离散数学图论3图矩阵表示
第六章-图的矩阵表示
e4 e2
v2 e3 v3
v5
v4
v1 M (G) v2
v3 v4 v5
e1 e2
1 1
1
0
0 1
0
0
0 0
e3 e4
0 1
1
0
1 0
0
1
0 0
实例1
例1 求下图的完全关联矩阵。
e1 e2 e3 e4 e5 e6 v1 1 1 0 0 1 1 v2 1 1 1 0 0 0 v3 0 0 1 1 0 1 v4 0 0 0 1 1 0 v5 0 0 0 0 0 0
0 1 1 1 0 0 0
0
0
1
0
1
1
0
4
0 0 0 0 0 1 1
0
0
0
0
0
1
1
() ()
1 1 0 0 0 0 0
0 1 1 0 0 1 0
6
0
0
1
1
1
0
0
0 0 0 1 0 0 1
0
0
0
1
0
0
1
(4) (5)
1 1 0 0 0 0 0
0 1 1 0 0 1 0
0
0
1
1
1
0
0 1
0 0
0 1
→
0 0
1 1
0 1
1 0
1
1
0
0
1
1
0
0
0
0
0
0
0
0
0
0
0
v2 e2
v3
e1
e5
e3
e2 e5
《离散数学》复习提纲(2018)
《离散数学》期末复习大纲一、数理逻辑[复习知识点]1、命题与联结词(否定¬、析取∨、合取∧、蕴涵→、等价?),复合命题2、命题公式与赋值(成真、成假),真值表,公式类型(重言、矛盾、可满足),公式的基本等值式3、范式:析取范式、合取范式,极大(小)项,主析取范式、主合取范式4、公式类型的判别方法(真值表法、等值演算法、主析取/合取范式法)5、命题逻辑的推理理论6、谓词、量词、个体词(一阶逻辑3要素)、个体域、变元(约束出现与自由出现)7、命题符号化、谓词公式赋值与解释,谓词公式的类型(永真、永假、可满足)8、谓词公式的等值式(代换实例、消去量词、量词否定和量词辖域收与扩、量词分配)和置换规则(置换规则、换名规则)9、一阶逻辑前束范式(定义、求法)本章重点内容:命题与联结词、公式与解释、(主)析取范式与(主)合取范式、公式类型的判定、命题逻辑的推理、谓词与量词、命题符号化、谓词公式赋值与解释、求前束范式。
[复习要求]1、理解命题的概念;了解命题联结词的概念;理解用联结词产生复合命题的方法。
2、理解公式与赋值的概念;掌握求给定公式真值表的方法,用基本等值式化简其它公式,公式在解释下的真值。
3、了解析取(合取)范式的概念;理解极大(小)项的概念和主析取(合取)范式的概念;掌握用基本等值式或真值表将公式化为主析取(合取)范式的方法。
4、掌握利用真值表、等值演算法和主析取/合取范式的唯一性判别公式类型和公式等价方法。
5、掌握命题逻辑的推理理论。
6、理解谓词、量词、个体词、个体域、变元的概念;理解用谓词、量词、逻辑联结词描述一个简单命题;掌握命题的符号化。
7、理解公式与解释的概念;掌握在有限个体域下消去公式量词,求公式在给定解释下真值的方法;了解谓词公式的类型。
8、掌握求一阶逻辑前束范式的方法。
二、集合[复习知识点]1、集合、元素、集合的表示方法、子集、空集、全集、集合的包含、相等、幂集2、集合的交、并、差、补以及对称差等运算及有穷集的计数(文氏(Venn)图、包含排斥原理)3、集合恒等式(幂等律、交换律、结合律、分配律、吸收律、矛盾律、德摩根律等)及应用本章重点内容:集合的概念、集合的运算性质、集合恒等式的证明。
图谱简介
图谱简介图论与组合是一门历史悠久而在近四十年又获得蓬勃发展的应用数学学科,是处理离散问题的强有力的工具,是整个离散数学的一个重要组成部分。
图论与组合包含着十分丰富的内容,按其所研究的问题的侧重点不同,可以分为图论、计数理论、组合矩阵论、最优化理论、组合设计等几个方面。
近五十年来,随着计算机科学、信息科学和系统科学的发展,图论组合及其应用的研究越来越引起人们的关注。
无论从其理论价值和实际应用的广度和深度来看,图论与组合正处于一个具有强大生命力的迅速发展的新时期。
一.图的矩阵在图论中,为了研究图的性质,人们引进了各种各样的矩阵,诸如图的邻接矩阵,拉普拉斯矩阵,规范拉普拉斯矩阵等,这些矩阵与图都有着自然的联系,代数图论的一个主要问题就是研究图的性质能否以及如何由这些矩阵的代数性质反映出来,这里所指的矩阵的代数性质,主要指矩阵的特征值。
图谱理论主要研究图的邻接矩阵、拉普拉斯矩阵和规范拉普拉斯矩阵的特征值及其特征向量,是当前代数图论、组合矩阵论和代数组合论共同关注的一个重要研究课题,极大地丰富和促进了图论和组合学的研究内容。
假设),(E V G =是一个无向无环的图(简单图或多重图),其中{}n v v v V ,,,21 =,{}m e e e E ,,,21 =。
定义1 G 的邻接矩阵是一个n n ⨯的矩阵n n ij a G A ⨯=)()(,其中ij a 是连接顶点i v 与j v 的边的条数。
图的邻接矩阵的特征值,是代数图论的一个基本研究课题,已经形成相当成熟的理论。
图谱的第一篇论文发表于1957 年,其结果是.定理1 令G 是n 个结点的简单连通图,则1)(1cos 2-≤≤+n G n ρπ,左边的等号成立,当且仅当G 是一路;右边的等号成立,当且仅当G 是一个完全图。
在国内该方面的研究直到1979年才出现了第一篇论文,该论文由李乔和冯克勤合写并发表在1979年的《应用数学学报》上。
代表人物: C. D. Cvetkovic.专 著:D. M. Cvetkovic, M. Doob, and H. Sachs, Spectra of graph-theory and applications, VEB Deutscher Verlag d. Wiss. Berlin, 1979; Acad. Press, New York, 1979. 1995注:1.)()(),(k ijk ij k a a A = 表示 G 中点 i v 到 j v 长为 k 的路的数目—数学归纳法。
离散数学图的基本概论
简单通路: = v0 e1 v1 e2… ek vk为通路且边e1 e2… ek 互不相同,又称之为迹,可简用v0 v1 … vk 来表示。 简单回路 (v0 = vk)又称为闭迹。
初级通路或基本通路: = v0 e1 v1 e2… ek vk为通路 且顶点v0 v1… vk 互不相同。 基本回路: v0 = vk。 初级通路一定是简单通路,但简单通路
