spss两配对样本的非参数检验

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

原文地址:SPSS学习笔记之——两配对样本的非参数检验(Wilcoxon符号秩检验)作者:王江源

一、概述

非参数检验对于总体分布没有要求,因而使用范围更广泛。对于两配对样本的非参数检验,首选Wilcoxon符号秩检验。它与配对样本t检验相对应。

二、问题

为了研究某放松方法(如听音乐)对于入睡时间的影响,选择了10名志愿者,分别记录未进行放松时的入睡时间及放松后的入睡时间(单位为分钟),数据如下笔。请问该放松方法对入睡时间有无影响。

本例可以采用配对样本t检验,但由于样本量少,数据可能不符合正太分布,所以考虑用非参数检验。

三、统计操作

数据视图

菜单选择

打开如下的对话框

该对话框有三个选项卡,第一个选项卡会根据第三个选项卡的设置自动设置,故一般不用手动设定。点击进入“字段”选项卡。将“放松前”、“放松后”均选入右边“检验字段”框中。

点击进入“设置”对话框,选择检验方法,切换为“自定义检验”,选择“Wilcoxon 匹配样本对符号秩(二样本)”复选框。“检验选项”可以设定显著性水平。

点击“运行”按钮,输出结果

四、结果解读

这就是输出结果。原假设示放松前好放松后差值的中位数等于0,P=0.015<0.05,拒绝原假设,认为放松前后有统计学差异。

双击该表格,会弹出如下的“模型浏览器”窗口,可以看到更详细的信息。如下图。

统计第十一课:SPSS 多相关样本的非参数检验(Friedman检验)

关键词:SPSS多相关样本非参数检验2015-07-14 00:00来源:互联网点击次数:5103

先讲讲什么是 Friedman 检验

Friedman 检验是利用秩实现对多个总体分布是否存在显著差异的非参数检验方法。

其原假设是:多个配对样本来自的多个总体分布无显著差异。

SPSS 将自动计算 Friedman 统计量和对应的概率 P 值。如果概率 P 值小于给定的显著性水平 0.05,则拒绝原假设,认为各组样本的秩存在显著差异,多个配对样本来自的多个总体的分布有显著差异。

反之,则不能拒绝原假设,可以认为各组样本的秩不存在显著性差异。

基于上述基本思路,多配对样本的 Friedman 检验时,首先以行为单位将数据按升序排序,并求得各变量值在各自行中的秩;然后,分别计算各组样本下的秩总和与平均秩。多配对

样本的 Friedman 检验适于对定距型数据的分析。

看完这些,是不是有点儿晕,好吧,让我们进入实例来分析分析。

案例解析

以2010 年世博会期间,参观人数众多,为了比较各个时间段的入园人数有无差别为例,

收集了以下的数据:

日期:统计的日期

a:该日 12-14 点的入园人数

b:该日 14-16 点的入园人数

c:该日 16-18 点的入园人数

d:该日 18-20 点的入园人数

目的是分析上述四个时间段的入园人数有无差异。显然,四组数据并不独立,不能满足普

通方差分析的条件,可以使用重复测量的方差分析。但考虑到入园人数波动大,存在极端值,这里采用非参数检验的方法,即 Friedman 检验。

二、操作步骤

菜单的选择

主对话框:

进入「字段」选项卡,选入四个时间点字段:

进入「设置」选项卡,选择 Friedman 检验,多重比较选择「逐步降低」(类似 SNK 法):

三、结果解读

这是模型的统计摘要,P<0.001,可见各个时间点的入园人数有统计学差异。双击该图标,进入模型查看界面:

两两比较:

在上图下方的「视图」下拉菜单中选择「齐性子集」,进入下图:

可见,四组数据被分成 3 个子集,12-14 点、16-18 点入园人数最多,14-16 点次之,18-20 点最少。这也与实际情况相符。

11 / 11

相关文档
最新文档