,当0a >时如右图,y ax b =+与()F x 左支双曲线相切,与右支双曲线有一个交点,根据对称性可得12||>x x ,即120->>x x ,此时120x x +<,21122111,0y y y y x x =>=-∴+>-, 同理可得,当0a <时如左图,120x x +>,120y y +< 故选:B .【点睛】本题从最常见了两类函数出发进行了巧妙组合,考查数形结合思想、分类讨论思想,函数与方程思想等,难度较大,不易入手,具有很强的区分度. 16. 设函数3()22,||1xxf x x x -=-+∈+R ,对于实数a 、b ,给出以下命题:命题1:0p a b +;命题22:0p a b -;命题:()()0q f a f b +.下列选项中正确的是( )A. 12p p 、中仅1p 是q 的充分条件B. 12p p 、中仅2p 是q 的充分条件C. 12p p 、都不是q 的充分条件D. 12p p 、都是q 的充分条件 【答案】D 【解析】【分析】令3()()(),()=22(),||,1x xf xg xh x g x h x x x -=+-=∈+R ,g (x )是奇函数,在R 上单调递增,h (x )是偶函数,在(-∞,0)单调增,在(0,+∞)单调减,且h (x )>0,根据这些信息即可判断.【详解】令3()()(),()=22(),||,1x xf xg xh x g x h x x x -=+-=∈+R ,g (x )是奇函数,在R 上单调递增,h (x )是偶函数,在(-∞,0)单调增,在(0,+∞)单调减,且h (x )>0.()()0()()f a f b f a f b +≥⇒≥-,即g (a )+h (a )≥-g (b )-h (b ), 即g (a )+h (a )≥g (-b )+[-h (b )],①当a +b ≥0时,a ≥-b ,故g (a )≥g (-b ),又h (x )>0,故h (a )>-h (b ),∴此时()()0f a f b +,即1p 是q 的充分条件;②当220a b a b ≥-⇒≥时,a ≥0,a b a ≤≤a b a -≤-≤(i)当a ≥1时,a a b ≤a ,故g (a )≥g (-b );此时,h (a )>0,-h (b )<0,∴h (a )>-h (b ),∴()()0f a f b +成立; (ii)当a =0时,b =0,f (0)+f (0)=6≥0成立,即()()0f a f b +成立; (iii)∵g (x )在R 上单调递增,h (x )在(-∞,0)单调递增, ∴()()()f x g x h x =+在(-∞,0)单调递增, ∵f (-1)=0,∴f (x )>0在(-1,0)上恒成立;又∵x ≥0时,g (x )≥0,h (x )>0,∴f (x )>0在[0,+∞)上恒成立, ∴f (x )>0在(-1,+∞)恒成立,故当0<a <1时,a a <1,11a b a -<≤≤,∴f (a )>0,f (b )>0, ∴()()0f a f b +成立.综上所述,20a b -时,均有()()0f a f b +成立,∴2p 是q 的充分条件. 故选:D.【点睛】本题的关键是将函数f (x )拆成一个奇函数和一个函数值始终为正数的偶函数之和,考察对函数基本性质的掌握与熟练运用.三、解答题(本大题共有5题,满分76分)17. 已知函数()1ln 1xf x x+=-的定义域为集合A ,集合(),1B a a =+,且B A ⊆. 和1)求实数a取值范围;和2)求证:函数()f x 是奇函数但不是偶函数. 【答案】和1和[1,0]- ;和2和见解析. 【解析】【详解】试题分析和和1和由对数的真数大于0,可得集合A ,再由集合的包含关系,可得a的不等式组,解不等式即可得到所求范围;(2)求得()f x 的定义域,计算()f x -与()f x 比较,即可得到所求结论. 试题解析和和1)令101xx+>-,解得11x -<<和所以()1,1A =-和 因为B A ⊆,所以111a a ≥-⎧⎨+≤⎩,解得10a -≤≤和即实数a 的取值范围是[]1,0-和2和函数()f x 的定义域()1,1A =-,定义域关于原点对称()()()1ln 1x f x x ---=+- ()1111ln ln ln 111x x x f x x x x -+--⎛⎫===-=- ⎪-++⎝⎭而1ln32f ⎛⎫=⎪⎝⎭和11ln 23f ⎛⎫-= ⎪⎝⎭,所以1122f f ⎛⎫⎛⎫-≠ ⎪ ⎪⎝⎭⎝⎭所以函数()f x 是奇函数但不是偶函数.18. 如图,在半径为20cm 的半圆形(O 为圆心)铝皮上截取一块矩形材料ABCD ,其中点A 、B 在直径上,点C 、D 在圆周上.和1和①设BOC θ∠=,矩形ABCD 的面积为()S g θ=,求()g θ表达式,并写出θ的范围:②设(cm)BC x =,矩形ABCD 的面积为()S f x =,求()f x 表达式,并写出x 的范围: 和2和怎样截取才能使截得的矩形ABCD 的面积最大?并求最大面积. 【答案】(1)①400s ()in 2g θθ=()2cm,π02θ<<;②24()200x g x θ=-()2cm ,020x <<.(2)当截取202cm AB =,102BC =cm 时能使截得矩形ABCD 的面积最大,最大面积为4002cm 【解析】【分析】(1)①用BOC θ∠=和半径表达出边,AB BC ,进而表达出面积并写出θ的取值范围,②用(cm)BC x =表达出222400AB OB x ==-x 的取值范围;(2)利用三角函数的有界性求面积最大值.【小问1详解】①连接OC ,则20OC =cm ,sin 20sin BC OC θθ=⋅=cm ,cos 20cos OB OC θθ=⋅=cm ,则40cos AB θ=cm ,则800sin cos 400)2(sin g AB BC θθθθ⋅===()2cm ,π02θ<<.②连接OC ,则20OC =cm ,由勾股定理得:2400OB x =- cm ,222400AB OB x ==-cm ,则20()240AB BC x x g θ⋅==-()2cm ,020x <<,【小问2详解】由(1)知:400s ()in 2g θθ=,π02θ<<,所以()20,πθ∈,当π22θ=,即π4θ=时,400s ()in 2g θθ=取得最大值,最大值为4002cm ,此时π40cos202cm 4AB ==,π20sin1024BC ==cm ,所以当截取202cm AB =,102BC =cm 时能使截得的矩形ABCD 的面积最大,最大面积为4002cm19. 在数学中,双曲函数是与三角函数类似的函数,最基本的双曲函数是双曲正弦函数与双曲余弦函数,其中双曲正弦:()e e sinh 2x xx --=,双曲余弦函数:()e e cosh 2x xx -+=.(e 是自然对数的底数,e 2.71828=).和1和解方程:()cosh 2x =;和2和类比两角和的正弦公式,写出两角和的双曲正弦公式:()sinh x y +=________,并证明;和3和若对任意[]0,ln 2t ∈,关于x 的方程()()sinh cosh t x a +=有解,求实数a 的取值范围.【答案】(1)(ln 23x =+或(ln 23x =;(2)()()()()()sinh sinh cosh cosh sinh x y x y x y +=+,证明见解析;(3)74a ≥. 【解析】【分析】(1)由已知可得出2e 4e 10x x -+=,求出e x 的值,即可求得x 的值;(2)类比两角和的正弦公式可得出两角和的双曲正弦公式,再利用指数的运算性质可证得结论成立;(3)分析可知e e 12t t a --≥+恒成立,利用函数的单调性可求得实数a 的取值范围.【小问1详解】解:由()e e cosh 22x xx -+==,可得2e 4e 10x x -+=,可得e 23x =±(ln 23x =或(ln 23x =.【小问2详解】解:()()()()()sinh sinh cosh cosh sinh x y x y x y +=+, 右边()()()()()()()()e e e e e +e e e sinh cosh cosh sinh 4xx y y x x y y x y x y ----=-++-+=()e e e e e e e e e e sinh 42x y x y y x x y x y x y y x x y x y x yx y +----+----+--+--+-+--===+.【小问3详解】解:[]0,ln 2t ∈,则1e 2t≤≤,则()()e e e e sinh cosh 22t t x xa t x ---+=+=+, 所以,e e e e e e 122t t x xx x a ----+-=≥⋅=,当且仅当0x =时,等号成立,则e e 12t ta --≥+恒成立,因为函数e ty =、e ty -=-均为[]0,ln 2上增函数,故函数()e e 12t tg t --=+在[]0,ln 2上为增函数,所以,()()max 7ln 24a g t g ≥==. 20. 对闭区间I ,用I M 表示函数()y f x =在I 上的最大值. 和1和对于4()f x x x=+,求[1,4]M 的值:和2和已知()sin cos 32f x a x x ππ⎛⎫⎛⎫=+++ ⎪ ⎪⎝⎭⎝⎭,且()y f x =偶函数,[,]3a b M =b a -的最大值:和3和已知()sin f x x =,若有且仅有一个正数a 使得[0,][,2]a a a M kM =成立,求实数k 的取值范围.【答案】(1)5 (2)43π(3)112k << 【解析】【分析】小问1:判断()y f x =的单调性即可求解;小问2:由偶函数求得2a =,根据()y f x =的最大值判断,a b 范围,即可求解; 小问3:讨论01k <<与1k ≤,当[0,][,2]a a a M kM =时,判断正数a 的取值个数,即可求解.【小问1详解】对任意[]12,1,2x x ∈,且12x x <时, 由()()()121212121244410f x f x x x x x x x x x ⎛⎫⎛⎫-=+-+=--> ⎪ ⎪⎝⎭⎝⎭对任意[]12,2,4∈x x ,且12x x <时, 由()()()121212121244410f x f x x x x x x x x x ⎛⎫⎛⎫-=+-+=--< ⎪ ⎪⎝⎭⎝⎭所以4()f x x x=+在[]1,2上单调递减,在[]2,4上单调递增; 又44(1)15(4)4514f f =+=+=,= 所以[1,4]5M = 【小问2详解】由于()y f x =偶函数,所以()()66f f ππ-= 则sin cos sin cos 63626362a a ππππππππ⎛⎫⎛⎫⎛⎫⎛⎫-++-+=+++ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭解得2a =则()2sin cos 332f x x x x ππ⎛⎫⎛⎫=+++= ⎪ ⎪⎝⎭⎝⎭因为[,]3a b M =522,33k a b k k Z ππππ+≤<≤+∈ 故b a -的最大值为43π. 【小问3详解】①当01k <<时,由于[0,][,2]a a a M kM =,则[0,][,2]a a a M M <,所以02a π<<,若04a π<<时,有[0,]sin a M a =,[,2]sin 22sin cos a a a a a M ==所以sin 2sin cos a k a a =,得1cos 2a k=; 若102k <≤时,有[)1cos 1,2a k=∈+∞,此时a 无解; 若122k <<时,有12cos ,122a k ⎛⎫=∈ ⎪ ⎪⎝⎭,此时a 有一解; 21k ≤<时,有112cos 22a k ⎛=∈ ⎝⎦,此时a 无解; 若42a ππ≤<时,有[0,]sin a M a =,[,2]sin12a a M π==所以sin a k =,因为2sin a ⎫∈⎪⎪⎣⎭若102k <≤时,此时a 无解,若1222k <<时,此时a 无解; 若212k ≤<时,此时a 有一解; ②当1k ≤时,由于[0,][,2]a a a M kM =,则[0,][,2]a a a M M ≥,所以2a π≤,有[0,]sin12a M π==,则[,2]1a a kM =若1k =,则[,2]1a a M =得π2a 或54a π=等,若1k <,[,2]1a a k M =,则1sin a k =或1sin 2a k =,在5,24ππ⎡⎤⎢⎥⎣⎦a必有两解.综上所述:112k << 21. 定义域为R 的函数()y f x =,对于给定的非空集合A ,A ⊆R ,若对于A 中的任意元素a ,都有()()f x a f x +≥成立,则称函数()y f x =是“集合A 上的Z -函数”. (1)给定集合{}1,1A =-,函数()y f x =是“集合A 上的Z -函数”,求证:函数()y f x =是周期函数;(2)给定集合{}1A =,()2g x ax bx c =++,若函数()y g x =是“集合A 上的Z -函数”,求实数a 、b 、c 所满足的条件;(3)给定集合[]0,1A =,函数()y h x =是集合A 上的Z -函数,求证:“()y h x =是周期函数”的充要条件是“()y h x =是常值函数”. 【答案】(1)证明见解析; (2)0a =,0b ≥,R c ∈; (3)证明见解析. 【解析】【分析】(1)推导出()()1f x f x ≥+且()()1f x f x +≥,可得出()()1f x f x =+,由此可证得结论成立;(2)由已知可得20ax a b ++≥对任意的R x ∈恒成立,由此可得出a 、b 、c 所满足的条件;(3)利用Z -函数的定义、函数周期性的定义结合充分条件、必要条件的定义可证得结论成立.【小问1详解】证明:由题意可知,对任意的R x ∈,()()1f x f x -≥,可得()()1f x f x ≥+, 对任意的R x ∈,()()1f x f x +≥,所以,()()1f x f x =+, 因此,函数()y f x =为周期函数. 【小问2详解】解:由题意可知,对任意的R x ∈,()()1g x g x +≥,即()()2211a x b x c ax bx c ++++≥++,可得20ax a b ++≥对任意的R x ∈恒成立,所以,200a a b =⎧⎨+≥⎩,即0a =,0b ≥,R c ∈.【小问3详解】证明:若函数()y h x =是周期函数,设其周期为()0T T >, 因为函数()y h x =是集合A 上的Z -函数,则存在()10,1a ∈、N k *∈,使得()111ka T k a ≤≤+, 所以,1101T ka a ≤-≤<,()1011k a T a ≤+-≤<, 对任意的0R x ∈,()()()()()()0010101100h x h x a h x ka h x ka T ka h x T h x ≤+≤≤+≤++-=+=⎡⎤⎣⎦,所以,()()()()001010h x h x a h x ka h x T =+==+=+,所以,对任意的[]00,x x x T ∈+,()()0h x h x =, 对任意的Z n ∈,()()00h x h x nT =+, 并且[][][]000000R 2,,,x T x T x T x x x T =---+,所以,对任意的R x ∈,()()0h x h x C ==为常数, 即“()y h x =是周期函数”⇒“()y h x =是常值函数”;若函数()y h x =是常值函数,对任意的R x ∈、a A ∈,()()h x a h x +≥成立, 且()12h x h x ⎛⎫+= ⎪⎝⎭,所以,函数()y h x =是周期函数. 即“()y h x =是周期函数”⇐“()y h x =是常值函数”.综上所述,“()y h x =是周期函数”的充要条件是“()y h x =是常值函数”.【点睛】关键点点睛:本题考查函数的新定义,本题第三问的难点在于利用函数的周期性推导出函数为常值函数,需要充分利用题中“Z -函数”的定义结合函数值的不等关系以及函数的周期性来进行推导.。
2021-2022学年上海交大附中高一(上)期末数学试卷
2021-2022学年上海交大附中高一(上)期末数学试卷试题数:21,总分:1501.(填空题,4分)函数 $y=\frac{1}{2}sin2x$ 的最小正周期T=___ .2.(填空题,4分)已知函数f(x)=ax2+2x是奇函数,则实数a=___ .3.(填空题,4分)已知集合A={x||x|<2},B={x| $\frac{1}{x+1}$ >0},则A∩B=___ .4.(填空题,4分)方程lg(2x+1)+lgx=1的解集为 ___ .5.(填空题,4分)设函数 $f(x)=\left\{{\left.\begin{array}{l}{{x^2}+1(x≥0)}\\{2x(x<0)}\end{array}\right.}\right.$ ,那么f-1(10)=___ .6.(填空题,4分)若集合A={x|3cos2πx=3x,x∈R},B={y|y2=1,y∈R},则A∩B=___ .7.(填空题,5分)幂函数y=xα,当α取不同的正数时,在区间[0,1]上它们的图象是一族美丽的曲线(如图).设点A(1,0),B(0,1),连接AB,线段AB恰好被其中的两个幂函数y=xα,y=xβ的图象三等分,即有BM=MN=NA.那么αβ=___ .8.(填空题,5分)已知函数f(x)=a x+1-2(a>0且a≠1)的图象不经过第四象限,则a的取值范围为___ .9.(填空题,5分)已知函数f(x)=asinx+cosx在 $[{0,\frac{π}{2}}]$上的最小值为-2,则实数a的值为 ___ .10.(填空题,5分)给出四个命题:其中所有的正确命题的序号是___① 存在实数α,使sinαcosα=1;② 存在实数α,使$sinα+cosα=\frac{3}{2}$ ;③ $y=sin(\frac{5π}{2}-2x)$ 是偶函数;④ $x=\frac{π}{8}$是函数 $y=sin(2x+\frac{5π}{4})$的一条对称轴方程;⑤ 若α,β是第一象限角,且α>β,则sinα>sinβ.11.(填空题,5分)某同学向王老师请教一题:若不等式x-4e x-alnx≥x+1对任意x∈(1,+∞)恒成立,求实数a的取值范围.王老师告诉该同学:“e x≥x+1恒成立,当且仅当x=0时取等号,且g(x)=x-4lnx在(1,+∞)有零点”.根据王老师的提示,可求得该问题中a的取值范围是___ .12.(填空题,5分)设二次函数f(x)=mx2-2x+n(m,n∈R),若函数f(x)的值域为[0,+∞),且f(1)≤2,则 $\frac{{m}^{2}}{{n}^{2}+1}$ + $\frac{{n}^{2}}{{m}^{2}+1}$ 的取值范围为 ___ .13.(单选题,5分)一个扇形的面积是1平方厘米,它的周长是4厘米,则它的圆心角是()弧度A.2B.3C.4D.514.(单选题,5分)对于函数f(x)=asinx+bx+c(其中,a,b∈R,c∈Z),选取a,b,c 的一组值计算f(1)和f(-1),所得出的正确结果一定不可能是()A.4和6B.3和1C.2和4D.1和215.(单选题,5分)设函数f(x)= $\frac{1}{x}$ ,g(x)=ax2+bx(a,b∈R,a≠0)若y=f (x)的图象与y=g(x)图象有且仅有两个不同的公共点A(x1,y1),B(x2,y2),则下列判断正确的是()A.当a<0时,x1+x2<0,y1+y2>0B.当a<0时,x1+x2>0,y1+y2<0C.当a>0时,x1+x2<0,y1+y2<0D.当a>0时,x1+x2>0,y1+y2>016.(单选题,5分)设函数f(x)=2x-2-x+ $\frac{3}{|x|+1}$ ,x∈R,对于实数a、b,给出以下命题:命题p1:a+b≥0;命题p2:a-b2≥0;命题q:f(a)+f(b)≥0.下列选项中正确的是()A.p1、p2中仅p1是q的充分条件B.p1、p2中仅p2是q的充分条件C.p1、p2都不是q的充分条件D.p1、p2都是q的充分条件17.(问答题,15分)已知函数 $f(x)=lg\frac{1+x}{1-x}$ 的定义域为集合A,集合B=(a,a+1),且B⊆A.(1)求实数a的取值范围;(2)求证:函数y=f(x)是奇函数但不是偶函数.18.(问答题,15分)如图,在半径为20cm的半圆形(O为圆心)铝皮上截取一块矩形材料ABCD,其中点A、B在直径上,点C、D在圆周上.(1)请你在下列两个小题中选择一题作答即可:① 设∠BOC=θ,矩形ABCD的面积为S=g(θ),求g(θ)的表达式,并写出θ的范围.② 设BC=x(cm),矩形ABCD的面积为S=f(x),求f(x)的表达式,并写出x的范围.(2)怎样截取才能使截得的矩形ABCD的面积最大?并求最大面积.19.(问答题,15分)在数学中,双曲函数是与三角函数类似的函数,最基本的双曲函数是双曲正弦函数与双曲余弦函数,其中双曲正弦: $sinh(x)=\frac{{e^x}-{e^{-x}}}{2}$ ,双曲余弦函数: $cosh(x)=\frac{{e^x}+{e^{-x}}}{2}$ .(e是自然对数的底数,e=2.71828⋯).(1)解方程:cosh(x)=2;(2)类比两角和的正弦公式,写出两角和的双曲正弦公式:sinh(x+y)=___ ,并证明;(3)若对任意t∈[0,ln2],关于x的方程sinh(t)+cosh(x)=a有解,求实数a的取值范围.20.(问答题,15分)对闭区间I,用M I表示函数y=f(x)在I上的最大值.(1)对于 $f(x)=x+\frac{4}{x}$ ,求M[1,4]的值;(2)已知 $f(x)=asin({x+\frac{π}{3}})+cos({x+\frac{π}{2}})$,且y=f(x)偶函数,${M_{[a,b]}}=\frac{\sqrt{3}}{2}$ ,求b-a的最大值;(3)已知f(x)=sinx,若有且仅有一个正数a使得M[0,a]=kM[a,2a]成立,求实数k的取值范围.21.(问答题,16分)定义域为R的函数y=f(x),对于给定的非空集合A,A⊆R,若对于A 中的任意元素a,都有f(x+a)≥f(x)成立,则称函数y=f(x)是“集合A上的Z-函数”.(1)给定集合A={-1,1},函数y=f(x)是“集合A上的Z-函数”,求证:函数y=f(x)是周期函数;(2)给定集合A={1},g(x)=ax2+bx+c,若函数y=g(x)是“集合A上的Z-函数”,求实数a、b、c所满足的条件;(3)给定集合A=[0,1],函数y=h(x)是“集合A上的Z-函数”,求证:“y=h(x)是周期函数”的充要条件是“y=h(x)是常值函数”.2021-2022学年上海交大附中高一(上)期末数学试卷参考答案与试题解析试题数:21,总分:1501.(填空题,4分)函数 $y=\frac{1}{2}sin2x$ 的最小正周期T=___ .【正确答案】:[1]π【解析】:直接利用三角函数的周期公式,求出函数的周期即可.【解答】:解:由三角函数的周期公式可知,函数y= $\frac{1}{2}$ sin2x的最小正周期为T= $\frac{2π}{2}$=π故答案为:π.【点评】:本题考查三角函数的周期公式的应用,是基础题,送分题.函数f(x)=Asin (ωx+φ)的最小正周期为;T= $\frac{2π}{|ω|}$.2.(填空题,4分)已知函数f(x)=ax2+2x是奇函数,则实数a=___ .【正确答案】:[1]0【解析】:由奇函数定义入手寻找特殊值是解决此问题的最简解法.【解答】:解:由奇函数定义有f(-x)=-f(x),则f(-1)=a-2=-f(1)=-(a+2),解得a=0.【点评】:本题考查奇函数定义.3.(填空题,4分)已知集合A={x||x|<2},B={x| $\frac{1}{x+1}$ >0},则A∩B=___ .【正确答案】:[1]{x|-1<x<2}【解析】:利用绝对值不等式及分式不等式的解法,我们易求出集合A,B,再根据集合交集运算法则,即可求出答案.【解答】:解:∵集合A={x||x|<2}=(-2,2)B={x| $\frac{1}{x+1}$ >0}=(-1,+∞)∴A∩B=(-1,2)={x|-1<x<2}故答案为:{x|-1<x<2}【点评】:本题考查的知识点是交集及其运算,其中根据绝对值不等式及分式不等式的解法,求出集合A,B,是解答本题的关键.4.(填空题,4分)方程lg(2x+1)+lgx=1的解集为 ___ .【正确答案】:[1]{2}【解析】:在保证对数式的真数大于0的前提下由对数的和等于乘积的对数去掉对数符号,求解一元二次方程得答案.【解答】:解:∵lg(2x+1)+lgx=1,∴lg(x(2x+1))=lg10,∴ $\left\{\begin{array}{l}{x>0}\\{2x+1>0}\\{x(2x+1)=10}\end{array}\right.$ ,解得:x=2.故答案为:{2}.【点评】:本题考查了对数的运算性质,关键是注意对数式本身有意义,是基础题.5.(填空题,4分)设函数 $f(x)=\left\{{\left.\begin{array}{l}{{x^2}+1(x≥0)}\\{2x(x<0)}\end{array}\right.}\right.$ ,那么f-1(10)=___ .【正确答案】:[1]3【解析】:欲求f-1(10),根据原函数的反函数为f-1(x)知,只要求满足于f(x)=10的x 的值即可,故只要解方程f(x)=10即得.【解答】:解:令f(t)=10,则t=f-1(10),当t<0有2t=10⇒t=5,不合,当t≥0有t2+1=10⇒t=-3(舍去)或t=3,那么f-1(10)=3故答案为:3.【点评】:本题主要考查了反函数,一般地,设函数y=f(x)(x∈A)的值域是C,根据这个函数中x,y 的关系,用y把x表示出,得到x=f(y).若对于y在C中的任何一个值,通过x=f(y),x在A中都有唯一的值和它对应,那么,x=f(y)就表示y是自变量,x是因变量y的函数,这样的函数x=f(y)(y∈C)叫做函数y=f(x)(x∈A)的反函数,记作y=f-1(x).6.(填空题,4分)若集合A={x|3cos2πx=3x,x∈R},B={y|y2=1,y∈R},则A∩B=___ .【正确答案】:[1]{1}【解析】:利用余弦函数和指数函数的图象化简集合A,求解二次方程化简集合B,然后直接取交集运算.【解答】:解:函数y=3cos2πx与y=3x的图象如图,所以A={x|3cos2πx=3x,x∈R}={x1,x2,1},B={y|y2=1,y∈R}={-1,1},所以A∩B={x1,x2,1}∩{-1,1}={1}.故答案为{1}.【点评】:本题考查了交集及其运算,考查了余弦函数和指数函数的图象,解答的关键是由余弦函数和指数函数的图象化简集合A.是基础题.7.(填空题,5分)幂函数y=xα,当α取不同的正数时,在区间[0,1]上它们的图象是一族美丽的曲线(如图).设点A(1,0),B(0,1),连接AB,线段AB恰好被其中的两个幂函数y=xα,y=xβ的图象三等分,即有BM=MN=NA.那么αβ=___ .【正确答案】:[1]1【解析】:先确定M、N的坐标,然后求得α,β;再求αβ的值.【解答】:解:BM=MN=NA,点A(1,0),B(0,1),所以M $(\frac{1}{3},\frac{2}{3})$N $(\frac{2}{3},\frac{1}{3})$ ,分别代入y=xα,y=xβ$α={log}_{\frac{2}{3}}^{\frac{1}{3}},\;\;\;β={log}_{\frac{1}{3}}^{\frac{2}{3}}$$αβ={log}_{\frac{1}{3}}^{\frac{2}{3}}\bullet {log}_{\frac{2}{3}}^{\frac{1}{3}}=1$故答案为:1【点评】:本题考查指数与对数的互化,幂函数的图象,是基础题.8.(填空题,5分)已知函数f(x)=a x+1-2(a>0且a≠1)的图象不经过第四象限,则a的取值范围为___ .【正确答案】:[1][2,+∞)【解析】:根据指数函数的图象与性质,求出f(x)恒过定点,结合题意列不等式求出a的取值范围.【解答】:解:函数f(x)=a x+1-2(a>0且a≠1)中,令x+1=0,得x=-1,所以f(-1)=1-2=-1,即f(x)的图象过定点(-1,-1);由f(x)的图象不经过第四象限,则f(0)=a-2≥0,解得a≥2,所以a的取值范围是[2,+∞).故答案为:[2,+∞).【点评】:本题主要考查了指数型函数的图象与性质的应用问题,是基础题.9.(填空题,5分)已知函数f(x)=asinx+cosx在 $[{0,\frac{π}{2}}]$上的最小值为-2,则实数a的值为 ___ .【正确答案】:[1]-2【解析】:f(x)=asinx+cosx在 $[{0,\frac{π}{2}}]$上的最小值为-2,可分a≥0与a<0两类讨论,结合题意求得实数a的值.【解答】:解:∵函数f(x)=asinx+cosx在 $[{0,\frac{π}{2}}]$上的最小值为-2,① 若a≥0,则y=asinx≥0,y=cosx≥0,f(x)≥0,与题意不符;② 若a<0,则y=asinx与y=cosx均在 $[{0,\frac{π}{2}}]$上单调递减,∴f(x)=asinx+cosx在 $[{0,\frac{π}{2}}]$上单调递减,∴f(x)min=f( $\frac{π}{2}$)=a=-2,符合题意,故答案为:-2.【点评】:本题考查三角函数的单调性与最值,考查分类讨论思想与逻辑思维能力及运算求解能力,属于中档题.10.(填空题,5分)给出四个命题:其中所有的正确命题的序号是___① 存在实数α,使sinαcosα=1;② 存在实数α,使$sinα+cosα=\frac{3}{2}$ ;③ $y=sin(\frac{5π}{2}-2x)$ 是偶函数;④ $x=\frac{π}{8}$是函数 $y=sin(2x+\frac{5π}{4})$的一条对称轴方程;⑤ 若α,β是第一象限角,且α>β,则sinα>sinβ.【正确答案】:[1] ③ ④【解析】:根据二倍角公式得到sinαcosα= $\frac{1}{2}$ sin2α,结合正弦函数的值域可判断① 正误;根据两角和与差的正弦公式可得到sinα+cosα= $\sqrt{2}$ sin(α+ $\frac{π}{4}$)结合正弦函数的可判断② 正误;根据诱导公式得到 $y=sin(\frac{5π}{2}-2x)$ =sin( $\frac{π}{2}$ -2x)=cos2x,再由余弦函数的奇偶性可判断③ 正误;将 $x=\frac{π}{8}$代入到 $y=sin(2x+\frac{5π}{4})$得到sin(2× $\frac{π}{8}$ +$\frac{5π}{4}$)=sin $\frac{3π}{2}$ =-1,根据正弦函数的对称性可判断④ 正误.利用反例判断⑤ 的正误,即可.【解答】:解:对于① ,由sinα•cosα=1,得sin2α=2,矛盾;① 错误.对于② ,由$sinα+cosα=\frac{3}{2}$ ,得 $\sqrt{2}$ sin(α+ $\frac{π}{4}$)=$\frac{3}{2}$ ,矛盾;② 错误.对于③ , $y=sin(\frac{5π}{2}-2x)$ =sin( $\frac{π}{2}$ -2x)=cos2x,是偶函数;③ 正确.对于④ ,将 $x=\frac{π}{8}$代入到 $y=sin(2x+\f rac{5π}{4})$得到sin(2× $\frac{π}{8}$ + $\frac{5π}{4}$)=sin $\frac{3π}{2}$ =-1, $x=\frac{π}{8}$是函数$y=sin(2x+\frac{5π}{4})$的图象的一条对称轴方程.④ 正确.对于⑤ ,不妨取β=60°,α=390°,α>β但是sinα<sinβ.∴ ⑤ 不正确.故③ ④ 正确故答案为:③ ④ .【点评】:本题主要考查二倍角公式、两角和与差的公式、诱导公式和三角函数的对称性.考查三角函数公式的综合应用.三角函数的公式比较多,很容易记混,平时要注意积累.是基础题.11.(填空题,5分)某同学向王老师请教一题:若不等式x-4e x-alnx≥x+1对任意x∈(1,+∞)恒成立,求实数a的取值范围.王老师告诉该同学:“e x≥x+1恒成立,当且仅当x=0时取等号,且g(x)=x-4lnx在(1,+∞)有零点”.根据王老师的提示,可求得该问题中a的取值范围是___ .【正确答案】:[1](-∞,-4]【解析】:根据函数h(x)=x-4lnx在(1,+∞)有零点,设为x0,得到x0=4lnx0,e x0=x04,根据函数h(x)的单调性求出x0的范围,根据f(x0)=-(a+4)lnx0≥0,得到关于a的不等式,解出即可.【解答】:解:x-4e x-alnx≥x+1,即 $\frac{{e}^{x}}{{x}^{4}}$ -alnx≥x+1,令f(x)= $\frac{{e}^{x}}{{x}^{4}}$ -alnx-x-1,(x>1),函数h(x)=x-4lnx在(1,+∞)有零点,设为x0,则h(x0)=x0-4lnx0=0,则x0=4lnx0,则e x0= ${{x}_{0}}^{4}$ ,h′(x)=1- $\frac{4}{x}$ = $\frac{x-4}{x}$ ,令h′(x)>0,解得:x>4,令h′(x)<0,解得:1<x<4,故h(x)在(1,4)递减,在(4,+∞)递增,而h(1)=1,h(4)=4-4ln4<0,故1<x0<4,故f(x0)= $\frac{{e}^{{x}_{0}}}{{{x}_{0}}^{4}}$ -alnx0-x0-1=$\frac{{{x}_{0}}^{4}}{{{x}_{0}}^{4}}$ -alnx0-4lnx0-1=-(a+4)lnx0≥0,∵lnx0>0,∴a+4≤0,故a≤-4,故a的取值范围是(-∞,-4],故答案为:(-∞,-4].【点评】:本题考查了函数的单调性,最值问题,考查导数的应用以及函数恒成立问题,考查转化思想,是一道综合题.12.(填空题,5分)设二次函数f(x)=mx2-2x+n(m,n∈R),若函数f(x)的值域为[0,+∞),且f(1)≤2,则 $\frac{{m}^{2}}{{n}^{2}+1}$ + $\frac{{n}^{2}}{{m}^{2}+1}$ 的取值范围为 ___ .【正确答案】:[1][1,13]【解析】:根据二次函数的性质以及基本不等式的性质求出代数式的取值范围即可.【解答】:解:二次函数f(x)=mx2-2x+n(m,n∈R),若函数f(x)的值域为[0,+∞),则Δ=4-4mn=0,解得:mn=1,且m>0,又f(1)=m-2+n≤2,n= $\frac{1}{m}$ ,则m+ $\frac{1}{m}$ ≤4,∴ $\frac{{m}^{2}}{{n}^{2}+1}$ + $\frac{{n}^{2}}{{m}^{2}+1}$= $\frac{{m}^{2}}{1+\frac{1}{{m}^{2}}}$ + $\frac{\frac{1}{{m}^{2}}}{1{+m}^{2}}$= $\frac{{m}^{6}+1}{{m}^{2}(1{+m}^{2})}$= $\frac{{m}^{4}{-m}^{2}+1}{{m}^{2}}$=m2+ $\frac{1}{{m}^{2}}$ -1,而由m+ $\frac{1}{m}$ ≤4,m>0,得2≤m2+ $\frac{1}{{m}^{2}}$ ≤14,故m2+ $\frac{1}{{m}^{2}}$ -1的取值范围是[1,13],即 $\frac{{m}^{2}}{{n}^{2}+1}$ + $\frac{{n}^{2}}{{m}^{2}+1}$ 的取值范围是[1,13],故答案为:[1,13].