波谱分析知识点

合集下载

有机波谱分析知识点

有机波谱分析知识点

名词解析发色团(chromophoric groups):分子结构中含有π电子的基团称为发色团,它们能产生π→π*和n→π*跃迁从而你呢个在紫外可见光范围内吸收。

助色团(auxochrome):含有非成键n电子的杂原子饱和基团本身不吸收辐射,但当它们与生色团或饱和烃相连时能使该生色团的吸收峰向长波长移动并增强其强度的基团,如羟基、胺基和卤素等。

红移(red shift):由于化合物结构发生改变,如发生共轭作用引入助色团及溶剂改变等,使吸收峰向长波方向移动。

蓝移(blue shift):化合物结构改变时,或受溶剂的影响使吸收峰向短波方向移动。

增色效应(hyperchromic effect):使吸收强度增加的作用。

减色效应(hypochromic effect):使吸收强度减弱的作用。

吸收带:跃迁类型相同的吸收峰。

指纹区(fingerprint region):红外光谱上的低频区通常称指纹区。

当分子结构稍有不同时,该区的吸收就有细微的差异,并显示出分子特征,反映化合物结构上的细微结构差异。

这种情况就像人的指纹一样,因此称为指纹区。

指纹区对于指认结构类似的化合物很有帮助,而且可以作为化合物存在某种基团的旁证。

但该区中各种官能团的特征频率不具有鲜明的特征性。

共轭效应 (conjugated effect):又称离域效应,是指由于共轭π键的形成而引起分子性质的改变的效应。

诱导效应(Inductive Effects):一些极性共价键,随着取代基电负性不同,电子云密度发生变化,引起键的振动谱带位移,称为诱导效应。

核磁共振:原子核的磁共振现象,只有当把原子核置于外加磁场中并满足一定外在条件时才能产生。

化学位移:将待测氢核共振峰所在位置与某基准物氢核共振峰所在位置进行比较,其相对距离称为化学位移。

弛豫:通过无辐射的释放能量的途径核由高能态向低能态的过程。

分子离子:有机质谱分析中,化合物分子失去一个电子形成的离子。

波谱分析

波谱分析

第一章1.红外光谱法(IR)基本原理:当一定频率的红外光照射分子时,如果分子中某个基团的振动频率和它一致,二者就会产生共振,此时光的能量通过分子偶极矩的变化而传递给分子,这个基团就吸收一定频率的红外光,产生振动跃迁。

红外活性:分子振动过程中能引起偶极矩变化产生红外吸收的两个条件:⑴振动频率与红外光光谱段的某频率相等⑵偶极矩变化伸缩振动键长变化剪式振动振动形式面内面内摇摆振动弯曲振动键角变化面外面外摇摆振动面外摇摆振动吸收带类型:基频带、倍频带、合频带。

红外三要素:峰位、峰数、峰强▲频率位移的影响因素:内部因素有诱导效应、共轭效应、空间效应、氢键作用、张力效应、振动耦合、Fermi共振。

外部因素有物态的影响和溶剂的影响。

2.拉曼散射光谱基本原理:由于键上电子云分布产生瞬间变形引起的暂时极化,产生诱导偶极,当返回基态时发生的散射。

拉曼散射:当激发光照射样品时,光子与分子碰撞后发生了能量交换,即发生拉曼散射。

拉曼位移:拉曼散射光与入射光的频率之差称为拉曼位移。

拉曼位移产生条件:激发能量应大于振动能级的能量差,低于电子能级间的能量差,并且激发光要远离分析物的紫外—可见吸收光范围。

3.核磁共振(NMR)原理:在强磁场中,一些具有磁性的原子核的能量可以裂分为2个或2个以上的能级。

如果此时外加的能量等于相邻2个能级之差,则该核就会吸收能量,产生共振吸收,从低能态跃迁至高能态。

所吸收能量的数量级相当于频率范围为0.1~100MHz的电磁波,同时产生核磁共振信号,得到核磁共振谱。

产生核磁共振的条件:⑴原子核的自旋⑵外磁场能级分裂⑶照射频率与外磁场的比值ν0/H0=γ/2π。

化学位移:能够反映磁核在分子中所处的化学环境。

质子周围基团的性质不同,使它的共振频率不同,这种现象称为化学位移。

影响化学位移的因素:诱导效应、共轭效应、磁各向异性效应、氢键4.X射线分析WAXD广角X射线:⑴聚合物晶型及有规立构的分析鉴定⑵高聚物物相鉴定⑶聚合物材料中添加物的分析⑷结晶参数的测定SAXS小角X射线散射:⑴粒子的尺寸、形状及分布⑵粒子的分散状态⑶高分子链结构和分子运动⑷多相聚合物的界面结构和相分离第二章1.分子量与分子量分布M z≥M w≥Mη≥M n第三章1.扫描电子显微镜(SEM)基本结构:电子光学系统(主要组成部分)、扫描系统、信号检测放大系统、图像显示和记录系统、真空系统和电源及控制系统。

波谱分析知识点

波谱分析知识点

波谱分析(spectra analysis)波谱分析的内涵与外延:定义:利用特定的仪器,测试化合物的多种特征波谱图,通过分析推断化合物的分子结构。

特定的仪器:紫外,红外,核磁,质谱,(X-射线,圆二色谱等)特征波谱图: 四大谱;X-射线单晶衍射,圆二色谱等化合物:一般为纯的有机化合物分子结构:分子中原子的连接顺序、位置;构象,空间结构仪器分析(定量),波谱分析(定性)综合性、交叉科学(化学、物理、数学、自动化、计算机)作用:波谱解析理论原理是物理学,主要应用于化学领域(天然产物化学和中药化学、有机化学、药物化学等),在药物、化工,石油,食品及其它工业部门有着广泛的应用;分析的主要对象是有机化合物。

第一章紫外光谱(ultraviolet spectra,UV)一、电磁波的基本性质和分类1、波粒二象性光的三要素:波长(λ),速度(c),频率 (v)电磁波的波动性电磁波的粒子性光速 c:c=3.0×10^10 cm/s波长λ :电磁波相邻波峰间的距离。

