四年级加减法速算巧算

合集下载

四年级 速算与巧算(一)

四年级 速算与巧算(一)

第二十周速算与巧算(一)专题简析:速算与巧算是计算中的一个重要组成部分,掌握一些速算与巧算的方法,有助于提高我们的计算能力和思维能力。

这一周我们学习加、减法的巧算方法,这些方法主要根据加、减法的运算定律和运算性质,通过对算式适当变形从而使计算简便。

在巧算方法里,蕴含着一种重要的解决问题的策略。

转化问题法即把所给的算式,根据运算定律和运算性质,或改变它的运算顺序,或减整从而变成一个易于算出结果的算式。

例1:计算9+99+999+9999分析与解答:这四个加数分别接近10、100、1000、10000。

在计算这类题目时,常使用减整法,例如将99转化为100-1。

这是小学数学计算中常用的一种技巧。

9+99+999+9999=(10-1)+(100-1)+(1000-1)+(10000-1)=10+100+1000+10000-4=11106练习一1,计算99999+9999+999+99+92,计算9+98+996+99973,计算1999+2998+396+4974,计算198+297+396+4955,计算1998+2997+4995+59946,计算19998+39996+49995+69996例2:计算489+487+483+485+484+486+488分析与解答:认真观察每个加数,发现它们都和整数490接近,所以选490为基准数。

489+487+483+485+484+486+488=490×7-1-3-7-5-6-4-2=3430-28=3402想一想:如果选480为基准数,可以怎样计算?练习二1,50+52+53+54+512,262+266+270+268+2643,89+94+92+95+93+94+88+96+874,381+378+382+383+3795,1032+1028+1033+1029+1031+10306,2451+2452+2446+2453(1)632-156-232 (2)128+186+72-86分析与解答:在一个没有括号的算式中,如果只有第一级运算,计算时可以根据运算定律和性质调换加数或减数的位置。

四年级加减法速算与巧算

四年级加减法速算与巧算
常见运算定律及其方法:
加法交换律:
两个数相加,交换加数的位置, 它们的和不变。即 a+b=b+a
一般地,多个数相加,任意改变 相加的次序,其和不变。 a+b+c+d=d+b+a+c
加法结合律:
几个数相加,先把前两个数相加, 再加上第三个数;或者,先把后两 个数相加,再与第一个数相加,它 们的和不变。即 a+b+c = (a+b)+c = a+(b+c),
常见方法:
1.补数法:什么叫“补数” 2. 去括号添括号法则 3.带符号搬家“+” ,“-”
1.凑整法 (补数法)
两个数相加,若能恰好凑成整十、整百、 整千、整万…,就把其中的一个数叫做另 一个数的“补数”。
如:1+9=10,3+7=10, 11+89=100, 33+67=100
在上面算式中, 89叫11的“补数”,11也叫89的“补数”, 也就是说两个数互为“补数”。
(1).把几个互为“补数”的减数先加 起来,再从被减数中减去
300-73-27 1000-90-80-20-10
a–b–c=a–(b+c)
减法中的巧算
(2).先减去那些与被减数有相同尾数的
减数。
2356 – 159 - 256 4723 -(723+189)

a–b–c=a–(b+c)
减法中的巧算
3.
50+20-10
=
50+(20-10)
你能举例验证自己的观点吗?
3.去括号添括号法则
1.在加、减法混合运算中,去括号时: 如果括号前面是“+”号,那么去掉 括号后,括号内的数的运算符号不变;

四年级奥数——速算与巧算(加减乘除)

四年级奥数——速算与巧算(加减乘除)

四年级奥数状元郎网络教育平台旗舰店(百度文库) 速算与巧算四年级奥数春季班速算与巧算计算是数学的基础,小学生要学好数学,必须具有过硬的计算本领。

准确、快速的计算能力既是一种技巧,也是一种思维训练,既能提高计算效率、节省计算时间,更可以锻炼记忆力,提高分析、判断能力,促进思维和智力的发展。

我们在三年级已经讲过一些四则运算的速算与巧算的方法,本讲和下一讲主要介绍加法的基准数法和乘法的补同与同补速算法。

例1 四年级一班第一小组有10名同学,某次数学测验的成绩(分数)如下:86,78,77,83,91,74,92,69,84,75。

求这10名同学的总分。

分析与解:通常的做法是将这10个数直接相加,但这些数杂乱无章,直接相加既繁且易错。

观察这些数不难发现,这些数虽然大小不等,但相差不大。

我们可以选择一个适当的数作“基准”,比如以“80”作基准,这10个数与80的差如下:6,-2,-3,3,11,-6,12,-11,4,-5,其中“-”号表示这个数比80小。