【点评】:本题考查了二次函数的性质,考查基本不等式的性质,是中档题.13.(单选题,5分)一个扇形的面积是1平方厘米,它的周长是4厘米,则它的圆心角是()弧度A.2B.3C.4D.5【正确答案】:A【解析】:结合扇形面积公式及弧长公式可求l,r,然后结合扇形圆心角公式可求.【解答】:解:设扇形半径r,弧长l,则$\left\{\begin{array}{l}{l+2r=4}\\{\frac{1}{2}lr=2}\end{array}\right.$ ,解得r=1,l=2,所以圆心角为 $\frac{l}{r}$ =2.故选:A.【点评】:本题主要考查了扇形面积公式及弧长公式,属于基础题.14.(单选题,5分)对于函数f(x)=asinx+bx+c(其中,a,b∈R,c∈Z),选取a,b,c 的一组值计算f(1)和f(-1),所得出的正确结果一定不可能是()A.4和6C.2和4D.1和2【正确答案】:D【解析】:求出f(1)和f(-1),求出它们的和;由于c∈Z,判断出f(1)+f(-1)为偶数.【解答】:解:f(1)=asin1+b+c ①f(-1)=-asin1-b+c ②① + ② 得:f(1)+f(-1)=2c∵c∈Z∴f(1)+f(-1)是偶数故选:D.【点评】:本题考查知函数的解析式求函数值、考查偶数的特点.15.(单选题,5分)设函数f(x)= $\frac{1}{x}$ ,g(x)=ax2+bx(a,b∈R,a≠0)若y=f (x)的图象与y=g(x)图象有且仅有两个不同的公共点A(x1,y1),B(x2,y2),则下列判断正确的是()A.当a<0时,x1+x2<0,y1+y2>0B.当a<0时,x1+x2>0,y1+y2<0C.当a>0时,x1+x2<0,y1+y2<0D.当a>0时,x1+x2>0,y1+y2>0【正确答案】:B【解析】:画出函数的图象,利用函数的奇偶性,以及二次函数的对称性,不难推出结论.【解答】:解:当a<0时,作出两个函数的图象,若y=f(x)的图象与y=g(x)图象有且仅有两个不同的公共点,必然是如图的情况,因为函数f(x)= $\frac{1}{x}$ 是奇函数,所以A与A′关于原点对称,显然x2>-x1>0,即x1+x2>0,-y1>y2,即y1+y2<0,同理,当a>0时,有当a>0时,x1+x2<0,y1+y2>0【点评】:本题考查的是函数图象,直接利用图象判断;也可以利用了构造函数的方法,利用函数与导数知识求解.要求具有转化、分析解决问题,由一般到特殊的能力.题目立意较高,很好的考查能力.16.(单选题,5分)设函数f(x)=2x-2-x+ $\frac{3}{|x|+1}$ ,x∈R,对于实数a、b,给出以下命题:命题p1:a+b≥0;命题p2:a-b2≥0;命题q:f(a)+f(b)≥0.下列选项中正确的是()A.p1、p2中仅p1是q的充分条件B.p1、p2中仅p2是q的充分条件C.p1、p2都不是q的充分条件D.p1、p2都是q的充分条件【正确答案】:D【解析】:令f(x)=g(x)+h(x),g(x)=2x-2-x,h(x)= $\frac{3}{|x|+1},x∈R$,g (x)是奇函数,在R上单调递增,h(x)是偶函数,在(-∞,0)单调增,在(0,+∞)单调减,且h(x)>0,根据这些信息即可判断.【解答】:解:令f(x)=g(x)+h(x),g(x)=2x-2-x,h(x)= $\frac{3}{|x|+1},x∈R$,g(x)是奇函数,在R上单调递增,h(x)是偶函数,在(-∞,0)单调增,在(0,+∞)单调减,且h(x)>0,f(a)+f(b)≥0⇒f(a)≥-f(b),即g(a)+h(a)≥-g(b)-h(b),即g(a)+h(a)≥g(-b)+[-h(b)],① 当a+b≥0时,a≥-b,故g(a)≥g(-b),又h(x)>0,故h(a)>-h(b),∴此时f(a)+f(b)≥0,可得p1是q的充分条件;② 当a-b2≥0时,则有:a≥0, $-\sqrt{a}≤b≤\sqrt{a}$ , $-\sqrt{a}≤-b≤\sqrt{a}$ ,(i)当a≥1时,a≥ $\sqrt{a}$ ,则-b≤a,故g(a)≥g(-b);此时,h(a)>0,-h(b)<0,∴h(a)>-h(b),∴f(a)+f(b)≥0成立;(ii)当a=0时,b=0,f(0)+f(0)=6≥0成立,即f(a)+f(b)≥0成立;(iii)∵g(x)在R上单调递增,h(x)在(-∞,0)单调递增,∴f(x)=g(x)+h(x)在(-∞,0)单调递增,∵f(-1)=0,∴f(x)>0在(-1,0)上恒成立;又∵x≥0时,g(x)≥0,h(x)>0,∴f(x)>0在[0,+∞)上恒成立,∴f(x)>0在(-1,+∞)恒成立,故当0<a<1时,a< $\sqrt{a}$ <1,-1<- $\sqrt{a}≤b≤\sqrt{a}<1$ ,∴f(a)>0,f(b)>0,∴f(a)+f(b)≥0成立.综上所述,a-b2≥0时,均有f(a)+f(b)≥0成立,∴p2是q的充分条件.故选:D.【点评】:本题的关键是将函数f(x)拆成一个奇函数和一个函数值始终为正数的偶函数之和,考查对函数基本性质的掌握与熟练运用.17.(问答题,15分)已知函数 $f(x)=lg\frac{1+x}{1-x}$ 的定义域为集合A,集合B=(a,a+1),且B⊆A.(1)求实数a的取值范围;(2)求证:函数y=f(x)是奇函数但不是偶函数.【正确答案】:【解析】:(1)由 $\frac{1+x}{1-x}$ >0可求得f(x)的定义域A,由B=(a,a+1),且B⊆A,列式计算可求得答案;(2)可证得f(x)+f(-x)=0,从而可得结论成立.【解答】:解:(1)由 $\frac{1+x}{1-x}$ >0得-1<x<1,∴函数 $f(x)=lg\frac{1+x}{1-x}$ 的定义域A=(-1,1);又B=(a,a+1),且B⊆A,∴ $\left\{\begin{array}{l}{a≥-1}\\{a+1≤1}\end{array}\right.$ ,解得-1≤a≤0,即a∈[-1,0];(2)证明:∵f(x)+f(-x)=lg $\frac{1+x}{1-x}$ +lg $\frac{1-x}{1+x}$ =lg( $\frac{1+x}{1-x}$ • $\frac{1-x}{1+x}$ )=lg1=0,∴f(-x)=-f(x),f(-x)≠f(x),∴函数y=f(x)是奇函数但不是偶函数.【点评】:本题考查函数奇偶性的性质与判断,考查推理能力与运算求解能力,属于中档题.18.(问答题,15分)如图,在半径为20cm的半圆形(O为圆心)铝皮上截取一块矩形材料ABCD,其中点A、B在直径上,点C、D在圆周上.(1)请你在下列两个小题中选择一题作答即可:① 设∠BOC=θ,矩形ABCD的面积为S=g(θ),求g(θ)的表达式,并写出θ的范围.② 设BC=x(cm),矩形ABCD的面积为S=f(x),求f(x)的表达式,并写出x的范围.(2)怎样截取才能使截得的矩形ABCD的面积最大?并求最大面积.【正确答案】:【解析】:(1)① 连接OC,设∠BOC=θ,矩形ABCD的面积为S,则S=AB•BC=2OB•BC=900sin2θ,由三角函数的知识,得出S的最大值以及对应BC的值.② 连接OC,设BC=x,矩形ABCD的面积为S;则S=AB•BC=2x $\sqrt{400-{x}^{2}}$ =2 $\sqrt{{x}^{2}(400-{x}^{2})}$ ,由基本不等式可得S的最大值以及对应的x的取值;(2)根据(1)问的解答,即可得出怎样截取才能使截得的矩形ABCD的面积最大及最大值.【解答】:解:如图所示,(1)① 连接OC,设∠BOC=θ,矩形ABCD的面积为S,则BC=20sinθ,OB=20cosθ(其中0<θ< $\frac{π}{2}$);∴S=AB•BC=2OB•BC=400sin2θ,且当sin2θ=1,即θ= $\frac{π}{4}$时,S取最大值为400,此时BC=10 $\sqrt{2}$ ;所以,取BC=10 $\sqrt{2}$ 时,矩形ABCD的面积最大,最大值为400cm2.② 连接OC,设BC=x,矩形ABCD的面积为S;则AB=2 $\sqrt{400-{x}^{2}}$ (其中0<x<20),∴S=2x $\sqrt{400-{x}^{2}}$ =2 $\sqrt{{x}^{2}(400-{x}^{2})}$ ≤x2+(400-x2)=400,当且仅当x2=400-x2,即x=10 $\sqrt{2}$ 时,S取最大值400;所以,取BC=10 $\sqrt{2}$ cm时,矩形ABCD的面积最大,最大值为400cm2.(2)由(1)知,取∠BOC= $\frac{π}{4}$时,得到C点,从而截得的矩形ABCD,此时截得的矩形ABCD的面积最大,最大值为400cm2.【点评】:本题综合考查了二次函数、三角函数的最值问题,这里应用了基本不等式的方法求出了函数的最值.19.(问答题,15分)在数学中,双曲函数是与三角函数类似的函数,最基本的双曲函数是双曲正弦函数与双曲余弦函数,其中双曲正弦: $sinh(x)=\frac{{e^x}-{e^{-x}}}{2}$ ,双曲余弦函数: $cosh(x)=\frac{{e^x}+{e^{-x}}}{2}$ .(e是自然对数的底数,e=2.71828⋯).(1)解方程:cosh(x)=2;(2)类比两角和的正弦公式,写出两角和的双曲正弦公式:sinh(x+y)=___ ,并证明;(3)若对任意t∈[0,ln2],关于x的方程sinh(t)+cosh(x)=a有解,求实数a的取值范围.【正确答案】:sinh(x)cosh(y)+cosh(x)sinh(y)【解析】:(1)cosh(x)=2,即e x+e-x=4,化简得(e x)2-4e x+1=0,即可求解,(2)sinh(x+y)=sinh(x)cosh(y)+cosh(x)sinh(y),将双曲正弦与双曲余弦函数分别代入左右两边验证,即可证明,(3)分析可知a≥ $\frac{{e}^{t}-{e}^{-t}}{2}$ +1有解,利用函数的单调性可求得实数a的取值范围.【解答】:解:(1)cosh(x)=2,即:e x+e-x=4,整理得(e x)2-4e x+1=0,解得:x=ln(2± $\sqrt{3}$ ).(2)sinh(x+y)=sinh(x)cosh(y)+cosh(x)sinh(y),理由:左边=sinh(x+y)= $\frac{{e}^{x+y}-{e}^{-x-y}}{2}$ ,右边=sinh(x)cosh(y)+cosh(x)sinh(y)= $\frac{{e}^{x}-{e}^{-x}}{2}$ ×$\frac{{e}^{y}+{e}^{-y}}{2}$ + $\frac{{e}^{x}+{e}^{-x}}{2}$ × $\frac{{e}^{y}-{e}^{-y}}{2}$ = $\frac{{e}^{x+y}+{e}^{x-y}-{e}^{y-x}-{e}^{-x-y}}{2}$ × $\frac{1}{2}$ +$\frac{{e}^{x+y}+{e}^{y-x}-{e}^{x-y}-{e}^{-x-y}}{4}$ = $\frac{{e}^{x+y}-{e}^{-x-y}}{2}$ ,左边等于右边,于是sinh(x+y)=sinh(x)cosh(y)+cosh(x)sinh(y)成立.(3)因为t∈[0,ln2],则1≤e t≤2,则a=sinh(t)+cosh(x)= $\frac{{e}^{t}-{e}^{-t}}{2}$ + $\frac{{e}^{x}+{e}^{-x}}{2}$ ,所以a- $\frac{{e}^{t}-{e}^{-t}}{2}$ = $\frac{{e}^{x}+{e}^{-x}}{2}$ ≥ $\sqrt{{e}^{x}\bullet {e}^{-x}}$ =1,当且仅当x=0时取等号,则a≥ $\frac{{e}^{t}-{e}^{-t}}{2}$ +1有解,因为函数y=e t,y=-e-t均为[0,ln2]上的增函数,故函数g(t)= $\frac{{e}^{t}-{e}^{-t}}{2}$ +1在[0,ln2]上为增函数,所以a≥g(t)min=g(0)=1,故实数a的取值范围为[1,+∞).【点评】:本题考查的知识要点:函数的性质,函数的单调性,基本不等式,构造函数的应用,主要考查学生的运算能力和数学思维能力,属于中档题.20.(问答题,15分)对闭区间I,用M I表示函数y=f(x)在I上的最大值.(1)对于 $f(x)=x+\frac{4}{x}$ ,求M[1,4]的值;(2)已知 $f(x)=asin({x+\frac{π}{3}})+cos({x+\frac{π}{2}})$,且y=f(x)偶函数,${M_{[a,b]}}=\frac{\sqrt{3}}{2}$ ,求b-a的最大值;(3)已知f(x)=sinx,若有且仅有一个正数a使得M[0,a]=kM[a,2a]成立,求实数k的取值范围.【正确答案】:【解析】:(1)判断y=f(x)的单调性即可求解;(2)由偶函数求得a=2,根据y=f(x)的最大值判断a,b范围,即可求解;(3)讨论0<k<1与1≤k,当M[0,a]=kM[a,2a]时,判断正数a的取值个数,即可求解.【解答】:解:(1)对任意x1,x2∈[1,2],且x1<x2时,由 $f(x_{1})-f(x_{2})=x_{1}+\frac{4}{x_{1}}-(x_{2}+\frac{4}{x_{2}})=(x_{1}-x_{2})(1-\frac{4}{x_{1}x_{2}})>0$ ,对任意x1,x2∈[2,4],且 x1<x2时,由 $f(x_{1})-f(x_{2})=x_{1}+\frac{4}{x_{1}}-(x_{2}+\frac{4}{x_{2}})=(x_{1}-x_{2})(1-\frac{4}{x_{1}x_{2}})<0$ ,所以 $f(x)=x+\frac{4}{x}$ 在[1,2]上单调递减,在[2,4]上单调递增;又 $f(1)=1+\frac{4}{1}=5,f(4)=4+\frac{4}{4}=5$ ,所以M[1,4]=5;(2)由于y=f(x)是偶函数,所以 $f(-\frac{π}{6})=f(\frac{π}{6})$,则 $asin(-\frac{π}{6}+\frac{π}{3})+cos(-\frac{π}{6}+\frac{π}{2})=asin(\frac{π}{6}+\frac{π}{3})+cos(\frac{π}{6}+\frac{π}{2})$,解得a=2;则 $f(x)=2sin(x+\frac{π}{3})+cos(x+\frac{π}{2})=\sqrt{3}cosx$ ,因为 ${M}_{[a,b]}=\frac{\sqrt{3}}{2}$ ,所以 $\f rac{π}{3}+2kπ≤a<b≤\frac{5π}{3}+2kπ,k∈Z$,故b-a的最大值为 $\frac{4π}{3}$.(3)① 当0<k<1时,由于M[0,a]=kM[a,2a],则M[0,a]<M[a,2a],所以 $0<a<\frac{π}{2}$,若 $0<a<\frac{π}{4}$时,有M[0,a]=sina,M[a,2a]=sin2a=2sinacosa,所以sina=2ksinacosa,得 $cosa=\frac{1}{2k}$ ;若 $0<k≤\frac{1}{2}$ 时,有 $cosa=\frac{1}{2k}∈[1,+∞)$,此时a无解;若 $\frac{1}{2}<k<\frac{\sqrt{2}}{2}$ 时,有 $cosa=\frac{1}{2k}∈(\frac{\sqrt{2}}{2},1)$ ,此时a有一解;若 $\frac{\sqrt{2}}{2}≤k<1\;\\;时,\\;\\;有cosa=\frac{1}{2k}∈(\frac{1}{2},\frac{\sqrt{2}}{2}]$ 时有 $cosa=\frac{1}{2k}∈(\frac{1}{2},\frac{\sqrt{2}}{2}]$ ,此时 a 无解;若$\frac{π}{4}≤a<\frac{π}{2}$时,有$M_{[0,a]}=sina,M_{[a,2a]}=sin\frac{π}{2}=1$,所以sina=k,因为$sina∈[\frac{\sqrt{2}}{2},1)$ ,若 $0<k≤\frac{1}{2}$ 时,此时a无解;若 $\frac{1}{2}<k<\frac{\sqrt{2}}{2}$ 时,此时a无解;若 $\frac{\sqrt{2}}{2}≤k<1$ 时,此时a有一解;② 当k≥1时,由于M[0,a]=kM[a,2a],则M[0,a]≥M[a,2a],所以 $\frac{π}{2}≤a$,有 $M_{[0,a]}=sin\frac{π}{2}=1$,则 $M_{[a,2a]}=\frac{1}{k}$ ,若k=1,则M[a,2a]=1 得 $a=\frac{π}{2}$或 $a=\frac{5π}{4}$等,若 $1<k,M_{[a,2a]}=\frac{1}{k}$ ,则 $sina=\frac{1}{k}$ 或 $sin2a=\frac{1}{k}$ ,在$[\frac{π}{2},\frac{5π}{4}]$上,a 必有两解.综上所述: $\frac{1}{2}<k<1$ ,即k的取值范围是( $\frac{1}{2}$ ,1).【点评】:本题考查了三角函数的最值问题,用到分类讨论的思想,属于难题.21.(问答题,16分)定义域为R的函数y=f(x),对于给定的非空集合A,A⊆R,若对于A 中的任意元素a,都有f(x+a)≥f(x)成立,则称函数y=f(x)是“集合A上的Z-函数”.(1)给定集合A={-1,1},函数y=f(x)是“集合A上的Z-函数”,求证:函数y=f(x)是周期函数;(2)给定集合A={1},g(x)=ax2+bx+c,若函数y=g(x)是“集合A上的Z-函数”,求实数a、b、c所满足的条件;(3)给定集合A=[0,1],函数y=h(x)是“集合A上的Z-函数”,求证:“y=h(x)是周期函数”的充要条件是“y=h(x)是常值函数”.【正确答案】:【解析】:(1)推导出f(x)≥f(x+1)且f(x+1)≥f(x),可得出f(x)=f(x+1),由此能证明结论成立;(2)由已知可得2ax+a+b≥0对任意x∈R恒成立,由此能求出实数a、b、c所满足的条件;(3)利用Z-函数的定义、函数的周期性的定义,结合充分条件、必要条件的定义,能证明结论成立.【解答】:解:(1)证明:由题意得对任意x∈R,f(x-1)≥f(x),可得f(x)≥f(x+1),对任意的x∈R,f(x+1)≥f(x),∴f(x)=f(x+1),∴函数y=f(x)是周期函数.(2)由题意可知,对任意的x∈R,g(x+1)≥g(x),即a(x+1)2+b(x+1)+c≥ax2+bx+c,∴2ax+a+b≥0对任意的x∈R恒成立,∴ $\left\{\begin{array}{l}{2a=0}\\{a+b≥0}\end{array}\right.$ ,∴a=0,b≥0,c∈R.(3)证明:若函数y=h(x)是周期函数,设其周期为T(T>0),∵函数y=h(x)是集合Ah的Z-函数,则存在a1∈(0,1),k∈N*,使得ka1≤T≤(k+1)a1,∴0≤T-ka1≤a1≤1,0≤(k+1)a1-T≤a<1,对任意的x0∈R,h(x0)≤h(x0+a1)≤•••≤h(x0+ka1)≤h[(x0+ka1)+T-ka1]=h(x0+T)=h(x0),∴h(x0)=h(x0+a1)=•••=h(x0+ka1)=h(x0+T),∴对任意的x∈[x0,x0+T],h(x)=h(x0),对任意的n∈Z,h(x0)=h(x0+nT),且R=•••∪[x0-2T,x0-T]∪[x0-T,x0]∪[x0,x0+T]∪•••,∴对任意的x∈R,h(x)=h(x0)=C为常数,即”y=h(x)是周期函数“⇒”y=h(x)是常值函数“,若函数y=h(x)是常值函数,对任意的x∈R,a∈A,h(x+a)≥h(x)成立,且h(x+ $\frac{1}{2}$ )=h(x),∴函数y=h(x)是周期函数,即”y=h(x)是常值函数“⇒”y=h(x)是周期函数“,综上,“y=h(x)是周期函数”的充要条件是“y=h(x)是常值函数”.【点评】:本题考查周期函数、充要条件的证明,考查满足条件的实数的求法,考查函数的周期性、函数值等基础知识,考查运算求解能力,是中档题.。
2020-2021学年上海市交通大附属中学高一上学期期中考试数学试卷(含详解)
上海交通大学附属中学2020-2021学年第一学期高一数学期中考试试卷一、填空题(1-6每小题4分,7-12每小题5分,共54分)1.已知全集{}0,1,2,3,4U =,集合{}1,2A =,{}2,3B =则A B ⋂=______.2.函数20202022(0,1)x y aa a +=+>≠的图像恒过定点______.3.已知幂函数()()22322n nf x n n x-=+-(n Z ∈)的图象关于y 轴对称,且在()0,∞+上是减函数,则n 的值为______.4.函数132xy x-=+的图象中心是______.5.函数y =的定义域是______.6.已知实数a 满足()()3322211a a --->+,则实数a 的取值范围是_________.7.已知6x <,求2446x x x ++-的最大值______.8.设log c a 、log c b 是方程2530x x +-=的两个实根,则log b ac =______.9.著名的哥德巴赫猜想指出:“任何大于2的偶数可以表示为两个素数的和”,用反证法研究该猜想,应假设的内容是_______.10.若关于x 的方程222210()x xa a a R +⋅++=∈有实根,则实数a 的取值范围是______.11.已知函数)()lg f x ax =的定义域为R ,则实数a 的取值范围是____________.12.若实数、满足114422x y x y +++=+,则22x y S =+的取值范围是_______.二、选择题(每小题5分,共20分)13.已知,a b ∈R ,则“33a b >”是“33a b >”的A.充分非必要条件B.必要非充分条件C.充要条件D.既非充分也非必要条件14.若函数()()log a f x x b =+的大致图象如图,其中,a b 为常数,则函数()xg x a b =+的大致图像是()A. B.C. D.15.由无理数引发的数学危机一直延续到19世纪.直到1872年,德国数学家戴德金从连续性的要求出发,用有理数的“分割”来定义无理数(史称戴德金分割),并把实数理论建立在严格的科学基础上,才结束了无理数被认为“无理”的时代,也结束了持续2000多年的数学史上的第一次大危机.所谓戴德金分割,是指将有理数集Q 划分为两个非空的子集M 与N ,且满足Q M N ⋃=,M N ⋂=∅,M 中的每一个元素都小于N 中的每一个元素,则称(,)M N 为戴德金分割.试判断,对于任一戴德金分割(,)M N ,下列选项中,不可能成立的是()A.M 没有最大元素,N 有一个最小元素 B.M 没有最大元素,N 也没有最小元素C.M 有一个最大元素,N 有一个最小元素D.M 有一个最大元素,N 没有最小元素16.设函数()y f x =的定义域D ,若对任意的1x D ∈,总存在2x D ∈,使得()()121f x f x ⋅=,则称函数()y f x =具有性质M .下列结论:①函数3xy =具有性质M ;②函数3y x x =-具有性质M ;③若函数8log (2)y x =+,[]0,x t ∈具有性质M ,则510t =.其中正确的个数是()A.0个B.1个C.2个D.3个三、解答题(共5题,满分76分)17.已知函数2()|21|f x x a x a =-+-+.(1)当2a =时,求不等式()4f x ≥的解集;(2)若()4f x ≥,求a 的取值范围.18.有一种候鸟每年都按一定的路线迁徙,飞往繁殖地产卵,科学家经过测量发现候鸟的飞行速所度可以表示为函数301log lg 2100x v x =-,单位是km /min ,其中x 表示候鸟每分钟耗氧量的单位数,常数0x 表示测量过程中候鸟每分钟的耗氧偏差.(参考数据lg 20.3,= 1.2 1.43 3.74,3 4.66==)(1)若05x =,候鸟停下休息时,它每分钟的耗氧量为多少个单位?(2)若雄鸟的飞行速度为1.5km /min ,雌鸟的飞行速度为1km /min ,那么此时雄鸟每分钟的耗氧量是雌鸟每分钟耗氧量的多少倍?19.柯西不等式具体表述如下:对任意实数1a ,2a ,n a 和1b ,2b n b ,(,2)n Z n ∈≥都有()()()222222212121122n n n n a a a b b b a b a b a b ++++++≥+++L L L ,当且仅当1212n na a ab b b ===L 时取等号.(1)请用柯西不等式证明:对任意正实数a ,b ,x ,y ,不等式222()a b a b x y x y++≥+成立,(并指出等号成立条件)(2)请用柯西不等式证明:对任意正实数1x ,2x , ,n x ,且121n x x x +++= ,求证:12212211111x x x x x x n+++≥++++ (并写出等号成立条件).20.已知函数、()y f x =的表达式为()(0,1)xf x a a a =>≠,且1(2)4f -=,(1)求函数()y f x =的解析式;(2)若()()22log ()4()0m f x f x -+=在区间[]0,2上有解,求实数m 的取值范围;(3)已知113k ≤<,若方程()10f x k --=的解分别为1x 、()212x x x <,方程()1021k f x k --=+的解分别为3x 、()434x x x <,求1234x x x x -+-的最大值.21.对于集合{}()12,,,3n A a a a n Z n =∈≥ ,其中每个元素均为正整数,如果任意去掉其中一个元素(1,2,3,)i a i n = 之后,剩余的所有元素组成集合(1,2,)i A i n = ,并且i A 都能分为两个集合B 和C ,满足B C =∅ ,i B C A ⋃=,其中B 和C 的所有元素之和相等,就称集合A 为“可分集合”.(1)判断集合{}1,2,3,4和{}1,3,5,7,9,11,13是否是“可分集合”(不必写过程);(2)求证:五个元素的集合{}12345,,,,A a a a a a =一定不是“可分集合”;(3)若集合{}()12,,,3n A a a a n Z n =∈≥ 是“可分集合”.①证明:n 为奇数;②求集合A 中元素个数的最小值.上海交通大学附属中学2020-2021学年第一学期高一数学期中考试试卷一、填空题(1-6每小题4分,7-12每小题5分,共54分)1.已知全集{}0,1,2,3,4U =,集合{}1,2A =,{}2,3B =则A B ⋂=______.【答案】{}1【解析】【分析】通过全集,计算出{}0,1,4B =,根据交集的定义即可.【详解】因为{}0,1,2,3,4U =,{}2,3B =,所以{}0,1,4B =所以{}1A B ⋂=.故答案为:{}1.2.函数20202022(0,1)x y aa a +=+>≠的图像恒过定点______.【答案】()2020,2023-【解析】【分析】根据01(0,1)a a a =>≠,结合条件,即可求得答案.【详解】 01(0,1)a a a =>≠,令20200x +=,得2020x =-,020222023y a =+=,∴函数20202022(0,1)x y a a a +=+>≠的图象恒过定点()2020,2023-,故答案为:()2020,2023-.3.已知幂函数()()22322n n f x n n x -=+-(n Z ∈)的图象关于y 轴对称,且在()0,∞+上是减函数,则n 的值为______.【答案】1【解析】【分析】根据函数是幂函数得2221+-=n n ,求得3n =-或1,再检验是否符合题意即可.【详解】因为()()22322n n f x n n x -=+-是幂函数,2221n n ∴+-=,解得3n =-或1,当3n =-时,()18=f x x 是偶函数,关于y 轴对称,在()0,∞+单调递增,不符合题意,当1n =时,()2f x x -=是偶函数,关于y 轴对称,在()0,∞+单调递减,符合题意,1n ∴=.故答案为:1.4.函数132xy x-=+的图象中心是______.【答案】()2,3--【解析】【分析】将函数化成ky b x a=++,根据的对称中心为(,)a b -,即可得出答案.【详解】1373(2)73222x x y x x x --+===-+++,因为函数72y x =+的图象的对称中心是()2,0-,所以函数732y x =-+的图象的对称中心是()2,3--.故答案为:()2,3--.【点睛】对称性的3个常用结论:(1)若函数()y f x a =+是偶函数,即()()f a x f a x +=-,则函数()y f x =的图象关于直线x a =对称;(2)若对于R 上的任意x 都有(2)()f a x f x -=或(2)()f a x f x +=-,则()y f x =的图象关于直线x a =对称;(3)若函数()y f x b =+是奇函数,即((0))f x b f x b +++-=,则函数()y f x =关于点(,0)b 中心对称.5.函数y =的定义域是______.【答案】(7,)+∞【解析】【分析】根据被开方数非负且分母不为零可得132log 05x ⎛⎫>⎪-⎝⎭,解对数不等式即可求得定义域.【详解】1322log 00155x x ⎛⎫>⇒<<⎪--⎝⎭,()()271075055x x x x x -<⇒>⇒-->--且5x ≠,解得5x <或7x >,2055x x <⇒>-,∴函数y =(7,)+∞.故答案为:(7,)+∞6.已知实数a 满足()()3322211a a --->+,则实数a 的取值范围是_________.【答案】1,22⎛⎫ ⎪⎝⎭【解析】【分析】根据幂函数的定义域和单调性得到关于a 的不等式,解之可得实数a 的取值范围.【详解】由题意知,3322(21)(1)a a --->+,>由于幂函数32y x =的定义域为[0,)+∞,且在[0,)+∞上单调递增,则2101121110a a a a ->⎧⎪⎪>⎨-+⎪+>⎪⎩,即:()()12202111a a a a a ⎧>⎪⎪-⎪>⎨-+⎪⎪>-⎪⎩,所以1221a a a ⎧>⎪⎪<⎨⎪>-⎪⎩,所以实数a 的取值范围是:122a <<.故填:1,22⎛⎫ ⎪⎝⎭.【点睛】本题主要考查幂函数的定义域和单调性,属于基础题.7.已知6x <,求2446x x x ++-的最大值______.【答案】0【解析】【分析】原式化为64(6)166x x -++-,结合基本不等式即可求解最大值.【详解】6x < ,所以60x ->,2244(6)16(6)6464(6)16666x x x x x x x x ++-+-+==-++---因为64(6)6x x -+-64[(6)]166x x =--+-=--,当且仅当2x =-时,取等号;∴2244(6)16(6)6464(6)160666x x x x x x x x ++-+-+==-++---.即2446x x x ++-的最大值为0.故答案为:0.【点睛】方法点睛:在利用基本不等式求最值时,要特别注意“拆、拼、凑”等技巧,使其满足基本不等式中“正”(即条件要求中字母为正数)、“定”(不等式的另一边必须为定值)、“等”(等号取得的条件)的条件才能应用,否则会出现错误.8.设log c a 、log c b 是方程2530x x +-=的两个实根,则log b ac =______.【答案】3737±【解析】【分析】根据题意由韦达定理得log log 5c c a b +=-,log log 3c c a b ⋅=-,进而得()2log log 37c c a b -=,再结合换底公式得137log 37log b acc b a==±【详解】解:因为log c a 、log c b 是方程2530x x +-=的两个实根,所以由韦达定理得log log 5c c a b +=-,log log 3c c a b ⋅=-,所以()()22log log log log 4log log 37c c c c c c a b a b a b -=+-⋅=,所以log log c c b a -=所以1137log log log 37log b c c acc b b a a===±-.故答案为:3737±【点睛】本题解题的关键在于根据韦达定理与换底公式进行计算,其中()()22log log log log 4log log c c c c c c a b a b a b -=+-⋅,1log log b acc b a=两个公式的转化是核心,考查运算求解能力,是中档题.9.著名的哥德巴赫猜想指出:“任何大于2的偶数可以表示为两个素数的和”,用反证法研究该猜想,应假设的内容是_______.【答案】存在一个大于2的偶数不可以表示为两个素数的和.【解析】【分析】从命题的否定入手可解.【详解】反证法先否定命题,故答案为存在一个大于2的偶数不可以表示为两个素数的和.【点睛】本题主要考查反证法的步骤,利用反证法证明命题时,先是否定命题,结合已知条件及定理得出矛盾,从而肯定命题.10.若关于x 的方程222210()x xa a a R +⋅++=∈有实根,则实数a 的取值范围是______.【答案】(,4-∞-【解析】【分析】利用换元法,设20x t t =>,,转化为方程2210t at a +++=,有正根,分离参数,求最值.【详解】设20x t t =>,,转化为方程2210t at a +++=,有正根,即221(2)4(2)55[(2)]4222t t t a t t t t ++-++=-=-=-++++++,022t t >∴+> ,,则5[(2)4442t t -+++≤-+=-+当且仅当5(2)2t t +=+,即2t =时取等,(,4a ∴∈-∞-故答案为:(,4-∞-11.已知函数)()lgf x ax =的定义域为R ,则实数a 的取值范围是____________.【答案】[1,1]-【解析】【分析】根据对数函数的真数大于0,得出+ax >0恒成立,利用构造函数法结合图象求出不等式恒成立时a 的取值范围.【详解】解:函数f (x )=lg (+ax )的定义域为R ,+ax >0恒成立,-ax 恒成立,设y =,x ∈R ,y 2﹣x 2=1,y ≥1;它表示焦点在y 轴上的双曲线的一支,且渐近线方程为y =±x ;令y =﹣ax ,x ∈R ;它表示过原点的直线;由题意知,直线y =﹣ax 的图象应在y =的下方,画出图形如图所示;∴0≤﹣a ≤1或﹣1≤﹣a <0,解得﹣1≤a ≤1;∴实数a 的取值范围是[﹣1,1].故答案为[﹣1,1].【点睛】本题考查了不等式恒成立问题,考查数形结合思想与转化思想,是中档题.12.若实数、满足114422x y x y +++=+,则22x y S =+的取值范围是_______.