用nm,μm,cm,m 等表示频率v:v=c/ λ,用 Hz 表示。

光子具有能量,其能量大小由下式决定:E = hν =hc/λ (式中E为光子的能量,h为普朗克常数,其值为6.624× 10-34j.s )2、分子的能量组成(能级图)E 分子= E平+ E转+ E振+E电子能量大小: E转< E振< E电子X-射线衍射紫外-可见光谱红外光谱微波吸收谱核磁共振谱内层电子能级跃迁外层电子分子振动与转动分子转动电子自旋核自旋X-射线远紫外近紫外可见近红外中红外远红外微波无线电波0.1~1nm 4~200nm 200~400nm400~800nm0.8~2.5um25~400um0.04~25cm25~1000cm 紫外光谱远紫外(4~200nm):又叫真空紫外区近紫外(200~400nm):又叫石英紫外区,最为常用。

电子跃迁类型的影响σ→σ*跃迁:150nm左右,真空紫外区n→σ*跃迁:一般小于200nm 弱吸收,ε约100π→π*跃迁:160~180nm(孤立双键),>200nm (共轭双键)强吸收,ε约104n→π*跃迁:200~400nm 弱吸收,ε约1002.3.表示方法和常用术语发色团:广义上讲,是分子中能吸收紫外光或可见光的结构系统。

波谱解析知识点总结

波谱解析知识点总结

波谱解析知识点总结一、波谱解析的基本原理1. 光谱学基础知识光谱学涉及到物质对光的吸收、发射、散射等现象,它是物质分析的重要手段之一。

常见的光谱包括紫外光谱、可见光谱、红外光谱、拉曼光谱等。

每种光谱方法都有其独特的应用领域和分析特点。

2. 原子光谱原子光谱是指研究原子吸收、发射光谱的一门学科,主要包括原子吸收光谱和原子发射光谱。

原子光谱可以用于分析金属元素和非金属元素的含量,它是分析化学中的重要手段。

3. 分子光谱分子光谱是指研究分子在光的作用下吸收、发射、散射等现象的一门学科,主要包括紫外光谱、红外光谱、拉曼光谱等。

分子光谱可以用于研究分子的结构和性质,对于有机化合物的分析具有重要意义。

4. 核磁共振波谱核磁共振波谱是指研究核磁共振现象的一门学科,它可以用于研究原子核的磁共振现象,得到有关物质结构和性质的信息。

核磁共振波谱在有机化学、生物化学等领域有着广泛的应用。

二、波谱解析的仪器和设备1. 分光光度计分光光度计是用于测量物质吸收、发射光谱的仪器,它可以测量紫外、可见、红外等波段的光谱,是分析化学中常用的仪器之一。

2. 核磁共振仪核磁共振仪是用于测量核磁共振波谱的仪器,它可以测量氢、碳等核的共振信号,得到物质的结构和性质信息。

3. 质谱仪质谱仪是用于测量物质离子的质量和荷质比的仪器,它可以得到物质的分子量、结构等信息,是很多化学分析的重要手段。

4. 激光拉曼光谱仪激光拉曼光谱仪是用于测量拉曼光谱的专用仪器,它可以用激光光源激发样品,得到与分子振动信息有关的拉曼光谱。

三、波谱解析的应用领域1. 化学分析波谱解析技术在化学分析中有着广泛的应用,它可以用于定量分析、质量分析、结构分析等多个方面,对于复杂的化合物和材料有很高的分析能力。

2. 药物研发波谱解析技术在药物研发中有着重要的应用,它可以用于研究药物的成分、结构和性质,对于新药物的研究和开发有很大帮助。

3. 生物医学波谱解析技术在生物医学领域有着广泛的应用,它可以用于研究生物分子的结构和功能,对于临床诊断和治疗有着重要意义。

有机波谱知识点总结

有机波谱知识点总结

有机波谱知识点总结波谱是化学分析中常用的一种手段,通过测定分子在电磁波中的吸收、散射或发射,可以了解分子的结构和性质。

有机波谱是指在有机化合物中应用的波谱分析方法,主要包括红外光谱、紫外-可见光谱、质谱和核磁共振谱等。

本文将针对有机波谱的各种知识点进行总结,包括波谱的基本原理、各种波谱的特点和应用、波谱分析中需要注意的问题等内容。

一、红外光谱1.基本原理红外光谱是利用物质对红外辐射的吸收和散射的规律来研究物质结构和性质的一种分析方法。

红外光谱的基本原理是在物质中分子或原子的振动和转动会产生特定的频率的红外光吸收,这样可以用红外光谱来检验物质的结构和成分。

2.特点和应用红外光谱对于分析有机化合物的结构和功能团具有非常重要的作用。

红外光谱具有分辨率高、灵敏度强、操作简便等特点,广泛应用于聚合物材料、药物分析、食品检测等领域。

3.需要注意的问题在进行红外光谱分析时,需要注意样品的处理、仪器的校准和数据的解释等问题。

此外,还需要对不同功能团的吸收峰进行了解,进行光谱图谱的解读。

二、紫外-可见光谱1.基本原理紫外-可见光谱是利用物质对紫外光和可见光的吸收的规律来研究物质结构和特性的一种分析方法。

紫外-可见光谱的基本原理是分子在吸收紫外-可见光时,电子跃迁至较高的能级,产生吸收峰,可以由此推测分子的结构和键合的性质。

2.特点和应用紫外-可见光谱对于分析有机化合物的共轭结构和电子转移能力有很大的作用。

紫外-可见光谱具有快速、敏感、定量等特点,广泛应用于有机合成、药物分析、环境监测等领域。

3.需要注意的问题在进行紫外-可见光谱分析时,需要注意样品的准备、仪器的校准和光谱图谱的解释。

此外,还需要了解分子在吸收紫外-可见光时的机理和特性,进行光谱图谱的解读。

三、质谱1.基本原理质谱是利用物质在电子轰击下的离子化和质子转移等规律来研究物质结构和成分的一种分析方法。

质谱的基本原理是将物质离子化后,通过质子转移和碎裂等反应产生一系列离子,再根据其质荷比来推测物质的结构和成分。

有机波谱分析要点例题和知识点总结

有机波谱分析要点例题和知识点总结

有机波谱分析要点例题和知识点总结一、有机波谱分析概述有机波谱分析是研究有机化合物结构的重要手段,它主要包括红外光谱(IR)、紫外可见光谱(UVVis)、核磁共振(NMR)和质谱(MS)等技术。

