初三数学中考复习第十四讲数形结合问题

合集下载

中考数学总复习《数形结合问题》考点梳理及典例讲解课件

中考数学总复习《数形结合问题》考点梳理及典例讲解课件
∴S△ABO=12 ×1×1=12 .
(2)结合函数图象可得,当 y1>y2 时,x<1.
例 1:甲、乙两地之间是一条直路,在全民健身活 动中,赵明阳跑步从甲地往乙地,王浩月骑自行车从 乙地往甲地,两人同时出发,王浩月先到达目的地,
两人之间的距离 s(单位:km)与运动时间 t(单位:h)的
函数关系大致如图所示,下列说法中错误的是( )
A.两人出发 1 h 后相遇 B.赵明阳跑步的速度为 8 km/h C.王浩月到达目的地时两人相距 10 km D.王浩月比赵明阳提前 1.5 h 到目的地 答案:C
例 2:如图,AB,CD 是⊙O 的两条互相垂直的直 径,点 P 从点 O 出发,沿 O→C→B→O 的路线匀速运 动,设∠APD=y(单位:度),那么 y 与点 P 运动的时
间(单位:秒)的关系图是( )
A
B
C

D
答案:B
例 3:如下图,抛物线 y=-14 x2-x+2 的顶点为
A,与 y 轴交于点 B. (1)求点 A,点 B 的坐标; (2)若点P是 x 轴上任意一点,
n=(BC+CD+DE+EF+FA )÷2=(BC+DE+AB +AF)÷2=(8+6+6+8+6)÷2=17.
(3)解:由图 2 知,点 P 在 BC 上运动时,0≤t≤4, ∴S=12 ×6×2t=6t,即 S=6t(0≤t≤4); ∵由图 2 知,点 P 在 DE 上运动时,6≤t≤9, ∴S=12 ×6×(2t-4)=6t-12,即 S=6t-12 (6≤t≤9).
当点 P 在 x 轴上又异于 AB 的延长线与 x 轴的交点
时,
在点 P,A,B 构成的三角形中,PA -PB<AB. 综合上述,PA -PB≤AB.

初三数学培优之数形结合

初三数学培优之数形结合

初三数学培优之数形结合阅读与思考数学研究的对象是现实世界中的数量关系与空间形式,简单地说就是“数”与“形”,对现实世界的事物,我们既可以从“数”的角度来研究,也可以从“形”的角度来探讨,我们在研究“数”的性质时,离不开“形”;而在探讨“形”的性质时,也可以借助于“数”.我们把这种由数量关系来研究图形性质,或由图形的性质来探讨数量关系,即这种“数”与“形”的相互转化的解决数学问题的思想叫作数形结合思想.数形结合有下列若干途径:1.借助于平面直角坐标系解代数问题; 2.借助于图形、图表解代数问题;3.借助于方程(组)或不等式(组)解几何问题; 4.借助于函数解几何问题.现代心理学表明:人脑左半球主要具有言语的、分析的、逻辑的、抽象思维的功能;右半球主要具有非言语的、综合的、直观的、音乐的、几何图形识别的形象思维的功能.要有效地获得知识,则需要两个半球的协同工作,数形结合分析问题有利于发挥左、右大脑半球的协作功能.代数表达及其运算,全面、精确、入微,克服了几何直观的许多局限性,正因为如此,笛卡尔创立了解析几何,用代数方法统一处理几何问题.从而成为现代数学的先驱.几何问题代数化乃是数学的一大进步.例题与求解【例l 】设1342222+-+++=x x x x y ,则y 的最小值为___________.(罗马尼亚竞赛试题)解题思路:若想求出被开方式的最小值,则顾此失彼.()()921122+-+++=x x y =()()()()2222302101-+-+-++x x ,于是问题转化为:在x 轴上求一点C (x ,0),使它到两点A (-1,1)和B (2,3)的距离之和(即CA +CB )最小.【例2】直角三角形的两条直角边之长为整数,它的周长是x 厘米,面积是x 平方厘米,这样的直角三角形 ( )A .不存在B .至多1个C .有4个D .有2个(黄冈市竞赛试题) 解题思路:由题意可得若干关系式,若此关系式无解,则可推知满足题设要求的直角三角形不存在;若此关系式有解,则可推知这样的直角三角形存在,且根据解的个数,可确定此直角三角形的个数.【例3】如图,在△ABC 中,∠A =090,∠B =2∠C ,∠B 的平分线交AC 于D ,AE ⊥BC 于E ,DF ⊥BC 于F . 求证:BEAE BF AE DF BD ⋅+⋅=⋅111. (湖北省竞赛试题)解题思路:图形中含多个重要的基本图形,待证结论中的代数迹象十分明显.可依据题设条件,分别计算出各个线段,利用代数法证明.DAC【例4】 当a 在什么范围内取值时,方程a x x =-52有且只有相异的两实数根? (四川省联赛试题) 解题思路:从函数的观点看,问题可转化为函数x x y 52-=与函数a y =(a ≥0)图象有且只有相异两个交点.作出函数图象,由图象可直观地得a 的取值范围.【例5】 设△ABC 三边上的三个内接正方形(有两个顶点在三角形的一边上,另两个顶点分别在三角形另两边上)的面积都相等,证明:△ABC 为正三角形. (江苏省竞赛试题) 解题思路:设△ABC 三边长分别为a ,b ,c ,对应边上的高分别为a h ,b h ,c h ,△ABC 的面积为S ,则易得三个内接正方形边长分别为a h a S +2,b h b S +2,ch c S+2,由题意得c b a h c h b h a +=+=+,即L cSc b S b a S a =+=+=+222.则a ,b ,c 适合方程L x S x =+2.【例6】设正数x ,y ,z 满足方程组⎪⎪⎪⎩⎪⎪⎪⎨⎧=++=+=++1693253222222x zx z z y y xy x ,求zx yz xy 32++的值. (俄罗斯中学生数学竞赛试题)能力训练1. 不查表可求得tan 015的值为__________.2. 如图,点A ,C 都在函数xy 33=(0>x )的图象上,点B ,D 都在x 轴上,且使得△OAB ,△BCD 都是等边三角形,则点D 的坐标为______________. (全国初中数学联赛试题) 3.平面直角坐标系上有点P (-1,-2)和点Q (4,2),取点R (1,m ),当=m ________时,PR +RQ 有最小值.4.若0>a ,0<b ,要使b a b x a x -=-+-成立,x 的取值范围是__________.5.已知AB 是半径为1的⊙O 的弦,AB 的长为方程012=-+x x 的正根,则∠AOB 的度数是______________. (太原市竞赛试题) 6. 如图,所在正方形的中心均在坐标原点,且各边与x 轴或y 轴平行,从内到外,它们的边长依 次为2,4,6,8,…,顶点依次用1A ,2A ,3A ,4A ,…表示,则顶点55A 的坐标是( )A . (13,13)B .(-13,-13) C.(14,14) D. (-14,一14)第2题图 第6题图7.在△ABC 中,∠C =090,AC =3,BC =4.在△ABD 中,∠A =090,AD =12.点C 和点D 分居AB 两侧,过点D 且平行于AC 的直线交CB 的延长线于E .如果nmDB DE =,其中,m ,n 是互质的正整数,那么n m += ( )A. 25B.128C.153D.243E.256 (美国数学统一考试题) 8.设a ,b ,c 分别是△ABC 的三边的长,且cb a ba b a +++=,则它的内角∠A ,∠B 的关系是( ) A .∠B >2∠A B .∠B=2∠A C .∠B <2∠A D .不确定 9.如图,a S AFG 5=∆,a S ACG 4=∆,a S BFG 7=∆,则=∆AEG S ( ) A .a 1127 B .a 1128 C .a 1129 D .a 113010. 满足两条直角边边长均为整数,且周长恰好等于面积的整数倍的直角三角形的个数有( ) A. 1个 B .2个 C .3个 D .无穷多个11.如图,关于x 的二次函数m mx x y --=22的图象与x 轴交于A (1x ,0),B (2x ,0)两点(2x >0>1x ),与y 轴交于C 点,且∠BAC =∠BCO . (1) 求这个二次函数的解析式;(2) 以点D (2,0)为圆心⊙D ,与y 轴相切于点O ,过=抛物线上一点E (3x ,t )(t >0,3x <0)作x 轴的平行线与⊙D 交于F ,G 两点,与抛物线交于另一点H .问是否存在实数t ,使得EF +GH =CF ?如果存在,求出t 的值;如果不存在,请说明理由. (武汉市中考题)y xA HG F BCDO E12.已知正数a ,b ,c ,A ,B ,C 满足a +A =b +B =c +C =k . 求证:a B 十b C +c A <2k .13.如图,一个圆与一个正三角形的三边交于六点,已知AG =2,GF =13,FC =1,HI =7,求DE . (美国数学邀请赛试题)第13题图BC14.射线QN 与等边△ABC 的两边AB ,BC 分别交于点M ,N ,且AC //QN ,AM =MB = 2cm ,QM = 4cm .动点P 从点Q 出发,沿射线QN 以每秒1cm 的速度向右移动,经过t 秒,以点P 为圆心,3cm 为半径的圆与△ABC 的边相切(切点在边上).请写出t 可以取的一切值:_______________(单位:秒).第14题图15. 如图,已知D 是△ABC 边AC 上的一点,AD :DC =2:1,∠C =045,∠ADB =060. 求证:AB 是△BCD 的外接圆的切线.(全国初中数学联赛试题)16.如图,在△ABC 中,作一条直线l ∥BC ,且与AB 、AC 分别相交于D ,E 两点,记△ABC ,△BED 的面积分别为S ,K .求证:K ≤S 41. (长春市竞赛试题)l第16题图DBCE17.如图,直线OB 是一次函数x y 2 的图象,点A 的坐标为(0,2). 在直线OB 上找点C ,使得△ACO 为等腰三角形,求点C 的坐标. (江苏省竞赛试题)y x第17题图=2x O BA。