不一定是一条初级通路。
例8.6 就下面两图列举长度为5的通路,简 单通路,回路,简单回路,再列举长 度为3的基本通路和回路。
e3 v5
e7 v4
v1
e2
e1 v2
e6 e4
e5 v3
e1 v5 e8 e4
v4
v1
e3
e2 v2
e6 e5
e7 v3
(1)
(2)
解:试对照定义,自己做一做!如:
(1)中 v1e1v2e2v5e3v1e1v2e4v3 为v1到v3的通路;
021?01ijn11iiij??????mmjm从而?12im1jijvdm?????mmvvddmm??????i?????1i?niinmijij11从而有从而有1?im1jijvdm??????由mij的定义知?11jmvdm????????i???1i??n1inm1jij1通路数与回路数的矩阵算法
平行边:无向图中,关联一对结点的无向边 多于一条,平行边的条数为重数; 有向图中,关联一对顶点的无向边 多于一条,且始、终点相同。
多重图:包含平行边的图。
简单图:既不包含平行边又不包含环的图。
二、度
度:(1) 在无向图G = < V, E >中,与顶点v(vV) 关联的边的数目(每个环计算两次),记 作:d(v)。
离散数学实验报告
“离散数学”实验报告目录一、实验目的 (3)二、实验内容 (3)三、实验环境 (3)四、实验原理和实现过程(算法描述) (3)1、实验原理........................................................................................................2、实验过程.......................................................................................................五、实验数据及结果分析 (13)六、源程序清单 (24)源代码 (24)七、其他收获及体会 (45)一、实验目的实验一:熟悉掌握命题逻辑中的联接词、真值表、主范式等,进一步能用它们来解决实际问题。
实验二:掌握关系的概念与性质,基本的关系运算,关系的各种闭包的求法。
理解等价类的概念,掌握等价类的求解方法。
实验三:理解图论的基本概念,图的矩阵表示,图的连通性,图的遍历,以及求图的连通支方法。
二、实验内容实验一:1. 从键盘输入两个命题变元P和Q的真值,求它们的合取、析取、条件和双条件的真值。
(A)2. 求任意一个命题公式的真值表(B,并根据真值表求主范式(C))实验二:1.求有限集上给定关系的自反、对称和传递闭包。
(有两种求解方法,只做一种为A,两种都做为B)2. 求有限集上等价关系的数目。
(有两种求解方法,只做一种为A,两种都做为B)3. 求解商集,输入集合和等价关系,求相应的商集。
(C)实验三:以偶对的形式输入一个无向简单图的边,建立该图的邻接矩阵,判断图是否连通(A)。
并计算任意两个结点间的距离(B)。
对不连通的图输出其各个连通支(C)。
三、实验环境C或C++语言编程环境实现。
四、实验原理和实现过程(算法描述)实验一:1.实验原理(1)合取:二元命题联结词。
离散数学图的矩阵表示
A4=
23321
01011
11010
22221
V4
v3
问每条:从vv33到到0 v0v1由1长1长0度上度0为可为22看的的路出路有A,n几中中条间元?02肯素11定a01经ij的11过10意1个义中:间结点vk,
A该 即 逐(G路个v)23=,k表遍v示历k,1为0201每=11111:个。a0101iv结每j=31100点k有1000表,v一k 示并个进v从vA1k,(,行Gv)在i3就乘到= 邻对法v接j应运长100矩一算302度阵个,111为中110v获3n110,,k取的v就从k路,1是=v3有1:到;kvv31条,k全=。1部,长vk度,1=为1,2 的路的数目:v3,1v1,1+v3,2其v中21+a3v2=3,33表v示3,1v+3到v3,v42长v4度,1+为v33,的5路v5,有1=3条v。3,ivi,1
由于,邻接矩阵的定义与关系矩阵表示定义相同,所以,可达性
矩阵P即为关系矩阵的MR+,因此P矩阵可用Warshall算法计算。
13
❖可达性矩阵的求解方法
23221 35332 58553 12111 46442
Br的任一元素bij表示的是从vi到vj长度不超过r的路的数目;
若bij 0,
若bij=0,
ij时,表示vi到vj可达, i=j时,表示vi到vi有回路;
ij时,表示vi到vj不可达, i=j时,表示vi到vi无回路;
在许多实际问题中,我们关心的往往是vi和vj之间是否存在路的 问题,而对路的数目不感兴趣,为此,引出可达矩阵。
由7.2.1推论,若从vi到vj存在一条路,则必存在一条边数小于n 的通路,(或边数小于等于n的回路)。即:如果不存在一条小
第7章 图论 [离散数学离散数学(第四版)清华出版社]
6/27/2013 6:02 PM
第四部分:图论(授课教师:向胜军)
21
例:
a j i h c g d
1(a)
无 向 图
b
f
e
2(b)
7(j) 8(g) 9(d) 10(i)
6(e)
3(c) 4(h)
5(f)
6/27/2013 6:02 PM
第四部分:图论(授课教师:向胜军)
22
例:
1(b)
有向图
第四部分:图论(授课教师:向胜军)
6
[定义] 相邻和关联
在无向图G中,若e=(a, b)∈E,则称a与 b彼此相邻(adjacent),或边e关联 (incident) 或联结(connect) a, b。a, b称为边e的端点或 结束顶点(endpoint)。 在有向图D中,若e=<a, b>∈E,即箭头 由a到b,称a邻接到b,或a关联或联结b。a 称为e的始点(initial vertex),b称为e的终点 (terminal/end vertex)。
证明思路:将图中顶点的度分类,再利用定理1。
6/27/2013 6:02 PM 第四部分:图论(授课教师:向胜军) 9
[定理3] 设有向图D=<V, E>有n个顶点,m 条边,则G中所有顶点的入度之和等于所 有顶点的出度之和,也等于m。
即:
d ( v i ) d ( v i ) m.
