第十章-结构动力学(部分)

合集下载

第十章结构动力学

第十章结构动力学

度 法
m m11
yቤተ መጻሕፍቲ ባይዱ(t) 2 y(t) 0
Fm=y(1t) m 11
l EI
二阶线性齐次常微分方程
y(t) 11 F y(t) 11[my(t)]
11

1 k11
柔 度 法
其通解为
y(t) c1 cost c2 sin t
由初始条件 y(0) y0 y(0) y0
第二,结构在动荷载作用下,产生抵抗结构加速度的 惯性力。动力计算必须考虑惯性力。
4、结构动力计算中体系的自由度
自由度的定义
确定体系中所有质量位置所需的独立几何参数,称 作体系的动力自由度数。
自由度的简化
实际结构都是无限自由度体系,这不仅导致分析困难, 而且从工程角度也没必要。常用简化方法有:
结构动力学的研究内容 结构动力学是研究工程结构的动力特性及其在动荷载
作用下的动力反应分析原理和方法的一门理论和技术学科。
结构动力学的任务 讨论结构在动力荷载作用下反应的分析的方法。
寻找结构固有动力特性、动力荷载和结构反应三者间 的相互关系,即结构在动力荷载作用下的反应规律,为结 构动力可靠性设计、保证结构的经济与安全以及结构健康 诊断提供科学依据。
或者
y
ky
F P(t)
y 2 y FP (t)
m
上式就是单自由度体系强迫振动的微分方程
1、简谐振动作用时的强迫振动
运动方程及其解
F(t)
F(t) F sin t
l
F --荷载幅值 --荷载频率
运动方程
my(t) k11y(t) F sin t

y(t) 2 y(t) F sin t m

结构动力学:Chapter_10(结构动力学)

结构动力学:Chapter_10(结构动力学)

= =
C1 sin ωt + C1ω cosωt
C2 cos
− C2ω
ωt
sin
ωt
得:⎧⎪C2 = y0
⎨ ⎪⎩C1
=
y0
ω
于是:
y=
y0
ω
sin ωt +
y0
cos ωt
进一步可确定式 y = C sin(ωt + φ) 中的C和φ
⎧ ⎪C = ⎪
C12 +C22 =
y02
+(
y0
ω
)2

⎪⎪⎩φ
第10章 结构动力学
本章内容的基本要求
本章课程的任务是使学生了解和掌握结构的动力特性和动力响应 的计算分析方法 ,具体为:
(1)掌握结构动力分析的基本方法,掌握单自由度及两自由度体 系的自由振动及其在简谐荷载作用下的强迫振动的计算方法 ;
(2)了解阻尼的作用,了解频率的近似计算方法。
1/109
10-1 动力计算概述
φ
C2
C1
y

ω

C
φ
ωt
31/109
3、几个术语
(1)周期:振动一次所需的时间。
(2)工程频率
T = 2π ω
单位时间内的振动次数(与周期互为倒数)。
f=1= ω T 2π
(3)频率(圆频率)
旋转向量的角速度,即体系在2π秒内的振动 次数。自由振动时的圆频率称为“自振频率”。
32/109
自振频率是体系本身的固有属性,与体系的 刚度、质量有关,与激发振动的外部因素无关。
P(t)
固端弯矩 M = PL
自由端位移 w = Pδ1 δ1: 单位荷载下的位移

第10章 结构动力学

第10章 结构动力学

例. 计算图示体系的自振频率。
m1 m
A l /2 l B EI= k C
解:单自由度体系,
1 m2 m 3
D l /2
以表示位移参数的幅值,
各质点上所受的力为:
A1
. .
m1
B

k
C
m2
.A .
2
l I1 m1 2 A1 m 2 2 1 2 2 3 I 2 m2 A2 m l 3 2 1 m 2 l 2
动力荷载
FI my
k 弹簧刚度系数
FI FD FS Fp (t ) my(t ) cy(t ) ky(t ) Fp (t )
第10章 结构动力学
重力影响
k c
Fs k st
FD cy Fs ky
m W
m
W
Fp(t) y(t) 静位移
st
V
l /2
l /2
1
A,E,I
E,I
E,A

l3 ml 3 48 EI T 2 3 48 EI ml 48 EI
H
1 m H
l
V
1 m V
第10章 结构动力学
例3.计算图示刚架的频率和周期。
1
m EI1= I
6 EI h2 6 EI h2
k
12 EI h3
Fp (t ) k y y 4m 2m
第10章 结构动力学
1 k 2 m
例2
A l/2 l/2
B l/2 l/2
FI my
C m y
F 1
1 1 l 2 l 1 l l 2 l l3 11 ( l ) EI 2 2 3 2 2 2 2 3 2 8EI l3 y (my) 11 (my) 8EI