于是得到总和=80×10+(6-2-3+3+11-=800+9=809。

实际计算时只需口算,将这些数与80的差逐一累加。

为了清楚起见,将这一过程表示如下:通过口算,得到差数累加为9,再加上80×10,就可口算出结果为809。

例1所用的方法叫做加法的基准数法。

这种方法适用于加数较多,而且所有的加数相差不大的情况。

作为“基准”的数(如例1的80)叫做基准数,各数与基准数的差的和叫做累计差。

由例1得到:总和数=基准数×加数的个数+累计差,平均数=基准数+累计差÷加数的个数。

在使用基准数法时,应选取与各数的差较小的数作为基准数,这样才容易计算累计差。

同时考虑到基准数与加数个数的乘法能够方便地计算出来,所以基准数应尽量选取整十、整百的数。

例2 某农场有10块麦田,每块的产量如下(单位:千克):462,480,443,420,473,429,468,439,475,461。

加减法的速算与巧算

加减法的速算与巧算

加减法的速算与巧算奥数知识在进行加减运算时,为了又快又好,除了要熟练地掌握计算法则外,还需要掌握一些巧算的方法。

加减法的巧算主要是运用“凑整”的方法,把接近整十、整百、整千的数看作所接近的数进行简算。

进行加减巧算时,凑整之后,对于原数与整十、整百、整千…相差的数,要根据“多加要减去,少加要再加,多减要加上,少减要再减”的原则进行处理。

另外,可以结合加法交换律、结合律以及减法的性质进行凑整,从而达到简算的目的。

【例题1】计算下面各题。

(1)396+55(2)427+1008(3)456-298(4)582-305【思路】(1)中396接近于400,396+55可以看成400+55,多加了4,所以还要减4;(2)中1008接近于1000,427+1008变成427+1000,少加了8,所以还要加8;(3)中298接近于300,456-298变成了456-300,多减了2,所以还要加2;(4)中305接近于300,582-305变成了582-300,少减了5,所以还要减5。

【练习1】1.速算。

(1)497+28 (2)750+1002 (3)598+231 (4)2004+271 2.巧算。

(1)574-397 (2)472―203(3)8732―2008 (4)487―298 3.计算:402+307―297―99【例题2】你有好办法迅速计算出结果吗?(1)502+799―298―97 (2)9999+999+99+9【思路】(1)是一道加减混合运算,每个数都接近于整百数,计算时可先把这些数拆成两部分,再把整百数与整百数相加减,“零头数”与“零头数”相加减,最后把两个部分数合起来;(2)这四个数都分别接近于整万、整千、整百、整十数,我们可以把9999看作10000,999看作1000,99看作100,9看作10,这样每个数都多了1,最后再从它们的和中减去4个1,即可得出结果。

【练习2】1.计算。

(1)307+201―398―99 (2)208+494―498―95【例题3】计算:(1)487+321+113+479 (2)723-251+177(3)872+284―272 (4)537―142―58【思路】(1)487和113,321和479,分别可以凑成整百数,我们可以通过交换位置的方法,487+113得到600,321+479得到800,然后600+800=1400。

巧算速算之加减法(一)

巧算速算之加减法(一)

巧算速算之加减法(一)引言概述:在日常生活和学习中,加减法是最基础的计算方法之一。

掌握巧算速算的加减法技巧不仅可以提高计算效率,还可以培养逻辑思维和数学推理能力。

本文将介绍巧算速算之加减法的一些技巧和方法。

正文内容:一、整数相加的巧算速算方法1. 小节数相加- 相同进位法:当两个小节数相加时,若个位数相加的结果大于等于10,则向十位数进一位,并将个位数的个位数部分写下来作为结果的个位数。

- 边加边算法:从左到右逐位相加,遇到进位要及时处理。

2. 大数相加- 列竖式法:将两个大数竖直排列,从个位数开始逐列相加并记录进位,依次进行下一列的计算,最后得到结果。

3. 带有小数的相加法- 对齐小数点法:将带有小数的数对齐小数点后再进行相加,得出结果后保留相同小数位数。

二、整数相减的巧算速算方法1. 小节数相减- 不退位法:当两个小节数相减时,若被减数的个位数大于减数的个位数,则直接相减得出结果。

- 借位法:当被减数的个位数小于减数的个位数时,需要向高位借位,对应位相加,然后再进行减法运算。

2. 大数相减- 列竖式法:将被减数和减数竖直排列,从个位数开始逐列相减,遇到不够减的情况,需要向高位借位,依次进行下一列的计算,最后得到结果。

3. 带有小数的相减法- 对齐小数点法:将带有小数的数对齐小数点后再进行相减,得出结果后保留相同小数位数。

三、加减法混合运算的巧算速算方法1. 先乘后加减法:当计算表达式中既有加减法又有乘法时,可先计算乘法,再进行加减法运算。

2. 同解法规则:对于多个计算式组合成的加减法,如果其中有相同的计算式,则可以合并计算,简化运算步骤。

四、连加连减的巧算速算方法1. 快速连加法:使用等差数列求和公式,可以快速计算连续多个整数的和。

2. 快速连减法:利用差等差公式,可以快速计算连续多个整数的差。

五、小数的加减法巧算速算方法1. 小数的加法:将小数转化为分数进行计算,然后再将结果转化为小数。

2. 小数的减法:将减法转化为加法,即被减数加上减数的相反数。

四年级--速算巧算1

四年级--速算巧算1

速算巧算1 D24提示速算与巧算是计算中的一个重要组成部分,掌握一些速算与巧算的方法,有助于提高我们的计算能力和思维能力。

这一周我们学习加、减法的巧算方法,这些方法主要根据加法、减法的运算定律和运算性质,通过对算式适当变形从而使计算简便。

在巧算方法里,蕴含着一种重要的解决问题的策略:转化问题法。

即把所给的算式,根据运算定律和运算性质,或改变它的运算顺序,或凑整从而变成一个易于算出结果的算式。

举例1计算:9+99+999+9999【创造力思维】这四个加数分别接近10、100、1000、10000。

在计算这类题目时,例如将99转化为100-1,这是小学数学计算中常用的一种技巧。

9+99+999+9999=(10-1)+(100-1)+(1000-1)+(10000-1)=10+100+1000+10000-4=11106举例2用简便方法计算:479+478+477+476+481+482【创造力思维】认真观察每个加数,发现它们都和整数480接近,所以选480为基准数。

在计算时,先把6个数都当做480相加,原先比480大的,大多少就再加多少;原先比480小的,小多少就再减多少。

479+478+477+476+481+482=480×6-(1+2+3+4-1-2)=2880-7=2873举例3计算下面各题。

(1)632-136-232 (2)128+186+72-86【创造力思维】在一个没有括号的算式中,如果只有第一级运算,计算时可以根据运算定律和性质调换加数或减数的位置。