i 1 i 1
n
n
证明思路:利用数学归纳法。
6/27/2013 6:02 PM
第四部分:图论(授课教师:向胜军)
10
一些特殊的简单图:
(1) 无向完全图Kn(Complete Graphs)
《离散数学》第6章 图的基本概念
E ' E )。
生成子图—— G ' G 且 V ' V 。
导出子图 ——非空 V ' V ,以 V ' 为顶点集, 以两端均在 V ' 中的边的全体为边集的 G 的 子图,称 V ' 的导出子图。 ——非空 E ' E ,以 E ' 为边集,以
E ' 中边关联的顶点的全体为顶点集的 G 的子
0 vi与ek 不关联 无向图关联的次数 1 vi与ek 关联1次 2 v 与e 关联2次(e 为环) i k k
1 vi为ek的始点 有向图关联的次数 0 vi与ek 不关联 1 v 为e 的终点 (无环) i k
点的相邻——两点间有边,称此两点相邻 相邻 边的相邻——两边有公共端点,称此两边相邻
孤立点——无边关联的点。 环——一条边关联的两个顶点重合,称此边 为环 (即两顶点重合的边)。 悬挂点——只有一条边与其关联的点,所
对应的边叫悬挂边。
(3) 平行边——关联于同一对顶点的若干条边 称为平行边。平行边的条数称为重数。 多重图——含有平行边的图。
简单图——不含平行边和环的图。
如例1的(1)中,
第六章 图的基本概念 第一节 无向图及有向图
内容:有向图,无向图的基本概念。
重点:1、有向图,无向图的定义, 2、图中顶点,边,关联与相邻,顶点 度数等基本概念,
3、各顶点度数与边数的关系
d (v ) 2m 及推论,
i 1 i
n
4、简单图,完全图,子图, 补图的概念, 5、图的同构的定义。
一、图的概念。 1、定义。 无序积 A & B (a, b) a A b B 无向图 G V , E E V & V , E 中元素为无向边,简称边。 有向图 D V , E E V V , E 中元素为有向边,简称边。
《离散数学》图论 (上)
无向图与有向图
v2
e1
e2
e3
v3
e4
v1
e5 (e1)={( v42, v24 )}
v4
(e2)={( v32, v23 )} (e3)={( v3, v4 )}
(e4)=({ v43, v34 )}
(e5)=({ v4,}v4 )
13
无向图与有向图
A B C
D E F
14
无向图与有向图
第八章 图论
第八章 图论
§8.1 基本概念
§8.1.1 无向图、有向图和握手定理 §8.1.2 图的同构与子图 §8.1.3 道路、回路与连通性 §8.1.4 图的矩阵表示
§8.2 欧拉图 §8.3 哈密尔顿图 §8.4 平面图 §8.5 顶点支配、独立与覆盖
2
无向图与有向图
3
无向图与有向图
一个无向图(undirected graph, 或graph) G 指一个三元组 (V, E, ),其中
vV
vV
24
特殊的图
假设 G=(V, E, ) 为无向图,若 G 中所有 顶点都是孤立顶点,则称 G 为零图(null graph)或离散图(discrete graph);若 |V|=n,|E|=0,则称 G 为 n 阶零图 所有顶点的度数均相等的无向图称为正 则图(regular graph),所有顶点的度数 均为 k 的正则图称为k度正则图,也记作 k-正则图 注:零图是零度正则图
19
握手定理
定理(图论基本定理/握手定理)
假设 G=(V, E, ) 为无向图,则deg(v) 2 E , vV
即所有顶点度数之和等于边数的两倍。
推论
在任何无向图中,奇数度的顶点数必是偶 数。
离散数学第8章 图论
为d(vi,vj)。
8.2
图的矩阵表示
一、图的邻接矩阵 二、图的连接矩阵
三、图的关联矩阵
二、图的连接矩阵 定义 8-9 设图 G= ( V , E ),其中 V={v1 ,
v2 , … , vn } , n 阶方阵 C= ( cij ),称为图 G 的连接 矩阵,其中第i行j列的元素
1 c ij 0
利用邻接矩阵,我们可以 (1)判断G中任意两个结点是否相连接;
方法是:对 l=1,2,…,n–1,依次检查Al的(i,j)
项元素
(l ( ) ij)是否为0,若都为0,那么结点v 与v 不 a ij i j
相连接,否则vi与vj有路相连接。 (2)计算结点vi与vj之间的距离。
(1) ( 2) ( n 1) 中至少有一个不为0, 若 aij , aij , , aij 则可断定vi与vj相连接,使 a (l ) 0 的最小的 l 即