通过对这些波谱数据的解析,可以确定有机化合物的分子结构、官能团种类、化学键的性质等信息。

二、红外光谱(IR)(一)原理红外光谱是基于分子振动和转动能级的跃迁而产生的吸收光谱。

不同的官能团在特定的波数范围内会产生特征吸收峰。

(二)要点1、官能团的特征吸收峰例如,羰基(C=O)在 1700 1750 cm⁻¹有强吸收峰;羟基(OH)在 3200 3600 cm⁻¹有宽而强的吸收峰。

2、影响吸收峰位置的因素包括诱导效应、共轭效应、氢键等。

(三)例题例 1:某化合物的红外光谱在 1720 cm⁻¹有强吸收峰,可能含有什么官能团?答案:羰基(C=O)。

例 2:一个化合物在 3400 cm⁻¹有宽而强的吸收峰,在 1050 1100 cm⁻¹有吸收峰,推测其结构。

答案:可能含有羟基(OH)和醚键(COC)。

三、紫外可见光谱(UVVis)(一)原理基于分子中价电子的跃迁而产生的吸收光谱。

(二)要点1、生色团和助色团生色团如羰基、双键等能在紫外可见区域产生吸收;助色团如羟基、氨基等能增强生色团的吸收。

2、影响吸收波长的因素包括共轭体系的大小、取代基的性质等。

(三)例题例 1:某化合物在 250 nm 处有强吸收,可能的结构是什么?答案:可能含有共轭双键。

例 2:比较两个化合物的紫外吸收波长,一个有苯环,一个有苯环和一个羟基取代。

答案:含羟基取代的化合物吸收波长可能更长。

四、核磁共振(NMR)(一)原理利用原子核在磁场中的自旋能级跃迁产生的吸收信号。

(二)要点1、化学位移不同环境的氢原子或碳原子具有不同的化学位移值,可用于判断官能团的位置。

2、耦合常数相邻氢原子之间的相互作用导致峰的分裂,耦合常数可提供关于分子结构的信息。

波谱解析名词解释

波谱解析名词解释

1.强带:吸光系数大于10000的吸收峰2.弱带:吸光系数小于1000的吸收峰3.发色团:分子结构中含有π电子的基团4.助色团:含有非成键n电子的杂原子饱和基团,其本身在紫外可见光吸收范围内不产生吸收,但当它们与生色团或饱和烃相连时,能使该生色团的吸收峰红移,并使吸收强度增加的基团。

5.红移:亦称长移。

由于化合物结构的改变,如发生共轭作用,引入助色团以及溶剂改变等,使吸收峰向长波方向移动。

6.蓝移:亦称短移。

当化合物结构改变时或受溶剂影响,吸收峰向短波方向移动。

7.增色效应:浓色效应。

由于化合物结构改变或其他原因吸收强度增加。

8.减色效应:淡色效应。

由于化合物结构改变或其他原因吸收强度减弱。

9.B带:苯环的π-π跃迁所产生的吸收带,是芳香族化合物的特征吸收。

出现区域为230-270nm,吸光系数约为220,中心在258nm. 10.E带:苯环烯键π电子π-π跃迁所产生的吸收带。

E1带吸收峰出现在184nm,强吸收,E2带为共轭烯键π-π跃迁所产生的吸收带,吸收峰出现在203nm.中等强度。

11.波长极限:紫外中使用溶剂时的最低波长限度,低于此波长,溶剂有吸收。

1.基频峰:从基态跃迁到第一激发态时所引起的吸收峰。

2.倍频峰:从基态直接跃迁到第二激发态时所引起的吸收峰。

3.红外光谱中峰数少于基本振动数目的原因:(1)振动过程不发生瞬间偶极矩变化;(2)频率相同,互相兼并;(3)强峰覆盖弱峰;(4)吸收峰落在中红外区外(4000-400);(5)峰强太弱,无法测定。

4.振动耦合:当两个相同的基团在分子中靠的很近,其相应的特征吸收峰常发生裂分,形成两个峰,这种现象叫做振动耦合。

5.费米共振:当倍频峰(或组频峰)位于某强的基频峰附近时,倍频峰的吸收强度常被大大强化(或发生峰带裂分),这种倍频与基频之间发生的振动耦合称为费米共振。

三、核磁共振1.饱和:低能级核全部向高能级跃迁,不再吸收能量,核磁共振信号逐渐衰退,直至完全消失,这种状态叫做饱和。

波谱解析知识点总结

波谱解析知识点总结

波谱解析知识点总结
波谱解析是一种重要的分析技术,用于确定不同化学物质的组成和结构。

以下是一些波谱解析的知识点总结:
## 红外光谱学
-红外光谱是一种分析技术,用于确定化合物中的功能性基团和化学键类型。

-红外光谱图谱中峰的位置和强度可以提供有关样品的信息,例如它的结构和杂质。

-峰的位置是由化学键的振动频率决定的,峰的强度则取决于化学键的极性和吸收系数。

## 质谱学
-质谱学是一种分析技术,用于确定化合物的分子量和组成。

-质谱图谱中,峰的位置和强度可以提供有关样品的信息,例如它的分子量、化合物的结构和分子离子的分布。

-峰的位置是由分子离子质量-电荷比决定的,峰的强度则取决于分子离子的相对丰度。

## 核磁共振
-核磁共振是一种分析技术,可以确定化合物的分子结构和组成。

-核磁共振图谱中峰的位置和强度可以提供有关样品的信息,例如它的结构、分子间的相对位置和化学环境。

-峰的位置是由核自旋能级决定的,峰的强度则取决于核自旋数和相对丰度。

以上是波谱解析的一些基本知识点总结。

不同的波谱技术可以提供不同的信息,使用合适的技术对样品进行分析可以提高分析的准确性和灵敏度。

有机波谱分析知识点

有机波谱分析知识点

有机波谱分析知识点名词解析发色团(chromophoric groups):分子结构中含有π电子的基团称为发色团,它们能产生π→π*和n→π*跃迁从而你呢个在紫外可见光范围内吸收。