【答案】24S <≤【解析】【详解】1122224+4=2+2(2)(2)2(22)(22)2222(22)x y x y x x y x y x y x y ++⇒+=+⇒+-⋅⋅=+22222xyS S -=⋅⋅,又22(22)022222x y xyS +<⋅⋅≤=.22022S S S <-≤,解得24S <≤二、选择题(每小题5分,共20分)13.已知,a b ∈R ,则“33a b >”是“33a b >”的A.充分非必要条件B.必要非充分条件C.充要条件D.既非充分也非必要条件【答案】C 【解析】【分析】根据充分、必要条件定义判定即可.【详解】解:当33a b >时,根据指数函数3x y =是定义域内的增函数可得a b >,因为幂函数3y x =是定义域内的增函数,所以33a b >,所以充分性成立,当33a b >时,因为幂函数3y x =是定义域内的增函数,所以a b >,又指数函数3x y =是定义域内的增函数,所以33a b >,所以必要性成立,综上:“33a b >”是“33a b >”的充要条件.故选:C.【点睛】充分条件、必要条件的三种判定方法:(1)定义法:根据,p q q p ⇒⇒进行判断,适用于定义、定理判断性问题;(2)集合法:根据,p q 对应的集合之间的包含关系进行判断,多适用于命题中涉及字母范围的推断问题;(3)等价转化法:根据一个命题与其逆否命题的等价性进行判断,适用于条件和结论带有否定性词语的命题.14.若函数()()log a f x x b =+的大致图象如图,其中,a b 为常数,则函数()xg x a b =+的大致图像是()A. B.C. D.【答案】B 【解析】【分析】由函数()log ()a f x x b =+的图象为减函数可知,01a <<,且01b <<,可得函数()x g x a b =+的图象递减,且1(0)2g <<,从而可得结果.【详解】由函数()log ()a f x x b =+的图象为减函数可知,01a <<,再由图象的平移知,()log ()a f x x b =+的图象由()log a f x x =向左平移可知01b <<,故函数()x g x a b =+的图象递减,且1(0)2g <<,故选B.【点睛】函数图象的辨识可从以下方面入手:(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置.(2)从函数的单调性,判断图象的变化趋势;(3)从函数的奇偶性,判断图象的对称性;(4)从函数的特征点,排除不合要求的图象.15.由无理数引发的数学危机一直延续到19世纪.直到1872年,德国数学家戴德金从连续性的要求出发,用有理数的“分割”来定义无理数(史称戴德金分割),并把实数理论建立在严格的科学基础上,才结束了无理数被认为“无理”的时代,也结束了持续2000多年的数学史上的第一次大危机.所谓戴德金分割,是指将有理数集Q 划分为两个非空的子集M 与N ,且满足Q M N ⋃=,M N ⋂=∅,M 中的每一个元素都小于N 中的每一个元素,则称(,)M N 为戴德金分割.试判断,对于任一戴德金分割(,)M N ,下列选项中,不可能成立的是()A.M 没有最大元素,N 有一个最小元素 B.M 没有最大元素,N 也没有最小元素C.M 有一个最大元素,N 有一个最小元素 D.M 有一个最大元素,N 没有最小元素【答案】C 【解析】【分析】由题意依次举出具体的集合,M N ,从而得到,,A B D 均可成立.【详解】对A ,若{|0}M x Q x =∈<,{|0}N x Q x =∈;则M 没有最大元素,N 有一个最小元素0,故A 正确;对B ,若{|M x Q x =∈<,{|N x Q x =∈;则M 没有最大元素,N 也没有最小元素,故B 正确;对C ,M 有一个最大元素,N 有一个最小元素不可能,故C 错误;对D ,若{|0}M x Q x =∈,{|0}N x Q x =∈>;M 有一个最大元素,N 没有最小元素,故D 正确;故选:C .【点睛】本题考查对集合新定义的理解,考查创新能力和创新应用意识,对推理能力的要求较高.16.设函数()y f x =的定义域D ,若对任意的1x D ∈,总存在2x D ∈,使得()()121f x f x ⋅=,则称函数()y f x =具有性质M .下列结论:①函数3xy =具有性质M ;②函数3y x x =-具有性质M ;③若函数8log (2)y x =+,[]0,x t ∈具有性质M ,则510t =.其中正确的个数是()A.0个 B.1个C.2个D.3个【答案】C 【解析】【分析】根据函数性质M 的定义和指数对数函数的性质,结合每个选项中具体函数的定义,即可判断.【详解】解:对于①:3x y =的定义域是R ,所以1212()()13x x f x f x +⋅==,则120x x +=.对于任意的1x D ∈,总存在2x D ∈,使得()()121f x f x ⋅=,所以函数3x y =具有性质M ,①正确;对于②:函数3y x x =-的定义域为R ,所以若取10x =,则1()0f x =,此时不存在2x R ∈,使得12()()1f x f x ⋅=,所以函数3y x x =-不具有性质M ,②错误;对于③:函数8log (2)y x =+在[]0,t 上是单调增函数,其值域为[]88log 2,log (2)t +,要使得其具有M 性质,则88881log 2log (2)1log (2)log 2t t ⎧≤⎪+⎪⎨⎪+≤⎪⎩,即88log 2log (2)1t ⨯+=,解得3(2)8t +=,510t =,故③正确;故选:C.【点睛】本题考查函数新定义问题,对数和指数的运算,主要考查运算求解能力和转换能力,属于中档题型.三、解答题(共5题,满分76分)17.已知函数2()|21|f x x a x a =-+-+.(1)当2a =时,求不等式()4f x ≥的解集;(2)若()4f x ≥,求a 的取值范围.【答案】(1)32x x ⎧≤⎨⎩或112x ⎫≥⎬⎭;(2)(][),13,-∞-+∞ .【解析】【分析】(1)分别在3x ≤、34x <<和4x ≥三种情况下解不等式求得结果;(2)利用绝对值三角不等式可得到()()21f x a ≥-,由此构造不等式求得结果.【详解】(1)当2a =时,()43f x x x =-+-.当3x ≤时,()43724f x x x x =-+-=-≥,解得:32x ≤;当34x <<时,()4314f x x x =-+-=≥,无解;当4x ≥时,()43274f x x x x =-+-=-≥,解得:112x ≥;综上所述:()4f x ≥的解集为32x x ⎧≤⎨⎩或112x ⎫≥⎬⎭.(2)()()()()22222121211f x x a x a x ax a a a a =-+-+≥---+=-+-=-(当且仅当221a x a -≤≤时取等号),()214a ∴-≥,解得:1a ≤-或3a ≥,a ∴的取值范围为(][),13,-∞-+∞ .【点睛】本题考查绝对值不等式的求解、利用绝对值三角不等式求解最值的问题,属于常考题型.18.有一种候鸟每年都按一定的路线迁徙,飞往繁殖地产卵,科学家经过测量发现候鸟的飞行速所度可以表示为函数301log lg 2100xv x =-,单位是km /min ,其中x 表示候鸟每分钟耗氧量的单位数,常数0x 表示测量过程中候鸟每分钟的耗氧偏差.(参考数据lg 20.3,= 1.2 1.43 3.74,3 4.66==)(1)若05x =,候鸟停下休息时,它每分钟的耗氧量为多少个单位?(2)若雄鸟的飞行速度为1.5km /min ,雌鸟的飞行速度为1km /min ,那么此时雄鸟每分钟的耗氧量是雌鸟每分钟耗氧量的多少倍?【答案】(1)466;(2)3倍.【解析】【分析】(1)将05x =,0v =代入函数解析式,计算得到答案.(2)根据题意得到方程组13023011.5log lg 210011log lg 2100x x x x ⎧=-⎪⎪⎨⎪=-⎪⎩,两式相减化简即可求出答案.【详解】(1)将05x =,0v =代入函数301log lg 2100x v x =-,得:31log lg 502100x-=,即()3log 2lg 521lg 2 1.40100x==-=,所以1.403 4.66100x==,所以466x =.故候鸟停下休息时,它每分钟的耗氧量为466个单位.(2)设雄鸟每分钟的耗氧量为1x ,雌鸟每分钟耗氧量为2x ,由题意可得:13023011.5log lg 210011log lg 2100x x x x⎧=-⎪⎪⎨⎪=-⎪⎩,两式相减可得:13211log 22x x =,所以132log 1x x =,即123x x =,故此时雄鸟每分钟的耗氧量是雌鸟每分钟耗氧量的3倍.【点睛】方法点睛:与实际应用相结合的题型也是高考命题的动向,这类问题的特点是通过现实生活的事例考查书本知识,解决这类问题的关键是耐心读题、仔细理解题,只有吃透题意,才能将实际问题转化为数学模型进行解答.19.柯西不等式具体表述如下:对任意实数1a ,2a ,n a 和1b ,2b n b ,(,2)n Z n ∈≥都有()()()222222212121122n n n n a a a b b b a b a b a b ++++++≥+++L L L ,当且仅当1212n na a ab b b ===L 时取等号.(1)请用柯西不等式证明:对任意正实数a ,b ,x ,y ,不等式222()a b a b x y x y++≥+成立,(并指出等号成立条件)(2)请用柯西不等式证明:对任意正实数1x ,2x , ,n x ,且121n x x x +++= ,求证:12212211111x x x x x x n+++≥++++ (并写出等号成立条件).【答案】(1)证明见解析;(2)证明见解析.【解析】【分析】(1)根据任意正实数a ,b ,x ,y ,由柯西不等式得222()(()a b x y a b x y +++,从而证明222()a b a b x yx y+++成立;(2)由121n x x x ++=…+,得121(1)(1)(1)n n x x x +=++++⋯++,然后利用柯西不等式,即可证明12212211111x x xx x x n++⋯⋯+++++成立.【详解】(1)对任意正实数a ,b ,x ,y ,由柯西不等式得()()()()222222222a b a b x y a b x y ⎡⎤⎛⎫⎡⎤⎢⎥++=++⎪⎢⎥⎢⎥⎣⎦⎝⎭⎢⎥⎣⎦,当且仅当x y a b=时取等号,∴222()a b a b x y x y+++.(2)121n x x x ++⋯+= ,121(1)(1)(1)n n x x x ∴+=++++⋯++,2221212()(1)111n nx x x n x x x ++⋯+++++222121212()[(1)(1)(1)]111n n nx x x x x x x x x =++⋯+++++⋯+++++212()1n x x x ++⋯+=,当且仅当121n x x x n==⋯==时取等号,∴222121211111n nx x x x x x n ++⋯+++++.【点睛】方法点睛:利用柯西不等式求最值或证明不等式时,关键是对原目标代数式进行配凑,以保证出现常数结果.同时,要注意等号成立的条件,配凑过程采取如下方法:一是考虑题设条件;二是对原目标代数式进行配凑后利用柯西不等式解答.20.已知函数、()y f x =的表达式为()(0,1)xf x a a a =>≠,且1(2)4f -=,(1)求函数()y f x =的解析式;(2)若()()22log ()4()0m f x f x -+=在区间[]0,2上有解,求实数m 的取值范围;(3)已知113k ≤<,若方程()10f x k --=的解分别为1x 、()212x x x <,方程()1021k f x k --=+的解分别为3x 、()434x x x <,求1234x x x x -+-的最大值.【答案】(1)()2x f x =;(2)[]3,1-;(3)2log 3-.【解析】【分析】(1)由2211(2)4f aa --===可得答案.(2)由条件可得()2()4()1m f x f x -+=在区间[]0,2上有解,设2x t =,由[]0,2x ∈,则14t ≤≤,即()24123t t t m -+==--在区间[]1,4t ∈上有解,可得答案.(3)由条件121x k =-,221x k =+,即12121x x k k --=+,以及431221xk k +=+或3+1221x k k =+,所以341312x x k k -+=+,从而可得()()1234341241111322213131331x x x x x x x x k k k k k k k -+---+-+-=⋅=⨯==-++++,求出最大值可得答案.【详解】(1)由2211(2)4f a a --===,所以2a =所以()2xf x =(2)()()22log ()4()0m f x f x -+=在区间[]0,2上有解即()2()4()1m f x f x -+=在区间[]0,2上有解即()22421x x m -+⨯=在区间[]0,2上有解即设2x t =,由[]0,2x ∈,则14t ≤≤所以()24123t t t m -+==--在区间[]1,4t ∈上有解当[]1,4t ∈时,[]2134,1t t ∈--+所以31m -≤≤(3)由()10f x k --=,即21x k =+或21x k=-由方程()10f x k --=的解分别为1x 、()212x x x <,则121x k =-,221x k=+所以12121x x k k--=+由()1021k f x k --=+,即31212121x k k k k +=+=++或+1212121xk k k k =-=++方程()1021k f x k --=+的解分别为3x 、()434x x x <,则431221x k k +=+或3+1221xk k =+所以341312x xk k -+=+所以()()1234341241111322213131331x x x x x x x x k k k k k k k -+---+-+-=⋅=⨯==-++++函数431133y k =++-在113k ⎡⎫∈⎪⎢⎣⎭,上单调递减,当13k =时,431133y k =++-有最大值13.所以()()1234123x x x x -+-≤,则1322421log log 33x x x x -=-+≤-所以1234x x x x -+-的最大值为2log 3-【点睛】关键点睛:本题考查指数的运算和方程有解求参数,方程根的关系,解答本题的关键是由题意可得()22421x x m -+⨯=在区间[]0,2上有解,设2x t =,分类参数即()24123t t t m -+==--在区间[]1,4t ∈上有解,以及根据方程的根的情况可得()()1234341241111322213131331x x x x x x x x k k k k k k k -+---+-+-=⋅===-++++,属于中档题.21.对于集合{}()12,,,3n A a a a n Z n =∈≥ ,其中每个元素均为正整数,如果任意去掉其中一个元素(1,2,3,)i a i n = 之后,剩余的所有元素组成集合(1,2,)i A i n = ,并且i A 都能分为两个集合B 和C ,满足B C =∅ ,i B C A ⋃=,其中B 和C 的所有元素之和相等,就称集合A 为“可分集合”.(1)判断集合{}1,2,3,4和{}1,3,5,7,9,11,13是否是“可分集合”(不必写过程);(2)求证:五个元素的集合{}12345,,,,A a a a a a =一定不是“可分集合”;(3)若集合{}()12,,,3n A a a a n Z n =∈≥ 是“可分集合”.①证明:n 为奇数;②求集合A 中元素个数的最小值.【答案】(1)集合{}1,2,3,4不是,集合{}1,3,5,7,9,11,13是;(2)证明见解析;(3)①证明见解析;②7.【解析】【分析】(1)根据“可分集合”定义直接判断即可得到结论;(2)不妨设123450a a a a a <<<<<,分去掉的元素是1a 时得5234a a a a =++①,或2534a a a a +=+②,去掉的元素是2a 得5134a a a a =++③,或1534a a a a +=+④,进而求解得矛盾,从而证明结论.(3)①设集合{}()12,,,3n A a a a n Z n =∈≥ 所有元素之和为M ,由题可知,()1,2,3,,i M a i n -= 均为偶数,所以()1,2,3,,i a i n = 的奇偶性相同,进而分类讨论M 为奇数和M 为偶数两类情况,分析可得集合A 中的元素个数为奇数;②结合(1)(2)问依次验证3,5,7n n n ===时集合A 是否为“可分集合”从而证明.【详解】解:(1)对于集合{}1,2,3,4,去掉元素1,剩余的元素组成的集合为{}12,3,4A =,显然不能分为两个集合B 和C ,满足B C =∅ ,1B C A ⋃=,其中B 和C 的所有元素之和相等,故{}1,2,3,4不是“可分集合”对于集合{}1,3,5,7,9,11,13,去掉元素1,{}13,5,7,9,11,13A =,显然可以分为{}{}11,13,3,5,7,9B C ==,满足题意;去掉元素3,{}21,5,7,9,11,13A =,显然可以分为{}{}1,9,13,5,7,11B C ==,满足题意;去掉元素5,{}31,3,7,9,11,13A =,显然可以分为{}{}1,3,7,11,9,13B C ==,满足题意;去掉元素7,{}41,3,5,9,11,13A =,显然可以分为{}{}1,9,11,3,5,13B C ==,满足题意;去掉元素9,{}51,3,5,7,11,13A =,显然可以分为{}{}7,13,1,3,5,11B C ==,满足题意;去掉元素11,{}61,3,5,7,9,13A =,显然可以分为{}{}3,7,9,1,5,13B C ==,满足题意;去掉元素13,{}71,3,5,7,9,11A =,显然可以分为{}{}1,3,5,9,7,11B C ==,满足题意;故{}1,3,5,7,9,11,13是可分集合.(2)不妨设123450a a a a a <<<<<,若去掉的是1a ,则集合{}12345,,,A a a a a =可以分成{}{}5234,,,B a C a a a ==或{}{}2534,,,B a a C a a ==,即:5234a a a a =++①或2534a a a a +=+②若去掉的是2a ,则集合{}21345,,,A a a a a =可以分成{}{}5134,,,B a C a a a ==或{}{}1534,,,B a a C a a ==,即:5134a a a a =++③或1534a a a a +=+④,由①③得21a a =,矛盾;由①④21a a =-,矛盾;由②③得21a a =-,矛盾;由②④21a a =,矛盾;所以五个元素的集合{}12345,,,,A a a a a a =一定不是“可分集合”;(3)①证明:设集合{}()12,,,3n A a a a n Z n =∈≥ 所有元素之和为M ,由题可知,()1,2,3,,i M a i n -= 均为偶数,所以()1,2,3,,i a i n = 的奇偶性相同,若M 为奇数,则()1,2,3,,i a i n = 也均为奇数,由于12n M a a a =+++ ,所以n 为奇数;若M 为偶数,则()1,2,3,,i a i n = 也均为偶数,此时设()21,2,3,,i i a b i n == ,则{}12,,,n b b b 也是“可分集合”,重复上述操作有限次,便可得各项均为奇数的“可分集合”,此时各项之和也为奇数,集合A 中的元素个数为奇数.综上所述,集合A 中的元素个数为奇数.②当3n =时,显然任意集合{}123,,A a a a =不是“可分集合”;当5n =时,第二问已经证明集合{}12345,,,,A a a a a a =不是“可分集合”;当7n =时,第一问已验证集合{}1,3,5,7,9,11,13A =是“可分集合”.所以集合A 中元素个数的最小值为7.【点睛】本题考查集合新定义的问题,对此类题型首先要多读几遍题,将新定义理解清楚,然后根据定义依次验证,证明即可.注意对问题思考的全面性,考查学生的思维迁移能力,分析能力.本题第二问解题的关键在于假设123450a a a a a <<<<<,以去掉元素1a 和2a 两种情况下的可分集合推出矛盾,进而证明,是难题.。
上海市杨浦区交通大学附属中学2020-2021学年高一上学期10月月考数学试卷(解析版)
【分析】对 分 、 、 、 和 五种情况讨论得解.
【详解】当 时,不等式 的解为 ;
当 时,不等式对应方程的根为 或2,
①当 时,不等式 即 的解集为 ;
②当 时,不等式 的解集为 ;
③当 时,不等式 的解集为 ;
④当 时,不等式 的解集为 .
综上所述,当 时,不等式解集 ;
当 时,不等式的解集为 ;
,解不等式即得解
【详解】由题意,
故 且 ,可得
由 可得, 或 ;
由 可得,
因此:
故答案为:
8.设 ,且 , ,则 最大值为___________;
【答案】10;
【分析】首先由条件可知 , ,再表示 ,再根据不等式的性质求 的最大值即可.
【详解】 , ,
, , ,
设 ,
得 ,解得: ,
即 ,
,
,即 ,
(2)假设 ,试确定当 为何值时, 取得最小值,并求出 的最小值.
【答案】(1) , ;(2) , .
【分析】(1)由时间 路程/速度,代入具体数值,即得解;
(2)转化 ,利用均值不等式即得解
【详解】(1)由题意,时间 路程/速度
因此
(2)当 时,
当且仅当 ,即 时,等号成立
故当 时,
12.解关于x的不等式 .
交大附中高一数学10月月考试
一填空题
1.若 ,则 _______ (填入等号或者不等式)
【答案】≥
【分析】直接套用三角不等式 即可得出答案.
【详解】∵ ,
∴ .
故答案为:≥
2.二次不等式 的解集是 ,则 =_______;
【答案】
【分析】利用一元二次不等式的解集求得 ,由此求得 .
2020-2021学年上海市交大附中高一上学期期中化学试卷
2020-2021学年上海市交大附中高一(上)期中化学试卷一、选择题(每小题只有一个正确选项)1.自从1803年英国化学家、物理学家道尔顿提出原子假说以来,人类对原子结构的研究不断深入、不断发展,通过实验事实不断地丰富、完善原子结构理论.请判断下列关于原子结构的说法正确的是()A.所有的原子都含有质子、中子和电子三种基本构成微粒B.所有的原子中的质子、中子和电子三种基本构成微粒的个数都是相等的C.原子核对电子的吸引作用的实质是原子核中的质子对核外电子的吸引D.原子中的质子、中子和电子三种基本构成微粒不可能再进一步分成更小的微粒2.下列有关化学用语表示正确的是()A.中子数为10的氧原子:OB.钠离子的电子式:C.Mg2+的结构示意图:D.电离方程式:NaClO→Na++Cl﹣+O2﹣3.下列实验现象描述错误的是()A.氢气在氯气中燃烧,火焰呈苍白色B.钠在氯气中燃烧火焰呈黄色C.铁丝在氯气中燃烧时产生棕褐色烟雾D.氯气的水溶液呈浅黄绿色4.下列叙述中正确的是()A.强电解质溶液的导电性一定比弱电解质溶液的导电性强B.稀盐酸溶液能导电,所以稀盐酸是电解质C.二氧化硫溶于水能导电,故二氧化硫属于电解质D.硫酸钡虽然难溶于水,但硫酸钡属于电解质5.16O的质量数常被当做氧元素近似相对原子质量,“近似”不包括的含义是()A.氧的其他同位素的丰度太低,被忽略了B.质子和中子的相对原子质量都很接近1C.元素的近似相对原子质量一定是整数D.电子的质量太小6.下列仪器中,具有能配制溶液、溶解固体、加热较多试剂三种用途的是()A.容量瓶B.烧杯C.量筒D.试管7.同温同压同体积的H2和CO()A.密度不同B.质量相同C.分子大小相同D.分子间距不同8.在标准状况下,如果V升氯化氢中有n个原子,则阿伏加德罗常数为()A.B.C.D.9.将氯气制成漂白粉的主要目的是()①使它转化为较易溶于水的物质②转变为较稳定、便于贮存和运输的物质③提高氯的百分含量④提高漂白能力A.①②B.②③C.①②④D.只有②10.下列变化过程中不能直接实现的是()①HCl ②Cl2③Ca(ClO)2④HClO ⑤CO2。
2020-2021学年上海市青浦区高一(上)期末数学试卷 (解析版)
2020-2021学年上海市青浦区高一(上)期末数学试卷一、填空题(共12小题).1.已知全集U={﹣1,0,2},集合A={﹣1,0},则=.2.不等式的解集是.3.已知log32=a,则用a表示log827=.4.若a,b∈R,且|a|≤1,|b|≤5,则|a+b|的最大值是.5.已知幂函数y=(a2﹣a+1)x a+2为奇函数,则实数a的值为.6.已知条件α:0<x<4和条件β:0<x<a,若α是β的充分不必要条件,则实数a的取值范围是.7.函数y=的值域为.8.已知正实数x,y满足+2y=3,则的最大值为.9.已知函数y=,则该函数的零点是.10.在创全国文明城区的活动中,督查组对城区的评选设计了x1,x2,x3,x4四项多元评价指标,并通过经验公式来计算各城区的综合得分,S的值越高则评价效果越好.若某城区在自查过程中各项指标显示为0<x3<x4<x2<x1,则下阶段要把其中一个指标的值增加1个单位,而使得S的值增加最多,那么该指标应为.(填入x1,x2,x3,x4中的一个)11.已知函数y=f(x),其中f(x)=x3+x,关于x的不等式f(mx2+2)+f(﹣x)<0在区间[1,5]上有解,则实数m的取值范围是.12.已知函数f(x)的定义域为R,f(1)=3,对任意两个不等的实数a,b都有,则不等式f(2x﹣1)<2x+1的解集为.二、选择题(共4小题).13.若0<a<1,b<﹣1,则函数f(x)=a x+b的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限14.下列函数中,定义域为R的偶函数是()A.y=2x B.y=x|x|C.y=|x2﹣1|D.y=log2|x|15.下列不等式中,恒成立的是()A.B.|x﹣y|+≥2C.|x﹣y|≥|x﹣z|+|y﹣z|D.x2+16.已知集合A=[0,),B=[,1],f(x)=,若x0∈A,且f(f(x0))∈A,则x0的取值范围是()A.B.C.D.三、解答题(本大题满分52分)17.(8分)已知不等式|1﹣2x|<7的解集是A,函数y=的定义域是B,求A∩B.18.(10分)已知函数y=f(x),其中.(1)判断函数y=f(x)的奇偶性,并说明理由;(2)若g(x)=f(x)•x+ax,且y=g(x)在区间(0,2]上是严格减函数,求实数a 的取值范围.19.(10分)设f(x)=(m+1)x2﹣mx+m﹣1(m∈R).(1)若不等式f(x)>0解集为∅,求实数m的取值范围;(2)若不等式f(x)>0对一切实数x恒成立,求实数m的取值范围.20.(10分)研究表明:在一节40分钟的网课中,学生的注意力指数y与听课时间x(单位:分钟)之间的变化曲线如图所示.当x∈[0,16]时,曲线是二次函数图象的一部分;当x∈[16,40]时,曲线是函数y=log0.8(x+a)+80图象的一部分,当学生的注意力指数不高于68时,称学生处于“欠佳听课状态”.(1)求函数y=f(x)的解析式;(2)在一节40分钟的网课中,学生处于“欠佳听课状态”的时间有多长?(精确到1分钟)21.(14分)定义:如果函数y=f(x)在定义域内给定区间[a,b]上存在实数x0(a<x0<b),满足f(x0)=,那么称函数y=f(x)是区间[a,b]上的“平均值函数”,x0是它的一个均值点.(1)判断函数f(x)=x4是否是区间[﹣1,1]上的“平均值函数”,并说明理由;(2)若函数g(x)=﹣4x+m•2x是区间[0,1]上的“平均值函数”,求实数m的取值范围;(3)设函数h(x)=kx2+x﹣4(k>0,k∈N)是区间[﹣2,t](t>0,t∈N)上的“平均值函数”,1是函数h(x)的一个均值点,求所有满足条件的数对(k,t).参考答案一、填空题(共12小题).1.已知全集U={﹣1,0,2},集合A={﹣1,0},则={2}.解:全集U={﹣1,0,2},集合A={﹣1,0},由补集的定义={x|x∈U且x∉A},可得={2}.故答案为:{2}.2.不等式的解集是(﹣∞,0)∪(2,+∞).解:当x>0时,去分母得:x>2,所以原不等式的解集为:(2,+∞);当x<0时,去分母得:x<2,所以原不等式的解集为:(﹣∞,0),综上,原不等式的解集为:(﹣∞,0)∪(2,+∞).故答案为:(﹣∞,0)∪(2,+∞)3.已知log32=a,则用a表示log827=.解:因为log32=a,所以log827=.故答案为:.4.若a,b∈R,且|a|≤1,|b|≤5,则|a+b|的最大值是6.解:∵|a|≤1,|b|≤5,根据绝对值不等式的性质,得||a|﹣|b||≤|a+b|≤|a|+|b|,∴|a+b|的最大值是6,当a=1,b=5或a=﹣1,b=﹣5时,|a+b|取得最大值6.故答案为:6.5.已知幂函数y=(a2﹣a+1)x a+2为奇函数,则实数a的值为1.解:由题意得:a2﹣a+1=1,解得:a=0或a=1,故a=0时,y=x2,是偶函数,不合题意,a=1时,y=x3,是奇函数,符合题意,故答案为:1.6.已知条件α:0<x<4和条件β:0<x<a,若α是β的充分不必要条件,则实数a的取值范围是(4,+∞).解:∵α是β的充分不必要条件,∴α⫋β,∴a>4,故答案为:(4,+∞).7.函数y=的值域为(﹣1,1).解:函数y=,因为x∈R,所以2x+1>1,所以(﹣2,0),则1﹣(﹣1,1),故函数的值域为(﹣1,1).8.已知正实数x,y满足+2y=3,则的最大值为.解:∵正实数x,y满足+2y=3,∴0<y<,则=y(3﹣2y)=﹣2(y﹣)2+,∴当y=时,的最大值为,故答案为:.9.已知函数y=,则该函数的零点是x=2.解:因为函数y=,当x>0时,令2x﹣x2=0,解得x=2或x=0(舍);当x<0时,令x2﹣2x=0,解得x=2或x=0(舍);综上可得,该函数的零点是x=2.故答案为:x=2.10.在创全国文明城区的活动中,督查组对城区的评选设计了x1,x2,x3,x4四项多元评价指标,并通过经验公式来计算各城区的综合得分,S的值越高则评价效果越好.若某城区在自查过程中各项指标显示为0<x3<x4<x2<x1,则下阶段要把其中一个指标的值增加1个单位,而使得S的值增加最多,那么该指标应为x3.(填入x1,x2,x3,x4中的一个)解:∵,∴要使S增加,则应该增加分子x1或x3,减小分母x2或x4,又0<x3<x4<x2<x1,且在分子都增加1的前提下,分母越小时,S的值增加越多,∴要使S的值增加最多,则应该增加x3.故答案为:x3.11.已知函数y=f(x),其中f(x)=x3+x,关于x的不等式f(mx2+2)+f(﹣x)<0在区间[1,5]上有解,则实数m的取值范围是(﹣∞,).解:f(﹣x)=﹣x3﹣x=﹣f(x),∴f(x)是奇函数,又f′(x)=3x2+1>0,∴f(x)在R上是增函数,∵f(mx2+2)+f(﹣x)<0在[1,5]上有解,∴f(mx2+2)<﹣f(﹣x)=f(x)在[1,5]上有解∴mx2+2<x在[1,5]上有解,即m<在[1,5]上有解.令g(x)=,x∈[1,5],则只需m<g max(x)即可.∵g′(x)=,∴当1≤x<4时,g′(x)>0,当4<x≤5时,g′(x)<0,∴g max(x)=g(4)=,∴m<,故答案为(﹣∞,).12.已知函数f(x)的定义域为R,f(1)=3,对任意两个不等的实数a,b都有,则不等式f(2x﹣1)<2x+1的解集为(﹣∞,1).解:不妨令a>b,则等价于f(a)﹣a>f(b)﹣b,构造函数h(x)=f(x)﹣x,则h(x)是R上的增函数,因为f(1)=3,所以f(2x﹣1)<2x+1等价于f(2x﹣1)﹣(2x﹣1)<f(1)﹣1,即2x﹣1<1,解得x<1.故答案为:(﹣∞,1).二、选择题(本大题满分12分)本大题共有4题,每题都给出代号为A、B、C、D的四个结论,其中有且只有一个结论是正确的,每题答对得3分,否则一律得零分.13.若0<a<1,b<﹣1,则函数f(x)=a x+b的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限解:函数f(x)=a x(0<a<1)的是减函数,图象过定点(0,1),在x轴上方,过一、二象限,函数f(x)=a x+b的图象由函数f(x)=a x的图象向下平移|b|个单位得到,∵b<﹣1,∴|b|>1,∴函数f(x)=a x+b的图象与y轴交于负半轴,如图,函数f(x)=a x+b的图象过二、三、四象限.故选:A.14.下列函数中,定义域为R的偶函数是()A.y=2x B.y=x|x|C.y=|x2﹣1|D.y=log2|x|解:根据题意,依次分析选项:对于A,y=2x,是指数函数,不是偶函数,不符合题意,对于B,y=x|x|=,不是偶函数,不符合题意,对于C,y=|x2﹣1|,定义域为R,有f(﹣x)=|x2﹣1|=f(x),是定义域为R的偶函数,符合题意,对于D,y==log2|x|,定义域不是R,不符合题意,故选:C.15.下列不等式中,恒成立的是()A.B.|x﹣y|+≥2C.|x﹣y|≥|x﹣z|+|y﹣z|D.x2+解:当x=﹣1时,x+=﹣5<4,故选项A错误;又当x=1,y=2时,|x﹣y|+=0<2,故选项B错误;由绝对值不等式的性质可得:|x﹣z|+|y﹣z|≥|(x﹣z)﹣(y﹣z)|=|x﹣y|,故选项C错误;对于选项D:当x<0时,显然有x2+;当x>0时,令f(t)=t+,t>0,则f(t)在(0,1]上单调递减,在[1,+∞)上单调递增,又当x>1时,x2>x>1,则有:f(x2)>f(x),即x2+>x+,当x=1时,x2=x,则有f(x2)=f(x),即x2+=x+,当0<x<1时,0<x2<x<1,则有f(x2)>f(x),即x2+>x+,综上,x2+≥x+,故选项D正确,故选:D.16.已知集合A=[0,),B=[,1],f(x)=,若x0∈A,且f(f(x0))∈A,则x0的取值范围是()A.B.C.D.解:根据题意,f(x)=,若x0∈A,即0≤x0<,f(x0)=x0+,有≤f(x0)<1,则f(f(x0))=2[1﹣f(x0)]=1﹣2x0,若f(f(x0))∈A,则0≤1﹣2x0<,解可得:<x0<,即x0的取值范围是(,),故选:B.三、解答题(本大题满分52分)本大题共有5题,解答下列各题必须写出必要的步骤.17.(8分)已知不等式|1﹣2x|<7的解集是A,函数y=的定义域是B,求A∩B.解:∵A={x||1﹣2x|<7}={x|﹣3<x<4},B={x|x2+2x﹣8≥0}={x|x≤﹣4或x≥2},∴A∩B=[2,4).18.(10分)已知函数y=f(x),其中.(1)判断函数y=f(x)的奇偶性,并说明理由;(2)若g(x)=f(x)•x+ax,且y=g(x)在区间(0,2]上是严格减函数,求实数a 的取值范围.解:(1),定义域为(﹣∞,0)∪(0,+∞),且f(﹣x)=﹣x+=﹣(x+)=﹣f(x),所以函数y=f(x)为奇函数.(2)g(x)=f(x)•x+ax=x2+ax+1,因为y=g(x)在区间(0,2]上是严格减函数,所以﹣≥2,解得a≤﹣4,即实数a的取值范围为(﹣∞,﹣4].19.(10分)设f(x)=(m+1)x2﹣mx+m﹣1(m∈R).(1)若不等式f(x)>0解集为∅,求实数m的取值范围;(2)若不等式f(x)>0对一切实数x恒成立,求实数m的取值范围.解:(1)由不等式f(x)>0解集为∅,可得,即为,可得m≤﹣,即m的取值范围是(﹣∞,﹣];(2)由不等式f(x)>0对一切实数x恒成立,当m+1=0,即m=﹣1时,f(x)=x﹣2,则f(x)>0不恒成立;当m+1<0时,f(x)的图象为开口向下的抛物线,f(x)>0不恒成立;当m+1>0,且△<0,f(x)>0恒成立,由,即为,解得m>,即m的取值范围是(,+∞).20.(10分)研究表明:在一节40分钟的网课中,学生的注意力指数y与听课时间x(单位:分钟)之间的变化曲线如图所示.当x∈[0,16]时,曲线是二次函数图象的一部分;当x∈[16,40]时,曲线是函数y=log0.8(x+a)+80图象的一部分,当学生的注意力指数不高于68时,称学生处于“欠佳听课状态”.(1)求函数y=f(x)的解析式;(2)在一节40分钟的网课中,学生处于“欠佳听课状态”的时间有多长?(精确到1分钟)解:(1)当x∈[0,16]时,设f(x)=b(x﹣12)2+84,(b<0),所以f(16)=b(16﹣12)2+84=80,解得,所以,当x∈[16,40]时,f(x)=log0.8(x+a)+80,由f(16)=log0.8(16+a)+80=80,解得a=﹣15,所以f(x)=log0.8(x﹣15)+80,综上可得,;(2)当x∈[0,16]时,令<68,解得x∈[0,4],当x∈[16,40]时,令f(x)=log0.8(x﹣15)+80<68,解得x∈[30,40],故在一节40分钟的网课中,学生处于“欠佳听课状态”的时间有4+10=14分钟.21.(14分)定义:如果函数y=f(x)在定义域内给定区间[a,b]上存在实数x0(a<x0<b),满足f(x0)=,那么称函数y=f(x)是区间[a,b]上的“平均值函数”,x0是它的一个均值点.(1)判断函数f(x)=x4是否是区间[﹣1,1]上的“平均值函数”,并说明理由;(2)若函数g(x)=﹣4x+m•2x是区间[0,1]上的“平均值函数”,求实数m的取值范围;(3)设函数h(x)=kx2+x﹣4(k>0,k∈N)是区间[﹣2,t](t>0,t∈N)上的“平均值函数”,1是函数h(x)的一个均值点,求所有满足条件的数对(k,t).解:(1)是;理由:根据新定义,可得在区间[﹣1,1]上有解,可得x=0,所以(1)是“平均值函数”;(2)函数g(x)=﹣4x+m•2x是区间[0,1]上的“平均值函数”,可得=﹣4x+m•2x在区间[0,1]上有解,可得4x﹣m•2x+m﹣3=0在区间[0,1]上有解,令2x=t,t∈[1,2],则t2﹣mt+m﹣3=0在区间[1,2]上有解,令g(t)=t2﹣mt+m﹣3∴或g(1)•g(2)≤0,即此时不等式组无解;或﹣2•(1﹣m)≤0;解得m≤1.故实数m的取值范围(﹣∞,1];(3)函数h(x)=kx2+x﹣4(k>0,k∈N)是区间[﹣2,t](t>0,t∈N)上的“平均值函数”,1是函数h(x)的一个均值点,即,可得k(3﹣t)=4,∴k=∵k∈N,k>0,t>0,t∈N,则≥1解得3>t≥﹣1,当t=1,k不是整数,当t=2时,可得k=4,故所有满足条件的数对(4,2).。