若中有相同的结点,设为ur= uk(r<k),则子路ur+1…uk可以从 中删去而形成一条较短的路= viu1…ur uk+1…uh–1 vj,仍连接vi到 vj 。 若中还有相同的结点,那么重复上述过程又可形成一条 更短的路,…。这样,最后必得到一条真路,它连接vi到vj, 并短于前述任一非真路。因此,只有真路才能是短程。
非真 生成
真 生成
真 非生成
非真 非生成
真 非生成
七、路与回路 定义:图G中l条边的序列{v0,v1}{v1,v2}…{vl–1,vl}称为连
接v0到vl的一条长为 l 的路。它常简单地用结点的序列 v0v1v2…vl–1vl来表示。其中v0和vl分别称为这条路的起点和终点。 开路:若v0vl,则称路v0v1v2…vl–1vl为开路; 回路:若v0=vl,则称路v0v1v2…vl–1vl为回路; 真路:若开路v0v1v2…vl–1vl中,所有结点互不相同(此时所有 边也互不相同),则称该路为真路; 环:在回路v0v1v2…vl–1v0中,若v0,v1,v2,…,vl–1 各不相同 (此时所有边也互不相同),则称该回路为环。
离散数学平面图
又因为任取K3,3中三个结点,至少有两个点不邻接, 所以不能组成一个面,即K3,3中任何 一个面至少由四条边围成,即:所有面 的次数之和deg(r) >=4r=20 又由定理1知:deg(r)=2|E|=18 即18>=20矛盾不。论怎所么以画,K总3,有3不交是叉点平面图。
❖ 平面图基本性质
设G是一个有v个结点e条边的连通简单平面图,若v3, 则:e<=3v-6。等价于: 若不满足e<=3v-6,则G不是连通平面图。
例题:证明k5图不是平面图。
K5图中,v=5,e=10,10 3*v-6=35-6=9
但定理的条件只是必要条件。
如K3,3中v= 6,e =9, e<3v-6=12 满足条件,但K3,3不是平面图。
离散数学
❖ 图论
1 图的基本概念 2 路与回路 3 图的矩阵表示 4 欧拉图与汉密尔顿图 5 平面图 6 对偶图与着色 7 树与生成树
❖ 平面图基本概念
定义1:设G=<V,E>是一个无向图,如果能把G的所有结点和
边画在平面上,且使得任何两条边除了端点外没有其他的交点, 就称G是一个平面图。
(1)
G为k条边,再添加一条边,只有下述两种情况:
面数不变 点树加1 边数加1
点数不变 面数加1 边数加1
(Vk+1)-(ek+1)+rk=2成立
(Vk)-(ek+1)+(rk+1)=2成立
通过上述归纳法证明欧拉公式v-e+r=2成立。
❖ 平面图基本性质
例1:证明K3,3不是平面图
证:假设K3,3是平面图,
离散数学——图论
2021/10/10
11
哥尼斯堡七桥问题
❖ 把四块陆地用点来表示,桥用点与点连线表 示。
2021/10/10
12
❖ 欧拉将问题转化为:任何一点出发,是否存在通过 每条边一次且仅一次又回到出发点的路?欧拉的结 论是不存在这样的路。显然,问题的结果并不重要, 最为重要的是欧拉解决这个问题的中间步骤,即抽 象为图的形式来分析这个问题 。
2021/10/10
2
图论的发展
❖ 图论的产生和发展经历了二百多年的历史, 从1736年到19世纪中叶是图论发展的第一阶 段。
❖ 第二阶段大体是从19世纪中叶到1936年,主 要研究一些游戏问题:迷宫问题、博弈问题、 棋盘上马的行走线路问题。
2021/10/10
3
❖ 一些图论中的著名问题如四色问题(1852年)和哈密 尔顿环游世界问题(1856年)也大量出现。同时出现 了以图为工具去解决其它领域中一些问题的成果。
❖ P(G)表示连通分支的个数。连通图的连通 分支只有一个。
2021/10/10
40
练习题---图的连通性问题
❖ 1.若图G是不连通的,则补图是连通的。 ❖ 提示:直接证法。
根据图的不连通,假设至少有两个连通分 支;任取G中两点,证明这两点是可达的。
2021/10/10
41
❖ 2.设G是有n个结点的简单图,且 |E|>(n-1)(n-2)/2,则G是连通图。
❖ 例子
2021/10/10
29
多重图与带权图
❖ 定义多重图:包含多重边的图。 ❖ 定义简单图:不包含多重边的图。 ❖ 定义有权图:具有有权边的图。 ❖ 定义无权图:无有权边的图。
2021/10/10
30
离散数学图的概念与表
本课件PPT仅供大家学习使用 学习完请自行删除,谢谢! 本课件PPT仅供大家学习使用 学习完请自行删除,谢谢! 本课件PPT仅供大家学习使用 学习完请自行删除,谢谢! 本课件PPT仅供大家学习使用 学习完请自行删除,谢谢!