助色团(auxochrome):含有非成键n电子的杂原子饱和基团本身不吸收辐射,但当它们与生色团或饱和烃相连时能使该生色团的吸收峰向长波长移动并增强其强度的基团,如羟基、胺基和卤素等。

红移(red shift):由于化合物结构发生改变,如发生共轭作用引入助色团及溶剂改变等,使吸收峰向长波方向移动。

蓝移(blue shift):化合物结构改变时,或受溶剂的影响使吸收峰向短波方向移动。

增色效应(hyperchromic effect):使吸收强度增加的作用。

减色效应(hypochromic effect):使吸收强度减弱的作用。

吸收带:跃迁类型相同的吸收峰。

指纹区(fingerprint region):红外光谱上的低频区通常称指纹区。

当分子结构稍有不同时,该区的吸收就有细微的差异,并显示出分子特征,反映化合物结构上的细微结构差异。

这种情况就像人的指纹一样,因此称为指纹区。

指纹区对于指认结构类似的化合物很有帮助,而且可以作为化合物存在某种基团的旁证。

但该区中各种官能团的特征频率不具有鲜明的特征性。

共轭效应 (conjugated effect):又称离域效应,是指由于共轭π键的形成而引起分子性质的改变的效应。

诱导效应(Inductive Effects):一些极性共价键,随着取代基电负性不同,电子云密度发生变化,引起键的振动谱带位移,称为诱导效应。

核磁共振:原子核的磁共振现象,只有当把原子核置于外加磁场中并满足一定外在条件时才能产生。

化学位移:将待测氢核共振峰所在位置与某基准物氢核共振峰所在位置进行比较,其相对距离称为化学位移。

弛豫:通过无辐射的释放能量的途径核由高能态向低能态的过程。

分子离子:有机质谱分析中,化合物分子失去一个电子形成的离子。

知识点2-波谱分析简介

知识点2-波谱分析简介

可见光 近红外光 中红外光 远红外光 微波 射频
400-750nm 0.75-2.5mm 2.5-50mm 50-1000mm 0.1-100cm 1-1000m
2.5104-1.3104 1.3104-4103 4000-200 200-10 10-0.01 10-2-10-5
7.5108-4.0108 4.0108-1.2108 1.2108-6.0106 6.0106-105 105-102 102-0.1
分子中的这三种运动状态都对应有一定的能 级。即在分子中存在着电子能级、振动能级和转 动能级。其中电子能级的间距最大(每个能级间 的能量差叫能级差),振动能级次之,转动能级 的间距最小。 如果用E电子, E振以及 E转表示各能级差, 则:
E电子> E振> E转
能级跃迁
E转 ‹ E振 ‹ E电 电子能级间跃迁的 同时,总伴随有振动和 转动能级间的跃迁。即 电子光谱中总包含有振 动能级和转动能级间跃 迁产生的若干谱线而呈 现宽谱带。
E2 (激发态)
E
光谱仪
E E1(基态)
A
当用光照射分子时,分子就要选择性的吸收某些 波长(频率)的光而由较低的能级E1跃迁到较高能级 E2上,所吸收的光的能量就等于两能级的能量之差: E = E1 - E2
物质对光的选择性吸收 M + 热 M + 荧光或磷光
M + h 基态 E1

3.1-1.7 1.7-0.5 分子振动能级 0.5-0.02 210-2-410-4 410-4-410-7 410-7-410-10 分子转动能级 分子转动,电 子自旋 电子自旋、核自旋
讨论:
1(1)转动能级间的能量差ΔΕr:0.005~0.050eV,跃 迁产生吸收光谱位于远红外区。远红外光谱或分子转动光谱 ; 1(2)振动能级的能量差ΔΕv约为:0.05~1eV,跃迁 产生的吸收光谱位于红外区,红外光谱或分子振动光谱;

波谱分析知识点

波谱分析知识点

波谱分析(spectra analysis)波谱分析的内涵与外延:定义:利用特定的仪器,测试化合物的多种特征波谱图,通过分析推断化合物的分子结构。

特定的仪器:紫外,红外,核磁,质谱,(X-射线,圆二色谱等)特征波谱图: 四大谱;X-射线单晶衍射,圆二色谱等化合物:一般为纯的有机化合物分子结构:分子中原子的连接顺序、位置;构象,空间结构仪器分析(定量),波谱分析(定性)综合性、交叉科学(化学、物理、数学、自动化、计算机)作用:波谱解析理论原理是物理学,主要应用于化学领域(天然产物化学和中药化学、有机化学、药物化学等),在药物、化工,石油,食品及其它工业部门有着广泛的应用;分析的主要对象是有机化合物。

第一章紫外光谱(ultraviolet spectra,UV)一、电磁波的基本性质和分类1、波粒二象性光的三要素:波长(λ),速度(c),频率 (v)电磁波的波动性电磁波的粒子性光速 c:c=3.0×10^10 cm/s 波长λ :电磁波相邻波峰间的距离。

用nm,μm,cm,m 等表示频率v:v=c/ λ,用 Hz 表示。

光子具有能量,其能量大小由下式决定:E = hν = hc/λ (式中E为光子的能量,h为普朗克常数,其值为6.624× 10-34j.s )2、分子的能量组成(能级图)E 分子= E平+ E转+ E振+E电子能量大小: E转< E振< E电子X-射线衍射紫外-可见光谱红外光谱微波吸收谱核磁共振谱内层电子能级跃迁外层电子分子振动与转动分子转动电子自旋核自旋X-射线远紫外近紫外可见近红外中红外远红外微波无线电波0.1~1nm 4~200nm 200~400nm400~800nm0.8~2.5um25~400um0.04~25cm25~1000cm 紫外光谱远紫外(4~200nm):又叫真空紫外区近紫外(200~400nm):又叫石英紫外区,最为常用。

电子跃迁类型的影响σ→σ*跃迁:150nm左右,真空紫外区n→σ*跃迁:一般小于200nm 弱吸收,ε约100π→π*跃迁:160~180nm(孤立双键),>200nm (共轭双键)强吸收,ε约104n→π*跃迁:200~400nm 弱吸收,ε约1002.3.表示方法和常用术语发色团:广义上讲,是分子中能吸收紫外光或可见光的结构系统。

