六、数据的集中程度

合集下载

数据的集中趋势和离散程度(名师总结)

数据的集中趋势和离散程度(名师总结)

数据的集中趋势和离散程度【知识点1】正确理解平均数、众数和中位数的概念一、平均数:平均数是反映一组数据的平均水平的特征数,反映一组数据的集中趋势.平均数的大小与一组数据里的每一个数据都有关系,任何一个数据的变化都会引起平均数的变化.例1:有四个数每次取三个数,算出它们的平均数再加上另一个数,用这种方法计算了四次,分别得到以下四个数:86, 92, 100, 106, 那么原4个数的平均数是________ .例2:有几位同学参加语文考试,赵峰的得分如果再提高13分,他们的平均分就到达90分,如果赵峰的得分降低5分,他们的平均分就只得87分,那么这些同学共有________人.例3:有5个数,其平均数为138,按从小到大排列,从小端开始前3个数的平均数为127,从大端开始顺次取出3个数,其平均数为148,那么第三个数是_______ .例4:某5个数的平均值为60,假设把其中一个数改为80,平均值为70,这个数是________ .例10:某人沿一条长为12千米的路上山,又从原路返回,上山的速度是2千米/小时,下山的速度是6千米/小时。

那么,他在上山和下山的全过程当中的平均速度是多少千米每小时?例11:假设不选择教材中的引入问题,也可以替换成更贴近学生学习生活中的实例,下举一例可供借鉴参考。

求该校初二年级在这次数学考试中的平均成绩?二、众数:在一组数据中出现次数最多的数据叫做这一组数据的众数.一组数据中的众数有时不唯一.众数着眼于对各数出现的次数的考察,这就告诉我们在求一组数据的众数时,既不需要排列,又不需要计算,只要能找出样本中出现次数最多的那一个〔或几个〕数据就可以了.当一组数据中有数据屡次重复出现时,它的众数也就是我们所要关心的一种集中趋势.注:众数是数据中出现次数最多的数据,是一组数据中的原数据,而不是相应的次数.众数有可能不唯一,注意不要遗漏.例12:在一次数学测验中,甲、乙、丙、丁四位同学的分数分别是90、x 、90、70,假设这四个同学得分的众数与平均数恰好相等,那么他们得分的中位数是【 】A 、100 B 、90 C 、80 D 、70 例13:当5个整数从小到大排列,其中位数是4,如果这组数据的唯一众数是6,那么5个整数可能的最大的和是【 】A 、21 B 、22 C 、23 D 、24例14:10名工人,某天生产同一零件,生产到达件数是:15,17,14,10,15,19,17,16,14,12,那么这一组数据的众数是【 】A 、15 B 、17 15 C 、14 D 、17 15 14 例15:〔1〕计算这9双鞋尺码的平均数、中位数和众数.〔2〕哪一个指标是鞋厂最感兴趣的指标?哪一个指标是鞋厂最不感兴趣的?三、中位数:是将一组数据按大小顺序排列后,处在最中间的一个数〔或处在最中间的两个数的平均数〕.一组数据中的中位数是唯一的. 注:求中位数要先把数据按大小顺序排列,可以从小到大,也可以从大到小.如果数据个数n 为奇数时,第21+n 个数据为中位数;如果数据个数n 为偶数时,第2n 、12+n 个数据的平均数为中位数.例16:李大伯承包了一个果园,种植了100棵樱桃树,今年已进入收获期.收获时,从中任选并采摘了10棵树的樱桃,分别称得每据调查,市场上今年樱桃的批发价格为每千克15元.用所学的统计知识估计今年此果园樱桃的总产量与按批发价格销售樱桃所得的总收入分别约为【 】A .200千克,3000元B .1900千克,28500元C . 2000千克,30000元D .1850千克,27750元〔1〕该班学生每周做家务劳动的平均时间是多少小时?〔2〕这组数据的中位数、众数分别是多少?〔3〕请你根据〔1〕、〔2〕的结果,用一句话谈谈自己的感受.【知识点2】极差、方差和标准差极差、方差和标准差都是用来研究一组数据的离散程度的,反映一组数据的波动范围或波动大小的量.一、极差一组数据中最大值与最小值的差叫做这组数据的极差,即极差=最大值-最小值.极差能够反映数据的变化范围,实际生活中我们经常用到极差.如一支足球队队员中的最大年龄与最小年龄的差,一个公司成员中最高收入与最低收入的差等都是极差的例子.极差是最简单的一种度量数据波动情况的量,它受极端值的影响较大.二、方差方差是反映一组数据的整体波动大小的特征的量.它是指一组数据中各个数据与这组数据的平均数的差的平方的平均数,它反映的是一组数据偏离平均值的情况.方差越大,数据的波动越大方差越小数据的波动越小. 求一组数据的方差可以简记先求平均,再求差,然后平方,最后求平均数.一组数据x 1、x 2、x 3、…、x n 的平均数为x ,那么该组数据方差的计算公式为:])()()[(1222212x x x x x x nS n -++-+-= . 例18:数据0、1、2、3、x 的平均数是2,那么这组数据的极差和标准差分别是【 】A 4,2B 4,2C 2,10D 4,10三、标准差在计算方差的过程中,可以看出方差的数量单位与原数据的单位不一致,在实际的应用时常常将求出的方差再开平方,此时得到量为这组数据的标准差.即标准差=方差. 例19:数据90,91,92,93的标准差是【 】〔A 〕 2 〔B 〕54 〔C 〕54 〔D 〕52✪注意:极差、方差、标准差的关系方差和标准差都是用来描述一组数据波动情况的量,常用来比拟两组数据的波动大小.两组数据中极差大的那一组并不一定方差也大.在实际问题中有时用到标准差,是因为标准差的单位和原数据的单位一致,且能缓解方差过大或过小的现象.例20:从甲、乙两种玉米苗中各抽10株,分别测得它们的株高如下:〔单位:cm 〕甲: 21 42 39 14 19 22 37 41 40 25乙: 27 16 40 41 16 44 40 40 27 44(1)根据以上数据分别求甲、乙两种玉米的极差、方差和标准差.(2)哪种玉米的苗长得高些;(3)哪种玉米的苗长得齐.例21:市体校准备挑选一名跳高运发动参加全市中学生运动会,对跳高运动队的甲、乙两名运发动进行了8次选拔比赛.他们的成绩〔单位:m 〕如下:甲:1.70 1.65 1.68 1.69 1.72 1.73 1.68 1.67乙:1.60 1.73 1.72 1.61 1.62 1.71 1.70 1.75(1)甲、乙两名运发动的跳高平均成绩分别是多少?(2)哪位运发动的成绩更为稳定?(3)假设预测,跳过1.65m 就很可能获得冠军,该校为了获得冠军,可能选哪位运发动参赛?假设预测跳过1.70m 才能得冠军呢?。

第六章 第1课时 平均数(一)

第六章 第1课时 平均数(一)

第六章数据的集中程度第1课时平均数(一)l.一名射击运动员一次射击练习的成绩是(单位:环):7,10,9,9,10.这位运动员这次射击成绩的平均数是___________环.2.某班抽测5个学生的视力,结果是:1.2,1.0,1.5,0.8,1.0.则他们的平均视力为___________.3.某班进行速算比赛.比赛成绩如下:得100分的有8人,90分的有15人,80分的有15人,70分的有7人,60分的有3人,50分的有2人.那么这个班速算比赛的平均成绩为___________.4.如果一组数据5,一2,0,6,4,x的平均数为3,那么x的值为( ) A.3 B.4 C.5 D.65.若1,2,3,x的平均数为5,而1,2,3,x,y的平均数为6,则y的值为多少? 6.在一次学生田径运动会上,参加男子跳高的若干名运动员的成绩如下表:(1)有多少名运动员参加了这次跳高比赛?(2)求这些运动员的平均成绩(结果保留3个有效数字).7.下列数据:30,26,22,18,20,19的平均数是___________.8.校园歌手大赛中,七位评委对某位歌手打分如下:9.8,9.5,9.7,9.6,9.5,9.5,9.6,去掉一个最高分和一个最低分,这位选手的平均得分为___________.9.某次考试5名学生A、B、C、D、E的平均得分为85分.若学生A除外,其余学生的平均得分为82分,则学生A的得分是___________分.10.(2008·贵阳)8名学生在一次数学测试中的成绩为80,82,79,69,74,78,x,81,这组成绩的平均数是77,则x的值为( ) A.76 B.75 C.74 D.7311.有10个数据的平均数为12,另有20个数据的平均数为15,则所有30个数的平均数为( )A 1 2 B.15 C.13.5 D.1412.已知x,y,z,m四个数的平均数是5,则6,0,x一2,y+3,z+10,m一8,5,一2这8个数的平均数是( ) A.2 B.3 C.4 D.513.某瓜农采用大棚栽培技术种植了一亩地的良种西瓜,这亩地产西瓜约600个,在西瓜上市前该瓜农随机摘了10个成熟的西瓜,称重如下:14.游泳池有三个水深不同的区域:浅水区,水深1.2 m;中水区,水深1.6 m;深水区,水深2.0m.游泳池方面为了提醒广大游泳者注意安全,在泳池旁立了一块告示牌:“本游泳池平均水深为1.6 m,请大家注意安全.”通过你所学知识,你认为这块告示牌的计算正确吗?它能否起到安全提示作用?为什么?15.(1)数据1,2,3,4,5的平均数是__________.(2)数据11,12,13,14,15的平均数是__________.(3)数据2,4,6,8,10的平均数是__________.(4)数据4,6,8,10,12的平均数是__________.(5)猜想:若数据x1,x2,x3…,x n的平均数是,则数据ax1+b,ax2+b,ax3+b,…,ax n+b的平均数是__________.参考答案1.9 2.1.1 3.82.4分4.C 5.10 6.(1)27人(2)1.61米7.22.5 8.9.58 9.97 10.D 11.D 12.C13.5千克亩产量约3000千克14.计算正确,但不能起到安全提示作用,因为游泳者知道了平均水深并不能确定适合自己游泳的区域,所以不能安全游泳15.(1)3 (2)13 (3)6 (4)8 (5)a x+6。

专题06数据的集中趋势和离散程度(经典基础题5种题型+优选提升题)(原卷版)

专题06数据的集中趋势和离散程度(经典基础题5种题型+优选提升题)(原卷版)