(1)632-136-232 (2)128+186+72-86 =632-232-136 =128+72+186-86=400-136 =(128+72)+(186-86)=264 =200+100=300举例4计算下面各题。

(1)248+(152-127)(2)324-(124-97)(3)283+(358-183)【创造力思维】在计算有括号的加减混合运算时,有时为了使计算简便可以去括号,如果括号前面是“+”号,去括号时,括号内的符号不变。

四年级速算、巧算方法

四年级速算、巧算方法

速算与巧算方法随着数学竞赛的蓬勃发展,数值计算充满了活力,除了遵循四则混合运算的运算顺序外,破局部考虑、立整体分析,巧妙、灵活地运用定律和方法,对处理一些貌似复杂的计算题常常有事半功倍的效果,常见适用的巧算方法如下:一、凑整法整数速算与巧算的基础是凑整思想,通过用交换律、结合律和分配律凑出1,10,100,1000,…,将复杂的计算变简便。

运算定律是巧算的支架,是巧算的理论依据,根据式题的特征,应用定律和性质“凑整”运算数据,能使计算比较简便。

1、加法“凑整”。

利用加法交换律、结合律“凑整”,例如:4673+27689+5327+22311=(4673+5327)+(27689+22311)= 10000+50000= 600002、减法“凑整”。

利用减法的性质“凑整”,例如:50-13-7= 50-(13+7)= 303、乘法“凑整”。

利用乘法交换律、结合律、分配律“凑整”,例如:125×4×8×25×78=(125×8)×(4×25)×78= 1000×100×78= 78000004、补充数“凑整”。

末尾是一个或几个0的数,运算起来比较简便。

若数末尾不是0,而是98、51等,我们可以用(100-2)、(50+1)等来代替,使运算变得比较简便、快速。

一般地我们把100叫作98的“大约强数”,2叫做98的“补充数”;50叫作51的“大约弱数”,1叫作51的“补充数”。

把一个数先写成它的大约强(弱)数与补充数的差(和),然后再进行运算,例如:(1)387+99=387+(100-1)=387+100-1=486(2)1680-89=1680-(100-11)=1680-100+11=1580+11=1591(3)69×101=69×(100+1)=6900+69=6969二、基准数法根据数据特征,从诸多数中选择一个做计算基础的数,通过“割”、“补”,采用“以乘代加”的方法速算。

四年级小数加减乘巧算

四年级小数加减乘巧算

小数的加减法和乘法的巧算小数混合运算法则:运算顺序与整数相同,同级运算,从左往右依次运算,两级运算,先算乘除,后算加减,有括号的先算括号里面的,再算外面的。

运算律:加法结合律、加法交换律、乘法交换律、乘法分配律、乘法结合律一、加减法中的速算与巧算1. 速算巧算的核心思想和本质:凑整2. 常用的思想方法:(1)分组凑整法。

把几个互为“补数”的数先加起来,再把他们的和相加,或者从被减数中减去,也可以先减去那些与被减数有相同尾数的减数。

((补数”就是两个数相加,如果恰好凑成整数、整十、整百、整千……,就把其中的一个数叫做另一个数的“补数”。

)注意:先符号,后计算。

(2)加补凑整法。

有些算式中直接凑整不明显,这时可“借数”或“拆数”凑整。

(3)“基准数”法。

基准当几个数比较接近于某一整数的数相加时,选这个整数为“基准数”(要注意把多加的数减去,把少加的数加上)二、乘法凑整与运算性质思想核心:先把能凑成整十、整百、整千的几个乘数结合在一起,最后再与前面的数相乘,使得运算简便。

例如:425100⨯=,81251000⨯=,520100⨯=例1计算0.0625+0.325+0.1875+0.25+0.675+0.8125+0.75+0.8125+0.125=变式1. 2006+200.6+20.06+2.006+994+99.4+9.94+0.994=例2计算3.17+7.48-2.38+0.53+2.52-1.62=变式1、56.43+12.96+13.57-4.33-8.96-5.67=例3计算202.93+199.97+198+212.5+188.6=变式1、91.5+88.8+90.2+270.4+89.6+86.7+91.8=2、13.997-14.996+16.053-15.804+15.95-14.2= 例4 1.2+9.7+99.7+…+9999.7=变式1、9.96+29.98+169.9+3999.5=例5 124.68+324.68+524.68+724.68+24.68=变式1、3125.24+425.24+625.24+925.24+525.24=例6计算=2.1257.532⨯⨯变式1、0.625×2.5×800=例6计算20.0931.5 2.009317200.9 3.68⨯+⨯+⨯==练习1、1999 3.14199.931.419.99314⨯+⨯+⨯=作业1、0.9+0.99+0.999+0.9999+0.99999=2、8.92+13.9+44.34+0.66+10.08+400.1=3、24.32-9.812+50.48-15.188-0.32+4.52=4、50.98+49.21+48.02+54.09+52.7=5、38.75+28.75+58.75+68.75+138.75=6、0.1250.250.564⨯⨯⨯=7、6.258.2716 3.750.8278⨯⨯+⨯⨯=。

四年级下册运算规律

四年级下册运算规律

加、减法的速算与巧算(基础篇)1、加法运算定律〔2个〕:☆加法交换律:两个数相加,交换加数的位置,和不变。

即:a+b=b+a☆加法结合律:三个数相加,可以先把前两个数相加,再加上第三个数;或者先把后两个数相加,再加上第一个数,和不变。

即:(a+b)+c=a+(b+c) 〔提醒:运用加法结合律时,要注意把结合的两个数用括号括起来。

〕连加的简便计算方法:①使用加法交换律、结合律凑整〔把和是整十、整百、整千的数先交换再结合在一起。

〕②个位:1与9,2与8,3与7,4与6,5与5,结合。

③十位:0与9,1与8,2与7,3与6,4与5,结合。

连加的简便计算例题:50+98+50=50+50+98 488+40+60=488+〔40+60〕=588165+93+35 65+28+35+72=〔65+35〕+〔28+72〕=93+(165+35) =100+98=100+1002、连减的性质:☆一个数连续减去几个数等于这个数减去这几个数的和。