16.1 图的根本概念
什么是图?可用一句话概括,即:图是用点 和线来刻划离散事物集合中的每对事物间以某 种方式相联系的数学模型。
(1) 如果V2 V1和E2 E1,那么称G2为G1的子 图,记为G2 G1。
(2) 如果V2 V1,E2 E1且E2≠E1,那么称G2 为G1的真子图,记为G2 G1。
(3) 如果V2=V1,E2 E1,那么称G2为G1的生
成子图,记为G2
G1。
v2 v1
定义16.1.9 设图G2=<V2,E2>是图G1=<V1, E1> 的 子 图 。 假 设 对 任 意 结 点 u 和 v , 如 果 〔u , v〕 ∈E1,有〔u,v〕∈E2,那么G2由V2唯一地确定, 并 称 G2 是结 点 集 合 V2 的 诱导子 图 , 记作 <V2>或 G 〔V2〕;如果G2无孤立结点,且由E2所唯一确定,那 么称G2是边集E2的诱导子图,记为<E2>或G〔E2〕。
如果把图G中的弧或边总看作联结两个结点,那么 图G可简记为G=<V,E>,其中V是非空结点集,E是 联结结点的边集或弧集。
定义16.1.2 在图G=<V,E>中,如果每条边都 是弧,该图称为有向图;假设每条边都是无向边,该图 G称为无向图;如果有些边是有向边,另一些边是无向 边,图G称为混合图。
定义16.1.3 在图G=<V,E>中,如果任何两结 点间不多于一条边(对于有向图中,任何两结点间不多 于一条同向弧),并且任何结点无环,那么图G称为简单 图;假设两结点间多于一条边(对于有向图中,两结点 间多于一条同向弧)图G称为多重图,并把联结两结点之 间的多条边或弧,称为平行边或弧,平行边或弧的条数 称为重数。
第五章 图的基本概念-离散数学
Co
e4
e7
bo
oc
8
图 论
无向完全图:每对顶点间均有边相连的无向 简单图。N阶无向完全图记作Kn.
o o K2 o K3 o o o o K4
1 2
o o
o o o K5 o o
无向完全图Kn, 有边数
n( n − 1)
竞赛图:在的每条边上任取一个方向的有 向图.
9
图 论
有向完全图:每对顶点间均有一对方向相反 的边相连的有向图。例如:
2
图 论
5.1 图的定义及相关术语 5.2 通路 回路 图的连通性 5.3 图的矩阵表示 5.4 无向树 5.5 欧拉图和哈密顿图 5.6 平面图
3
图 论
§5.1 图的定义及相关术语
例1. 多用户操作系统中的进程状态变换图:
就绪 r 进程调度 ro 执行 e o w V={r,e,w}
E={<r,e>,<e,w>,<w,r>}
图 论
2
2. 回路:如果一条路的起点和终点是一个顶 点,则称此路是一个回路. ov e e 如右图中的 v o ov e e L1=v0 e1v1 e5v3 e6v2e4v0 e e L2= v0 e1v1 e5v3e2v0
0 1 4 1 2 3 5 6
2
o v3
22
3. 迹与闭迹
图 论
简单通路(迹) 顶点可重复但边不可重复的通路。 简单回路(闭迹) 边不重复的回路。 4. 路径与圈 初级通路(路径) 顶点不可重复的通路。 初级回路(圈) 顶点不可重复的回路。 例如右图中: o v0 L1=v0 e1v1 e5v3 e6v2e4v0 e1 e4 L2= v0 e1v1 e5v3e2v0 o v2 e2 e3 L3=v0 e1v1 e5v3 e2v0 e3v3 e6v2e4v0 v1 o e5 e6 L1和L2是闭迹, 也是圈. o v3 L3是闭迹,而不是圈.