专题06数据的集中趋势和离散程度算数平均数1.(2022秋•鼓楼区期中)若一组数据x1,x2,x3,x4,x5的平均数是a,另一组数据x1+2,x2+3,x3﹣5,x4﹣2,x5+1的平均数是b,则a b(填写“>”、“<”或“=”).2.(2022秋•滨海县期中)若数据a1、a2、a3的平均数是6,则数据2a1、2a2、2a3的平均数是.3.(2022秋•宿豫区期中)一组数据6,8,10,x的平均数是8,则x的值是.加权平均数4.(2022秋•建邺区期中)某校把学生数学的期中、期末两次成绩分别是按40%,60%的比例计入学期总成绩,小明数学期中成绩是85分,期末成绩是90分,那么他的数学学期总成绩为()A.88分B.87.5分C.87分D.86分5.(2022秋•铜山区期中)某校九年级甲班40名学生中,5人13岁,30人14岁,5人15岁,则这个班级学生的平均年龄为()A.14岁B.14.5岁C.13.5岁D.15岁6.(2022秋•东台市期中)小丽参加了某电视台的招聘考试,她在采访写作、计算机操作、创意设计这三种测试中的成绩分别是86分、75分、90分,如果这三种成绩按5:2:3计算,那么小丽的最终得分为分.7.(2022秋•海陵区校级期中)小红参加学校举办的“我爱我的祖国”主题演讲比赛,她的演讲稿、语言表达、形象风度得分分别为85分,70分,80分,若依次按照40%,30%,30%的百分比确定成绩,则她的平均成绩是分.8.(2022秋•滨海县期中)今年是第27个世界读书日,某校举行了演讲大赛,演讲得分按“演讲内容”占40%、“语言表达”占40%、“形象风度”占10%、“整体效果”占10%进行计算,小芳这四项的得分依次为80分、90分、85分、85分,则她的最后得分是分.9.(2022秋•涟水县期中)某校举行广播体操比赛,评分项目包括服装统一度、进退场秩序、动作规范整齐度这三项,每项满分10分,总成绩按以上三项得分2:3:5的比例计算,总成绩满分10分.已知八(1)班在比赛中三项得分依次为10分、8分、9分,则八(1)班这次比赛的总成绩为分.10.(2022秋•盐都区期中)浩浩上学期平时成绩为95分,期中成绩为90分,期末成绩为96分,若平时、期中、期末的成绩按2:3:5计算,计算结果作为学期成绩,则小明上学期学期成绩为分.中位数11.(2022秋•仪征市期中)一组数据分别为:2、4、5、1、9,则这组数据的中位数是()A.3B.1C.4D.512.(2022秋•涟水县期中)有一组数据:30,40,34,36,37.这组数据的中位数是()A.34B.40C.37D.3613.(2022秋•东台市期中)现有一组数据2,7,9,5,8,则这组数据的中位数是()A.9B.7C.8D.514.(2022秋•铜山区期中)已知一组数据:a,5,4,7,6的平均数为5,则这组数据的中位数是.15.(2022秋•高邮市期中)若一组数据6,8,10,x的中位数与平均数相等,则符合条件的x的值有个.众数16.(2022秋•宿豫区期中)一组数据5,6,6,6,8,9,12,12的众数是()A.6B.7C.8D.1217.(2022秋•太仓市期中)“杂交水稻之父”袁隆平培育的超级杂交稻在全世界推广种植.某种植户为了考察所种植的杂交水稻苗的长势,从稻田中随机抽取7株水稻苗,测得苗高(单位:cm)分别是:23,24,23,25,26,23,25.则这组数据的众数和中位数分别是()A.24,25B.23,23C.23,24D.24,2418.(2022秋•铜山区期中)数据1、5、6、6、5、6的众数是.19.(2022秋•泰兴市期中)某校九年级学生在“学习二十大”的党史知识竞赛活动中,随机抽取50名学生的成绩如表:答对数(题)6789人数52510a(1)填空:a=;(2)50名学生的“答对数”的众数是题,中位数是题;(3)若答对8题(含8题)以上被评为优秀“答题能手”,试估计全年级800名学生中有多少是优秀“答题能手”?20.(2022秋•新吴区期中)某中学为了解初三学生参加志愿者活动的次数,随机调查了该年级20名学生,统计得到该20名学生参加志愿者活动的次数如下:3,5,3,6,3,4,4,5,2,4,5,6,1,3,5,5,4,4,2,4根据以上数据,得到如下不完整的频数分布表:次数123456人数12a6b2(1)表格中的a=,b=;(2)在这次调查中,参加志愿者活动的次数的众数为,中位数为;(3)若该校初三年级共有300名学生,根据调查统计结果,估计该校初三年级学生参加志愿者活动的次数为4次的人数.21.(2022秋•仪征市期中)某校为了提升九年级学生的身体素质,释放学业压力,锻炼意志,激发进取精神,开展“奔跑吧,你最棒”活动,每天利用大课间让学生在操场上伴随着音乐进行800米跑步.为了解学生跑步后身体状况,随机抽取部分学生测量跑步后1min的脉搏次数,其中脉搏次数x满足140≤x <150的结果如下(单位:次):149 148 147 146 146 144 144 143 141 149 144根据以上信息回答下列问题:(1)填写表格:脉搏次数x(次/分)130≤x<140140≤x<150150≤x<160160≤x<170频数5112113频率0.10.420.26(2)脉搏次数x满足140≤x<150的这组数据,众数是;(3)根据运动后正常脉搏公式可知:九年级学生800米跑步后1分钟脉搏次数130≤x<160都属于身体素质较好的情况,如果该校九年级有300名学生,那么身体素质较好的学生大约有多少人?22.(2022秋•盐都区期中)近日,“复旦学霸图书馆”新闻引发网友热议,其中,“风雨无阻爱学习”的潘同学一年时间图书馆打卡301次,更是成为众多学子膜拜的对象.某大学图书馆为了更好服务学子,对:时间周一周二周三周四周五周六周日人数65055071042065023203100(1)该周到馆人数的平均数为人,众数为人,中位数为人;(2)选择合适的数据,估算该校一个月的到馆人数(一个月按30天计).23.(2022秋•姜堰区期中)2022年10月1日,中国女篮在世界杯比赛中表现不俗,获得本届女篮世界杯亚军,追平了世界杯历史最好战绩.她们的拼劲儿以及永不服输的女篮精神,值得我们学习.如表是小组赛的部分统计数据.2022年女篮世界杯小组赛部分统计数据.国家场均得分(分)场均篮板(个)场均助攻(次)场均失误(次)场均投篮命中率(%)场均罚球命中率(%)美国107.246.628.410.655.180.6中国88.846.628.212.051.375.9澳大利亚78.045.821.414.241.376.9比利时72.839.622.815.043.474.3加拿大71.244.214.413.639.874.6韩国69.229.017.013.238.978.1(1)如表中六国的“场均得分”的平均数为分;(2)“场均篮板”这组数据的中位数是个,众数是个;(3)请结合表中数据,从两个不同的角度简要评价中国女篮在本届世界杯中的表现.方差24.(2022秋•高邮市期中)我校在科技文化节活动中,8位评委给某个节目的评分各不相同,去掉1个最高分和1个最低分,剩下的6个评分与原始的8个评分相比一定不发生变化的是()A.平均数B.中位数C.方差D.众数25.(2022秋•盐都区期中)甲、乙、丙、丁四人进行射击测试,每人10次射击成绩的平均数都为9.0环,方差分别为s甲2=0.63,s乙2=0.51,s丙2=0.42,s丁2=0.48,则四人中成绩最稳定的是()A.甲B.乙C.丙D.丁26.(2022秋•建邺区期中)2022年国庆长假期间七天的气温如图所示,这七天最高气温的方差为,最低气温的方差为S,则S S(填“>”、“<”或“=”).27.(2022秋•高港区期中)乒乓球的标准直径为40mm,质监部门分别抽取了A、B两厂生产的乒乓球各10只,对其直径进行检测,将所得的数据绘制如图.则抽取的A、B两厂生产的乒乓球直径的方差大小关系是:(填“>”或“<”或“=”).28.(2022秋•涟水县期中)“杂交水稻之父”袁隆平为提高水稻的产量贡献了自己的一生.某研究员随机从甲、乙两块试验田中各抽取100株杂交水稻苗测试高度,计算平均数和方差的结果为=12,=12,S=3.2,S=4.6,则杂交水稻长势比较整齐的是.29.(2022秋•仪征市期中)已知一组数据16,17,18,19,20,则这组数据的方差是.30.(2022秋•沭阳县期中)甲、乙两名射击运动员在一次训练中,每人各打10发子弹,根据命中环数求得方差分别是=0.6,=0.8,则运动员的成绩比较稳定.31.(2022秋•涟水县期中)为庆祝中国共产党建党100周年,某中学组织七、八年级全体学生开展了“党史知识”竞赛活动,为了解竞赛情况,从两个年级各抽取10名学生的成绩(满分为100分).收集数据:七年级:90,95,95,80,85,90,80,90,85,100;八年级:85,85,95,80,95,90,90,90,100,90.分析数据:平均数中位数众数方差七年级89m9039八年级n90p q根据以上信息回答下列问题:(1)请直接写出表格中m,n,p的值;(2)通过计算求出q的值;(3)通过数据分析,你认为哪个年级的成绩比较好?说明理由;32.(2022秋•天宁区校级期中)九7九8班组织了一次经典朗读比赛,两班各10人的比赛成绩如表(10分制):九7789710109101010九810879*********(1)九7班成绩的平均数是分,中位数是分.(2)计算九8班的平均成绩和方差.(3)已知九7班成绩的方差是1.4分,则成绩较为整齐的是班.33.(2022秋•建湖县期中)为让全校学生牢固树立爱国爱党的崇高信念,某校近期开展了形式多样的党史学习教育活动.在党史知识竞赛中,八、九年级各有300名学生参加,现随机抽取两个年级各20名学生的成绩进行整理分析,得到如表信息:a.表1九年级20名学生的成绩(百分制)统计表8280979194727191857094789275979291928398b.表2九年级抽取的20名学生成绩的平均数、中位数、方差统计表年级平均数中位数方差九年级86a86.3 c.随机抽取八年级20名学生的成绩的中位数为88,方差为83.2,且八、九两个年级抽取的这40名学生成绩的平均数是84.5.请根据以上信息,回答下列问题:(1)在表2中,a的值等于;(2)求八年级这20名学生成绩的平均数;(3)你认为哪个年级的成绩较好?试从两个不同的角度说明推断的合理性.34.(2022秋•苏州期中)“秋风响,蟹脚痒”,正是食蟹好时节.某蟹农在今年五月中旬向自家蟹塘投放蟹苗1200只,为赶在食蟹旺季前上市销售,该蟹农于九月中旬在蟹塘中随机试捕了4次,获得如下数据:数量/只平均每只蟹的质量/g第1次试4166捕4167第2次试捕第3次试6168捕6170第4次试捕(1)四次试捕中平均每只蟹的质量为g;(2)若蟹苗的成活率为75%,试估计蟹塘中蟹的总质量为kg;(3)若第3次试捕的蟹的质量(单位:g)分别为:166,170,172,a,169,167.①a=;②求第3次试捕所得蟹的质量数据的方差.35.(2022秋•高邮市期中)甲、乙两班各选10名学生参加电脑汉字录入比赛,将参赛学生每分钟录入汉字的个数如图所示:132133134135136137录入汉字/个甲班参赛学101521生/人014122乙班参赛学生/人(1)根据以上信息,完成下面表格:平均数中位数众数甲班135135乙班135134.5(2)已知甲班的方差为1.6,哪一个班参赛选手电脑汉字录入的成绩稳定?36.(2022秋•东台市期中)为了发展体育运动,培养学生的综合能力,某学校成立了足球队、篮球队、射击队等,其中射击队在某次训练中,甲、乙两名队员各射击10发子弹,成绩记录如下表:射击次序(次)一二三四五六七八九十甲的成绩(环)8979867a108乙的成绩(环)679791087710(1)经计算甲和乙的平均成绩都是8环,请求出表中的a=;(2)甲射击成绩的中位数和乙射击成绩的众数各是多少?(3)若甲成绩的方差是1.2,请求出乙成绩的方差,判断甲、乙两人谁的成绩更为稳定?37.(2022秋•建邺区期中)体育教师要从甲、乙两名跳远运动员中挑选一人参加校运动会比赛.在最近的五次选拔赛中,他们的成绩如表(单位:cm):甲585596609610595乙580603613585624(1)已知甲运动员的平均成绩是599cm,求乙运动员的平均成绩;(2)从两个不同的角度评价这两名运动员的跳远成绩.一.填空题(共4小题)1.(2022秋•玄武区期中)超市决定招聘广告策划人员一名,某应聘者三项素质测试的成绩如表:测试项目创新能力综合知识语言表达测试成绩(分数)708090将创新能力、综合知识和语言表达三项测试成绩按5:3:2的比例计入总成绩,则该应聘者的总成绩是分.2.(2022秋•阜宁县期中)在方差计算公式S2=[++…+]中,数20表示这组数据的.3.(2022秋•栾城区期中)某市初中毕业生进行了一项技能测试,有4万名考生的得分都是不小于70的两位数,从中随机抽取4000个数据,统计如表:数据x70≤x≤7980≤x≤8990≤x≤99个数80020001200平均数788592请根据表格中的信息,估计这4万个数据的平均数约为.4.(2022秋•泊头市期中)一个样本为1,3,2,2,a,b,c,已知这个样本的众数为3,平均数为2,则这组数据的中位数为.二.解答题(共13小题)5.(2022秋•海陵区校级期中)甲、乙两名队员参加射击训练,每人射击10次,成绩分别如下:根据以上信息,整理分析数据如下:平均成绩/环中位数/环众数/环方差甲a77 1.2乙7b8c (1)a=,b=,c=.(1)填空:(填“甲”或“乙”).从中位数的角度来比较,成绩较好的是;从众数的角度来比较,成绩较好的是;成绩相对较稳定的是.(3)从甲、乙两名队员中选一名队员参加比赛,选谁更合适,为什么?6.(2022秋•东台市期中)为了从甲、乙两位同学中选拔一人参加知识竞赛,举行了6次选拔赛,根据两位同学6次选拔赛的成绩,分别绘制了如图统计图.(1)填写下列表格:平均数/分中位数/分众数/分甲90①93乙②87.585(2)分别求出甲、乙两位同学6次成绩的方差.(3)你认为选择哪一位同学参加知识竞赛比较好?请说明理由.7.(2022秋•锡山区期中)某校学生会向全校3000名学生发起了“爱心捐助”捐款活动,为了解捐款情况,学生会随机调查了部分学生的捐款金额,并用得到的数据绘制了如图所示的统计图请根据相关信息,解答下列问题:(1)本次接受随机调查的学生人数为,图1中m的值是.(2)求本次调查获取的样本数据的平均数、众数和中位数;(3)根据样本数据,估计该校本次活动捐款金额为10元的学生人数.8.(2022秋•仪征市期中)某食品商店将甲、乙、丙3种糖果的质量按5:4:1配置成一种什锦糖果,已知甲、乙、丙三种糖果的单价分别为16元/kg、20元/kg、27元/kg.若将这种什锦糖果的单价定为这三种糖果单价的算术平均数,你认为合理吗?如果合理,请说明理由;如果不合理,请求出该什锦糖果合理的单价.9.(2022秋•沭阳县期中)某初级中学数学兴趣小组为了了解本校学生的年龄情况,随机调查了该校部分学生的年龄,整理数据并绘制如下不完整的统计图.依据以上信息解答以下问题:(1)求样本容量;(2)直接写出样本的平均数,众数和中位数;(3)若该校一共有1800名学生,估计该校年龄在15岁及以上的学生人数.10.(2022秋•晋州市期中)甲、乙两名队员参加射击选拔赛,射击成绩见统计图:根据以上信息,整理分析数据如下:队员平均数(环)中位数(环)众数(环)方差(环2)甲7.9b c 4.09乙a77d(1)直接写出表格中a、b,c的值;(2)求出d的值;(3)若从甲、乙两名队员中选派其中一名队员参赛,你认为应选哪名队员?请结合表中的四个统计量,作出简要分析.11.(2022秋•沙坪坝区校级期中)我校在七、八年级学生中开展“国家安全法”知识竞赛,并从七、八年级学生中各随机抽取10名学生的竞赛成绩(百分制)进行整理、描述和分析(成绩得分用x表示,共分成四组:A.80≤x<85,B.85≤x<90,C.90≤x<95,D.95≤x≤100),下面给出了部分信息:七年级抽取的10名学生的竞赛成绩:98,81,98,85,98,97,91,100,88,84.八年级10名学生的竞赛成绩在C组中的数据是93,90,94,93.七、八年级抽取的学生的竞赛成绩统计表年级七年级八年级平均数9292中位数94b众数c93根据以上信息,解答下列问题:(1)填空:a=,b=,c=;(2)根据以上数据分析,你认为我校七、八年级中哪个年级学生竞赛成绩较好?请说明理由(一条理由即可);(3)我校七、八年级分别有780名、620学生参加了此次竞赛,请估计成绩达到90分及以上的学生共有多少名?12.(2022秋•泊头市期中)教育部将劳动教育纳入人才培养全过程,为积极落实国家政策,某校开设了丰富的劳动教育课程.某日,学生处对学校菜圃耕作情况进行了一次评分.从七、八年级各随机抽取20块菜圃,对这部分菜圃的评分进行整理和分析(菜圃评分均为整数,满分为10分,9分及以上为“五星菜圃”).相关数据统计、整理如下:抽取七年级菜圃的评分(单位:分):6,6,7,6,6,7,9,7,9,7,9,9,7,9,9,10,9,9,9,10.抽取八年级菜圃的评分(单位:分):8,8,7,7,9,9,7,7,7,9,9,7,7,7,8,8,8,9,9,10.七八年级抽取的菜圃评分统计:年级平均数中位数众数方差七年级8a9 2.65八年级88b c根据以上信息,解答下列问题:(1)填空:a=;b=;c=;(2)该校七年级共20个班,每班有4块菜圃,估计该校七年级“五星菜圃”的数量;(3)请你根据以上数据,评价一下两个年级的菜圃耕种情况谁更好.13.(2022秋•揭西县期中)某中学开展“中国梦、我的梦”演讲比赛,甲、乙两班根据初赛成绩各选出5名选手参加复赛,两个班各选出的5名选手的复赛成绩如图所示.(1)根据如图,分别求出两班复赛的平均成绩和方差;(2)根据(1)的计算结果,分析哪个班级的复赛成绩较好?14.(2022秋•昌黎县期中)某公司10名销售员,去年完成的销售额情况如表:销售额(单位:万元)34567810销售员人数(单位:人)1321111(1)求销售额的平均数、众数、中位数;(2)今年公司为了调动员工积极性,提高年销售额,准备采取超额有奖的措施,请根据(1)的结果,通过比较,合理确定今年每个销售员统一的销售额标准是多少万元?15.(2022秋•开州区期中)某校为了了解八、九年级男生立定跳远情况,现从八、九年级男生中各随机抽取了20名学生进行了测试,这些学生的成绩记为x(厘米),对数据进行整理,将所得的数据分为5组:(A组:0≤x<200;B组:200≤x<220;C组:220≤x<240;D组:240≤x<250;E组:x≥250).学校对数据进行分析后,得到如下部分信息:c.八年级被抽取的男生的立定跳远成绩在220≤x<240这一组的数据是:222 228 230 235 236 238d.九年级被抽取的男生的立定跳远成绩在220≤x<240这一组的数据是:228 235 238 238 238 238 238 239e.八、九年级男生立定跳远成绩的平均数、中位数、众数如下:年级八年级九年级平均数220230中位数m238众数218k根据以上信息,解答下列问题:(1)填空:m=;(2)若该校八年级有男生1400人、九年级有男生1600人,估计这两个年级男生立定跳远成绩不低于220的人数一共多少人;(3)根据以上数据分析,你认为该校八、九年级中哪个年级的男生立定跳远成绩更优异,请说明理由.(写出一条理由即可)16.(2022秋•海曙区期中)对于三个数a、b、c,我们用P{a,b,c}表示a、b、c这三个数的平均数.M{a,b,c}表示a、b、c这三个数的中位数.例如:P{﹣1,2,3}=,M{﹣1,2,3}=2.(1)若M{2,2x+2,4﹣2x}=2,求x的取值范围;(2)是否存在实数x,使得P{﹣2,x﹣4,2x)=M{2,2x+2,4﹣2x)?如果存在,求出x的值;如果不存在,请说明理由.17.(2022春•鼓楼区校级期中)我市某中学举办“网络安全知识答题竞赛”,初、高中部根据初赛成绩各选出5名选手组成初中代表队和高中代表队参加学校决赛,两个队各选出的5名选手的决赛成绩如图所示.平均分(分)中位数(分)众数(分)方差(分2)2初中部a85b s初中高中部85c100160(1)根据图示计算出a、b、c的值;(2)结合两队成绩的平均数和中位数进行分析,哪个队的决赛成绩较好?(3)计算初中代表队决赛成绩的方差s初中2,并判断哪一个代表队选手成绩较为稳定.。