第10章结构动力学

第10章结构动力学

由此可知,体系的自由振动由两部分组成:一部分由初位移 y 0 引
0 引起,变现为正弦规律 起,表现为余弦规律;另一部分由初速度 y
[图10-13(a)、(b)],两者叠加为简谐振动[图10-13(c)]。
目录
上页
下页
图10-13

y0 A sin
(d)
目录

则有
0 y
A cos
下页
图10-8 简支梁的广义位移
3. 有限单元法 有限元法是将实际结构离散成有限个单元,对每个单元给定插
目录
值函数,然后叠加单元在各个相应结点的贡献建立系统求解方程。 有限单元法根据基本未知量选取的不同,分为位移有限元法、应力
有限元法和混合有限元法。其中,位移有限元方法应用最广。
上页
在确定结构震动自由度时,应注意不能根据结构有几个集中 质量就判定它有几个自由度,而应该由确定集中质量位置所需的独
小,如图10-2。例如打桩机的桩锤对桩的冲击、各种爆炸荷载等。
目录
上页
下页
图10-2 冲击荷载
(3)突加荷载。在一瞬间施加于结构上并继续留在结构上的荷载, 如图10-3。例如吊重物的起重机突然启动时施加于钢丝绳的荷载就 是这种突加荷载。
目录
上页
下页
图10-3 突加荷载
(4)快速移动荷载。例如高速通过桥梁的列车、汽车等。
普通高等学校土木工程专业精编系列规划教材
结构力学
主编 丁克伟
目录
上页
10 结构动力学
下页
目录
目录
上页
10.1 结构动力学计算基本概念 10.2 自由度结构自由振动 10.3 简谐荷载作用下的单自由度体系受迫振动 10.4 一般荷载作用下的单自由度体系受迫振动

在线测试题试题库及解答(第十章)结构动力学(word文档良心出品)

在线测试题试题库及解答(第十章)结构动力学(word文档良心出品)

在线测试题试题库及解答第十章结构动力学基础一、单项选择题1、结构的主振型与什么有关?A、质量和刚度B、荷载C、初始位移D、初始速度标准答案 A2、结构的自振频率与什么有关?A、质量和刚度B、荷载C、初始位移D、初始速度标准答案 A3、单自由度体系在简谐荷载作用下,下列哪种情况内力与位移的动力系数相同?A、均布荷载作用B、荷载作用在质点上与质点运动方向垂直C、荷载不作用在质点上D、惯性力与运动方向共线标准答案 D4、具有集中质量的体系,其动力计算自由度A、等于其集中质量数B、小于其集中质量数C、大于其集中质量数D、以上都有可能标准答案 D5、具有集中质量的体系,其动力计算自由度A、等于其集中质量数B、小于其集中质量数C、大于其集中质量数D、以上都有可能标准答案 D6、当简谐荷载作用于有阻尼的单自由度体系质点上时,若荷载频率远远大于体系的自振频率时,则此时与动荷载相平衡的主要是A、弹性恢复力B、重力C、阻尼力D、惯性力标准答案 D7、设ω为结构的自振频率,θ为荷载频率,β为动力系数下列论述正确的是A、ω越大β也越大B、θ/ω越大β也越大C、θ越大β也越大D、θ/ω越接近1,β绝对值越大标准答案 D8、如果体系的阻尼增大,下列论述错误的是A、自由振动的振幅衰减速度加快B、自振周期减小C、动力系数减小D、位移和简谐荷载的相位差变大标准答案 B9、无阻尼单自由度体系在简谐荷载作用下,共振时与动荷载相平衡的是A、弹性恢复力B、惯性力C、惯性力与弹性力的合力D、没有力标准答案 D10、有阻尼单自由度体系在简谐荷载作用下,共振时与动荷载相平衡的是A、弹性恢复力B、惯性力与弹性力的合力C、惯性力D、阻尼力标准答案 D11、当简谐荷载作用于无阻尼的单自由度体系质点上时,若荷载频率远远小于体系的自振频率时,则此时与动荷载相平衡的主要是A、弹性恢复力B、阻尼力C、惯性力D、重力标准答案 A12、一单自由度振动体系,其阻尼比为ξ,动力系数β,共振时下列结果正确的是A、ξ=0.05,β=10B、ξ=0.1,β=15C、ξ=0.15,β=20D、ξ=0.2,β=25标准答案 A13、一单自由度振动体系,由初始位移0.685cm,初始速度为零产生自由振动,振动一个周期后最大位移为0.50cm,体系的阻尼比为A、ξ=0.05B、ξ=0.10C、ξ=0.15D、ξ=0.20标准答案 A14、在低阻尼体系中不能忽略阻尼对什么的影响?A、频率B、主振型C、周期D、振幅标准答案 D15、单自由度体系受简谐荷载作用,ω为体系自振频率,θ为荷载频率,动位移 y(t)与荷载 P(t) 的关系是A、当θ/ω>1时,y(t)与P(t)同向,当θ/ω<1时,y(t)与P(t)反向。