即:a–b–c=a–(b+c)注:连减的性质逆用:a–(b+c)=a–b–c=a–c–b☆一个数连续减去两个数,可以用这个数先减去后一个数再减去前一个数。

即:a-b-c=a—c-b连减的简便计算方法:①连续减去几个数就等于减去这几个数的和。

如:106-26-74 = 106-(26+74)②连续减去两个数可以先减去后一个数再减去前一个数。

如:226-58-26=226-26-58③减去几个数的和就等于连续减去这几个数。

如:106-(26+74) = 106-26-743、加、减混合运算的性质:在计算没有括号的加、减混合运算时,计算时可以带着运算符号“搬家”。

即:a+b–c=a–c+b加、减混合的简便计算方法:在没有括号的加、减混合运算时,第一个数的位置不变,其余的加数、减数可以带着运算符号“搬家”。

例如:123+38-23=123-23+38 146-78+54=146+54-78加、减混合的简便计算例题:256-58+44 123+38-23=256+44-58 =123-23+38=300-58 =100+38=242 =1384、加、减法运算性质:在加法或减法运算中,当算式中的数接近整十、整百数时,可以利用如下原则:多加了要减去;多减了要加上;少加了要加上;少减了要减去。

四年级小数四则运算

四年级小数四则运算

小数四则运算知识框架一、加减法中的速算与巧算速算巧算的核心思想和本质:凑整常用的思想方法:1、分组凑整法.把几个互为“补数”的减数先加起来,再从被减数中减去,或先减去那些与被减数有相同尾数的减数.“补数”就是两个数相加,如果恰好凑成整十、整百、整千……,就把其中的一个数叫做另一个数的“补数”.2、加补凑整法.有些算式中直接凑整不明显,这时可“借数”或“拆数”凑整.3、数值原理法.先把加在一起为整十、整百、整千……的数相加,然后再与其它的数相加.4、“基准数”法,基准当几个数比较接近于某一整数的数相加时,选这个整数为“基准数”(要注意把多加的数减去,把少加的数加上)二、乘法凑整与运算性质思想核心:先把能凑成整十、整百、整千的几个乘数结合在一起,最后再与前面的数相乘,使得运算简便。

例如:425100⨯=⨯=,520100⨯=,81251000⨯=(去8数,重点记忆)123456799111111111⨯⨯=(三个常用质数的乘积,重点记忆)711131001理论依据:乘法交换率:a×b=b×a乘法结合率:(a×b) ×c=a×(b×c)乘法分配率:(a+b) ×c=a×c+b×c积不变规律:a×b=(a×c) ×(b÷c)=(a÷c) ×(b×c)三、乘、除法混合运算的性质1)商不变性质:被除数和除数乘(或除)以同一个非零数,其商不变.即: ,0()()()()0÷=⨯÷⨯=÷÷÷≠a b a n b n a m b m mn≠2)在连除时,可以交换除数的位置,商不变.即:a b c a c b÷÷=÷÷3)在乘、除混合运算中,被乘数、乘数或除数可以连同运算符号一起交换位置(即带着符号搬家).例如:a b c a c b b c a⨯÷=÷⨯=÷⨯4)在乘、除混合运算中,去掉或添加括号的规则去括号情形:①括号前是“×”时,去括号后,括号内的乘、除符号不变.即()()⨯⨯=⨯⨯⨯÷=⨯÷a b c a b c a b c a b c②括号前是“÷”时,去括号后,括号内的“×”变为“÷”,“÷”变为“×”.即()()a b c a b c a b c a b c÷⨯=÷÷÷÷=÷⨯添加括号情形:加括号时,括号前是“×”时,原符号不变;括号前是“÷”时,原符号“×”变为“÷”,“÷”变为“×”.即()()()() a b c a b c a b c a b c a b c a b c a b c a b c ⨯⨯=⨯⨯⨯÷=⨯÷÷÷=÷⨯÷⨯=÷÷5)两个数之积除以两个数之积,可以分别相除后再相乘.即()()()()()()a b c d a c b d a d b c⨯÷⨯=÷⨯÷=÷⨯÷例题精讲【例 1】91.588.890.2270.489.6186.791.8++++++【考点】分组凑整【难度】☆☆【题型】计算【解析】原式91.5=+ (88.890.2+)+(270.489.6+)+(186.791.8+)91.5179360278.5=+++=(91.5278.5+)179360909++=【答案】909【巩固】2006+200.6+20.06+2.006+994+99.4+9.94+0.994=【考点】分组凑整【难度】☆☆【题型】计算【解析】(2006+994)+(200.6+99.4)+(20.06+9.94)+(2.006+0.994)=3000+300+30+3=3333。

四年级奥数——速算与巧算(加减乘除)

四年级奥数——速算与巧算(加减乘除)

