计量经济学第三章完整课件

合集下载

计量经济学第三章多元线性回归模型

计量经济学第三章多元线性回归模型

⒈零均值假定
E( i) 0 i 1,2,, n
E(U) 0
⒉同方差和无自相关假定
COV (i , j ) E(i E(i ))( j E( j ))
2 i j

E(i
j
)


0
i j
VAR(U ) E(U E(U))(U E(U))
Yˆi ˆ1 ˆ2 X 2i ˆK X Ki
i 1,2,, n
Yi Yˆi ei
Yˆi

ˆ j
E(Y
j
X 2i ,,
X Ki
)
注意:β1一般情况下没有明确的经济含义,但一般 总包含在回归模型中。
3.1多元线性回归模型及古典假定
二、多元线性回归模型的矩阵形式
总体回归函数描述了一个被解释变量与多个解释
变量之间的线性关系,线性是针对参数而言的。
其中, j 为偏回归系数,表示:在控制其他变量 不变的条件下,第j个解释变量的单位变动对被解释 变量平均值的影响。
j

Y X j(保持其他变量不变)

Y X j
3.1多元线性回归模型及古典假定
样本回归函数:
(XX)1 X 2ΙX(XX)1 2 (XX)1 XX(XX)1 2 (XX)1
i 1
ei 0





N
( ei2 )
i 1
ˆ2
N

2
N i 1
(Yi
ˆ1

ˆ2 X 2i
ˆK
X Ki ) X 2i

2
ei X 2i 0
偏 导

计量经济学-3章:多元线性回归模型PPT课件

计量经济学-3章:多元线性回归模型PPT课件

YXβ ˆe
Y ˆ Xβ ˆ
4/5/2021
.
17
2 模型的假定
(1) 零均值假设。随机误差项的条件期望为零,即 E(ui)=0 ( i=1,2,…,n)
其矩阵表达形式为:E(U)=0 (2)同方差假设。随机误差项有相同的方差,即
Var(ui)E(ui2) 2 (i=1,2,…,n)
(3)无自相关假设。随机误差项彼此之间不相关,即
(i=1,2,…,n)
上式为多元样本线性回归函数(方程),简称样本回归函 数(方程)(SRF, Sample Regression Function).
ˆ j (j=0,1,…,k)为根据样本数据所估计得到的参数估计量。
4/5/2021
.
13
(4)多元样本线性回归模型
对应于其样本回归函数(方程)的样本回归模型:
4/5/2021
.
3
教学内容
一、模型的建立及其假定条件 二、多元线性回归模型的参数估计:OLS 三、最小二乘估计量的统计性质 四、拟合优度检验 五、显著性检验与置信区间 六、预测 七、案例分析
4/5/2021
.
4
回顾: 一元线性回归模型
总体回归函数 E (Y i|X i)01X i
总体回归模型 Y i 01Xiui
0 0
2 0 0 2
0
0
0 0 0 2
2I n
4/5/2021
.
u1un
u2un
un2
20
(4)解释变量X1,X2,…,Xk是确定性变量,不是随机 变量,与随机误差项彼此之间不相关,即
Cov(Xji,ui)0 j=1,2…k , i=1,2,….,n

计量经济学庞皓课件(第三章 多元线性回归模型)

计量经济学庞皓课件(第三章 多元线性回归模型)
2
怎样分析多种因素的影响?
分析中国汽车行业未来的趋势,应具体分析这样一些问题: 中国汽车市场发展的状况如何?(用销售量观测) 影响中国汽车销量的主要因素是什么?
(如收入、价格、费用、道路状况、能源、政策环境等)
各种因素对汽车销量影响的性质怎样?(正、负) 各种因素影响汽车销量的具体数量关系是什么? 所得到的数量结论是否可靠? 中国汽车行业今后的发展前景怎样?应当如何制定汽车的 产业政策? 很明显,只用一个解释变量已很难分析汽车产业的发展, 还需要寻求有更多个解释变量情况的回归分析方法。
ˆk
k
c jj
~
N (0,1)
21 21
2 未知时βˆ 的标准化变换
因 2 是未知的, 可用 ˆ 2 代替 2 去估计参数的
标准误差:

当为大样本时,用估计的参数标准误差对
^
β

标准化变换,所得 Z 统计量仍可视为服从正态分

●当为小样本时,用估计的参数标准误差对 βˆ 作标 准化变换,所得的 t 统计量服从 t 分布:
( X X )1 X 2 IX ( X X )1
2 ( X X )1
注意
βˆ 是向量
(i 1, 2,L ( j 1, 2,L
n) n)
(由无偏性)
(由OLS估计式)
(由同方差性)
其中:
ˆ ( X X )1 X Y ( X X )1 X ( Xβ + u) β ( X X )1 X u
0
两边左乘 X
X Y = X Xβˆ + X e
根据最小二乘原则 则正规方程为
Xe = 0
X Xβˆ = X Y
14
OLS估计式

计量经济学第三章-回归模型的扩展

计量经济学第三章-回归模型的扩展
验的结果,或直接取成 1/|ei|、1/ei2
第二节 自相关性
一Байду номын сангаас自相关性的概念及其产生原因:
1.定义:随机误差项的各期值之间存在相关性 COV(t, s)0, ts
例:投资函数、生产函数
2.产生原因: 1)模型遗漏了自相关的解释变量; 2)模型函数形式的设定误差; 3)经济惯性; 4)随机因素影响; (注:自相关性更易产生于时序数据)
原理:辅助回归检验 命令:View\ResidualTest \SerialCorrelation LM
Test
四、自相关性的修正方法
1.利用广义差分变换消除自相关性:
步骤: 实质:GLS估计
2.的估计方法:
1)近似估计; 2)迭代估计;
3.Eviews软件的实现:
1)检验自相关性的阶数; 2)在LS命令中增加AR项;
二、异方差的影响
1.OLS估计不再是最佳估计量; 2.T检验可靠性降低; 3.增大预测误差; 三、异方差的检验 ★1.图形分析: (1)观察Y、X相关图:SCAT Y X (2)残差分析:观察回归方程的残差图
在方程窗口直接点击Residual按钮; 或:点击View\Actual,Fitted,Residual\Table
1. 调整季节波动
y a bx 1D1 2D2 3D3
2. 检验模型结构的稳定性(P141)
y a bx D XD
3. 混合回归
例8.教材P132
第五节 滞后变量模型
一、滞后效应与滞后变量的作用 1、产生滞后效应的原因:
1)心理因素:消费习惯、消费心理(如价格、利率) 2)技术原因:农民收入、农产品价格、天气条件 3)制度原因:

计量经济学-第三章-模型检验PPT课件

计量经济学-第三章-模型检验PPT课件
•23
•24
•25
•26
例子:Eviews中的计算
•27
(4)参数的的置信区间检验
•28
•29
•30
•31
•32
•6
这是因为虽然OLS保证了残差的平方和最小, 但无论对于什么的数据都可以使用OLS求得回 归方程,可这些回归方程也许没有意义,比如 下面的三个拟合图形:
•7
•8
启示:
上述三个图形中,第二个图形的拟合程度最好, 反映在数据几乎都集中在拟合直线的附近。这 也就是说,如果对于一条拟合的直线(曲线), 数据越集中于拟合直线(曲线),拟合的程度 越好(拟合优度越好)。怎样通过一个统计数 值来反映这种集中程度呢?
判定系数检验只能说明模型对样本数据的近似 情况,但是建立计量经济模型的目的是为了描 述总体的经济关系。所谓模型的显著性检验, 就是检验模型对总体的近似程度,而且最常用 的检验方法是F检验。
•16
F检验基本思想
对于多元线性回归模型: yi=b0+b1x1i+b2x2i+…+bkxki+єi
假设H0: b1=b2=…=bk=0 若假设成立,则意味着:
在设定计量经济模型的时候,我们往往根据经 验理论和对所研究系统的经验认识,尽量找出 被解释变量的所有影响因素,这些初步选定的 影响因素中间很可能就有一些实际上并不重要
•21
或其影响可以由其他变量代替的变量。为了使 模型更加简单、合理,应该提出这些不重要的 变量,使模型中只保留有显著影响的变量。剔 除不显著的解释变量的方法,就是解释变量的 显著性检验——t检验。
•4
为什么要进行统计检验
回归分析是要通过样本所估计的参数来代替总体的真