2020-2021学年上海市交大附中高一(下)期中数学试卷
2020-2021学年上海市交大附中高一(下)期中数学试卷一、单选题(本大题共4小题,共20.0分)1. 一个扇形的面积是1平方厘米,它的周长是4厘米,则它的圆心角是( )A. 2弧度B. 3弧度C. 4弧度D. 5弧度2. 方程tanx =2的解集为( )A. {x|x =2kπ+arctan2,k ∈Z}B. {x|x =2kπ±arctan2,k ∈Z}C. {x|x =kπ+arctan2,k ∈Z}D. {x|x =kπ+(−1)k arctan2,k ∈Z}3. 角α的终边属于第一象限,那么α3的终边不可能属于的象限是( )A. 第一象限B. 第二象限C. 第三象限D. 第四象限4. 已知定义域是全体实数的函数y =f(x)满足f(x +2π)=f(x),且g(x)=f(x)+f(−x)2,ℎ(x)=f(x)−f(−x)2,现定义函数y =p(x),y =q(x)为:p(x)={g(x)−g(x+π)2cosx(x ≠kπ+π2)0 (x =kπ+π2),q(x)={ℎ(x)+ℎ(x+π)2sin2x(x ≠kπ2)0 (x =kπ2),其中k ∈Z ,那么下列关于y =p(x),y =q(x)叙述正确的是( )A. 都是偶函数且周期为πB. 都是奇函数且周期为πC. 都是周期函数但既不是奇函数又不是偶函数D. 都不是周期函数二、单空题(本大题共12小题,共54.0分)5. 已知平面直角坐标系中,角α的顶点与坐标原点重合,始边与x 轴的正半轴重合,其终边上有一点P(5,−12),则tanα= ______ .6. 计算:tan(arctan 12+arctan 13)= ______ . 7. 若sinα=35,α∈(0,π2),则tanα= ______ . 8. 已知tanα=2,则2sin 2α+sinαcosα= ______ .9. 把sinα−√3cosα化为Asin(α+φ)(其中A >0,φ∈(−π,π))的形式:______ . 10. 函数y =2sin(2x +π6)的最小正周期为______ .11.已知:sin(θ+3π)=−23,则tan(−5π−θ)⋅cos(θ−2π)⋅sin(−3π−θ)tan(7π2+θ)⋅sin(−4π+θ)⋅cot(−θ−π2)+2tan(6π−θ)⋅cos(−π+θ)=______ .12.若sin(α+β)=45,sin(α−β)=34,则tanαtanβ=______ .13.小媛在解试题:“已知锐角α与β的值,求α+β的正弦值”时,误将两角和的正弦公式记成了sin(α+β)=cosαcosβ+sinαsinβ,解得的结果为√6+√24,发现与标准答案一致,那么原题中的锐角α的值为______ .(写出所有的可能值)14.如图,平面上有一条走廊宽为3米,夹角为120°,地面是水平的,走廊两端足够长.那么能够通过走廊的钢筋(看作线段,不考虑粗细)的最大长度为______ 米.15.设对任意θ∈[0,π2],不等式sin2θ+3mcosθ−6m−4<0恒成立,则实数m的范围是______ .16.如图,已知等腰三角形ABC的顶角A=π7,D是腰AB上一点.若AD=1,CD=√2,则BC=______ .三、解答题(本大题共5小题,共76.0分)17.设α∈(0,π3),β∈(π6,π2),且α,β满足{5√3sinα+5cosα=8√2sinβ+√6cosβ=2(1)求cos(α+π6)的值.(2)求cos(α+β)的值.18.如图,一条河的两岸相互平行.两岸边各有一个小镇A与B,它们的直线距离为2千米,河宽AC为1千米.根据规划需在线段BC上选择一个点D,沿AD铺设水下电缆,沿BD铺设地下电缆.建立数学模型寻找如何铺设电缆费用最低.(1)模型建立:我们假设:①B、D之间的地下电缆沿______铺设,每千米地下电缆的铺设费用不变,不妨设为1;②A、D之间的水下电缆沿______铺设,每千米水下电缆的铺设费用不变,根据调查为每千米地下电缆铺设费用的两倍;如果设∠ADC=θ;则θ的取值范围为______.可以将该项工程的总费用y表示为θ的函数,这个函数的解析式为______.因此,原实际问题的数学模型为:求______,该项工程的总费用y最低.(2)模型求解:请求解上述模型.19.已知三角形ABC中,tan A、tan B是方程x2+ax+4=0的两个实数根.(1)若a=−8,求tan C的值;(2)求tan C的最小值,并指出此时对应的实数a的值.20.某校同学设计一个如图所示的“蝴蝶形图案(阴影区域)”,其中A,B,C,D是抛物线y=x2上的四个不同的点,且AC⊥BD(点A、B在第二象).点E为y轴上一点,限,且点A在点B的左上方).AC、BD交于点F(0, 14记∠EFA=α,其中α为锐角.设线段AF的长为m.(1)用m与α表示点A的横坐标;(2)将m表示为α的函数;(3)求“蝴蝶形图案”面积的最小值,并指出取最小值时α的大小?21.设y=f(x)是定义在D上的函数,若对任何实数α∈(0,1)以及D中的任意两数x1、x2,恒有f(αx1+(1−α)x2)≤αf(x1)+(1−α)f(x2),则称f(x)为定义域上的C函数.(1)判断函数y=1,x∈(−∞,0)是否为定义域上的C函数,请说明理由;x(2)函数y=x3,x∈(M,+∞)是定义域上的C函数,求实数M的最小值;(3)若y=f(x)是定义域为R的周期函数,且最小正周期为T.试判断y=f(x)是否可能为定义域上的C函数.如果可能,请给出至少一个符合条件的函数y=f(x);如果不可能,请说明理由.答案和解析1.【答案】A【解析】解:设扇形半径r,弧长l,则{l+2r=4 12lr=1,解得r=1,l=2,所以圆心角为lr=2.故选:A.结合扇形面积公式及弧长公式可求l,r,然后结合扇形圆心角公式可求.本题主要考查了扇形面积公式及弧长公式,属于基础题.2.【答案】C【解析】解:由tanx=2,根据正切函数图象及周期可知:x=kπ+arctan2.故选C根据反三角函数的定义及正切函数的周期为kπ,即可得到原方程的解.此题考查学生掌握正切函数的图象及周期性,是一道基础题.3.【答案】D【解析】解:因为角α的终边在第一象限,所以2kπ<α<π2+2kπ,k∈Z,所以2kπ3<α3<π6+2kπ3,k∈Z,当k=3n(n∈Z)时,此时角α的终边落在第一象限,当k=3n+1(n∈Z)时,此时角α的终边落在第二象限,当k=3n+2(n∈Z)时,此时角α的终边落在第三象限,综上所述,角α的终边不可能落在第四象限,故选:D.首先利用终边相同角的表示方法,写出α的表达式,再写出α3的表达式,由此判断终边位置. 本题考查了终边相同角的表示方法,象限角的概念.属于基础知识和基础题目.4.【答案】A【解析】解:∵g(x)=f(x)+f(−x)2,g(−x)=f(−x)+f(x)2,∴g(x)=g(−x),∴g(x)为偶函数,又g(x +π)=f(x+π)+f(−x−π)2=f(x−π)+f(−x+π)2=g(x −π),∴g(x)的一个周期为2π,当x ≠kπ+π2时,p(x −π)=g(x−π)−g(x)2cos(x−π)=g(x+π)−g(x)−2cosx=g(x)−g(x+π)2cosx=p(x),p(−x)=g(−x)−g(−x+π)2cos(−x)=g(x)−g(x−π)2cosx=g(x)−g(x+π)2cosx=p(x),当x =kπ+π2时,p(x)=0,满足p(x −π)=p(x),p(−x)=p(x), ∴p(x)为偶函数且周期为π; 同理,∵ℎ(x)=f(x)−f(−x)2,ℎ(−x)=f(−x)−f(x)2,∴ℎ(x)=−ℎ(−x),∴ℎ(x)为奇函数,又ℎ(x +π)=f(x+π)−f(−x−π)2=f(x−π)−f(−x+π)2=ℎ(x −π),),∴ℎ(x)的一个周期为2π,当x ≠kπ2时,q(x −π)=ℎ(x−π)+ℎ(x)2sin2(x−π)=ℎ(x+π)+ℎ(x)2sin2x=q(x), q(−x)=ℎ(−x)+ℎ(−x+π)2sin(−2x)=−ℎ(x)−ℎ(x−π)−2sin2x=−ℎ(x)−ℎ(x+π)−2sin2x=ℎ(x)+ℎ(x+π)2sin2x=q(x),当x =kπ2时,q(x)=0,满足q(x −π)=q(x),q(−x)=q(x),∴q(x)为偶函数且周期为π. 故选:A .利用f(x +2π)=f(x),推出g(x)和ℎ(x)的奇偶性和周期性,进而得到p(x)和q(x)的奇偶性和周期性. 该题考查的是函数的奇偶性和周期性的判断,需要学生对函数奇偶性周期性的基础知识有比较深入的理解,考查了学生逻辑推理的能力,是中档题.5.【答案】−125【解析】解:由于角α的顶点与坐标原点重合,始边与x 轴的正半轴重合,其终边上有一点P(5,−12), 则tanα=−125=−125.故答案为:−125.由题意利用任意角的三角函数的定义,即可求得tanα的值.本题主要考查任意角的三角函数的定义,属于基础题.6.【答案】1【解析】解:tan(arctan12+arctan13)=tan(arctan12)+tan(arctan13)1−tan(arctan12)⋅tan(arctan13)=12+131−12×13=1,故答案为:1.由题意利用两角和的正切公式,反正切函数的定义,求得要求式子的值.本题主要考查两角和的正切公式,反正切函数的定义,属于中档题.7.【答案】34【解析】解:因为sinα=35,α∈(0,π2),所以cosα=√1−(35)2=45,所以tanα=sinαcosα=3545=34.故答案为:34.根据α的范围,利用同角三角函数的基本关系式求出cosα的值,然后求出tanα即可.本题考查同角三角函数的基本关系式的应用,注意角的范围以及三角函数值的符号,考查计算能力.8.【答案】2【解析】解:由tanα=2,得2sin2α+sinαcosα=2sin2α+sinαcosαsin2α+cos2α=2tan2α+tanαtan2α+12×22+222+1=105=2.故答案为:2.利用同角三角函数基本关系式化弦为切求解.本题考查三角函数的化简求值,考查同角三角函数基本关系式的应用,是基础题.9.【答案】2sin(α−π3)【解析】解:sinα−√3cosα=2(12sinα−√32cosα)=2sin(α−π3).故答案为:2sin(α−π3).直接利用辅助角公式即可进行化简.本题主要考查了辅助角公式,属于基础题.10.【答案】π【解析】解:函数y=2sin(2x+π6)的最小正周期为2π2=π,故答案为:π.由题意利用正弦函数的周期性,得出结论.本题主要考查正弦函数的周期性,属于基础题.11.【答案】23【解析】【分析】本题考查了诱导公式的应用.三角函数式的化简求值是三角函数中的基本问题,也是常考的问题之一.得到sinθ=23,再用诱导公式对所求问题化简整理即可得出答案.【解答】解:因为sin(θ+3π)=−23,∴sinθ=23.∵tan(−5π−θ)⋅cos(θ−2π)⋅sin(−3π−θ)tan(7π2+θ)⋅sin(−4π+θ)⋅cot(−θ−π2)+2tan(6π−θ)⋅cos(−π+θ)=tan(−θ)⋅cosθ⋅sinθ−cotθ⋅sinθ⋅(−tanθ)+2(−tanθ)⋅(−cosθ)=−sinθ+2sinθ=sinθ=23.故答案为:23.12.【答案】31【解析】解:由于sin(α+β)=sinαcosβ+cosαsinβ=45,① sin(α−β)=sinαcosβ−cosαsinβ=34,② ①+②得:2sinαcosβ=45+34=3120,③, ①−②得:2cosαsinβ=45−34=120.④③④得:tanαtanβ=31. 故答案为:31.直接利用三角函数的和角和差角的正弦公式的应用求出结果.本题考查的知识要点:三角函数的和角和差角的正弦公式的应用,主要考查学生的运算能力和数学思维能力,属于基础题.13.【答案】π3,π4,π6【解析】解:由题意可得:sinαcosβ+cosαsinβ=cosαcosβ+sinαsinβ=√6+√24=√22×√32+√22×12,观察可得:锐角α的值可能为π3,π4,π6. 故答案为:π3,π4,π6.由已知利用两角和与差的正弦函数余弦函数公式及特殊角的三角函数值即可计算得解.本题主要考查了两角和与差的正弦函数余弦函数公式及特殊角的三角函数值的应用,属于基础题.14.【答案】12【解析】解:如图,过走廊转角内顶点P 任意作水平直线与走廊外侧交于点A ,B , 则在水平位置通过走廊的钢筋长度小于或等于AB , 设∠BAQ =α,则∠ABQ =60°−α,则AB =AP +PB=3sinα+3sin(60∘−α)≥6√1sinα⋅sin(60∘−α)=6√112[cos(2α−60∘)−cos60∘]≥6√21−12=12,当且仅当α=30°时取等号,AB 的最小值即为在水平位置通过走廊的钢筋的最大长度, 故能通过走廊的钢筋的最大长度为12米. 故答案为:12.过走廊转角内顶点P 任意作水平直线与走廊外侧交于点A ,B ,设∠BAQ =α,则∠ABQ =60°−α,可得AB =AP +PB =3sinα+3sin(60∘−α),利用基本不等式及积化和差公式即可求解AB 的最小值,从而可得结论.本题主要考查解三角形在实际问题中的应用,考查转化思想与运算求解能力,属于中档题.15.【答案】(−12,+∞)【解析】解:sin 2θ+3mcosθ−6m −4<0即为3m(cosθ−2)<4−sin 2θ=3+cos 2θ, 由于θ∈[0,π2],cosθ∈[0,1],cosθ−2∈[−2,−1], 可得3m >3+cos 2θcosθ−2,设t =cosθ−2,t ∈[−2,−1],则cosθ=2+t , 设f(t)=3+(2+t)2t=t +7t +4,则f(t)在[−2,−1]递减,可得f(t)的最大值为f(−2)=−32, 所以3m >−32,即m >−12. 则m 的取值范围是(−12,+∞). 故答案为:(−12,+∞).由余弦函数的值域和参数分离法,结合三角换元,以及对勾函数的单调性,求得最值,可得所求范围. 本题考查不等式恒成立问题解法,以及三角函数的值域、对勾函数的单调性,考查换元法和转化思想、运算能力,属于中档题.16.【答案】1【解析】解:因为A =π7,设α=π14,则A =2α,所以7α=π2,所以3α=π2−4α;所以sin3α=sin(π2−4α)=cos4α,得3sinα−4sin 3α=2(1−2sin 2α)2−1,化简得8sin 4α+4sin 3α−8sin 2α−3sinα+1=0;即(sinα+1)(8sin 3α−4sin 2α−4sinα+1)=0.又sinα+1>0,所以8sin 3α−4sin 2α−4sinα+1=0,即−4sinαcos2α−4sin 2α+1=0;...①设BC =x ,AC =y ;△ACD 中,A =2α,AD =1,CD =√2,由余弦定理得DC 2=AD 2+AC 2−2AD ⋅AC ⋅cosA ,即2=1+y 2−2×1×y ×cos2α,解得cos2α=y 2−12y ,...②等腰三角形ABC 中,可得sinα=12BC AC =x 2y ;...③ 把②③代入①,得−4×x 2y ×y 2−12y −4×x 24y 2+1=0, 化简得(x −1)(1+x +y 2)=0;因为1+x +y 2>0,所以x −1=0,解得x =1,即BC =1.故答案为:1.可设α=π14,得出7α=π2,3α=π2−4α,sin3α=cos4α,并化简.设BC =x ,AC =y ;在△ACD 中,利用余弦定理求出cos2α,在等腰三角形ABC 中求出sinα,代入化简的式子即可求得x 的值.本题考查了三角函数的化简与运算问题,也考查了解三角形的应用问题,是难题.17.【答案】解:(1)∵5√3sinα+5cosα=8,∴10(√32sinα+12cosα)=8,即sin(α+π6)=45,(3分) ∵α∈(0,π3),∴α+π6∈(π6,π2),∴cos(α+π6)=√1−sin 2(α+π6)=35;(4分)(2)又∵√2sinβ+√6cosβ=2,∴2√2(12sinβ+√32cosβ)=2,即sin(β+π3)=√22,(6分)∵β∈(π6,π2),∴β+π3∈(π2,5π6),∴cos(β+π3)=−√22,(7分)∴cos(α+β)=sin[π2+(α+β)]=sin[(α+π6)+(β+π3)]=sin(α+π6)cos(β+π3)+cos(α+π6)sin(β+π3)=45×(−√22)+35×√22=−√210.(12分)【解析】(1)将等式5√3sinα+5cosα=8左边提取10,利用两角和与差的正弦函数公式及特殊角的三角函数值求出sin(α+π6)的值,由α的范围求出α+π6的范围,利用同角三角函数间的基本关系化简即可求出cos(α+π6)的值;(2)等式√2sinβ+√6cosβ=2左边提取2√2,利用两角和与差的正弦函数公式及特殊角的三角函数值化简,求出sin(β+π3)的值,由β的范围求出β+π3的范围,利用同角三角函数间的基本关系求出cos(β+π3)的值,将所求式子利用诱导公式sin(π2+θ)=cosθ变形,其中的角π2+α+β变形为(α+π6)+(β+π3),利用两角和与差的正弦函数公式化简后,将各自的值代入即可求出值.此题考查了两角和与差的正弦函数公式,诱导公式,同角三角函数间的基本关系,熟练掌握公式,灵活变换角度是解本题的关键,同时注意角度的范围.本题中灵活运用角的变换的技巧达到了用已知表示未知,在求值题中,这是一个重要的经验!18.【答案】解:(1)由题设CD=cotθ,AD=1sinθ,CB=√AB2−AC2=√3,DB=√3−cotθ,所以y=2AD+1⋅BD=2sinθ+(√3−cotθ)=√3+2−cosθsinθ,θ∈[π6,π2],①B、D之间的地下电缆沿线段BD铺设,每千米地下电缆的铺设费用不变,不妨设为1;②A、D之间的水下电缆沿线段AD铺设,每千米水下电缆的铺设费用不变,根据调查为每千米地下电缆铺设费用的两倍;如果设∠ADC=θ;则θ的取值范围为θ∈[π6,π2],可以将该项工程的总费用y表示为θ的函数,这个函数的解析式为y=√3+2−cosθsinθ.因此,原实际问题的数学模型为:求θ,该项工程的总费用y最低.(2)设t=tanθ2(tan15°≤t≤1),则sinθ=2t1+t2,tanθ=2t1−t2,代入(1)的结论,得y=√3+2−cosθsinθ=√3+2−1−t21+t22t1+t2=√3+32t+12t≥2√3,当且仅当32t=12t时取等号,即t=√33时,y min=2√3,再由t=tanθ2得θ=π3,答:当θ=π3时,工程总费用y最低为2√3.【解析】(1)设∠ADC=θ,得θ的取值范围为θ∈[π6,π2],然后将该项工程的总费用y表示为θ的函数,即可得到这个函数的解析式;(2)设t=tanθ2(tan15°≤t≤1),然后利用万能公式将sinθ、tanθ表示成关于t的函数,最后利用基本不等式可求出所求.本题主要考查了解三角形的应用题,以及万能公式和基本不等式的应用,同时考查了转化的思想和运算求解的能力,属于中档题.19.【答案】解:(1)由题意得tanA+tanB=−a=8,tanAtanB=4,所以tanC=−tan(A+B)=tanA+tanBtanAtanB−1=81−4=−83;(2)由题意得tanA+tanB=−a,tanAtanB=4>0,即tan A,tan B同正,因为△=a2−16≥0,tanA+tanB=−a>0,故a≥4或a≤−4,且a<0,所以a≤−4,所以tanC=−tan(A+B)=tanA+tanBtanAtanB−1=−a3≥43,所以tan C的最小值43,此时a=−4.【解析】(1)结合方程的根与系数关系可求tanA+tanB,tan A tan B,然后结合两角和的正切公式及诱导公式可求;(2)由题意得tanA+tanB=−a,tanAtanB=4>0,即tan A,tan B同正,然后结合二次方程根的存在条件可求a的范围再由诱导公式及两角和的正切公式展开可求.本题主要考查了方程的根与系数关系,两角和的正切公式及诱导公式在求解三角形中的应用,属于中档题.20.【答案】解:(1)如图:过点A 作AH 垂直y 轴交y 轴于点H ,AH =msinα,所以点A 的横坐标为−msinα,(2)点A(−msinα,mcosα+14),∴mcosα+14=(−msinα)2, ∴m 2sin 2α−mcosα−14=0,解得m =cosα±12sin 2α,由于m >0,所以m =cosα+12sin 2α(α∈(0,π2)); (3)同理|BF|=1−sinα2cos 2α,|DF|=1+sinα2cos 2α,|CF|=1−cosα2sin 2α, 所以“蝴蝶形图案”面积:S =12AF ×BF +12CF ×DF =1−sinαcosα4(sinαcosα)2(α∈(0,π2)),令t =sinαcosα,t ∈(0,12],所以1t ∈[2,+∞),∴S =1−t4t 2=14(1t −12)2−116, 所以t =12,即α=π4时,“蝴蝶形图案“的面积最小值为12.【解析】(1)过点A 作AH 垂直y 轴,即可表示出点A 的横坐标;(2)将点A 的坐标表示出来,代入抛物线方程,即可解出;(3)由(2)知可将BF ,CF ,DF 的长度表示出来,进而将蝴蝶形图案的面积表示出来,进而解出面积的最大值.本题考查了函数模型的实际应用,学生的数学运算能力,数据处理能力,属于中档题.21.【答案】解:(1)y=1x(x<0)不是C函数.说明如下(举反例):取x1=−3,x2=−1,α=12,则f(αx1+(1−α)x2)−αf(x1)−(1−α)f(x2)=f(−2)−12f(−3)−12f(−1)=−12+16+12>0,即f(αx1+(1−α)x2)>αf(x1)+(1−α)f(x2),所以y=1x,x∈(−∞,0)不是C函数;(2)作出y=x3的图象如右图:当M<0时,可取x1=−3,x2=1,α=12,可得f(αx1+(1−α)x2)=f(−1)=−1,αf(x1)+(1−α)f(x2)=12×(−27+1)=−13,不满足f(αx1+(1−α)x2)≤αf(x1)+(1−α)f(x2);当m=0时,对(0,+∞)中任意实数x1,x2及α∈(0,1),且x1<x2,x0=αx1+(1−α)x2,如图,设A(x1,x13),B(x2,x23),可得C的纵坐标为αx13+(1−α)x23,可得(αx1+(1−α)x2)3<αx13+(1−α)x23,即f(αx1+(1−α)x2)<αf(x1)+(1−α)f(x2),所以M的最小值为0;(3)假设f(x)是R上的C函数,若存在m<n且m,n∈[0,T),使得f(m)≠f(n).(i)若f(m)<f(n),记x1=m,x2=m+T,α=1−n−mT,则0<α<1,且n=αx1+(1−α)x2,那么f(n)=f(αx1+(1−α)x2)≤αf(x1)+(1−α)f(x2)=αf(m)+(1−α)f(m+T)=f(m),这与f(m)<f(n)矛盾;(ii)若f(m)>f(n),记x1=n,x2=n−T,α=1−n−mT,同理也可得到矛盾;所以f(x)在[0,T)上是常数函数,又因为f(x)是周期为T的函数,所以f(x)在R上是常数函数,这与f(x)的最小正周期为T矛盾.所以f(x)不是R上的C函数.【解析】(1)对任意实数x1,x2及α∈(0,1),证得f(αx1+(1−α)x2)≤αf(x1)+(1−α)f(x2),结合C函数的定义,可得结论;(2)当M<0时,取x1=−3,x2=1,α=1,推得f(αx1+(1−α)x2)>αf(x1)+(1−α)f(x2);讨论M=02时,结合图象,可得M的最小值;(3)假设f(x)是R上的C函数,若存在m<n且m,n∈[0,T),使得f(m)≠f(n).可得f(x)在R上是常数函数,这与f(x)的最小正周期为T矛盾,进而得到f(x)不是R上的C函数.本题考查函数的新定义的理解和运用,以及函数的周期性,考查分类讨论思想和数形结合思想、运算能力和推理能力,属于难题.。
2022-2023学年上海交大附中高一上学期期末数学试卷及答案
第1页共7页交大附中2022学年第一学期高一年级数学期期末2023.1一、填空题(共75分,其中1-5每题4分,6-10每题5分,11-15每题6分)1、已知集合{}{}1,3,5,6,7,2,4,5,6,8A B ==,则A B ⋂=____________2、函数223y x x =--的零点是___________3、已知则函数y kxa =的图像过点12,4⎛⎫⎪⎝⎭,则k a +=___________4、某公司一年购买某种货物600吨,分若干次购买,每次购买x 吨,运费为6万元/次,一年的总存储费用为4x 万元.要使一年的总运费与总存储费用之和最小,则x 的值是___________5、已知3sin 45x π⎛⎫-= ⎪⎝⎭,则sin2x =___________6、已知()()4tan 114tan 17A B +-=,则()tan A B -=___________7、已知()()1e ,0,{4,0x x f x f x x +≤=->,则()2023f =___________8、命题“存在()()22,4210x R a x a x ∈-++-≥”为假命题,则实数a 的取值范围为___________9、如图,以0x 为始边作钝角a ,角a 的终边与单位圆交于点(1P x ,1y ),将角α的终边顺时针旋转3π得到角β.角β的终边与单位圆相交于点()22,Q x y ,则21x x -的取值范围为___________10、设()()21lg 11f x x x=+-+,则使()()232f x f x <-成立的x 取值范围是___________.(结果用不等式表示)11、已知12a b ≤≤≤,记3b a+的最大值为M ,最小值为m ,则22M m -=___________12、已知()[]11,y x x x a b =-+∈的值域为[]0,8,则a b +的取值范围是___________第2页共7页13、已知函数()y f x =是定义在R 上的周期为2的偶函数,[]()20,1,122x xx f x ∈=++,则函数()y f x =的图象与函数133x y =+的图象交点个数为____________14、已知()y f x =为定义在R 上的偶函数,当0x ≥时,有()()1f x f x +=-,且当[)0,1x ∈时,()()2log 1f x x =+.给出下列命题,其中正确的命题的个数为____________(1)()()202220230f f -+=;(2)函数()f x 在定义域上是周期为2的周期函数(3)直线y x =与函数()f x 的图像有1个交点;(4)函数()f x 的值域为()1,1-15、德国著名数学家狄利克雷在数学领域成就显著,他是数学史上第一位重视概念的人,并且有意识地“以概念代替直觉”,以其名命名的函数()1,0,x D x x ⎧=⎨⎩是有理数是无理数为狄利克雷函数,现定义一个与狄利克雷函数类似的函数(),0,x x L x x ⎧=⎨⎩是有理数是无理数“L 函数”,则关于狄利克雷函数和L 函数有以下四个结论:(1)()()0D D x =;(2)函数()D x 是偶函数;(3)L 函数图象上存在四个点A B C D 、、、,使得四边形ABCD 为矩形;(4)L 函数图象上存在三个点A B C 、、,使得ABC ∆为等边三角形.其中所有正确结论的序号是____________二、选择题(共75分,其中16-20每题4分,21-25每题5分,26-30每题6分)16、设全集U 与集合,M N 的关系如图所示,则图中阴影部分所表示的集合是()A.M N ⋂B.M N ⋃C.M N⋃ D.M N⋂第3页共7页17、函数23y x =+-的定义域是()A.()2,4 B.()3,4 C.()(]2,33,4⋃ D.[)()2,33,4⋃18、若0,0,x y n >>为正整数,则下列各式中,恒等的是()A.lg lg lg lg x y x y ⋅=+B.()22lg lg x x =C.1ln ln nx x n=D.ln ln x xn n=19、已知,R αβ∈.则“,k k Z αβπ=+∈”是“sin2sin2αβ=”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件20、函数231x y x-=的图象可能是()21、函数()y f x =在(),-∞+∞为严格减函数,且为奇函数.若()11f =-,则满足()121f x -≤-≤的x 的取值范围是()A.[]2,2- B.[]1,1- C.[]0,4 D.[]1,322、已知()22log f x x x=-,则不等式()0f x >的解集是()A.()0,1 B.(),2-∞ C.()2,+∞ D.()0,223、若对任意x A ∈,均有1A x∈,就称集合A 是伙伴关系集合.设集合第4页共7页111,0,,,1,2,3,432M ⎧⎫=-⎨⎬⎩⎭,则M 的所有非空子集中,具有伙伴关系的集合的个数为()A.15B.16C.32D.12824、小张、小李、小王、小赵四名同学,仅有一人做了数学老师布置的一道题目.当他们被问到谁做了该题目时,小张说:“小王或小赵做了”;小李说:“小王做了”;小王说:“小张和小赵都没做”;小赵说:“小李做了”。
2020-2021学年新教材高一数学上学期期末复习练习(四)
