spss两配对样本的非参数检验
第七章SPSS非参数检验
二、SPSS两独立样本非参数检验
(一)目的 由独立样本数据推断两总体的分布是否存在显著差异
(或两样本是否来自同一总体)。 (二)基本假设 H0:两总体分布无显著差异(两样本来自同一总体) (三)数据要求 样本数据和分组标志
•第七章SPSS非参数检验
二、SPSS两独立样本非参数检验
– 与样本在相同点的累计频率进行比较。如果相差较小,则认为样
本所代表的总体符合指定的总体分布。
•第七章SPSS非参数检验
一、SPSS单样本非参数检验
(三)K-S检验 (4)基本步骤
菜单选项:analyze->nonparametric tests->1-sample k-s 选择待检验的变量入test variable list 框 指定检验的分布名称(test distribution)
将两样本混合并按升序排序 分别计算两个样本在相同点上的累计频数和累计频率 两个累计频率相减。 如果差距较小,则认为两总体分布无显著差异
应保证有较大的样本数
案例:7-5 p194使用寿命
•第七章SPSS非参数检验
二、SPSS两独立样本非参数检验
3.游程?检验(Wald-Wolfowitz runs)
一、SPSS单样本非参数检验
(二)总体分布的二项分布检验 (1)目的
通过样本数据检验样本来自的总体是否服从指定的 概率p的二项分布根据 (2)原假设 样本来自的总体与指定的二项分布无显著差异。 (3)案例7-2 p187 产品合格率
•第七章SPSS非参数检验
一、SPSS单样本非参数检验
(三)K-S检验 (1)目的
•第七章SPSS非参数检验
五、SPSS多配对样本非参数检验
第5讲SPSS非参数检验
数据文件:“糖果中的卡路里.sav” 菜单:“分析→非参数检验→旧对话框→K个独立样本”
多独立样本非参数检验整体分析与设计的内容
输入最大值、 最小值。
Kruskal-Wallis H检 验:是曼-惠特尼U 检验在多个独立样 本下的推广。
检验各个样本是否来自有相同中位数的 总体。--- 这种检验的效能最低。
2)对数据的测量尺度无约束,对数据的要求也不严格,任何数据类型 都可以。
3)适用于小样本、无分布样本、数据污染样本、混杂样本等。
注:若参数检验模型的所有假设在数据中都能满足,而且测量达到了所 要求的水平,那么,此时用非参数检验就浪费了数据。
因此,若所需假设都满足的情况下,一般就选择参数检验方法。
卡方检验
此时,零假设:两总体的 均值无显著性差异;就可 能不成立。
K-S检验。以变量的秩 作为分析对象;而非变 量值本身。
也需要先将两组样本混 合、升序排列。
两独立样本非参数检验整体分析与设计的内容 二、操作
该检验有特定用途,给出的结果均为单侧 检验。若施加的处理时的某些个体出现正 向效应,而另一些个体出现负向效应时, 就应当采用该检验方法。 基本思想为:将一组样本作为控制样本, 另一组作为试验样本。以控制样本为对照, 检验试验样本相对于控制样本是否出现了 极端反应。若无极端反应,则认为两总体 分布无显著性差异;否则,有显著性差异。
选择分布
“结”的处理
单样本K-S检验
整体分析与设计的内容
三、补充描述性统计的P-P图和Q-Q图
P-P图的输出样子: P-P图
期望(理论)累计 概率值
去势P-P图
样本数据实际累计 概率值
实际与期望的差值
样本数据实际累计 概率值
SPSS教程-非参数检验
一般用来对两个独立样本的均数、中位数、离 散趋势、偏度等进行差异比较检验。
两个样本是否独立,主要看在一个总体中抽取 样本对另外一个总体中抽取样本有无影响。
Mann-Whitney检验
=0.18576
计算表
SPSS基本操作
SPSS基本操作
SPSS基本操作
SPSS基本操作
SPSS基本操作
单样本K-S检验
利用样本数据推断样本来自的总体是否服从某一理论 分布,是一种拟合优度的检验方法,适用于探索连续 型随机变量的分布
步骤
计算各样本观测值在理论分布中出现的理论累计概率值F(x) 计算各样本观测值的实际累计概率值S(x) 计算理论累计概率值与实际累计概率值的差D(x) 计算差值序列中最大绝对差值D
针麻效果
(1) Ⅰ Ⅱ Ⅲ Ⅳ
表
肺癌 (2) 10 17 19 4
三种病人肺切除术的针麻效果比较肺化脓症Fra bibliotek肺结核
(3)
(4)
24
48
41
65
33
36
7
8
合计 (5) 82 123 88 19
SPSS基本操作
与例7的操作相同
随机区组设计资料的秩和检验
M检验(Friedman法)法计算步骤
将每个区组的数据由小到大分别编秩 计算各处理组的秩和Ri 求平均秩:R=1/2b(k+1) 计算各处理组的( Ri-R) 求M 查M界值表,F近似法
参数统计(parametric statistics) : 在 统计推断 中,若样本所来自的总体分布为已知的函数形式 (正态/近似正态分布),但其中的参数未知,统 计推断的目的就是对这些未知参数进行估计/检验, 这类统计推断方法称参数统计。
SPSS非参数检验
卡方检验
流行病学与卫生统计学教研室
25
卡方检验
两(多)个率或构成比的比较 一致性检验与配对卡方检验 分层卡方检验
Analyze
Descriptive Statistics
Crosstabs
26
卡方检验
理论复习 适用于分类变量的统计推断
27
两个率或构成比的比较
应用案例 ➢ 某医生为比较中药和西药治疗胃炎的疗效,随机抽取
17
Test Stat istics b
Man n-Whitney U Wilcoxon W Z Asy mp. Sig. (2-tailed) Exact Sig. [2*(1-t ailed S ig.)]