《离散数学》课件第14章图的基本概念
定义14.5(图同构)设两个无向图G1=<V1,E1>, G2=<V2,E2>,如果存在双射函数f:V1→V2,使得对 于 任 意 的 e=(vi,vj)∈E1 当 且 仅 当 e’=(f(vi), f(vj))∈E2,并且e与e’的重数相同,则称G1和G2是 同构的,记作G1≌G2。
若vi=vj,则称ek与vi的关联次 数为2;
若vi不是ek的端点,则称ek与vi 的关联次数为0。
无边关联的顶点称为孤立点 (isolated vertex) 。
19
定义(相邻) 设无向图G=<V,E>, 若∃et∈E且et=(vi,vj),则称vi和vj是相邻的 若ek,el∈E且有公共端点,则称ek与el是相邻的。
素称为有向边,简称边。 由定义,有向图的边ek是有序对<vi,vj>,称vi,
vj是ek的端点,其中vi为ek的始点(origin),vj为ek 的终点(terminus)。
当vi=vj时,称ek为环,它是vi到自身的有向边。
11
每条边都是无向边的图称为无向图(undirected graph)。
定义(邻接与相邻) 设有向图D=<V,E>, 若∃et∈E且et=<vi,vj>,则称vi邻接到vj,vj邻接 于vi。 若ek,el∈E且ek的终点为el的始点,则称ek与el是相 邻的。
20
定义14.4(度) 设G=<V,E>为一无向图,∀v∈V,称 v作为边的端点的次数之和为v的度数,简称为度 (degree),记为d(v)。
定理14.2 (有向图握手定理)设D=<V,E>为任 意的有向图,V={v1,v2,…,vn},|E|=m,则
离散数学知识点
离散数学知识点说明:定义:红⾊表⽰。
定理性质:橙⾊表⽰。
公式:蓝⾊表⽰。
算法:绿⾊表⽰页码:灰⾊表⽰数理逻辑:1.命题公式:命题, 联结词(,,,,),合式公式,⼦公式2.公式的真值:赋值,求值函数,真值表,等值式,重⾔式,⽭盾式3.范式:析取范式,极⼩项,主析取范式,合取范式,极⼤项,主合取范式4.联结词的完备集:真值函数,异或,条件否定,与⾮,或⾮,联结词完备集5.推理理论:重⾔蕴含式,有效结论,P规则,T规则, CP规则,推理6.谓词与量词:谓词,个体词,论域,全称量词,存在量词7.项与公式:项,原⼦公式,合式公式,⾃由变元,约束变元,辖域,换名,代⼊8.公式语义:解释,赋值,有效的,可满⾜的,不可满⾜的9.前束范式:前束范式10.推理理论:逻辑蕴含式,有效结论,-规则(US),+规则(UG), -规则(ES),+规则(EG), 推理集合论:1.集合: 集合, 外延性原理, , , , 空集, 全集, 幂集,⽂⽒图, 交, 并,差, 补, 对称差2.关系: 序偶, 笛卡尔积, 关系, domR,ranR,关系图, 空关系, 全域关系,恒等关系3.关系性质与闭包:⾃反的, 反⾃反的,对称的, 反对称的, 传递的,⾃反闭包 r(R),对称闭包 s(R),传递闭包 t(R)4.等价关系: 等价关系, 等价类, 商集, 划分5.偏序关系:偏序,哈斯图,全序(线序), 极⼤元/极⼩元,最⼤元/最⼩元,上界/下界6.函数: 函数,常函数, 恒等函数, 满射,⼊射,双射,反函数,复合函数7.集合基数:基数, 等势,有限集/⽆限集,可数集, 不可数集代数结构:1.运算及其性质:运算,封闭的,可交换的,可结合的,可分配的,吸收律, 幂等的,⼳元,零元,逆元2.代数系统:代数系统,⼦代数,积代数,同态,同构。
3.群与⼦群:半群,⼦半群,元素的幂,独异点,群,群的阶数,⼦群,平凡⼦群,陪集,拉格朗⽇(Lagrange)定理4.阿贝尔群和循环群:阿贝尔群(交换群),循环群,⽣成元5.环与域:环,交换环,含⼳环,整环,域6.格与布尔代数:格,对偶原理,⼦格,分配格,有界格,有补格,布尔代数,有限布尔代数的表⽰定理图论:1.图的基本概念:⽆向图、有向图、关联与相邻、简单图、完全图、正则图、⼦图、补图,握⼿定理,图的同构2.图的连通性:通路,回路,简单通路,简单回路(迹)初级通路(路径),初级回路(圈),点连通,连通图,点割集,割点,边割集,割边,点连通度,边连通度,弱连通图,单向连通图,强连通图,⼆部图(⼆分图)3.图的矩阵表⽰:关联矩阵,邻接矩阵,可达矩阵4.欧拉图与哈密顿图:欧拉通路、欧拉回路、欧拉图、半欧拉图,哈密顿通路、哈密顿回路、哈密顿图、半哈密顿图5.⽆向树与根树:⽆向树,⽣成树,最⼩⽣成树,Kruskal,根树,m叉树,最优⼆叉树,Huffman算法6.平⾯图:平⾯图,⾯,欧拉公式,Kuratoski定理数理逻辑:命题:具有确定真值的陈述句。
离散数学之图论
第四篇图论自从1736年欧拉()利用图论的思想解决了哥尼斯堡(Konigsberg)七桥问题以来,图论经历了漫长的发展道路。
在很长一段时期内,图论被当成是数学家的智力游戏,解决一些著名的难题。
如迷宫问题、匿门博奕问题、棋盘上马的路线问题、四色问题和哈密顿环球旅行问题等,曾经吸引了众多的学者。
图论中许多的概论和定理的建立都与解决这些问题有关。
1847年克希霍夫(Kirchhoff)第一次把图论用于电路网络的拓扑分析,开创了图论面向实际应用的成功先例。
此后,随着实际的需要和科学技术的发展,在近半个世纪内,图论得到了迅猛的发展,已经成了数学领域中最繁茂的分支学科之一。
尤其在电子计算机问世后,图论的应用范围更加广泛,在解决运筹学、信息论、控制论、网络理论、博奕论、化学、社会科学、经济学、建筑学、心理学、语言学和计算机科学中的问题时,扮演着越来越重要的角色,受到工程界和数学界的特别重视,成为解决许多实际问题的基本工具之一。
图论研究的课题和包含的内容十分广泛,专门著作很多,很难在一本教科书中概括它的全貌。
作为离散数学的一个重要内容,本书主要围绕与计算机科学有关的图论知识介绍一些基本的图论概论、定理和研究内容,同时也介绍一些与实际应用有关的基本图类和算法,为应用、研究和进一步学习提供基础。
第4-1章 无向图和有向图学习要求:仔细领会和掌握图论的基本概论、术语和符号,对于图论研究的一些最基本的课题,如道路问题、连通性问题和着色的问题等,应掌握主要的定理内容和证明方法以及基本的构造方法,以便为下一章研究提供理论工具。