2020-2021高一数学期末复习练习(四)考查知识:苏教版必修第一册第I 卷(选择题)请点击修改第I 卷的文字说明一、单选题1.集合{|14}A x N x =∈≤<的真子集的个数是( )A .16B .8C .7D .42.已知:p :A ={x |x 2﹣2x ﹣3≤0},q :B ={x |x 2﹣2mx +m 2﹣4≤0},若p 是¬q 成立的充分不必要条件,求m 的取值范围是( )A .(﹣∞,﹣3)∪(5,+∞)B .(﹣3,5)C .[﹣3,5]D .(﹣∞,﹣3]∪[5,+∞)3.已知a b >,0ab ≠,则下列不等式正确的是( )A .22a b >B .22a b >C .|a |>|b|D .11a b < 4.已知lg 20.3010=,由此可以推断20142是( )位整数.A .605B .606C .607D .6085.设f (x )=12(1),1x x x <<-≥⎪⎩,若f (a )=12,则a =( ) A .14 B .54 C .14或54 D .26.正实数x ,y 满足lg lg 100y x x y =,则xy 的取值范围是( )A .1[,100]100B .1(0,][100,)100⋃+∞ 117.已知扇形的圆心角为23π,面积为24 c m 3π,则扇形的半径为( ) A .12cm B .1cmC .2cmD .4cm 8.复利是一种计算利息的方法.即把前一期的利息和本金加在一起算作本金,再计算下一期的利息.某同学有压岁钱1000元,存入银行,年利率为2.25%;若放入微信零钱通或者支付宝的余额宝,年利率可达4.01%.如果将这1000元选择合适方式存满5年,可以多获利息( )元(参考数据:1.02254=1.093,1,02255=1.170,1.04015=1.217)A .176B .104.5C .77D .88二、多选题9.已知集合{}2A x ax =≤,{B =,若B A ⊆,则实数a 的值可能是( ) A .1- B .1 C .2- D .2 10.设正实数a ,b 满足a +b =1,则( )A .11a b +有最小值4B 12C D .a 2+b 2有最小值12 11.已知定义在R 上的函数()y f x =满足条件()()2f x f x +=-,且函数()1y f x =-为奇函数,则( )A .()4()f x f x +=B .函数()y f x =的图象关于点()1,0-对称C .函数()y f x =为R 上的奇函数D .函数()y f x =为R 上的偶函数12.将函数()sin2f x x =向右平移4π个单位后得到函数()g x ,则()g x 具有性质( ) A .在0,4π⎛⎫ ⎪⎝⎭上单调递增,为偶函数 B .最大值为1,图象关于直线32x π=对称 C .在3,88ππ⎛⎫- ⎪⎝⎭上单调递增,为奇函数 D .周期为π,图象关于点3,04π⎛⎫⎪⎝⎭对称第II 卷(非选择题)请点击修改第II 卷的文字说明三、填空题13.已知p :2106x x >--,则“非p ”对应的x 值的集合是___. 14.若对数ln (x 2﹣5x +6)存在,则x 的取值范围为___.15.若()log 3a y ax =+(0a >且1a ≠)在区间(-1,+∞)上是增函数,则a 的取值范围是________.四、双空题16.已知函数()22log (1),02,0x x f x x x x +>⎧=⎨--≤⎩. 若函数()()g x f x m =-有3个零点,则实数m 的取值范围是________;若()f x m =有2个零点,则m =________.17.已知集合{}12A x x =-≤≤,{}2B x a x a =≤≤+.(1)若1a =,求A B ;(2)在①R R A B ⊆,②A B A ⋃=,③A B B =中任选一个作为已知,求实数a 的取值范围.18.已知函数()222y ax a x =-++,a R ∈ (1)32y x <-恒成立,求实数a 的取值范围;(2)当0a >时,求不等式0y ≥的解集;(3)若存在0m >使关于x 的方程()21221ax a x m m-++=++有四个不同的实根,求实数a 的取值.19.计算下列各式的值:(1)lg2+lg50;(2)39log 4log 8; (3))211lg12log 432162lg 20lg 2log 2log 319-⎛⎫++--⋅+ ⎪⎝⎭.20.已知函数f (x )=ax 2﹣2x +1+b (a ≠0)在x =1处取得最小值0.(1)求a ,b 的值;(2)()()f x g x x =,求函数1(|21|),,22x y g x ⎡⎤=-∈⎢⎥⎣⎦的最小值与最大值及取得最小值与最大值时对应的x 值.21.设函数()cos(),0,02f x x πωϕωϕ⎛⎫=+>-<< ⎪⎝⎭的最小正周期为π,且16f π⎛⎫= ⎪⎝⎭. (1)求函数()f x 的解析式;(2)求函数()f x 的单调递增区间;(3)将函数()y f x =的图象向左平移3π个单位长度,再将所得图象上各点的横坐标伸长到原来的2倍,纵坐标不变,得到函数y =g (x )的图象,求g (x )在2,63ππ⎡⎤-⎢⎥⎣⎦上的值域.22.销售甲种商品所得利润为P 万元,它与投入资金t 万元的函数关系为1at P t =+;销售乙种商品所得利润为Q 万元,它与投入资金t 万元的函数关系为Q bt =,其中a ,b 为常数.现将5万元资金全部投入甲、乙两种商品的销售:若全部投入甲种商品,所得利润为52万元;若全部投入乙种商品,所得利润为53万元.若将5万元资金中的x 万元投入甲种商品的销售,余下的投入乙种商品的销售,则所得利润总和为()f x 万元. (1)求函数()f x 的解析式;(2)求()f x 的最大值.2020-2021高一数学期末复习练习(四)考查知识:苏教版必修第一册参考答案1.C【分析】先用列举法写出集合A ,再写出其真子集即可.【详解】解:∵141,2,3{|}{}A x N x =∈≤<=,{|1}4A x N x ∴=∈≤<的真子集为:{}{}{},,,,{}1231,21,{},,3{}2,3∅共7个. 故选:C .2.A【分析】求出集合A ,B ,由题可得[1,3]- ()(),22,m m -∞-⋃+∞,即可求出.【详解】解:由2230x x --≤,解得:13x -≤≤.{}2:230[1,3]p A x x x ∴=--≤=-∣.由22240x mx m -+-≤,解得:22m x m -≤≤+.∴q :B ={x |x 2﹣2mx +m 2﹣4≤0}=[m ﹣2,m +2], {}22:240[2,2]q B x x mx m m m ∴=-+-≤=-+∣.∵p 是¬q 成立的充分不必要条件,[1,3]∴- ()(),22,m m -∞-⋃+∞,32m ∴<-或21m +<-,解得5m >或3m <-.∴m 的取值范围是(,3)(5,)-∞-+∞. 故选:A.【点睛】结论点睛:本题考查根据充分不必要条件求参数,一般可根据如下规则判断: (1)若p 是q 的必要不充分条件,则q 对应集合是p 对应集合的真子集; (2)若p 是q 的充分不必要条件,则p 对应集合是q 对应集合的真子集; (3)若p 是q 的充分必要条件,则p 对应集合与q 对应集合相等;(4)若p 是q 的既不充分又不必要条件,则q 对应的集合与p 对应集合互不包含. 3.B【分析】利用不等式性质和指数函数的单调性,以及举反例,逐项判定,即可求解.【详解】对于A 中,令1,2a b ==-,此时满足a b >,0ab ≠,但22a b <,所以不正确; 对于B 中,由函数2x y =为R 上的单调递增函数,因为a b >,所以22a b >,所以正确; 对于C 中,令1,2a b ==-,此时满足a b >,0ab ≠,但|a ||b |<,所以不正确; 对于D 中,令1,2a b ==-,此时满足a b >,0ab ≠,但11a b>,所以不正确. 故选:B.4.C【分析】令20142t =,两边取对数后求得lg t ,由此可得20142的整数位.【详解】解:∵lg 20.3010=,令20142t =,∴2014lg 2lg t ⨯=,则lg 20140.3010606.214t =⨯=,∴20142是607位整数.故选:C.5.C【分析】根据解析式分段讨论可求出.【详解】解:∵()12(1),1x f x x x <<=-≥⎪⎩,1()2f a =,∴由题意知,0112a <<⎧=或()11212a a ≥⎧⎪⎨-=⎪⎩, 解得14a =或54a =. 故选:C .6.B【分析】两边取对数可得lg lg 1x y =,利用基本不等式即可求出xy 的取值范围.【详解】正实数x ,y 满足lg lg 100y x x y =,两边取对数可得2lg lg 2x y =,所以lg lg 1x y =, 所以22lg lg lg()1lg lg 22x y xy x y +⎛⎫⎡⎤=≤= ⎪⎢⎥⎝⎭⎣⎦,即2lg ()4xy ≥, 所以lg()2xy ≥或lg()2xy ≤-,解得100xy ≥或10100xy <≤, 所以xy 的取值范围是1(0,][100,)100⋃+∞. 故选:B【点睛】 关键点点睛:本题的求解关键是两边取对数得到lg lg x y 积为定值. 7.C【分析】利用扇形的面积公式即可求解.【详解】设扇形的半径为R ,则扇形的面积2211242233S R R ππα==⨯⨯=, 解得:2R =,故选:C8.B【分析】由题意,某同学有压岁钱1000元,分别计算存入银行和放入微信零钱通或者支付宝的余额宝所得利息,即可得到答案.【详解】将1000元钱存入微信零钱通或者支付宝的余额宝,选择复利的计算方法,则存满5年后的本息和为51000 1.04011217⨯=,故而共得利息1217–1000=217元.将1000元存入银行,不选择复利的计算方法,则存满5年后的利息为1000×0.0225×5=112.5,故可以多获利息217–112.5=104.5.故选:B .【点睛】本题主要考查了等比数列的实际应用问题,其中解答中认真审题,准确理解题意,合理利用等比数列的通项公式求解是解答的关键,着重考查了分析问题和解答问题的能力,属于基础题.9.ABC【分析】由B A ⊆可得出关于实数a 的不等式组,解出实数a 的取值范围,进而可得出实数a 的可能取值.【详解】{}2A x ax =≤,{B =且B A ⊆,所以,222a ≤≤⎪⎩,解得1a ≤. 因此,ABC 选项合乎题意.故选:ABC.10.ABCD由正实数a ,b 满足1a b +=,可得2a b ab +,则104ab <,根据1114a b ab +=判断A ;104ab <开平方判断B =判断C ;利用222222()a b a a b b +++判断D .【详解】正实数a ,b 满足1a b +=,即有2a b ab +,可得104ab <, 即有1114a b a b ab ab ++==,即有12a b ==时,11a b+取得最小值4,无最大值,A 正确;由104ab <可得102<,可得12a b ==有最大值12,B 正确;1122=+⨯,可得12a b ==,C 正确; 由222a b ab +可得2222222()()1a a b a b a b b ++=++=,则2212a b +,当12a b ==时,22a b +取得最小值12,D 正确. 故选:ABCD .【点睛】 利用基本不等式求最值时,一定要正确理解和掌握“一正,二定,三相等”的内涵:一正是,首先要判断参数是否为正;二定是,其次要看和或积是否为定值(和定积最大,积定和最小);三相等是,最后一定要验证等号能否成立(主要注意两点,一是相等时参数是否在定义域内,二是多次用≥或≤时等号能否同时成立).【分析】由()()2f x f x +=-,可得推得()()4f x f x +=,得到A 是正确的;由奇函数的性质和图象的变换,可得判定B 是正确的;由(1)(1)f x f x --=--+,可得推得函数()f x 是偶函数,得到D 正确,C 不正确.【详解】对于A 中,函数()y f x =满足()()2f x f x +=-,可得()()()42f x f x f x +=-+=,所以A 是正确的;对于B 中,()1y f x =-是奇函数,则(1)f x -的图象关于原点对称,又由函数()f x 的图象是由()1y f x =-向左平移1个单位长度得到,故函数()f x 的图象关于点(1,0)-对称,所以B 是正确的;对于C 、D ,由B 可得:对于任意的x ∈R ,都有(1)(1)f x f x --=--+,即(1)(1)0f x f x --+-+=,可变形得(2)()0f x f x --+=,则由(2)()(2)f x f x f x --=-=+对于任意的x ∈R 都成立,令2t x =+,则()()f t f t -=,即函数()f x 是偶函数,所以D 正确,C 不正确.故选:ABD【点睛】函数的周期性有关问题的求解策略:1、求解与函数的周期性有关问题,应根据题目特征及周期定义,求出函数的周期;2、解决函数周期性、奇偶性和单调性结合问题,通常先利用周期性中为自变量所在区间,再利用奇偶性和单调性求解.12.ABD【分析】化简得到()cos 2g x x =-,分别计算函数的奇偶性,最值,周期,轴对称和中心对称,单调区间得到答案.【详解】()sin 2sin 2cos 242g x x x x ππ⎛⎫⎛⎫=-=-=- ⎪ ⎪⎝⎭⎝⎭ 因为0,4x π⎛⎫∈ ⎪⎝⎭,则20,2x π⎛⎫∈ ⎪⎝⎭,所以()cos 2g x x =-单调递增,且为偶函数,A 正确,C 错误; 最大值为1,当32x π=时,23x π=,所以32x π=为对称轴,B 正确; 22T ππ==,取2,,242k x k x k Z ππππ=+∴=+∈,当1k =时满足,图像关于点3,04π⎛⎫ ⎪⎝⎭对称,D 正确;故选:ABD【点睛】本题考查了三角函数的平移,最值,周期,单调性 ,奇偶性,对称性,意在考查学生对于三角函数知识的综合应用.13.{}23x x -≤≤【分析】先求出命题p ,再按照非命题的定义求解即可.【详解】p :2106x x >--, 则260x x -->,解得2x <-或3x >,所以“非p ”对应的x 值的集合是{}23x x -≤≤. 故答案为:{}23x x -≤≤.14.()(),23,-∞+∞ 【分析】若对数存在,则真数大于0,解不等式即可.【详解】解:∵对数ln (x 2﹣5x +6)存在,∴x 2﹣5x +6>0,∴解得: x <2或 x >3,即x 的取值范围为:(﹣∞,2)∪(3,+∞).故答案为:(﹣∞,2)∪(3,+∞).15.(]1,3【分析】先利用0a >判断30u ax =+>是增函数,进而得到log a y u =是增函数,列关系计算即得结果.【详解】因为()log 3a y ax =+,(0a >且1a ≠)在区间(-1,+∞)上是增函数,知3u ax =+在区间(-1,+∞)上是增函数,且0>u ,故log a y u =是增函数,所以30101a a a a ⎧⎪-+≥⎪⎪>⎨⎪>⎪≠⎪⎩,解得13a .故a 的取值范围是(]1,3.故答案为:(]1,3.16.(0,1) 0或1【分析】把函数()()g x f x m =-有3个零点,转化为()y f x =和y m =的交点有3个,作出函数()f x 的图象,结合图象,即可求解.【详解】由题意,函数()()g x f x m =-有3个零点,转化为()0f x m -=的根有3个,转化为()y f x =和y m =的交点有3个,画出函数()22log (1),02,0x x f x x x x +>⎧=⎨--≤⎩的图象,如图所示,则直线y m =与其有3个公共点, 又抛物线的顶点为(1,1)-,由图可知实数m 的取值范围是(0,1).若()f x m =有2个零点,则0m =或(1)1m f =-=.故答案为:(0,1);0或1.【点睛】本题主要考查了函数与方程的综合应用,其中解答中把函数的零点问题转化为两个函数的图象的交点个数,结合图象求解是解答的关键,着重考查数形结合思想,以及推理与运算能力. 17.(1){}13A B x x ⋃=-≤≤;(2)选①/②/③,10a -≤≤.【分析】(1)应用集合并运算求A B 即可;(2)根据所选条件有B A ⊆,即可求a 的取值范围.【详解】(1)当1a =时,{}13B x x =≤≤,则{}13A B x x ⋃=-≤≤.(2)选条件①②③,都有B A ⊆, ∴1,22,a a ≥-⎧⎨+≤⎩解得10a -≤≤, ∴实数a 的取值范围为10a -≤≤.【点睛】本题考查了集合的基本运算,利用并运算求并集,由条件得到集合的包含关系求参数范围,属于简单题.18.(1)(4,0]-;(2)当02a <<时,不等式的解集为 {|1x x ≤或2}x a ≥;当2a =时,不等式的解集为R ;当2a >时,不等式的解集为 2{|x x a≤或1}x ≥;(3)(,4-∞-- 【分析】(1)先整理,再讨论0a =和0a ≠,列出恒成立的条件,求出a 的范围;(2)先因式分解,对两根大小作讨论,求出解集; (3)先令11t m m =++,由0m >,则可得3t ≥,再将()21221ax a x m m-++=++有四个不同的实根,转化为2(2)20ax a x t -++-=有两个不同正根,根据根与系数的关系,求出a 的取值范围.【详解】(1)由题有()22232ax a x x -++<-恒成立,即210ax ax -+-<恒成立, 当0a =时,10-<恒成立,符合题意;当0a ≠时,则2040a a a <⎧⎨∆=+<⎩,得040a a <⎧⎨-<<⎩,得40a , 综合可得40a .(2)由题2(2)20,ax a x -++≥ 即 (2)(1)0ax x --≥,由0,a >则2()(1)0x x a --=,且221a a a--= ①当02a <<时,21>a,不等式的解集为 {1x x ≤∣或2}x a ≥; ②当2a =时,不等式的解集为R③当2a >时,21a <,不等式的解集为 {2x x a≤∣或1}x ≥;综上可得:当02a <<时,不等式的解集为 {|1x x ≤或2}x a≥; 当2a =时,不等式的解集为R ;当2a >时,不等式的解集为 2{|x x a≤或1}x ≥; (3)当 0m > 时,令1113t m m =++≥=, 当且仅当1m =时取等号,则关于x 的方程(||)f x t = 可化为2||(2)||20a x a x t -++-=,关于x 的方程 2||(2)||20a x a x t -++-= 有四个不等实根, 即2(2)20ax a x t -++-=有两个不同正根, 则 2(2)4(2)0(1)20(2)20(3)a a t a a t a ⎧⎪∆=+-->⎪+⎪>⎨⎪-⎪>⎪⎩由(3)得0a <,再结合(2)得2a <-,由 (1) 知,存在 [3,)t ∈+∞ 使不等式24(2)80at a a ++->成立,故243(2)80a a a ⨯++->,即 2840,a a ++>解得4a <--或4a >-+综合可得4a <--故实数a的取值范围是(,4-∞--.【点睛】已知函数有零点(方程有根)求参数值(取值范围)常用的方法:(1)直接法:直接求解方程得到方程的根,再通过解不等式确定参数范围;(2)分离参数法:先将参数分离,转化成求函数的值域问题加以解决;(3)数形结合法:先对解析式变形,进而构造两个函数,然后在同一平面直角坐标系中画出函数的图象,利用数形结合的方法求解;19.(1)2;(2)43;(3)2. 【分析】(1)根据对数的加法运算法则,即可求得答案;(2)利用换底公式,结合对数的运算性质,即可求得答案;(3)根据对数的运算性质及减法法则,即可求得答案.【详解】(1)2lg 2lg50lg100lg102+===; (2)39lg 4log 42lg 22lg 324lg 32lg8log 8lg 33lg 233lg 9==⨯=⨯=; (3))211lg12log 432162lg 20lg 2log 2log 319-⎛⎫++--⋅+ ⎪⎝⎭=013lg1011)1111244++-+=+-+= 20.(1)a =1,b =0;(2)当x =2时,g (|2x ﹣1|)max =43,x =1时,g (|2x ﹣1|)min =0. 【分析】(1)利用二次函数的性质求出a ,b 的值;(2)求出函数(|21|)x y g =-的解析式,利用换元法对勾函数的性质,得出最值以及取得最值时的x 值.【详解】(1)f (x )=ax 2﹣2x +1+b (a ≠0)在x =1处取得最小值0, 即1a =1,f (1)=a +b ﹣1=0,解得a =1,b =0; (2)由(1)知f (x )=(x ﹣1)2,()()12f x g x x x x==+-,g (|2x ﹣1|)=121221x x -+--,令t =|2x ﹣1|,∵1,22x ⎡∈⎤⎢⎥⎣⎦,则1,3t ⎤∈⎦, 由对勾函数的性质可得()min ()10g t g ==,此时t =1即|2x ﹣1|=1,解得x =1;又)1122g =-=,())14332133g g =+-=>, 当t =3时,解得x =2时,所以当x =2时,g (|2x ﹣1|)max =43,当x =1时,g (|2x ﹣1|)min =021.(1)()cos(2)3f x x π=-;(2)[,],36k k k Z ππππ-+∈;(3)[-. 【分析】(1)由函数()f x 的最小正周期为π,求得2w =,再由16f π⎛⎫=⎪⎝⎭,求得ϕ的值,即可求得函数()f x 的解析式;(2)由(1)知()cos(2)3f x x π=-,根据余弦型函数的性质,即可求得函数的递增区间;(3)根据三角函数的图象变换,求得()cos()3g x x π=+,结合三角函数的性质,即可求解. 【详解】 (1)由题意,函数()cos()f x x =+ωϕ的最小正周期为π, 所以2wππ=,可得2w =,所以()cos(2)f x x ϕ=+, 又由16f π⎛⎫= ⎪⎝⎭,可得()cos(2)cos()1663f πππϕϕ=⨯+=+=, 可得2,3k k Z πϕπ+=∈,即2,3k k Z πϕπ=-∈, 因为02πϕ-<<,所以3πϕ=-, 所以函数()f x 的解析式为()cos(2)3f x x π=-.(2)由(1)知()cos(2)3f x x π=-, 令222,3k x k k Z ππππ-≤-≤∈,解得,36k x k k Z ππππ-≤≤+∈, 所以函数()cos(2)3f x x π=-的单调递增区间为[,],36k k k Z ππππ-+∈. (3)将函数()y f x =的图象向左平移3π个单位长度, 得到函数cos[2()]cos(2)333y x x πππ=+-=+, 再将所得图象上各点的横坐标伸长到原来的2倍,纵坐标不变,得到函数()cos()3y g x x π==+,因为2[,]63x ππ∈-,可得[,]36x πππ+∈,所以()1g x -≤≤,所以函数()g x 的值域为[-. 【点睛】 解答三角函数的图象与性质的基本方法:1、根据已知条件化简得出三角函数的解析式为sin()y A wx ϕ=+的形式;2、熟练应用三角函数的图象与性质,结合数形结合法的思想研究函数的性质(如:单调性、奇偶性、对称性、周期性与最值等),进而加深理解函数的极值点、最值点、零点及有界性等概念与性质,但解答中主要角的范围的判定,防止错解.22.(1)()3513x x f x x -=++,[]0,5x ∈;(2)3万元. 【分析】(1)对甲种商品投资x 万元,则对乙种商品投资为5x -万元,当5t =时,求得3a =,13b =,代入()(5)1ax f x b x x =+-+即可. (2)转化成一个基本不等式的形式,最后结合基本不等式的最值求法得最大值,从而解决问题.【详解】(1)因为1at P t =+,Q bt = 所以当5t =时,55512a P ==+,553Q b ==,解得3a =,13b =. 所以31t P t =+,13=Q t ,从而()3513x x f x x -=++,[]0,5x ∈ (2)由(1)可得()()()313613531+553131313x x x x x f x x x x +--+-+⎛⎫=+==-+≤-= ⎪+++⎝⎭当且仅当3113x x +=+,即2x =时等号成立.故()f x 的最大值为3. 答:当分别投入2万元、3万元销售甲、乙两种商品时总利润最大,为3万元.【点睛】方法点睛:与实际应用相结合的题型也是高考命题的动向,这类问题的特点是通过现实生活的事例考查书本知识,解决这类问题的关键是耐心读题、仔细理解题,只有吃透题意,才能将实际问题转化为数学模型进行解答.。
2021-2022学年上海交通大学附属中学高一上学期期末考试数学试卷(练习版)
(1)若 ,求不等式 解集;
(2)若 ,求证:函数 的图象关于点 成中心对称;
(3)若方程 解集恰有一个元素,求a的取值范围.
21.设函数 .
(1)设 与坐标轴交于A、B、C三点,且△ABC为直角三角形,求a 值;
(2)解不等式 ;
(3)对于给定的负数a,有一个最大的正数l(a),使得在整个区间 上,不等式 都成立,求l(a)的最大值及相应a的值.
18.提高过江大桥的车辆通行能力可改善整个城市的交通状况,在一般情况下,大桥上的车流速度v(单位:千米/小时)是车流密度x(单位:辆/千米)的函数,当桥上的车流密度达到200辆/千米时,造成堵塞,此时车流速度为0;当车流密度不超过20辆/千米时,车流速度为60千米/小时,研究表明:当20≤x≤200时,车流速度v是车流密度x的一次函数.
(1)当0≤x≤200时,求函数v(x)的表达式;
(2)当车流密度x为多大时,车流量(单位时间内通过桥上某观测点 车辆数,单位:辆/小时)f(x)=x•v(x)可以达到最大,并求出最大值.(精确到1辆/小时).
19 已知不等式 ,其中x,k∈R.
(1)若x=4,解上述关于k的不等式;
(2)若不等式对任意k∈R恒成立,求x的最大值.
.已知函数 ,若 ,则实数a的值为___.
11.已知函数 的定义域是R,则实数a的取值范围是___.
12.已知正实数a,b,满足 ,则 的最大值为___.
二、选择题
13.已知x∈R,则“ 成立”是“ 成立”的()条件.
A. 充分不必要B. 必要不充分
C. 充分必要D. 既不充分也不必要
14.已知 , , , , , ,则下列关于集合P,Q,S关系的表述正确的是()
2020-2021学年上海市华东师范大学第二附属中学高一上学期期末数学试题及答案
2020-2021学年上海市华东师范大学第二附属中学高一上学期期末数学试题一、单选题1.已知()f x 是R 上的偶函数,12,x x R ∈,则“120x x +=”是“()()12f x f x =”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件答案:A根据函数的奇偶性,以及充分条件、必要条件的判定方法,即可求解. 解:由题意,函数()f x 是R 上的偶函数,若120x x +=,则12x x =-,则()()()122f x f x f x =-=成立,即充分性成立; 若()()12f x f x =,则12x x =-或12x x =,即必要性不一定成立, 所以“120x x +=”是“()()12f x f x =”的充分不必要条件. 故选:A.点评:本题考查充分不必要条件的判断,一般可根据如下规则判断: (1)若p 是q 的必要不充分条件,则q 对应集合是p 对应集合的真子集; (2)p 是q 的充分不必要条件, 则p 对应集合是q 对应集合的真子集; (3)p 是q 的充分必要条件,则p 对应集合与q 对应集合相等;(4)p 是q 的既不充分又不必要条件, q 对的集合与p 对应集合互不包含. 2.函数2(0)1axy a x =>+的图象大致为( ) A . B .C .D .答案:A确定奇偶性,排除两个选项,再由函数值的正负排除一个选项,得出正确结论. 解:记2()1axf x x =+,函数定义域为R ,则2()1ax f x x -=-+()f x =-,函数为奇函数,排除BC ,又0x >时,()0f x >,排除D . 故选:A .点评:思路点睛:函数图象的辨识可从以下方面入手:(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置. (2)从函数的单调性,判断图象的变化趋势; (3)从函数的奇偶性,判断图象的对称性; (4)从函数的特征点,排除不合要求的图象.3.设集合{}2230A x x x =+->,集合{}2210,0B x x ax a =--≤>,若A B 中恰有一个整数,则实数a 的取值范围是( ) A .30,4⎛⎫ ⎪⎝⎭B .34,43⎡⎫⎪⎢⎣⎭C .3,24⎡⎫⎪⎢⎣⎭D .()1,+∞答案:B先化简集合A ,再根据函数2()21y f x x ax ==--的零点分布,结合A∩B 恰有一个整数求解.解:{}{22303A x x x x x =+->=<-或}1x >,函数2()21y f x x ax ==--的对称轴为0x a =>, 而(3)680f a -=+>,(1)20,(0)0f a f -=><,故其中较小的零点为(1,0)-之间,另一个零点大于1,(1)0f <, 要使A∩B 恰有一个整数,即这个整数解为2,(2)0f ∴≤且(3)0f >,即44109610a a --≤⎧⎨-->⎩,解得:3443a ≤< ,则a 的取值范围为34,43⎡⎫⎪⎢⎣⎭.故答案为:B.点评:关键点睛:本题主要考查集合的交集运算的应用以及二次函数的零点分布问题,解题的关键是根据二次函数的性质得出AB 中的整数为2,利用零点存在性定理求解.4.已知函数111,22(),1(2),262x x f x f x x ⎧--≤⎪⎪=⎨⎪-<≤⎪⎩则方程()10xf x -=的解得个数是( )A .5B .6C .7D .8答案:C化简得出函数()f x 的表达式,方程()10xf x -=的解得个数,即方程1()f x x=的实数根的个数,作出函数()f x 和1y x=的图象,结合函数图象可得出答案. 解:当2x ≤时,()31212111122x x f x x x x -⎧⎪≤≤⎪=--=⎨+<⎪⎪⎩ 当24x <≤时,()12314(2)53424x x f x f x xx -⎧⎪<≤⎪=-=⎨-<≤⎪⎪⎩当46x <≤时,()34518(2)75628x x f x f x xx -⎧⎪<≤⎪=-=⎨-<≤⎪⎪⎩方程()10xf x -=的解得个数,即方程1()f x x=的实数根的个数. 在同一坐标系中作出()y f x =与1y x=的图象, 由()()()11112424f f f ===,,, 如图:函数()y f x =的图象与1y x=的图象有7个交点. 所以函数()()1g x xf x =-的零点个数是:7 故选:C点评:关键点点睛:本题考查函数的零点个数,解答本题的关键是得出函数函数()f x 的表达式,作出函数()f x 的图象,将问题转化为方程1()f x x=的实数根的个数,即函数()y f x =的图象与1y x=的图象的交点个数,数形结合可解.二、填空题5.计算:2233318log 752log 52-⎛⎫++-= ⎪⎝⎭________.答案:9根据分数指数幂的运算、对数的运算性质求解出结果. 解:原式=()()232333333212log 3552log 542log 32log 52log 512++⨯⨯-=+++-⎛⎫ ⎪⎝⎭4419=++=,故答案为:9.6.已知1cos 3α=,,02πα⎛⎫∈- ⎪⎝⎭,则tan α等于________. 答案:22-利用同角三角函数的基本关系可求得sin α的值,进而利用商数关系可求得tan α的值.解:,02πα⎛⎫∈-⎪⎝⎭,sin 3α∴==-,因此,sin tan cos ααα==- 故答案为:-.7.不等式2411x x x --≥-的解集为______.答案:[1,1)[3,)-+∞把分式不等式转化为整式不等式,然后利用高次不等式的结论求解.解:不等式2411x x x --≥-化为24101x x x ---≥-,22301x x x --≥-,(1)(3)(1)010x x x x +--≥⎧⎨-≠⎩, 解得3x ≥或11x -≤<. 故答案为:[1,1)[3,)-+∞.点评:方法点睛:解分式不等式的方法:把分式不等式移项,不等式右边化为0,左边通分,然后化为整式不等式,要注意分母不为0,对一元二次不等式易得解,对高次的不等式可利用序轴标根法写出不等式的解.解题中多项式的最高次项系数正数. 8.已知一扇形的圆心角为3π,弧长是cm π,则扇形的面积是__________2cm . 答案:32π 先由弧长公式求出扇形所在圆的半径,再根据扇形面积公式,即可得出结果.解:因为一扇形的圆心角为3π,弧长是cm π, 所以其所在圆的半径为33r ππ==,因此该扇形的面积是1133222S lr ππ==⨯⨯=. 故答案为:32π. 9.已知幂函数()f x 的图象过点2,2⎛⎫⎪⎝⎭,则()3f =______.答案:3由条件求出()12f x x-=,然后可求出答案.解:因为幂函数()f x x α=的图象过点⎛ ⎝⎭所以22α=,解得12α=-,即()12f x x -=所以()1233f -==10.已知函数12()log (21),()f x x y f x -=-=是其反函数,则1(1)f -=__________.答案:32令2log (21)1x -=即可求出1(1)f-解:解:令22log (21)1log 2x -==,所以212x -=,解得32x =,即1(1)f -=32. 故答案为:32. 11.方程()()2lg 2lg 2610+-+-+=x x x 的解集为_________.答案:132⎧⎫⎨⎬⎩⎭根据对数运算法则,先将方程化为()()2lg102lg 26+=+-x x x ,得到()210226+=+-x x x ,求解,再由对数的性质,得到x 的范围,即可得出结果.解:因为()()2lg 2lg 2610+-+-+=x x x ,所以()()2lg102lg 26+=+-x x x ,所以()210226+=+-x x x ,整理得:292602--=x x ,解得2x =-或132x =; 又由220260x x x +>⎧⎨+->⎩解得 32x >;所以132x =,原方程的解集为132⎧⎫⎨⎬⎩⎭ 故答案为132⎧⎫⎨⎬⎩⎭点评:本题主要考查解对数方程,熟记对数运算法则与对数的性质即可,属于常考题型. 12.若关于x 的方程9(4)340x xa ++⋅+=有解,则实数a 的取值范围是__________. 答案:8a ≤-令30x t =>,方程转化为2(4)40t a t +++=有正根,由根的判别式结合根与系数关系,建立关于a 的不等式,求解即可. 解:方程9(4)340x xa ++⋅+=有解,令30x t =>,则方程2(4)40t a t +++=有正根, 又两根的积为4,()()2416040a a ⎧∆=+-≥⎪∴⎨-+>⎪⎩,解得8a ≤-.故答案为:8a ≤-.点评:本题考查一元二次方程根的分布,应用根的判别式和根与系数的关系是解题的关键,属于基础题.13.已知0a >,0b >且3a b +=.式子2021202120192020a b +++的最小值是___________.答案:2令2019a x +=,2020b y +=,从而可得1()14042x y +=,再利用基本不等式即可求解. 解:令2019a x +=,2020b y +=, 则2019x >,2020y >且4042x y +=, ∴1()14042x y +=, ∴202120211111120212021()201920204042x y a b x y x y ⎛⎫⎛⎫+=+=+⋅+ ⎪ ⎪++⎝⎭⎝⎭1111222y x x y ⎛⎫=+++⋅ ⎪⎝⎭≥,当且仅当y xx y=取等号,即2021,2,1x y a b ====时成立. 故答案为:2点评:易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件: (1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方 14.已知122020()1232021x x x x f x x x x x +++=++++++++,()()F x f x m n =+-,若函数()y F x =为奇函数,则2||x m x n ++-的最小值是___________.答案:2021利用已知条件得到()()20224042f x f x +--=,又利用()y F x =为奇函数,即可求出,m n 的值,代入2||x m x n ++-,分四种情况去绝对值,利用二次函数的单调性求最值即可得出结果.解:由122020()1232021x x x x f x x x x x +++=++++++++, 得()111112320211111f x x x x x =-+-+-++-++++ 1112021122021x x x ⎛⎫=-+++⎪+++⎝⎭,又()11120222021202120211f x x xx ⎛⎫--=-+++⎪------⎝⎭1112021202120211x x x ⎛⎫++++⎪+++⎝⎭, 则()()20224042f x f x +--=,因为()()F x f x m n =+-,又函数()y F x =为奇函数,()()()()()()0222F x F x f x m f x m n f x f x m n -+=⇒-+++=⇒+-+=,故22022,240421011,2021m n m n =-=⇒=-=; 所以()221011|||2021|x m x n x x g x ++-=+-=-,当2021x ≥时,原式22101120213032x x x x =-+-=+-, 对称轴为12x =-,故函数()g x 在[)2021,+∞上为增函数, 所以()g x 的最小值为:220211011-;2021x ≤<时,原式22101120211010x x x x =-+-=-+, 对称轴为12x =,故函数()g x 在)上为增函数,所以()g x 的最小值为:2021-当x <≤22101120213032x x x x =-++-=--+, 对称轴为12x =-,故函数()g x 在12⎛⎫-⎪⎝⎭上为增函数,在12⎛- ⎝上为减函数,所以()g x 的最小值为:2021-当x ≤22101120211010x x x x =-+-=-+, 对称轴为12x =,故函数()g x 在(,-∞上为减函数,所以()g x 的最小值为:2021+综上:2||x m x n ++-的最小值是2021-故答案为:2021点评:方法点睛:形如()20x a x b a b -+-<<求最值的问题.