a. Not correcte d for tie s. b. Grouping Variable: 分组
非参数检验
流行病学与卫生统计学教研室
1
非参数检验
配对设计非参数检验 两独立样本非参数检验 多个独立样本的非参数检验
Analyze
Nonparmetric Test
2
非参数检验
理论复习
➢ 当总体分布类型未知、已知总体分布与检验所需条件不符、一 端或两端有不确定值时,不再对总体的几个参数进行假设检验, 而是对总体分布的位置、分布的形状进行比较。
Mini法 Wright法
-1.245a
.213
.240
.120
.017
配对设计的非参数检验
练习
➢ 为研究长跑运动对增强普通高校学生的心功能的效果,某学院 随机抽取15名男生,进行5个月的长跑锻炼,5个月前后分别测 得其晨脉数据,问长跑锻炼后的晨脉次数是否有降低? (chenmai.sav)
两配对样本非参数检验详解演示文稿
原假设为:样本来自的两配对样本总体的 分布无显著差异。
检验步骤:
1.按照符号检验的方法,将第二组样本的 各个观察值减去第一组样本对应的观察值,如果 得到差值是一个正数,则记为正号;差值为负数, 则记为负号。(出现差值等于0时,删除此个案, 样本数n相应地减少。)
McNemar变化显著性检验以研究对象自身 为对照,检验其两组样本变化是否显著。
原假设:样本来自的两配对总体分布无显 著差异。
McNemar变化显著性检验要求待检验的两 组样本的观察值是二分类数据,在实际分析中 有一定的局限性。
McNemar变化显著性检验基本方法采用二 项分布检验。它通过对两组样本前后变化的频 率,计算二项分布的概率值。
5.根据检验统计量计算相伴概率值,与 设定的显著性水平进行比较作出检验判断。
10.7.2 SPSS中实现过程
研究问题 分析10个学生接受某种方法进行训练的效
果,收集到这些学生在训练前、后的成绩,如 表10-9所示。表格的每一行表示一个学生的4 个成绩。其中第一列表示,训练前的成绩是否 合格,0表示不合格,1表示合格;第二列表示 训练后的成绩是否合格,0表示不合格,1表示 合格;第三列表示训练前学生的具体成绩;第 四列表示训练后学生的具体成绩。问训练前后 学生的成绩是否存在显著差异?
如果得到的概率值小于或等于用户的显著 性水平,则应拒绝零假设H0,认为两配对样 本来自的总体分布有显著差异;如果概率值大 于显著性水平,则不能拒绝零假设H0,认为两 配对样本来自的2
3.两配对样本的Wilcoxon符号平均秩 检验
两配对样本的符号检验考虑了总体数据变 化的性质,但没有考虑两组样本变化的程度。
两配对样本非参数检验
训练后成绩 70.00 71.00 65.00 68.00 50.00 55.00 75.00 70.00 65.00 70.00
实验步骤
图10-23 在菜单中选择"2 Related Samples"命令
设置配对的样本
配对样本的几种 检验方法,〔其中 Marginal Homogeneity检 验是McNemar 检验针对多取值 有序数据的推广 方法
培训前
培训后
培训前成绩 培训后成绩
1
0
78
58
1
1
60
61
0
1
56
81
1
1
65
79
0
1
45
67
0
0
53
52
0
0
59
46
0
1
54
57
3.某厂生产豪华型和普通型两种家用电器.由各个零售店抽样得到的这两 种型号电器的销售价格如下:
零售点
1 2 3 4 5
销售价格
豪华型 普通型
390
270
390
280
450
如:判断服用某种药品前后某项关键生理指标 值有无变化、同一个家庭夫妻两人的寿命有无 差别等等
两配对样本非参数检验的前提要求两个样 本应是配对的.在应用领域中,主要的配对资料 包括:具有年龄、性别、体重、病况等非处理 因素相同或相似者.
首先两个样本的观察数目相同,其次两样 本的观察值顺序不能随意改变.
〔2McNemar检验结果如下两表所示.