结构力学课后答案第10章结构动力学

结构力学课后答案第10章结构动力学
对于CD杆件,相当于在中点作用一集中力
10-34试说明用振型分解法求解多自由度体系动力响应的基本思想,这一方法是利用了振动体系的何种特性
10-35试用振型分解法计算题10-32。
解:
刚度矩阵 质量矩阵
其中
由刚度矩阵和质量矩阵可得:
则 应满足方程
其稳态响应为:
同理:
显然最大位移
10-36试用振型分解法计算题10-31结构作有阻尼强迫振动时,质量处的最大位移响应。已知阻尼比ξ1=ξ2=。
得振型方程:
)
,令
,由频率方程D=0
解得: ,

(c)
解:
图 图
(1) , ,
(2)振型方程

令 ,频率方程为:
(3)当 时,设
当 时,设
绘出振型图如下:
第一振型 第二振型
(d)
解:
#
图 图
频率方程为:
取 代入整理得:
其中
~
振型方程为:
将 代入(a)式中的第一个方程中,得:
绘出振型图如下:
第一振型 第二振型
\
解:
若 为静力荷载,弹簧中反力为 。
已知图示体系为静定结构,具有一个自由度。设为B点处顺时针方向转角 为坐标。建立动力方程:
则弹簧支座的最大动反力为 。
10-21设图a所示排架在横梁处受图b所示水平脉冲荷载作用,试求各柱所受的最大动剪力。已知EI=6×106Nm2,t1=,FP0=8×104N。
(a)
设 ,

使 ,则
(2)

如果使速度响应最大,则 最大,设 ,显然要求 最小。使: 得 。
(3)
令 显然要求 最小。
则 解的:

在线测试题试题库及解答(第十章)结构动力学

在线测试题试题库及解答(第十章)结构动力学

在线测试题试题库及解答第十章结构动力学基础一、单项选择题1、结构的主振型与什么有关?A、质量和刚度B、荷载C、初始位移D、初始速度标准答案 A2、结构的自振频率与什么有关?A、质量和刚度B、荷载C、初始位移D、初始速度标准答案 A3、单自由度体系在简谐荷载作用下,下列哪种情况内力与位移的动力系数相同?A、均布荷载作用B、荷载作用在质点上与质点运动方向垂直C、荷载不作用在质点上D、惯性力与运动方向共线标准答案 D4、具有集中质量的体系,其动力计算自由度A、等于其集中质量数B、小于其集中质量数C、大于其集中质量数D、以上都有可能标准答案 D5、具有集中质量的体系,其动力计算自由度A、等于其集中质量数B、小于其集中质量数C、大于其集中质量数D、以上都有可能标准答案 D6、当简谐荷载作用于有阻尼的单自由度体系质点上时,若荷载频率远远大于体系的自振频率时,则此时与动荷载相平衡的主要是A、弹性恢复力B、重力C、阻尼力D、惯性力标准答案 D7、设ω为结构的自振频率,θ为荷载频率,β为动力系数下列论述正确的是A、ω越大β也越大B、θ/ω越大β也越大C、θ越大β也越大D、θ/ω越接近1,β绝对值越大标准答案 D8、如果体系的阻尼增大,下列论述错误的是A、自由振动的振幅衰减速度加快B、自振周期减小C、动力系数减小D、位移和简谐荷载的相位差变大标准答案 B9、无阻尼单自由度体系在简谐荷载作用下,共振时与动荷载相平衡的是A、弹性恢复力B、惯性力C、惯性力与弹性力的合力D、没有力标准答案 D10、有阻尼单自由度体系在简谐荷载作用下,共振时与动荷载相平衡的是A、弹性恢复力B、惯性力与弹性力的合力C、惯性力D、阻尼力标准答案 D11、当简谐荷载作用于无阻尼的单自由度体系质点上时,若荷载频率远远小于体系的自振频率时,则此时与动荷载相平衡的主要是A、弹性恢复力B、阻尼力C、惯性力D、重力标准答案 A12、一单自由度振动体系,其阻尼比为ξ,动力系数β,共振时下列结果正确的是A、ξ=0.05,β=10B、ξ=0.1,β=15C、ξ=0.15,β=20D、ξ=0.2,β=25标准答案 A13、一单自由度振动体系,由初始位移0.685cm,初始速度为零产生自由振动,振动一个周期后最大位移为0.50cm,体系的阻尼比为A、ξ=0.05B、ξ=0.10C、ξ=0.15D、ξ=0.20标准答案 A14、在低阻尼体系中不能忽略阻尼对什么的影响?A、频率B、主振型C、周期D、振幅标准答案 D15、单自由度体系受简谐荷载作用,ω为体系自振频率,θ为荷载频率,动位移 y(t)与荷载 P(t) 的关系是A、当θ/ω>1时,y(t)与P(t)同向,当θ/ω<1时,y(t)与P(t)反向。