分段讨论法:利用绝对值号内式子对应方程的根,将数轴分为(((),,,,,b b ⎤-∞+∞⎦四个部分,在每个部分上去掉绝对值符号,研究二次函数的单调性即可求解最值. 三、解答题15.已知函数2()21x x a f x -=+为奇函数.(1)求实数a 的值并证明()f x 是增函数;(2)若实数满足不等式1(1)02f f t ⎛⎫+-> ⎪-⎝⎭,求t 的取值范围. 答案:(1)1a =,证明见解析;(2)(2,3)t ∈.(1)依题意可得()()f x f x -=-,即可求出参数a 的值,从而求出函数解析式,再利用作差法证明函数的单调性;(2)根据函数的奇偶性及单调性,将函数不等式转化为自变量的不等式,再解分式不等式即可;解:(1)因为()y f x =是定义域为R 奇函数,由定义()()f x f x -=-,所以222121x x x xa a ----=-++ 所以2(1)1xa a -=-, ∴1a =. 所以21()21x x f x 证明:任取12x x -∞<<<+∞,121212*********(22)()()2121(21)(21)x x x x x x x x f x f x ----=-=++++.12x x -∞<<<+∞,1222x x ∴<.12()()0f x f x ∴-<,即12()()f x f x <. ()f x ∴在定义域上为增函数.(2)由(1)得()y f x =是定义域为R 奇函数和增函数1(1)(1)2f f f t ⎛⎫>--= ⎪-⎝⎭112t ⇒>- 302t t -⇒>- (2)(3)0t t ⇒--<23t ⇒<<所以(2,3)t ∈.点评:正确理解奇函数和偶函数的定义,必须把握好两个问题:(1)定义域关于原点对称是函数f(x)为奇函数或偶函数的必要非充分条件;(2)f(-x)=-f(x)或f(-x)=f(x)是定义域上的恒等式.奇函数的图象关于原点对称,偶函数的图象关于y 轴对称,反之也成立.利用这一性质可简化一些函数图象的画法,也可以利用它去判断函数的奇偶性.16.已知函数2()46f x ax x =-+.(1)若函数2log ()y f x =的值域为R ,求实数a 的取值范围;(2)若函数log ()a y f x =在区间](1,3上严格增,求实数a 的取值范围.答案:(1)20,3a ⎡⎤∈⎢⎥⎣⎦;(2)[)2,a ∈+∞. (1)根据条件分析出2()46f x ax x =-+的值域包含()0,∞+,由此根据a 与0的关系分类讨论,求解出结果;(2)根据1,01a a ><<两种情况结合复合函数单调性的判断方法进行分类讨论,然后求解出a 的取值范围.解:(1)当0a =时,2log (46)y x =-+满足题意; 当0a ≠时,要使得2log ()y f x =的值域为R , 只需要满足016240a a >⎧⎨∆=-≥⎩,解得203a <≤,综上20,3a ⎡⎤∈⎢⎥⎣⎦(2)2log ,46a y t t ax x ==-+,当1a >时,外层函数为严格增,所以只需满足212460a aa ⎧≤⎪⇒≥⎨⎪-+≥⎩; 当01a <<时,外层函数为严格减,所以只需满足22332912603a a a a ⎧≤⎧⎪≥⎪⎪⇒⎨⎨⎪⎪-+>>⎩⎪⎩,此时不存在,舍去; 综上[)2,a ∈+∞.点评:思路点睛:形如()()()2lg 0f x ax bx ca =++≠的函数,若函数的定义域为R ,则有00a >⎧⎨∆<⎩;若函数的值域为R ,则有00a >⎧⎨∆≥⎩.17.新冠疫情造成医用防护服短缺,政府决定为生产防护服的公司提供([0,10])∈x x (万元)的专项补贴用于扩大生产,并以每套80元的价格收购其生产的全部防护服,公司在收到政府x (万元)补贴后,防护服产量将增加到1264t k x ⎛⎫=- ⎪+⎝⎭(万件),其中([0.5,1])k k ∈为工人的复工率.公司生产t 万件防护服还需投入成本(20850)x t ++(万元).(1)将公司生产防护服的利润y (万元)表示为补贴x (万元)的函数(政府补贴x 万元计入公司收入);(2)当复工率0.7k =时,政府补贴多少万元才能使公司的防护服利润达到最大? (3)对任意的[0,10]x ∈(万元),当复工率k 达到多少时,公司才能不亏损?(精确到0.01).答案:(1)3601807204ky k x x =---+,[]0,10x ∈;(2)2;(3)0.58 (1)利用已知条件列出函数的解析式,写出定义域即可; (2)当0.7k =时,可得()2527+4+134+4y x x ⎡⎤=-+⎢⎥⎣⎦,利用基本不等式即可求出; (3)若对任意的x∈[0,10],公司都不产生亏损,得到36018072004kk x x ---≥+在x∈[0,10]恒成立,利用换元法,结合函数的单调性求解函数的最值即可得到结果. 解:(1)依题意,()3608020850302071807204ky x t x t t x k x x =+-++=--=---+,[]0,10x ∈; (2)当0.7k =时,3600.71800.77204y x x ⨯=⨯---+()25225271067+4+1344+4x x x x ⎡⎤=--+=-+⎢⎥+⎣⎦50≤-=, 当且仅当()2527+4+4x x =,即2x =时等号成立, 所以政府补贴2万元才能使公司的防护服利润达到最大50万元; (3)若对任意的x∈[0,10],公司都不产生亏损,则36018072004kk x x ---≥+在[]0,10x ∈恒成立,∴21748802180x x k x ++≥⋅+,令[]22,12t x =+∈,2172012112720180180t t k t t t ++⎛⎫∴≥⋅=++ ⎪⎝⎭,设()12720f t t t =++在[]2,12上递增,∴()()max 12127122010512f t f ==⨯++=,∴1105180.580k ≥⨯≈. 即当工人的复工率达到0.58时,公司不亏损.点评:结论点睛:本题考查实际问题的处理方法,函数的单调性以及函数的解析式的求法,考查转化思想以及计算能力,解决此类问题的关键是根据条件准确的求出关系式,对于实际问题的最值问题,常用基本不等式或函数单调性的办法求解,注意实际问题中的取值范围.18.已知函数()32723x xf x ⋅-=-,()2log g x x =. (1)当[]0,1x ∈时,求函数()f x 的值域;(2)若关于x 的方程()g x t =有两个不等根(),αβαβ<,求αβ的值;(3)已知存在实数a ,使得对任意]1[0m ∈,,关于x 的方程()()()244310g x ag x a f m -+--=在区间1,48⎡⎤⎢⎥⎣⎦上总有..3个不等根1x ,2x ,3x ,求出实数a 的取值范围.答案:(1)[]1,2;(2)1a β=;(3)141153a <≤. (1)将函数()f x 化简再根据单调性即可得函数()f x 的值域; (2)根据()g x 的解析式,将,αβ代入化简,即可得到αβ的值.(3)令()p f m =,()t x g =,2()4431h t t at a =-+-,根据]1[0m ∈,得出p 的取值范围,由题意可得关于t 的方程()h t p =在区间[]0,3有两解12,t t ,且()1t g x =有两个不等根,()2t g x =只有一个根,列出不等式组得出a 的范围. 解:(1)()()3232232323x x x f x -+==+--在区间[]0,1x ∈上严格减,而()02f =,()11f =,故函数()f x 的值域为[]1,2.(2)因为()2|log |g x x =在[]0,1x ∈单调递减,在[)1,+∞单调递增,()()t g g αβ== 01αβ∴<<<,则有22log log αβ=,即22log log αβ-=故2220log log log αβαβ=+=,所以1a β= (3)令()p f m =,由(1)知()[]1,2p f m =∈令()t x g =,因为()2log g x x =在1,18x ⎡⎤∈⎢⎥⎣⎦单调减,在[]1,4单调递增,且138g ⎛⎫= ⎪⎝⎭,()10g =,()42g = 则当(]0,2t ∈时,方程()t x g =有两个不等根,由(2)知,且两根之积为1; 当(2,3]{0}t ∈时,方程()t x g =有且只有一个根且此根在区间11,84⎡⎫⎪⎢⎣⎭内或者为1. 令2()4431h t t at a =-+-,由二次函数()h t 与()g x 的图象特征,原题目等价于: 对任意[]1,2p ∈,关于t 的方程()h t p =在区间[]0,3上总有2个不等根()1212,t t t t <, 且()1t g x =有两个不等根,()2t g x =只有一个根, 则必有12023t t <≤<≤或102t <≤且20t =,当12023t t <≤<≤时,结合二次函数()h t 的图象,则有(0)312(2)1551(3)3592h a h a h a =->⎧⎪=-<⎨⎪=-≥⎩,解之得141153a <≤, 当102t <≤且20t =,则()()1020221222h a a h h ⎧≤≤⎪⎪<<⎪⎨⎛⎫⎪< ⎪⎪⎝⎭⎪≥⎩,此时无解.综上所述,实数a 的取值范围为141153a <≤. 点评:关键点点睛:本题主要考查的是利用函数的单调性求函数值域,以及对数函数方程的零点以及复合函数零点的求法,解题的关键是确定方程()t x g =有且只有一个根且此根在区间11,84⎡⎫⎪⎢⎣⎭内或者为1,能够变抽象思维为形象思维,有助于把握数学问题的本质,考查学生的分析问题解决问题的能力,是难题.。
2019-2020学年上海交大附中高一(下)期末数学试卷
2019-2020学年上海交大附中高一(下)期末数学试卷试题数:21,总分:01.(填空题,3分)计算:arcsin (sin 5π6 )=___ .2.(填空题,3分)关于未知数x ,y 的方程组对应的增广矩阵为 (2163−20) ,则此方程组的解x+y=___ .3.(填空题,3分)设 a ⃗=(32,sinα) , b ⃗⃗=(cosα,13) ,且 a ⃗ || b ⃗⃗ ,则cos2α=___ . 4.(填空题,3分)已知函数f (x )=asinx+cosx 的一条对称轴为x= π3 ,则a=___ .5.(填空题,3分)已知平面向量 a ⃗ , b ⃗⃗ 满足| a ⃗ |= √3 ,| b ⃗⃗ |=2, a ⃗•b ⃗⃗ =-3,则| a ⃗+2b ⃗⃗ |=___ .6.(填空题,3分)设S 1=12,S 2=12+22+12,S 3=12+22+32+22+12,…,S n =12+22+32+…+n 2+…+32+22+12.希望证明S n =n(2n 2+1)3,在应用数学归纳法求证上式时,第二步从k 到k+1应添的项是___ .(不用化简)7.(填空题,3分)已知 a ⃗ + b ⃗⃗ + c ⃗ = 0⃗⃗ ,且| a ⃗ |=3,| b ⃗⃗ |=4,| c ⃗ |=5,则 a ⃗ • b ⃗⃗ + b ⃗⃗ • c ⃗ + c ⃗ • a ⃗ =___ , a ⃗ • b⃗⃗ =___ . 8.(填空题,3分)若数列{a n }为无穷等比数列,且 lim n→∞(a 1+a 2+a 3+…+a n-1+a n )=-2,则a 1的取值范围是___ .9.(填空题,3分)设数列{a n }是公比为q 的等比数列,则 |a 1a 2a 3a 4a 5a 6a 7a 8a 9| =___ . 10.(填空题,3分)已知向量 a ⃗ =(5,5), b ⃗⃗ =(λ,1),若 a ⃗ + b ⃗⃗ 与 a ⃗ - b ⃗⃗ 的夹角是锐角,则实数λ的取值范围为___ .11.(填空题,3分)如图,已知O 为矩形ABCD 内的一点,且OA=2,OC=4,AC=5,则 OB ⃗⃗⃗⃗⃗⃗•OD⃗⃗⃗⃗⃗⃗⃗ =___ .12.(填空题,3分)已知平面直角坐标系内定点A (1,1),动点B 满足| AB ⃗⃗⃗⃗⃗⃗ |=2,动点C 满足| CB⃗⃗⃗⃗⃗⃗ |=3,则点C 在平面直角坐标系内覆盖的图形的面积为___ .13.(单选题,3分)要得到函数y=3sin (2x+ π3 )的图象,只需将函数y=3sin2x 的图象( )A.向左平移 π3个单位长度 B.向右平移 π3 个单位长度 C.向左平移 π6 个单位长度 D.向右平移 π6 个单位长度14.(单选题,3分)O 是平面上一定点,A 、B 、C 是平面上不共线的三个点,动点P 满足OP ⃗⃗⃗⃗⃗⃗=OA ⃗⃗⃗⃗⃗⃗+λ(AB⃗⃗⃗⃗⃗⃗|AB ⃗⃗⃗⃗⃗⃗|+AC⃗⃗⃗⃗⃗⃗|AC⃗⃗⃗⃗⃗⃗|) ,λ∈[0,+∞),则P 的轨迹一定通过△ABC 的( )A.外心B.内心C.重心D.垂心15.(单选题,3分)已知数列{a n }为等差数列,a 1<0且a 1+a 2+a 3+…+a 199=0,设b n =a n a n+1a n+2(n∈N*),当{b n }的前n 项和S n 最小时,n 的值有( ) A.5个 B.4个 C.3个 D.2个16.(单选题,3分)设O 为△ABC 所在平面内一点,满足2 OA ⃗⃗⃗⃗⃗⃗ -7 OB ⃗⃗⃗⃗⃗⃗ -3 OC ⃗⃗⃗⃗⃗⃗ = 0⃗⃗ ,则△ABC 的面积与△BOC 的面积的比值为( ) A.6 B. 83 C. 127 D.417.(问答题,0分)解关于x 、y 的一元二次方程组 {ax +3y =−a −3x +(a −2)y =−2 ,并对解的情况进行讨论.18.(问答题,0分)已知x∈R ,设 m ⃗⃗⃗ =( √3 cosx ,sinx-cosx ), n ⃗⃗ =(2sinx ,sinx+cosx ),记函数f (x )= m ⃗⃗⃗ •n ⃗⃗ .(1)求函数f (x )的最小值,并求出函数f (x )取最小值时x 的值;(2)设△ABC 的角A ,B ,C 所对的边分别为a ,b ,c ,若f (C )=2,c=2 √3 ,求△ABC 的面积S 的最大值.19.(问答题,0分)已知△ABC 内接于⊙O ,AB=c ,BC=a ,CA=b ,⊙O 的半径为r . (1)若 OA ⃗⃗⃗⃗⃗⃗ +2 OB ⃗⃗⃗⃗⃗⃗ + √3 OC ⃗⃗⃗⃗⃗⃗ = 0⃗⃗ ,试求∠BOC 的大小; (2)若A 为动点,∠BAC=60°, AO ⃗⃗⃗⃗⃗⃗ = λOC⃗⃗⃗⃗⃗⃗ +μOB ⃗⃗⃗⃗⃗⃗ ,试求λ+μ的最大值.20.(问答题,4分)已知平方和公式:12+22+…+n 2= n (n+1)(2n+1)6,其中n∈N*. (1)记f (n )=(-3n+1)2+…+(-5)2+(-2)2+12+42+…+(3n-2)2,其中n∈N*,求f (20)的值;(2)已知 12+32+⋯+(2n+1)222+42+⋯+(2n )2 = 4948 ,求自然数n 的值;(3)抛物线y=kx 2、x 轴及直线AB :x=a 围成了如图(1)的阴影部分,AB 与x 轴交于点A ,把线段OA 分成n 等份,作以 an为底的内接矩形如图(2),阴影部分的面积为S ,等于这些内接矩形面积之和.a n×k×( a n)2 +a n×k×( 2a n)2 +a n×k×( 3a n)2+…+ a n×k×( n−1na )2, 当n→+∞时的极限值S=n→∞[k•( 1n )2+k•( 2n )2+k•( 3n )2+…+k•(n−1n )2]2• a n= n→∞ 12+22++(n−1)2n 3 •ak= n→∞(n−1)•n•(2n−1)6n 3 •ak= 13 ak .图(3)中的曲线为开口向右的抛物线y2=x.抛物线y= √x、x轴及直线AB:x=4围成了图中的阴影部分,请利用极限、平方和公式、反函数或割补法等知识求出阴影部分的面积(说明:直角积分运算最高得分为4分)21.(问答题,0分)设数列{a n}的前n项和为S n,2S n+a n=3,n∈N*,数列{b n}满足:对于任)n-1+3n-3成立.意的n∈N*,都有a1b n+a2b n-1+a3b n-1+…+a n b1=(13(1)求数列{a n}的通项公式;(2)求数列{b n}的通项公式;(3)设数列c n=a n b n,问:数列{c n}中是否存在三项,使得它们构成等差数列?若存在,求出这三项;若不存在,请说明理由.2019-2020学年上海交大附中高一(下)期末数学试卷参考答案与试题解析试题数:21,总分:01.(填空题,3分)计算:arcsin (sin 5π6 )=___ . 【正确答案】:[1] π6【解析】:由题意利用反正弦函数的定义,特殊角的三角函数值,求得结果.【解答】:解:arcsin (sin 5π6 )=arcsin 12 = π6 , 故答案为: π6 .【点评】:本题主要考查反正弦函数的定义,特殊角的三角函数值,属于基础题.2.(填空题,3分)关于未知数x ,y 的方程组对应的增广矩阵为 (2163−20) ,则此方程组的解x+y=___ . 【正确答案】:[1] 307【解析】:推导出 {2x +y =63x −2y =0 ,由此能求出x+y 的值.【解答】:解:∵关于未知数x ,y 的方程组对应的增广矩阵为 (2163−20) ,∴ {2x +y =63x −2y =0 ,解得 {x =127y =187 , ∴x+y= 307. 故答案为: 307 .【点评】:本题考查方程的解求法,考查增广矩阵等基础知识,考查运算求解能力,是基础题.3.(填空题,3分)设 a ⃗=(32,sinα) , b ⃗⃗=(cosα,13) ,且 a ⃗ || b ⃗⃗ ,则cos2α=___ . 【正确答案】:[1]0【解析】:由平面向量的共线定理列方程求出sin2α的值,再求cos2α的值.【解答】:解:由 a ⃗=(32,sinα) , b ⃗⃗=(cosα,13) ,且 a ⃗ || b ⃗⃗ , 则sinαcosα- 32 × 13 =0, 所以sinαcosα= 12 , 所以sin2α=1;所以2α= π2 +2kπ,k∈Z ; 所以cos2α=0. 故选:0.【点评】:本题考查了平面向量的共线定理与三角函数求值问题,是基础题. 4.(填空题,3分)已知函数f (x )=asinx+cosx 的一条对称轴为x= π3 ,则a=___ . 【正确答案】:[1] √3【解析】:由题意化简函数f (x ),将函数的对称轴代入可得辅助角的值,进而求出正切值,可得a 的值.【解答】:解:由题意显然a≠0,当a >0时,f (x )= √a 2+1 sin (x+α),且tanα= 1a , 因为函数的一条对称轴为x= π3,所以 π3+α= π2+kπ,k∈Z , 所以α= π6+kπ,k∈Z , 则tanα=tan ( π6+kπ)= √33, 所以 √33= 1a,解得:a= √3 ;当a <0,则f (x )=- √a 2+1 sin (x+α),且tanα= 1a , 下面运算相同,综上所述,可得a= √3 , 故答案为: √3 .【点评】:本题考查三角函数的化简即正弦函数的性质,属于基础题.5.(填空题,3分)已知平面向量 a ⃗ , b ⃗⃗ 满足| a ⃗ |= √3 ,| b ⃗⃗ |=2, a ⃗•b ⃗⃗ =-3,则| a ⃗+2b ⃗⃗ |=___ . 【正确答案】:[1] √7【解析】:求出(a⃗+2b⃗⃗)2,开方即为| a⃗+2b⃗⃗ |.【解答】:解:(a⃗+2b⃗⃗)2= a⃗2+4a⃗•b⃗⃗+4b⃗⃗2 =3-12+16=7,∴| a⃗+2b⃗⃗ |= √7.故答案为:√7.【点评】:本题考查了平面向量的数量积运算,属于基础题.6.(填空题,3分)设S1=12,S2=12+22+12,S3=12+22+32+22+12,…,,在应用数学归纳法求证上式时,S n=12+22+32+…+n2+…+32+22+12.希望证明S n= n(2n2+1)3第二步从k到k+1应添的项是___ .(不用化简)【正确答案】:[1](k+1)2+k2【解析】:分别写出n=k与n=k+1时S n中的项,然后确定从k到k+1应添的项.【解答】:解:当n=k时,S n=12+22+32+…+k2+…+32+22+12,那么,当n=k+1时,S k+1=12+22+32+…k2+(k+1)2+k2+…+32+22+12.从k到k+1应添的项是(k+1)2+k2,故答案为:(k+1)2+k2.【点评】:本题考查数学归纳法证题的步骤,考查逻辑思维能力与推理论证能力,是基础题.7.(填空题,3分)已知a⃗ + b⃗⃗ + c⃗ = 0⃗⃗,且| a⃗ |=3,| b⃗⃗ |=4,| c⃗ |=5,则a⃗• b⃗⃗ + b⃗⃗• c⃗ + c⃗• a⃗=___ ,a⃗• b⃗⃗ =___ .【正确答案】:[1]-25; [2]0【解析】:首先,根据a⃗ + b⃗⃗ + c⃗ = 0⃗⃗得到c⃗=−(a⃗+b⃗⃗),然后,根据| c⃗ |=5,求解a⃗•b⃗⃗=0,然后,再求解a⃗• b⃗⃗ + b⃗⃗• c⃗ + c⃗• a⃗的值.【解答】:解:∵ a⃗ + b⃗⃗ + c⃗ = 0⃗⃗,∴ c⃗=−(a⃗+b⃗⃗),∵| c⃗ |=5,∴(a⃗+b⃗⃗)2=25,∴| a⃗|2+2a⃗•b⃗⃗+|b⃗⃗|2 =25,∵| a⃗ |=3,| b⃗⃗ |=4,∴9+2 a⃗•b⃗⃗ +16=25,a ⃗•b⃗⃗=0 , ∴ a ⃗ • b ⃗⃗ + b ⃗⃗ • c ⃗ + c ⃗ • a ⃗ = a ⃗ • b ⃗⃗ + c ⃗ •( a ⃗ + b ⃗⃗ ) = a ⃗•b ⃗⃗ -( a ⃗+b ⃗⃗ )2 =0-25=-25. 故答案为:-25;0.【点评】:本题重点考查了平面向量的基本运算,数量积的运算性质等知识,属于中档题. 8.(填空题,3分)若数列{a n }为无穷等比数列,且 lim n→∞(a 1+a 2+a 3+…+a n-1+a n )=-2,则a 1的取值范围是___ .【正确答案】:[1](-4,-2)∪(-2,0)【解析】:设公比为q ,由题意可得0<|q|<1,且 a11−q =-2,解不等式可得所求范围.【解答】:解:数列{a n }为无穷等比数列,且 lim n→∞(a 1+a 2+a 3+…+a n-1+a n )=-2,设公比为q ,可得0<|q|<1, 且a 11−q=-2, 则q=1+ a12 ,由0<|1+ a12 |<1,解得-4<a 1<-2或-2<a 1<0, 故答案为:(-4,-2)∪(-2,0).【点评】:本题考查无穷递缩等比数列的求和公式的运用,考查运算能力,属于基础题. 9.(填空题,3分)设数列{a n }是公比为q 的等比数列,则 |a 1a 2a 3a 4a 5a 6a 7a 8a 9| =___ . 【正确答案】:[1]0【解析】:利用三阶行列式展开法则和等比数列的通项公式直接求解.【解答】:解:∵数列{a n }是公比为q 的等比数列, ∴ |a 1a 2a 3a 4a 5a 6a 7a 8a 9| =a 1a 5a 9+a 4a 8a 3+a 2a 6a 7-a 7a 5a 3-a 8a 6a 1-a 4a 2a 9 = a 13q 12 + a 13q 12 + a 13q 12 - a 13q 12 - a 13q 12 - a 13q 12 =0. 故答案为:0.【点评】:本题考查三阶行列式的值的求法,考查三阶行列式展开法则和等比数列的通项公式等基础知识,考查运算求解能力,是基础题.10.(填空题,3分)已知向量 a ⃗ =(5,5), b ⃗⃗ =(λ,1),若 a ⃗ + b ⃗⃗ 与 a ⃗ - b ⃗⃗ 的夹角是锐角,则实数λ的取值范围为___ .【正确答案】:[1](-7,1)∪(1,7)【解析】:可先求出 a ⃗+b ⃗⃗=(λ+5,6),a ⃗−b ⃗⃗=(5−λ,4) ,根据题意即可得出 {(λ+5)(5−λ)+24>04(λ+5)−6(5−λ)≠0,然后解出λ的值即可.【解答】:解: a ⃗+b ⃗⃗=(λ+5,6),a ⃗−b ⃗⃗=(5−λ,4) , ∵ a ⃗+b ⃗⃗ 与 a ⃗−b⃗⃗ 的夹角是锐角, ∴ (a ⃗+b ⃗⃗)•(a ⃗−b ⃗⃗)>0 ,且 a ⃗+b ⃗⃗ 与 a ⃗−b ⃗⃗ 不共线, ∴ {(λ+5)(5−λ)+24>04(λ+5)−6(5−λ)≠0 ,解得-7<λ<7且λ≠1,∴实数λ的取值范围为(-7,1)∪(1,7). 故答案为:(-7,1)∪(1,7).【点评】:本题考查了向量坐标的加法和减法运算,向量数量积的计算公式,共线向量的坐标关系,考查了计算能力,属于基础题.11.(填空题,3分)如图,已知O 为矩形ABCD 内的一点,且OA=2,OC=4,AC=5,则 OB ⃗⃗⃗⃗⃗⃗•OD⃗⃗⃗⃗⃗⃗⃗ =___ . 【正确答案】:[1]- 52【解析】:建立坐标系,设O (m ,n ),C (a ,b ),根据条件得出O ,C 的坐标之间的关系,再计算 OB ⃗⃗⃗⃗⃗⃗•OD ⃗⃗⃗⃗⃗⃗⃗ 的值.【解答】:解:以A 为原点,以AB ,AD 为坐标轴建立平面直角坐标系, 设O (m ,n ),B (a ,0),D (0,b ),则C (a ,b ), ∵OA=2,OC=4,AC=5,∴ {a 2+b 2=25m 2+n 2=4(m −a )2+(n −b )2=16 ,整理可得:am+bn= 132 . 又 OB⃗⃗⃗⃗⃗⃗ =(a-m ,-n ), OD ⃗⃗⃗⃗⃗⃗⃗ =(-m ,b-n ), ∴ OB ⃗⃗⃗⃗⃗⃗•OD ⃗⃗⃗⃗⃗⃗⃗ =m (m-a )+n (n-b )=m 2+n 2-(am+bn )=4- 132 =- 52 . 故答案为:- 52 .【点评】:本题考查了平面向量的数量积运算,属于中档题.12.(填空题,3分)已知平面直角坐标系内定点A (1,1),动点B 满足| AB ⃗⃗⃗⃗⃗⃗ |=2,动点C 满足| CB ⃗⃗⃗⃗⃗⃗ |=3,则点C 在平面直角坐标系内覆盖的图形的面积为___ . 【正确答案】:[1]24π【解析】:本题先将B 固定,得到C 的轨迹,C 的轨迹随着B 的动点而运动从而形成一个圆环,即C 在平面直角坐标系内覆盖的图形.【解答】:解:因为动点B 满足| AB ⃗⃗⃗⃗⃗⃗ |=2,所以B 点的轨迹是以A 为圆心,2为半径的一个圆,又因为动点C 满足| CB ⃗⃗⃗⃗⃗⃗ |=3,所以C 点轨迹是以B 为圆心,3为半径的一个圆, 当B 点在圆上运动时,C 点在平面直角坐标系内覆盖的图形如下图所示即C在平面直角坐标系内覆盖的图形为一个圆环,其中大圆的半径为5,小圆的半径是1,所以C在平面直角坐标系内覆盖的图形的面积为52π-12π=24π.【点评】:本题考查根据曲线的轨迹方程求面积,考查学生的直观想象能力和作图能力,易错点是把覆盖的面积看成一整个圆,属于中档题.13.(单选题,3分)要得到函数y=3sin(2x+ π3)的图象,只需将函数y=3sin2x的图象()A.向左平移π3个单位长度B.向右平移π3个单位长度C.向左平移π6个单位长度D.向右平移π6个单位长度【正确答案】:C【解析】:由于函数y=3sin(2x+ π3)=3sin2(x+ π6),故只要将函数y=3sin2x的图象相左平移π6个单位即可实现目标.【解答】:解:由于函数y=3sin(2x+ π3)=3sin2(x+ π6),故只要将函数y=3sin2x的图象相左平移π6个单位,即可得到函数y=3sin(2x+ π3)的图象.故选:C.【点评】:本题主要考查函数y=Asin (ωx+φ)的图象变换,属于中档题.14.(单选题,3分)O 是平面上一定点,A 、B 、C 是平面上不共线的三个点,动点P 满足 OP ⃗⃗⃗⃗⃗⃗=OA ⃗⃗⃗⃗⃗⃗+λ(AB ⃗⃗⃗⃗⃗⃗|AB ⃗⃗⃗⃗⃗⃗|+AC⃗⃗⃗⃗⃗⃗|AC⃗⃗⃗⃗⃗⃗|) ,λ∈[0,+∞),则P 的轨迹一定通过△ABC 的( )A.外心B.内心C.重心D.垂心【正确答案】:B【解析】:先根据 AB ⃗⃗⃗⃗⃗⃗|AB ⃗⃗⃗⃗⃗⃗|、 AC⃗⃗⃗⃗⃗⃗|AC ⃗⃗⃗⃗⃗⃗|分别表示向量 AB ⃗⃗⃗⃗⃗⃗ 、 AC ⃗⃗⃗⃗⃗⃗ 方向上的单位向量,确定 AB ⃗⃗⃗⃗⃗⃗|AB ⃗⃗⃗⃗⃗⃗|+ AC ⃗⃗⃗⃗⃗⃗|AC ⃗⃗⃗⃗⃗⃗|的方向与∠BAC 的角平分线一致,再由OP ⃗⃗⃗⃗⃗⃗=OA ⃗⃗⃗⃗⃗⃗+λ(AB⃗⃗⃗⃗⃗⃗|AB ⃗⃗⃗⃗⃗⃗|+AC⃗⃗⃗⃗⃗⃗|AC⃗⃗⃗⃗⃗⃗|) 可得到 OP ⃗⃗⃗⃗⃗⃗−OA ⃗⃗⃗⃗⃗⃗=AP ⃗⃗⃗⃗⃗⃗ =λ( AB ⃗⃗⃗⃗⃗⃗|AB ⃗⃗⃗⃗⃗⃗|+ AC ⃗⃗⃗⃗⃗⃗|AC ⃗⃗⃗⃗⃗⃗|),可得答案.【解答】:解:∵ AB ⃗⃗⃗⃗⃗⃗|AB ⃗⃗⃗⃗⃗⃗|、 AC⃗⃗⃗⃗⃗⃗|AC ⃗⃗⃗⃗⃗⃗|分别表示向量 AB ⃗⃗⃗⃗⃗⃗ 、 AC⃗⃗⃗⃗⃗⃗ 方向上的单位向量 ∴ AB ⃗⃗⃗⃗⃗⃗|AB ⃗⃗⃗⃗⃗⃗|+ AC⃗⃗⃗⃗⃗⃗|AC ⃗⃗⃗⃗⃗⃗|的方向与∠BAC 的角平分线一致又∵ OP ⃗⃗⃗⃗⃗⃗=OA ⃗⃗⃗⃗⃗⃗+λ(AB⃗⃗⃗⃗⃗⃗|AB ⃗⃗⃗⃗⃗⃗|+AC⃗⃗⃗⃗⃗⃗|AC⃗⃗⃗⃗⃗⃗|) ,∴ OP ⃗⃗⃗⃗⃗⃗−OA ⃗⃗⃗⃗⃗⃗=AP ⃗⃗⃗⃗⃗⃗ =λ( AB ⃗⃗⃗⃗⃗⃗|AB ⃗⃗⃗⃗⃗⃗|+ AC ⃗⃗⃗⃗⃗⃗|AC ⃗⃗⃗⃗⃗⃗|) ∴向量 AP ⃗⃗⃗⃗⃗⃗ 的方向与∠BAC 的角平分线一致 ∴一定通过△ABC 的内心 故选:B .【点评】:本题主要考查向量的线性运算和几何意义.属中档题.15.(单选题,3分)已知数列{a n }为等差数列,a 1<0且a 1+a 2+a 3+…+a 199=0,设b n =a n a n+1a n+2(n∈N*),当{b n }的前n 项和S n 最小时,n 的值有( ) A.5个 B.4个 C.3个 D.2个【正确答案】:B【解析】:根据等差数列的性质,可推得a 100=0,进而可得数列{a n }为递增数列,a 99<0,a 101>0,根据题意,b n =a n a n+1a n+2(n∈N*),当n≤97时,b n <0;当n=98,n=99,n=100时,b n =0;当n≥101时,b n >0.所以{b n }的前n 项和S n 最小时,n=97或n=98或n=99或n=100,共4个.【解答】:解:∵数列{a n }为等差数列 ∴a 1+a 199=a 2+a 198=…=a 99+a 101=2a 100, 又∵a 1+a 2+a 3+…+a 199=0, 即199a 100=0, ∴a 100=0.又∵a 1<0,∴数列{a n }为递增数列, ∴a 99<0,a 101>0, ∵b n =a n a n+1a n+2(n∈N*),∴{b n }的前n 项和S n =a 1a 2a 3+a 2a 3a 4+…+a n a n+1a n+2, 当n≤97时,b n <0,当n=98,n=99,n=100时,b n =0, 当n≥101时,b n >0,∴{b n }的前n 项和S n 最小时,n=97或n=98或n=99或n=100,共4个. 故选:B .【点评】:本题主要考查等差数列的性质,考查数列的前n 项和的最值,考查学生运算和推理的能力,属于中档题.16.(单选题,3分)设O 为△ABC 所在平面内一点,满足2 OA ⃗⃗⃗⃗⃗⃗ -7 OB ⃗⃗⃗⃗⃗⃗ -3 OC ⃗⃗⃗⃗⃗⃗ = 0⃗⃗ ,则△ABC 的面积与△BOC 的面积的比值为( ) A.6 B. 83 C. 127 D.4【正确答案】:D【解析】:先设 OA 1⃗⃗⃗⃗⃗⃗⃗⃗⃗=2OA ⃗⃗⃗⃗⃗⃗,OB 1⃗⃗⃗⃗⃗⃗⃗⃗⃗=−7OB ⃗⃗⃗⃗⃗⃗,OC 1⃗⃗⃗⃗⃗⃗⃗⃗=3OC ⃗⃗⃗⃗⃗⃗ ,于是得到点O 是△A 1B 1C 1的重心,则 S △OA 1B 1=S △OA 1C 1=S △OB 1C 1 =k ,再结合三角形面积公式即可求出△ABC 的面积与△BOC 的面积,进而得到答案.【解答】:解:不妨设 OA 1⃗⃗⃗⃗⃗⃗⃗⃗⃗=2OA ⃗⃗⃗⃗⃗⃗,OB 1⃗⃗⃗⃗⃗⃗⃗⃗⃗=−7OB ⃗⃗⃗⃗⃗⃗,OC 1⃗⃗⃗⃗⃗⃗⃗⃗=3OC ⃗⃗⃗⃗⃗⃗ ,如图所示,根据题意则 OA 1⃗⃗⃗⃗⃗⃗⃗⃗⃗+OB 1⃗⃗⃗⃗⃗⃗⃗⃗⃗+OC 1⃗⃗⃗⃗⃗⃗⃗⃗=0⃗⃗ ,即点O 是△A 1B 1C 1的重心,所以有 S △OA 1B 1=S △OA 1C 1=S △OB 1C 1 =k , 又因为 S △OBCS△OB 1C 1=OB•OCOB1•OC 1=121 , S △OABS△OA 1B 1=OA•OB OA1•OB 1=114 , S △OACS△OA 1C 1=OA•OC OA1•OC 1=16 ,那么 S △OBC =121k , S △OAB =114k , S △OAC =16k , S △ABC =S △OAB +S △OAC −S △OBC =(114+16−121)k =421k , 故△ABC 的面积与△BOC 的面积的比值为 421k 121k =4 .故选:D .【点评】:本题考查了向量的数乘运算,重心的性质,三角形的面积公式,考查了转化与化归的数学思想,属于难题.17.(问答题,0分)解关于x 、y 的一元二次方程组 {ax +3y =−a −3x +(a −2)y =−2 ,并对解的情况进行讨论.【正确答案】:【解析】:(1)若 a1 = 3a−2 = −a−3−2(a-2≠0),解得a ,可得方程组有无数个解.(2)若 a1 = 3a−2 ≠−a−3−2(a-2≠0),解得a ,可得方程组无解.(3)若a=2时,方程组化为: {2x +3y =−5x =−2 ,解出即可判断出结论..若a-2≠0, a1 ≠ 3a−2 ,解出可得方程组有唯一解.【解答】:解:(1)若 a1 = 3a−2 = −a−3−2(a-2≠0),则a=3,此时两条直线重合,方程组有无数个解. (2)若 a1 = 3a−2 ≠−a−3−2(a-2≠0),则a=-1,此时两条直线平行,方程组无解.(3)若a=2时,方程组化为: {2x +3y =−5x =−2 ,解得 {x =−2y =−13 .若a-2≠0, a 1≠ 3a−2,则a≠3,-1,2,此时两条直线相交,方程组有唯一解 {x =−a−4a+1y =−1a+1.【点评】:本题考查了方程组的解法、分类讨论方法,考查了推理能力与计算能力,属于基础题.18.(问答题,0分)已知x∈R ,设 m ⃗⃗⃗ =( √3 cosx ,sinx-cosx ), n ⃗⃗ =(2sinx ,sinx+cosx ),记函数f (x )= m ⃗⃗⃗ •n ⃗⃗ .(1)求函数f (x )的最小值,并求出函数f (x )取最小值时x 的值;(2)设△ABC 的角A ,B ,C 所对的边分别为a ,b ,c ,若f (C )=2,c=2 √3 ,求△ABC 的面积S 的最大值.【正确答案】:【解析】:结合平面向量数量积的坐标运算、二倍角公式和辅助角公式将函数化简为f (x )=2sin (2x- π6 ).(1)根据正弦函数的图象可知,当2x- π6 = −π2 +2kπ时,f (x )可取得最小值. (2)易知C= π3 ,由余弦定理得,cosC= a 2+b 2−c 22ab ,再利用基本不等式的性质可求出ab 的最大值,然后根据S △ABC = 12 absinC 即可得解.