2*2交叉列联表
相伴概率值为 0.125,应该认为 训练前后学生成 绩没有变化
〔3Wilcoxon检验结果如下两表所示.
SPSS中非参数检验方法
1. 总体分布的卡方(Chi-square)检验 2. 二项分布检验 3. SPSS单样本变量的随机性检验 4. SPSS单样本的K-S检验 5. 两个独立样本的非参数检验 6. 多个独立样本的非参数检验 7. 两个配对样本的非参数检验 8. 多配对样本的非参数检验
本章主要介绍总体分布的卡方(Chi-square) 检验、二项分布(Binomial)检验、单样本K-S ( Kolmogorov-Smirnov ) 检 验 、 单 样 本 变 量 值 随机性检验(Runs Test);两独立样本非参数 检验、多独立样本非参数检验、两配对样本非 参数检验、多配对样本非参数检验等8类常用的 非参数检验方法。
前面已经讨论的统计分析方法,对总体有特殊的要求,如T检 验要求总体符合正态分布;F检验要求误差呈正态分布,且各 组方差齐,等等。这些方法常用来估计或检验总体参数,统 称为参数检验。
现实中,许多调查或实验所得的科研数据,其总体分布未知 或无法确定。因为有的数据不是来自所假定分布的总体,或 者数据根本不是来自一个总体;还有可能数据因为某种原因 被严重污染。这样在假定分布的情况下进行推断的做法,就 有可能产生错误的结论。此时人们希望检验对一个总体分布 形状不必作限制。
人数 2 4 7 16 20 25 24 22 16 2 6 1
实现步骤
在菜单中选择“1-Sample K-S”命令
“One-Sample Kolmogorov-Smirnov Test”对话框
“One-Sample K-S:Options”对话框
4.3 结果和讨论
(1)本例输出结果如下表所示。
总体分布的卡方检验的数据是实际收集到 的样本数据,而非频数数据。
1.2 SPSS中实现过程
spss参数与非参数检验实验报告
(1).将一样本作为控制样本,另一样本作为实验样本。两样本混合后按升序排列;
(2).找出控制样本的跨度(最低秩和最高秩间的样品数)和截头跨度(去掉控制样本的最小值和最大值后的跨度)。若跨度(截头跨度)很小,认为样本存在极端反应。
以上四种检验的基本操作步骤:
(1)【Analyze】--->【Nonparametric Tests】--->【2 Independent Sample】
该检验可用来检验两个独立样本是否取自同一总体,它是最强的非参数检验之一。
基本思路:
1.将样本X和样本Y混合后作升序排列,计算每个数据的秩;
2.分别对两样本的秩求平均,得到两个平均秩,分别用W1=WX/m和W2=WY/n表示。
若W1和W2比较接近,则说明两个样本来自相同分布的总体,若W1和W2差异较大,则说明两个样本来自不同的总体。
(2)选择待检验变量到【Test Variable】框中
(3)指定存放样本标志值的变量到【Grouping Variable】框
(4)选择非参数检验方法
三、多个独立样本的非参数检验包括:中位数检验、Kruskal-Wallis H检验、Jonkheere-Terpstra检验
3.1中位数检验
(一)含义:通过对多组独立样本的分析,检验它们来自的总体的中位数是否存在显著差异。其原假设是:多个独立样本来自的多个总体的中位数无显著差异。
(2)选定待检验的变量到【Test Variable list】框中
(3)在【Cut Point】框中确定计算游程数的分界点
二、两个独立样本的非参数检验包括:Mann-Whitney U检验、K-S双样本检验、Wald-Wolfowitz游程检验、Moses极端反应检验
配对卡方检验spss步骤
配对卡方检验spss步骤配对卡方检验SPSS步骤引言:配对卡方检验是一种常用的统计方法,用于比较两个相关变量之间的关系是否显著。
在SPSS软件中进行配对卡方检验非常方便,本文将详细介绍使用SPSS进行配对卡方检验的步骤。
步骤一:准备数据在进行配对卡方检验之前,首先需要准备数据。
假设我们有两个相关的分类变量X和Y,且每个变量都有两个或多个水平(例如,男性和女性)。
确保数据已经输入到SPSS,每个变量拥有自己的列。
步骤二:导入数据到SPSS打开SPSS软件并选择“文件”选项,然后选择“打开”命令来导入数据文件。
确保选择正确的文件路径,并选择数据文件。
在弹出窗口中选择适当的选项,然后点击“确定”按钮将数据导入到SPSS 软件中。
步骤三:选择配对卡方检验在SPSS软件中,选择“分析”选项,并从下拉菜单中选择“非参数检验”,然后选择“配对样本”和“卡方检验”选项。
步骤四:设定变量在弹出的“配对样本卡方检验”对话框中,将需要进行配对卡方检验的变量移动到“变量对”框中。
确保变量的顺序与数据文件中的顺序一致。