计量经济学课件3

计量经济学课件3
ˆ 1.924, ˆ 0.19
33
end
回归结果表明:在其他条件不变的情况下, 家庭收入每增加1000美元,平均而言,税 收将增加190美元。
大多数情况,截距没有明显的经济含义。 本例从字面上解释截距就是家庭收入为 零时的税赋,即家庭收入为零时的税赋 为-1924美元,实际上就是政府付给家庭 1924美元。
(6)
26
end
ˆ n XtYt
n
X
2 t
Xt Xt
Yt
2
X tYt nXY
X
2 t
nX
2
( X t X )(Yt Y ) ( Xt X )2
xt yt xt 2
(5)
ˆ Y ˆ X
(6)
其中:Y Yt , X Xt
n
n
xt Xt X , yt Yt Y
(4)测量与归并误差 总会出现测量与归并误差,使得任何精确的关
系不可能存在。即 Y * X * 其中Y *,X * 是
消费和收入的真实值,而实际测量的消费和收 入值为Y和X,则模型应为
Y=α+βX + u
14
end
二. 普通最小二乘法 (OLS法, Ordinary Least squares)
样本均值 离差
27
end
(5)式和(6)式称为线性回归模型 Yt = + Xt + ut 的参数 和 的普通最小二乘估 计量 (OLS estimators)。
估计值是从一组具体观测值用公式计算出 的数值。 一般说来,好的估计量所产生的估计值将 相当接近参数的真值,即好的估计值。可 以证明,对于CLR模型,普通最小二乘估 计量正是这样一个好估计量。

第10讲 (计量经济学第三章)PPT课件

第10讲 (计量经济学第三章)PPT课件
Y * t0 *1 X * 1 t .. .pX * p t t
此模型为原模型的广义差分模型,随机 扰动项之间是不相关的。对此模型进行 的OLS估计,就是对原模型的广义差分估计。
问题:各自相关系数未 知,如何办?
• 广义差分法实施的过程:
Y t01 X 1 t . ..p X p tu t
• 如果随机扰动项之间仅k阶自相关
Y t01 X 1 t . ..p X p tu t t 1t 1 2t 2 . .k .t k t
t 满足随机扰动项所满足的所有假定。
1 Y t 1 1 0 1 1 X 1 t 1 . .1 .p X p 1 t 1 u t 1
t t1t
H0: =0
H1:0
对原模型进行OLS估计,用残差构造统计量。
D.W. 统计量:
T~ ~
(et et1 )2
D.W .
t2
T
~
e
t
2
t 1
显然: 0DW 4
DW与残差自相关系数的关系。
当T较大时,
T ~~
et et1
D.W. 2(1 t2 T
~2
et
)2(1~ ~ )
et ,et1
Y t1 Y t 1...kY tk(11.. . k)0 1(X 1t1X 1t 1.. . kX 1tk)... p(Xp t 1Xp 1 t.. . kXptk)(ut1ut 1.. . kutk)
Yt 1Yt1...kYtk (11...k)0 1(X1t 1X1t1...kX1tk)... p(Xpt1Xpt1...kXptk)t
• 计算DW值
• 给定,由n和参数个数的多少查DW分布表,得临界值 dL和dU