2013年苏科版八年级上第六章数据的集中程度检测题含答案

2013年苏科版八年级上第六章数据的集中程度检测题含答案

第六章 数据的集中程度检测题【本试卷满分100分,测试时间90分钟】一、选择题(每小题3分,共30分)1.在一次射击练习中,某运动员命中的环数是错误!未找到引用源。

其中错误!未找到引用源。

是( )A.平均数B.中位数C.众数D.既是平均数又是中位数、众数从射击成绩的平均数评价甲、乙两人的射击水平,则( )A.甲比乙高B.甲、乙相同C.乙比甲高D.不能确定3.某中学举行歌咏比赛,六名评委对某歌手打分如下:77,82,78,95,83,75,去掉一个最高分和一个最低分后的平均分是( )A.79分B.80分C.81分D.82分4.某居民院内月底统计用电情况,其中3户用电45度,5户用电50度,6户用电42度,则平均每户用电( )A.41度B.42度C.45.5度D.46度5.对于数据3,3,2,3,6,3,10,3,6,3,2,(1)这组数据的众数是3,(2)这组数据的众数与中位数的数值不等,(3)这组数据的中位数与平均数的数值相等,(4)这组数据的平均数与众数的数值相等.其中正确的结论个数为( )A.1B.2C.3D.46.综合实践活动中,同学们做泥塑工艺制作.小明将活动组各同学的作品完成情况绘成了下面的条形统计图.根据图表,我们可以知道平均每个学生完成作品( )件.A.12B.8.625C.8.5D.9则这组数据的平均数,众数,中位数分别为()A.错误!未找到引用源。

B.错误!未找到引用源。

C.错误!未找到引用源。

D.错误!未找到引用源。

8.在樱桃采摘园,五位游客每人各采摘了一袋樱桃,质量分别为(单位:千克):5,2,3,5,5,则这组数据的平均数和中位数分别为()A.4,3B.3,5C.4,5D.5,59.下列说法中正确的有()①描述一组数据的平均数只有一个;②描述一组数据的中位数只有一个;③描述一组数据的众数只有一个;④描述一组数据的平均数、中位数和众数都一定是这组数据里的数;⑤一组数据中的一个数大小发生了变化,一定会影响这组数据的平均数、众数和中位数.A.1个B.2个C.3个D.4个10.某同学在本学期的前四次数学测验中得分依次是95、82、76、88,马上要进行第五次测验了,他希望五次成绩的平均分能达到85分,那么这次测验他应得()分.A.84B.85C.86D.87二、填空题(每小题3分,共24分)11.某班共有学生错误!未找到引用源。

第六章 数据的集中程度 单元检测卷

第六章 数据的集中程度 单元检测卷

第六章数据的集中程度单元检测卷(满分:100分时间:90分钟)一、选择题(每题3分,共24分)1.数名射击运动员第一轮比赛成绩如下表所示,则他们本轮比赛的平均成绩是( )A.7.8环B.7.9环C.8.1环D.8.2环2.某校开展为“希望小学”捐书活动,以下是八名学生捐书的册数:2,3,2,2,6,7,6,5,则这组数据的中位数为( )A.4 B.4.5 C.3 D.23.为了筹备校园文化艺术节,在班级联欢会的准备工作中,班长通过对全班同学爱吃哪几种水果的调查来决定最终买什么水果,下列调查数据中最值得关注的是( ) A.中位数B.平均数C.众数D.加权平均数4.一个班有40人,语文老师第一次统计这个班的语文平均成绩为80分,在复查时发现漏记了一名学生的成绩,该学生的成绩是80分,则这个班学生的实际平均成绩为( ) A.80分B.82分C.84分D.81分5.北京今年6月某日部分区县的最高气温如下表:则这10个区县该日最高气温的众数和中位数分别是( )A.32,32 B.32,30 C.30,32D.32,316.甲、乙、丙、丁四人的数学测验成绩分别为90分、90分,x分、80分,若这组数据的众数与平均数恰好相等,则这组数据的中位数是( )A.100分B.95分C.90分D.85分7.一个组共有15名学生,其中10名学生的平均成绩是x分,如果另外5名学生的成绩均为84分,那么整个组的平均成绩是( )A.842x+分B.1042015x+分C.108415x+分D.1042015+分8.若干名工人某天生产同一种零件,生产的零件数整理成条形图,如图所示,设他们生产零件的平均数为a,中位数为b,众数为c,则有( )A.b>a>cB.a>c>bC.a>b>cD.b>c>a二、填空题(每题3分,共30分)9.南京市2011年6月份某一周的日最高气温(单位:℃)如下:25,28,30,29,31,32,28,这周的日最高气温的平均值为_______.10.一次数学测试后,随机抽取八年级(2)班5名学生的成绩如下(单位:分):78,85,91,98,98,则这组数据的众数是_______分.11.数据-2,0,2,3,4,2,5的中位数是_______.12.“多彩贵州”选拔赛在遵义举行,评分规则是:去掉七位评委评分的一个最高分和一个最低分后的平均分为选手的最后得分,下表是七位评委给某位选手的评分情况:则这位选手的最后得分是_______分.13.某班40名同学的年龄情况如下表所示,则这40名同学年龄的中位数是_______岁.14.一次歌咏比赛中,六名评委给一名歌手的打分隋况为(单位:分):9.7,9.2,9.6,8.9,9.2,9.4,则这名歌手得分的众数是_______分,中位数是_______分,平均数约是_______分(结果保留2个有效数字).15.为了了解学生使用零花钱的情况,小军随机的抽查了他们班的30名学生,结果如下表:这些同学每天使用零花钱的众数是_______,中位数是_______.16.某商店一天出售运动鞋11双,其中各种尺码的鞋的销售量如下表:请你给该商店提出一条合理的建议:_____________________.17.某样本数据是2,2,x,3,3,6,如果这个样本的众数是2,则x的值是_______.18.八年级(1)班为希望工程捐款,该班共有50名同学,其中20名同学每人捐款15元,其余30名同学每人捐款10元,则该班同学平均每人捐款_______元,三、解答题(共46分)19.(6分)下面是小明课堂作业中的一道题:问题:10名工人某天生产同一种零件的个数如下:12,14,16,17,15,19,14,10,17,15,则这一天10名工人生产零件个数的中位数是多少?解:因为这组数据最中间的两个数据是15和19,所以(15+19)÷2=17.答:这一天10名工人生产零件个数的中位数是17.你同意他的做法吗?如果同意,请说明理由;如果不同意,请把你的做法写下来.20.(6分)如图,某学校规定学生的期末数学总评成绩由三部分构成:期末考试成绩、期中考试成绩、平日表现成绩,若小芳这三项的得分分别是92分、80分、84分,则她的期末数学总评成绩是多少?21.(8分)如图反映了八年级(3)班40名学生在一次数学测验中的成绩.(1)求这个班这次数学测验成绩的中位数和众数.(2)根据图形估计这个班这次数学测验的平均成绩.22.(8分)某政府部门招聘公务员1名,对前来应聘的A、B、C三人进行了三项测试,他们的各项测试成绩如下表所示:(1)如果根据三项测试的平均成绩确定录用人选,那么谁将被录用?(2)若将笔试、面试、群众评议三项测试的得分按4:5:1的比例来确定各人的测试成绩,此时谁将被录用?23.(8分)某校八年级(5)班的学生在学完“数据的集中程度”这一章后,对本校学生会倡导的“我为他人奉献一份爱”自愿捐款活动进行抽样调查,得到了一组学生捐款情况的数据.如图是根据这组数据绘制的统计图,图中从左到右各长方形的高度之比为2:4:5:8:6.又知此次调查中捐款20元和25元的学生一共28人.(1)他们一共调查了多少人?(2)这组数据的众数、中位数是多少?(3)若该校共有2000名学生,试估计全校学生大约捐款多少元?24.(10分)某校为选拔参加2012年全国初中数学竞赛的选手,对全体学生进行了集体培训,在集训期间进行了10次测试,假设其中两位同学的测试成绩如图(表)所示.(1)根据图表中所示的信息填写下表:(2)这两位同学的测试成绩各有什么特点(从不同的角度分别说出一条即可)?(3)为了使参赛选手取得好成绩,应选谁参加比赛?为什么?参考答案一、1.C2.A3.C4.B5.A6.C7.B8.A二、9.29℃10.98 11.212.9.513.15.5 14.9.29.39.315.4 6 16.答案不惟一,如多进40码的运动鞋17.2 18.12三、19.不同意中位数为1520.87.6(分)21.(1)中位数是75分,众数是75分(2)平均成绩在75分左右22.(1)A将被录用(2)B将被录用23.(1)50人(2)众数为20元,中位数为20元(3)34 800元24.(1)甲的中位数是94.5分,乙的众数是99分(2)从平均数来看,甲的平均数比乙的平均数高,但乙更有潜力,因为乙的最好成绩比甲的最好成绩高,甲的中位数比乙的中位数高,而乙的众数比甲的众数大.甲的成绩比较均匀,而乙的成绩高分较高,但成绩不稳(3) 10次测验,甲有8次不少于92分,而乙仅有6次不少于90分,若想获奖可能性大,可以选甲参赛;若想拿到更好的名次可选乙,因为乙有4次在99分以上。

第六章单元测试

第六章单元测试

2830 31 32 3437第六章《数据的集中程度》单元测试制卷:卞文辉 审核:张传美 时间:2009.9.??班级: 姓名: 学号: 一、选择题(3′×8)1.小明记录了今年元月份某五天的最低温度(单位:℃):-1,-4,0,-2,2这五天的最低温度的中位数是 ( ) A 1B 0C -1D -22.某校初二年级有十六个班,一次测试后,分别求得各个班级学生成绩的平均数,它们不完全相同,下列说法正确的是 ( )A 全年级学生的平均成绩一定在这十六个平均成绩的最小值与最大值之间B 将十六个平均成绩之和除以16,就得到全年级学生的平均成绩C 这十六个平均成绩的中位数就是全年级学生的平均成绩D 这十六个平均成绩的众数不可能是全年级学生的平均成绩3.某商场用加权平均数来确定什锦糖的单价,由单价为15元/千克的甲种糖果10千克,单价为12元/千克的乙种糖果20千克,单价为10元/千克的丙种糖果30千克混合成的什锦糖果的单价应定为( )A 11元/千克B 11.5元/千克C 12元/千克D 12.5元/千克4.某住宅小区六月份中1日至6日每天用水量变化情况 如折线图所示,那么这6天的平均用水量是( ) A 30吨 B 31 吨 C 32吨 D 33吨 5.某次射击训练中,一小组的成绩如上表所示:若该小组的平均成绩为7.7环,则成绩为8环的人数是( )A 1人B 2人C 3人D 4人6.甲、乙、丙、丁四人的数学测验成绩分别为90分、90分、x 分、80分,若这组数据的众数与平均数恰好相等,则这组数据的中位数是( )A 100分B 95分C 90分D 85分7.某居民小区开展节约用水活动,对该小区200户家庭用水情况统计分析,3月份比2月份则3月份平均每户节水量为()A 1.5立方米B 2 立方米C 1.8立方米D 1.6立方米8.下图是初二(1)班同学的一次体检中每分钟心跳次数的频率分布直方图(次数均为整数).已知该班只有5位同学的心跳每分钟75次,请观察下图,指出下列说法中错误的是()A 数据75落在第2小组B 第4小组的频率为0.1C 心跳为每分钟75次的人数占该班体检人数的1 12D 数据75一定是中位数二、填空题(3′×12)9.数据11,9,7,10,14,7,6,5的中位数是,众数是.10.在航天知识竞赛中,包括甲、乙两人在内的6名同学的平均分为74分,其中甲、乙两位同学平均分为89分,则另外4名同学的平均分为___________分.11.已知两组数据x1,,x2,,x3,,… x n和y1,,y2,,y3,,… y n的平均数分别为2,-1,则(1)x1+1,x2+1,x3+1,…x n+1的平均数是.(2)x1-y1,x2-y2,x3-y3 ,…x n-y n的平均数是.12.从一个班抽测了6名男生的身高,将测得的每一个数据(单位:cm)都减去165.0cm,结果如下:−1.2,0.1,−8.1,1.2,10.8,−7.0这6名男生中最高身高与最低身高的差是;这6名男生的平均身高约为________.13.某校在一次考试中,甲乙两班学生的数学成绩统计如下:请根据表格提供的信息回答下列问题:(1)甲班众数为分,乙班众数为分.(2)甲班的中位数是分,乙班的中位数是分.(3)若成绩在85分以上为优秀,则成绩较好的是班.优秀不及格等级三、解答题(10′×4)14.某家电商场出售A、B、C型三种型号的空调,其中A型价格为1520元/台,B型价格为1998元/台,C型价格为2549元/台,已知某一个月共售出530台,且销售情况如图所示.(1)计算商场本月每天销售额的平均数;(2)计算本月销售空调的中位数、众数;(3)请你为商场的进货提出有用的建议.15.某校初二年级全体320名学生在电脑培训前后各参加了一次水平相同的考试,考分都以同一标准划分成“不及格”、“及格”、“优秀”三个等级,为了了解电脑培训的效果,用抽签方式得到其中32名学生的两次考试考分等级,所绘制的统计图如图所示,试结合图形信息回答下列问题:(1)这32名学生培训前考分的中位数所在的等级是_______,培训后考分的中位数所在的等级是________.(2)这32名学生经过培训,考分等级“不合格”的百分比由_________下降到__________.(3)估计该校整个初二年级中,培训后考分等级为“合格”与“优秀”的学生共名.16.某年北京与巴黎的年降水量都是500毫米,它们的月降水量占全年降水量的百分比如下表:(1)计算两个城市的月平均降水量.(2)写出两个城市的降水量的中位数和众数.(3)通过观察北京与巴黎两个城市的降水情况,用你所学过的统计知识解释北京地区干旱与缺水的原因.17.为了帮助四川灾区学生重返课堂,某市团委发起了“爱心储蓄”活动,鼓励学生将自己的压岁钱和零花钱存入银行,定期一年,到期后可取回本金,而把利息..捐给灾区学生. 某校所有同学全都积极参加了这一活动,为灾区同学献一份爱心. 该校学生会根据本校这次活动绘制了如下统计图.请根据统计图中的信息,回答下列问题:(1)该校一共有多少名学生?(2)该校学生人均存款多少元?(3)已知银行一年期定期存款的年利率是2.25% ,若一名灾区学生一年学习用品的基本费用是400元,那么该校一年大约能为多少名灾区学生提供此项费用?(利息=本金×利率,免收利息税)。