步骤五:设定统计量在同一对话框中,选择“卡方相关系数”以计算配对变量之间的关系强度。
选择“精确度”选项以获取更加精确的结果。
如果选择“对称测验”,则将计算渐近P值,并且结果会更快。
步骤六:运行配对卡方检验点击对话框底部的“确定”按钮来运行配对卡方检验。
SPSS将计算卡方统计量和与之相关的P值。
结果将以表格形式呈现在输出窗口中。
步骤七:解读结果配对卡方检验的结果将显示在输出窗口中的“卡方相关系数”表格中。
首先,关注卡方值(χ^2)的大小。
如果卡方值较大,则意味着两个变量之间的关系较强。
其次,观察P值。
如果P值小于事先设定的显著性水平(通常为0.05),则可以拒绝无关假设,即认为两个变量之间的关系是显著的。
步骤八:结果报告在结果报告中,应包括所进行的配对卡方检验的变量名称、样本数量、卡方值、自由度和P值。
此外,还应说明结果对研究问题的意义和解释。
spss多配对样本非参数检验
课程名称实用统计软件实验项目名称多配对样本非参数检验实验成绩指导老师(签名)日期2011-12-6一.实验目的1,掌握多配对样本的非参数检验基本原理和算法;2,能够用SPSS软件解决多配对样本的非参数检验的问题。
二. 实验内容与要求1.实验内容1.书上的三个研究问题的实现。
2.书上练习与思考题第10-3题。
(提示:录入数据进行kendall协同系数检验时要把数据进行转置,读物作为变量,评论家作为行)3.为了比较A、B、C、D、E 5种药物注射后产生的皮肤疱疹的大小,选取6只家兔并给每只家兔先后分别按随机排列的次序注射这5种药物。
实验结果如下表(疱疹面积的度量单位为mm2):(提示:录入数据是也要注意,家兔在行,药物在列作为检验变量)2.实验要求:作业中要出现检验过程。
如本ppt第8页、第20页、第30页的表格及统计计算过程。
注意:今天的三种方法所处理的实际问题类型有所不同,需要根据具体问题选择不同的检验方法。
三.实验步骤具体操作参见课件多配对样本非参数检验.PPT(ftp://10.66.28.22:22)四. 实验结果(数据与图形)与分析1.书上的三个研究问题的实现。
2.书上练习与思考题第10-3题。
(提示:录入数据进行kendall协同系数检验时要把数据进行转置,读物作为变量,评论家作为行)得到卡方统计量为9.782,W系统系数为0.466,小于1,相伴概率为0.201,大于显著性水平0.05,所以评分标准不够一致。
3.为了比较A、B、C、D、E 5种药物注射后产生的皮肤疱疹的大小,选取6只家兔并给每只家兔先后分别按随机排列的次序注射这5种药物。
实验结果如下表(疱疹面积的度(提示:录入数据是也要注意,家兔在行,药物在列作为检验变量)得到卡方统计量为14.609,W系统系数为0.609,小于1,相伴概率为0.006,小于显著性水平0.05,所以皮肤疱疹大小无差异。
第六章 SPSS的非参数检验
变量值
64 68 68 68 69 70 70 70 71 71 71 71 71 72 73 74 75 76 78 79 80
Z分数
-1.9749 -0.9695 -0.9695 -0.9695 -0.7181 -0.4668 -0.4668 -0.4668 -0.2154 -0.2154 -0.2154 -0.2154 -0.2154 0.0359 0.2873 0.5386 0.79 1.0413 1.544 1.7954 2.0467
实际累积概率为离散值,因此修正为:
– 如果相差较小 ,则认为样本所代表的总体符合指定的总 体分布
D max( S(xi ) - F(xi ) )
D max(S(x i-1 ) - F(xi ) )
SPSS单样本的K-S检验
• 在小样本下,原假设成立时,D统计量服从Kolmogorov分布 • 在大样本下,原假设成立时,n D近似服从K (x)分布: – 当D小于0时,K(x)为0 – 当D大于0时, K ( x) (1) exp(2 j 2 x 2 )
第六章 SPSS的非参数检验
第1节 第2节 第3节 第4节 第5节 单样本的非参数检验 两独立样本的非参数检验 多独立样本的非参数检验 两配对样本的非参数检验 多配对样本的非参数检验
统计方法
描述统计
推断统计
估计
假设检验
参数检验
非参数检验
推断统计
• 推断统计是根据样本数据推断总体数量特征的统计分析方 法 • 推断统计通常包括以下两个内容 – 总体分布已知,根据样本数据对总体分布的统计参数 (如均值、方差)进行推断,此时采用的推断方法称 为参数估计或者参数检验 – 总体分布未知,根据样本数据对总体的分布形式进行 推断,此时采用的推断方法称为非参数检验
SPSS的参数检验和非参数检验
实验二 SPSS的参数检验和非参数检验(验证性实验 4学时)1、目的要求:熟练掌握t检验及其结果分析。