四年级奥数春季班速算与巧算计算是数学的基础,小学生要学好数学,必须具有过硬的计算本领。

准确、快速的计算能力既是一种技巧,也是一种思维训练,既能提高计算效率、节省计算时间,更可以锻炼记忆力,提高分析、判断能力,促进思维和智力的发展。

我们在三年级已经讲过一些四则运算的速算与巧算的方法,本讲和下一讲主要介绍加法的基准数法和乘法的补同与同补速算法。

例1 四年级一班第一小组有10名同学,某次数学测验的成绩(分数)如下:86,78,77,83,91,74,92,69,84,75。

求这10名同学的总分。

分析与解:通常的做法是将这10个数直接相加,但这些数杂乱无章,直接相加既繁且易错。

观察这些数不难发现,这些数虽然大小不等,但相差不大。

我们可以选择一个适当的数作“基准”,比如以“80”作基准,这10个数与80的差如下:6,-2,-3,3,11,-6,12,-11,4,-5,其中“-”号表示这个数比80小。

于是得到总和=80×10+(6-2-3+3+11-=800+9=809。

实际计算时只需口算,将这些数与80的差逐一累加。

为了清楚起见,将这一过程表示如下:通过口算,得到差数累加为9,再加上80×10,就可口算出结果为809。

例1所用的方法叫做加法的基准数法。

这种方法适用于加数较多,而且所有的加数相差不大的情况。

作为“基准”的数(如例1的80)叫做基准数,各数与基准数的差的和叫做累计差。

由例1得到:总和数=基准数×加数的个数+累计差,平均数=基准数+累计差÷加数的个数。

在使用基准数法时,应选取与各数的差较小的数作为基准数,这样才容易计算累计差。

同时考虑到基准数与加数个数的乘法能够方便地计算出来,所以基准数应尽量选取整十、整百的数。

例2 某农场有10块麦田,每块的产量如下(单位:千克):462,480,443,420,473,429,468,439,475,461。

求平均每块麦田的产量。

小学奥数:第1讲四年级数学速算与巧算教案

小学奥数:第1讲四年级数学速算与巧算教案

一、导入速算与巧算是计算中的一个重要组成部分,掌握一些速算与巧算的方法,有助于提高我们的计算能力和思维能力。

这一周我们学习加、减法的巧算方法,这些方法主要根据加、减法的运算定律和运算性质,通过对算式适当变形从而使计算简便。

在巧算方法里,蕴含着一种重要的解决问题的策略。

转化问题法即把所给的算式,根据运算定律和运算性质,或改变它的运算顺序,或减整从而变成一个易于算出结果的算式。

二、同步题型分析题型1:两数相加,和凑整;同尾两数直接相减,差凑整例1:计算9+99+999+9999分析与解答:这四个加数分别接近10、100、1000、10000。

在计算这类题目时,常使用减整法,例如将99转化为100-1。

这是小学数学计算中常用的一种技巧。

9+99+999+9999=(10-1)+(100-1)+(1000-1)+(10000-1)=10+100+1000+10000-4=11106例2:计算489+487+483+485+484+486+488分析与解答:认真观察每个加数,发现它们都和整数490接近,所以选490为基准数。

489+487+483+485+484+486+488=490×7-1-3-7-5-6-4-2=3430-28=3402想一想:如果选480为基准数,可以怎样计算?例3:计算453+598+147-198【分析】观察数字的特点,不难发现453与147两数相加可以等到整百数,598与198两数的尾数相同,相减的差也是整百数,这样计算起来比较简便。

453+598+147-198=(453+147)+(598-198)=600+400=1000题型2:带符号搬家,减法性质的应用例1:计算下面各题。

174-(41+74)527-114+14 145+387-187答案:59 427 34531.34-(7.34+2.25) -7.75 63×15÷7 ×60答案:14 、81002.巧算下列各题:(1)72+(14+28)(2)145+387-187(3)132-(27+32)(4)527-114+14114, 345,73,427799+405 (15+14)+(185+186) 217+263+18376+(282+424+218) 579-221-31-8 157-(57+25)1204;400;663;1000;319;75专题简析:乘、除法的巧算方法主要是利用乘、除法的运算定律和运算性质以及积、商的变化规律,通过对算式适当变形,将其中的数转化成整十、整百、整千…的数,或者使这道题计算中的一些数变得易于口算,从而使计算简便。

四年级上册数学速算巧算方法练习

四年级上册数学速算巧算方法练习
=6900+69
=6969
二、基准数法
根据数据特征,从诸多数中选择一个做计算基础的数,通过“割”、“补”,采用“以乘代加”的方法速算。例如:
17+18+16+17+14+19+13+14 (可以选择17为基准数)
=17×8+1-1-3+2-4-3
=17×8-8 =128
三、公式法
等差数列,是指每两个相邻的数之间差都相等的数列。等差数列求和,可以用公式:和=(首项+尾项)×项数÷2。
=3333×3×2222+3333×3334
=3333×6666+3333×3334
=3333×(6=33330000
=(125×8)×(4×25)×78
= 1000×100×78
= 7800000
4、补充数“凑整”。
(1)387+99 (2)1680-89
=387+(100-1) =1680-(100-11)
=387+100-1 =1680-100+11
=486 =1580+11=1591
(3)69×101
=69×(100+1)
例如:13+14+15+16+17+18+19+20+21+22
=(13+22)×10÷2
=175
另外,如果加数的项数是奇数个,也可以直接用排列在正中间的数(中间项)乘以项数,去求它们的和。
例如:3+5+7+9+11+13+15+17+19
=11×9 ……中间项×项数
=99
四、变形法
例如:计算 9999×2222+3333×3334(将9999变为3333×3)
一、凑整法
1、加法“凑整”。利用加法交换律、结合律“凑整”
例如: 4673+27689+5327+22311

四年级数学加减法,减法的性质,拆分、凑整法简便计算运算定律与简便计算

四年级数学加减法,减法的性质,拆分、凑整法简便计算运算定律与简便计算

四年级数学加减法,减法的性质,拆分、凑整法简便计算运算定律与简便计算加减法,减法的性质, 拆分、凑整法简便计算运算定律与简便计算(一)加减法运算定律1.加法交换律:两个加数交换位置,和不变字母表示:a+b = b+ b 例如:16+23=23+162.加法结合律:先把前两个数相加,或者先把后两个数相加,和不变。