波谱分析

波谱分析

波谱分析——复习1. 普朗克公式的意义,波长、能量、频率及波数的相互换算。

答:(1)意义:每一条所发射的谱线的波长,取决于前后两个能级之差;对于特定元素的原子会产生一系列不同波长的特征谱线。

(2)公式:ΔE= E2-E1= hυ=(h:普朗克常量6.624×10-34 J•s υ:频率λ:波长c:光速2.998×1010cm/s)2.朗伯—比尔定律的表达式说明什么?吸光度,透光度的定义是什么?什么叫摩尔吸收系数?影响摩尔吸光系数的因素有哪些?如何测定摩尔吸光系数?答:(1)A =﹣lgT = abc说明:光被吸收的量正比于光程中产生光吸收的分子数目;(2)物质对光的吸收程度称为吸光度A,透射溶液介质的光的强度称为透光度I;(3)当c的单位为mol/L,b的单位为cm时,则A = εbc,比例系数ε称为摩尔吸收系数,单位为L/mol•m,数值上ε等于a与吸光物质的摩尔质量的乘积。

(4)它的物理意义是:当吸光物质的浓度为1 mol/L,吸收池厚为1cm,以一定波长的光通过时,所引起的吸光度值A。

ε值取决于入射光的波长和吸光物质的吸光特性,显然,显色反应产物的ε值愈大,基于该显色反应的光度测定法的灵敏度就愈高。

(5)配制已知浓度C的标准液,在不同波长处测定吸收值A,用公式(b为吸收池厚度)。

3.紫外可见吸收光谱、红外吸收光谱及核磁共振谱各自产生的原因是什么?答: 由于电子能级跃迁而产生的吸收光谱主要处于紫外可见光区(200—780nm),这种分子光谱称为电子光谱或紫外可见光谱;由于分子振动能级的跃迁(同时伴随转动能级跃迁)而产生的称为红外光谱;位于外磁场中的原子核吸收电磁波后从一个自旋能级跃迁到另一个自旋能级而产生的吸收波谱称为核磁共振谱图。

4.有机化合物的电子跃迁有哪几种类型?各类型跃迁需要的能量所对应的吸收波长范围是多少?答:(1)ζ→ζ*、π→π*、n→ζ*、n→π*;(2)所需能量:E(ζ→ζ*) > E(n→ζ*)≧E(π→π*) > E(n→π*);波长最长n→π*(200—400nm),近紫外和可见光区;ζ→ζ*:真空紫外区;π→π*:近紫外光区;n→ζ*:远紫外光区。

有机化学波谱分析知识要点

有机化学波谱分析知识要点

有机化学波谱分析知识要点一、红外光谱分析(IR Spectroscopy)红外光谱是利用物质对红外辐射的吸收、散射和透射特性进行分析的方法。

它可以提供关于有机化合物中的官能团、键的类型和官能团的有关信息。

IR光谱仪通常以波数(单位为cm-1)来表示光谱的X轴。

1. 标定标样:红外光谱的波数标定通常以空气中的CO2吸收峰为基准,波数为2349 cm-12.关键峰值:红外光谱中有一些常见的峰值对应着特定的官能团或基团,如OH伸缩振动、C=O伸缩振动等。

3. 官能团特征波数:红外光谱可以通过分析官能团的特征波数,如羧酸(1700-1720 cm-1)、酯(1735-1745 cm-1)等。

二、核磁共振波谱分析(NMR Spectroscopy)核磁共振波谱是通过分析核自旋在外加磁场中的共振吸收来获得有机化合物结构信息的方法。

常见的核磁共振波谱有质子核磁共振(1HNMR)和碳-13核磁共振(13CNMR)。

1.核磁共振吸收峰:核磁共振谱图中出现的各个峰对应着不同核成分的共振吸收。

2.位移:核磁共振谱图中每个峰的信号在横轴上的位置(化学位移)可以提供有关它们所对应原子的环境和化学环境的信息。

3.耦合:在核磁共振谱图中,出现在特定峰附近的小峰是由于核自旋耦合引起的。

耦合的模式和数量可以提供关于分子中不同核之间的相互关系。

三、质谱分析(Mass Spectrometry)质谱分析是通过将有机化合物中的分子离子化,并在电磁场作用下测量其质量/电荷比,从而确定分子的质谱图(mass spectrum)。

质谱技术可提供有机化合物的分子式和分子结构信息。

1.分子离子峰(M+):质谱图中最高峰对应分子的分子离子峰。

它的质荷比等于分子质量除以电子的质量。

2.碎片离子峰:质谱图中其他峰位来自分子断裂后的离子。

通过分析这些峰可推断出有机化合物的结构。

3.分子离子峰和碎片离子峰之间的相对丰度:通过分析质谱图中分子离子峰和碎片离子峰之间的相对丰度的比例,可以推断出有机化合物中不同官能团的相对含量。

波谱分析知识点

波谱分析知识点

. 波谱分析(spectra analysis)波谱分析的内涵与外延:定义:利用特定的仪器,测试化合物的多种特征波谱图,通过分析推断化合物的分子结构。

特定的仪器:紫外,红外,核磁,质谱,(X-射线,圆二色谱等)特征波谱图: 四大谱;X-射线单晶衍射,圆二色谱等化合物:一般为纯的有机化合物分子结构:分子中原子的连接顺序、位置;构象,空间结构仪器分析(定量),波谱分析(定性)综合性、交叉科学(化学、物理、数学、自动化、计算机)作用:波谱解析理论原理是物理学,主要应用于化学领域(天然产物化学和中药化学、有机化学、药物化学等),在药物、化工,石油,食品及其它工业部门有着广泛的应用;分析的主要对象是有机化合物。

第一章紫外光谱(ultraviolet spectra,UV)一、电磁波的基本性质和分类1、波粒二象性光的三要素:波长(λ),速度(c),频率 (v)电磁波的波动性电磁波的粒子性光速 c:c=3.0×10^10 cm/s 波长λ:电磁波相邻波峰间的距离。

用 nm,μm,cm,m 等表示频率v:v=c/ λ,用 Hz 表示。

光子具有能量,其能量大小由下式决定:E = hν= hc/λ (式中E为光子的能量,h为普朗克常数,其值为6.624×10-34j.s )2、分子的能量组成(能级图)E 分子= E平+ E转+ E振+E电子能量大小: E转< E振< E电子紫外光谱远紫外(4~200nm):又叫真空紫外区近紫外(200~400nm):又叫石英紫外区,最为常用。