熟练掌握单样本、两独立样本、多独立样本的非参数检验及各种方法的适用范围,能对结果给出准确分析。
2、实验内容:使用指定的数据按实验教材完成相关的操作。
3、主要仪器设备:计算机。
练习:1、给幼鼠喂以不同的饲料,用以下两种方法设计实验:鼠体内钙的留存量有显著不同。
2、为分析大众对牛奶品牌是否具有偏好,随机挑选超市收集其周一至周六各天并说明分析结论。
1 参数检验概述假设检验的基本思想.事先对总体参数或分布形式作出某种假设,然后利用样本信息来判断原假设是否成立;.采用逻辑上的反证法,依据统计上的小概率原理。
2 单样本的T检验2.1检验目的:•检验单个变量的均值是否与给定的常数(总体均值)之间是否存在显著差异。
如:分析学生的IQ平均分是否为100分;大学生考研率是否为5%。
•要求样本来自的总体服从或近似服从正态分布。
2.2 单样本T检验的实现思路•提出原假设:•计算检验统计量和概率P值●给定显著性水平与p值做比较:如果p值小于显著性水平,小概率事件在一次实验中发生,则我们应该拒绝原假设,反之就不能拒绝原假设。
2.3 单样本t检验的基本操作步骤1、选择选项Analyze-Compare means-One-Samples T test,出现窗口:2、在Test Value框中输入检验值。
3、单击Option按钮定义其他选项。
Option选项用来指定缺失值的处理方法。
其中,Exclude cases analysis by analysis表示计算时涉及的变量上有缺失值,则剔除在该变量上为缺失值的个案;Exclude cases listwise表示剔除所有在任意变量上含有缺失值的个案后再进行分析。
可见,较第二种方式,第一种处理方式较充分地利用了样本数据。
在后面的分析方法中,SPSS对缺失值的处理方法与此相同,不再赘述。
spss课件第五讲__非参数检验
统计推断方法是根据样本数据推断总体特征( 均值,方差等)的方法,包括参数检验和非参 数检验两种方法。 参数检验是适用于总体分布已知的情况。 非参数检验适用于总体分布未知或知道甚少的 情况。(由于在推断过程中不涉及有关总体分 布的参数,故得名“非参数”检验)
2
单样本的非参数检验 两配对样本的非参数检验 两独立样本的非参数检验 多独立样本的非参数检验 多配对样本的非参数检验9来自方差为: r2
2n1n2 (2n1n2 n1 n2 ) (n1 n2 )2 (n1 n2 1)
大样本时,游程近似服从正态分布,即
Z
r r
其中,r 为游程数。SPSS自动计算 Z 值和概率P值。
r
10
两配对样本的非参数检验
两配对样本的非参数检验是在对总体分布不甚了解的情况下,通过对 两组配对样本的分析,推断样本来自的两个配对总体的分布是否存在显 著差异的方法。 配对样本的样本数是相同的,且各样本值的先后次序是不能随意更 改的。 SPSS提供的检验方法有: 符号检验 Wilcoxon符号秩检验 McNemar检验 Marginal Homogeneity检验
Z
np(1 p)
(当 x 小于 n 2 时加0.5,当 x大于n 2 时减0.5。) SPSS自动计算上述精确概率和近似概率值。若概率值小于显著性水平,则拒绝 原假设,认为样本来自的总体与指定二项分布有显著差异;若大于显著性水平, 则接受原假设,认为样本来自的总体与指定的二项分布无显著差异。
7
15
1. 曼-惠特尼U检验(Mann-Whitney U)
原假设:两组独立样本来自的两总体分布无显著差异。 基本原理:通过对两组样本平均秩的研究来实现推断。秩,是变量值 排序的名次。 可以将数据按升序排列,每个变量值都会有一个在整个变量值序列中 的名次,这个名次就是变量值的秩。变量值有几个,对应的秩便有几 个。 首先,将两组样本数据 X1 , X 2 , , X m 和 Y1 , Y2 , , Yn 混合并按升序排序,得 到每个数据各自的秩 Ri ; 然后,分别对两组样本数据的秩求平均,得到两个平均秩 WX M和WY N 。对 两个平均秩的差距进行比较:如果两个平均秩相差甚远,则应是一组样本的 秩普遍偏小,另一组样本的秩普遍偏大的结果,也就是一组样本的值普遍偏 小,另一组样本的值普遍偏大的结果。此时,原假设很可能不成立; 再次,计算样本 X1 , X 2 , , X m 每个秩优先于样本 Y1 , Y2 , , Yn 每个秩的个 数U1 ,以及样本 Y1 , Y2 , , Yn 每个秩优先于样本 X1 , X 2 , , X m 每个秩的个数 U 2 。
SPSS的参数检验和非参数检验
实验报告SPSS 勺参数检验和非参数检验学期:_2013—至2013_第_1_学期 课程名称:_数学建模专业:数学实验项目 SPSS 勺参数检验和非参数检验实验成绩:一、 实验目的及要求熟练掌握t 检验及其结果分析。