计量经济学精品PPT资料

计量经济学精品PPT资料

同样地,容易得出
E b 0 E B 0 w i u i B 0 w i E u i B 0
(3) 有效性(最小方差性),即在所有线性无偏
估计量中,最小二乘法估计量b0, b1具有最小方 (差1)。先求b0与b1的方差
Varb1Var kiYi ki2Var B0B1Xi ui
ui ~ N(0, u2)
3.2—3.3 最小二乘估计量的性质
1. 系数B1, B2的OLS估计
当模型参数估计出后,需考虑参数估计值的 精度,即是否能代表总体参数的真值,或者说需 考察参数估计量的统计性质。
一个用于考察总体的估计量,可从如下几个 方面考察其优劣性:
(1)线性性,即它是否是另一随机变量的线性 函数;
P li m b P li m B k u 一元线性模型中,Bi (i=0,1)的置信区间
严格地说,这只是被解释变量的预测值的1 估计值,而不是预测值。1
ii
在u是正态分布的假设下,Y是正态分布,则b0 、 b1也服从正态分布,因此,
普通最小二乘估计量(ordinary least Squares Estimators)称为最佳线性无偏估计量(best linear unbiased estimator, BLUE)
Cov(X, u)=0
假设3. 给定Xi,扰动项的期望或均值为零,即:
E(u|Xi)=0;
PRF : E(Y|Xi)=B1+B2Xi
扰动项ui的条件分布
假设4. ui的方差为常数,即同方差假定: Var(ui)=2
PRF : Yi=B1+B2Xi
PRF : Yi=B1+B2Xi
同方差
异方差
假设5. 无自相关假定,即: Cov(ui, uj)=0, ij

计量经济学第三章-一元线性回归模型PPT课件

计量经济学第三章-一元线性回归模型PPT课件
同样地,样本回归函数也有如下的随机形式:
Y i Y ˆi ˆiˆ0ˆ1 X i e i
式中, ei 称为(样本)残差(或剩余)项(residual),是
实际观测值和拟合值的偏差。可看成是 的估i 计量 ˆi 。
由于方程中引入了随机项,成为计量经济模型, 因此也称为样本回归模型(sample regression model)。
.
7
含义:
回归函数(PRF)说明被解释变量Y的平均状 态(总体条件期望)随解释变量X变化的规律。
• 函数形式:
可以是线性或非线性的。 为什么线性形式这么重要?Taylor展开。
将粮食产量看成是播种面积的线性函数时:
E (Y|X i)01X i
为一线性函数。其中,0,1是未知参数,称为
回归系数(regression coefficients)。
.
16
每次抽样都能获得一组样本,就可以拟合一条 样本回归线,因此,样本回归线是随抽样波动 而变化的,可以有许多条,这就决定了SRF不 唯一。
.
6
概念:
在给定解释变量Xi条件下被解释变量Yi的 期望轨迹称为总体回归线(population regression line),或更一般地称为总体回归曲 线(population regression curve)。
相应的函数:
E(Y|Xi)f(Xi)
称为(双变量)总体回归函数(population regression function, PRF)。
.
8
注意:线性回归的含义 指的是对参数是线性的
E (cons|inc)01 inc
诸如此类,都是线性回归的范畴。 除此之外,很多模型不能塑造成线性回归模型,就 需要走入非线性回归模型的领域

计量经济学课件---第三章

计量经济学课件---第三章

用矩阵表示的正则方程
偏导数 ∑ei 1 ∑X2iei = X21 ... ⋮ ∑Xkiei Xk1
1 e1 0 0 X22 … X2n e2 = Xe = ′ ⋮ ⋮ ⋮ ⋮ Xk 2 … Xkn en 0 0 e X′ 1 …
求偏导,令其为 求偏导,令其为0:
∂(∑ ei2 ) =0 ˆ ∂β
j
∂ (∑ ei2 ) =0 ˆ ∂β
j
ˆ ˆ ˆ ˆ -2∑ Yi - ( β1 + β 2 X 2i + β3 X 3i + ... + β ki X ki ) = 0
ˆ ˆ ˆ ˆ -2∑ X 2i Yi -(β1 + β2 X 2i + β3 X 3i + ... + βki X ki ) = 0
个别值表现形式
引入随机扰动项 ui = Yi − E (Yi X 2i , X 3i , ⋯ X ki )
Yi = β1 + β 2 X 2i + β 3 X 3i + ... + β k X ki + ui
多元样本回归函数
条件均值表现形式
Y 的样本条件均值表示为多个解释变量的函数
ˆ ˆ ˆ ˆ ˆ Yi = β1 + β 2 X 2 i + β 3 X 3i + ... + β k X ki
偏回归系数: 偏回归系数:
控制其它解释变量不变的条件下, 控制其它解释变量不变的条件下,第j 个解释变量的 单位变动对应变量平均值的影响。 单位变动对应变量平均值的影响。
对偏回归系数的理解

