断裂力学

合集下载

材料的断裂力学分析

材料的断裂力学分析

材料的断裂力学分析在材料科学和工程领域中,断裂力学是一门研究材料在外力作用下如何发生破坏的学科。

通过断裂力学的分析,我们可以了解材料在正常使用条件下的破坏原因,以及如何提高材料的断裂韧性和强度。

本文将对材料的断裂力学进行详细分析。

1. 断裂力学的基本概念在了解材料的断裂力学之前,我们需要了解几个基本概念。

1.1 断裂断裂是指材料在外部应力作用下发生破坏、分离的过程。

断裂可以分为韧性断裂和脆性断裂两种类型。

韧性断裂是指材料在破坏之前会出现塑性变形,具有一定的延展性;而脆性断裂是指材料在外力作用下迅速发生破坏而不发生明显的塑性变形。

1.2 断裂韧性断裂韧性是指材料抵抗断裂破坏的能力。

一个具有高断裂韧性的材料可以在外力作用下发生一定程度的塑性变形,从而使其拉伸长度增加。

1.3 断裂强度断裂强度是指材料在破坏前能够承受的最大应力。

断裂强度可以通过拉伸实验等方式进行测定。

2. 断裂力学的分析方法断裂力学的分析方法主要有线弹性断裂力学和非线弹性断裂力学两种。

2.1 线弹性断裂力学线弹性断裂力学假设材料在破坏前的行为是线弹性的,并且材料的破坏是由于应力达到了一定的临界值所引起的。

在线弹性断裂力学中,断裂过程可以通过应力强度因子和断裂韧性来描述。

2.2 非线弹性断裂力学非线弹性断裂力学考虑了材料在破坏前的非线性行为,如塑性变形、蠕变等。

非线弹性断裂力学可以更准确地预测材料的破坏行为,但其计算复杂度较高。

3. 断裂力学的应用断裂力学在材料科学和工程中具有广泛的应用。

3.1 破坏分析通过断裂力学的分析,我们可以确定材料在受力状态下的破坏原因,从而改进材料的设计和制备工艺。

例如,在航空航天领域,对材料的断裂力学进行精确分析可以提高飞行器的安全性和可靠性。

3.2 材料评估通过断裂力学的测试和分析,我们可以评估材料的断裂韧性和强度,为材料的选择和应用提供依据。

这对于许多行业来说是至关重要的,如汽车制造、建筑工程等。

3.3 研发新材料断裂力学的理论和实验研究对于开发新的高性能材料具有重要意义。

断裂力学与断裂韧度

断裂力学与断裂韧度

断裂力学的研究 方法包括实验、 数值模拟和理论 分析等。
断裂力学在工程 领域中广泛应用 于结构安全评估、 材料设计、机械 部件的寿命预测 等方面。
断裂力学的应用领域
航空航天:分析飞行器的结构强度和疲劳寿命 机械工程:评估机械部件的可靠性、优化设计 土木工程:研究建筑结构的稳定性、抗震性能 生物医学:分析骨骼、牙齿等生物材料的力学性能
韧性。
材料的温度与环境
温度:随着温度的升高, 材料的断裂韧度降低
环境:在腐蚀、氧化等 恶劣环境下,材料的断 裂韧度会降低
材料的加载速率
加载速率越高,断裂韧度值越低 加载速率的变化对断裂韧度的影响与材料的种类有关 加载速率的增加会使裂纹扩展速度加快,从而提高断裂的危险性 在实际应用中,需要根据材料的种类和断裂韧度要求合理选择加载速率
断裂力学与断裂韧度
汇报人:
目录
添加目录标题
01
断裂力学的概念
02
断裂韧度的基本原理
03
断裂韧度的影响因素
04
断裂韧度在工程中的 应用
05
断裂韧度与其他力学 性能的关系
06
添加章节标题
断裂力学的概念
断裂力学的定义
断裂力学是研究 材料或结构在受 到外力作用时发 生断裂的规律和 机理的学科。
断裂力学主要关 注材料或结构的 脆性、韧性、延 展性和耐久性等 性能指标。
断裂力学的研究目的
预测材料的断裂行为
优化材料的设计和制造过程
添加标题
添加标题
评估材料的断裂韧度
添加标题
添加标题
提高工程结构的可靠性和安全性
断裂韧度的基本 原理
断裂韧度的定义
断裂韧度是材料 抵抗裂纹扩展的 能力,是材料的 重要力学性能指