学习本章要用到集合和线性代数矩阵运算的知识,特别是集合数和矩阵秩的概念。
§4-1-1 图的基本概念图是用于描述现实世界中离散客体之间关系的有用工具。
在集合论中采用过以图形来表示二元关系的办法,在那里,用点来代表客体,用一条由点a 指向点b 的有向线段来代表客体a 和b 之间的二元关系aRb ,这样,集合上的二元关系就可以用点的集合V 和有向线的集合E 构成的二元组(V ,E )来描述。
《离散数学》第七章_图论-第3-4节
图的可达性矩阵计算方法 (3) 无向图的可达性矩阵称为连通矩阵,也是对称的。 Warshall算法
例7-3.3 求右图中图G中的可达性矩 阵。 分析:先计算图的邻接矩阵A布尔乘法的的2、 v1
3、4、5次幂,然后做布尔加即可。
解:
v4
v2
v3 v5
P=A∨ A(2) ∨ A(3) ∨A(4)∨A(5)
图的可达性矩阵计算方法(2)
由邻接矩阵A求可达性矩阵P的另一方法: 将邻接矩阵A看作是布尔矩阵,矩阵的乘法运算和加 法运算中,元素之间的加法与乘法采用布尔运算 布尔乘:只有1∧1=1 布尔加:只有0∨0=0 计算过程: 1.由A,计算A2,A3,…,An。 2.计算P=A ∨ A2 ∨ … ∨ An P便是所要求的可达性矩阵。
v4
v3
v2
G中从结点v2到结点v3长度 为2通路数目为0,G中长 度为2的路(含回路)总数 为8,其中6条为回路。 G中从结点v2到结点v3长度 为3的通路数目为2, G中 长度为3的路(含回路)总
图的邻接矩阵的 应用 (2)计算结点vi与vj之间的距离。
中不为0的最小的L即为d<vi,vj>。
(一)有向图的可达性矩阵
可达性矩阵表明了图中任意两个结点间是否至少存在一条 路以及在任何结点上是否存在回路。
定义7-3.2 设简单有向图G=(V,E),其中V={v1, v2,…,vn },n阶方阵P=(pij)nn ,称为图G的可达 性矩阵,其中第i行j列的元素
p ij =
1 1 1 1 P v3 1 1 v4 0 0 v5 0 0 v1 v2 1 1 1 1 1 1
0 1 A(G)= 1 0 0 1 0 1 0 0 1 1 0 0 0 0 0 0 0 1 0 0 0 1 0
离散数学-图的矩阵表示
使用压缩矩阵
对于稠密图(边数较多的 图),可以使用压缩矩阵 来减少存储空间和计算时 间。
使用动态规划
对于某些特定的问题,可 以使用动态规划来优化算 法,提高计算效率。
05
离散数学-图的矩阵表示的挑战和未
来发展方向
离散数学-图的矩阵表示的挑战
计算复杂性
图的矩阵表示的计算复杂性较高, 特别是对于大规模图,需要消耗 大量的计算资源和时间。
表示图中任意两个顶点之间距离的矩阵, 距离矩阵中的元素d[i][ j]表示顶点i和顶点j 之间的最短路径长度。
图的邻接矩阵
1
邻接矩阵是表示图中顶点之间连接关系的常用方 法,其优点是简单直观,容易理解和计算。
2
邻接矩阵的行和列都对应图中的顶点,如果顶点i 和顶点j之间存在一条边,则矩阵中第i行第j列的 元素为1,否则为0。
THANKS
感谢观看
3
通过邻接矩阵可以快速判断任意两个顶点之间是 否存在边以及边的数量。
图的关联矩阵
01
关联矩阵是表示图中边和顶点之间关系的常用方法,
其优点是能够清晰地展示图中边的连接关系。
02
关联矩阵的行和列都对应图中的边,如果边e与顶点i相
关联,则矩阵中第i行第e列的元素为1,否则为0。
03
通过关联矩阵可以快速判断任意一条边与哪些顶点相
图的矩阵表示的算法复杂度分析
创建邻接矩阵的时间复杂 度:O(n^2),其中n是顶 点的数量。
查找顶点之间是否存在边 的复杂度:O(1)。
创建关联矩阵的时间复杂 度:O(m),其中m是边的 数量。
查找边的权重复杂度: O(1)。
图的矩阵表示的算法优化策略
01
02
03
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
当l=1时, A1=A, 由A的定义, 定理显然成立。
若l=k时定理成立, 则当l=k+1时, A k+1= A · Ak ,
所以
n aij (l+1) = aik × akj (l)
k=1
长度=1
aij (1)等于G中 联结vi与vj的长 度为1的路径条 数。
长度=l
共akj (l)条
vi
vk
vj
va
vb
vc
vd
图G2
12 3 4
ab c d
A1=
0 1 11 1 0 11 1 1 01 1 1 10
A2=
0 1 11 1 0 11 1 1 01 1 1 10
❖ 判别定理:图G1 ,G2同构的充要条件是:存在置换矩阵P,使得: A1=PA2P。
❖ 其中A1,A2分别是G1 ,G2的邻接矩阵。 ❖ 如何判断两图同构是图论中一个困难问题
返回 结束
7.3.1 邻接矩阵
7
❖ 结论:
(1) 如果对l=1, 2, …, n-1, Al的(i, j)项元素 (i≠j)都为零, 那么vi和vj之间无任何路相连接, 即vi和 vj不连通。 因此, vi和vj必属于G的不同的连通分支。
(2) 结点vi 到vj (i≠j)间的距离d(vi, vj)是使Al(l= 1, 2, …, n-1 )的(i, j)项元素不为零的最小整数l。
0 2 0 0 0 2 0 2 0 0 A3 0 2 0 0 0 0 0 0 0 1 0 0 0 1 0
1 0 1 0 0 0 2 0 0 0 A2 1 0 1 0 0 0 0 0 0 1 0 0 0 1 0
2 0 2 0 0 0 4 0 0 0 A4 2 0 2 0 0 0 0 0 1 0 0 0 0 0 1
返回 结束
7.3.1 邻接矩阵
9
(1) 由A中a(1)12=1知, v1和v2是邻接的; 由A3中a(3)12= 2知, v1到v2长度为3的路有两条, 从图中可看出是v1 v2 v1 v2和v1 v2 v3 v2 。 (2) 由A2的主对角线上元素知, 每个结点都有长度为2 的回路, 其中结点v2有两条: v2 v1 v2和v2 v3 v2 , 其余 结点只有一条。
内容:关联矩阵,邻接矩阵,可达矩阵。 重点:1、有向图,无向图的关联矩阵,
2、有向图的邻接矩阵。 了解:有向图的可达矩阵。
返回 结束
7.3.1 图的矩阵表示
3
存储原则: 存储结点集和边集的信息.