字母表示:) (a+b)+c=a+(b+c)注意:加法结合律有着广泛的应用,如果其中有两个加数的和刚好是整十、整百、整千的话,那么就可以利用加法交换律将原式中的加数进行调换位置,再将这两个加数结合起来先运算。

例1.用简便方法计算下式:(1)63+16+84 (2)76+15+24 (3)140+639+860举一反三:1)46+67+54 (2)680+485+120 (3)155+657+245425+14+286 32+179+68 85+47+15+53 168+250+323.减法的性质:一个数减去这两个数的和等于这个数连续减去两个数.A-(B+C) =A-B- C167-(67+84) 376-(276+58) 955-(155+78)967-(67+84)(1)一个数连续减去两个数,等于这个数减去这两个数的和A-B-C=A-(B+C)198-18-82 369-45-55 856-58-42 856-76-244.拆分、凑整法简便计算拆分法:当一个数比整百、整千稍微大一些的时候,我们可以把这个数拆分成整百、整千与一个较小数的和,然后利用加减法的交换、结合律进行简便计算。

例如:102=100+2,1006=1000+6,…235+102 468+103 504+273 468+402 489+1002 8956+1006凑整法:当一个数比整百、整千稍微小一些的时候,我们可以把这个数写成一个整百、整千的数减去一个较小的数的形式,然后利用加减法的运算定律进行简便计算。

例如:99=100-1,998=1000-2,…注意:拆分凑整法在加、减法中的简便不是很明显,但和乘除法的运算定律结合起来就具有很大的简便了。

加减法中的速算与巧算

加减法中的速算与巧算

加减法中的速算与巧算知识储备1、加法的运算律加法交换律:a+b=b+a加法结合律:a+b+c=(a+b)+c=a+(b+c)2、加、减法运算的性质:a-b-c=a-c-b=a-(b+c)a+b-c=a-c+b=a+(b-c)3、在加法、减法和加减混合运算中,常常利用改变运算顺序或添加括号的方法进行巧算。

4、加减法的速算与巧算常用到的方法还有以下两种:①借数凑数法巧算;②利用平均数进行巧算。

思维引导例1、巧算:76+35+48+14+45+52跟踪练习:巧算:89+123+109+11+77+181例2、巧算:500-99-1-98-2-97-3跟踪练习:巧算6728-116-202-551-67-1098-133例3、巧算:548-136+17-64+35跟踪练习:巧算1000-2+3-4+6-6+9-8+12-10+15例4、计算:①567-76+74 ②567-74+76跟踪练习:简便计算:①476-47+37 ②359+58-60例5、简便计算:432-(154-68)跟踪练习:①783-(583+16)②489-(342-11)例6、计算:999+99+9跟踪练习:计算:19+199+1999+19999例7、计算:(1)728+598 (2)436—103跟踪练习:计算:(1)288—199;(2)576+189例8、用简便方法计算下面各题(1)6.64+0.22+9.78+3.36(2)75.1+24.19-75.1+24.19跟踪练习:计算(1)8.43+2.97+0.57+0.03 (2)4.9+4.9-0.9-0.9例9、巧算:599996+59997+3998+407+89跟踪练习:巧算:700012+6009+41008+59001例10、1966+1976+1986+1996+2006这五个数的总和是多少?跟踪练习:巧算:2010+2005+2004+2003+1998例11、计算:100+99-98+97-96+…+3-2+1跟踪练习:计算:98+97-96-95+94+93-92-91+90+89-…-4-3+2+1能力对接1、在正确的算式前的圈圈里打“√”,错的打“×”。

加减法的速算与巧算

加减法的速算与巧算

速算与巧算----加减法的速算与巧算知识背景:速算与巧算是计算中的一个重要组成部分,掌握一些速算与巧算的方法,有助于提高我们的计算能力和思维能力。

我们先学习加、减法的巧算方法,这些方法主要根据加、减法的运算定律和运算性质,通过对算式适当变形从而使计算简便。

在巧算方法里,蕴含着一种重要的解决问题的策略。

转化问题法即把所给的算式,根据运算定律和性质,或改变运算顺序,或减整从而变成一个易于算出结果的算式。

.例1:计算9+99+999+9999分析与解答:这四个加数分别接近10、100、1000、10000。

在计算这类题目时,常使用减整法,例如将99转化为100-1。

这是小学数学计算中常用的一种技巧。

9+99+999+9999 =(10-1)+(100-1)+(1000-1)+(10000-1)=10+100+1000+10000-4 =11106练习一:计算下面各题答1:99999+9999+999+99+9 2:9+98+996+9997 3:1999+2998+396+4974:198+297+396+4955:1998+2997+4995+59946:19998+39996+49995+69996例2:计算489+487+483+485+484+486+488分析与解答:认真观察每个加数,发现它们都和整数490接近,所以选490为基准数。

489+487+483+485+484+486+488 =490×7-1-3-7-5-6-4-2 =3430-28 =3402 想一想:如果选480为基准数,可以怎样计算?计算:489+487+483+485+484+486+488练习二计算下面各题答1,50+52+53+54+512,262+266+270+268+2643,89+94+92+95+93+94+88+96+87 4,381+378+382+383+3795,1032+1028+1033+1029+1031+1030 6,2451+2452+2446+2453.例3:计算下面各题。

(完整word)四年级加减法速算巧算

(完整word)四年级加减法速算巧算

计算是数学的基础,在计算中,我们要巧妙利用数的某些特点进行速算与巧算,在解题的过程中,掌握其中的规律,做到灵活应用运算定律,这一讲,我们学习加、减法的巧算方法,主要根据加、减法的运算定律和运算性质,通过适当的技巧、方法,使计算简便化。