中考经典考题:数形结合掌握这些几何解题技巧压轴题不再丢分

中考经典考题:数形结合掌握这些几何解题技巧压轴题不再丢分

中考经典考题:数形结合掌握这些几何解题技巧压轴题不再丢分解决数学中考压轴题一般都会用到数形结合等思想。

数形结合思想是指从几何直观的角度,利用几何图形的性质研究数量关系,寻求代数问题的解决方法(以形助数),或利用数量关系来研究几何图形的性质,解决几何问题(以数助形)的一种数学思想. 数形结合思想使数量关系和几何图形巧妙地结合起来,使问题得以解决。

题型分析本题是二次函数综合题,考查了待定系数法求二次函数的解析式,一次函数的解析式,等腰直角三角形的判定和性质,三角形相似的判定和性质,勾股定理的应用等,难点在于(3)作辅助线构造出相似三角形和三角形的中位线。

第(1)题:顶点C的坐标为(1,2)。

第(2)题:F的坐标为(-3,-6)。

数形结合思想利用几何图形的性质研究数量关系,寻求代数问题的解决途径,或用数量关系研究几何图形的性质,解决几何问题,将数量关系和几何图形巧妙地结合起来,以形助数,以数辅形,使抽象问题直观化,复杂问题简单化,从而使问题得以解决的一种数学思想。

数形结合思想常见的四种类型1、实数与数轴实数与数轴上的点具有一一对应关系,因此借助数轴观察数的特点,直观明了。

2、在解方程(组)或不等式(组)中的应用利用函数图象解决方程问题时,常把方程根的问题看作两个函数图象的交点问题来解决;还有曲线与方程的对应关系;利用数轴或函数图象解有关不等式(组)的问题直观,形象,易于找出不等式(组)解的公共部分或判断不等式组有无公共解。

讨论方程的解(或函数的零点)可构造两个函数,使问题转化为讨论两曲线的交点问题,但用此法讨论方程的解一定要注意图像的准确性、全面性,否则会得到错解。

3、在函数中的应用函数与图像的对应关系;借助于图象研究函数的性质是一种常用的方法,函数图象的几何特征与数量特征紧密结合,体现了数形结合的特征与方法。

4、在几何中的应用以几何元素和几何条件为背景,建立起来的概念,如复数、三角函数等;对于几何问题,我们常通过图形,找出边、角的数量关系,通过边、角的数量关系,得出图形的性质等。

数学中考复习:数形结合思想PPT课件

数学中考复习:数形结合思想PPT课件

距水平面的高度是4米,离柱子OP的距离为1米。 (1)求这条抛物线的解析式; y
(2)若不计其它因素,水池
A
的半径至少要多少米,才能
使喷出的水流不至于落在池 外?
P 3
4
O 1B 水平面 x
5. 已知一次函数y=3x/2+m和 y=-x/2+n的图象都经过点A(﹣2,0),且与 y轴分别交于B、C两点,试求△ABC的面积。
∴S△ABC=1/2×BC×AO=4
6.某机动车出发前油箱内有42升油,行驶若干小时
后,途中在加油站加油若干升。油箱中余油量Q(升)
与行驶时间t(小时)之间的函数关系如图所示,根
据下图回答问题:
(1)机动车行驶几小时后加油?答:_5_小时
(2)加油前余油量Q与行驶时间t的函数关系式
是:_Q=__42_-_6_t Q(升)
中考复习
数形结合思想
2024/9/19
1
谈到“数形结合”,大多与函数问 题有关。
函数的解析式和函数的图象分别从
“数”和“形”两方面反应了函数的性 质,
函数的解析式是从数量关系上反应 量与量之间的联系;
函数图象则直观地反应了函数的各
种性质,使抽象的函数关系得到了形象 的显示。
“数形结合思想”就是通过数量与
B、M = 0
C、M < 0
D、不能确定
运用数形结合的方法,将 -1 0 1
x
函数的解析式、图象和性
质三者有机地结合起来
1.二次函数y=ax2+bx+c的图象如图所
示.下列关于a,b,c的条件中,
不正确的是 ( D ) y
(A)a<0,b>0,c<0
(B)b2-4ac<0
(C)a+b+c<0