计量经济学-第三章-多元线性回归-PPT精选文档

计量经济学-第三章-多元线性回归-PPT精选文档

第一节 模型的建立及其假定条件
2. 多元线性回归模型与一元模型的形式有什么不同?
Y X u i 0 1 i i Y X X X u 0 1 1 2 2 k k


多元总体线性回归方程,简称总体回归方程。
设 ( 是对总体 X , X , , X ; Y ), i 1 , 2 , , n 1 i 21 i ki i
X X u 21 K 1 0 1 X X u 22 K 2 1 2 X X (k u 2 n kn n ( k 1 ) k 1 ) 1 n ( n 1 )
第一节 模型的建立及其假定条件
1. 为什么要引入多元线性回归模型? 在实际经济问题中,一个经济变量往往不只受到一个 经济因素的影响,而是受到多个经济因素的影响。如,商 品的需求量不但受到商品本身价格的影响,还会受到消费 者偏好、消费者收入以及其它相关商品价格、预期价格等 因素的影响。 引入多元线性回归模型,为我们深入探究某经济问题 如何被多个经济因素所影响提供了可能,并有助于我们解 析出经济问题背后存在的内在规律。 多元线性回归模型是一元线性回归模型的推广,其基 本原理和方法同一元模型完全相似。
第一节 模型的建立及其假定条件
5. 多元线性回归模型的假定条件 假定2和假定3可以由下列矩阵表示:
2 E(u1 ) E(u u2) E(u un) 1 1 2 E ( u u ) E ( u ) E ( u u ) 2 1 2 n 2 E(u u ) E(u u ) E(u2) n 1 n 2 n 2 0 0 2 0 0 2I

计量经济学ppt第三章

计量经济学ppt第三章

Principles of Econometrics, 4th Edition
Chapter 3: Interval Estimation and Hypothesis Testing
Page 18
3.1 Interval Estimation
10个随机样本的最小二乘估计值
3.1.4 The Repeated Sampling Context
Eq. 3.5
P bk tcse bk k bk tcse bk 1
Chapter 3: Interval Estimation and Hypothesis Testing Page 12
Principles of Econometrics, 4th Edition
2 b2 ~ N 2 , 2 x x i
将b2 减去其均值并除以其标准误,可以得到服 从标准正态分布的Z:
Eq. 3.1
Z
b2 2
2
x x
i
2
~ N 0,1
Principles of Econometrics, 4th Edition
其中: α 为概率,通常取值为α = 0.01或 α=0.05 对自由度为m的t分布,临界值tc就是百分 位值t(1-α/2, m)。
Principles of Econometrics, 4th Edition
Chapter 3: Interval Estimation and Hypothesis Testing Page 10
Principles of Econometrics, 4th Edition
Chapter 3: Interval Estimation and Hypothesis Testing

计量经济学全册课件(完整)pptx

计量经济学全册课件(完整)pptx

预测与置信区间
阐述如何利用一元线性回归模型进行 预测,并给出预测值的置信区间,以 评估预测的不确定性。
2024/1/28
8
多元线性回归模型
模型设定与参数估计
介绍多元线性回归模型的基本形 式,解释多个自变量对因变量的 影响,以及最小二乘法在多元线 性回归中的应用。
模型的统计性质
探讨多元线性回归模型的统计性 质,包括回归系数的解释、拟合 优度的度量、多重共线性的诊断 与处理等。
经典线性回归模型
REPORTING
2024/1/28
7
一元线性回归模型
模型设定与参数估计
介绍一元线性回归模型的基本形式, 解释因变量、自变量和误差项的含义 ,阐述最小二乘法(OLS)进行参数 估计的原理。
模型的统计性质
探讨一元线性回归模型的统计性质, 包括回归系数的解释、拟合优度的度 量(如R方)、回归系数的显著性检 验等。
贝叶斯计量经济学的定义
贝叶斯计量经济学是应用贝叶斯统计推断方法,对经济模 型进行参数估计、假设检验和预测的一门学科。
贝叶斯计量经济学的研究对象
贝叶斯计量经济学主要关注经济模型的参数估计和不确定 性问题,如线性回归模型、时间序列模型、面板数据模型 等。
贝叶斯计量经济学的研究方法
贝叶斯计量经济学的研究方法主要包括先验分布的设定、 后验分布的推导、马尔科夫链蒙特卡罗模拟(MCMC)等 。
介绍如何在EViews中导入数据,进行 数据清洗、转换和预处理等操作。
计量经济学模型估计
介绍如何在EViews中建立计量经济学 模型,进行参数估计、模型检验和预 测等操作。
24
Stata软件介绍及操作指南
Stata软件概述
Stata是一款流行的计量经济学软件,具有强大 的数据处理和统计分析功能。