断裂力学理论及应用研究

断裂力学理论及应用研究

断裂力学理论及应用研究断裂是指材料在外部加载下受到破坏产生裂纹或破片分离的物理过程,是所有材料科学中重要的研究领域之一。

断裂力学理论涉及力学、物理、化学等学科,是从宏观探讨结构构件断裂行为规律的一门学科。

本文主要从断裂力学理论的基本概念、发展历程、应用研究等方面进行探讨。

一、断裂力学理论的基本概念断裂力学理论的基本概念包括断裂韧性、应力场、应变场等。

1. 断裂韧性断裂韧性是材料断裂过程中抵抗裂纹扩展的能力。

对于材料强度越高的材料,其断裂韧性一般也越高。

一个材料的断裂韧性大小可以通过测量其断裂过程中断裂面上的裂纹扩展能量来确定。

当裂纹扩展时,其边缘会释放出能量,断裂韧性就是指在裂纹在材料中传播的过程中能够消耗这些能量的材料性质。

2. 应力场在载荷下,一个构件内的所有部分都会承受不同的应力。

应力场指的是构件内各点的应力分布状态。

应力场是描述材料内部应力状态的最基本模型。

例如,当一个材料受到拉压载荷时,其内部就会产生相应的拉伸和压缩应力。

3. 应变场应变是指材料受到外力后的形变程度,是衡量材料变形能力的重要指标。

与应力场类似,应变场指的是材料内部各点的应变状态。

例如,在机械制造过程中,材料会受到剪切应力,这会导致材料存在剪切应变。

二、断裂力学理论的发展历程断裂力学理论的发展历程可以简单划分为以下阶段:经验试验阶段、线弹性断裂力学阶段、实验与理论相结合阶段、转捩点理论阶段以及非线性断裂力学阶段。