数据的集中趋势与离散程度

数据的集中趋势与离散程度

(一)知识要点知识点1:表示数据集中趋势的代表平均数、众数、中位数都是描述一组数据集中趋势的特征数,只是描述的角度不同,其中平均数的应用最为广泛。

知识点2:表示数据离散程度的代表极差的定义:一组数据中最大值与最小值的差,能反映这组数据的变化范围,我们就把这样的差叫做极差。

极差=最大值-最小值,一般来说,极差小,则说明数据的波动幅度小。

知识点3:生活中与极差有关的例子在生活中,我们经常用极差来描述一组数据的离散程度,比如一支篮球队队员中最高身高与最矮身高的差。

一家公司成员中最高收入与最低收入的差。

知识点4:平均差的定义在一组数据x1,x2,…,x n中各数据与它们的平均数的差的绝对值的平均数即T=叫做这组数据的“平均差”。

“平均差”能刻画一组数据的离散程度,“平均差”越大,说明数据的离散程度越大。

知识点5:方差的定义在一组数据x1,x2,…,x n中,各数据与它们的平均数差的平方,它们的平均数,即S2=来描述这组数据的离散程度,并把S2叫做这组数据的方差。

知识点6:标准差方差的算术平方根,即用S=来描述这一组数据的离散程度,并把它叫做这组数据的标准差。

知识点7:方差与平均数的性质若x1,x2,…x n的方差是S2,平均数是,则有①x1+b,x2+b…x n+b的方差为S2,平均数是+b②ax1,ax2,…ax n的方差为a2s2,平均数是a③ax1+b,ax2+b,…ax n+b的方差为a2s2,平均数是a+b同步练习:1为了从甲、乙两名学生中选拔一人参加电脑知识竞赛,在相同条件下对他的电脑知识进行了10次测试,成绩如下:(单位:分)甲的成绩76849086818786828583乙的成绩82848589798091897479回答下列问题:(1)甲学生成绩的众数是分,乙学生成绩的中位数是分。

(2)若甲学生成绩的平均数为,乙学生成绩的平均数为,则与的大小关系是。

(3)经计算知=13.2,=26.36,这说明。

第20章数据的集中趋势和离散程度复习总结

第20章数据的集中趋势和离散程度复习总结
在增长,粮
习题:
(1)计算八·二班学生有多少件作品获奖? (2)求出八·二班获奖作品的平均成绩。 (3)求出获奖作品成绩的众数和中位数。
极差:
1、极差的意义 2、极差的计算方法:
方差:
1、方差的意义 2、方差的计算方法
标准差:
1、标准差的意义 2、标准差的计算方法
方差的运算性质:
预习检测:
数据的离散程度是数据分布的另一个重要 特征,它所反映的是各个数据远离其中心 值的程度,可利用极差、方差、标准差 等刻 画一组数据的离散程度。
平均数:
1、平均数的意义 2、平均数的计算方法:
中位数:
1、中位数的意义 2、中位数的计算方法
众数:
1、众数的意义 2、众数的计算方法
平均数、中位数、众数的异同点:
相同点有哪些? 不同点有哪些?
梳理:
1.若数据 x1,x2,,xn,则平均数=

2.若n个数据中x1出现f1次,x2出现f2次,…xn出现
x1fn次,则平均数=。3.一般地,个数据按大小顺序排列,处于 的
一个数据(或
)叫做这组数据的中位数.
4.一般地,一组数据中出现次数
数据的集中趋势和 离散程度
单元整理和复习
复习回顾:
集中 趋势
平均数 中位数 众数
离散 程度
极差 方差 标准差

样本平均数

估计

总体平均数


样本方差

估计

总体方差
复习提纲:
1、数据的集中趋势的三个特征数 2、数据的离散程度的三个特征数 3、用样本估计总体
预习检测:
数据的代表是指利用平均数、中位数、众数等 刻画一组数据的集中趋势。所谓集中趋势 是指一组数据向某一中心值靠拢的倾向, 测量集中趋势就是寻找数据一般水平的代 表值或中心值。

第六章 数据的集中程度

第六章 数据的集中程度

6.1平均数教学目标:1.理解平均数的概念,会计算平均数2.了解加权平均数,会计算加权平均数3.会用样本的加权平均数来估计总体的平均数教学重点:平均数的计算(包括加权平均数)教学难点:例2的问题情境比较复杂,还涉及加权平均数的计算,是本节教学的难点教学过程:一、创设情境 导入新课农场里有100棵果树,水果在收获前,果农常会先估计果园里果树的产量。

你认为该怎样估计呢?二、合作交流 解读探究果农从100棵苹果数中任意选出10棵,数出这10棵苹果树上的苹果数,得到以下数据(单位:个)154,150,155,155,159,150,152,155,153,157你能估计出平均每棵树的苹果个数吗?如果有n 个数,,,21n x x x 我们把()n x x x n++211叫做这n 个数的算术平均数(arithmetic mean ),简称平均数(mean ),记做x (读做“x 拔” )大概果园里果树的产量有多少个?生:15400100154=⨯(个)用10克树的平均苹果个数154个来估计100棵树的平均苹果个数。

在实践中,常用样本的平均数来估计总体的平均数。

做一做某中学足球队20名队员的身高如下(单位:cm )170,167,171,168,160,172,168,162,172,169,164,174,169,165,175,170,165,167,170,172.请计算这20名队员的平均身高。

例1 统计一名射击运动员在某次训练中15次射击的中靶环数,获得如下数据:6,7,8,7,7,8,10,9,8,8,9,9,8,10,9。

求这次训练中该运动员射击的平均成绩。

上例中,2453121049583716++++⨯+⨯+⨯+⨯+⨯=x 这种形式的平均数叫做加权平均数(weighted mean ),其中1,3,5,4,2表示各相同数据的个数,称为权(weight )。

“权”越大,对平均数的影响就越大例2:某校在一次广播操比赛中,801班,802班,803班的各项得分如下:服装统一 动作整齐 动作准确 801班80 84 87 802班98 78 80 803班 90 82 83(1)如果根据三项得分的平均数从高到低确定名次,那么三个班的排名顺序怎样?解 (1)三个班得分的平均数分别为:()7.83878480311≈++=x ()3.85807898312≈++=x ()85838290313≈++=x (2)如果学校认为这三项的重要程度有所不同,而给予这三个项目的权的比为15∶35∶50。

【个人精编】数据集中趋势和离散程度笔记

【个人精编】数据集中趋势和离散程度笔记

数据的集中趋势和离散程度笔记一、知识点梳理知识点1:表示数据集中趋势的代表平均数、众数、中位数都是描述一组数据集中趋势的特征数,只是描述的角度不同,其中平均数的应用最为广泛。

(1)平均数算术平均数(简称为平均数):121()n xx x x n(公式一)①一般地,如果在一组数据中,x 1出现f 1次,x 2出现f 2次,……,x k 出现f k 次,(f 1,f 2,…f k 为正整数),则这组数据的平均数:当n 个数据中某些数据反复出现时,用该公式较简洁; f 1+f 2+…+f k =n (数据的总个数)。

②一般地,如果一组数据都在某个数a 上下波动时,就可以采用把原来每个数据都减去a ,得一组新数据,再算得这组新数据的平均数'x ,这样原来数据的平均数是:x =a +'x (公式三)平均数定义公式和两个简化计算公式都很重要,应根据具体情况,恰当选用。

特别的:一组数据x 1,x 2,…,x n 的平均数为x ,①若每个数据都扩大a 倍,即ax 1,ax 2,…,ax n ,则平均数也扩大a 倍,即a x ; ②若每个数据都增加b ,即x 1+b ,x 2+b ,…,x n +b ,则平均数增加b ,即x +b ; ③若每个数据都扩大a 倍后又都增加b ,则平均数也扩大a 倍后增加b ,即a x +b . 当数据组中数据较大又在某个数值左右波动或数据之间存在某种倍数关系时,利用这些规律求平均数比较直接、简便。

加权平均数在计算数据的平均数时,往往根据其重要程度,分别给每个数据一个“权”,由此求出平均数叫做加权平均数。

恒量各个数据“重要程度”的数值叫做权。

相同数据的个数叫做权,这个“权”含有所占分量轻重的意思。

ω1越大,表示x 1的个数越多,于是x 1的“权”就越重。

若n 个数x 1,x 2,…,x n 的权是分别是ω1,ω2,…,ωn ,则x =nnn x x x ωωωωωω++++++ 212211① 当ω1=ω2=…=ωn ,即各项的权相等时,加权平均数就是算术平均数。

第六章第1课时 平均数(1)

第六章第1课时 平均数(1)

第六章数据的集中程度第1课时平均数(1)预学目标1.阅读平均数的定义,初步了解平均数的表示方法、读法及计算公式.2.理解教材“思考”中小丽和小明两种不同的计算平均数的方法,尝试总结计算平均数的三种方法,并思考它们分别在数据具备怎样的特点时使用.3.当一组数据中含有字母时,灵活运用平均数的定义计算平均数.知识梳理1.平均数的定义、表示方法和读法对于n个数x1,x2,…,x n我们把1n(x1+x2+…+x n)叫做这n个数的_______,简称_______,记作_______,读作_______.2.平均数的三种计算方法(1)当一组数据的大小比较分散时,直接用平均数的定义计算平均数.例如:求5,8,4,3,2,26的平均数,x=______________=_______;(2)当一组数据都较大且很接近某数a时,可将各个数据同时减去数a,得到一组新数据,求出新数据的平均数后加上a,即为原数据的平均数.例如:求78,82,97,91,89,91的平均数,x=90+16×(-12-8+7+1-1+1)=_______;(3)当一组数据的个数较多且其中一些数据多次重复出现时,计算时可用乘法形式简化书写过程,使计算简便.例如:求2,8,2,8,10,10,10,10,2,6,6,10的平均数,x=112×(10×5+8×2+6×2+2×3)=_______.3.平均数定义的灵活运用已知5个数的和为a,另6个数的和为b,则这11个数的总和为_______,平均数为_______.例题精讲例1 李师傅随机抽查了本单位今年四月份里6天的日用水量(单位:吨),结果如下:7,8,8,7,6,6,根据这些数据,估计四月份该单位的用水总量为_______吨.提示:先计算这6天的日用水量的平均数,再乘四月份的总天数,从而估计出四月份的用水总量.解答:(7+8+8+-7+6+6)÷6×30=210,因此估计四月份该单位的用水总量为210吨.点评:抽查的6天的日用水量就是一个样本,用样本的平均数估计总体的平均数再求总量.例2一个地区某月前两周从星期一至星期五各天的最高气温依次是(单位:℃):x1,x2,x3,x4,x5,x1+1,x2+2,x3+3,x4+4,x5+5,若第一周五天的平均最高气温是20℃,则第二周五天的平均最高气温是_______.提示:由平均数的定义求出x1+x2+x3+x4+x5的值,就可以求出第二周五天最高气温的总和,从而求出第二周五天的平均最高气温.解答:∵x1,x2,x3,x4,x5的平均数为20,∴x1+x2+x3+x4+x5=20×5=100.∴第二周五天的平均最高气温=15( x1+1+x2+2+x3+3+x4+4+x5+5)=15(x1+x2+x3+x4+x5+1+2+3+4+5)=15×(100+15)=23.点评:解决本题的关键是紧扣平均数的定义,运用整体思想.热身练习1.在一次航天知识竞赛中,包括甲同学在内的6名同学的平均分为74分,其中甲同学考了89分,则除甲以外的5名同学的平均分为_______分.2.数据103,101,100,114,108,110,109,98,102的平均数是_______.3.在一次青年歌手大奖赛上,七位评委为某位歌手打出的分数如下:9.5,9.4,9.6,9.9,9.3,9.7,9.0,去掉一个最高分和一个最低分后,所剩数据的平均数是( )A.9.2 B.9.3 C.9.4 D.9.54.刚刚喜迁新居的小华同学为估计今年六月份(30天)的家庭用电量,在六月上旬连续7天同一时刻观察电表显示的度数并记录如下.你预计小华同学家六月份的用电总量约是( )A.1080度B.1240度C.1030度D.1200度5.已知小红的成绩如下表:(1)小红这三次文化测试成绩的平均分是_______分(2)用(1)中的平均分加上综合素质成绩就是小红的总成绩.用同样的方法计算出小红所在班级全部同学的总成绩并绘制了如图所示的频数分布直方图,则小红所在的班级共有_______名同学.(3)学校将根据总成绩由高到低保送15名同学进入高中学习,小红能被保送吗?并说明理由.参考答案1.71 2.105 3.D 4.A 5.(1) 590 (2) 45(3)小红不一定能被保送因为小红所在的班级中总成绩在600分以上的就有14人,而整个学校的成绩不知道,所以不能确定小红在学校所占的名次。