熟练掌握单样本、两独立样本、多独立样本 的非参数检验及各种方法的适用范围,能对结果给出准确分析。
二、 实验内容使用指定的数据按实验教材完成相关的操作。
1、给幼鼠喂以不同的饲料,用以下两种方法设计实验: 方式1:同一鼠喂不同的饲料所测得的体内钙留存量数据如下:方式2:甲组有12只喂饲料1,乙组有9只喂饲料2,所测得的钙留存量数据如 下:请选用恰当方法对上述两种方式所获得的数据进行分析,研究不同饲料是否使幼鼠体内钙的留存量有显著不同。
2、为分析大众对牛奶品牌是否具有偏好,随机挑选超市收集其周一至周六各天 三种品牌牛奶的日销售额数据,如下表所示:请选用恰当的非参数检验方法,以恰当形式组织上述数据进行分析, 并说明分析 结论。
实验报告附页三、实验步骤(一)方式1:1、打开SPSS软件,根据所给表格录入数据,建立数据文件;2、选择菜单Analyze —Compare means- Paired-Samples T Test ,出现窗口;3、把检验变量饲料1,饲料2选择到Paired Variables 框,单击OK 方式2:1、打开SPSS软件,根据所给表格录入数据,建立数据文件;2、选择菜单Analyze —Compare mean—Independent-Samples T Test,出现窗口3、选择检验变量饲料到Test Variable(s)框中。
4、选择总体标志变量组号到Group ing Variables 框中5、单击Define Groups按钮定义两总体的标志值1、2,单击OK(二)1、打开SPSS软件,根据所给表格录入数据,建立数据文件;2、选择菜单Analyze->Nonparametric->k Independent sample3、选择待检验的若干变量入包装1,包装2,包装3到Test Variable(s)框中;4、选择推广的平均秩检验(Friedman检验),单击OK四、实验结果分析与评价(一):方式1:Paired Samples Correlations由上表知:两配对变量饲料1和饲料2对应的概率p值为0.108>0.05通过了检验,可以认为两配对变量饲料1和饲料2无相关关系。
SPSS非参数检验
SPSS非参数检验非参数检验 SPSS单样本非参数检验是对单个总体的分布形态等进行推断的方法,其中包括卡方检验、二项分布检验、K-S检验以及变量值随机性检验等方法。
参数检验与非参数检验的区别:参数检验是在总体分布形式已知的情况下,对总体分布的参数如均值、方差等进行推断的方法。
但是,在数据分析过程中,由于种种原因,人们往往无法对总体分布形态作简单假定,此时参数检验的方法就不再适用了。
非参数检验正是一类基于这种考虑,在总体方差未知或知道甚少的情况下,利用样本数据对总体分布形态等进行推断的方法。
由于非参数检验方法在推断过程中不涉及有关总体分布的参数,因而得名为“非参数检验”。
一、几种常见的非参数检验1、总体分布的卡方检验卡方检验方法可以根据样本数据,推断总体分布与期望分布或某一理论分布是否存在显著差异,是一种吻合性检验,通常适于对有多项分类值的总体分布的分析。
它的原假设是:样本来自的总体分布与期望分布或某一理论分布无差异。
例如,医学家在研究心脏病人猝死人数与日期的关系时发现:一周之中,星期一心脏病人猝死者较多,其他日子则基本相当。
当天的比例近似为2.8:1:1:1:1:1:1。
现收集到心脏病人死亡日期的样本数据,推断其总体分布是否与上述理论分布相吻合。
2、二项分布检验SPSS的二项分布检验正是要通过样本数据检验样本来自的总体是否服从指定的概率为P的二项分布,其原假设是:样本来自的总体与指定的二项分布无显著差异。
在生活中有很多数据的取值是二值的,例如,人群可以分成男性和女性,产品可以分成合格和不合格,学生可以分成三好学生和非三好学生,投掷硬币实验的结果可以分成出现正面和出现反面等。
通常将这样的二值分别用1或0表示。
如果进行n次相同的实验,则出现两类(1或0)的次数可以用离散型随机变量X来描述。
如果随机变量X为1的概率设为P,则随机变量X值为0的概率Q便等于1-P,形成二项分布。
从某产品中随机抽取23个样品进行检测并得到检测结果。
SPSS进行两配对样本的非参数检验(Wilcoxon符号秩检验)-实验方法-丁香通
SPSS进⾏两配对样本的⾮参数检验(Wilcoxon符号秩检验)-实验⽅法-丁⾹通⼀、概述
⾮参数检验对于总体分布没有要求,因⽽使⽤范围更⼴泛。
对于两配对样本的⾮参数检验,⾸
选Wilcoxon符号秩检验。
它与配对样本t检验相对应。
⼆、问题
为了研究某放松⽅法(如听⾳乐)对于⼊睡时间的影响,选择了10名志愿者,分别记录未进⾏
放松时的⼊睡时间及放松后的⼊睡时间(单位为分钟),数据如下笔。
请问该放松⽅法对⼊睡
时间有⽆影响。