主要运算定律及性质:1、加法的交换律:A+B=B+A2、加法结合律:(A+B)+C=A+(B+C)3、加减法运算性质:A-B-C=A-(B+C)A+B-C=A-C+B=A+(B-C)3、在加法、减法和加减混合运算中,常常利用改变运算顺序或添加括号的方法进行巧算。

4、加减法的速算与巧算常用到的方法还有以下两种:①借数凑数法巧算;②利用平均数进行巧算。

一、综合运用加减法混合运算中可交换的性质例1、计算(1)937+115-37+85原式=(937-37)+(115+85)=900+200=1100(2)1897+689+103原式=(1897+103)+689=2000+689=2689(3)564-(387-136)原式=564-387+136=564+136随堂小练:计算下列各题(1)937+115 - 37+85(2)995+996+997+998+999二、选择“基准数”例1、计算701+697+703+704+696原式=700×5+(1-3+3+4-4)=3500+1=3501例2、计算9+99+999+9999+99999解:在涉及所有数字都是9的计算中,常使用凑整法.例如将999化成1000—1去计算.这是小学数学中常用的一种技巧。

原式=(10-1)+(100-1)+(1000-1)+(10000-1)+(100000-1)=10+100+1000+10000+100000-5=111110-5=111105例3、计算701+697+703+704+696分析(1)这几个数都接近700,选择700作为基准数,计算的时候,找到每个数与700的差,大于700的部分作为加数,小于700的部分作为减数,用700与项数的积再加、减这些“相差数”就是所求的结果。

四年级奥数-速算与巧算

四年级奥数-速算与巧算

四年级奥数-速算与巧算速算与巧算一、知识要点速算与巧算是计算中的重要组成部分。

掌握巧算方法有助于提高计算和思维能力。

本周研究加减法的巧算方法,根据加减法的定律和性质,通过适当变形简化计算。

巧算方法蕴含解决问题的策略。

转化问题法是根据运算定律和性质,改变运算顺序或减整,使计算变得简便。

二、精讲精练例题1:计算9+99+999+9999思路导航:四个加数接近10、100、1000、.通常使用减整法,例如将99转化为100-1.9+99+999+999910-1)+(100-1)+(1000-1)+(-1)10+100+1000+-4练1:1.计算+9999+999+99+92.计算9+98+996+99973.计算1999+2998+396+4974.计算198+297+396+4955.计算1998+2997+4995+59946.计算+++例题2:计算489+487+483+485+484+486+488思路导航:观察每个加数,发现它们都接近整数490,选490为基准数。

489+487+483+485+484+486+488490×7-1-3-7-5-6-4-23430-283402思考:如果选480为基准数,如何计算?练2:1.50+52+53+54+512.262+266+270+268+2643.89+94+92+95+93+94+88+96+874.381+378+382+383+3795.1032+1028+1033+1029+1031+10306.2451+2452+2446+2453例题3:计算下面各题。

1)632-156-2322)128+186+72-86在一个没有括号的算式中,如果只有第一级运算,可以根据运算定律和性质调换加数或减数的位置来计算。

例如:632-156-232=632-232-156=400-156=244.练题为:计算1.1208-569-2082.283+69-1833.132-85+684,2318+625-1318+375.在计算有括号的加减混合运算时,有时可以去括号来使计算简便。

(完整版)四年级奥数巧算加减法.doc

(完整版)四年级奥数巧算加减法.doc

第一讲加、减法的计算及巧算四年级计算是数学的基础,在计算中,我们要巧妙利用数的某些特点进行速算与巧算,在解题的过程中,掌握其中的规律,做到灵活应用运算定律,这一讲,我们学习加、减法的巧算方法,主要根据加、减法的运算定律和运算性质,通过适当的技巧、方法,使计算简便化。

主要运算定律及性质:1、加法的交换律: A+B=B+A2、加法结合律:(A+B) +C=A+(B+C)3、减法运算性质: A-B-C=A-( B+C)1、综合运用加减法混合运算中可交换的性质巩固练习:937+115-37+851897+689+103564- (387-136 )2345+987-111+6552、选择“基准数”例题 1 、 701+697+703+704+696=700×5+(1-3+3+4-4)=3500+1=3501例题 2 、计算 9+99+999+9999+99999解:在涉及所有数字都是 9的计算中,常使用凑整法 . 例如将 999化成 1000—1去计算. 这是小学数学中常用的一种技巧 .9+99+999+9999+99999=(10-1)+(100-1)+(1000-1)+(10000-1)+(100000-1)=10+100+1000+10000+100000-5=111110-5 =111105.习题 1、98+99+100+101+1022、72+66+75+63+693、995+996+997+998+9993、分算例 3、 100+99-98-97+96+95-94-93+ ⋯ +8+7-6-5+4+3-2-1 =( 100+99-98-97 )+(96+95-94-93 )+⋯+(4+3-2-1 )=4 ×25=1001:2000+1999-1998-1997+1996+1995-1994-1993+8+7-6-5+4+3-2-12:9.7+9.8+9.9+10.1+10.2+10.3合:1、算 (1+3+5+ ⋯ +1989)- (2+4+6+ ⋯ +1988)2、算 199999+19999+1999+199+19。