电子跃迁类型的影响σ→σ*跃迁:150nm左右,真空紫外区n→σ*跃迁:一般小于200nm 弱吸收,ε约100π→π*跃迁:160~180nm(孤立双键),>200nm (共轭双键)强吸收,ε约104n→π*跃迁:200~400nm 弱吸收,ε约1002.3.表示方法和常用术语发色团:广义上讲,是分子中能吸收紫外光或可见光的结构系统。

波谱分析期末知识总结

波谱分析期末知识总结

波谱分析期末知识总结一、波谱分析的基本原理1.1 原子和分子能级波谱分析的基础是物质中原子或分子的能级结构。

原子或分子的能级是指在不同能量水平上的电子分布情况。

能级之间的能量差决定了原子或分子在吸收或发射辐射时的能量差异。

1.2 吸收和发射辐射原子或分子能级之间的跃迁可以通过吸收或发射辐射来实现。

当原子或分子吸收能量与能级差相等的辐射时,电子会从较低能级跃迁至较高能级,形成吸收峰。

相反,当电子从较高能级跃迁至较低能级时,会发射辐射,形成发射峰。

1.3 分子结构和波谱特征物质的波谱特征与其分子结构密切相关。

分子中不同原子的振动、转动和电子的跃迁等运动方式会对辐射产生不同的影响,从而在波谱上表现出不同的特征峰。

二、波谱分析的技术和仪器2.1 紫外-可见光谱紫外-可见光谱是一种常用的波谱分析技术,用于研究物质在紫外或可见光区的吸收或发射特性。

紫外-可见光谱的测量仪器主要有分光光度计和光源。

2.2 红外光谱红外光谱是一种用于研究物质在红外波段的吸收特性的技术。

红外光谱的测量仪器主要有红外光谱仪和样品室。

红外光谱可以用于确定化学键、鉴定有机物和研究分子结构等。

2.3 核磁共振核磁共振是一种基于核自旋和外磁场相互作用的波谱技术。

核磁共振的测量仪器主要包括核磁共振仪和样品盒。

核磁共振可以用于确定物质的结构、研究分子间相互作用等。

2.4 质谱质谱是一种用于研究物质的分子结构和相对分子质量的技术。

质谱的测量仪器主要有质谱仪和样品处理系统。

质谱可以用于定量分析、鉴定有机物和研究分子结构等。

三、波谱分析的应用3.1 化学分析波谱分析在化学分析中广泛应用。

通过测量样品在不同波长或波数下的吸收或发射特性,可以确定样品的成分和浓度。

常用的波谱分析技术包括紫外-可见光谱、红外光谱、核磁共振和质谱等。

3.2 材料科学波谱分析在材料科学中的应用主要用于研究材料的结构和性质。

通过测量材料的吸收或发射峰,可以确定材料的化学成分、晶体结构、晶格缺陷等信息。

有机化学波谱分析知识要点

有机化学波谱分析知识要点

波谱分析第一章 紫外光谱1、为什么紫外光谱可以用于有机化合物的结构解析?紫外光谱可以提供:谱峰的位置(波长)、谱峰的强度、谱峰的形状。

反映了有机分子中发色团的特征,可以提供物质的结构信息。

2、紫外-可见区内(波长范围为100-800 nm )的吸收光谱。

3、Lamber-Beer 定律 适用于单色光• 吸光度: A = lg(I 0/I) = εlc • 透光度:-lg T = εbcA :吸光度;l :光在溶液中经过的距离;ε:摩尔吸光系数,为浓度在1mol/L 的溶液中在1 cm 的吸收池中,在一定波长下测得的吸光度;c :浓度。

4、有机物分子中含有π键的不饱和基团称为生色团;有一些含有n 电子的基团(如—OH 、—OR 、—NH 2、—NHR 、—X 等),它们本身没有生色功能(不能吸收λ>200 nm 的光),但当它们与生色团相连时,就会发生n —π共轭作用,增强生色团的生色能力(吸收波长向长波方向移动,且吸收强度增加),这样的基团称为助色团。

5、λmax 向长波方向移动称为红移,向短波方向移动称为蓝移(或紫移)。

吸收强度即摩尔吸光系数ε增大或减小的现象分别称为增色效应或减色效应。

6、电子跃迁的类型:1. σ→σ*跃迁:饱和烃(甲烷,乙烷);E 很高,λ<150 nm (远紫外区)。

2. n→σ*跃迁:含杂原子饱和基团(-OH ,-NH 2);E 较大,λ150~250 nm (真空紫外区)。

3. π→π*跃迁:不饱和基团(-C=C-,-C=O );E 较小,λ~ 200 nm ,体系共轭,E 更小,λ更大;该吸收带称为K 带。

4. n→π*跃迁:含杂原子不饱和基团(-C≡N ,C=O ):E 最小,λ 200~400 nm (近紫外区)该吸收带称为R 带。

7、λmax 的主要影响因素:1. 共轭体系的形成使吸收红移;2. pH 值对光谱的影响:碱性介质中,λ↑,吸收峰红移,ε↑ 3. 极性的影响:π→π*跃迁:极性↑,红移,λ↑;ε↓。