1. 经验试验阶段经验试验阶段是断裂力学理论的雏形阶段。

在这个阶段,人们通过实验来探究材料的断裂行为,并总结出了一些经验规律。

例如,在实验中,人们发现时强度与应力之间成正比关系,这就为后来的弹性断裂力学理论的发展提供了依据。

2. 线弹性断裂力学阶段线弹性断裂力学阶段是断裂力学理论的基础阶段。

这个阶段出现了很多具有代表性的理论,例如弹性理论、能量释放率理论以及裂纹扩展跟踪技术等。

在这个阶段中,人们主要依靠线弹性理论来探究材料断裂规律。

理论与应用断裂力学

理论与应用断裂力学

理论与应用断裂力学断裂力学是研究材料在外部载荷作用下发生裂纹和断裂的科学,它涉及材料的断裂行为、裂纹扩展规律、断裂韧性等内容,具有广泛的理论与应用价值。

断裂力学不仅是材料科学与工程的重要组成部分,还在实际工程中起着重要的作用。

在航空航天、汽车工业、建筑工程、能源领域等各个领域,断裂力学都被广泛应用,并为材料设计与结构可靠性提供了重要的理论指导。

一、断裂力学的基本原理1. 断裂力学的基本概念断裂力学是研究材料在外部载荷作用下发生裂纹和断裂的科学。

断裂是指材料在外部力作用下发生的破坏过程,其本质是裂纹的生成、扩展和相互作用。

断裂行为受到外部载荷、裂纹形态、材料性能等多种因素的影响。

2. 裂纹力学与断裂韧性裂纹力学是断裂力学的基础理论,它描述了裂纹在材料中的行为。

裂纹尖端附近的应力场具有奇异性,裂纹尖端处的应力集中导致材料发生拉伸和剪切破坏,从而导致裂纹的扩展。

断裂韧性是衡量材料抗裂纹扩展能力的参数,它描述了材料在裂纹扩展过程中所能吸收的能量大小。

3. 断裂力学的应用范围断裂力学不仅涉及金属材料、混凝土、陶瓷材料等传统材料,还包括了纳米材料、复合材料等新型材料。

它在制造领域、材料科学、产品设计等领域都有重要的应用价值。

二、断裂力学的研究方法1. 实验方法实验是研究断裂力学的重要手段。

通过拉伸试验、冲击试验、疲劳试验等实验方法,可以获得材料的断裂行为、裂纹扩展规律、断裂韧性等重要参数。

实验结果可以验证理论模型的准确性,为理论研究提供数据支持。

2. 数值模拟方法数值模拟是断裂力学研究的重要手段之一。

有限元分析、分子动力学模拟等数值方法可以模拟材料的断裂过程,揭示裂纹扩展的规律,预测材料的断裂行为。

数值模拟方法在工程设计和材料优化中具有重要的应用价值。

3. 理论分析方法理论分析是断裂力学研究的基础。

裂纹力学理论、断裂力学理论等提供了描述裂纹扩展规律、预测裂纹扩展速率、计算断裂韧性等重要方法。

理论分析方法为工程实践提供了重要的指导,为材料设计提供了理论基础。

断裂力学

断裂力学

断裂是材料在外力作用下的分离过程,主要有脆性断裂和延性断裂延性断裂:有许多的 被称为韧窝的微型空洞组成,韧窝的形状因应力大小而定,韧窝的大小和深浅取决于第二相的数量分部以及基体塑性变形能力。

韧性断裂过程可以概括为微孔成核,微孔长大和微孔长大三个阶段。

内因 :材料本身的性质。

厚度,冶金因素。

脆断裂的转变:内因和外因 应力状态:斜率 外因 温度加载速率1,应力状态:TK 是剪切盈利的剪断极限,Tt 是屈服极限,SOT 是正断应力。

斜率即载荷的加载方式影响较大。

2,温度:温度对剪切极限的影响远远比对正断极限大,所以当温度降低是,同样的加载方式下,更先达到的是正断的极限,对于一定的加载方式有一个温度临界值有延性断裂转化脆性断裂。

面心立方点阵金属在低温下也不易发生脆性断裂。

3,加载速率:加载速率的影响方式同温度相似,随着加载速率的增大材料的剪切显著提高而正断极限变化不大,所以加载速率的增大是材料有延性断裂变为脆性断裂。

O T TS t d dtεd d t临界O T TS t TT 临界maxτm axσ0断裂机制:第一类是由材料屈服为主的塑性破坏,第二类是一裂纹失稳扩展的断裂破坏。