结构动力学-第十章-随机振动激励响应关系

结构动力学-第十章-随机振动激励响应关系

ch
0 0
0
kh(t)dt
0
0
(t)dt
0
或: m h(0 ) h(0 ) c h(0 ) h(0 ) kh( )(0 0 ) 1
即: mh(0) ch(0) 1 (1)
积分两次:
0
dt
t mhdt
0
dt
t chdt
0
dt
t
kh(t)dt
0
t
dt (t)dt
t
x(t) h(t )y( )d y(t) * h(t)
卷积积分
此式也可以由上页的(*)式推出:
y(t)
y( )
t
t
此式也可以由上页的(*)式推出:
x(t) 1
2
H
(
)
y(t)eit dteit d
1
2
H
(
)
y( )ei d eit d
1
2
y( )
H
(
)e
当t 0时, (t)=0,故有
mh ch kh 0 或 h 2nh n2h 0
其通解为: h(t) en t ( A cosd t B sin d t)
积分常数A和B由初始条件确定
则: mh ch kh (t) (*)
对(*)式两边从0-到0+积分两次
积分一次:mh 0 0
2
或: 1 e-itdt 2 ()
故: 1
2
() 或:1
2 ()
同样: 1 ei0 t
2
( 0 )
1 ei0 t
2
( 0 )
(3)脉冲响应函数
实际上,在第四章瞬态振动一章已经求过h(t)。 求h(t)的步骤如下: ①建立系统运动微分方程

第十章 结构动力学解答

第十章 结构动力学解答

为:
72������������
9
���̅���������̈ + ������4 ������ = 2������2 ������������(������)
10.6 求如图所示体系的自振频率。
m
EI1 EI1 m
l/2
l/2
EI
l/2 l/2
l
图 10-6
解:此体系为单自由度体系 (1) 将上图所示的体系转化为下图 10-6-1 所示的体系:
(4) 对位移项系数比较得:
4 ������̈ + 5������ ������1������ = 0
ω
=
√4������1 5������
=
√12������������ 5������������3
10.7 单 自 由 体 系 上 作 用 简 谐 动 荷 载 , 力 的 幅 值 F0 500N , 先 后 以 1 10rad / s 和2 17.32rad / s 两种频率分别作用,测得各相应的位移幅值和相 位角为 A1 4.995105 m , 1 2.55 ; A2 9.823105 m , 2 10.8 。试求该 体系的质量 m、刚度 k、自振频率 和阻尼比 。
将������1、������������、������������代入(c=0),得:
������������̈ + ������������ = ������������(������) 4) 求系数 k。在质点处作用单位力所得弯矩图如下图 10-4-5
3
16 ������
1
5 32 ������
3) 将������11、������1������带入,则体系运动方程为

