中山大学2007级硕士研究生黎曼几何考试题

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Riemanian Geometry

Uia,Math,Sysu,China

2008-6-26

1.Let M be a Riemannian Manifold with sectional curvature identically zero. Show that, for every p M ∈, the mapping

()()exp :0p εp εB T M B p ⊂→

is an isometry, where ()εB p is a normal ball at p .

2.Let M

ɶ be a covering space of a Riemani- an Manifold M . Show that it is possible to give M ɶ a Riemannian structure such that the covering map :πM

M →ɶ is a local isometry ( this metric is called the covering metric ). Show that M

ɶ is complete in the covering metric iff M is complete.

3.If a complete simply connected Riemanian Manifold M has a pole, then M is

diffeomorphic to n R , dim n M =.

4.Introduce a complete Riemannian metric on 2R . Prove that

()()222lim inf ,0x y r r K x y +≥→∞≤

where ()2,x y R ∈ and (),K x y is the Gaussian curvature of the given metric at (),x y .

5.Let []:0,γa M → be a geodesic segment on M such that ()γa is not conjugate to ()0γ. Then γ has no conjugate points on ()0,a iff for all proper variations of γ ()()0,..00δs t s δE s E ∃><<⇒> In particular, if γ is minimizing, γ has no conjugate points on ()0,a .

相关文档
最新文档