中考数学专题之数形结合

中考数学专题之数形结合

中考数学专题 数形结合知识梳理数形结合是把抽象的数学语言与直观的图形结合起来思索,使抽象思维和形象思维相结合,通过“以形助数”或“以数解形”可使复杂问题简单化,抽象的数学问题直观化、生动化,能够变抽象思维为形象思维,有助于把握数学问题的本质.另外,由于使用了数形结合的方法,很多问题便迎刃而解,且解法简捷,从而起到优化计算的目的.华罗庚先生曾指出:“数与形本是相倚依,焉能分作两边飞;数缺形时少直觉,形少数时难入微;数形结合百般好,隔裂分家万事休.”这充分说明了数形结合数学学习中的重要性,是中考数学的一个最重要数学思想.典型例题一、在数与式中的应用【例1】实数a 、b 在数轴上的位置如图所示,化简2a ab +-=_________.【分析】 由数轴上a ,b 的位置可以得到a 〈0,b>0且a <b .∴2a a =-,a b b a -=-.【解】()22a a b a b a a b +-=-+-=-+【例2】 如下图是小明用火柴搭的1条、2条、3条“金鱼”……,则搭n 条“金鱼”需要火柴_________根.【分析】 由图形可知,搭1条金鱼需要8根火柴棒,后面每多一条就多6根火柴棒,所以搭n 条金鱼共需8+6(n -1)=(6n+2)根火柴棒. 【解】6n+2二、在方程、不等式中的应用【例3】 (08聊城)已知关于x 的不等式组020x a x ->⎧⎨->⎩的整数解共有2个,则a 的取值范围是___________.【分析】解不等式组得解集为2x ax >⎧⎨<⎩,我们可以将x<2标注在数轴上,要使得不等式组有2个整数解,由图象可知整数解为0,1,则a 应在-1~0之间,且可以等于-1,但不能为0,所以以的取值范围是-l ≤a <0.【解】 1≤n 〈0【例4】(08南通)用图象法解某二元一次方程组时,在同一直角坐标系中作出相应的两个一次函数的图象(如图所示),则所解的二元一次方程组是()A.203210x yx y+-=⎧⎨--=⎩B.2103210x yx y--=⎧⎨--=⎩C.2103250x yx y--=⎧⎨+-=⎩D.20210x yx y+-=⎧⎨--=⎩【分析】根据图象我们可以知道这个方程组的解为11xy=⎧⎨=⎩,只要将解进行代入检验即可.【解】D【例5】已知二次函数y=a x2+bx+c的图象如图所示,若关于x的方程a x2+bx+c-k=0有两个不相等的实数根,则k的取值范围为()A.k〉3 B.k=3 C.k<3 D.无法确定【分析】如果根据b2-4a c的符号来判别解的情况,本题将无从入手,可将原方程变形为a x2+bx+c=k,从而理解成是两个函数的交点问题,即2y ax bx cy k⎧=++⎨=⎩,由图象可知只要y=k〈3就一定定与抛物线有两个不同的交点,所以答案选C.【解】C三、在函数中的应用【例6】(08安徽)如图为二次函数y=a x2+bx+c的图象,在下列说法中:①a c<0 ②方程a x2+bx+c=0的根是x1=-1,x2=3 ③a+b+c>0 ④当x>1时,y随x的增大而增大正确的说法有__________.(把正确的答案的序号都填在横线上)【分析】由图象可知,开口向上,与x轴交于-1和3两点,与y轴交于负半轴,则a>0,c〈0;由对称性知对称轴x=1,所以结论①②④正确.【解】①②④【例7】某跳水运动员进行10米跳台跳水训练时,身体(看成一点)在空中的运动路线如图所示,为经过原点O 的一条抛物线(图中标出的数据为已知条件).要跳某个规定动作时,正常情况下,该运动员在空中的最高处距水面2103米,入水处距池边的距离为4米,同时,运动员在距水面高度为5米以前,必须完成规定的翻腾动作,并调整好入水姿势,否则就会出现失误, (1)求这条抛物线的解析式;(2)在某次试跳中,测得运动员在空中运动路线是如图抛物线,且运动员在空中调整好入水姿势时,距池边的水平距离为3导米,问此次跳水会不会失误?并通过计算说明理由.【分析】(1)在给出的直角坐标系中,要确定抛物线的解析式,就要确定抛物线上三个点的坐标,如起跳点O(0,0),入水点(2,-10),最高点的纵点标为23. (2)求出抛物线的解析式后,要判断此次跳水会不会失误, 就是要看当该运动员在距池边水平距离为335米,3332155x =-=时, 该运动员距水面高度与5米的关系.【解】(1)在给定的直角坐标系下,设最高点为A ,入水点为B ,抛物线的解析式为y=a x 2+bx+c ,由图可知,O ,B 两点的坐标依次为(0,0)(2,-10),且顶点A 的纵坐标为23,则2042104243c a b c ac b a ⎧⎪=⎪⎪++=-⎨⎪-⎪=⎪⎩,解得2561030a b c ⎧=-⎪⎪⎪=⎨⎪=⎪⎪⎩或3220a b c ⎧=-⎪⎪=-⎨⎪=⎪⎩抛物线的对称轴在y 轴右侧,∴02b a ->.又抛物线开口向下,∴256a =-,103b =,c=0,∴2251063y x x =-+.(2)当运动员在空中距池边距离为335米时,即383255x=-=时,63y=-,∴此时运动员距水面高为16410533-=<.因此,试跳会出现失误.四、在概率统计中的应用【例8】(05江西)某报社为了解读者对本社一种报纸四个版面的喜欢情况,对读者作了一次问卷调查,要求读者选出自己最喜欢的一个版面,将所得数据整理后绘制成了如图所示的条形统计图:(1)请写出从条形统计图中获得的一条信息;(2)请根据条形统计图中的数据补全扇形统计图,并说明这两幅统计图各有什么特点;(3)请你根据上述数据,对该报社提出一条合理的建议.【分析】观察条形统计图可以计算出调查总人数,画扇形统计图需计算出第一版、第二版的百分比和圆心角,分别为15003601085000⨯︒=︒,500360365000⨯︒=︒,建议可从不足的方面提出.【解】(1)参加调查的人数为5000人;(2)如图所示:条形统计图能清楚地表示出喜欢各版面的读者人数.扇形统计图能清楚地表示出喜欢各版面的读者人数占所调查的总人数的百分比.(3)如:建议改进第二版的内容,提高文章质量,内容更贴近生活,形式更活泼些.综合训练1.“数轴上的点并不都表示有理数,如图中数轴上的点P 所表示的数是2",这种说明问题的方式体现的数学思想方法叫做( )A .代入法B .数形结合C .换元法D .分类讨论2.(08大连)如图,两温度计读数分别为我国某地今年2月份某天的最低气温与最高气温,那么这天的最高气温比最低气温高 ( )A .5℃B .7℃C .12℃D .-12℃3.某人从A 地向B 地打长途电话6分钟,按通话时间收费,3分钟以内收费2.4元,此后每加1分钟加收1元,则表示电话费y(元)与通话时间(分)之间的关系的图象正确的是( )4.若M 112y ⎛⎫- ⎪⎝⎭,,N 214y ⎛⎫- ⎪⎝⎭,,312y ⎛⎫ ⎪⎝⎭,三点都在函数ky x=(k<0)的图象上,则y 1,y 2,y 3的大小关系为( )A .y 2>y 3>y 1B .y 2〉y 1>y 3C .y 3>y 1〉y 2D .y 3〉y 2〉y 15.关于x 的一元二次方程x 2-x -n=0没有实数根,则抛物线y=x 2-x -n 的顶点在A .第一象限B .第二象限C .第三象限D .第四象限( )6.(08临沂)若不等式组302741x a x x +<⎧⎨+>-⎩的解集为x 〈0,则a 的取值范围为 ( )A .a 〉0B .a =0C .a >4D .a =47.(08镇江)福娃们在一起探讨研究下面的题目:函数y=x 2-x+m (m 为常数)的图象如图所示,如果x=a 时,y<0;那么x=a -1时,函数值( )下面是福娃们的讨论,请你解答该题.贝贝:我注意到当x=0时,y=m〉0.晶晶:我发现图象的对称轴为x=1 2欢欢:我判断出x1<a〈x2.迎迎:我认为关键要判断a-1的符号.妮妮:m可以取一个特殊的值.A.y<0 B.0<y<m C.y〉m D.y=m8.如图,在平面直角坐标系中,∠AOB=150°,OA=OB=2,则点A、B的坐标分别是_________和_________.9.在边长为a的正方形中,挖掉一个边长为b的小正方形(a>b)如图1,把余下的部分剪拼成一个矩形如图2,通过计算两个图形(阴影部分)的面积,验证了一个等式,则这个等式是_______________.10.(08绍兴)如图,已知函数y=x+b和y=a x+3的图象交点为P,则不等式x+b>a x+3的解集为__________.11.方程组211y xy x=-⎧⎨=--⎩的解是__________.12.(08广州)如图,为实数a 、b 在数轴上的位置,化简()222a b a b ---.13.(02南京)(1)阅读下面材料:点A 、B 在数轴上分别表示实数a 、b,A 、B 两点之间的距离表示为AB .当A 、B 两点中有一点在原点时,不妨设点A 在原点,如图1,AB OB b a b ===-; 当A 、B 两点都不在原点时,①如图2,点A 、B 都在原点的右边AB OB OA b a b a a b =-=-=-=-; ②如图3,点A 、B 都在原点的左边,()AB OB OA b a b a a b =-=-=---=-; ③如图4,点A 、B 在原点的两边,()AB OB OA a b a b a b =+=+=+-=-.(2)回答下列问题:①数轴上表示2和5的两点之间的距离是_______,数轴上表示-2和-5的两点之间的距离是_______,数轴上表示1和-3的两点之间的距离是________;②数轴上表示x 和-1的两点A 和B 之间的距离是_________,如果2AB =,那么x 为__________; ③当代数式12x x ++-取最小值时,相应的x 的取值范围是____________.14.(08苏州)某厂生产一种产品,图①是该厂第一季度三个月产量的统计图,图②是这三个月的产量与第一季度总产量的比例分布统计图,统计员在制作图①、图②时漏填了部分数据.根据上述信息,回答下列问题:(1)该厂第一季度_________月份的产量最高.(2)该厂一月份产量占第一季度总产量的_______%.(3)该厂质检科从第一季度的产品中随机抽样,抽检结果发现样品的合格率为98%.请你估计:该厂第一季度大约生产了多少件合格的产品?(写出解答过程)15.(08恩施)如图所示,C 为线段BD 上一动点,分别过点B 、D 作AB ⊥BD ,ED ⊥BD ,连接AC 、EC .已知AB=5,DE=1,BD=8;设CD=x .(1)用含x 的代数式表示AC+CE 的长;(2)请问点C 满足什么条件时,AC+CE 的值最小?(3)根据(2)中的规律和结论,请构图求出代数式()224129x x ++-+的最小值.16.如图,已知抛物线与x 轴交于A (-1,0)、B (3,0)两点,与y 轴交于点C (0,3)。

人教版九年级数学中考培优专题:数形结合思想(含答案)

人教版九年级数学中考培优专题:数形结合思想(含答案)
的面积分别为 S,K.求证:K≤ S . 4
A
D
E l
B
C
图 16图 图
17.如图,直线 OB 是一次函数 y 2x 的图象,点 A 的坐标为(0,2). 在直线 OB 上找点 C,使得△ACO
为等腰三角形,求点 C 的坐标.
y AB
x O y =2 x
图 17图 图
参考答案
例 1 5 提示:作出 B 点关于 x 轴的对称点 B'(2,-3),连结 AB'交 x 轴于 C,则 AB'=AC 十 CB' 为所要求的 最小值.
t1
97 8
1 , t1


97 1
(舍去).
8
12.a 十 A=b+B=c 十 C=k,可看作边长为 k 的正三角形,而从 k 2 联想到边长为 k 的正方形的面积.如图,
将 aB+bC+cA 看作边长分别为 a 与 B,b 与 C,c 与 A 的三个小矩形面积之和,将三个小矩形不重叠地嵌入 到边长为 k 的正方形中,显然 aB+bC+cA<k2.
人教版九年级数学中考培优专题:数形结合思想(含答案)
【例 l】设 y x2 2x 2 x2 4x 13 ,则 y 的最小值为___________.
【例 2】直角三角形的两条直角边之长为整数,它的周长是 x 厘米,面积是 x 平方厘米,这样的直角三
角形 ( )
A.不存在
B.至多 1 个
11. (1) y x 2 2x 1 (2)过 D 作 DM⊥ EH 于 M,连结 DG, DM t, DG DO 2 ,
FG 2MG 2 2 t 2 . 若 EF+GH=FG 成立,则 EH= 2FG.由 EF//x 轴,设 H 为 x4 , t ,又∵E,H 为抛