【解答】:解:f (x )= m ⃗⃗⃗ •n ⃗⃗ =2 √3 sinxcosx+(sinx-cosx )(sinx+cosx )= √3 sin2x-cos2x=2sin (2x- π6 ).(1)∵x∈R ,∴2x - π6 ∈R ,当2x- π6 = −π2 +2kπ,即x= −π6 +kπ,k∈Z 时,f (x )min =2×(-1)=-2. 故f (x )的最小值为-2,此时x= −π6 +kπ,k∈Z .(2)∵f (C )=2,∴2sin (2C- π6 )=2,∴2C - π6 = π2 +2π,k∈Z ,即C= π3 +kπ,k∈Z . ∵C∈(0,π),∴C= π3 . 由余弦定理知,cosC= a 2+b 2−c 22ab ,即 12 = a 2+b 2−122ab ≥ 2ab−122ab ,当且仅当a=b 时,取等号.∴ab≤12,∴S △ABC = 12 absinC≤ 12×12×√32= 3√3 . 故△ABC 的面积S 的最大值为 3√3 .【点评】:本题考查平面向量与解三角形的综合运用,包含平面向量数量积的运算、二倍角公式、余弦定理以及基本不等式的性质等基础考点,考查学生灵活运用知识的能力、逻辑推理能力和运算能力,属于中档题.19.(问答题,0分)已知△ABC 内接于⊙O ,AB=c ,BC=a ,CA=b ,⊙O 的半径为r . (1)若 OA ⃗⃗⃗⃗⃗⃗ +2 OB ⃗⃗⃗⃗⃗⃗ + √3 OC ⃗⃗⃗⃗⃗⃗ = 0⃗⃗ ,试求∠BOC 的大小; (2)若A 为动点,∠BAC=60°, AO ⃗⃗⃗⃗⃗⃗ = λOC⃗⃗⃗⃗⃗⃗ +μOB ⃗⃗⃗⃗⃗⃗ ,试求λ+μ的最大值.【正确答案】:【解析】:(1)根据 OA ⃗⃗⃗⃗⃗⃗ +2 OB ⃗⃗⃗⃗⃗⃗ + √3OC ⃗⃗⃗⃗⃗⃗ = 0⃗⃗ ,得∴- OA ⃗⃗⃗⃗⃗⃗ =2 OB ⃗⃗⃗⃗⃗⃗ + √3OC ⃗⃗⃗⃗⃗⃗ ,等式两边同时平方,即可求得cos∠BOC=- √32 ,进而求得∠BOC= 56π .(2)因为⊙O 中,∠BAC=60°,所以∠BOC=120°, AO⃗⃗⃗⃗⃗⃗ = λOC ⃗⃗⃗⃗⃗⃗ +μOB ⃗⃗⃗⃗⃗⃗ ,等式两边同时平方,可得λ2+μ2=λμ+1,根据均值不等式,即可求得λ+μ≤2.【解答】:解:(1)∵ OA ⃗⃗⃗⃗⃗⃗ +2 OB ⃗⃗⃗⃗⃗⃗ + √3OC ⃗⃗⃗⃗⃗⃗ = 0⃗⃗ , ∴ AO ⃗⃗⃗⃗⃗⃗ =2 OB ⃗⃗⃗⃗⃗⃗ + √3OC ⃗⃗⃗⃗⃗⃗ , ∴ AO ⃗⃗⃗⃗⃗⃗2=(2 OB ⃗⃗⃗⃗⃗⃗ + √3OC ⃗⃗⃗⃗⃗⃗ )2, ∵AO=OB=OC=r ,∴r 2=4r 2+2•2• √3 r 2•cos∠BOC+3r 2, 计算得cos∠BOC=- √32 , 由题,∠BOC∈(0,π), ∴∠BOC= 56π .(2)由题,⊙O 中,∠BAC=60°, ∴∠BOC=120°, AO ⃗⃗⃗⃗⃗⃗ = λOC⃗⃗⃗⃗⃗⃗ +μOB ⃗⃗⃗⃗⃗⃗ , ∴ AO⃗⃗⃗⃗⃗⃗2=( λOC ⃗⃗⃗⃗⃗⃗ +μOB ⃗⃗⃗⃗⃗⃗ )2, ∴r 2=λ2r 2+2•λ•μr 2•cos120°+μ2r 2, ∴λ2+μ2=λμ+1,根据题意,可知λ>0,μ>0, ∴(λ+μ)2=3λμ+1≤3• (λ+μ)24+1,(当且仅当λ=μ时等式成立),∴(λ+μ)2≤4 ∴λ+μ≤2.∴λ+μ的最大值为2.【点评】:本题考查了平面向量的数量积的应用及基本不等式的应用.考查学生转化的思想,属于中档题.20.(问答题,4分)已知平方和公式:12+22+…+n 2=n (n+1)(2n+1)6,其中n∈N*.(1)记f (n )=(-3n+1)2+…+(-5)2+(-2)2+12+42+…+(3n-2)2,其中n∈N*,求f (20)的值;(2)已知 12+32+⋯+(2n+1)222+42+⋯+(2n )2 = 4948,求自然数n 的值;(3)抛物线y=kx 2、x 轴及直线AB :x=a 围成了如图(1)的阴影部分,AB 与x 轴交于点A ,把线段OA 分成n 等份,作以 an 为底的内接矩形如图(2),阴影部分的面积为S ,等于这些内接矩形面积之和.a n ×k×( a n )2 +a n ×k×( 2a n )2 +a n ×k×( 3a n )2+…+ an ×k×( n−1na )2, 当n→+∞时的极限值S=n→∞[k•( 1n)2+k•( 2n)2+k•( 3n)2+…+k•(n−1n )2]2• an= n→∞ 12+22++(n−1)2n 3 •ak= n→∞(n−1)•n•(2n−1)6n 3 •ak= 13 ak .图(3)中的曲线为开口向右的抛物线y 2=x .抛物线y= √x 、x 轴及直线AB :x=4围成了图中的阴影部分,请利用极限、平方和公式、反函数或割补法等知识求出阴影部分的面积(说明:直角积分运算最高得分为4分)【正确答案】:【解析】:(1)直接利用关系式的应用求出函数的值. (2)利用合比性质的应用求出n 的值.(2)首先求出被积函数原函数,进一步求出定积分的值.【解答】:解:(1)f (20)=(-59)2+(-56)2+...+(-5)2+(-2)2+12+42+...+(58)2, =12+22+32+...+592-[32+62+92+ (572)=12+22+32+…+592-[(3×1)2+(3×2)2+(3×3)2+…+(3×19)2] =12+22+32+…+592-[9×(12+22+32+…+192)] =59×(59+1)×(2×59+1)6 -9× 19×(19+1)(2×19+1)6=47980;(2) 12+32+⋯+(2n+1)222+42+⋯+(2n )2 = 4948 ,由合比性质可知 12+32+⋯+(2n+1)2+22+42+⋯+(2n )222+42+⋯+(2n )2 = 49+4848, 所以(2n+1)[(2n+1)+1][2(2n+1)+1]64×n (n+1)(2n+1)6= 9748,解得n=72,所以自然数n 的值为72.(3)S= ∫√x 40dx = 23x 32|04=163.【点评】:本题考查的知识要点:数列的求和,合比性质,定积分,主要考查学生的运算能力和转换能力及思维能力,属于中档题.21.(问答题,0分)设数列{a n }的前n 项和为S n ,2S n +a n =3,n∈N*,数列{b n }满足:对于任意的n∈N*,都有a 1b n +a 2b n-1+a 3b n-1+…+a n b 1=( 13 )n-1+3n-3成立. (1)求数列{a n }的通项公式; (2)求数列{b n }的通项公式;(3)设数列c n =a n b n ,问:数列{c n }中是否存在三项,使得它们构成等差数列?若存在,求出这三项;若不存在,请说明理由.【正确答案】:【解析】:(1)将n 换为n-1,运用数列的递推式,结合等比数列的定义和通项公式,可得所求通项;(2)a 1b n +a 2b n-1+a 3b n-1+…+a n b 1=( 13 )n-1+3n-3中的n 换为n-1,乘以 13 ,相减可得所求通项公式;(3)求得c n =a n b n = 2n−13n−1 ,讨论单调性,假设存在三项c s ,c p ,c r 成等差数列,其中s ,p ,r∈N*,运用等差数列中项性质和不等式的性质,推理运算,即可得到所求结论.【解答】:解:(1)由2S n +a n =3, ① 得2S n-1+a n-1=3,(n≥2), ②由 ① - ② 得2a n +a n -a n-1=0,即a n = 13 a n-1(n≥2). 对 ① 取n=1得,a 1=1≠0,所以a n ≠0, 所以{a n }为等比数列,首项为1,公比为 13 , 即a n =( 13)n-1,n∈N*.(2)由a n =( 13 )n-1,可得对于任意n∈N*.有b n + 13 b n-1+( 13 )2b n-2+…+( 13 )n-1b 1=( 13 )n-1+3n-3, ③ 则b n-1+ 13 b n-2+( 13 )2b n-3+…+( 13 )n-2b 1=( 13 )n-2+3n-6,n≥2, ④则 13 b n-1+( 13 )2b n-2+( 13 )3b n-3+…+( 13 )n-1b 1=( 13 )n-1+n-2,n≥2, ⑤ 由 ③ - ⑤ 得b n =2n-1(n≥2), 对 ③ 取n=1得,b 1=1也适合上式, 因此b n =2n-1,n∈N*.(3)由(1)(2)可知c n =a n b n = 2n−13n−1 , 则c n+1-c n =2n+13n - 2n−13n−1 = 4(1−n )3n, 所以当n=1时,c n+1=c n ,即c 1=c 2,当n≥2时,c n+1<c n ,即{c n }在n≥2且n∈N*上单调递减, 故c 1=c 2>c 3>c 4>c 5>…,假设存在三项c s ,c p ,c r 成等差数列,其中s ,p ,r∈N*, 由于c 1=c 2>c 3>c 4>c 5>…,可不妨设s <p <r ,则2c p =c s +c r (*), 即2(2p−1)3p−1 = 2s−13s−1 + 2r−13r−1, 因为s ,p ,r∈N*,且s <p <r ,则s≤p -1且p≥2, 由数列{c n }的单调性可知,c s ≥c p-1,即 2s−13s−1 ≥ 2p−33p−2 , 因为c r =+ 2r−13r−1 ,>0, 所以 2(2p−1)3p−1 = 2s−13s−1 + 2r−13r−1 > 2p−33p−2 , 即以2(2p−1)3p−1 > 2p−33p−2,化简得p < 72,又p≥2且p∈N*,所以p=2或p=3,当p=2时,s=1,即c 1=c 2=1,由r≥3时,c r <c 2=1, 此时c 1,c 2,c r 不构成等差数列,不合题意.当p=3时,由题意s=1或s=2,即c s =1,又c p =c 3= 59 , 代入(*)式得c r = 19 .因为数列{c n }在n≥2且n∈N*上单调递减,且c 5= 19 , r≥4,所以r=5.综上所述,数列{c n }中存在三项c 1,c 3,c 5或c 2,c 3,c 5构成等差数列.【点评】:本题考查数列的通项公式的求法,注意运用数列的递推式,考查等差数列中项性质,以及分类讨论思想方法,考查运算能力和推理能力,属于中档题.。
2020-2021学年上海市闵行区高一(上)期末数学试卷 (解析版)
2020-2021学年上海市闵行区高一(上)期末数学试卷一.填空题(共12小题).1.设集合A={﹣1,1,2,5},B={x|2≤x≤6},则A∩B=.2.函数y=lg(2﹣x)的定义域是.3.已知a>0,b>0,化简:=.4.已知α、β是方程2x2+4x﹣3=0的两个根,则=.5.已知f(x)=log a x(a>0,a≠1),若函数y=f(x)的图象经过点(4,2),则=.6.设y=f(x)是定义在R上的奇函数,且满足f(x+2)=﹣f(x),则f(﹣2)=.7.若a,b都是正数,且a+b=1,则(a+1)(b+1)的最大值.8.已知函数y1=k(x﹣3),y2=x a的图象如图所示,则不等式≥0的解集是.9.关于x的不等式|x+2|﹣|x﹣1|≤a的解集为R,则实数a的取值范围是.10.已知函数y=a•b x+c(b>0,b≠1)(x∈[0,+∞))的值域为[﹣1,2),则该函数的一个解析式可以为y=.11.若函数y=k|x|与的图象恰有两个公共点,则实数k的取值范围为.12.垃圾分类可以提高垃圾的资源价值和经济价值,具有社会、经济、生态等几方面的效益,某地街道呈现东﹣西,南﹣北向的网格状,相邻街距都为1,两街道相交的点称为格点.若以互相垂直的两条街道为坐标轴建立平面直角坐标系,现有下述格点(﹣2,2),(2,1),(2,3),(﹣2,4),(4,5),(6,6)为垃圾回收点,请确定一个格点(除回收点外)为垃圾集中回收站,使这6个回收点沿街道到回收站之间路程的和最短.二.选择题(共4小题).13.下列函数中,值域为(0,+∞)的是()A.y=x2B.y=2x C.y=lnx D.y=x+14.用反证法证明命题:“已知a,b∈N,若ab不能被5整除,则a与b都不能被5整除”时,假设的内容应为()A.a、b都能被5整除B.a、b不都能被5整除C.a、b至多有一个能被5整除D.a、b至少有一个都能被5整除15.若实数x、y满足2020x﹣2020y<2021﹣x﹣2021﹣y,则()A.x﹣y<0B.x﹣y>0C.<1D.>116.对于定义在R上的函数y=f(x),考察以下陈述句:q:y=f(x)是R上的严格增函数;p1:任意x1,x2∈R,f(x1+x2)=f(x1)+f(x2),且当x>0时,都有f(x)>0;p2:当f(x1)<f(x2)时,都有x1<x2.关于以上陈述句,下列判断正确的是()A.p1、p2都是q的充分条件B.p1、p2中仅p1是q的充分条件C.p1、p2中仅p2是q的充分条件D.p1、p2都不是q的充分条件三.解答题17.已知集合A={x|≥0},B={x∈R|x2﹣2(a+1)x+a(a+2)≤0}.(1)当a=1时,求A∩B;(2)若B⊂,求实数a的取值范围.18.已知函数f(x)=,设a∈R.(1)是否存在a,使y=f(x)为奇函数;(2)当a=0时,判断函数y=f(x)的单调性,并用单调性的定义加以证明.19.由于人们响应了政府的防控号召,2020年的疫情得到了有效的控制,生产生活基本恢复常态,某赏花园区投资了30万元种植鲜花供市民游赏,据调查,花期为30天,园区从某月1号至30号开放,每天的旅游人数f(x)与第x天近似地满足f(x)=8+(千人),且游客人均消费g(x)近似地满足g(x)=143﹣|x﹣22|(元),1≤x≤30,x∈N.(1)求该园区第x天的旅游收入p(x)(单位:千元)的函数关系式;(2)记(1)中p(x)的最小值为m,若以0.3m(千元)作为资金全部用于回收投资成本,试问该园区能否收回投资成本?20.已知f(x)=x2﹣2ax+5,a∈R.(1)当a=3时,作出函数y=|f(x)|的图象,若关于x的方程|f(x)|=m有四个解,直接写出m的取值范围;(2)若y=f(x)的定义域和值域均为[1,a],求实数a的值;(3)若y=f(x)是(﹣∞,2]上的严格减函数,且对任意的x1,x2∈[1,a+1],总|f(x1)﹣f(x2)|≤4,求实数a的取值范围.21.已知f(x)=log2x.(1)若log516=m,试用m表示f(10);(2)若,函数y=g(x)只有一个零点,求实数t的取值范围;(3)若存在正实数a、b(a≠b),使得|f(a)|=|f(b)|=|f()|成立,其中k为正整数,求k的值.参考答案一.填空题(共12小题).1.设集合A={﹣1,1,2,5},B={x|2≤x≤6},则A∩B={2,5}.【分析】进行交集的运算即可.解:∵A={﹣1,1,2,5},B={x|2≤x≤6},∴A∩B={2,5}.故答案为:{2,5}.2.函数y=lg(2﹣x)的定义域是(﹣∞,2).【分析】直接由对数式的真数大于0求解一元一次不等式得答案.解:由2﹣x>0,得x<2.∴函数y=lg(2﹣x)的定义域是(﹣∞,2).故答案为:(﹣∞,2).3.已知a>0,b>0,化简:=.【分析】利用指数的性质、运算法则直接求解.解:∵a>0,b>0,∴==﹣6.故答案为:﹣6.4.已知α、β是方程2x2+4x﹣3=0的两个根,则=.【分析】利用一元二次方程根与系数的关系可得答案.解:已知α、β是方程2x2+4x﹣3=0的两个根,由一元二次方程根与系数的关系可得:α+β=﹣2,αβ=﹣;则===.故答案为:.5.已知f(x)=log a x(a>0,a≠1),若函数y=f(x)的图象经过点(4,2),则=.【分析】根据题意得到log a4=2,然后求出a,再求出的值.解:∵f(x)=log a x的图象经过点(4,2),∴log a4=2,∴a2=4,且a>0,∴a=2,∴.故答案为:.6.设y=f(x)是定义在R上的奇函数,且满足f(x+2)=﹣f(x),则f(﹣2)=0.【分析】根据题意,由奇函数的性质可得f(0)=0,结合f(x+2)=﹣f(x)可得f(﹣2)=﹣f(﹣2+2)=f(0),即可得答案.解:根据题意,y=f(x)是定义在R上的奇函数,则f(0)=0,又由f(x)满足f(x+2)=﹣f(x),则f(﹣2)=﹣f(﹣2+2)=f(0)=0,故答案为:0.7.若a,b都是正数,且a+b=1,则(a+1)(b+1)的最大值.【分析】先利用基本不等式可得,再将(a+1)(b+1)展开即可得到答案.解:∵a+b=1,a>0,b>0,∴,即,当且仅当a=b时取等号,∴,即(a+1)(b+1)的最大值为.故答案为:.8.已知函数y1=k(x﹣3),y2=x a的图象如图所示,则不等式≥0的解集是(0,3].【分析】利用数形结合对x分段讨论即可求解.解:由图象可得:当x<0时,,当x=0时,无意义,当0<x<3时,0,当x=3时,,当x>3时,,综上,的解集为(0,3],故答案为:(0,3].9.关于x的不等式|x+2|﹣|x﹣1|≤a的解集为R,则实数a的取值范围是[3,+∞).【分析】由绝对值三角不等式即可求得a的取值范围.解:|x+2|﹣|x﹣1|≤|x+2﹣x+1|=3,因为关于x的不等式|x+2|﹣|x﹣1|≤a的解集为R,所以a≥3,即实数a的取值范围是[3,+∞).故答案为:[3,+∞).10.已知函数y=a•b x+c(b>0,b≠1)(x∈[0,+∞))的值域为[﹣1,2),则该函数的一个解析式可以为y=﹣3•+2.【分析】根据题意求出a、c的值,再判断b的取值范围,即可写出函数的一个解析式.解:函数y=a•b x+c中,x∈[0,+∞)的值域为[﹣1,2),所以x=0时,y=a+c=﹣1;x→+∞时,y=a•0+c=2,所以c=2,a=﹣3,且b∈(0,1),所以该函数的一个解析式可以为y=﹣3•+2.故答案为:﹣3•+2.11.若函数y=k|x|与的图象恰有两个公共点,则实数k的取值范围为{4}.【分析】作出两函数的图象,当x≥0时,k>1,在[0,+∞)上有一个交点,只需当x <0时两函数图象有且只有一个交点,最后根据一元二次方程只有一个根建立关系式,从而可求出所求.解:由得,由y=k|x|得,作出两函数的图象如下图:当x≥0时,k>1,在[0,+∞)上有一个交点,而函数y=k|x|与的图象恰有两个公共点,所以当x<0时两函数图象有且只有一个交点,即y=﹣kx与y=相切,即﹣kx=(x<0),即kx2+kx+1=0,△=k2﹣4k=0,解得k=4或0(舍去)所以实数k的取值范围为{4}.故答案为:{4}.12.垃圾分类可以提高垃圾的资源价值和经济价值,具有社会、经济、生态等几方面的效益,某地街道呈现东﹣西,南﹣北向的网格状,相邻街距都为1,两街道相交的点称为格点.若以互相垂直的两条街道为坐标轴建立平面直角坐标系,现有下述格点(﹣2,2),(2,1),(2,3),(﹣2,4),(4,5),(6,6)为垃圾回收点,请确定一个格点(2,4)(除回收点外)为垃圾集中回收站,使这6个回收点沿街道到回收站之间路程的和最短.【分析】首先表示横轴和纵轴方向的距离之和,再根据含有绝对值的三角不等式进行求解最值,即可得到答案.解:设格点的坐标为(x,y),则﹣2≤x≤6,1≤y≤6,根据含有绝对值三角式|a|+|b|≥|a﹣b|可得横轴方向距离和为d(x)=2|x+2|+2|x﹣2|+|x﹣4|+|x﹣6|=(|x+2|+|x﹣6|)+(|x+2|+|x﹣4|)+2|x﹣2|≥|(x+2)﹣(x﹣6)|+|(x+2)﹣(x﹣4)|+2×0=14,此时d(x)的最小值时14,此时三个等号成立的条件是﹣2≤x≤6,﹣2≤x≤4,x=2,所以x=2时,d(x)的最小值时14,纵轴方向的距离和为f(y)=|y﹣1|+|y﹣2|+|y﹣3|+|y﹣4|+|y﹣5|+|y﹣6|≥|(y﹣1)+(y﹣6)|+|(y﹣2)+(y﹣5)|+|(y﹣3)+(y﹣4)|=9,此时d(y)的最小值是9,三个等号成立的条件是1≤y≤6,2≤y≤5,3≤y≤4,即y=3或4,当y=3时,此时格点的位置是(2,3),是垃圾回收点,故舍去;当y=4时,此时格点的位置是(2,4).故答案为:(2,4).二.选择题13.下列函数中,值域为(0,+∞)的是()A.y=x2B.y=2x C.y=lnx D.y=x+【分析】根据函数性质分别求出函数的值域进行判断即可.解:y=x2≥0,即函数的值域为[0,+∞),不满足条件.y=2x>0,即函数的值域为(0,+∞),满足条件.y=lnx的值域为R,不满足条件.当x<0时,y<0,则函数的值域不是(0,+∞),不满足条件.故选:B.14.用反证法证明命题:“已知a,b∈N,若ab不能被5整除,则a与b都不能被5整除”时,假设的内容应为()A.a、b都能被5整除B.a、b不都能被5整除C.a、b至多有一个能被5整除D.a、b至少有一个都能被5整除【分析】根据用反证法证明数学命题的方法,命题“a与b都不能被5整除”的否定为“a,b至少有一个能被5整除”,从而得出结论.解:根据用反证法证明数学命题的步骤和方法,应先假设命题的否定成立.而命题“a与b都不能被5整除”的否定为“a,b至少有一个能被5整除”,故选:D.15.若实数x、y满足2020x﹣2020y<2021﹣x﹣2021﹣y,则()A.x﹣y<0B.x﹣y>0C.<1D.>1【分析】条件即2020x﹣2021﹣x<2021y﹣2021﹣y,由于f(t)=2020t﹣2021﹣t=2020t﹣是R上的增函数,f(x)<f(y),可得结论.解:实数x、y满足2020x﹣2020y<2021﹣x﹣2021﹣y,∴2020x﹣2021﹣x<2021y﹣2021﹣y,由于f(t)=2020t﹣2021﹣t=2020t﹣是R上的增函数,f(x)<f(y),∴x<y,故选:A.16.对于定义在R上的函数y=f(x),考察以下陈述句:q:y=f(x)是R上的严格增函数;p1:任意x1,x2∈R,f(x1+x2)=f(x1)+f(x2),且当x>0时,都有f(x)>0;p2:当f(x1)<f(x2)时,都有x1<x2.关于以上陈述句,下列判断正确的是()A.p1、p2都是q的充分条件B.p1、p2中仅p1是q的充分条件C.p1、p2中仅p2是q的充分条件D.p1、p2都不是q的充分条件【分析】根据函数的奇偶性与单调性的定义判定函数的性质,然后根据充分条件、必要条件的定义进行判定即可.解:对于p1:令x1=x2=0,则f(0)=2f(0),所以f(0)=0;令x1=x,x2=﹣x,则f(﹣x)+f(x)=f(x﹣x)=f(0)=0,所以此函数为奇函数;设x1<x2,则f(x2)﹣f(x1)=f(x2)+f(﹣x1)=f(x2﹣x1),因为x2﹣x1>0,所以f(x2﹣x1)>0,所以f(x2)>f(x1),所以函数f(x)在R上单调递增,故p1是q的充分条件;对于p2,不能表示任意性,不符合单调性的定义,故p2不是q的充分条件;综上所述,p1、p2中仅p1是q的充分条件.故选:B.三.解答题17.已知集合A={x|≥0},B={x∈R|x2﹣2(a+1)x+a(a+2)≤0}.(1)当a=1时,求A∩B;(2)若B⊂,求实数a的取值范围.【分析】(1)把a的值代入集合B解出集合B,再解出集合A,即可求解;(2)分别解出集合A的补集,以及集合B,根据集合的包含关系即可求解.解:(1)当a=1时,B={x|x2﹣4x+3≤0}=[1,3],A={x|x≥2或x<﹣1},所以A∩B=[2,3],(2),B=[a,a+2],因为B,则,解得﹣1≤a<0,即实数a的取值范围为[﹣1,0).18.已知函数f(x)=,设a∈R.(1)是否存在a,使y=f(x)为奇函数;(2)当a=0时,判断函数y=f(x)的单调性,并用单调性的定义加以证明.【分析】(1)利用函数为奇函数,则有f(0)=0,求出a的值,再利用奇函数的定义进行检验即可;(2)求出当a=0时f(x)的解析式,然后利用函数单调性的定义进行证明即可.解:(1)因为函数f(x)=,定义域为R,且为奇函数,所以f(0)=0,即,解得a=﹣1,经检验,此时对任意的x都有f(﹣x)=﹣f(x),故存在a=1,使y=f(x)为奇函数;(2)当a=0时,,函数f(x)在R上为单调递增函数,证明如下:设x1<x2,则=,因为x1<x2,所以,,故f(x1)﹣f(x2)<0,所以f(x1)<f(x2),故函数f(x)在R上为单调递增函数.19.由于人们响应了政府的防控号召,2020年的疫情得到了有效的控制,生产生活基本恢复常态,某赏花园区投资了30万元种植鲜花供市民游赏,据调查,花期为30天,园区从某月1号至30号开放,每天的旅游人数f(x)与第x天近似地满足f(x)=8+(千人),且游客人均消费g(x)近似地满足g(x)=143﹣|x﹣22|(元),1≤x≤30,x∈N.(1)求该园区第x天的旅游收入p(x)(单位:千元)的函数关系式;(2)记(1)中p(x)的最小值为m,若以0.3m(千元)作为资金全部用于回收投资成本,试问该园区能否收回投资成本?【分析】(1)直接利用题意得到p(x)=f(x)g(x),然后去掉绝对值化为分段函数表示即可;(2)分类讨论,分别利用基本不等式和函数的单调性求解分段函数两段的最值,分别比较即可得到答案.解:(1)根据题意可得,p(x)=f(x)•g(x)==;(2)①当1≤x≤22,x∈N*时,p(x)=,当且仅当x=11时取等号,所以p(x)min=p(11)=1152,②当22<x≤30,x∈N*时,在(22,30]上单调递减,所以p(x)min=p(30)=1116,又1152>1116,所以日最低收入为m=1116千元,又0.3m=33.48千元>30千元,所以该园区能收回投资成本.20.已知f(x)=x2﹣2ax+5,a∈R.(1)当a=3时,作出函数y=|f(x)|的图象,若关于x的方程|f(x)|=m有四个解,直接写出m的取值范围;(2)若y=f(x)的定义域和值域均为[1,a],求实数a的值;(3)若y=f(x)是(﹣∞,2]上的严格减函数,且对任意的x1,x2∈[1,a+1],总|f(x1)﹣f(x2)|≤4,求实数a的取值范围.【分析】(1)代入a的值,画出函数y=|f(x)|的图象,结合图象求出m的范围即可;(2)根据一元二次函数f(x)=x2﹣2ax+5(a>1)的对称轴x=a与区间[1,a]再结合一元二次函数的单调性即可求出值域.(3)由于要使对任意的x1,x2∈[1,a+1],总有|f(x1)﹣f(x2)|≤4,则必有[f(x)]max ﹣[f(x)]min≤4,即因此需求出函数在[1,a+1]上的最大最小值.解:(1)a=3时,f(x)=x2﹣6x+5,画出函数y=|f(x)|的图象,如图示:,若关于x的方程|f(x)|=m有四个解,则0<m<4,即m∈(0,4);(2)∵函数f(x)=x2﹣2ax+5(a>1),∴f(x)开口向上,对称轴为x=a>1,∴f(x)在[1,a]是单调减函数,∴f(x)的最大值为f(1)=6﹣2a,f(x)的最小值为f(a)=5﹣a2,∴6﹣2a=a,且5﹣a2=1,∴a=2.(3)函数f(x)=x2﹣2ax+5=(x﹣a)2+5﹣a2,开口向上,对称轴为x=a,∵f(x)在区间(﹣∞,2]上是减函数,对称轴大于等于2,∴a≥2,a+1≥3,f(x)在(1,a)上为减函数,在(a,a+1)上为增函数,f(x)在x=a处取得最小值,f(x)min=f(a)=5﹣a2,f(x)在x=1处取得最大值,f(x)max=f(1)=6﹣2a,∴5﹣a2≤f(x)≤6﹣2a,∵对任意的x∈[1,a+1],总有|f(x1)﹣f(x2)|≤4,∴6﹣2a﹣(5﹣a2)≤4,解得:﹣1≤a≤3;综上:2≤a≤3.21.已知f(x)=log2x.(1)若log516=m,试用m表示f(10);(2)若,函数y=g(x)只有一个零点,求实数t的取值范围;(3)若存在正实数a、b(a≠b),使得|f(a)|=|f(b)|=|f()|成立,其中k为正整数,求k的值.【分析】(1)利用换底公式得到log25=,化简f(10)=log210=1+log25,即可得出答案.(2)方程转化为若x+tx2=1,讨论参数t的值得解.(3)利用已知和函数单调性得到ab=1,把等式转化为(a2+1)=2a2,对k取值讨论得解.解:(1)因为log516=m,所以=m,即=m,所以log25=,所以f(10)=log210=1+log25=1+.(2)g(x)=2f(x)+f(+t)=2log2x+log2(+t)=log2(+t)x2=log2(x+tx2),令g(x)=log2(x+tx2)=0,所以x+tx2=1(x>0,t+>0)只有一个正根,当t=0时,x=1满足题意,当t>0时,h(x)=tx2+x﹣1的对称轴为x=﹣<0,所以h(x)=tx2+x﹣1在(0,+∞)上单调递增,且h(0)=﹣1<0,所以满足题意有一个正根,当t<0时,h(x)=tx2+x﹣1的对称轴为x=﹣<0,所以h(x)=tx2+x﹣1在(0,+∞)上不单调,若有一个正根,则△=1+4t=0,解得t=﹣,综上,m的取值范围为{﹣}∪[0,+∞).(3)f(x)=log2x,因为a≠b,|f(a)|=|f(b)|,所以f(a)=﹣f(b),所以f(a)+f(b)=0,即log2ab=0,解得ab=1,|f(a)|=|f(b)|=f()|,不妨设=a=,所以(a+b)=2a,所以(a+)=2a,即(a2+1)=2a2,当k=1时,a2+1=2a2,所以a=1,此时b=1与已知矛盾,舍去,当k=2时,(a2+1)=2a2,所以(2﹣)a2=,此时a有正解,满足题意,当k=3时,(a2+1)=2a2,所以(2﹣)a2=,此时a有正解,满足题意,当k≥4时,(a2+1)=2a2,所以(2﹣)a2=,此时2﹣≤0无解,不满足题意,综上得k=2或k=3.。
2020-2021学年上海市松江区高一(上)期末数学试卷 (解析版)
2020-2021学年上海市松江区高一(上)期末数学试卷一、填空题(共12小题).1.已知集合A={x|x﹣1≥0},B={0,1,2},则A∩B=.2.若全集U={﹣2,﹣1,0,1,2},A={﹣2,1,2},B={x|x2﹣1=0},则图中阴影部分所表示的集合为.3.函数的定义域是.4.已知函数f(x)=a x﹣1的图象经过(1,1)点,则f﹣1(3)=.5.用“二分法”求函数f(x)=2x3﹣3x2﹣18x+28在区间(1,2)内的零点时,取(1,2)的中点x1=1.5,则f(x)的下一个有零点的区间是.6.已知函数y=f(x)是定义域为R的偶函数,当x≥0时,f(x)=x﹣2x+1,则当x<0时,f(x)=.7.已知不等式ax2+5x+b>0的解集是{x|2<x<3},则不等式bx2﹣5x+a>0的解集是.8.若函数(a>0且a≠1)的值域为[6,+∞),则实数a的取值范围是.9.已知函数y=f(x)是定义域为R的奇函数,满足f(1﹣x)=f(1+x),若f(1)=1,则f(1)+f(2)+f(3)+…+f(50)=.10.已知函数y=log a(x﹣3)+1(a>0,a≠1)的图象恒过定点A,若点A在一次函数的图象上,其中m>0,n>0,则的最小值是.11.已知函数f(x)=|x﹣2|,g(x)=﹣|x+3|+m,若函数f(x)的图象恒在函数g(x)图象上方,则m的取值范围为.12.数学上常用[x]表示不大于x的最大整数,若存在实数t使得[t]=1,[t2]=2,…,[t n]=n同时成立,则正整数n的最大值是.二、选择题(共4小题).13.要证明命题“所有实数的平方都是正数”是假命题,只需()A.证明所有实数的平方都不是正数B.证明平方是正数的实数有无限多个C.至少找到一个实数,其平方是正数D.至少找到一个实数,其平方不是正数14.下列各组函数中,表示同一函数的是()A.f(x)=e lnx,g(x)=xB.C.f(x)=x0,g(x)=1D.f(x)=|x|,x∈{﹣1,0,1},g(x)=x2,x∈{﹣1,0,1}15.已知正数a,b均不为1,则“3a>3b>3”是“log a3<log b3”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分又不必要条件16.已知m>0,当x∈[0,1]时,函数y=(mx﹣1)2的图象与的图象有且只有一个交点,则实数m的取值范围是()A.B.(0,1]∪[3,+∞)C.D.三、解答题(共5小题).17.已知A={x|x2+x﹣2=0},B={x|x2+ax+2a﹣4=0},若B⊆A,求实数a的值.18.已知x是有理数,y是无理数,求证:x+y是无理数.19.已知幂函数在区间(0,+∞)上是严格增函数,g(x)=2x﹣k.(1)求实数m的值;(2)当x∈[﹣1,2]时,f(x)、g(x)的值域分别为A、B.设命题p:x∈A,命题:q:x∈B,若命题p是q成立的必要条件,求实数k的取值范围.20.(16分)给出关于函数f(x)的一些限制条件:①在(0,+∞)上严格减函数;②在(﹣∞,0)上是严格增函数;③是奇函数;④是偶函数;⑤f(0)=0,只在这些条件中,选择必需的条件,补充下面的问题中:定义在R上的函数f(x),若满足______(填写你选定条件的序号),且f(﹣1)=0,求不等式f(x﹣1)>0的解集.(1)若不等式的解集是空集,请写出选定条件的序号,并说明理由;(2)若不等式的解集是非空集合,请写出所有可能性的条件序号(不必说明理由);(3)求解问题(2)中选定条件下不等式的解集.21.(18分)已知二次函数f(x)满足f(x)=f(﹣4﹣x),f(0)=3,若x1,x2是f(x)的两个零点,且|x1﹣x2|=2.(1)求f(x)的解析式;(2)若,求函数g(x)的值域;(2)若不等式g(2x)﹣k•2x≥0在x∈[﹣1,1]上恒成立,求对数k的取值范围.参考答案一、填空题(共12小题).1.已知集合A={x|x﹣1≥0},B={0,1,2},则A∩B={1,2}.解:∵A={x|x≥1},B={0,1,2},∴A∩B={1,2}.故答案为:{1,2}.2.若全集U={﹣2,﹣1,0,1,2},A={﹣2,1,2},B={x|x2﹣1=0},则图中阴影部分所表示的集合为{0}.解:全集U={﹣2,﹣1,0,1,2},A={﹣2,1,2},B={x|x2﹣1=0}={﹣1,1},∴A∪B={﹣2,﹣1,1,2},则图中阴影部分所表示的集合为:∁U(A∪B)={0}.故答案为:{0}.3.函数的定义域是(,1).解:由题意得:,解得:<x<1,故答案为:(,1).4.已知函数f(x)=a x﹣1的图象经过(1,1)点,则f﹣1(3)=2.解:函数f(x)=a x﹣1的图象经过(1,1)点,可得:1=a﹣1,解得:a=2.∴f(x)=2x﹣1那么:f﹣1(3)的值即为2x﹣1=3时,x的值.由2x﹣1=3,解得:x=2.∴f﹣1(3)=2.故答案为2.5.用“二分法”求函数f(x)=2x3﹣3x2﹣18x+28在区间(1,2)内的零点时,取(1,2)的中点x1=1.5,则f(x)的下一个有零点的区间是(1.5,2).解:因为f(x)=2x3﹣3x2﹣18x+28,所以f(1)=9>0,f(2)=﹣4<0,f(1.5)=1>0,由零点的存在性定理可得,f(x)的下一个有零点的区间是(1.5,2).故答案为:(1.5,2).6.已知函数y=f(x)是定义域为R的偶函数,当x≥0时,f(x)=x﹣2x+1,则当x<0时,f(x)=﹣x﹣2﹣x+1.解:根据题意,当x<0时,﹣x>0,则f(﹣x)=(﹣x)﹣2﹣x+1=﹣x﹣2﹣x+1,又由f(x)为偶函数,则f(x)=f(﹣x)=﹣x﹣2﹣x+1,故答案为:﹣x﹣2﹣x+1.7.已知不等式ax2+5x+b>0的解集是{x|2<x<3},则不等式bx2﹣5x+a>0的解集是(﹣,﹣).