计量经济学第三章完整课件

计量经济学第三章完整课件

i 1
i 1
n
2
(Yi (ˆ0 ˆ1 X 1i ˆ2 X 2i ˆk X ki ))
i 1
于是得到关于待估参数估计值的正规方程组:
((ˆˆ00(ˆ0ˆˆ11XX1ˆ1i1i X1ˆiˆ22i XXˆ222ii
ki

ˆ 0 ˆ1 ˆ k



1 X 11 X k1
1 X 12 X k2

1 Y1
X 1n Y2
X kn

Yn


(XX)βˆ XY
或者说j给出了Xj的单位变化对Y均值的“直
接”或“净”(不含其他变量)影响。
总体回归模型n个随机方程的矩阵表达式为
Y Xβ μ
其中Biblioteka 1 X 11 X 1 X 12
1 X 1n
X 21 X 22

X 2n
X k1
X
k
2


X
kn

n( k 1)
也被称为总体回归函数的随机表达形式。它 的 非随机表达式为:
E(Yi | X1i , X 2i , X ki ) 0 1 X1i 2 X 2i k X ki
方程表示:各变量X值固定时Y的平均响应。
j也被称为偏回归系数,表示在其他解释变
量保持不变的情况下,Xj每变化1个单位时,Y 的均值E(Y)的变化;
Cov( X ji , i ) 0
j 1,2, k
假设4,随机项满足正态分布
i ~ N (0, 2 )
上述假设的矩阵符号表示 式:
假设1,n(k+1)矩阵X是非随机的,且X的秩=k+1,

计量经济学第三章

计量经济学第三章
第三章 多元线性回归模型
多元线性回归模型及其古典假设 参数估计 最小二乘估计量的统计特性 统计显著性检验 解释变量的选择 中心化和标准化回归方程 利用多元线性回归方程进行预测
山东经济学院统计与数学学院计量经济教研室
第一节 多元线性回归模型 及其古典假设
一、多元线性回归模型的一般形式 二、多元线性回归模型的基本假定
山东经济学院统计与数学学院计量经济教研室
一、多元线性回归模型的一般形式
如果被解释变量(因变量)y与k个解释变量( 自变量)x1, x2, … , xk 之间有线性相关关系,那么 他们之间的多元线性总体回归模型可以表示为:
y 0 1x1 2 x2 k xk u
(3.1)