九年级数学专题复习数形结合问题

九年级数学专题复习数形结合问题

中考冲刺:数形结合问题【中考展望】1.用数形结合的思想解题可分两类:(1)利用几何图形的直观性表示数的问题,它常借用数轴、函数图象等;(2)运用数量关系来研究几何图形问题,常需要建立方程(组)或建立函数关系式等.2. 热点内容:在初中教材中,数的常见表现形式为: 实数、代数式、函数和不等式等,而形的常见表现形式为: 直线型、角、三角形、四边形、多边形、圆、抛物线、相似、勾股定理等.在直角坐标系下,一次函数的图象对应着一条直线,二次函数的图象对应着一条抛物线,这些都是初中数学的重要内容.特别是二次函数,不仅是学生学习的难点之一,同时也使数形结合的思想方法在中学数学中得到最充分体现.在平面直角坐标系中,二次函数图象的开口方向、顶点坐标、对称轴以及与坐标轴的交点等都与其系数a,b,c密不可分.事实上,数a 决定抛物线的开口方向, b 与a 一起决定抛物线的对称轴位置, c 决定了抛物线与y 轴的交点位置,与a、b 一起决定抛物线顶点坐标的纵坐标,抛物线的平移的图形关系只是顶点坐标发生变化,其实从代数的角度看是b、c 的大小变化.【方法点拨】数形结合:就是通过数与形之间的对应和转化来解决数学问题,它包含“以形助数”和“以数解形”两个方面.利用它可使复杂问题简单化,抽象问题具体化,它兼有“数的严谨”与“形的直观”之长,是优化解题过程的重要途径之一,是一种基本的数学方法.数形结合问题,也可以看作代数几何综合问题.从内容上来说,是把代数中的数与式、方程与不等式、函数,几何中的三角形、四边形、圆等图形的性质,以及解直角三角形的方法、图形的变换、相似等内容有机地结合在一起,同时也会融入开放性、探究性等问题.经常考查的题目类型主要有坐标系中的几何问题(简称坐标几何问题),以及图形运动过程中求函数解析式的问题等.解决这类问题,第一,需要认真审题,分析、挖掘题目的隐含条件,翻译并转化为显性条件;第二,要善于将复杂问题分解为基本问题;第三,要善于联系与转化,进一步得到新的结论.尤其要注意的是,恰当地使用综合分析法及方程与函数的思想、转化思想、数形结合思想、分类与整合思想等数学思想方法,能更有效地解决问题.【典型例题】类型一、利用数形结合探究数字的变化规律例1.如图,网格中的每个四边形都是菱形.如果格点三角形ABC的面积为S,按照如图所示方式得到的格点三角形A1B1C1的面积是7S,格点三角形A2B2C2的面积是19S,那么格点三角形A3B3C3的面积为().A.39SB. 36SC.37SD.43S举一反三:【变式】在平面直角坐标系中,直线l:y=x﹣1与x轴交于点A1,如图所示依次作正方形A1B1C1O、正方形A2B2C2C1、…、正方形A n B n C n C n﹣1,使得点A1、A2、A3、…在直线l上,点C1、C2、C3、…在y 轴正半轴上,则点B n的坐标是.类型二、利用数形结合解决数与式的问题例2.已知实数a在数轴上的位置如图所示,则化简|2-a|+2a的结果为__________.类型三、利用数形结合解决代数式的恒等变形问题例3.(1)在边长为a的正方形纸片中剪去一个边长为b的小正方形,把余下的部分沿虚线剪开,拼成一个矩形,分别计算这两个图形阴影部分的面积,可以验证的乘法公式是__________________(用字母表示).(2)设直角三角形的直角边分别是a,b,斜边为c,将这样的四个完全相同的直角三角形拼成正方形,验证等式a2+b2=c2成立。

2025年中考数学思想方法复习系列 【数形结合】几何图形中的数形结合思想(解析版)

2025年中考数学思想方法复习系列 【数形结合】几何图形中的数形结合思想(解析版)

几何图形中的数形结合思想知识方法精讲1.完全平方公式的几何背景(1)运用几何直观理解、解决完全平方公式的推导过程,通过几何图形之间的数量关系对完全平方公式做出几何解释.(2)常见验证完全平方公式的几何图形(a+b)2=a2+2ab+b2.(用大正方形的面积等于边长为a和边长为b的两个正方形与两个长宽分别是a,b的长方形的面积和作为相等关系)2.平方差公式的几何背景(1)常见验证平方差公式的几何图形(利用图形的面积和作为相等关系列出等式即可验证平方差公式).(2)运用几何直观理解、解决平方差公式的推导过程,通过几何图形之间的数量关系对平方差公式做出几何解释.3.七巧板(1)七巧板是由下面七块板组成的,完整图案为一正方形:五块等腰直角三角形(两块小形三角形、一块中形三角形和两块大形三角形)、一块正方形和一块平行四边形.(2)用这七块板可以拼搭成几何图形,如三角形、平行四边形、不规则的多角形等;也可以拼成各种具体的人物形象,或者动物或者是一些中、英文字符号.(3)制作七巧板的方法:①首先,在纸上画一个正方形,把它分为十六个小方格.②再从左上角到右下角画一条线.③在上面的中间连一条线到右面的中间.④再在左下角到右上角画一条线,碰到第二条线就可以停了.⑤从刚才的那条线的尾端开始一条线,画到最下面四份之三的位置,从左边开始数,碰到线就可停.⑥最后,把它们涂上不同的颜色并跟著黑线条剪开,你就有一副全新的七巧板了.4.轴对称的性质(1)如果两个图形关于某直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线.由轴对称的性质得到一下结论:①如果两个图形的对应点的连线被同一条直线垂直平分,那么这两个图形关于这条直线对称;②如果两个图形成轴对称,我们只要找到一对对应点,作出连接它们的线段的垂直平分线,就可以得到这两个图形的对称轴.(2)轴对称图形的对称轴也是任何一对对应点所连线段的垂直平分线.5.坐标与图形变化-对称(1)关于x轴对称横坐标相等,纵坐标互为相反数.(2)关于y轴对称纵坐标相等,横坐标互为相反数.(3)关于直线对称①关于直线x=m对称,P(a,b)⇒P(2m﹣a,b)②关于直线y=n对称,P(a,b)⇒P(a,2n﹣b)6.旋转的性质(1)旋转的性质:①对应点到旋转中心的距离相等.②对应点与旋转中心所连线段的夹角等于旋转角.③旋转前、后的图形全等.(2)旋转三要素:①旋转中心;②旋转方向;③旋转角度.注意:三要素中只要任意改变一个,图形就会不一样.7.解直角三角形(1)解直角三角形的定义在直角三角形中,由已知元素求未知元素的过程就是解直角三角形.(2)解直角三角形要用到的关系①锐角、直角之间的关系:∠A+∠B=90°;②三边之间的关系:a2+b2=c2;③边角之间的关系:sin A==,cos A==,tan A==.(a,b,c分别是∠A、∠B、∠C的对边)8.简单组合体的三视图(1)画简单组合体的三视图要循序渐进,通过仔细观察和想象,再画它的三视图.(2)视图中每一个闭合的线框都表示物体上的一个平面,而相连的两个闭合线框常不在一个平面上.(3)画物体的三视图的口诀为:主、俯:长对正;主、左:高平齐;俯、左:宽相等.9.由三视图判断几何体(1)由三视图想象几何体的形状,首先,应分别根据主视图、俯视图和左视图想象几何体的前面、上面和左侧面的形状,然后综合起来考虑整体形状.(2)由物体的三视图想象几何体的形状是有一定难度的,可以从以下途径进行分析:①根据主视图、俯视图和左视图想象几何体的前面、上面和左侧面的形状,以及几何体的长、宽、高;②从实线和虚线想象几何体看得见部分和看不见部分的轮廓线;③熟记一些简单的几何体的三视图对复杂几何体的想象会有帮助;④利用由三视图画几何体与有几何体画三视图的互逆过程,反复练习,不断总结方法.10.数形结合思想1.数形结合是数学解题中常用的思想方法,数形结合的思想可以使某些抽象的数学问题直观化、生动化,能够变抽象思维为形象思维,有助于把握数学问题的本质;另外,由于使用了数形结合的方法,很多问题便迎刃而解,且解法简捷。