数据的集中趋势和离散程度知识点

数据的集中趋势和离散程度知识点

数据的集中趋势和离散程度知识点文章一:《啥是数据的集中趋势?》朋友们,咱今天来聊聊数据的集中趋势。

比如说,咱班这次考试的成绩。

要是大部分同学都考了 80 分左右,那 80 分就可能是这个成绩数据的集中趋势。

再比如,咱去菜市场买菜。

一堆苹果,大多数都在半斤左右,那半斤就是这堆苹果重量数据的集中趋势。

像平均数、中位数和众数,都是能帮咱找到数据集中趋势的好帮手。

就拿平均数来说,一家人一个月的水电费,把所有费用加起来除以天数,得到的那个数就是平均数,能大概反映出这家人每天用水电的平均情况。

数据的集中趋势能让咱一下子就明白一堆数据的中心在哪儿,是不是挺有用?文章二:《走进数据的集中趋势》亲爱的小伙伴们,今天咱们来探索一下数据的集中趋势。

想象一下,学校运动会上,大家跑步的时间。

如果很多同学都在2 分钟左右跑完,那 2 分钟差不多就是跑步时间这个数据的集中趋势啦。

还有,大家一起收集树叶,看看树叶的大小。

要是多数树叶的面积都差不多,那这个差不多的大小就是树叶面积数据的集中趋势。

咱举个例子哈,一个班级同学的身高,把所有人的身高加起来除以人数,得到的那个数就是平均身高。

这个平均身高就能让咱知道这个班同学大概的身高水平。

再比如说,一组数字 3、5、5、7、8,这里面 5 出现的次数最多,那 5 就是众数,也是这组数据的集中趋势之一。

所以说,了解数据的集中趋势能帮咱快速抓住重点,是不是很有意思?文章三:《数据的集中趋势,你懂了吗?》朋友们好呀!今天咱们要说的数据的集中趋势,其实不难理解。

比如说,咱们去超市买零食,看各种零食的价格。

要是大部分零食都在 5 块钱左右,那 5 块钱就是这些价格数据的集中趋势。

再比如,咱们统计一个月里每天的气温。

如果有好多天的气温都在 25 度上下,那 25 度就可能是这个气温数据的集中趋势。

就拿咱班同学的零花钱来说吧,把大家的零花钱都加起来,再除以人数,算出来的那个数就是平均零花钱。

通过这个平均零花钱,咱能大概知道同学们零花钱的一般情况。

数据的集中趋势和离散程度

数据的集中趋势和离散程度

数据的集中趋势和离散程度作者:***来源:《中学生数理化·八年级数学人教版》2020年第06期客觀事物带有各种信息,这些信息的表现形式和载体叫作数据.例如,测量温度、湿度、气压、风力、风向等所产生的各种记录,都是研究气象问题离不开的数据,统计过程主要分为三步:第一步是收集数据;第二步是整理数据,即对收集的原始数据进行整理、加工,从中提取出数据的代表;第三步是分析数据,即通过数据的代表研究数据中蕴涵的规律,从而研究已发生的事或预测将发生的事.一、数据的集中趋势分析数据时,通常关注“一组数据围绕哪个中心数值分布”.这个问题关系到一组数据的平均水平或一般情况,对发现事物的内在规律有重要参考价值,在统计学中,把一组数据向某一中心数值靠拢的情形,称为这组数据的集中趋势,为描述数据的集中趋势,可以选择不同的数据代表.如果从数据取值大小的角度描述,可用平均数作为数据代表:如果从数据排列位置的角度描述,可用中位数作为数据代表;如果从不同数据出现次数的角度描述,可用众数作为数据代表.这三个数据代表从不同角度反映数据的集中趋势,它们各有各的作用,分别适合于不同情况的数据分析.例1 为比较A,B两个玉米品种,将它们分别种植在面积相等的多块试验田中,每块试验田只种一种玉米,下表记录了两种玉米收获后的产量分布情况.表中第一行为单块试验田产量,下面两行分别为A,B两个品种中与第一行产量对应的试验田的块数.根据表中的数据解答下列问题:(1)分别求A,B两种玉米单块试验田产量的平均数,并说明其意义;(2)分别求A.B两种玉米单块试验田产量的中位数,并说明其意义:(3)分别求A,B两种玉米单块试验田产量的众数,并说明其意义.解:(1)从表中可知.A种玉米单块试验田产量(单位:kg)为700,750,800,850,900,950的试验田块数分别为4,20,26,20,18 ,12.通过计算加权平均数,得A种玉米单块试验田产量的平均数为XA=832 kg.同理,B种玉米单块试验田产量的平均数为xB≈ 827 kg.从计算结果可知,在单块试验田平均产量上A比B高5 kg.加权平均数与通常的算术平均数本质相同,即n个数之和除以n的结果,只是加权平均数计算起来更简捷.(2)将A的全部单块试验田产量(共100个)从小到大依次排列,相同的数据重复写,这100个数据中处于正中间位置的是第50个数据800和第51个数据850,这两数的平均数(800+850)÷2=825为A种玉米单块试验田产量的中位数,将B的全部单块试验田产量(共99个)从小到大依次排列,相同的数据重复写,这99个数据中处于正中间位置的是第50个数据850,它为B种玉米单块试验田产量的中位数.从计算结果可知,A的数据中小于825的和大于825的各占50个;B的数据中第50个数据850之前和之后的数据各占49个.这说明825 kg和850 kg可以分别作为A,B两种玉米单块试验田产量的中等水平的代表.中位数可以不是原始数据.排序时既可以从小到大,也可以从大到小,两种排法找出的中位数相同.(3)A的全部数据(共100个)中,出现次数最多的是800 kg(26次),800 kg即这组数据的众数.B的全部数据(共99个)中,出现次数最多的是800 kg(25次)和850 kg (25次),800 kg和850 kg都是这组数据的众数.从计算结果可知,虽然各块试验田中产量不尽相同,但也可能有规律存在,即在一般情形下,A的单块试验田产量是800 kg的可能性较大,B的单块试验田产量是800 kg或850 kg的可能性较大.可以看出,一组数据的众数可能是一个,也可能不止一个.众数是原始数据中的数据.平均数是最常用的一个数据代表,它通常能反映一组数据的平均水平.平均数的计算,要用到原始数据中的每一个数据.因此,一组数据中如有极端值(与多数数据相比过大或过小的个别数据)时,极端值可能对平均数影响较大.这种情形下如仍用平均数作为数据代表,往往与多数数据的大小产生较大偏差,不能恰如其分地反映一组数据的中心数值,这时,选择中位数或众数作为数据代表,或更能客观地反映一组数据的中心数值,例2 下表为某地9月份每天空气中细颗粒物(即PM 2.5)的测定值及相应的天数.(1)分别求表中数据的平均数、中位数和众数.(2)所得的平均数能客观反映该地9月份空气中细颗粒物的含量吗?解:(l)平均数约为34.9 yg/m3,中位数为24μg/m3,众数为24 μg/m3.(2)观察表中数据不难发现,30天中有29天的测定值都不超过25 μg/m3,它们与平均数差距较大;30天中只有1天的测定值360μLg/m3远高过平均数,这可能是由于一次突发事故造成了空气严重污染.显然,因为有360这个极端值,才使得平均数的值很大.如果以平均数34.9 μg/m3作为数据代表,则不能客观反映该地9月份空气中细颗粒物含量的一般状况.而以中位数或众数24μg/m3作为数据代表,则能较好地反映客观实际.二、数据的离散程度“一组数据中各个数据与这组数据的中心数值的偏离程度有多大?”这是数据分析所关注的另一个主要问题,由它能从整体上描述这组数据的聚散状态.在统计学中,把一组数据中各个数据与这组数据的中心数值的偏离程度,称为这组数据的离散程度或离中程度.它反映一组数据大小的波动状态,从而描述了这组数据的稳定性.方差是表示离散程度的常用数据代表,它的计算方法是,先计算一组数据的平均数,再计算各数据与所得平均数之差的平方和,最后用所得平方和除以这组数据的个数,这个结果被用于反映一组数据与平均数的偏离程度,对数据的变化幅度给予了定量的刻画.例3 分别计算例1中A.B两组数据的方差,由所得方差你能看出哪种可能性?解:s2=4 876,s2≈5 061.从两个方差看,B的略大于A的,即B的数据比A的数据的离散程度略高,也即B的数据起伏略大,而A的数据相对来说略为稳定.同学们可能会想:为什么计算方差要用各数据与平均数之差的平方和?如果直接把各数据与平均数之差相加岂不更简单?一般情况下,一组数据中可能有些数据比平均数大,有些数据比平均数小.如果直接用它们减平均数,则这些差会有正有负,如果再把这些差相加,就会出现正负相抵,例如,一组数据为2,2,3,3,4,4,其平均数为3,各数据与平均数之差分别为一1,-1,0,0,1,1.这些差之和为0.但这并不意味着这组数据都是紧靠平均数的.使用各数据与平均数之差的平方和,则利用了平方的非负性,防止做加法时出现正负相抵而隐藏了相关数据对平均数的偏离.方差名称中的“方”正是“平方”的简称.你也许会问:为什么不用差的绝对值,而要用差的平方来分析离散程度呢?直接用绝对值不是也可以避免出现负数吗?不使用绝对值,是因为取绝对值在运算上要考虑差的正负,取差的平方则不需要考虑差的符号,而且只要四则运算即可获得避免正负相抵的效果.所以人们选择用差的平方来计算方差.观察下图,图1中数据的方差应大于图2中数据的方差,这一结论可通过测量距离或运用方差公式计算来证明.。

数据的集中程度汇总

数据的集中程度汇总

数据的集中程度汇总一、中心位置度量:1. 平均数(Mean):即为数据的算术平均值,是统计数据最常用的中心位置度量。

它可以通过将所有数据值相加并除以数据的个数来计算得到。

平均数能够较好地描述数据的集中程度,但受到极端值的影响较大。

2. 中位数(Median):中位数是将数据排序后,位于中间位置的数值。

对于有奇数个数据的集合,中位数就是排序后的中间值;对于有偶数个数据的集合,中位数就是排序后中间两个值的平均数。

中位数对极端值不敏感,所以在一些含有异常值的数据集中,使用中位数来描述数据的集中程度会更加合适。

3. 众数(Mode):众数是数据集中出现频率最高的值。

在一些特定情况下,众数可能比其他中心位置度量更适用,例如描述离散型数据的集中程度时。

二、离散位置度量:1. 方差(Variance):方差衡量了数据与数据均值的偏差程度,是一种常见的离散位置度量。

方差的计算方法是将每个数据值与数据均值的差异平方后相加,然后除以数据的个数。

方差越大,数据的分散程度越大,而方差越小,数据的集中程度则越大。

方差受到极端值的影响较大。

2. 标准差(Standard Deviation):标准差是方差的平方根,是方差的一种常用变体。

标准差的计算方法与方差类似,但由于是对方差开根号所以单位与原数据一致,更易于理解和使用。

3. 平均绝对偏差(Mean Absolute Deviation,MAD):平均绝对偏差是个体数值与平均值之间差异的绝对值的平均数,是对数据的偏离程度的度量。

与方差相比,平均绝对偏差对极端值的敏感度较低。

三、其他度量指标:1. 四分位数(Quantiles):四分位数将数据分为四个相等的部分,分别为上四分位数(Q1,即25%分位数)、中位数(Q2,即50%分位数)、下四分位数(Q3,即75%分位数)。

通过四分位数可以更加全面地了解数据的集中程度和分布情况。

2. 百分位数(Percentiles):百分位数是将数据分为相应比例的等价部分,例如50%分位数即为中位数,20%分位数即为数据中值处于前20%的数值,以此类推。

数据的集中程度(复习)

数据的集中程度(复习)

数据的集中程度(复习)213168 武进卢家巷实验学校刘海明一、教学目标:1、进一步认识平均数、众数、中位数都是数据的代表。

2、通过本节课的学习还应了解平均数、中位数、众数在描述数据时的差异。

3、能灵活应用这三个数据代表解决实际问题。

二、重点、难点和突破难点的方法1、重点:了解平均数、中位数、众数之间的差异。

2、难点:灵活运用这三个数据代表解决问题。

教学过程:小问题1 数据1,3,4,0,-3的平均数是_2 数据88,90,93,89的平均数是_3 一次数学考试八年级1班有50人,平均分84分,2班有40人,平均分85分,这2个班平均成绩是多少分?(精确到0.1)4 数据:40、37、x、64的平均数是53,则x的值是_5 数据11, 8, 2, 2, 7, 3, 2, 0, 5的众数_6 数据15, 20, 20, 22,30,30的众数是_7 判断 :-3 ,0,4,6,7的中位数是4 .()8 判断:3,5,0,6,9的中位数是0. ()9 求数据-7,3,8,7的中位数?生活中的数学1.有十五位同学参加竞赛,且他们的分数互不相同,取八位同学进入决赛,某人知道了自己的分数以后,还需知道这十五位同学的分数的什么量,就能判断他能不能进入决赛?某市有100万人,在环保日,该市第一中学八年级调查了其中10户居民一天产生的生活垃圾2)在这一天中,这10居民平均每人产生多少千克的生活垃圾?(结果一位小数)3)若以(2) 的结果作为每天实际产生的生活垃圾数量,则该市用载重量为6吨的汽车运送这些生活垃圾,每天运4次,需要多小辆这样的汽车才能当天运完?共同提高1)某班一小组6人的英语成绩如下:78,82,97,91,89,91.则这6个数的平均数是_____,•中位数是______,众数是______。

2)一组数据按从小到大顺序排列为:13、14、19、x、23、27、28、31,•其中位数是22,则 x为_______.3) 5个正整数从小到大排列,若这组数据的中位数是3,众数是7且唯一,则这5个正整数的和是( )A.20B.21C.22D.234)在数据-1,0, 4,5,8中插入一个数据x ,使得这组数据的中位数是3,则x= _5)数据8, 8, x, 6的众数与平均数相同,那么它们的中位数是_。