本例可以采⽤配对样本t检验,但由于样本量少,数据可能不符合正太分布,所以考虑⽤⾮参数
检验。
三、统计操作
数据视图
菜单选择
打开如下的对话框。
非参数检验的SPSS操作
第八节非参数检验的SPSS操作前面一章介绍的二项分布的比率检验、配合度检验——卡方检验和1-Sample K-S检验等都属于非参数检验。
这一节我们主要结合前面参数假设检验一章讲过的t检验以及方差分析一章讲过的方差分析,来进一步分析,当参数检验的前提条件不满足时,两个样本和多个样本平均数差异的SPSS 操作方法。
一、两个独立样本的差异显著性检验两独立样本的的差异显著性检验只有在满足如下条件时才能进行T检验:变量为正态分布的连续测量数据。
若数据不满足这样的条件,强行进行T检验容易造成错误的结论。
在数据不能满足这种参数检验的条件下,我们可以选择非参数检验方法进行。
与两独立样本差异显著性检验相对应的方法可以在SPSS主菜单Analyze / Nonparametric Tests / 2 Independent Samples…中得到。
1.数据采用本章第一节中例2的数据(数据文件“9-4-1.sav”),具体介绍操作过程。
2.理论分析对于数据文件9-4-1.sav中的数据,目的是检验男女生之间注意稳定性是否存在显著差异,注意稳定性测量的结果虽然是测量数据但是从总体上来看不满足正态分布的前提假设,另外不同性别的学生可以看成是两组独立的样本,因此对上述资料的检验可以用非参数的独立样本的检验方法。
2.操作过程(1)在SPSS主菜单中选择Analyze / Nonparametric Tests / 2 Independent Samples…得到两个独立样本非参数检验的主对话框(图9-1),把因变量atten选入到检验变量表列(Test Independent-Sample Tests)中去,把gender选到分组变量(Grouping Variable)中,并单击Define Groups…,在随后打开的对话框中分别键入1与2,单击Continue回到主对话框如图9-1所示。
在Test Type中有四个可选项,其中最常用的是第一种方法Mann-Whitney U(又称秩和检验法)。
SPSS非参数检验-Nonparametric Tests菜单详解
第十二章 非参数检验――Nonparametric Tests菜单详解(医学统计之星:张文彤)§12.1 概论作为二十一世纪统计理论的三大发展方向之一,非参数统计是统计分析的重要组成部分。
可是与之很不相称的是他针对一般性统计分析的理论发展远远不及参数检验完善,因而比较完善的可供使用的方法也不多。
比如多组均数间的两两比较,虽然已有好几种方法可资利用,但由于在理论上仍存在争议,几种权威的统计软件(如SAS和SPSS)均没有提供这方面的方法。
虽然这些洋统计软件没有提供两两比较的非参数方法,但国产的统计软件大都是提供了的(国情不同嘛),因此建议大家:如果真的要做这方面的非参数分析,不如直接用PEMS、SPLMWIN、NOSA等国产软件,免得用SPSS等只能做一半。
在SPSS中,几乎所有的非参数分析方法都被放入了Nonparametric Tests菜单中,具体来讲有以下几种:∙Chi-square test:用卡方检验来检验变量的几个取值所占百分比是否和我们期望的比例没有统计学差异。
比如我们在人群中抽取了一个样本,可以用该方法来分析四种血型所占的比例是否相同(都是25%),或者是否符合我们所给出的一个比例(如分别为10%、30%、40%和20%,我随便写的)。
请注意该检验和我们一般所用的卡方不太一样,我们一般左的卡方要用crosstable菜单来完成,而不是这里。
∙Binomial Test:用于检测所给的变量是否符合二项分布,变量可以是两分类的,也可以使连续性变量,然后按你给出的分界点一刀两断。
∙Runs Test:用于检验某变量的取值是否是围绕着某个数值随机地上下波动,该数值可以是均数、中位数、众数或人为制定。
一般来说,如果该检验P值有统计学意义,则提示有其他变量对该变量的取值有影响,或该变量存在自相关。
∙One-Sample Kolmogorov-Smirnov Test:采用柯尔莫诺夫-斯米尔诺夫检验来分析变量是否符合某种分布,可以检验的分布有正态分布、均匀分布、Poission分布和指数分布。
SPSS的非参数检验
SPSS
应用举例(以城镇和农村储户存款
SPSS
金额比较为例 )
SPSS
SPSS
SPS双S 样本 Kolmogorov-Smirnov 检验
SPSS Wald-Wolfowitz 检验
练习题
SPSS
• 现有数据关于患者服用两种不同安眠药后 睡眠时间延长情况,请用四种不同方法来 检验两种不同安眠药对睡眠时间延长分布 是否有显著差异?