初中数形结合知识点

初中数形结合知识点

初中数形结合知识点
初中数学中的数形结合知识点包括以下几个方面:
1. 数轴上的数与点的对应关系:实数与数轴上的点是一一对应的,这种对应关系是数形结合的基础。

通过在数轴上标注数字,可以直观地表示出数字的大小和位置关系。

2. 平面直角坐标系中的坐标与点的对应关系:在平面直角坐标
系中,每一个点都有一个唯一的坐标,这个坐标可以表示出该点在空间中的位置。

这种对应关系是平面直角坐标系的基础。

3. 函数图像与函数表达式的对应关系:函数图像是数形结合的
重要体现。

每一个函数表达式都可以对应一个或多个函数图像,通过观察函数图像可以直观地理解函数的性质和变化规律。

4. 三角形、四边形等图形的性质与判定:三角形和四边形等图
形的性质和判定方法可以通过数形结合的方式进行理解和掌握。

例如,勾股定理可以通过勾股定理的逆定理进行证明,而平行四边形的判定可以通过两组对边分别平行的判定定理进行证明。

5. 图形运动中的数形结合:图形运动是数学中的重要概念之一,其中涉及到的平移、旋转、对称等运动都可以通过数形结合的方式进
行理解和掌握。

例如,在研究图形的旋转性质时,可以通过观察旋转前后图形的变化来理解旋转的性质。

总之,数形结合是初中数学中的一个重要思想方法,通过将抽象的数学语言与直观的图形相结合,可以帮助学生更好地理解数学概念和解决数学问题。

北师大初中数学中考冲刺:数形结合问题--知识讲解(提高)-精品

北师大初中数学中考冲刺:数形结合问题--知识讲解(提高)-精品

中考冲刺:数形结合问题—知识讲解(提高)【中考展望】1.用数形结合的思想解题可分两类:(1)利用几何图形的直观性表示数的问题,它常借用数轴、函数图象等;(2)运用数量关系来研究几何图形问题,常需要建立方程(组)或建立函数关系式等.2. 热点内容:在初中教材中,数的常见表现形式为: 实数、代数式、函数和不等式等,而形的常见表现形式为: 直线型、角、三角形、四边形、多边形、圆、抛物线、相似、勾股定理等.在直角坐标系下,一次函数的图象对应着一条直线,二次函数的图象对应着一条抛物线,这些都是初中数学的重要内容.特别是二次函数,不仅是学生学习的难点之一,同时也使数形结合的思想方法在中学数学中得到最充分体现.在平面直角坐标系中,二次函数图象的开口方向、顶点坐标、对称轴以及与坐标轴的交点等都与其系数a,b,c密不可分.事实上,数a 决定抛物线的开口方向, b 与a 一起决定抛物线的对称轴位置, c 决定了抛物线与y 轴的交点位置,与a、b 一起决定抛物线顶点坐标的纵坐标,抛物线的平移的图形关系只是顶点坐标发生变化,其实从代数的角度看是b、c 的大小变化.【方法点拨】数形结合:就是通过数与形之间的对应和转化来解决数学问题,它包含“以形助数”和“以数解形”两个方面.利用它可使复杂问题简单化,抽象问题具体化,它兼有“数的严谨”与“形的直观”之长,是优化解题过程的重要途径之一,是一种基本的数学方法.数形结合问题,也可以看作代数几何综合问题.从内容上来说,是把代数中的数与式、方程与不等式、函数,几何中的三角形、四边形、圆等图形的性质,以及解直角三角形的方法、图形的变换、相似等内容有机地结合在一起,同时也会融入开放性、探究性等问题.经常考查的题目类型主要有坐标系中的几何问题(简称坐标几何问题),以及图形运动过程中求函数解析式的问题等.解决这类问题,第一,需要认真审题,分析、挖掘题目的隐含条件,翻译并转化为显性条件;第二,要善于将复杂问题分解为基本问题;第三,要善于联系与转化,进一步得到新的结论.尤其要注意的是,恰当地使用综合分析法及方程与函数的思想、转化思想、数形结合思想、分类与整合思想等数学思想方法,能更有效地解决问题.【典型例题】类型一、利用数形结合探究数字的变化规律1.如图,网格中的每个四边形都是菱形.如果格点三角形ABC的面积为S,按照如图所示方式得到的格点三角形A1B1C1的面积是7S,格点三角形A2B2C2的面积是19S,那么格点三角形A3B3C3的面积为().A.39SB. 36SC.37SD.43S【思路点拨】设网络中每个小菱形的边长为一个单位,由于ABC的面积为S,则小菱形的面积为2S;从图上观察可知三角形A2B2C2三个顶点分别在边长为3个单位的菱形的内部,其中一顶点与菱形重合,另两顶点在与前一顶点不相连的两边上,三角形A n B n C n三顶点分别在边长为(2n+1)个单位的菱形的内部,此菱形与三角形A n B n C n不重合的部分为三个小三角形;由此得到关于三角形A n B n C n面积公式,把n=3代入即可求出三角形A3B3C3的面积.【答案】C.【解析】网络中每个小菱形的边长为一个单位,由于ABC的面积为S,则小菱形的面积为2S;从图上观察可知三角形A2B2C2三个顶点分别在边长为3个单位的菱形的内部,其中一顶点与菱形重合,另两顶点在与前一顶点不相连的两边上,三角形A n B n C n三顶点分别在边长为2n+1个单位的菱形的内部,此菱形与三角形A n B n C n不重合的部分为三个小三角形;而三角形A n B n C n面积=边长为2n+1个单位的菱形面积-三个小三角形面积=2S(2n+1)2-(21)2(21)(1)2(1)2222n n s n n s n n s+⨯⨯+⨯+⨯⨯+⨯--,=S(8n2+8n+2-2n2-n-2n2-3n-1-n2-n),=S(3n2+3n+1),把n=3分别代入上式得:S3=S(3×32+3×3+1)=37S.故选C.【总结升华】此题主要考查菱形的性质,也考查了学生的读图能力以及探究问题的规律并有规律解决问题的能力.举一反三:【变式】(2016•潍坊)在平面直角坐标系中,直线l:y=x﹣1与x轴交于点A1,如图所示依次作正方形A1B1C1O、正方形A2B2C2C1、…、正方形A n B n C n C n﹣1,使得点A1、A2、A3、…在直线l上,点C1、C2、C3、…在y轴正半轴上,则点B n的坐标是.【答案】(2n﹣1,2n﹣1)【解析】解:∵y=x﹣1与x轴交于点A1,∴A1点坐标(1,0),∵四边形A1B1C1O是正方形,∴B1坐标(1,1),∵C1A2∥x轴,∴A2坐标(2,1),∵四边形A2B2C2C1是正方形,∴B2坐标(2,3),∵C2A3∥x轴,∴A3坐标(4,3),∵四边形A3B3C3C2是正方形,∴B3(4,7),∵B1(20,21﹣1),B2(21,22﹣1),B3(22,23﹣1),…,∴B n坐标(2n﹣1,2n﹣1).类型二、利用数形结合解决数与式的问题2. 已知实数a在数轴上的位置如图所示,则化简|2-a|+2a的结果为__________.【思路点拨】由数轴可知,0<a<2,由此去绝对值,对二次根式化简.【答案与解析】解:∵0<a<2,∴|2-a|+2a=2-a+a=2.故答案为:2.【总结升华】本题考查了绝对值的化简和二次根式的性质与化简,实数与数轴的对应关系.关键是根据数轴上的点的位置来判断数a的取值范围,根据取值范围去绝对值,化简二次根式.类型三、利用数形结合解决代数式的恒等变形问题3.(1)在边长为a的正方形纸片中剪去一个边长为b的小正方形,把余下的部分沿虚线剪开,拼成一个矩形,分别计算这两个图形阴影部分的面积,可以验证的乘法公式是__________________(用字母表示).(2)设直角三角形的直角边分别是a,b,斜边为c,将这样的四个完全相同的直角三角形拼成正方形,验证等式a2+b2=c2成立。

初三数学中考复习第十四讲数形结合问题

初三数学中考复习第十四讲数形结合问题

______________________________________________________________跃龙学堂 您身边的中小学生辅导专家1第十四讲 数形结合问题【典型例题1】如图,抛物线顶点坐标为点C (1,4),交x 轴于点A (3,0),交y 轴于点B .(1)求抛物线和直线AB 的表达式;(2)点P 是抛物线(在第一象限内)上的一个动点,连结P A ,PB ,当P 点运动到顶点C 时,求△CAB 的铅垂高CD 及CAB S ∆;(3)是否存在一点P ,使S △P AB =89S △CAB ,若存在,求出P 点的坐标;若不存在,请说明理由.解:(1)设抛物线的表达式为 4)1(21+-=x a y 。

把A (3,0)代入表达式,求得1-=a 。

所以324)1(221++-=+--=x x x y 。

设直线AB 的表达式为 b kx y +=2。

由3221++-=x x y 求得B 点的坐标为)3,0( 。

把)0,3(A ,)3,0(B 代入b kx y +=2中,解得 3,1=-=b k 。

所以32+-=x y 。

(2)因为C 点坐标为(1,4),所以当x =1时,y 1=4,y 2=2。

所以CD =4-2=2。

xCOy ABD 1 1______________________________________________________________ 跃龙学堂 您身边的中小学生辅导专家2 32321=⨯⨯=∆CAB S (平方单位)。