波谱分析

波谱分析

丙胺 3-甲基-1-乙基苯
1,3-二乙基苯
4-甲基苯乙酮
4-甲氧基苯乙烯
4-乙基苯乙酮
4-硝基苯酚
3-乙氧基苯甲醛
正庚烷
顺-2-庚烯
反-2-庚烯
2-甲基-1-庚烯
顺,反-2,4-己二烯
2-甲基-1-丁烯-3-炔
1-庚炔
2-己炔
1,7-辛二炔
2-氯丁烷
1-碘丁烷
1-氟代戊烷
1-氯代戊烷
区段
波数范围/cm-1
振动类型
(Ⅷ) 不饱合 C-H 面 外弯曲 振动区
1000~650
=C-H 面 外弯曲
相关有机化合物中基团的特征频率/cm-1 烯 单取代烯 995~985(s);915~905 顺式取代烯 ~690(s) 反式取代烯 970~960(s) 同碳二取代烯 895~885 三取代烯 840~790(s) 芳烃 五个相邻氢原子 770~730(vs); 710~640(s) 四个相邻氢原子 770~735(vs) 三个相邻氢原子 810~750(vs) 二个相邻氢原子 860~800(vs) 一个相邻氢原子 900~860(m) 炔 665~625(s)
仪器昂贵 缺点 仪器操作复杂、后二者 维护费用高
UV IR NMR MS
3-50万 50-1000万 20-500万
3.电磁波谱与有机光谱的对应关系
能量升高 λ /cm-1
λ /nm
二、红外吸收光谱
1.红外吸收光谱的定义
红外吸收光谱是分子中成键原子振动 能级跃迁而产生的吸收光谱。 只有引起分子偶极距变化的振动才能产 生红外吸收。
1-己醇
甲丁醚
异戊醛
乙基乙烯基酮
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

波谱分析(spectra analysis)波谱分析的内涵与外延:定义:利用特定的仪器,测试化合物的多种特征波谱图,通过分析推断化合物的分子结构。

特定的仪器:紫外,红外,核磁,质谱,(X-射线,圆二色谱等)特征波谱图: 四大谱;X-射线单晶衍射,圆二色谱等化合物:一般为纯的有机化合物分子结构:分子中原子的连接顺序、位置;构象,空间结构仪器分析(定量),波谱分析(定性)综合性、交叉科学(化学、物理、数学、自动化、计算机)作用:波谱解析理论原理是物理学,主要应用于化学领域(天然产物化学和中药化学、有机化学、药物化学等),在药物、化工,石油,食品及其它工业部门有着广泛的应用;分析的主要对象是有机化合物。

第一章紫外光谱(ultraviolet spectra,UV)一、电磁波的基本性质和分类1、波粒二象性光的三要素:波长(λ),速度(c),频率 (v)电磁波的波动性电磁波的粒子性光速 c:c=3.0×10^10 cm/s 波长λ :电磁波相邻波峰间的距离。

用nm,μm,cm,m 等表示频率v:v=c/ λ,用 Hz 表示。

光子具有能量,其能量大小由下式决定:E = hν = hc/λ (式中E为光子的能量,h为普朗克常数,其值为6.624× 10-34j.s )2、分子的能量组成(能级图)E 分子= E平+ E转+ E振+E电子能量大小: E转< E振< E电子X-射线衍射紫外-可见光谱红外光谱微波吸收谱核磁共振谱内层电子能级跃迁外层电子分子振动与转动分子转动电子自旋核自旋X-射线远紫外近紫外可见近红外中红外远红外微波无线电波0.1~1nm 4~200nm 200~400nm400~800nm0.8~2.5um25~400um0.04~25cm25~1000cm 紫外光谱远紫外(4~200nm):又叫真空紫外区近紫外(200~400nm):又叫石英紫外区,最为常用。

电子跃迁类型的影响σ→σ*跃迁:150nm左右,真空紫外区n→σ*跃迁:一般小于200nm 弱吸收,ε约100π→π*跃迁:160~180nm(孤立双键),>200nm (共轭双键)强吸收,ε约104n→π*跃迁:200~400nm 弱吸收,ε约1002.3.表示方法和常用术语发色团:广义上讲,是分子中能吸收紫外光或可见光的结构系统。

狭义上讲,凡具有π电子的基团。

如:c=c, c=o,苯环等芳香族化合物。

助色团:基团本身不能吸收大于200nm的紫外光,但它与一定的发色团相连时,则可使发色团所产生的吸收峰向长波方向移动,同时吸收强度也增加,这些基团称助色团,即有助于光波的吸收。

常见的助色团有-OH, -OR, -NHR, -SH, -Cl, -Br, -I等。

红移:由于取代作用或溶剂效应导致紫外吸收峰向长波方向移动的现象。

蓝移:紫外吸收峰向短波方向移动。

增色作用:使紫外吸收强度增加的作用。

减色作用:使紫外吸收强度降低的作用。

12.6吸收强度的主要影响因素1、跃迁几率2、靶面积2.7测定用溶剂的选择原则:1、紫外透明,无吸收 2、溶解度好 3、不与样品发生化学反应第三节推测化合物λmax的经验规则一.非共轭有机化合物的紫外吸收(了解)二、共轭有机化合物的紫外吸收(一)共轭烯烃的λmax的计算方法1、共轭二烯,三烯及四烯λmax的计算(Woodward-Fieser经验规则,)1,增加一个共轭双键(增加共轭度)2,环外双键(固定构象,增加共轭几率)3,取代基烷基和环残基(σ-π超共轭)O、N、X、S (p- π共轭)(1)环外双键:在环状烯烃中,双键碳的一个原子位于环内,另一个位于环外,这种双键称为环外双键。