结构力学:第十章结构动力学2

结构力学:第十章结构动力学2

ae-ξωt t
低阻尼y- t曲线
t
无阻尼y- t曲线
②阻尼对振幅的影响.
振幅ae- ξω t 随时间衰减,相邻两个振幅的比
yk1 eT 常数 yk
振幅按等比级数递减.
经过一个周期后,相邻两振幅yk和yk+1的比值的对数为:
ln yk lneT T 2 称为振幅的对数递减率.
yk1
r
如 0.2 则 r 1, 1 r ln yk 1 ln yk

k m
,
c 2m ( 阻尼比)
y 2 y 2 y 0(15.16)
k m y
cy ky
c y
my
设解为:y(t) Celt 特征方程为:l2 2l 2 0
1)ξ<1(低阻尼)情况
l ( ± 2 1)
l ir 其中 r 1 2
y et C1 cosrt C2 sinrt
低阻尼体系的自振圆频率
平稳阶段:后来只按荷载频率振动的阶段。(由于阻尼的存在)
平稳阶段:
y
yst
1
1
3)ξ>1 强阻尼:不出现振动,实际问题不常见。
§10-3 单自由度体系的受迫振动
受迫振动(强迫振动):结构在动力荷载作用下的振动。
弹性力-ky、惯性力 my
和荷载P(t)之间的平衡方程为:
y(t)
k
m
m
P(t ) P(t )
myky P(t)(a)
y 2 y P(t) (15.24)
m
一、简谐荷载:
77613m86l El3I2l
5l3 )
32
71l 3
7m68E3I
192EI ml3

结构动力学教学课件(共10章)第10章 结构动力学专题

结构动力学教学课件(共10章)第10章 结构动力学专题


··
∑ () + ∑
··
·
+2ζnωn + qn=-=


=
=+

··
()
()
(10-19)
上式可简记为
··
·
··
··
+2ζnωn + qn=- + (10-20)
力位移。
由于[Kg]表示因支承单位位移在自由节点上产生的力,而[K]表示自由节点单位位移所产生的
力,因此{us}和{ug}满足条件
[K]{us}+[Kg]{ug}={0}(10-4)
由此可得到{us}和{ug}的关系为
{us}=-[K]-1[Kg]{ug}(10-5)
10.1
10.1.1
结构地震反应分析中的多点输入问题
点地震动输入下结构总的反应为
{ua}={us
}+{u}=-[K]-1[K
g]{ug}+

∑ {ϕ}nqn(t)
=

= ∑ [Egl]ugl+∑{ϕ}nqn(t)(10-15)
=

10.2
10.2.1
结构地震反应分析中的多维输入问题
非对称结构在多维地震输入时的振型叠加法
计算非对称结构在多维地震动作用下的反应时,在刚性楼板假定前提下通常每层考虑三个自
式(10-7)右端第二项表示结构与支座的阻尼耦联,由于比较小,通常可忽略。同时,根据式(10-4)和
式(10-5),则式(10-7)可简化为
··
{Peff(t)}=([M][K]-1[Kg]-[Mg]){ }(10-8)

《结构动力学》课件

《结构动力学》课件
《结构动力学》PPT课件
欢迎来到《结构动力学》PPT课件。本课程将带领您深入了解结构动力学的理 论和应用,探索建筑在外力作用下的响应和行为。让我们一起开启这个精彩 的学习之旅吧!
引言
1 研究对象及内容
探索结构动力学的研究范围,包括结构振动、动态响应等。
2 相关概念解释
解释与结构动力学相关的术语和概念,如动力学基础知识、振动分析方法等。
1 常见结构材料
列举常用的结构材料,如 钢材、混凝土、木材等。
2 材料特性与选用原则
介绍结构材料的特性和选 用原则,以保证结构的安 全和可靠性。
3 材料处理与加工
讨论结构材料的处理和加 工过程,如焊接、锻造等。
结构的实验及检测
1 实验设备及方法
介绍用于结构实验的设备和方法,如振动台、应变测量等。
2 实验数据分析
2 振动分析方法
介绍结构振动分析的常用 方法,包括自由振动和强 迫振动的分析。
3 动态响应分析方法
研究结构在外力作用下的 响应规律,包括频率响应 和时程分析等方法。
结构的稳定性分析
1 基础概念
介绍结构稳定性分析的基本概念,如失稳、临界荷载等。
2 总体稳定分析
分析结构整体的稳定性,探讨各种失稳模式的产生和防范。
介绍与结构安全管理相关 的法规和规范,保证结构 的安全性和可靠性。
结论
1 结构动力学研究的未来发展趋势
展望结构动力学领域的未来发展方向和研究 重点。
2 结构动力学在现代工程实践中的应
用价值
总结结构动力学在工程实践中的应用价值和 意义,如地震工程、桥梁设计等。
参考文献
整理了一份涵盖结构动力学领域相关文献的参考书目,供读者深入研究和进 一步学习。