(1)存储结点集; (2)存储边集:
存储每两个结点是 否有关系。
邻接矩阵
返回 结束
7.3.1 邻接矩阵
4
1.无向图的邻接矩阵 定义 1.6.2设 G (V , E)的顶点集为 V v1,v2 ,L ,vp,用 a表ij 示
G 中顶点vi与v j 之间的边数。称矩阵MA((GG)) (aij ) pp为 G 的邻
接矩阵。
例2下图所示 G 的邻接矩阵为: v3
e1
e2
v1 v2 v3 v4 v5
(3) Al的(i, i)项元素a(l)ii表示开始并结束于vi长度为l
的回路的数目。
返回 结束
7.3.1 邻接矩阵
8
例1 图G=(V, E)的图形如图, 求邻接矩阵A和A2, A3, A4, 并分析其元素的图论意义。
解
0 1 0 0 0 1 0 1 0 0 A 0 1 0 0 0 0 0 0 0 1 0 0 0 1 0
10
设图G=<V,E>如下图所示
0100
A
0011 1101
讨论
1000
(1)图G的邻接矩阵中的元素为0和1,∴又称为布尔矩阵;
(2)图G的邻接矩阵中的元素的次序是无关紧要的,进行行和行、
列和列的交换,则得到相同矩阵。
∴若有二个简单有向图,则可得到二个对应的邻接矩阵,若对某一
矩阵进行行和行、列和列之间的交换后得到和另一矩阵相同的矩阵,
矩阵
(2) 若MA((GG))为无环图。则MA((GG)) 中第i 行(列)的元素之和等于顶点 vi 的度数;
(3) 两个图G与H 同构的充要条件是存在一个置换矩阵P,使得
MA((GG)) PT M (H )P 。
返回 结束
7.3.1 邻接矩阵
5
❖ 同构图 v1
v3
v2
v4
图G1
v1<->va v2<->vb v3<->vc v4<->vd
第七章 图论
1
引言
7.1 图的基本概念 7.2 路与连通 7.3 图的矩阵表示 7.4 最短路径问题 7.5 图的匹配 8.1 Euler图和Hamilton图 8.2 树 8.3 生成树 8.4 平面图
返回 结束
7.3 图的矩阵表示
2
❖ 图的矩阵表示
图的数学抽象是三元组,其形象直观的表 示即图的图形表示。为便于计算,特别为便 于用计算机处理图,下面介绍图的第三种表 示方法—图的矩阵表示。利用矩阵的运算还 可以了解到它的一些有关性质。
返回 结束
7.3.1 邻接矩阵
6
❖ 在邻接矩阵A的幂A2, A3, …矩阵中, 每个元素有特 定的含义。
❖ 定理 :设G是具有n个结点集{v1, v2, …, vn} 的图, 其邻接矩 阵为A, 则Al(l=1, 2, …)的(i, j)项元素a(l)ij是从vi到vj的长 度等于l的路的总数。
证明 : 归纳法
(3) 由于A3的主对角线上元素全为零, 所以G中没有长 度为3的回路。
(4) 由于a(1)34=a(2)34=a(3)34=a(4)34=0, 所以 结点v3和v4间无路, 它们属于不同的连通分支。
(5) d(v1, v3)=2。 对其他元素读者自己可以找出它的意义。
返回 结束
7.3.1 邻接矩阵
则此二图同构。
(3)当有向图中的有向边表示关系时,邻接矩阵就是关系矩阵;
(4)零图的邻接矩阵称为零矩阵,即矩阵中的所有元素均为0;
(5)在图的邻接矩阵中,
①行中1的个数就是行中相应结点的引出次数
②列中1的个数就是列中相应结点的引入次数
返回 结束
7.3.1 邻接矩阵
❖ 矩阵的计算:
0100
A
v1
e9
v2
e3
e5
e8
e7 e 6
v1
0
1
0
1
1
对应的邻接矩阵
v4 e4
AM(G(G))
v2 v3
1 0
0 2
2 0
1 0
1
0
v4
1
1
0
1
1
v5
v5 1 1 0 1 0
从图的邻接矩阵的定义容易得出以下性质:
(1) MA((GG)) 是一个对称矩阵;
相当于将单位 矩阵中相应的 行与行,或者 列与列互换的