数据的集中趋势与离散程度——知识讲解

数据的集中趋势与离散程度——知识讲解

数据的集中趋势与离散程度——知识讲解撰稿:杜少波 责编:张晓新【学习目标】1、掌握平均数、加权平均数的意义和求法,体会用样本平均数估计总体平均数的思想.2、了解中位数和众数的意义,掌握中位数的求法,并会找一组数据的众数.3、了解方差的意义及求法,体会用样本方差估计总体方差的思想,能用方差解决一些实际问题.4、从事收集、整理、描述和分析数据得出结论的统计活动,经历数据处理的基本过程,体验统计与生活的联系,感受统计在生活和生产中的作用. 【要点梳理】要点一、平均数和加权平均数 1.平均数一般地,如果有n 个数据123n x x x x 、、、…,那么,()1231n x x x x n⋅⋅⋅++++就是这组数据的算术平均数,简称平均数,用“x ”表示.即()1231n x x x x x n=⋅⋅⋅++++. 要点诠释:(1)平均数表示一组数据的“平均水平”,反映了一组数据的集中趋势.(2)平均数的大小与一组数据里的每个数据均有关系,其中任意一个数据的变动都会引起平均数的变动,所以平均数容易受到个别特殊值的影响. 2.加权平均数若数据1x 出现1f 次,2x 出现2f 次,3x 出现3f 次……k x 出现k f 次,这组数据的平均数为x ,则x =1122k k12kx f x f x f f f +f +++++……(其中1f +2f +…+k f =n ,k ≤n )在一组数据中,数据重复出现的次数f 叫做这个数据的权.按照上述方法求出的平均数,叫做加权平均数.数据的权能够反映数据的相对“重要程度”. 要点诠释:(1)k f 越大,表示k x 的个数越多,“权”就越重. “权”越重,对平均数的影响就越大.加权平均数的分母恰好为各权的和.(2)加权平均数实际上是算术平均数的另一种表现形式,是平均数的简便运算. 要点二、中位数和众数 1.中位数一般地,当一组数据按大小顺序排列后,位于正中间的一个数据(当数据的个数是奇数时)或正中间两个数据的平均数(当数据的个数是偶数时)叫做这组数据的中位数. 要点诠释:(1)一组数据的中位数是唯一的;一组数据的中位数不一定出现在这组数据中. (2)由一组数据的中位数可以知道中位数以上和以下数据各占一半. 2.众数一组数据中出现次数最多的数据叫做这组数据的众数. 要点诠释:(1)一组数据的众数一定出现在这组数据中;一组数据的众数可能不止一个. (2)众数是一组数据中出现次数最多的数据而不是数据出现的次数. 要点三、平均数、中位数与众数的联系与区别联系:平均数、众数、中位数都是反映数据集中趋势的统计量,能从不同的角度提供信息.区别:平均数能充分利用数据提供的信息,它的使用最为广泛,能刻画一组数据整体的平均状态,但不能反映个体性质,易受极端值的影响.中位数代表了这组数据数值大小的“中点”,不易受极端值影响,但不能充分利用所有数据的信息.众数反映一组数据中出现次数最多的数据.一组数据中,众数可能不止一个,也可能没有.总之,要根据具体问题来选择刻画一组数据的集中程度的统计量,选择的统计量要能够更客观地反映实际背景. 要点四、方差设一组数据是12,,n x x x …,,它们的平均数是x ,我们用()[]222212)(...)(1x x x x x x nS n -++-+-=来衡量这组数据的离散程度,并把它叫做这组数据的方差.一组数据的方差越大,说明这组数据的离散程度越大,越不稳定. 在两组数据的平均数相差较大时,以及在比较单位不同的两组数据时,不能直接用方差来比较它们的离散程度. 要点诠释:(1)方差反映的是一组数据偏离平均值的情况.方差越大,数据的波动越大;方差越小,数据的波动越小.(2)一组数据的每一个数都加上(或减去)同一个常数,所得的一组新数据的方差不变. (3)一组数据的每一个数据都变为原来的k 倍,则所得的一组新数据的方差变为原来的2k倍.要点五、用样本估计总体在考察总体的平均水平或方差时,往往都是通过抽取样本,用样本的平均水平或方差近似估计得到总体的平均水平或方差. 要点诠释:(1)如果总体数量太多,或者从总体中抽取个体的试验带有破坏性,都应该抽取样本.取样必须具有尽可能大的代表性.(2)用样本估计总体时,样本容量越大,样本对总体的估计也越精确.样本容量的确定既要考虑问题本身的需要,又要考虑实现的可能性所付出的代价. 【典型例题】类型一、平均数、众数和中位数1、某选手在青歌赛中的得分如下(单位:分):99.60,99.45,99.60,99.70,98.80,99.60,99.83,则这位选手得分的众数和中位数分别是( ) A .99.60,99.70 B .99.60,99.60 C .99.60,98.80 D .99.70,99.60 【思路点拨】根据众数和中位数的定义求解即可. 【答案】B ;【解析】解:数据99.60出现3次,次数最多,所以众数是99.60;数据按从小到大排列:99.45,99.60,99.60,99.60,99.70,99.80,99.83,中位数是99.60.故选B .【总结升华】本题考查了中位数,众数的意义.找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数.如果数据有奇数个,则正中间的数字即为所求;如果是偶数个,则找中间两位数的平均数.众数是一组数据中出现次数最多的数据,注意众数可以不止一个. 举一反三:【高清课堂 数据的分析 例8】【变式1】若数据3.2,3.4,3.2,x ,3.9,3.7的中位数是3.5,则其众数是________,平均数是________. 【答案】3.2;3.5; 解:由题意3.43.5, 3.62x x +==,所以众数是3.2,平均数是3.5. 【变式2】某中学随机地调查了50名学生,了解他们一周在校的体育锻炼时间,结果如下表所示:则这50名学生这一周在校的平均体育锻炼时间是( ) A .6.2小时 B .6.4小时 C .6.5小时 D .7小时 【答案】B ;解:根据题意得:(5×10+6×15+7×20+8×5)÷50 =(50+90+140+40)÷50 =320÷50 =6.4(小时).故这50名学生这一周在校的平均体育锻炼时间是6.4小时. 类型二、利用平均数、众数、中位数解决问题2、某校欲招聘一名数学教师,学校对甲、乙、丙三位候选人进行了三项能力测试,各项测试成绩满分均为100分,根据结果择优录用.三位候选人的各项测试成绩如下表所示:测试项目 测试成绩甲 乙 丙 教学能力 85 73 73 科研能力 70 71 65 组织能力647284(2)根据实际需要,学校将教学、科研和组织三项能力测试得分按5:3:2的比例确定每人的成绩,谁将被录用,说明理由. 【思路点拨】(1)运用求平均数公式()1231n x x x x n⋅⋅⋅++++即可求出三人的平均成绩,比较得出结果;(2)将三人的成绩按比例求出测试成绩,比较得出结果. 【答案与解析】解:(1)甲的平均成绩为:(85+70+64)÷3=73,乙的平均成绩为:(73+71+72)÷3=72, 丙的平均成绩为:(73+65+84)÷3=74, ∴ 候选人丙将被录用.(2)甲的测试成绩为:(85×5+70×3+64×2)÷(5+3+2)=76.3,乙的测试成绩为:(73×5+71×3+72×2)÷(5+3+2)=72.2, 丙的测试成绩为:(73×5+65×3+84×2)÷(5+3+2)=72.8,∴ 候选人甲将被录用.【总结升华】5、3、2即各个数据的“权”,反映了各个数据在这组数据中的重要程度,按加权平均数来录用. 举一反三:【高清课堂 数据的分析 例10】【变式】小王在八年级第一学期的数学成绩分别为:测验一得89分,测验二得78分,测验三得85分,期中考试得90分,期末考试得87分,如果按照平时、期中、期末的10%、30%、60%量分,那么小王该学期的总评成绩应该为多少?【答案】解:小王平时测试的平均成绩897885843x ++==(分). 所以8410%9030%8760%87.610%30%60%⨯+⨯+⨯=++(分). 答:小王该学期的总评成绩应该为87.6分. 【高清课堂 数据的分析 例11】3、下表是七年级(2)班30名学生期中考试数学成绩表(已破损).已知该班学生期中考试数学成绩平均分是76分. (1)求该班80分和90分的人数分别是多少?(2)设此班30名学生成绩的众数为a ,中位数为b ,求a b +的值. 【答案与解析】解:(1)设该班得80分的有x 人,得90分的有y 人.根据题意和平均数的定义,得257330,763050260570780901003,x y x y +++++=⎧⎨⨯=⨯+⨯+⨯+++⨯⎩整理得13,89109,x y x y +=⎧⎨+=⎩ 解得8,5.x y =⎧⎨=⎩即该班得80分的有8人,得90分的有5人.(2)因为80分出现8次且出现次数最多.所以a =80,第15、16两个数均为80分,所以b =80,则a b +=80+80=160.【总结升华】本题为统计题,考查平均数、众数与中位数的意义.解题的关键是准确理解题意,建立等量关系. 举一反三:【变式】某教师为了对学生零花钱的使用进行教育指导,对全班50名学生每人一周内的零花钱数额进行了调查统计,并绘制了统计图表如图所示的统计图.零花钱数额(元) 5 10 15 20学生个数(个)a15 20 5请根据图表中的信息,回答以下问题.(1)求a的值;(2)求这50名学生每人一周内的零花钱额的众数和平均数.【答案】解:(1) a=50-15-20-5=10.(2)众数是15.平均数为150(5×10+10×15+15×20+20×5)=12.类型三、方差4.甲、乙两班举行汉字输入比赛,•参赛学生每分钟输入汉字的个数经统计计算后,填入下表:班级参加人数中位数方差平均字数甲 55 149 191 135乙 55 151 110 135(1)甲、乙两班学生成绩的平均水平相同;(2)乙班优秀的人数多于甲班优秀的人数(每分钟输入汉字150个为优秀)(3)甲班学生成绩的波动情况比乙班成绩波动大.A.(1)(2) B.(1)(2)(3) C.(2)(3) D.(1)(3)【思路点拨】理清表格中所列数据代表的含义,以及数据差异而导致的不同.【答案】B【解析】甲、乙两班学生的平均字数都是135个/分钟,所以平均水平相同;从中位数上看,乙班的151大于甲班的149,表明乙班优秀的人数多于甲班优秀的人数;从方差上看,甲班的方差大于乙班的方差,所以甲班学生成绩的波动情况比乙班成绩波动大.因此,(1)(2)(3)都正确,选B.【总结升华】此类题关键是要能从表格中筛选出所需要的信息,理解每个数据所代表的含义. 举一反三:【变式】甲、乙两人各射击6次,甲所中的环数是8,5,5,A,B,C, 且甲所中的环数的平均数是6,众数是8;乙所中的环数的平均数是6,方差是4.根据以上数据,对甲、乙射击成绩的正确判断是()A.甲射击成绩比乙稳定 B.乙射击成绩比甲稳定C .甲、乙射击成绩稳定性相同D .甲、乙射击成绩稳定性无法比较 【答案】B.类型四、用样本估计总体5、我国是世界上严重缺水的国家之一.为了倡导“节约用水从我做起”,小刚在他所在班的50名同学中,随机调查了10名同学家庭中一年的月均用水量(单位:t),并将调查结果绘成了如图所示的条形统计图.(1)求这10个样本数据的平均数、众数和中位数;(2)根据样本数据,估计小刚所在班50名同学家庭中月均用水量不超过7t 的约有多少户.【思路点拨】(1)根据条形统计图,即可知道每一名同学家庭中一年的月均用水量.再根据加权平均数的计算方法、中位数和众数的概念进行求解;(2)首先计算样本中家庭月均用水量不超过7t 的用户所占的百分比,再进一步估计总体. 【答案与解析】解:(1)观察条形图,可知这组样本数据的平均数是62 6.54717.52816.810x ⨯+⨯+⨯+⨯+⨯==.∴ 这组样本数据的平均数为6.8.∴ 在这组样本数据中,6.5出现了4次,出现的次数最多. ∴ 这组数据的众数是6.5.∵ 将这组样本数据按从小到大的顺序排列,其中处于中间的两个数都是 6.5,有6.5 6.56.52+=. ∴ 这组数据的中位数是6.5.(2)∵ 10户中月均用水量不超过7t 的有7户,有7503510⨯=. ∴ 根据样本数据,可以估计出小刚所在班50名同学家庭中月均用水量不超过7t 的约有35户.【总结升华】本题考查的是条形统计图的运用.读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.掌握平均数、中位数和众数的计算方法.6. 从甲、乙两种玉米苗中各抽10株,分别测得它们的株高如下:(单位:cm ) 甲: 21 42 39 14 19 22 37 41 40 25 乙: 27 16 40 41 16 44 40 40 27 44 (1)根据以上数据分别求甲、乙两种玉米的方差.(2)哪种玉米的苗长得高些? (3)哪种玉米的苗长得齐?【思路点拨】本题考察方差的定义.熟记方差的计算公式是解决问题的关键. 【答案与解析】解:(1)甲的平均值:)()(甲cm x 3025404137221914394221101=+++++++++= 乙的平均值:甲的方差:)(2.10410)3025()3042()3021(22222cm S =-++-+-=甲, 乙的方差:)(8.12810)3144()3116()3127(22222cm S =-++-+-=乙(2)因为甲种玉米的平均高度小于乙种玉米的平均高度,所以乙种玉米的苗长的高. (3)因为22S S 甲乙<,所以甲种玉米的苗长得整齐.【总结升华】本题既是一道与方差计算有关的问题,又是利用方差解决实际问题的一道题目,关键是理解和掌握方差的计算公式. 举一反三: 【变式】为了比较甲、乙两种水稻的长势,农技人员从两块试验田中,分别随机抽取5棵植株,将测得的苗高数据绘制成下图:请你根据统计图所提供的数据,计算平均数和方差,并比较两种水稻的长势. 【答案】5.8 5.2x x ==乙甲∵,,∴甲种水稻比乙种水稻长得更高一些.222.160.56S S ==乙甲∵,,∴乙种水稻比甲种水稻长得更整齐一些.植株编号 1 2 3 4 5甲种苗高 7 5 4 5 8乙种苗高 6 4 5 6 5。

第06讲数据的集中趋势和离散程度(6大考点)(原卷版)

第06讲数据的集中趋势和离散程度(6大考点)(原卷版)