(3)假设存在符合条件的点P ,设P 点的横坐标为x ,△P AB 的铅垂高为h , 则x x x x x y y h 3)3()32(2221+-=+--++-=-=。

由S △P AB =89S △CAB ,得 389)3(3212⨯=+-⨯⨯x x 。

化简得 091242=+-x x 。

解得 23=x 。

将23=x 代入3221++-=x x y 中, 解得P 点坐标为)415,23(。

(九年级数学)专题复习——数形结合思想

(九年级数学)专题复习——数形结合思想

(九年级数学)专题复习——数形结合思想班别姓名一、复习内容:数形结合数形结合思想是数学中重要的思想方法.所谓数形结合就是根据数学问题的题设和结论之间的内在联系,既分析其数量关系,又揭示其几何意义使数量关系和几何图形巧妙地结合起来,并充分地利用这种结合,探求解决问题的思路,使问题得以解决的思考方法。

考点1.借助数轴解不等式及根式的化简例1、实数ba,在数轴上对应位置如图所示,则||a b-)abDaCbaBaA---..2..变1、实数cba,,在数轴上对应的点如图所示,则下列式子中正确的是()考点2.图表问题3、某人从A地向B地打长途电话6分钟,按通话时间收费,3分钟以内收费2.4元,每加 1分钟加收 1元,则表示电话费y(元)与通话时间(分)之间的关系的图象如图所示,正确的是()4、二次函数cbxaxy++=2的图像(如右图)经过),0,3(),0,3(),0,1(CBA则对称轴为_______cbcaDcbaCbabaBbcacA-->--<-<--=->....考点3. 借助平面直角坐标系解函数问题5、若一次函数m x m y +-=)2(的图象经过第一、二、四象限时,m 的取值范围是_______.6、若点),1(,),1(,),2(321y y y -- 在反比例函数xy 2=的图像上,则( ) 123213312321....y y y D y y y C y y y B y y y A >>>>>>>>7、已知二次函数c bx ax y ++=2的图像如左下图所示,顶点为)0,1(-,下列结论0)5(,0)4(,2)3(,04)2(,0)1(2>++>+-==-<c b a c b a a b ac b abc其中正确的有_______8、已知二次函数22y x x m =-++的部分图象如右上图所示,则关于x 的一元二次方程220x x m -++=的解为9、已知二次函数c bx ax y ++=2中,函数y 与x 的部分对应值如下表:则当5<y 时,x 的取值范围是10、抛物线21=-的大致图象如图所示,点By xA,是抛物线与x轴的交点,点C是抛物线与y轴交点;(1)判断ABC∆的形状,并说明理由;(2)点P是抛物线上的一点,它的横坐标为2,问在y轴上是否存在一点D,使得BDPD+的长度最小?求出这时点D的坐标。

北师大初中数学中考冲刺:数形结合问题--知识讲解(提高)【推荐】.doc

北师大初中数学中考冲刺:数形结合问题--知识讲解(提高)【推荐】.doc

中考冲刺:数形结合问题—知识讲解(提高)【中考展望】1.用数形结合的思想解题可分两类:(1)利用几何图形的直观性表示数的问题,它常借用数轴、函数图象等;(2)运用数量关系来研究几何图形问题,常需要建立方程(组)或建立函数关系式等.2. 热点内容:在初中教材中,数的常见表现形式为: 实数、代数式、函数和不等式等,而形的常见表现形式为: 直线型、角、三角形、四边形、多边形、圆、抛物线、相似、勾股定理等.在直角坐标系下,一次函数的图象对应着一条直线,二次函数的图象对应着一条抛物线,这些都是初中数学的重要内容.特别是二次函数,不仅是学生学习的难点之一,同时也使数形结合的思想方法在中学数学中得到最充分体现.在平面直角坐标系中,二次函数图象的开口方向、顶点坐标、对称轴以及与坐标轴的交点等都与其系数a,b,c密不可分.事实上,数a 决定抛物线的开口方向, b 与a 一起决定抛物线的对称轴位置, c 决定了抛物线与y 轴的交点位置,与a、b 一起决定抛物线顶点坐标的纵坐标,抛物线的平移的图形关系只是顶点坐标发生变化,其实从代数的角度看是b、c 的大小变化.【方法点拨】数形结合:就是通过数与形之间的对应和转化来解决数学问题,它包含“以形助数”和“以数解形”两个方面.利用它可使复杂问题简单化,抽象问题具体化,它兼有“数的严谨”与“形的直观”之长,是优化解题过程的重要途径之一,是一种基本的数学方法.数形结合问题,也可以看作代数几何综合问题.从内容上来说,是把代数中的数与式、方程与不等式、函数,几何中的三角形、四边形、圆等图形的性质,以及解直角三角形的方法、图形的变换、相似等内容有机地结合在一起,同时也会融入开放性、探究性等问题.经常考查的题目类型主要有坐标系中的几何问题(简称坐标几何问题),以及图形运动过程中求函数解析式的问题等.解决这类问题,第一,需要认真审题,分析、挖掘题目的隐含条件,翻译并转化为显性条件;第二,要善于将复杂问题分解为基本问题;第三,要善于联系与转化,进一步得到新的结论.尤其要注意的是,恰当地使用综合分析法及方程与函数的思想、转化思想、数形结合思想、分类与整合思想等数学思想方法,能更有效地解决问题.【典型例题】类型一、利用数形结合探究数字的变化规律1.如图,网格中的每个四边形都是菱形.如果格点三角形ABC的面积为S,按照如图所示方式得到的格点三角形A1B1C1的面积是7S,格点三角形A2B2C2的面积是19S,那么格点三角形A3B3C3的面积为().A.39SB. 36SC.37SD.43S【思路点拨】设网络中每个小菱形的边长为一个单位,由于ABC的面积为S,则小菱形的面积为2S;从图上观察可知三角形A2B2C2三个顶点分别在边长为3个单位的菱形的内部,其中一顶点与菱形重合,另两顶点在与前一顶点不相连的两边上,三角形A n B n C n三顶点分别在边长为(2n+1)个单位的菱形的内部,此菱形与三角形A n B n C n不重合的部分为三个小三角形;由此得到关于三角形A n B n C n面积公式,把n=3代入即可求出三角形A3B3C3的面积.【答案】C.【解析】网络中每个小菱形的边长为一个单位,由于ABC的面积为S,则小菱形的面积为2S;从图上观察可知三角形A2B2C2三个顶点分别在边长为3个单位的菱形的内部,其中一顶点与菱形重合,另两顶点在与前一顶点不相连的两边上,三角形A n B n C n三顶点分别在边长为2n+1个单位的菱形的内部,此菱形与三角形A n B n C n不重合的部分为三个小三角形;而三角形A n B n C n面积=边长为2n+1个单位的菱形面积-三个小三角形面积=2S(2n+1)2-(21)2(21)(1)2(1)2222n n s n n s n n s+⨯⨯+⨯+⨯⨯+⨯--,=S(8n2+8n+2-2n2-n-2n2-3n-1-n2-n),=S(3n2+3n+1),把n=3分别代入上式得:S3=S(3×32+3×3+1)=37S.故选C.【总结升华】此题主要考查菱形的性质,也考查了学生的读图能力以及探究问题的规律并有规律解决问题的能力.举一反三:【变式】(2016•潍坊)在平面直角坐标系中,直线l:y=x﹣1与x轴交于点A1,如图所示依次作正方形A1B1C1O、正方形A2B2C2C1、…、正方形A n B n C n C n﹣1,使得点A1、A2、A3、…在直线l上,点C1、C2、C3、…在y轴正半轴上,则点B n的坐标是.【答案】(2n﹣1,2n﹣1)【解析】解:∵y=x﹣1与x轴交于点A1,∴A1点坐标(1,0),∵四边形A1B1C1O是正方形,∴B1坐标(1,1),∵C1A2∥x轴,∴A2坐标(2,1),∵四边形A2B2C2C1是正方形,∴B2坐标(2,3),∵C2A3∥x轴,∴A3坐标(4,3),∵四边形A3B3C3C2是正方形,∴B3(4,7),∵B1(20,21﹣1),B2(21,22﹣1),B3(22,23﹣1),…,∴B n坐标(2n﹣1,2n﹣1).类型二、利用数形结合解决数与式的问题类型三、利用数形结合解决代数式的恒等变形问题3.(1)示).验证等式a+b=c成立。

中考冲刺:数形结合问题--知识讲解(提高)

中考冲刺:数形结合问题--知识讲解(提高)