10结构动力学概论

10结构动力学概论

当 FP (t)为简谐荷载时,其解的形式为
第十章 结构动力学简介
y(t)
y0
cos ωt
ν0 ω
sin ωt
F
θ sin ωt
F
sin θt
m(ω2 θ 2 ) ω
m(ω2 θ 2 )
前两项为初始条件引起的自由振动;第三项为荷载(干扰力)引起的自由振 动,称为伴生自由振动。实际上,由于阻尼的存在,自由振动部分都很快 衰减掉。自由振动消失前的振动阶段称为过渡阶段。第四项为按荷载频率 进行的振动,此阶段为振动的平稳阶段,称为纯受迫振动或稳态振动。
2、平衡方程的建立
平衡方程的建立有两种方法:一是刚度法;一是柔度法。
my
y k
k
m
刚度法:根据达兰贝尔原理,沿位移正向,在质点上加上惯性力,列动态平 衡方程
ky my
k y ——总是与位移方向相反,指向平衡位置
平m衡y 方—程—与加速m度y方向相k反y 0
第十章 结构动力学简介
柔度法:在惯性力作用下,质点的位移等于实际位移
结构力学
STRUCTURAL MECHANICS
第十章 结构动力学简介
§10-1 概述
一、动力计算的内容
动力计算的内容:研究结构在动荷载作用下的动力反应的计算原理和方法。 涉及到内外两方面的因素: 1)确定动力荷载(外部因素,即干扰力); 2)确定结构的动力特性(内部因素,如结构的自振频率、周期、振型和 阻尼等等),类似静力学中的I、S等; 计算动位移及其幅值;计算动内力及其幅值。
纯受迫振动解的讨论请同学们课下自学完成!
第十章 结构动力学简介
三、阻尼对振动的影响
§10-3 单自由度体系的振动分析