(
k
1)1
en

n1
对样本回归模型的系统分量的系数进行估计可得样本回归
方程:
yˆi ˆ0 ˆ1x1i ˆ2x2i ˆk xki
yˆ i
其中, 是y的系统分量,即由自变量决定的理论值, ˆ0,ˆ1,ˆ2,,ˆk
分别是0 ,1 ,…,k的无偏估计量。
方程表示:各变量x值固定时y的平均响应。
j也被称为偏回归系数,表示在其他解释变量
保持不变的情况下,xj每变化1个单位时,y的均 值E(y)的变化;
或者说j给出了xj的单位变化对y均值的“直
接”或“净”(不含其他变量)影响。
山东经济学院统计与数学学院计量经济教研室
总体回归模型n个随机方程的为:
y1 0 1x11 2 x21 k xk1 u1 y2 01x12 2x22 kxk2 u2 yn 0 1x1n 2 x2n k xkn un
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Prob(F-statistic)
Prob. 0.0037 0.0018 0.0158 928.4946 372.6424 6.684995 6.833774 2057.271 0.000000
资料、最大或然估计
对于多元线性回归模型
Yi 0 1 X 1i 2 X 2i k X ki i
(regression coefficient)。
习惯上:把常数项看成为一虚变量的系数,该 虚变量的样本观测值始终取1。这样:
模型中解释变量的数目为(k+1)
Yi 0 1 X 1i 2 X 2i k X ki i
也被称为总体回归函数的随机表达形式。它 的 非随机表达式为:
E(Yi | X1i , X 2i , X ki ) 0 1 X1i 2 X 2i k X ki
S.D. dependent var
S.E. of regression Sum squared resid
26.56078 13404.02
Akaike info criterion Schwarz criterion
Log likelihood
-101.7516
F-statistic
Durbin-Watson stat 1.278500
ˆ 2
e
2 i
e e
n k 1 n k 1
2、参数估计量的性质
在满足基本假设的情况下,其结构参数的普通
最小二乘估计、最大或然估计及矩估计仍具有: 线性性、无偏性、有效性。
同时,随着样本容量增加,参数估计量具有: 渐近无偏性、渐近有效性、一致性。
1、线性性
βˆ (XX)1 XY CY
其中,C=(X’X)-1 X’ 为一仅与固定的X有关的行向量
其中 :
y1
x11 x21 xk1
y
y2 yn
x
x12 x1n
x22 x2n
xk2
xkn
ˆ1
βˆ
ˆ2
ˆk
在离差形式下,参数的最小二乘估计结果为
βˆ (xx)1 xY
ˆ0 Y ˆ1 X1 ˆk X k
⃟随机误差项的方差的无偏估计
可以证明,随机误差项的方差的无偏估计量为
Std. Error
t-Statistic
C
120.7000
36.51036
3.305912
GDPP CONSP(-1)
0.221327 0.451507
0.060969 0.170308
3.630145 2.651125
R-squared
0.995403
Mean dependent var
Adjusted R-squared 0.994920
i=1,2…n
根据最小二乘原理,参数估计值应该是下列方程组的解
ˆ
0
Q
0
ˆ1
Q
0
ˆ
2
Q
0
ˆ k
Q
0
其中
n
n
Q ei2 (Yi Yˆi ) 2
i 1
i 1
n
2
(Yi (ˆ0 ˆ1 X 1i ˆ2 X 2i ˆk X ki ))
i 1
于是得到关于待估参数估计值的正规方程组:
L* Ln(L)
nLn(
2 )
1 2 2
(Y
Xβˆ )
(Y
Xβˆ )
对对数或然函数求极大值,也就是对
(Y Xβˆ )(Y Xβˆ )
求极小值。 因此,参数的最大或然估计为
βˆ (XX)1 XY
结果与参数的普通最小二乘估计相同
资料、矩估计(Moment Method, MM)
OLS估计是通过得到一个关于参数估计值的正 规方程组
E(X’)=0
• 如果某个解释变量与随机项相关,只要能找到1 个工具变量,仍然可以构成一组矩条件。这就是 IV。
• 如果存在>k+1个变量与随机项不相关,可以构 成一组包含>k+1方程的矩条件。这就是GMM。
1 X 12 Xk2
1 Y1
X 1n Y2
X kn
Yn

(XX)βˆ XY
由于X’X满秩,故有 βˆ (XX)1 XY
将上述过程用矩阵表示如下:
即求解方程组:
βˆ (Y
Xβˆ )(Y
Xβˆ )
0
得到:
βˆ (YY βˆ XY YXβˆ βˆ XXβˆ ) 0 βˆ (YY 2YXβˆ βˆ XXβˆ ) 0 XY XXβˆ 0
假设2,随机误差项具有零均值、同方差及不 序列相关性