只有处于共轭体系中的环外双键才会对紫外吸收产生影响(2)环残基:与双烯C相连的饱和环骨架的一部分。

注意事项:交叉共轭体系,只能选一个较长的共轭体系芳香系统也不适用,另有规则。

只适用于小于或等于四个双键的化合物。

共轭体系中的所有取代基及所有的环外双键均应考虑在内。

共轭双键基值 217 nm 环外双键 +5同环二烯 +36 共轭双键 +30烷基或环基 +5 卤素 +5-S-R +30 -O-R +6-OCOR +0 -NR2 +60烷基或环基是指与共轭双键碳相连的碳环骨架的一部分2.共轭多烯λmax计算(Fieser-Kuhn公式)λmax=114+5M+n(48-1.7n)-16.5 Rendo-10 Rexoεmax=1.74×104n其中,M―烷基数n―总共轭双键数Rendo―具有环内双键的环数Rexo―具有环外双键的环数3.a,β不饱和羰基化合物的λmax计算基值a,β不饱和醛 207 a,β不饱和五元环酮 202 a,β不饱和酮 215 a,β不饱和六元环酮 1954.苯多取代衍生物的K带的λmax计算书19页基值 Ph-CO-烷基或环基 246 Ph-CHO 250Ph-COOH 230 Ph-COO烷基或环基 230Ph-CN 224第二章红外光谱(Infrared spectra, IR)红外光谱的特点1、具有高度的特征性2、对样品的适应性相当广泛,无论固态、液态或气态样品都可进行测定4、对于特征基团的分析准确3、常规红外光谱仪价格较低(与核磁、质谱比)一、红外光谱是研究红外光与物质分子间相互作用的吸收光谱红外光谱又称作振-转光谱E 分子= E移+ E振+ E转+E电子通常将红外光分为三个区域:近红外区(泛频区:12500-4000cm-1)中红外区(基本振动:4000-400cm-1 )远红外区(转动区: 400-25cm-1 )在常温下,分子几乎均处于基态,所以在红外吸收光谱中通常只考虑下面两种跃迁:V0→V1:基频峰,峰强v0→1=v(1-2Xe)V0→V2:倍频峰,峰弱v0→2=2v(1-3Xe)23(二)多原子分子的振动 1、振动自由度与峰数 将多原子的复杂振动分解为许多简单的基本振动(简正振动)基本振动的数目:振动自由度(分子自由度) 分子自由度数(3N ):平动自由度+转动自由度+振动自由度 振动自由度: 分子自由度数(3N )-(平动自由度+转动自由度) 非线性分子振动自由度=3N -(3+3)=3N -6 线性分子振动自由度=3N -(3+2)=3N -5 2、振动类型 (1)伸缩振动(v):对称伸缩振动vs 不对称伸缩振动vas 对称伸缩振动 :两个键同时伸长或缩短 不对称伸缩振动:一个键伸长,一个缩短 特点:只有键长的变化,没有键角的变化。

(2)弯曲振动 (δ):①面内弯曲振动δip,分为:剪式振动δs、平面摇摆 ②面外弯曲振动δo.o.p ,分为:非平面摇摆ω 、扭曲振动τ 弯曲振动:原子在键轴前后或左右弯曲振动。

特点:只有键角变化,无键长变化。

红外吸收在低频率区,一般在1500cm-1以下。

红外光谱产生的基本条件 1、hv 红外光=ΔE 分子振动 2、分子振动时,其偶极矩μ必须发生变化,即Δμ≠0。

3、影响峰数的原因 理论上,每个振动自由度在红外光谱区都应产生一个吸收峰,但实际峰数往往少于振动数目。

原因: 1 当振动过程中分子不发生瞬间偶极矩变化时,不引起红外吸收。

2 频率完全相同的振动彼此发生简并。

3 强宽峰覆盖与它频率相近的弱而窄的吸收峰。

4 吸收峰有时落在中红外区以外(4000~650cm-1),不被检测。

5 吸收峰太弱,无法测定。

也有使峰数增多的因素,如倍频与组频等。

但这些峰落在中红外区的较少,而且都非常弱。

三、分子偶极变化与峰强 (一)峰强的表示法 百分透光率:红外光谱用百分透光率T 表示峰强。

T %=I/I0×100% 故T%越小,吸收峰越强。

百分吸收率: 吸光度:A 摩尔吸光系数:ε>100 vs ε=20-100 s ε=10-20 m ε<1 w (二)决定峰强的因素 (1)振动过程中偶极矩的变化 原子的电负性 : vC=O>vC=C ,vOH>vC-H>vC-C 振动形式 : vas>vs, v>δ 分子的对称性 :CO2的对称伸缩O=C=O 其它(2)能级跃迁的几率 基频几率最大 四、影响峰位的因素(一)内部因素 1.电子效应 由于取代基具有不同的电负性,通过电子效应使分子中的电子云分布发生变化,从而改变化学键的键力常数,也就改变了基团的特征吸收频率。

(1)诱导效应(inductive effect) 取代基的电负性,引起电子云密度的变化,称为诱导效应。

分为吸电子诱导效应(-I 效应)和给电子诱导效应(+I 效应) F >Cl >Br >I >OCH3>NHCOCH3>C6H6>H >CH3 (2)共轭效应(简称+C 或+M 效应)共轭效应使电子密度平均化,C=O 的双键性降低,键力常数减少,故吸收峰移向低波数区。

当同时存在I 效应和C 效应时,吸收峰的位移方向由影响较大的那个效应决定。

2.空间效应 (1)场效应(简称F 效应) (2)空间障碍(位阻) (3)跨环效应:非共轭基团之间的相互作用。

分子中两个非共轭生色团处于一定的空间位置,由于两基团的空间位置相近而产生的跨环共轭效应,使红外吸收向低波数移动。

尤其是在环状体系中,有利于电子轨道间的相互作用。

(4)环张力 环外双键和环上羰基,其频率随着环张力增加而增加。

环内双键的伸缩频率则随环张力的增加而降低。

3.氢键效应氢键的形成使参与形成氢键的化学键力常数减少,可使伸缩频率向低波数方向移动,谱带变宽。

(1)分子内氢键(与浓度无关)氢键的形成使参与形成氢键的化学键力常数减少,可使伸缩频率向低波数方向移动,谱带变宽。

可使谱带大幅度向低波数方向移动 (P54举例)(2)分子间氢键(与浓度有关)醇、酚、羧酸。

其中羧酸的分子间氢键缔合不仅使羰基的吸收频率发生变化,而且也使羟基出现在3200~2500cm-1区间。

4.互变异构5.振动偶合效应当两个基团在分子中靠近,且振动频率相同或相近时,其相应的吸收峰强度增强或发生裂分,形成两个峰,这叫振动偶合。

费米共振:当倍频峰(或组频)位于某强的基频吸收峰附近时,弱的倍频或组频峰的吸收强度被大大强化,间或发生峰带裂分,这种倍频与基频峰之间的振动偶合称为费米共振。

6.样品的物理状态的影响同一样品在不同的状态测定(气、液、固),其红外吸收光谱有不同程度的差异。

核对光谱时要注意。

(二)外部因素1.溶剂影响:极性基团的伸缩频率常随溶剂极性增大而降低。

第二节红外光谱中的重要区段一、特征谱带区、指纹区及相关峰的概念1、特征谱带区:有机化合物的分子中一些主要官能团的特征吸收多发生在红外区域的4000~1333cm-1。

该区域吸收峰比较稀疏,容易辨认,故通常把该区域叫特征谱带区,该区相应的吸收峰称做特征吸收或特征峰。

相关文档
最新文档