中考冲刺:数形结合问题—知识讲解(提高)【中考展望】1.用数形结合的思想解题可分两类:(1)利用几何图形的直观性表示数的问题,它常借用数轴、函数图象等;(2)运用数量关系来研究几何图形问题,常需要建立方程(组)或建立函数关系式等.2. 热点内容:在初中教材中,数的常见表现形式为: 实数、代数式、函数和不等式等,而形的常见表现形式为: 直线型、角、三角形、四边形、多边形、圆、抛物线、相似、勾股定理等.在直角坐标系下,一次函数的图象对应着一条直线,二次函数的图象对应着一条抛物线,这些都是初中数学的重要内容.特别是二次函数,不仅是学生学习的难点之一,同时也使数形结合的思想方法在中学数学中得到最充分体现.在平面直角坐标系中,二次函数图象的开口方向、顶点坐标、对称轴以及与坐标轴的交点等都与其系数a,b,c密不可分.事实上,数a 决定抛物线的开口方向, b 与a 一起决定抛物线的对称轴位置, c 决定了抛物线与y 轴的交点位置,与a、b 一起决定抛物线顶点坐标的纵坐标,抛物线的平移的图形关系只是顶点坐标发生变化,其实从代数的角度看是b、c 的大小变化.【方法点拨】数形结合:就是通过数与形之间的对应和转化来解决数学问题,它包含“以形助数”和“以数解形”两个方面.利用它可使复杂问题简单化,抽象问题具体化,它兼有“数的严谨”与“形的直观”之长,是优化解题过程的重要途径之一,是一种基本的数学方法.数形结合问题,也可以看作代数几何综合问题.从内容上来说,是把代数中的数与式、方程与不等式、函数,几何中的三角形、四边形、圆等图形的性质,以及解直角三角形的方法、图形的变换、相似等内容有机地结合在一起,同时也会融入开放性、探究性等问题.经常考查的题目类型主要有坐标系中的几何问题(简称坐标几何问题),以及图形运动过程中求函数解析式的问题等.解决这类问题,第一,需要认真审题,分析、挖掘题目的隐含条件,翻译并转化为显性条件;第二,要善于将复杂问题分解为基本问题;第三,要善于联系与转化,进一步得到新的结论.尤其要注意的是,恰当地使用综合分析法及方程与函数的思想、转化思想、数形结合思想、分类与整合思想等数学思想方法,能更有效地解决问题.【典型例题】类型一、利用数形结合探究数字的变化规律1.如图,网格中的每个四边形都是菱形.如果格点三角形ABC的面积为S,按照如图所示方式得到的格点三角形A1B1C1的面积是7S,格点三角形A2B2C2的面积是19S,那么格点三角形A3B3C3的面积为().A.39SB. 36SC.37SD.43S【思路点拨】设网络中每个小菱形的边长为一个单位,由于ABC的面积为S,则小菱形的面积为2S;从图上观察可知三角形A2B2C2三个顶点分别在边长为3个单位的菱形的内部,其中一顶点与菱形重合,另两顶点在与前一顶点不相连的两边上,三角形A n B n C n三顶点分别在边长为(2n+1)个单位的菱形的内部,此菱形与三角形A n B n C n不重合的部分为三个小三角形;由此得到关于三角形A n B n C n面积公式,把n=3代入即可求出三角形A3B3C3的面积.【答案】C.【解析】网络中每个小菱形的边长为一个单位,由于ABC的面积为S,则小菱形的面积为2S;从图上观察可知三角形A2B2C2三个顶点分别在边长为3个单位的菱形的内部,其中一顶点与菱形重合,另两顶点在与前一顶点不相连的两边上,三角形A n B n C n三顶点分别在边长为2n+1个单位的菱形的内部,此菱形与三角形A n B n C n不重合的部分为三个小三角形;而三角形A n B n C n面积=边长为2n+1个单位的菱形面积-三个小三角形面积=2S(2n+1)2-(21)2(21)(1)2(1)2222n n s n n s n n s+⨯⨯+⨯+⨯⨯+⨯--,=S(8n2+8n+2-2n2-n-2n2-3n-1-n2-n),=S(3n2+3n+1),把n=3分别代入上式得:S3=S(3×32+3×3+1)=37S.故选C.【总结升华】此题主要考查菱形的性质,也考查了学生的读图能力以及探究问题的规律并有规律解决问题的能力.举一反三:【变式】(2016•潍坊)在平面直角坐标系中,直线l:y=x﹣1与x轴交于点A1,如图所示依次作正方形A1B1C1O、正方形A2B2C2C1、…、正方形A n B n C n C n﹣1,使得点A1、A2、A3、…在直线l上,点C1、C2、C3、…在y轴正半轴上,则点B n的坐标是.【答案】(2n﹣1,2n﹣1)【解析】解:∵y=x﹣1与x轴交于点A1,∴A1点坐标(1,0),∵四边形A1B1C1O是正方形,∴B1坐标(1,1),∵C1A2∥x轴,∴A2坐标(2,1),∵四边形A2B2C2C1是正方形,∴B2坐标(2,3),∵C2A3∥x轴,∴A3坐标(4,3),∵四边形A3B3C3C2是正方形,∴B3(4,7),∵B1(20,21﹣1),B2(21,22﹣1),B3(22,23﹣1),…,∴B n坐标(2n﹣1,2n﹣1).类型二、利用数形结合解决数与式的问题2. 已知实数a在数轴上的位置如图所示,则化简|2-a|+2a的结果为__________.【思路点拨】由数轴可知,0<a<2,由此去绝对值,对二次根式化简.【答案与解析】解:∵0<a<2,∴|2-a|+2a=2-a+a=2.故答案为:2.【总结升华】本题考查了绝对值的化简和二次根式的性质与化简,实数与数轴的对应关系.关键是根据数轴上的点的位置来判断数a的取值范围,根据取值范围去绝对值,化简二次根式.类型三、利用数形结合解决代数式的恒等变形问题3.(1)在边长为a的正方形纸片中剪去一个边长为b的小正方形,把余下的部分沿虚线剪开,拼成一个矩形,分别计算这两个图形阴影部分的面积,可以验证的乘法公式是__________________(用字母表示).(2)设直角三角形的直角边分别是a,b,斜边为c,将这样的四个完全相同的直角三角形拼成正方形,验证等式a2+b2=c2成立。

初三数学复习专题-数形结合思想

初三数学复习专题-数形结合思想

初三数学专题复习 ------ 数形联合思想经过初中数学的学习,除了应掌握必需的知识技术外,感情数学的思想、累积用数学去解决问题的一些方法也很重要,本专题要点解说初中阶段特别重要的一种数学思想 ------ 数形联合思想。

我们研究的对象可分为数和形两部分,数与形是有联系的,这个联系称之为数形联合。

数形联合的应用大概能够分为以下两种情况: 一、数能够用形来刻画:1、数轴上的点其实不都表示有理数,如图中数轴上的点P 所表示的数是2 ”,这类说明问题的方式表现的数学思想方法叫做 ( )A .代人法B .换元法C .数形联合D .分类议论a abb第 1 题图 1第 2 题 图 22、在边长为 a 的正方形中挖去一个边长为 b 的小正方形 (a>b )(如图 1),把余下的部分拼成一个矩形 (如图 2),依据两个图形中暗影部分的面积相等,能够考证( )A . (a b)2 a 2 2ab b 2B. (ab)2 a 2 2abb 2C. a 2b 2(a b)(ab)D . (a 2b)( a b) a 2ab 2b 23、 (1) 有若干块长方形和正方形硬纸片如图 1 所示.用若干块这样的硬纸片拼成一个新的正方形,如图2.用两种不一样的方法计算图2 中正方形的面积你能够得出的一个等式为:.( 2)如图 3,现有若干张正方形硬纸片 A 、 C 和若干张长方形硬纸片 B .假如要拼成一个长为( 2a + b )、宽为( a+2b )的新长方形,则需要正方形硬纸片 A 张、正方形硬纸片 C 张、长方形硬纸片 B 张.请在右侧的方框内画出你所拼出的长方形图案(注明相应字母) . 2a 2+ 3ab + b 2( 3)试用图 3 中的若干张硬纸片去拼一个长方形的方法,将多项式分解因式的结果为.4、已知反比率函数y 1= k的图像与一次函数 y 2= x + 1 的图像的一个交点的横坐标是-3.xy( 1)求 k 的值;( 2)依据反比率函数图像回答以下问题:①指出当 x <- 1 时, y 1 的取值范围;②指出当 y 1 > 3 时, x 的取值范围;3③指出当 y 1 > y 2 时, x 的取值范围 .- 3xO二、形能够用数来解说:1、若是用一根钢缆沿地球赤道绕 1 圈,再把这根钢缆放长10 米,这时钢缆和赤道之间的空隙能够经过一头牛仍是一只老鼠?2.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

______________________________________________________________跃龙学堂 您身边的中小学生辅导专家1第十四讲 数形结合问题【典型例题1】如图,抛物线顶点坐标为点C (1,4),交x 轴于点A (3,0),交y 轴于点B .(1)求抛物线和直线AB 的表达式;(2)点P 是抛物线(在第一象限内)上的一个动点,连结P A ,PB ,当P 点运动到顶点C 时,求△CAB 的铅垂高CD 及CAB S ∆;(3)是否存在一点P ,使S △P AB =89S △CAB ,若存在,求出P 点的坐标;若不存在,请说明理由.解:(1)设抛物线的表达式为 4)1(21+-=x a y 。