第10章-动力学分析介绍

第10章-动力学分析介绍

第10章动力学分析介绍在实际工程结构的设计工作中,动力学设计和分析是必不可少的一部分。

几乎现代的所有工程结构都面临着动力问题。

在航空航天、船舶、汽车等行业,动力学问题更加突出,在这些行业中将会接触大量的旋转结构例如:轴、轮盘等等结构。

这些结构一般来说在整个机械中占有及其重要的地位,它们的损坏大部分都是由于共振引起较大振动应力而引起的。

同时由于处于旋转状态,它们所受外界激振力比较复杂,更要求对这些关键部件进行完整的动力设计和分析。

10.1 动力分析简介通常动力分析的工作主要有系统的动力特性分析(即求解结构的固有频率和振型),和系统在受到一定载荷时的动力响应分析两部分构成。

根据系统的特性可分为线性动力分析和非线性动力分析两类。

根据载荷随时间变化的关系可以分为稳态动力分析和瞬态动力分析。

谐响应分析是用于确定线性结构在承受随时间按正弦(简谐)规律变化的载荷时稳态响应的一种技术。

可以用瞬态动力学分析确定结构在静载荷,瞬态载荷,和简谐载荷的随意组合作用下的随时间变化的位移,应变,应力及力。

而谱分析主要用于确定结构对随机载荷或随时间变化载荷的动力响应情况。

ANSYS6.1提供了强大的动力分析工具,可以很方便地进行各类动力分析问题:模态分析、谐响应分析、瞬态动力分析和谱分析。

10.2 动力学分析分类动力学分析根据载荷形式的不同和所有求解的内容的不同我们可以将其分为:模态分析、谐响应分析、瞬态动力分析和谱分析。

下面将逐个给予介绍。

10.2.1 模态分析模态分析在动力学分析过程中是必不可少的一个步骤。

在谐响应分析、瞬态动力分析动分析过程中均要求先进行模态分析才能进行其他步骤。

10.2.1.1 模态分析的定义模态分析用于确定设计机构或机器部件的振动特性(固有频率和振型),即结构的固有频率和振型,它们是承受动态载荷结构设计中的重要参数。

同时,也可以作为其他动力学分析问题的起点,例如瞬态动力学分析、谐响应分析和谱分析。

其中模态分析也是进行谱分析或模态叠加法谱响应分析或瞬态动力学分析所必需的前期分析过程。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
i i T
( ) () () ( [ M ]也是对称矩阵,同理,有 { A} [ M ]{ A} = { A} [ M ]{ A} ( i )T ( j) 2 2 (3)-(4) (3)-(4),有 (ω i − ω j ) { A} [ M ]{ A} = 0 ( i )T ( j) 因为 ω i ≠ ω j ,所以 { A} [ M ]{ A} = 0 ( i ≠ j )
其中
(1)
{ y } = { y1 y y { ɺɺ} = { ɺɺ1
δ 11 δ [δ ] = ⋮21 δ n1 m1 [M ] =
y2 ɺɺ2 y
⋯ ⋯
⋯ ⋯ ⋯
ɺɺn } y
yn }
T
—— 位移向量 —— 加速度向量
T
δ 12 δ 22

δ 1n δ 2n
(1)柔度法: 柔度法: 柔度法 振动微分方程为 [δ ][M
{ ] 分别为体系的柔度矩阵和质量矩阵;∆ P } 是简谐荷载幅值引 T = 起的静位移向量,{∆ P } {∆ 1 P ∆ 2 P ⋯ ∆ nP } 。
[ 其中,δ ]和 [M
]{ɺɺ}+ {y } = {∆ P }sin θ t y
(1)
( j)
振型对应的位移为
{dy }(
j)
ɺ = { y}
( j)
dt = ω j { A}
i
( j)
cos (ω j t + ϕ j ) dt
( j)
dt时间内, A} 振型的惯性力在{ A} {
(i )
振型的位移上做的功为
i
dW = {dy }
( j )T
{FI }( ) = ω i2ω j { A}( ) [ M ]{ A}( ) sin (ω i t + ϕ i ) cos (ω j t + ϕ j ) dt = 0
(i )
体系按某一振型振动时,该振型的能 体系按某一振型振动时,
i
y { FI }( ) = − [ M ]{ ɺɺ}( ) = ω i2 [ M ]{ A}( ) sin (ω i t + ϕ i )
i i
量不会转移到其它振型上, 量不会转移到其它振型上,故,各振 型可单独出现。 型可单独出现。
dt时间内{ A}
⋮ δ nn
—— 柔度矩阵
δ n2
m2

—— 质量矩阵 mn
结构力学
2011-4-26
y ]{ ɺɺ} (1) T 设{ y } = { A } sin ( ω t + ϕ ) ,其中 { A} = { A1 A2 ⋯ An } 是振幅向量。 2 y 则{ ɺɺ} = − ω { A } sin ( ω t + ϕ ) 单位矩阵 代入(1),消除 sin (ω t + ϕ ) 后,有 1 即 [δ ][ M ] − 2 [ I ] { A } = {0 } (2) { A} − ω 2 [δ ][ M ]{ A} = {0}
j T i j T i
(3)(4)的左边是一标量,转置后不变。
{ A}
( j )T
[ k ]{ A}
(i )
=
({ A }
( j )T
[ k ] { A}
j T
(i )
)
T
= { A}
( i )T
T j [ k ] { A}( ) = { A}( ) [ k ]{ A}( i T
T
j)
[ k ] 是对称矩阵,[ k ] = [ k ]
2011-4-26
结构力学
振型正交的物理含义
设 { A}
i
(i )
、{ A}
i
( j)
是某多自由度体系的两个振型。则两振型的振动位移分别为
{ y }( ) = { A}( ) sin (ω i t + ϕ i ) j j { y }( ) = { A}( ) sin (ω j t + ϕ j )
t时刻 { A} 振型对应的惯性力为
(4)
两个自由度体系,稳态振动时的振幅方程(刚度法)为 − m1θ 2 A1 + k12 A2 = P1 k 21 A1 + k 22 − m 2θ 2 A2 = P2
11
(k
(
2011-4-26
结构力学
2.惯性力幅值计算 惯性力幅值计算
各质量的惯性力为 F Ii = − m i ɺɺi = m i Aiθ 2 sin θ t y 可见质量 m i 的惯性力幅值为 I i = m i Aiθ 2 ( i = 1, 2 , ⋯ n )
EI
q sin θ t
m2 = 2m
B
l 2
2011-4-26
EI
C
l 2
结构力学