四年级口算题的加减混合运算技巧

四年级口算题的加减混合运算技巧

四年级口算题的加减混合运算技巧口算是四年级数学学习的重要内容之一,其中加减混合运算是四年级口算题中常见的题型。

为了帮助四年级学生更好地掌握加减混合运算技巧,本文将介绍一些有效的方法和技巧。

一、加法运算技巧1. 有十进位时,先将十位数字相加再加上个位数字。

例如:34 + 28,先算十位数:3 + 2 = 5,再算个位数:4 + 8 = 12。

所以答案是52。

2. 注意进位情况,当个位相加的结果大于等于10时,要进位到十位上。

例如:58 + 27,个位数相加得到5 + 7 = 12,进位得到十位数为8 +2 + 1 = 11。

所以答案是85。

3. 在计算过程中,可以使用竖式计算法,对齐数字进行逐位相加,方便计算和掌握进位规律。

二、减法运算技巧1. 如果减法的被减数小于减数,则可以将两个数互换位置,并在减法结果前面加上负号。

例如:14 - 27,可以转换为27 - 14 = -13。

2. 当个位数字不够减时,可以向十位借位。

借位后,被减数十位减1,个位数字加上10。

例如:28 - 49,先借位变为 18 - 49,十位减1得到8 - 4 = 4,个位加上10得到18。

所以答案是-18。

三、加减混合运算技巧1. 先计算括号里的运算,再进行其他计算。

例如:34 + (12 - 5) + 18,先计算括号内的减法得到34 + 7 + 18 = 59。

2. 从左到右依次计算,不要跳过任何一个运算步骤。

例如:26 - 8 + 14,先计算减法得到18,再加上14得到32。

3. 借助前面介绍的加法和减法运算技巧,逐步解决复杂的加减混合运算。

例如:37 + 16 - 24 + 12,可以先计算 37 + 16 = 53,再减去24得到29,最后再加上12得到41。

4. 如果口算速度较慢,可以先写下运算中间结果,再进行计算,避免漏算或错误。

通过掌握这些加减混合运算技巧,四年级的学生能够更加灵活和准确地解答口算题。

为了提高口算能力,建议多进行口算训练,培养对数字的直觉和敏捷计算能力。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

计算是数学的基础,在计算中,我们要巧妙利用数的某些特点进行速算与巧算,在解题的过程中,掌握其中的规律,做到灵活应用运算定律,这一讲,我们学习加、减法的巧算方法,主要根据加、减法的运算定律和运算性质,通过适当的技巧、方法,使计算简便化。

主要运算定律及性质:
1、加法的交换律:A+B=B+A
2、加法结合律:(A+B)+C=A+(B+C)
3、加减法运算性质:A-B-C=A-(B+C)
A+B-C=A-C+B=A+(B-C)
3、在加法、减法和加减混合运算中,常常利用改变运算顺序或添加括号的方法进行巧算。

4、加减法的速算与巧算常用到的方法还有以下两种:①借数凑数法巧算;②利用平均数进行巧算。

一、综合运用加减法混合运算中可交换的性质
例1、计算
(1)937+115-37+85
原式=(937-37)+(115+85)
=900+200
=1100
(2)1897+689+103
原式=(1897+103)+689
=2000+689
=2689
(3)564-(387-136)
原式=564-387+136
=564+136
随堂小练:
计算下列各题(1)937+115 - 37+85(2)995+996+997+998+999
二、选择“基准数”
例1、计算701+697+703+704+696
原式=700×5+(1-3+3+4-4)
=3500+1
=3501
例2、计算9+99+999+9999+99999
解:在涉及所有数字都是9的计算中,常使用凑整法.例如将999化成1000—1去计算.这是小学数学中常用的一种技巧。

原式=(10-1)+(100-1)+(1000-1)+(10000-1)+(100000-1)
=10+100+1000+10000+100000-5
=111110-5
=111105
例3、计算701+697+703+704+696
分析(1)这几个数都接近700,选择700作为基准数,计算的时候,找到每个数与700的差,大于700的部分作为加数,小于700的部分作为减数,用700与项数的积再加、减这些“相差数”就是所求的结果。

解:(1)701+697+703+704+696
原式=700×5+(1+3+4)-(3+4)
=3500+8 - 7
=3501
随堂小练:
计算下列各题(1)995+996+997+998+999
(2)9.7+9.8+9.9+10.1+10.2+10.3
三、分组计算
例3、100+99-98-97+96+95-94-93+…+8+7-6-5+4+3-2-1
原式=(100+99-98-97)+(96+95-94-93)+…+(4+3-2-1)
=4×25
=100
随堂小练:
计算2000+1999 - 1998 - 1997+1996+1995 - 1994 - 1993+…+8+7 - 6 - 5+4+3 - 2 - 1
1、在正确的算式前的圈圈里打“√”,错的打“×”。

(1)○54+32+46=100+32
(2)○284-16-84=284-100
(3)○343+27+57=470+57
(4)○101-78=(100-78)+1
(5)○128+99=128+(100-1)
2、填一填。

(1)78+97=78+100○□
(2)126-96=126-100○□
(3)267+398=267+□○2
(4)435-299=435-□○□
3、计算。

(1)1456-302(2)2541-1998
(3)548-164-236(4)8495-(495-281)
4、计算。

(1)(50-43)+(43-41)+(41-39)+(39-32)
(2)812-593+193-647+247-374+174+200
5、用简便方法计算。

(1)13.7+42.65+6.3(2)6.08-3.26-1.74
(3)19.32-5.56-3.44(4)37.6-(7.6+3.25)
(5)6.27+3.83+1.73(6)8.4+3.5-8.4+3.5
6、计算:199999+29999+3999+499+59
7、计算:123+234+345+456+567+678
8、计算:(2+4+6+…+1998+2000)-(1+3+5+…+1997+1999)
9、某养猪专业户七月份出售了10头肥猪,每头肥猪的质量分别是:125,128,119,118,118,131,135,140,115,115(千克)。

七月份出售肥猪总共多少千克?。

相关文档
最新文档