把A (3,0)代入表达式,求得1-=a 。

所以324)1(221++-=+--=x x x y 。

设直线AB 的表达式为 b kx y +=2。

由3221++-=x x y 求得B 点的坐标为)3,0( 。

把)0,3(A ,)3,0(B 代入b kx y +=2中,解得 3,1=-=b k 。

所以32+-=x y 。

(2)因为C 点坐标为(1,4),所以当x =1时,y 1=4,y 2=2。

所以CD =4-2=2。

xCOy ABD 1 1______________________________________________________________ 跃龙学堂 您身边的中小学生辅导专家2 32321=⨯⨯=∆CAB S (平方单位)。

(3)假设存在符合条件的点P ,设P 点的横坐标为x ,△P AB 的铅垂高为h , 则x x x x x y y h 3)3()32(2221+-=+--++-=-=。

由S △P AB =89S △CAB ,得 389)3(3212⨯=+-⨯⨯x x 。

化简得 091242=+-x x 。

解得 23=x 。

将23=x 代入3221++-=x x y 中, 解得P 点坐标为)415,23(。

【知识点】抛物线、直线表达式的求法,在直角坐标系中三角形面积的求法,点的坐标的求法。

【基本习题限时训练】1. 已知点A 的坐标为(0,3),点B 与点A 关于原点对称,点P 的坐标为(4,3),那么△PAB 的面积等于( )(A )6;(B )9;(C )12;(D )24。

答案:C 。

2. 已知抛物线c bx x y ++=23的顶点坐标为(-1,2),那么这条抛物线的表达式为( )(A )5632++=x x y ;(B )5632+-=x x y ; (C )1632++=x x y ;(D )1632+-=x x y 。

答案:A 。

______________________________________________________________跃龙学堂 您身边的中小学生辅导专家33. 已知直线b x y +=43经过点A (3,3),并与x 轴交于点B ,点C 在x 轴的正半轴上,且∠ABC=∠ACB ,那么点C 的横坐标为( )(A )3;(B )4;(C )5;(D )6。

答案:B 。

【典型例题2】如图,在平面直角坐标系中,点C (-3,0),点A 、B 分别在x 轴、y 轴的正半轴上,10OA -=.(1)求点A 、点B 的坐标;(2)若点P 从C 点出发,以每秒1个单位的速度沿线段CB 由C 向B 运动,连结AP ,设ABP △的面积为S ,点P 的运动时间为t 秒,求S 与t 的函数解析式;(3)在(2)的条件下,是否存在点P ,使以点A ,B ,P 为顶点的三角形与AOB △相似?若存在,请直接写出点P 的坐标;若不存在,请说明理由.解:(110OA -=,∴230OB -=,10OA -=.∴OB =1OA =.∵点A ,点B 分别在x 轴,y 轴的正半轴上,∴A (1,0),B (0). (2)由(1)得AC =4,2AB ==,BC ==∴22222216AB BC AC +=+==(. ∴△ABC 为直角三角形,90ABC ∠=o.∴S =t t -=⨯-322)3221((0≤t<跃龙学堂 4 (3)存在,满足条件的的有两个.1(30)P -,, 21P ⎛- ⎝.【知识点】非负数的概念,函数解析式的求法,相似三角形的判定。

【基本习题限时训练】1.已知013=+++-b b a ,那么b a 的值等于( ) (A )4;(B )-4;(C )41;(D )41-。

答案:D 。

2. 在直角坐标系中,直线y=-2x+4与x 轴交于点A ,与y 轴交于点B ,点C 在线段AB 上,且△AOC ∽△ABO ,那么点C 到原点的距离等于( )(A )1;(B )551;(C )552;(D )554。

答案:D 。

3. 在矩形ABCD 中,AB=12,BC=16,点M 和点N 同时从点B 出发,分别沿边BC 和BA 运动,点M 的运动速度为每秒4厘米,点N 的运动速度为每秒3厘米,设运动的时间为t ,那么当△MNC 成为等腰三角形时,t 的值等于( )(A )916;(B )716;(C )34;(D )712。

答案:A 。

【典型例题3】如图,在平面直角坐标系中,四边形ABCD 是平行四边形,AD=6,如果OA 、OB 的长是关于x 的一元二次方程27120x x -+=的两个根,且OA OB >. (1)求sin ABC ∠的值.(2)如果E 为x 轴上的点,且163AOE S =△,求经过D 、______________________________________________________________跃龙学堂 您身边的中小学生辅导专家5E 两点的直线的表达式,并判断AOE △与DAO △是否相似?解:(1)解27120x x -+=得1243x x ==,。

OA OB >Q ,43OA OB ∴==,。

在Rt AOB △中,由勾股定理,得5AB ==。

4sin 5OA ABC AB ∴∠==。

(2)∵点E 在x 轴上,163AOE S =△,11623AO OE ∴⨯=。

83OE ∴=。

880033E E ⎛⎫⎛⎫∴- ⎪ ⎪⎝⎭⎝⎭,或,。

由已知可知D (6,4)。

设DE y kx b =+,当803E ⎛⎫ ⎪⎝⎭,时有 46803k b k b =+⎧⎪⎨=+⎪⎩解得65165k b ⎧=⎪⎪⎨⎪=-⎪⎩ ∴61655DE y x =-。

同理803E ⎛⎫- ⎪⎝⎭,时,6161313DE y x =+。

跃龙学堂 6 在AOE △中,89043AOE OA OE ∠===°,,。

在AOD △中,∠OAD=90°,OA=4,AD=6。

∵AD OAOA OE =,AOE DAO ∴△∽△。

【知识点】锐角的三角比,解一元二次方程,直线表达式的求法,相似三角形的判定和性质,勾股定理,菱形的定义和判定。

【基本习题限时训练】1.方程0652=--x x 的解是( )(A )2或-3;(B )-2或3;(C )1或-6;(D )-1或6。

答案:D 。

2. 在△ABC 中,AB=13,BC=12,AC=5,那么∠A 的正切值等于( )(A )125;(B )512;(C )135;(D )1312。

答案:B 。

3. 如果菱形的一条对角线与边长都等于6厘米,那么这个菱形的面积等于( )(A )39;(B )312;(C )318;(D )324。

答案:C 。

【典型例题4】如图,抛物线F :c bx ax y ++=2的顶点为P ,抛物线F 与y 轴交于点A ,与直线OP 交于点B .过点P 作PD ⊥x 轴于点D ,平移抛物线F 使其经过点A 、D 得到抛物线F ′:'+'+'=c x b x a y 2,抛物线F ′与x 轴的另一个交点为C .(1)当a = 1,b =2-,c = 3时,求点C 的坐标;______________________________________________________________跃龙学堂 您身边的中小学生辅导专家7(2)若a 、b 、c 满足了ac b 22=. ①求b ∶b ′的值;②探究四边形OABC 的形状,并说明理由.解:(1)由条件,得2)1(2+-=x y ,∴点P 的坐标为(1,2)。

∴点D 的坐标为(1,0)。

抛物线F ′的表达式为32+'+=x b x y ,∴4-='b 。

∴抛物线F ′的表达式为342+-=x x y 。

∴C 的坐标为(3,0)。

(2)①由题意,得点P 的横坐标为a b2-。

∵PD ⊥x 轴于D ,∴点D 的坐标为(0,2ab-).根据题意,得a=a ′,c= c ′,∴抛物线F ′的表达式为c x b ax y ++='2.又∵抛物线F ′经过点D (0,2a b-),∴c a b b ab a +-+⨯=)2('4022.∴ac bb b 4'202+-=.又∵ac b 22=,∴'2302bb b -=. ∴b :b ′=32. ②由①得,抛物线F ′为c bx ax y ++=232.______________________________________________________________ 跃龙学堂 您身边的中小学生辅导专家8 令y=0,则0232=++c bx ax . ∴abx a b x -=-=21,2.∵点D 的横坐标为,2a b -∴点C 的坐标为(0,a b-).∵ac b 22=,∴ 242424442c a ac a ac ac a b ac ==-=-,∴点P 的坐标为(2,2ca b -).设直线OP 的解析式为kx y =.∴k abc 22-=,∴22222b b b b ac b ac k -=-=-=-=,∴x b y 2-=. ∵点B 是抛物线F 与直线OP 的交点,∴x bc bx ax 22-=++.∴abx a b x -=-=21,2.∵点P 的横坐标为a b 2-,∴点B 的横坐标为ab-.把abx -=代入x b y 2-=,得c a ac a b a b b y ===--=222)(22.∴点B 的坐标为),(c ab-.∴BC ∥OA ,BC =OA 。

∴四边形OABC 是平行四边形. 又∵∠AOC =90°,∴四边形OABC 是矩形. 【知识点】平移的概念,抛物线的顶点坐标,抛物线的与x 轴和y 轴的交点坐标,平行四边形和矩形的判定。

相关文档
最新文档