本例静定结构,选择柔度法求解。
A
m1 = m
1
l 2
EI
q sin θ t
M 1图
C
B
m 2 = 2 m EI l 2 l 2
l/2
M P图
q
M 2图
1
l/4
δ 用图乘法求得, 11
ql2/8
l3 l3 l3 ql 4 5 ql 4 = , 12 = δ 21 = δ , 22 = δ ,∆ 1 P = ,∆ 2P = 。 8 EI 32 EI 48 EI 48 EI 384 EI
3.动内力幅值计算 动内力幅值计算
位移、惯性力、动荷载频率相同,对于无阻尼体系三者同时达到幅值。故,可 将荷载幅值和惯性力幅值加在结构上,按静力学方法体系的最大动内力和最大 动位移。
例1 试求图示体系质量的最大动位移,并绘制结构的最大动力弯矩图。已知 θ =
3 EI 。 3 ml
A
l 2
m1 = m
j)
Байду номын сангаас
振型第一正交性:多自由度体系任意两个不同振型关于质量矩阵正交。 振型第一正交性:多自由度体系任意两个不同振型关于质量矩阵正交。
从而 ,{ A}
( i )T
[ k ]{ A}(
j)
=0
(i ≠ j )
振型第二正交性:多自由度体系任意两个不同振型关于刚度矩阵正交。 振型第二正交性:多自由度体系任意两个不同振型关于刚度矩阵正交。
§10-6 多自由度体系的自由振动
用柔度法可建立n个自由度体系的运动方程如下 y1 = − m1 ɺɺ1δ 11 − m 2 ɺɺ2δ 12 − ⋯ − m n ɺɺn δ 1 n y y y y 2 = − m1 ɺɺ1δ 21 − m 2 ɺɺ2δ 22 − ⋯ − m n ɺɺn δ 2 n y y y ⋮ y n = − m1 ɺɺ1δ n 1 − m 2 ɺɺ2δ n 2 − ⋯ − m n ɺɺn δ nn y y y 写成矩阵形式 y { y } = − [δ ][ M ]{ ɺɺ}
第10章 结构动力学 章
Structural dynamics
§10-1 概述 §10-2 体系的动力自由度 §10-3 单自由度体系运动方程的建立 §10-4 单自由度体系的自由振动 §10-5 单自由度体系的强迫振动 §10-6 多自由度体系的自由振动 §10-7 振型的正交型 §10-8 多自由度体系的强迫振动 §10-9 无限自由度体系的自由振动 §10-10 自振频率的近似计算
j T
振型第一正交性
体系按某一振型振动时,惯性力不会在其它振型的位移上做功。 体系按某一振型振动时,惯性力不会在其它振型的位移上做功。——第一正交性的物理含义 第一正交性的物理含义 t时刻 { A} 振型对应的弹性力为
(i )
{ Fs }( ) = [ k ]{ y }( ) = [ k ]{ A}( ) sin (ω i t + ϕ i ) i ( j) dt时间内, A} 振型的弹性力在{ A} 振型的位移上做的功为 { () ( j )T (i ) ( j )T (i ) dW = {dy } { Fs } = ω j { A} [ k ]{ A} sin (ω i t + ϕ i ) cos (ω j t + ϕ j ) dt
[ M ]{ A}(
2011-4-26
结构力学
{ A}( ) [ k ]{ A}( ) = ω i 2 { A}( ) [ M ]{ A}( ) ………..(3) i T j i T j { A}( ) [ k ]{ A}( ) = ω j 2 { A}( ) [ M ]{ A}( ) ………..(4)
2011-4-26 结构力学
两个自由度体系,稳态振动时的振幅方程(柔度法)为 ∆ 1 δ 11 m1 − 2 A1 + δ 12 m 2 A2 + 12P = 0 θ θ 1 ∆ 2P δ 21 m1 A1 + δ 22 m 2 − 2 A2 + 2 = 0 θ θ (2)刚度法: 刚度法: 刚度法
2
(
)
2011-4-26
结构力学
上述自振频率和振型的计算步骤和方法同样适用于刚度法。
动力平衡方程 [ M 振型方程 频率方程
y ]{ ɺɺ} + [ k ]{ y } = {0}
2
([ k ] − ω [ M ]) { A} = {0}
[k ] − ω 2 [M ]
=0
2011-4-26
结构力学
§10-7 振型的正交性
ω 设一n个自由度体系,ω 1 、 2 是其两个自振频率,两频率对应的振型如下:
Akj
A2 j
第j振型
A1i
A2 i
相关文档
最新文档