输入理论(期 望)分布值
SPSS
SPSS
因为卡方对应的概率P值大于0.05, 所以差异不显著,即认为样本来自的总体
二项分布检验
SPSS
概念
SPSS的二项分布检验正是通过样本数 据检验样本来自的总体是否服从指定概率 值为P的二项分布,其原假设为样本来自的 总体与指定的二项分布无显著差异。
基本思想 SPSS
2.试着检验抛硬币实验中,正面出现的概率 是否为1/2.数据在硬币结果.sav中。
3.试着检验10个电子元件的使用寿命分布是 否服从指数分布?数据在电子元件使用寿 命.sav中。
SPSS
4.现有抛掷一枚硬币66次所得结果保存在数 据文件硬币结果.sav中,请检验该实验是否 是随机性实验。
第二节两独立样本的非参数检验
首先,将两组样本混合并按升序排序,在变量值排 序的同时,对应的组标记值也会随之重新排列
然后,对组标记值序列按前面的计算游程的方法进 行计算游程数。若游程数较少,则说明两总体有 较大差异。反之,则差异不大。
SPSS
根据游程数计算Z统计量
r 2n1n2 1
Z
n1 n2
2n1n2 (2n1n2 (n1 n2 ))
变量值随机性检验的SPSS操作
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
原文地址:SPSS学习笔记之——两配对样本的非参数检验(Wilcoxon符号秩检验)作者:王江源
一、概述
非参数检验对于总体分布没有要求,因而使用范围更广泛。
对于两配对样本的非参数检验,首选Wilcoxon符号秩检验。
它与配对样本t检验相对应。
二、问题
为了研究某放松方法(如听音乐)对于入睡时间的影响,选择了10名志愿者,分别记录未进行放松时的入睡时间及放松后的入睡时间(单位为分钟),数据如下笔。
请问该放松方法对入睡时间有无影响。
本例可以采用配对样本t检验,但由于样本量少,数据可能不符合正太分布,所以考虑用非参数检验。
三、统计操作
数据视图
菜单选择
打开如下的对话框
该对话框有三个选项卡,第一个选项卡会根据第三个选项卡的设置自动设置,故一般不用手动设定。
点击进入“字段”选项卡。
将“放松前”、“放松后”均选入右边“检验字段”框中。
点击进入“设置”对话框,选择检验方法,切换为“自定义检验”,选择“Wilcoxon 匹配样本对符号秩(二样本)”复选框。
“检验选项”可以设定显著性水平。
点击“运行”按钮,输出结果
四、结果解读
这就是输出结果。
原假设示放松前好放松后差值的中位数等于0,P=0.015<0.05,拒绝原假设,认为放松前后有统计学差异。
双击该表格,会弹出如下的“模型浏览器”窗口,可以看到更详细的信息。
如下图。
统计第十一课:SPSS 多相关样本的非参数检验(Friedman检验)
关键词:SPSS多相关样本非参数检验2015-07-14 00:00来源:互联网点击次数:5103
先讲讲什么是 Friedman 检验
Friedman 检验是利用秩实现对多个总体分布是否存在显著差异的非参数检验方法。
其原假设是:多个配对样本来自的多个总体分布无显著差异。
SPSS 将自动计算 Friedman 统计量和对应的概率 P 值。
如果概率 P 值小于给定的显著性水平 0.05,则拒绝原假设,认为各组样本的秩存在显著差异,多个配对样本来自的多个总体的分布有显著差异。
反之,则不能拒绝原假设,可以认为各组样本的秩不存在显著性差异。
基于上述基本思路,多配对样本的 Friedman 检验时,首先以行为单位将数据按升序排序,并求得各变量值在各自行中的秩;然后,分别计算各组样本下的秩总和与平均秩。
多配对
样本的 Friedman 检验适于对定距型数据的分析。
看完这些,是不是有点儿晕,好吧,让我们进入实例来分析分析。
案例解析
以2010 年世博会期间,参观人数众多,为了比较各个时间段的入园人数有无差别为例,
收集了以下的数据:
日期:统计的日期
a:该日 12-14 点的入园人数
b:该日 14-16 点的入园人数
c:该日 16-18 点的入园人数
d:该日 18-20 点的入园人数
目的是分析上述四个时间段的入园人数有无差异。
显然,四组数据并不独立,不能满足普
通方差分析的条件,可以使用重复测量的方差分析。
但考虑到入园人数波动大,存在极端值,这里采用非参数检验的方法,即 Friedman 检验。
二、操作步骤
菜单的选择
主对话框:
进入「字段」选项卡,选入四个时间点字段:
进入「设置」选项卡,选择 Friedman 检验,多重比较选择「逐步降低」(类似 SNK 法):
三、结果解读
这是模型的统计摘要,P<0.001,可见各个时间点的入园人数有统计学差异。
双击该图标,进入模型查看界面:
两两比较:
在上图下方的「视图」下拉菜单中选择「齐性子集」,进入下图:
可见,四组数据被分成 3 个子集,12-14 点、16-18 点入园人数最多,14-16 点次之,18-20 点最少。
这也与实际情况相符。
11 / 11。