第06讲数据的集中趋势和离散程度(6大考点)考点考向一.算术平均数(1)平均数是指在一组数据中所有数据之和再除以数据的个数.它是反映数据集中趋势的一项指标.(2)算术平均数:对于n个数x1,x2,…,x n ,则=(x1+x2+…+x n)就叫做这n个数的算术平均数.(3)算术平均数是加权平均数的一种特殊情况,加权平均数包含算术平均数,当加权平均数中的权相等时,就是算术平均数.二.加权平均数(1)加权平均数:若n个数x1,x2,x3,…,x n的权分别是w1,w2,w3,…,w n,则x1w1+x2w2+…+xnwnw1+w2+…+wn叫做这n个数的加权平均数.(2)权的表现形式,一种是比的形式,如4:3:2,另一种是百分比的形式,如创新占50%,综合知识占30%,语言占20%,权的大小直接影响结果.(3)数据的权能够反映数据的相对“重要程度”,要突出某个数据,只需要给它较大的“权”,权的差异对结果会产生直接的影响.(4)对于一组不同权重的数据,加权平均数更能反映数据的真实信息.三.计算器平均数(1)如果是普通计算器,那么只能把所有的数字相加,然后除以数字的个数.(2)如果是科学记算器,那么可以用如下方法:①调整计算器的模式为STAT模式.②依次输入数据,每次输入数据后按DATA键确认数据的输入.③输入完毕后,按x¯键,即可获得平均数了.(3)由于计算器的型号不同,可以按照说明书中的方法进行操作.四.中位数(1)中位数:将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.(2)中位数代表了这组数据值大小的“中点”,不易受极端值影响,但不能充分利用所有数据的信息.(3)中位数仅与数据的排列位置有关,某些数据的移动对中位数没有影响,中位数可能出现在所给数据中也可能不在所给的数据中出现,当一组数据中的个别数据变动较大时,可用中位数描述其趋势.五.众数(1)一组数据中出现次数最多的数据叫做众数.(2)求一组数据的众数的方法:找出频数最多的那个数据,若几个数据频数都是最多且相同,此时众数就是这多个数据.(3)众数不易受数据中极端值的影响.众数也是数据的一种代表数,反映了一组数据的集中程度,众数可作为描述一组数据集中趋势的量..六.方差(1)方差:一组数据中各数据与它们的平均数的差的平方的平均数,叫做这组数据的方差.(2)用“先平均,再求差,然后平方,最后再平均”得到的结果表示一组数据偏离平均值的情况,这个结果叫方差,通常用s2来表示,计算公式是:s2=[(x1﹣)2+(x2﹣)2+…+(x n ﹣)2](可简单记忆为“方差等于差方的平均数”)(3)方差是反映一组数据的波动大小的一个量.方差越大,则平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好.考点精讲一.算术平均数(共3小题)1.(2022•泗阳县一模)若a、b、c的平均数为7,则a+1、b+2、c+3的平均数为()A.7B.8C.9D.102.(2022•淮安)一组数据3、﹣2、4、1、4的平均数是.3.(2022•张家港市一模)对于三个数a,b,c用M{a,b,c}表示a ,b,c这三个数的平均数,用min{a,b,c}表示a,b,c这三个数中最小的数.例如:M{﹣1,2,3}==,min{﹣1,2,3}=﹣1.(1)若M{x﹣1,﹣5,2x+3}=(1+3x),求x的值;(2)是否存在一个x的值,使得M{2x,2﹣x,3}=×min{﹣1,0,4x+1),若存在,请求出x的值;若不存在,请说明理由.二.加权平均数(共2小题)4.(2022•如皋市二模)小林参加学校举办的“五四最美少年”主题演讲比赛,他的演讲资料、语言表达、形象风度、综合印象得分分别为85分,70分,80分,80分.若学校将上面的四项依次按照40%,40%,10%,10%的占比计算总成绩(百分制),则小林的总成绩是()A.80分B.79分C.78分D.77分5.(2022•邳州市一模)3月14日是国际数学节,为迎接数学节,某学校3月份举办“数学嘉年华之手抄报评比活动”,对甲、乙、丙、丁四组候选作品进行量化评分,具体成绩(百分制)如下表,如果按照创新性占60%,丰富性占40%计算总成绩,并根据总成绩择优推荐,那么应推荐的作品是()项目作品甲乙丙丁创新性90959090丰富性90909585A.甲B.乙C.丙D.丁三.计算器平均数(共1小题)6.(2020•海门市校级模拟)某同学使用计算器求30个数据的平均数时,错将其中一个数据75输入为15,那么所求出的平均数与实际平均数的差是()A.2.5B.2C.1D.﹣2四.中位数(共4小题)7.(2022•宿豫区二模)已知一组数据:1、4、2、3、4,这组数据的中位数是()A.1B.2C.3D.48.(2022•泗洪县三模)某市三月份连续7天的最高气温依次是:18,15,16,15,16,18.19(单位:℃),则这组数据的中位数是()A.19B.18C.17D.169.(2022秋•兴化市月考)随机抽取某小吃店一周的营业额(单位:元)如下表:星期一星期二星期三星期四星期五星期六星期日54068064064078011101070(1)分析数据,填空:这组数据的平均数是元,中位数是元.(2)估计一个月的营业额(按30天计算);①星期一到星期五营业额相差不大,用这5天的平均数估算合适么:.(填“合适”或“不合适”)②选择一个你认为最合适的数据估算这个小吃店一个月的营业额.10.(2022•丰县二模)某校将学生体质健康测试成绩分为A、B、C、D四个等级,对应分数分别为4分、3分、2分、1分.为了解学生整体体质健康状况,拟抽样120人进行统计分析.(1)以下是三种抽样方案:甲方案:随机抽取七年级男、女生各60人的体质健康测试成绩.乙方案:随机抽取七、八、九年级男生各40人的体质健康测试成绩.丙方案:随机抽取七、八、九年级男生、女生各20人的体质健康测试成绩.你认为较为合理的是方案(选填甲、乙、丙);(2)按照合理的抽样方案,将随机抽取的测试成绩整理并绘制成如图统计图.①这组数据的中位数是分;②请求出这组数据的平均数;③小明的体质健康测试成绩是C等级,请你结合以上数据,对小明的体质健康状况做出评价,并给出一条合理的建议.五.众数(共4小题)11.(2022春•宿豫区期中)已知一组数据:14、16、15、16、17,这组数据的众数是()A.14B.15C.16D.1712.(2022•南通)为了了解八年级学生本学期参加社会实践活动的天数情况,A,B两个县区分别随机抽查了200名八年级学生,根据调查结果绘制了统计图表,部分图表如下:A,B两个县区的统计表平均数众数中位数A县区 3.8533B县区 3.854 2.5(1)若A县区八年级共有约5000名学生,估计该县区八年级学生参加社会实践活动不少于3天的学生约为名;(2)请对A,B两个县区八年级学生参加社会实践活动的天数情况进行比较,作出判断,并说明理由.13.(2022•徐州)如图,下列装在相同的透明密封盒内的古钱币,其密封盒上分别标有古钱币的尺寸及质量,例如:钱币“文星高照”密封盒上所标“45.4*2.8mm,24.4g”是指该枚古钱币的直径为45.4mm,厚度为2.8mm,质量为24.4g.已知这些古钱币的材质相同.根据图中信息,解决下列问题.(1)这5枚古钱币,所标直径的平均数是mm,所标厚度的众数是mm,所标质量的中位数是g;(2)由于古钱币无法从密封盒内取出,为判断密封盒上所标古钱币的质量是否有错,桐桐用电子秤测得每枚古钱币与其密封盒的总质量如下:名称文星高照状元及第鹿鹤同春顺风大吉连中三元总质量/g58.758.155.254.355.8盒标质量24.424.013.020.021.7盒子质量34.334.142.234.334.1请你应用所学的统计知识,判断哪枚古钱币所标的质量与实际质量差异较大,并计算该枚古钱币的实际质量约为多少克.14.(2022•钟楼区校级模拟)2022年3月,新冠疫情突袭常州,社会各界众志成城,共同抗疫.严酷战疫中,我们又一次感受到祖国的强大,口罩也成为人们防护防疫的必备武器.钟楼区某药店有2500枚口罩准备出售,从中随机抽取了一部分口罩,根据它们的价格(单位:元),绘制出如图的统计图.请根据相关信息,解答下列问题:(1)图①中m的值为;(2)统计的这组数据的平均数为,众数为,中位数为;(3)根据样本数据,估计这2500枚口罩中,价格为2.0元的约有为多少枚?六.方差(共5小题)15.(2022秋•盐都区月考)某班学期末对考核成绩进行统计,结果显示甲、乙两组的平均成绩相同,但S甲2<S乙2,则考核成绩比较稳定的是()A.甲组B.乙组C.甲、乙两组一样稳定D.无法确定16.(2022秋•兴化市月考)甲、乙、丙、丁四人进行射击测试,每人10次射击成绩的平均数都为9.0环,方差分别为s甲2=0.63,s乙2=0.51,s丙2=0.42,s丁2=0.48,则四人中成绩最稳定的是()A.甲B.乙C.丙D.丁17.(2022•江都区二模)某信息咨询机构从A和B两家外卖快送公司分别抽取了20名骑手的月收入进行了一项抽样调查,骑手的月收入(单位:千元)如图所示:根据以上信息,整理分析数据如下:(1)完成表格填空;平均月收入/千元中位数/千元众数/千元方差/千元2A公司①6③ 1.2B公司 5.5②5④(2)根据以上数据,若小张想从这两家外卖快送公司中选择一家应聘骑手,你会推荐哪家公司,请说明理由.18.(2022•崇川区一模)为让全校学生牢固树立爱国爱党的崇高信念,某校近期开展了形式多样的党史学习教育活动.在党史知识竞赛中,八、九年级各有300名学生参加,现随机抽取两个年级各20名学生的成绩进行整理分析,得到如表信息:a.表1九年级20名学生的成绩(百分制)统计表8280979194727191857094789275979291928398b.表2九年级抽取的20名学生成绩的平均数、中位数、方差统计表年级平均数中位数方差九年级86a86.3 c.随机抽取八年级20名学生的成绩的中位数为88,方差为83.2,且八、九两个年级抽取的这40名学生成绩的平均数是84.5.请根据以上信息,回答下列问题:(1)在表2中,a的值等于;(2)求八年级这20名学生成绩的平均数;(3)你认为哪个年级的成绩较好?试从两个不同的角度说明推断的合理性.19.(2022•海门市二模)峰峰老师为了解所教1班、2班同学们(各有40名学生)的经典文化知识掌握情况,从两个班级中各随机抽取10名学生进行了检测,成绩(百分制)如下:1班:79,85,73,80,75,59,87,70,75,97.2班:92,45,80,82,72,81,94,83,70,81.峰峰老师的简要分析:平均分众数中位数方差1班7875779642班7881811704请你解决以下问题:(1)若对这两个班级的所有学生都进行检测,估计这两个班级内成绩为优秀(不少于80分)的学生一共有多少人?(2)比较这两个班级的经典文化知识掌握情况,哪个班级更好些?并说明理由(至少从两个不同的角度比较).巩固提升一、单选题1.(2021·沭阳县怀文中学)已知一组数据85,80,x,90的平均数是85,那么x等于()A.80B.85C.90D.952.(2021·江苏苏州·)为增强学生的环保意识,共建绿色文明校园.某学校组织“废纸宝宝旅行记”活动.经统计,七年级5个班级一周回收废纸情况如下表;班级一班二班三班四班五班废纸重量(kg) 4.5 4.4 5.1 3.3 5.7则每个班级回收废纸的平均重量为()A.5kg B.4.8kg C.4.6kg D.4.5kg3.(2021·江苏盐城市·景山中学九年级月考)截止2021年3月,“费尔兹奖”得主中最年轻的8位数学家获奖时的年龄分别为:29,27,31,31,31,29,29,31,则由年龄组成的这组数据的众数是()A.27 B.29 C.30 D.314.(2021·连云港市新海实验中学九年级)小明对居住在某小区的50名成年人一周的体育锻炼时间进行了统计,并绘制成如图所示的条形统计图,这组数据的众数和中位数分别是()A.6,4 B.6,6 C.4,4 D.4,65.(2021·连云港市新海实验中学)某校九(1)班语文课代表统计了去年1~8月“我爱读书”活动中全班同学的课外阅读数量(单位:本),绘制了如图折线统计图,在这组课外阅读数量的数据中,中位数和众数分别是()A.53,56 B.53,63 C.56,56 D.56,636.(2021·连云港市新海实验中学)我校开展了“好书伴我成长”读书活动,为了解5月份九年级学生的读书情况,随机调查了九年级50名学生读书的册数,统计数据如下表所示,下列说法正确的是()册数0 1 2 3 4人数 4 12 16 17 1A .众数是17B .中位数是2C .平均数是2D .方差是2二、填空题 7.(2021·江苏九年级)已知一组数据:1,3,a ,8,10的平均数是5,则a =___.8.(2020·江苏九年级期末)在本赛季CBA 比赛中,某运动员最后六场的得分情况如下:17,15,21,28,12,19,则这组数据的极差为_______.9.下列数据1,3,5,5,6,2的极差是______.10.(2021·江苏镇江·)一组数据2,3,1,6,3的平均数为_____.11.(2021·江苏)一组数据1x 、2x 、…、n x 的方差是0.8,则另一组数据11x +、21x +、…、1n x +的方差是________.三、解答题12.(2021·苏州市吴江区青云中学九年级月考)保障房建设是民心工程.某市从2008年开始加快保障房建设进程.现统计了该市2008年到2012年这5年新建保障房情况,绘制成如图所示的折线统计图和不完整的条形统计图.(1)小丽看了统计图后说:“该市2011年新建保障房的套数比2010年少了.”你认为小丽的说法正确吗?请说明理由;(2)请补全条形统计图;(3)求这5年平均每年新建保障房的套数.13.(2021·江苏镇江·九年级)学校组织学生参加科普知识问答竞赛,每班抽25名同学参加比赛,成绩分别为A ,B ,C ,D 四个等级,其中相应等级的得分依次记为100分、90分、80分、70分,学校将八年级一班和二班的成绩整理并绘成统计图,如图所示:(1)将一班竞赛成绩统计图补充完整;(2)求出二班竞赛成绩的平均数;(3)若八一班共有40人,请根据本次调查结果,估计八一班得分在80分以上(含80分)的人数.14.(2021·江苏)下表是某地某个月中午12时的气温(单位:℃)的统计数据.某地某个月中午12时的气温频数分布表组别气温分组频数方法指导数据分组后,一个小组的组中值是指这个小组的两个端点的数的平均数,例如:第1小组1216x ≤<的组中值为1216142+=.根据频数分布表求加权平均数时,统计中常用各组的组中值代表各组的实际数据,把各组的频数看作相应组中值的权.根据统计的数据,回答下列问题:(1)该地该月中午12时的气温的中位数落在第_________组内;(2)求该地该月中午12时的平均气温.15.(2021·仪征市实验初中九年级月考)国家规定“中小学生每天在校体育活动时间不低于1小时”,为了解学生参加体育活动的情况,调查了某校八年级甲、乙两班学生每天参加体育锻炼的时间,并将调查结果制成如下的频数分布表和频数分布直方图(数据包括左端点不包括右端点).甲班学生每天参加体育活动时间频数分布表分组(单位: h)频数t≤< 200.5t≤<100.51t≤<141 1.5t≤<121.52t≤< 22 2.5请你根据图表所提供的信息解答下列问题:(1)如果每天在校体育活动时间不低于1小时为“达标”,求甲班学生每天在校体育活动时间的达标率;(2)乙班学生每天参加体育活动时间的中位数落在哪一组?(3)请选择一个适当的统计量,对甲、乙两班学生每天参加体育活动的时间进行评价.16.(2021·江苏玄武区·九年级期中)某校举办了一次题为“致敬最美逆行者”的演讲比赛.甲、乙两组学生成绩分布的折线统计图如图(学生成绩均为整数):(1)根据以上信息,填空:组别平均数/分中位数/分方差/分2甲7 2.8乙7(2)如果学校准备选派其中一组参加区级比赛,你认为选派哪一组参赛更好?为什么?17.(2021·江苏)2020年12月4日是第七个国家宪法日,也是第三个“宪法宣传周”.甲、乙两班各选派5名学生参加学校宪法知识竞赛(满分100分),成绩如下:甲班:96,92,94,97,96;乙班:90,98,97,98,92.通过数据分析,列表如下:(1)a=________,b=________,c=________;(2)如果要从这两个班中选择一个班的学生代表学校参加市宪法知识竞赛,你认为选哪个班的学生更合适?为什么?18.(2021·江苏泰州中学附属初中九年级)某校组建了射击兴趣小组,甲、乙两人连续8次射击成绩如下列图、表所示(统计图中乙的第8次射击成绩缺失).甲、乙两人连续8次射击成绩统计表平均成绩(环)中位数(环)方差(2环)甲_______ 7.5 _______乙 6 _______ 3.5(1)补全统计图和统计表;(2)如果你是教练,要从甲、乙两人中选一位参加比赛,你会选谁?写出你这样选择的2条理由.19.(2021·江苏徐州市·中考真题)某市近年参加初中学业水平考试的人数(以下简称“中考人数”)的情况如图所示.根据图中信息,解决下列问题:(1)这11年间,该市中考人数的中位数是______________万人;(2)与上年相比,该市中考人数增加最多的年份是____________年;(3)下列选项中,与该市2022年中考人数最有可能接近的是()A. 12.8万人;B. 14.0万人;C. 15.3万人(4)2019年上半年,该市七、八、九三个年级的学生总数约为()A. 23.1万人;B. 28.1万人;C. 34.4万人(5)该市2019年上半年七、八、九三个年级的数学教师共有4000人,若保持数学教师与学生的人数之比不变,根据(3)(4)的结论,该市2020年上半年七、八、九三个年级的数学教师较上年同期增加多少人(结果取整数)?20.(2021·江苏南通·中考真题)某农业科技部门为了解甲、乙两种新品西瓜的品质(大小、甜度等),进行了抽样调查.在相同条件下,随机抽取了两种西瓜各7份样品,对西瓜的品质进行评分(百分制),并对数据进行收集、整理,下面给出两种西瓜得分的统计图表.甲、乙两种西瓜得分表序号 1 2 3 4 5 6 7甲种西瓜(分)75 85 86 88 90 96 96乙种西瓜(分)80 83 87 90 90 92 94甲、乙两种西瓜得分统计表平均数中位数众数甲种西瓜88 a 96乙种西瓜88 90 b(1)a=___________,b=___________;(2)从方差的角度看,___________种西瓜的得分较稳定(填“甲”或“乙”);(3)小明认为甲种西瓜的品质较好些,小军认为乙种西瓜的品质较好些.请结合统计图表中的信息分别写出他们的理由.。

专题20.1 数据的集中程度----八年级数学人教版(下册)

专题20.1 数据的集中程度----八年级数学人教版(下册)

第二十章 数据的分析20.1 数据的集中程度1.平均数(1)加权平均数:若n 个数n x x x x ...,,,321的权分别是n a a a a ,...,,,321,则有na x a x a x a x x nn ++++=...222211叫这n 个数的加权平均数。

(2)当权为1时,就是我们小学学的算术平均数: 若n 个数n x x x x ...,,,321的权1...321=====n a a a a ,则有nx x x x x n++++=...221叫这n 个数的算术平均数。

(3) 平均数和加权平均数:①都反映一组数据的集中趋势的“特征数”②平均数描述的是一组数据平均水平,受极端值影响很大,数据中任何一个数据变动都会影响平均数的变动。