解:不等式ax2+5x+b>0的解集是{x|2<x<3},则ax2+5x+b=0的实数根是3和2,由根与系数的关系,得3+2=﹣,3×2=,解得a=﹣1,b=﹣6,不等式bx2﹣5x+a>0可化为﹣6x2﹣5x﹣1>0,即6x2+5x+1<0,即(2x+1)(3x+1)<0,解得﹣<x<﹣,∴不等式的解集是(﹣,﹣),故答案为:(﹣,﹣).8.若函数(a>0且a≠1)的值域为[6,+∞),则实数a的取值范围是(1,2].解:当x≤2时,y=﹣x+8≥6,要使函数(a>0且a≠1)的值域为[6,+∞),则有x>2时,函数y=log a x+5≥6,∴,解得1<a≤2.∴实数a的取值范围是(1,2].故答案为:(1,2].9.已知函数y=f(x)是定义域为R的奇函数,满足f(1﹣x)=f(1+x),若f(1)=1,则f(1)+f(2)+f(3)+…+f(50)=1.解:根据题意,f(x)是定义域为R的奇函数,则f(﹣x)=﹣f(x),又由f(x)满足f(1+x)=f(1﹣x),则f(﹣x)=f(2+x),则有f(x+2)=﹣f(x),变形可得:f(x+4)=f(x),即函数f(x)为周期为4的周期函数;又由f(x)是定义域为R的奇函数,则f(0)=0,则f(2)=﹣f(0)=0,f(3)=﹣f(1)=﹣1,f(4)=f(0)=0,则f(1)+f(2)+f(3)+f(4)=1+0+(﹣1)+0=0,则f(1)+f(2)+f(3)+…+f(50)=12×[f(1)+f(2)+f(3)+f(4)]+f(1)+f(2)=1,故答案为:1.10.已知函数y=log a(x﹣3)+1(a>0,a≠1)的图象恒过定点A,若点A在一次函数的图象上,其中m>0,n>0,则的最小值是8.解:函数y=log a(x﹣3)+1(a>0,a≠1)的图象恒过定点A,令x﹣3=1,即x=4时,y=1,故定点A(4,1),又点A在一次函数的图象上,所以有,即2m+n=1,所以=,当且仅当,即时取等号,所以的最小值是8.故答案为:8.11.已知函数f(x)=|x﹣2|,g(x)=﹣|x+3|+m,若函数f(x)的图象恒在函数g(x)图象上方,则m的取值范围为(﹣∞,5).解:由题意可得:|x﹣2|>﹣|x+3|+m在R上恒成立,即m<|x﹣2|+|x+3|在R上恒成立,只需m<(|x﹣2|+|x+3|)min即可,又|x﹣2|+|x+3|≥|(x﹣2)﹣(x+3)|=5,当且仅当x﹣2与x+3的符号异号取等号,所以m<5,故答案为:(﹣∞,5).12.数学上常用[x]表示不大于x的最大整数,若存在实数t使得[t]=1,[t2]=2,…,[t n]=n 同时成立,则正整数n的最大值是4.解:若[t]=1,则t∈[1,2),若[t2]=2,则t∈[),(因为题目需要同时成立,则负区间舍去),若[t3]=3,则t∈[,),若[t4]=4,则t∈[,),若[t5]=5,则t∈[,),其中,,≈1.587,≈1.495,≈1.431<1.495,综上,当t=4时,可以找到t,使其在区间[1,2)∩[)∩[)∩[,)上,但当t=5时,无法找到t,使其在区间[1,2)∩[)∩[)∩[,)∩[)上,∴正整数n的最大值为4.故答案为:4.二、选择题(本大题共有4题,满分20分.每题5分)每题有且只有一个正确答案,考生应在答题纸的相应位置,将代表正确选项的小方格涂黑.13.要证明命题“所有实数的平方都是正数”是假命题,只需()A.证明所有实数的平方都不是正数B.证明平方是正数的实数有无限多个C.至少找到一个实数,其平方是正数D.至少找到一个实数,其平方不是正数解:因为“全称量词命题”的否定是“存在量词命题”,所以命题“所有实数的平方都是正数”的否定是:“至少有一个实数的平方不是正数”.故选:D.14.下列各组函数中,表示同一函数的是()A.f(x)=e lnx,g(x)=xB.C.f(x)=x0,g(x)=1D.f(x)=|x|,x∈{﹣1,0,1},g(x)=x2,x∈{﹣1,0,1}解:A.f(x)的定义域是(0,+∞),g(x)的定义域是R,两个函数的定义域不相同,不是同一函数,B.f(x)=x﹣2,(x≠﹣2),g(x)的定义域是R,两个函数的定义域不相同,不是同一函数,C.f(x)的定义域为{x|x≠0},g(x)的定义域是R,两个函数的定义域不相同,不是同一函数,D.f(x)对应点的坐标为{(﹣1,1),(0,0),(1,1)},g(x)对应点的坐标为{(﹣1,1),(0,0),(1,1)},两个函数对应坐标相同,是同一函数,故选:D.15.已知正数a,b均不为1,则“3a>3b>3”是“log a3<log b3”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分又不必要条件解:因为3a>3b>3,所以a>b>1,因为log a3<log b3,①当a>1,b>1时,则有a>b>1;②当0<a<1,0<b<1时,则有0<b<a<1,所以“3a>3b>3”是“log a3<log b3”的必要不充分条件.故选:B.16.已知m>0,当x∈[0,1]时,函数y=(mx﹣1)2的图象与的图象有且只有一个交点,则实数m的取值范围是()A.B.(0,1]∪[3,+∞)C.D.解:根据题意,由于m为正数,y=(mx﹣1)2为二次函数,在区间(0,)为减函数,(,+∞)为增函数,函数y=+m为增函数,分2种情况讨论:①、当0<m≤1时,有≥1,在区间[0,1]上,y=(mx﹣1)2为减函数,且其值域为[(m﹣1)2,1],函数y=+m为增函数,其值域为[m,1+m],此时两个函数的图象有1个交点,符合题意;②、当m>1时,有<1,y=(mx﹣1)2在区间(0,)为减函数,(,1)为增函数,函数y=+m为增函数,其值域为[m,1+m],若两个函数的图象有1个交点,则有(m﹣1)2≥1+m,解得m≤0或m≥3,又由m为正数,则m≥3,综合可得:m的取值范围是(0,1]∪[3,+∞).故选:B.三、解答题(本大题满分76分)本大题共有5题,解答下列各题必须在答题纸相应编号的规定区域内写出必要的步骤.17.已知A={x|x2+x﹣2=0},B={x|x2+ax+2a﹣4=0},若B⊆A,求实数a的值.解:由已知可得A={﹣2,1},因为B⊆A,则B=∅或{﹣2}或{1}或{﹣2,1},当B=∅时,△=a2﹣4(2a﹣2)=a2﹣8a+8<0,无解,当B={﹣2}时,则,解得a=4,当B={1}时,则,无解,当B={﹣2,1}时,则,解得a=1,综上,实数a的值为1或4.18.已知x是有理数,y是无理数,求证:x+y是无理数.【解答】证明:假设x+y是有理数,则x+y=(m,n∈Z).∵x是有理数,∴x=(p,q∈Z),∴x+y=+y=,∴y=﹣=,∵m,n,p,q∈Z,∴mp∈Z,mq﹣pm∈Z,∴y是有理数,与y是无理数相矛盾.∴假设错误,x+y是无理数,得证.19.已知幂函数在区间(0,+∞)上是严格增函数,g(x)=2x﹣k.(1)求实数m的值;(2)当x∈[﹣1,2]时,f(x)、g(x)的值域分别为A、B.设命题p:x∈A,命题:q:x∈B,若命题p是q成立的必要条件,求实数k的取值范围.解:(1)因为幂函数在区间(0,+∞)上是严格增函数,所以(m﹣1)2=1且m2﹣4m+2>0,解得m=0.(2)由(1)得f(x)=x2,当x∈[﹣1,2]时,f(x)的最小值为0,f(x)的最大值为4,故A=[0,4],因为g(x)=2x﹣k在x∈[﹣1,2]上单调递增,故g(x)的最小值为,g(x)的最大值为4﹣k,故B=,因为命题p:x∈A,命题:q:x∈B,且命题p是q成立的必要条件,故B⊆A,所以,解得,所以实数k的取值范围为.20.(16分)给出关于函数f(x)的一些限制条件:①在(0,+∞)上严格减函数;②在(﹣∞,0)上是严格增函数;③是奇函数;④是偶函数;⑤f(0)=0,只在这些条件中,选择必需的条件,补充下面的问题中:定义在R上的函数f(x),若满足______(填写你选定条件的序号),且f(﹣1)=0,求不等式f(x﹣1)>0的解集.(1)若不等式的解集是空集,请写出选定条件的序号,并说明理由;(2)若不等式的解集是非空集合,请写出所有可能性的条件序号(不必说明理由);(3)求解问题(2)中选定条件下不等式的解集.解:(1)若不等式f(x﹣1)>0的解集为空集,即f(x﹣1)≤0恒成立,由f(﹣1)=0,所以函数f(x)不可能单调递增或单调递减,所以①②都不能选,只能选③④,此时f(x)=0,不等式f(x﹣1)>0的解集为空集;所以选③④;(2)若不等式f(x﹣1)>0的解集是非空集合,可选择条件:①③;①④⑤;②③;②④⑤;(3)若选①③:由f(x)是奇函数,则f(﹣0)=﹣f(0),所以f(0)=0,又f(﹣1)=0,则f(1)=0,又f(x)在(0,+∞)上严格减函数,则f(x)在(﹣∞,0)上严格减函数,由f(x﹣1)>0,则x﹣1<﹣1或0<x﹣1<1,解得x<0或1<x<2,所以不等式f(x﹣1)>0的解集为(﹣∞,0)∪(1,2);若选①④⑤:由f(x)是偶函数,由f(﹣1)=0,则f(1)=0,又f(x)在(0,+∞)上严格减函数,则f(x)在(﹣∞,0)上严格增函数,由f(x﹣1)>0,则﹣1<x﹣1<0或0<x﹣1<1,解得0<x<2且x≠1,所以不等式f(x﹣1)>0的解集为(0,1)∪(1,2);若选②③:由f(x)是奇函数,则f(﹣0)=﹣f(0),所以f(0)=0,又f(﹣1)=0,则f(1)=0,又f(x)在(﹣∞,0)上严格增函数,则f(x)在(0,+∞)上严格增函数,由f(x﹣1)>0,则﹣1<x﹣1<或x﹣1>1,解得0<x<1或x>2,所以不等式f(x﹣1)>0的解集为(0,1)∪(2,+∞);若选②④⑤:由f(x)是偶函数,由f(﹣1)=0,则f(1)=0,又f(x)f(x)在(﹣∞,0)上严格增函数,则f(x)在(0,+∞)上严格减函数,由f(x﹣1)>0,则﹣1<x﹣1<0或0<x﹣1<1,解得0<x<2且x≠1,所以不等式f(x﹣1)>0的解集为(0,1)∪(1,2).21.(18分)已知二次函数f(x)满足f(x)=f(﹣4﹣x),f(0)=3,若x1,x2是f(x)的两个零点,且|x1﹣x2|=2.(1)求f(x)的解析式;(2)若,求函数g(x)的值域;(2)若不等式g(2x)﹣k•2x≥0在x∈[﹣1,1]上恒成立,求对数k的取值范围.解:(1)∵f(x)=f(﹣4﹣x),x1,x2是f(x)的两个零点,且|x1﹣x2|=2.∴f(x)的对称轴为x=﹣2,可得x1=﹣3,x2=﹣1(不妨设x1<x2),设f(x)=a(x+3)(x+1)(a≠0),由f(0)=3a=3,得a=1,∴f(x)=x2+4x+3(2)∵==x++4,当x>0时,x++4≥2+4,当且仅当x=时取等号,此时g(x)∈[2+4,+∞);当x<0时,x++4≤﹣2+4,当且仅当x=﹣时取等号,此时g(x)∈(﹣∞,﹣2+4],∴函数g(x)的值域是(﹣∞,﹣2+4]∪[2+4,+∞).(3)不等式g(2x)﹣k•2x≥0可化为2x++4﹣k•2x≥0,即k≤1+3+4•恒成立,令t=,∵x∈[﹣1,1],∴t∈[,2],令h(t)=3t2+4t+1,t∈[,2],图象开口向上对称轴为t=﹣,∴当t=时,h(t)取得最小值为h()=,∴k≤.∴实数k的取值范围为(﹣∞,].。
2023-2024学年上海市宝山区上海交大附中高三上学期期末考试数学试卷含详解
上海交通大学附属中学2023-2024学年度第一学期高三数学期末测试卷一、填空题(本大题共12题,满分54分)只要求直接填写结果,第1~6题每个空格填对得4分,第7~12题每个空格填对得5分,否则一律得零分.1.抛物线24y x =的焦点坐标是______.2.设集合{}02A x x =≤≤,集合{}2430B x x x =-+≥,则A B = __________.3.方程()()233log 45log 1x x x --=+的解是x =________.4.设i 是虚数单位,则复数()2i 1i z =-的虚部是________.5.函数tan 4⎛⎫=- ⎪⎝⎭y x πω的最小正周期为4,则ω=____________.6.已知随机变量X 的分布为2130.160.440.40-⎛⎫ ⎪⎝⎭,则()25E X +=__________.7.已知空间向量()()()1,2,4,5,1,3,,,1PA PB PC m n ==-=-.若,,,P A B C四点共面,则1017m n +=__________.8.已知直线:1l y x =-与x 轴的交点为F ,直线l 上的动点P 满足:点P 到直线=1x -的距离d PF≥恒成立,则动点P 所对应轨迹的长度为__________.9.在某次比赛中运动员五轮的成绩互不相等,记为()12345i x i =,,,,,平均数为x ,若随机删去其中一轮的成绩,得到一组新数据,记为()1234i y i =,,,,平均数为y ,下面说法正确的是__________.(写出所有正确选项)①新数据的极差可能等于原数据的极差.②新数据的中位数可能等于原数据的中位数.③若x y =,则新数据的方差一定大于原数据方差.④若x y =,则新数据的第40百分位数一定大于原数据的第40百分位数.10.已知正项数列{}n a 的前n 项和n S 满足()210n n n S S n ++-=(n 为正整数).记()1()||nn i i f x a x i ==⋅-∑,若函数()2024y f x kx=+的值域为R ,则实数k 的取值范围是__________.11.函数()e xf x ax b =++在区间[]1,3上存在零点,则22a b +的最小值为_________.12.若对于任意自然数n ,函数πcos 3y x ω⎛⎫=+ ⎪⎝⎭在每个闭区间[]21,21n n -+上均有两个零点,则正实数ω的最小值是__________.二、选择题(本大题共有4题,第13-14题每题4分,第15-16题每题5分)每题有且只有一个正确选项.考生应在答题纸的相应位置,将代表正确选项的小方格涂黑.13.ABC 中,“A B >”是“sin sin A B >”的()A.充分不必要条件B.必要不充分条件C .充要条件D.既不充分也不必要条件14.如图,三棱柱111 ABC A B C -中,底面三角形111A B C 是正三角形,E 是BC 的中点,则下列叙述正确的是()A.直线1CC 与直线1B E 是异面直线B.直线1CC 与直线AE 是共面直线C.直线AE 与直线11B C 是异面直线D.直线AE 与直线1BB 是共面直线15.甲箱中有5个红球,2个白球和3个黑球;乙箱中有4个红球,3个白球和3个黑球.先从甲箱中随机取出一球放入乙箱中,分别以1A 、2A 、3A 表示由甲箱中取出的是红球、白球和黑球的事件;再从乙箱中随机取出一球,以B 表示由乙箱中取出的球是红球的事件,则下列结论错误的是()A.()25P B =B.()1511P B A =C.事件B 与事件1A 不相互独立D.1A 、2A 、3A 两两互斥16.考虑这样的等腰三角形:它的三个顶点都在椭圆222:1(1)x C y a a+=>上,且其中恰有两个顶点为椭圆C 的顶点.关于这样的等腰三角形有多少个,有两个命题:命题①:满足条件的三角形至少有12个.命题②:满足条件的三角形最多有20个.关于这两个命题的真假有如下判断,正确的是()A.命题①正确;命题②错误.B.命题①错误;命题②正确.C.命题①,②均正确.D.命题①,②均错误.三、解答题(本大题共有5题,满分78分)解答下列各题必须在答题纸的相应位置写出必要的步骤.17.已知等差数列{}n a 的前n 项和为n S ,公差0d ≠,2a 是15,a a 的等比中项,525S =.(1)求{}n a 的通项公式;(2)若数列{}n b 满足1n n n b b S ++=,求220b b -.18.有一矩形硬纸板材料(厚度忽略不计),一边AB 长为6分米,另一边足够长.现从中截取矩形ABCD (如图甲所示),其中OEMF 是以O 为圆心,120EOF ∠= 的扇形,且弧 EF GH,分别与边BC AD ,相切于点M N ,.剪去图中的阴影部分,剩下的部分恰好能折卷成一个底面是弓形的柱体包装盒(如图乙所示,重叠部分忽略不计).(1)当BE 长为1分米时,求折卷成的包装盒的容积;(2)当BE 的长是多少分米时,折卷成的包装盒的容积最大?19.已知椭圆()2222:10x y a b a b Γ+=>>,右焦点为F ,动直线l 与圆222:O x y b +=相切于点Q ,与椭圆交于()11,A x y 、()22,B x y 两点,其中点Q 在y 轴右侧.(1)若直线:20l x y --=过点F ,求椭圆方程;(2)求证:AF AQ +为定值.20.如图,正四棱柱1111ABCD A B C D -的底面边长为1,高为2,点M 是棱1CC 上一个动点(点M 与C ,1C 均不重合).(1)当点M 是棱1CC 的中点时,求证:直线AM ⊥平面11B MD ;(2)当11D M AB ⊥时,求点1D 到平面1AMB 的距离;(3)当平面1AB M 将正四棱柱1111ABCD A B C D -分割成体积之比为1:2的两个部分时,求线段MC 的长度.21.已知数列{}n a 满足111,()n n a a f a +==.(1)若π()sin()2f x x A x =+,求最小正数A 的值,使数列{}n a 为等差数列;(2)若()ln 2f x x x =++,求证:21nn a ≤-;(3)对于(2)中的数列{}n a ,求证:22223444[1][1][1]e (1)(1)(1)n a a a +⋅+⋅⋅+<+++上海交通大学附属中学2023-2024学年度第一学期高三数学期末测试卷一、填空题(本大题共12题,满分54分)只要求直接填写结果,第1~6题每个空格填对得4分,第7~12题每个空格填对得5分,否则一律得零分.1.抛物线24y x =的焦点坐标是______.【答案】()1,0【分析】根据抛物线的标准方程直接求出焦点坐标即可.【详解】因为抛物线标准方程为24y x =,所以焦点坐标为()1,0,故答案为:()1,0.2.设集合{}02A x x =≤≤,集合{}2430B x x x =-+≥,则A B = __________.【答案】{}01x x ≤≤【分析】先求出集合B ,再根据交集的定义即可得解.【详解】{}{24303B x x x x x =-+≥=≥或}1x ≤,所以{}01A B x x ⋂=≤≤.故答案为:{}01x x ≤≤.3.方程()()233log 45log 1x x x --=+的解是x =________.【答案】6【分析】根据对数真数大于零和对数函数的单调性可直接构造不等式组求得结果.【详解】由()()233log 45log 1x x x --=+得:2245010451x x x x x x ⎧-->⎪+>⎨⎪--=+⎩,即()()()()2150156160x x x x x x x ⎧+->⎪>-⎨⎪--=+-=⎩,解得:6x =.故答案为:6.4.设i 是虚数单位,则复数()2i 1i z =-的虚部是________.【答案】2【分析】根据复数的乘法运算即可得复数z ,即可得z 的虚部.【详解】解:复数()22i 1i 2i 2i 22i z =-=-=+,所以复数z 的虚部为2.故答案为:2.5.函数tan 4⎛⎫=- ⎪⎝⎭y x πω的最小正周期为4,则ω=____________.【答案】4π±【分析】直接根据三角函数周期公式计算得到答案.【详解】tan 4⎛⎫=- ⎪⎝⎭y x πω,故4T πω==,故4πω=±.故答案为:4π±.【点睛】本题考查了正切函数周期,属于简单题.6.已知随机变量X 的分布为2130.160.440.40-⎛⎫ ⎪⎝⎭,则()25E X +=__________.【答案】7.64【分析】根据期望的计算公式以及性质即可求解.【详解】由题意可得()20.160.4430.4 1.32E X =-⨯++⨯=,所以()()25257.64E X E X +=+=,故答案为:7.647.已知空间向量()()()1,2,4,5,1,3,,,1PA PB PC m n ==-=-.若,,,P A B C 四点共面,则1017m n +=__________.【答案】11-【分析】根基空间向量共面定理结合空间向量坐标表示的线性运算即可得解.【详解】因为,,,P A B C 四点共面,所以,,PA PB PC共面,所以存在唯一实数对(),x y ,使得PC xPA yPB =+,即52143m x yn x y x y=+⎧⎪=-⎨⎪-=+⎩,所以1251417n y m y +=-⎧⎨+=⎩,所以()()17125140n m +++=,所以101711m n +=-.故答案为:11-.8.已知直线:1l y x =-与x 轴的交点为F ,直线l 上的动点P 满足:点P 到直线=1x -的距离d PF ≥恒成立,则动点P 所对应轨迹的长度为__________.【答案】8【分析】设(),1P x x -,根据d PF ≥,求出x 的范围,再根据两点间的距离公式即可得解.【详解】因为直线:1l y x =-与x 轴的交点为F ,所以()1,0F 由题意,设(),1P x x -,由d PF ≥,得1x +≥,即2610x x -+≤,解得33x -≤≤+,所以动点P 所对应轨迹为1,3y x x ⎡=-∈-+⎣,8=.故答案为:8.9.在某次比赛中运动员五轮的成绩互不相等,记为()12345i x i =,,,,,平均数为x ,若随机删去其中一轮的成绩,得到一组新数据,记为()1234i y i =,,,,平均数为y ,下面说法正确的是__________.(写出所有正确选项)①新数据的极差可能等于原数据的极差.②新数据的中位数可能等于原数据的中位数.③若x y =,则新数据的方差一定大于原数据方差.④若x y =,则新数据的第40百分位数一定大于原数据的第40百分位数.【答案】①②③【分析】根据极差、中位数、平均数和方差的概念,以及百分位数的概念及计算方法,逐项判定,即可求解.【详解】对于①,若随机删去任一轮的成绩,恰好不是最高成绩和最低成绩,此时新数据的极差可能等于原数据的极差,所以①正确;对于②,不妨假设12345x x x x x <<<<,当()24312x x x +=时,若随机删去的成绩是3x ,此时新数据的中位数等于原数据的中位数,所以②正确;对于③,若x y =,即删去的数据恰为平均数,根据方差的计算公式,分子不变,分母变小,所以方差会变大,所以③正确;对于④,若x y =,即删去的数据恰为平均数,在按从小到大的顺序排列的5个数据中,因为540%2⨯=,此时原数据的40%分位数为第二数和第三个数的平均数;删去一个数据后的4个数据,从小到大的顺序排列,可得440% 1.6⨯=,此时新数据的40%分位数为第二个数,显然新数据的40%分位数小于原数据的40%分位数,所以④错误.故答案为:①②③.10.已知正项数列{}n a 的前n 项和n S 满足()210nn n S S n ++-=(n 为正整数).记()1()||nn ii f x a x i ==⋅-∑,若函数()2024y f x kx =+的值域为R ,则实数k 的取值范围是__________.【答案】20242024,,20252025⎛⎫⎛⎫-∞-⋃+∞ ⎪ ⎪⎝⎭⎝⎭【分析】利用1n n n a S S -=-求出数列的通项公式111n a n n =-+,由裂项相消求和法计算可得2024120242025i i a ==∑.设函数()()202420241()i i g x f x kx a x i kx ==+=⋅-+∑,将函数()g x 写出分段函数,根据函数的值域为R 和极限的思想可得当0k >时202410i i k a =±>∑、当0k<时202410i i k a =±<∑,解不等式即可求解.【详解】因为()210n n n S S n ++-=,所以()()1+10n n n S n S ⎡⎤+-=⎣⎦,又因为{}n a 是正项数列,所以()10n n S n +-=,即1n nS n =+,当1n =得1111112a S ==+=,当2n ≥得1111(1)n n n n n a S S n n n n --=-=-=++,经检验1n =符合上式,所以111(1)1n a n n n n ==-++.所以202411111120241223202420252025i i a ==-+-++-=∑ .设函数()()202420241()ii g x f x kx a x i kx ==+=⋅-+∑,当(,1]x ∈-∞时,1232024()1232024g x a x a x a x a x kx=-+-+-++-+ 20242024123202412202411(232024)()()()ii i ia a a a a a a k x k a x ia ===++++-+++-=-+∑∑ ;同理可得,当(1,2]x ∈时,1()1g x k x =+,当(2,3]x ∈时,2()2g x k x =+,当(2023,2024]x ∈时,2023()2023g x k x =+,当(2024,)x ∈+∞时,2024202411()()()i i i i g x k a x ia ===+-∑∑,即20242024111220232024202411()(),(,1]1,(1,2]2,(2,3]()2023,(2023,2024]()(),(2024,)i i i i i i i i k a x ia x k x x k x x g x k x x k a x ia x ∞∞====⎧-+∈-⎪⎪⎪+∈⎪+∈⎪=⎨⎪⎪+∈⎪⎪+-∈+⎪⎩∑∑∑∑ ,其中()1,2,,2023j k j ∈=R ,由函数()g x 的值域为R 知,当0k >时,lim (),lim ()x x g x g x →-∞→+∞=-∞=+∞,所以202410i i k a =±>∑,即020242025k ±>,解得20242025k >;当0k <时,lim (),lim ()x x g x g x →-∞→+∞=+∞=-∞,所以202410i i k a =±<∑,即020242025k ±<,解得20242025k <-,综上,实数k 的取值范围为20242024(,)(,)20252025-∞-+∞ .故答案为:20242024(,)()20252025-∞-+∞ 【点睛】关键点睛:本题的难点是将函数()()202420241()ii g x f x kx a x i kx ==+=⋅-+∑转化为分段函数,利用函数的值域确定关于k 的不等式即可求解,其中涉及到极限思想以及数列的求通项公式和求和知识点,平时练习都要熟练应用.11.函数()e x f x ax b =++在区间[]1,3上存在零点,则22a b +的最小值为_________.【答案】2e 2##21e2【分析】设t 为()f x 在[]1,3上的零点,可得e 0t at b ++=,转化为点(),a b 在直线()1e 0tt x y -++=上,根据22a b +的几何意义,可得()2222e 11ta b t +≥-+有解,利用导数求得函数的单调性和最值,即可得答案.【详解】设t 为()f x 在[]1,3上的零点,可得e 0t at b ++=,所以e 0t ta b ++=,即点(),a b 在直线e 0t tx y ++=,又22a b +表示点(),a b 到原点距离的平方,≥2222e1ta bt+≥+有解,令()22e1tg tt=+,可得()()()()()2222222222e12e2e111t t tt t t tg tt t+-=-+'==++,因为2e0t>,210t t-+>,所以()0g t'>恒成立,可得()g t在[]1,3上为单调递增函数,所以当1t=时,()()2mine12g t g==,所以222e2a b+≥,即22a b+的最小值为2e2.故答案为:2e2.12.若对于任意自然数n,函数πcos3y xω⎛⎫=+⎪⎝⎭在每个闭区间[]21,21n n-+上均有两个零点,则正实数ω的最小值是__________.【答案】5π6【分析】根据整体法可得零点满足()16π,Z6kx kω+=∈,即可利用0n=时,[][]21,211,1n n-+=-,求解符合条件的,ω结合周期性验证所求,ω满足其他区间即可.【详解】令πππ,Z32x k kω+=+∈,则ππ,Z6x k kω=+∈,函数的零点()16π,Z6kx kω+=∈ω>,当0n=时,[][]21,211,1n n-+=-,此时符合条件的两个零点为故5ππ,66x xωω=-=,故5π16ω-≥-,解得5π6ω≤,当5π6ω=时,5ππcos63y x⎛⎫=+⎪⎝⎭的零点为()16,Z5kx k+=∈,因此零点为11171319,,1,,,,,5,55555--,结合三角函数的周期性可知:满足每个闭区间[][][]1,1,1,3,3,5,- 上恰好有两个零点。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020-2021学年上海交大附中高一(上)期末数学试卷
1.(填空题,4分)f(x)=a x-1(a>0且a≠1)的图象经过一个定点,这个定点的坐标是___ .
2.(填空题,4分)函数y= √ln(7−x)的定义域为___ .
3.(填空题,4分)在过去的2020年,我们经历了一场疫情,在大家的齐心协力之下,终于
共渡了难关.而在公元2222年,有一种高危传染病在全球范围内蔓延,被感染者的潜伏期可
以长达10年,期间会有约0.05%的概率传染给他人,一旦发病三天内即死亡,某城市总人口
约200万人,专家分析其中约有1000名传染者,为了防止疾病继续扩散,疾病预防控制中心现决定对全市人口进行血液检测以筛选出被感染者,由于检测试剂十分昂贵且数量有限,需要将血样混合后一起检测以节约试剂,已知感染者的检测结果为阳性,未被感染者为阴性,另外检测结果为阳性的血样与检测结果为阴性的血样混合后检测结果为阳性,同一检测结果的血样混合后结果不发生改变.若对全市人口进行平均分组,同一分组的血样将被混合到一起检测,若发现结果为阳性,则再在该分组内逐个检测排查.设每个组有x个人(每组人数相同),
那么在最坏的情况下,需要检测的次数尽可能少,每个组的最优人数x为___ 人.
4.(填空题,4分)函数f(x)= {(3−a)x−4a,x<1
log a x,x≥1
是定义在R上的单调递增函数,则实
数a的取值范围是 ___ .
5.(填空题,4分)在等差数列{a n}中,a1+a2+a3+…+a9=36,则a22+a52+a82的最小值为___ .
6.(填空题,4分)函数f(x)=2x|log0.5x|-1的零点个数为___ .
7.(填空题,5分)若函数f(x)=lg[(a2-1)x2+(a+1)x+1]的定义域为R,则实数a的取
值范围是___ .
8.(填空题,5分)已知函数f(x)={2x(x≤0)
log2x(0<x<1)
的反函数是f-1(x),则f−1(1
2
) =___ .
9.(填空题,5分)当|lga|=|lgb|,a<b时,则a+2b的取值范围是___ .
10.(填空题,5分)函数f(x)= 1
4−2x
的图象关于点___ 成中心对称.
11.(填空题,5分)设M={y|y=x-2},N={y|y=(1
m−1
-1)(x-1)+(|m|-1)(x-2),
1≤x≤2},若N⊆M,则实数m的取值范围是 ___ .
12.(填空题,5分)已知函数f(x)=ax2+4x+1,若对任意x∈R,f(f(x))>0恒成立,实数a的取值范围是___ .
13.(单选题,5分)下列四个函数中,图象如图所示的只能是( )
A.y=x+lgx
B.y=-x+lgx
C.y=x-lgx
D.y=-x-lgx
14.(单选题,5分)已知函数 f (x )={log 12(1−x )−1≤x ≤n 22−|x−1|−3n <x ≤m
(n <m )的值域是[-1,1],有下列结论:
① 当n=0时,m∈(0,2];
② 当 n =12 时, m ∈(12,2] ;
③ 当 n ∈[0,12) 时,m∈[1,2];
④ 当 n ∈[0,12) 时,m∈(n ,2].
其中结论正确的所有的序号是( )
A. ① ②
B. ③ ④
C. ② ③
D . ② ④
15.(单选题,5分)计算机是将信息转换成二进制数进行处理的,二进制即“逢二进一”,如:(1101)2表示二进制的数,将它转换成十进制的形式是1×23+1×22+0×21+1×20=13,那么将二进制数(11111111)2转换成十进制的形式是( )
A.29-2
B.28-1
C.28-2
D.27-1
16.(单选题,5分)已知函数 f (x )=√a −x +√x (a 为常数,且a∈N *),对于定义域内的任意两个实数x 1、x 2,恒有|f (x 1)-f (x 2)|<1成立,则正整数a 可以取的值有( )
A.4个
B.5个
C.6个
D.7个
17.(问答题,14分)设f(x)是定义在R上的奇函数,且对于任意的x∈R,f(1+x)=f(1-x)恒成立,当x∈[0,1]时,f(x)=2x,若关于x的方程f(x)=ax有5个不同的解,求实数a的取值范围.
18.(问答题,14分)已知函数f(x)=|2x-a|+|2x+3|,g(x)=|x-1|-2.
(1)解不等式|g(x)|<5;
(2)若y∈{y|y=f(x)-2}是y∈{y|y=|g(x)|}的充分条件,求实数a的取值范围.
19.(问答题,14分)由函数y=f(x)确定数列{a n},a n=f(n),若函数y=f(x)的反函数y=f-1(x)能确定数列{b n},b n=f-1(n),则称数列{b n}是数列{a n}的“反数列”.
(1)若函数f(x)=2√x确定数列{a n}的反数列为{b n},求{b n}的通项公式;
(2)对(1)中{b n},不等式√1
b n+1+√1
b n+2
+⋯+√1
b2n
>1
2
log a(1−2a)对任意的正整数n
恒成立,求实数a的取值范围;
(3)设c n=1+(−1)λ
2•3n+1−(−1)λ
2
•(2n−1)(λ为正整数),若数列{c n}的反数列为{d n},{c n}与
{d n}的公共项组成的数列为{t n},求数列{t n}前n项和S n.
20.(问答题,16分)若数列{a n}的每一项都不等于零,且对于任意的n∈N*,都有a n+2
a n
=q(q 为常数),则称数列{a n}为“类等比数列”.已知数列{b n}满足:b1=b(b>0),对于任意的
n∈N*,都有b n•b n+1=-9×28-n.
(1)求证:数列{b n}是“类等比数列”;
(2)若{|b n|}是单调递减数列,求实数b的取值范围;
(3)若b=2,求数列{b n}的前n项之积取最大值时n的值.
21.(问答题,18分)已知函数g(x)=ax2-2ax+1+b,a>0在区间[2,3]上的最大值为4,最小值为1,记f(x)=g(|x|),x∈R.
(1)求实数a,b的值;
(2)若不等式f(x)+g(x)≥log22k-2log2k-3对任意x∈R恒成立,求实数k的取值范围;(3)对于定义在[p,q]上的函数m(x),设x0=p,x n=q,用任意的x i(i=1,2,…,n-1)将[p,q]划分成n个小区间,其中x t-1<x t<x t+1,若存在一个常数M>0,使得|m(x0)-m (x1)|+|m(x1)-m(x2)|+…+|m(x n-1)-m(x n)|≤M恒成立,则称函数m(x)为在[p,q]上的有界变差函数.
(ⅰ)试证明函数f(x)是在[1,3]上的有界变差函数,并求出M的最小值;
(ⅱ)写出f(x)是在[p,q]上的有界变差函数的一个充分条件,使上述结论成为其特例(不要求证明).。