E(i ) 0
Var(i ) E(i2 ) 2
Cov(i , j ) E(i j ) 0
i j i, j 1,2, , n
假设3,解释变量与随机项不相关
Cov( X ji , i ) 0
j 1,2 , k
假设4,随机项满足正态分布
一般经验认为: 当n30或者至少n3(k+1)时,才能说满足
模型估计的基本要求。
模型的良好性质只有在大样本下才能得 到理论上的证明
多元线性回归模型的参数估计实例
例3.2.2 在例2.5.1中,已建立了中国居 民人均消费一元线性模型。这里我们再考 虑建立多元线性模型。
解释变量:人均GDP:GDPP 前期消费:CONSP(-1)
n
,
1
)
cov(1, n ) 2
var( n )
0
0 2I
2
假设3,E(X’)=0,即
i E(i )
E
X 1i i
X
1i E(i
)
0
X Ki i X Ki E(i )
假设4,向量 有一多维正态分布,即
μ~ N(0, 2I) 同一元回归一样,多元回归还具有如下两个重要假设:
方程表示:各变量X值固定时Y的平均响应。
j也被称为偏回归系数,表示在其他解释变
量保持不变的情况下,Xj每变化1个单位时,Y 的均值E(Y)的变化;
或者说j给出了Xj的单位变化对Y均值的“直
接”或“净”(不含其他变量)影响。
总体回归模型n个随机方程的矩阵表达式为 Y Xβ μ
其中
1 X 11 X 1 X 12
XY XXβˆ
于是: βˆ (XX)1 XY
例3.2.1:在例2.1.1的家庭收入-消费支出例中,
(X'X)
1 X1
1 X2
1
1 Xn
11
X 1
X 2
Xn
n Xi
Xi
X
2 i
10 21500
21500 53650000
XY
1 X1
可求得
1 X2
Y1
1 X n
Y2 Yn
ei称为残差或剩余项(residuals),可看成是总
体回归函数中随机扰动项i的近似替代。
样本回归函数的矩阵表达:
Yˆ Xβˆ

Y Xβˆ e
其中:
ˆ0
βˆ
ˆ1
ˆk
e1
e
e2 en
二、多元线性回归模型的基本假定
假设1,解释变量是非随机的或固定的,且各 X之间互不相关(无多重共线性)。
§3.2 ols:参数的估计
估计方法:OLS、ML或者MM 一、普通最小二乘估计 二、参数估计量的性质 三、样本容量问题
一、普通最小二乘估计
对于随机抽取的n组观测值 (Yi , X ji ), i 1,2, , n, j 0,1,2, k
如果样本函数的参数估计值已经得到,则有:
Yˆi ˆ0 ˆ1 X1i ˆ2 X 2i ˆki X Ki
XY XXβˆ
于是
XXβˆ Xe XXβˆ
Xe 0
(*)

ei 0
(**)
X ji ei 0
i
(*)或(**)是多元线性回归模型正规方程组的另一 种写法
⃟样本回归函数的离差形式
yi ˆ1x1i ˆ2 x2i ˆk xki ei 其矩阵形式为
i=1,2…n
y xβˆ e
(XX)βˆ XY
并对它进行求解而完成的。
该正规方程组 可以从另外一种思路来导:
求期望 :
Y Xβμ
XY XXβ Xμ
X(Y Xβ) Xμ
E(X(Y Xβ) 0
E(X(Y Xβ) 0
称为原总体回归方程的一组矩条件,表明了原总 体回归方程所具有的内在特征。
1 X(Y Xβˆ ) 0 n
易知
Yi ~ N (Xiβ , 2 )
Y的随机抽取的n组样本观测值的联合概率
L(βˆ , 2 ) P(Y1,Y2 , ,Yn )
1
e
1 2
2
(Yi
(
ˆ0
ˆ1 X1i
ˆ2
X
2i
ˆk
X
ki
))2
(2
)
n 2
n
1
1 (YXβˆ )(YXβˆ )
e 2 2
(2
)
n 2
n
即为变量Y的或然函数
对数或然函数为
解该(k+1)个方程组成的线性代数方程组,即可得 到 (k+1)个待估参数的估计值 j , j 0,1,2, , k 。
正规方程组的矩阵形式
n
X 1i
X 1i
X
2 1i
X ki
X ki X 1i
X X 1i
X
ki
X
2 ki
ki
ˆ 0 ˆ1
ˆ k
1 X 11 X k1
假设5,样本容量趋于无穷时,各解释变量的方差趋于有 界常数,即n∞时,
相关文档
最新文档