2、中位数(1)求法:①将n 个数由小到大(由大到小)排序,相同数排在一起,不可算作一个数据。

② 当n 为奇数时,第21+n 个为中位数,当n 为偶数时,第2n 个和第⎪⎭⎫⎝⎛+12n 个数的平均数为中位数。

(2)中位数描述数据集中趋势,代表数据值大小的“中点”,不易受极端值影响,但不可利用所有数据信息。

3、众数反应一组数据中出现次数最多的数据。

注意:①共同点:三者都反映数据的集中趋势的特征数。

平均数反映整体数集中,中位数反映中间数,众数反映最多数。

① 一组数据中,判断好坏,一般看平均分高低,当平均分相同时,看中位数,中位数相同时,看众数。

一、中位数、众数的判断【例题1】某车间6名工人日加工零件数分别为6,10,8,10,5,8,则这组数据的中位数是 A .6 B .8 C .9 D .10【答案】B【解析】∵某车间6名工人日加工零件数分别为6,10,8,10,5,8, ∴重新排序为5,6,8,8,10,10 ∴中位数为:.故选B .【例题2】为调查某班学生每天使用零花钱的情况,童老师随机调查了30名同学,结果如下表: 则这30名同学每天使用的零花钱的众数和中位数分别是( )A .15、15B .20、17.5C .20、20D .20、15【答案】B 【解析】∵调查人数为30人, ∴x=30-2-5-8-6=9(人)∵20出现了9次,出现的次数最多,∴这30名同学每天使用的零花钱的众数为20元;∵30个数据中,第15个和第16个数分别为15、20,它们的平均数为17.5, ∴这30名同学每天使用的零花钱的中位数为17.5元.故选B.【例题3】某公司销售部统计了每个销售员一月份的销售额,绘制了如下折线统计图和扇形统计图:设销售员的月销售额为(单位:万元,且为整数). 销售部规定;当时为“不称职”,当时为“基本称职”,当时为“称职”,当时为“优秀”.根据以上信息,解答下列问题:计算销售部销售人员的总人数及销售额为优秀的人数,并补全扇形统计图;求销售额达到称职及以上的所有销售员的月销售额的中位数和众数;为了调动销售员的积极性,销售部决定制定一个月销售额奖标准,如果欲使达到“称职”和“优秀”的销售员中能有约一半人员获得奖励,月销售额奖励标准应定为多少万元(结果取整数)?并简述理由.【答案】(1)补图见解析;(2)见解析;(3)要使得所有“职称”和“优秀”的销售员的一半人员能获奖,月销售额奖励标准应定为万元.【解析】解:被调查的总人数为人.不称职的百分比为.基本称职的百分比为.优秀的百分比为.则优秀的人数为.得分的人数为补全图形如下:由折线图知职称与优秀的销售员职工人数分布如下:万人,万人,万人,万人,万人,万人,万人,万人,万人则职称与优秀的销售员月销售额的中位数为万.众数为万.月销售额奖励标准应定为万元.职称和优秀的销售员月销售额的中位数为万元.要使得所有“职称”和“优秀”的销售员的一半人员能获奖,月销售额奖励标准应定为万元.二、加权平均数的计算【例题4】某学校绿化小组22人参加一项植树治沙工程,其中4人每人种树6棵,8人每人种树3棵,10人每人种树4棵,那么这个小组平均每人种树( )A.6棵B.5棵C.4棵D.3棵【答案】C【解析】这个小组平均每人种树的棵数=(4×6+8×3+10×4)÷22=4棵,故选C.【例题5】春华中学为了解九年级学生的身高情况,随机抽测50名学生的身高后,所得部分资料如下(身高单位:,测量时精确到):若将数据分成8组,取组距为,相应的频率分布表(部分)是:请回答下列问题:(1)样本数据中,学生身高的众数、中位数各是多少?(2)填写频率分布表中未完成的部分;(3)若该校九年级共有850名学生,请你估计该年级学生身高在及以上的人数.【答案】(1)众数是,中位数是;(2)163.5~167.5频数16,频率为0.32.(3)该年级学生身高在及以上的人数为102人.【解析】解:(1)∵图表中167cm的人数最多为6人,∴众数为:167cm;∵共50人,中位数应该是第25和第26人的平均数,∴第25和第26人的平均数为:=164(cm)答:众数是,中位数是;(2)163.5~167.5范围内的人数为:5+2+3+6=16(人),163.5~167.5范围内的频率为:=0.32,∴163.5~167.5频数16,频率为0.32;(3),人答:则该年级学生身高在及以上的人数为102人.故答案为:(1)众数是,中位数是;(2)163.5~167.5频数16,频率为0.32.(3)该年级学生身高在及以上的人数为102人.1.某校在体育健康测试中,有8名男生“引体向上”的成绩(单位:次)分别是:14,12,8,9,16,12,7,10,这组数据的中位数和众数分别是()A.10,12 B.12,11 C.11,12 D.12,122.现有一组数据:3、4、5、5、6、6、6、6、7,若去掉其中一个数6则不受影响的是()A.众数B.中位数C.平均数D.众数和中位数3.有一组数据:1, 2, 2, 5, 6, 8,这组数据的中位数是()A.2 B.2.5 C.3.5 D.54.一组数据2,3,5,4,4,6的众数和平均数分别是()A.和4 B.4和4 C.4和4.8 D.5和45.某住宅小区六月份1日至5日每天用水量变化情况如图所示,那么这5天用水量的中位数是A.30吨B.36吨C.32吨D.34吨6.如图,是根据九年级某班50名同学一周的锻炼情况绘制的条形统计图,下面关于该班50名同学一周锻炼时间的说法错误的是()A.平均数是6B.中位数是6.5C.众数是7D.平均每周锻炼超过6小时的人数占该班人数的一半7.如果一组数据3、4、5、6、、8的众数是4,那么这组数据的中位数是()A.4;B.4.5;C.5;D.5.5.8.某学习小组的五名同学在一次数学竞赛中的成绩分别是94分、98分、90分、94分、74分,则下列结论正确的是()A.平均分是91 B.中位数是90 C.众数是94 D.极差是209.“表1”为初三(1)班全部43名同学某次数学测验成绩的统计结果,则下列说法正确的是()A.男生的平均成绩大于女生的平均成绩B.男生的平均成绩小于女生的平均成绩C.男生成绩的中位数大于女生成绩的中位数D.男生成绩的中位数小于女生成绩的中位数10.在一次中学生田径运动会上,参加男子跳高的15名运动员的成绩如下表所示:则这些运动员成绩的中位数、众数分别为A.、B.、C.、D.、11.若一组数据1,2,,3,4的众数为4,则这组数据的中位数是__________.12.国家科学技术进步奖是国务院设立的国家科学技术奖五大奖项之一,根据国家统计局公布的奖项数绘制成折线统计图,则奖项数的中位数为____.13.若一组数据2,3,,5,7的众数为7,则这组数据的中位数为_________.14.在一次有12人参加的测试中,得100分、95分、90分、85分、75分的人数分别是1、4、3、2、2,那么这组数据的众数是__分.15.“重整行装再出发,驰而不息再争创”,2018年5月8日兰州市召开了新一轮全国文明城市创建启动大会.某校为了更好地贯彻落实创建全国文明城市目标,举办了“我是创城小主人”的知识竞赛.该校七年级、八年级分别有300人,现从中各随机抽取10名同学的测试成绩进行调查分析,成绩如下:整理、描述数据:分析数据:得出结论:(1)根据上述数据,将表格补充完整;(2)估计该校七、八两个年级学生在本次测试成绩中可以取得优秀的人数共有多少人?(3)你认为哪个年级知识掌握的总体水平较好,说明理由.16.某校八年级两个班,各选派10名学生参加学校举行的“美丽绍兴乡土风情知识”大赛预赛各参赛选手的成绩如下:八(1)班:88,91,92,93,93,93,94,98,98,100;八(2)班:89,93,93,93,95,96,96,98,98,99.通过整理,得到数据分析表如下:(1)求表中m、n的值;(2)依据数据分析表,有同学说:“最高分在(1)班,(1)班的成绩比(2)班好”,但也有同学说(2)班的成绩更好请您写出两条支持八(2)班成绩好的理由.17.随着生活水平的提高,人们对空气质量的要求也越来越高。

集中趋势的刻画指标

集中趋势的刻画指标

集中趋势的刻画指标
1. 均值:表示数据的平均值,可以反映数据的中心位置。

2. 中位数:表示数据的中间值,可以反映数据的中心位置。

3. 众数:表示数据中出现最频繁的数值,可以反映数据的集中程度。

4. 方差:表示数据与其平均值的偏离程度,可以反映数据的离散程度。

5. 标准差:是方差的平方根,可以用来衡量数据的波动性。

6. 离散系数:是标准差与均值之比,可以比较不同数据的分散程度。

7. 四分位差:表示数据的上25%和下25%之差,可以反映数据的分布情况。

8. 偏度系数:可以衡量数据的偏斜程度,正偏斜表示数据向右侧偏移,负偏斜表示数据向左侧偏移。

9. 峰度系数:可以衡量数据的峰度,正峰表示数据峰值较高,负峰表示数据峰值较低。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第六章 数据的集中程度
§6.1、平均数 知识点:
(1)算术平均数:一般地,对于n 个数x 1,x 2,…,x n ,我们把x =1
n ( x 1+x 2+…+x n ),
叫做这n 个数的算术平均数,简称平均数,记做x (读做“x 拔” ). 其中x 记为这组数据的平均数,n 表示数据的总个数。

平均数也就是这组数据都趋于(接近)的那个数。

(2)加权平均数:在实际问题中,一组数据中各个数据的重要程度并非总是相同的,有时某些数据比其他数据更重要。

所以,我们在计算这组数据时,往往给每个数据一个“权”,所求的带权的平均数称为加权平均数,加权平均数公式n n n f f f f x f x f x x +⋯+++⋯++=212211,其中x 表
示这组数据的加权平均数,x 1,x 2,…,x n 表示各个数据,n f f f ⋯、、21表示x 1,x 2,…,x n 各个数据的权重(或者说是各个数据出现的次数)。

显然哪个数据的权越大,平均数的趋势近于这个数。

(3)求平均数:
①按算术平均数、加权平均数的定义进行计算; ②利用一些常见规律求平均数:
如果一组数据a 1,a 2,a 3,…,a n 的平均数为x ,则一组新数据a 1+m,a 2+m,a 3+m,…,a n +m 的平均数为x +m;
如果一组数据a 1,a 2,a 3,…,a n 的平均数为x ,则一组新数据k a 1,k a 2,ka 3,…,ka n 的平均
数为k x ;
如果一组数据a 1,a 2,a 3,…,a n 的平均数为x ,另一组数据b 1,b 2,b 3,…,b n 的平均数为y ,则一组新数据a 1+b 1,a 2+b 2,a 3+b 3,…,a n +b 4的平均数为x +y .
考点:围绕数据的统计和平均数的公式两知识点来解决问题。

关键是灵活运用公式解决一个实际图形。

典型例题:
1、数据15,23,17,17,22的平均数是____,若4,x ,5的平均数是7,则3,4,5,x ,6五个数的平均数是_____。

2、利用公式x =x / +a 计算105,103,101,100,114,108,110,106,98,102的平均数,其中a =___,x / =_______,x =_______。

3、小明在初二第二学期的数学成绩分别为:测验一得分85分,测验二得84分,测验三得86分,期中考试得92分,期末考试得88分,如果按照平时、期中、期末的权分别为10%、30%、60%,那么小明该学期的总评成绩应该为多少分? (88.9分)
4、某广告公司欲聘广告策划人员一名,对A 、B 、C 三名候选人进行三项素质测试。

他们的各项测试成绩如右表所示:
(1)如果根据三项测试的平均成绩确定录用人选,那么谁被录用?
(2)根据实际需要,公司将创新、综合知识和语言三项测试按4:3:1的比例确定各人的测试成绩,此时谁将被录用?
5、小明上学期期末语文、数学、英语三科平均分为92分,他记得语文得了88分,英语得了93分,但他把数学成绩忘记了,你能告诉他数学应得多少分?(94分)
§6.2、中位数和众数 知识点梳理:
1、中位数:一般地,将n 个数据按大小顺序排列,如果数据的个数是奇数,处于中间位置的一个数据叫做这组数据的中位数;如果数据有偶数个,处于中间的数有两个,这两个最中间数据的平均数叫做这组数据的中位数。

2、平均数 中位数、众数
三者都是用来描述一组数据的集中趋势的特征数,它们都刻画了一组数据的“平均水平”。

它们也存在较明显的区别:
(1)平均数与所有的数据都有关。

(2)中位数值与数据的排列位置有关。

(3)众数只和数据出现的次数的多少有关。

(注意:众数可能不只一个) 考点:众数和中位数是统计的重点。

中考主要围绕怎样求众数、中位数,并利用求得的众数、中位数解决实际问题。

典型例题:
1、 某商场进了一批苹果,每箱苹果质量约5千克,进仓库前,从中随机抽出10箱检查,
称得10箱苹果的质量如下(单位:千克)
4.8,
5.0,5.1,4.8,4.9,4.8,5.1,4.9,4.7,4.7 请指出这10箱苹果质量的平均数、中位数和众数 2、某瓜农采用大棚栽培技术种植了一亩地的良种西瓜,这亩地产西瓜600个,在西瓜上市
前该瓜农随机摘下了10个成熟的西瓜,称重如下:
西瓜质量(单位:千克) 5.4 5.3 5.0 4.8 4.4 4.0 西瓜数量(单位:个)
1
2
3
2
1
1
(1)这10个西瓜质量的众数和中位数分别是 和 ;
(2)计算这10个西瓜的平均质量,并根据计算结果估计这亩地共可收获西瓜约多少千克? 3、.我市部分学生参加了2004年全国初中数学竞赛决赛,并取得优异成绩。

已知竞赛成绩分
数都是整数,试题满分为140分,参赛学生的成绩分数分布情况如下:
测试项目
测试成绩 A B C 创新 72 85 67 综合知识 50 74 70 语言 88 45 67
分数段 0-19 20-39 40-59 60-79 80-99 10-119
120-140 人数
37
68
95
56
32
12
请根据以上信息解答下列问题:
(1)全市共有多少人参加本次数学竞赛决赛?最低分和最高分在什么分数范围?
(2)经竞赛组委会评定,竞赛成绩在60分以上(含60分)的考生均可获得不同等级的奖励,求我市参加本次竞赛决赛考生的获奖比例;
(3)决赛成绩分数的中位数落在哪个分数段内?
(4)上表还提供了其他信息,例如:“没获奖的人数为105人”等等。

请你再写出两条此表提供的信息.
§6.3、用计算器求平均数
知识点:当数据个数较多时,用计算器计算一组数据的平均数非常简便,其一般步骤: 1、按开机键 ,打开计算器。

2、按 键选择 进入star x 模式,即单变量统计模式。

RCL M- M
3、按第三功能键 及 键进入统计数据的录入模式。

4、输入x 1的值。

5、按光标键 ,确认。

6、输入x 值的频率也就是个数(FRQ ),其中FRQ 的默认值=1。

7、重复步骤4、5和6,直接输入所有数据为止。

RCL M- M
8、按第三功能键 及 键退出统计数据的录入模式,再第三功能键
RCL n!
x
、平均值键 和 得到结果。

考点:考查学生对计算器的使用情况,熟悉常见的几个功能键,以及使用计算器求出一组数据的平均数。

常见题型:填空、选择、解答等。

典型例题: 1、利用计算器计算下列数据的平均数:
12.8,12.9,13.4,13.0,14.1,13.5,12.7,12.4,13.9,13.8,14.3,13.2,13.5。

2、某班10位同学为支援“希望工程”,将平时积攒的零花钱捐献给贫困地区的失学儿童,捐款金额如下(单位:元):18.5,20,21.5,20,22.5,17.5,19,22,18,21。

用计算器
ON/C MODE 1 ALPHA M+
▼ ALPHA M+
ALPHA 4 =
求出这10位同学平均捐款数。

相关文档
最新文档