缺陷对两类破坏都有重要影响,但是机制不同。

塑性破坏而言缺陷主要影响了结构的有效承载面积,破坏的临界条件主要有塑性极限载荷控制。

裂纹失稳扩展的断裂而言缺陷引起的局部应力应变场对结构强度起主导作用。

高强材料:断裂时,裂纹端部发生很小的的屈服:线弹性断裂力学理论。

含有裂纹的材料 延性材料:断裂时裂纹端部发生很大的屈服:弹塑性断裂力学理论。

完全塑性材料:断裂时构件整体发生均匀屈服:塑性材料断裂力学。

剩余强度:含有裂纹的结构在使用过程中任意时刻所具有的承载能力就被称为剩余强度。

所有的断裂理论的落脚点都是比较剩余强度和设计强度的大小。

能量分析:英国物理学家Griffith,在1921年首次提出了裂纹扩展时能量释放的概念。

找他的理论解释,裂纹的上下表面形成导致了应变能的释放。

断裂力学

断裂力学
A:裂纹单侧自由表面面积
2a
2)表面自由能 ES 4ab 2 A

V E S π 2 A 2 A A 2 Eb
2.2 断裂力学的能量方法
一、Griffith理论
3.Griffith理论
3) 给定裂纹长度 2 E G 2 EGC a:裂纹半长 f πa πa 给定应力 2 E EGC —容限裂纹半长 aC 2 2 π π 4) Griffith理论适用范围 2 E E 8 —足够尖的裂纹, b0 Griffith裂纹 πa 4ab0 π
第一章
绪论
二、工程中的断裂事故
5 . 1958 美国北极星号导弹固体燃料发动机壳体爆 炸;
6.1969年11月美国F3左翼脱落;
7.1972年我国歼5坠毁; 8.近年来桥梁、房屋、锅炉和压力容器、汽车等
第一章
绪论
二、工程中的断裂事故
第一章
绪论
二、工程中的断裂事故
9.2007年11月2日美国F15 空中解体;
max th f E /(4ab0 )
a / 1

( 0, f 0) —连续介质力学和弹性理论的局限
4.按微观理论
b f E /(4ab0 ) f E /(4a )
0
2.2 断裂力学的能量方法
一、Griffith理论
一、Griffith理论
2.能量释放率及断裂判据 3)裂纹扩展单位面积消耗的能量—裂纹扩展阻力率 (临界应变能释放率) Λ E S GC A A GC:材料常数(材料的断裂韧度)
4)断裂判据
G GC
2.2 断裂力学的能量方法
一、Griffith理论

断裂力学(JH)

断裂力学(JH)
应变线性相加
三、力学基础
如单元体在x方向的应变由3部
分构成
– 由于σx 作用而引起的纵向伸长 x x E
– 由于σy 作用而引起的横向缩短
x
y
E
– 由于σz作用而引起的横向缩短
x
z
E
则在x(σx )方向的总应变为
x

x
二、裂纹体扩展类型
2、裂纹的分类
按裂纹的几何特征分 类:
(a)穿透裂纹;贯穿构
件厚度的裂纹称为穿 透裂纹 。通常把裂纹
延伸到构件厚度一半
以上的都视为穿透裂
纹,并常作理想尖裂 纹处理。
图2-1 裂纹的几何特征分类图 (a)穿透裂纹;(b)表面裂纹;(c)深埋裂纹
二、裂纹体扩展类型
2、裂纹的分类
按裂纹的几何特征分 类:
二、裂纹体扩展类型
按裂纹的力学特征 分类 滑开型(Ⅱ型) – 在平行于裂纹面
而与裂纹尖端线 垂直方向的剪应 力作用下,使裂 纹面产生沿裂纹 面的相对滑动而 形成的裂纹
(a) (b) (c)
图2-2 裂纹力学特征分类图
(a)张开型(Ⅰ型) (b)滑开型(Ⅱ型) (c)撕 开型(Ⅲ型)
二、裂纹体扩展类型
x
x
1 E
x

y
z
三、力学基础
广义虎克(Hooke)定律
x

1 E
x

yz y源自1 Ey z
x
z

1 E
z

x
y

xy

xy

yz

yz
xz

断裂力学简介

断裂力学简介

115第六章 断裂力学简介及材料典型强韧化机制§6.1 断裂的基本概念§6.1.1 断裂力学的产生和发展断裂是构件破坏的重要形式之一,影响材料断裂的因素很多,如构件的形状及尺寸,载荷的特征与分布,构件材料本身的状态及应用的环境如温度、腐蚀介质等,当然更重要的还有材料本身的强度水平。

为了防止构件的断裂或变形失效,传统的安全设计思想主要立足于外加载荷与使用材料的强度级别的选用,根据常规的强度理论,只要构件服役应力与材料的强度满足⎪⎪⎩⎪⎪⎨⎧=21m axK K s b σσσ(6- 1)则认为使用是安全的。

其中ζmax 为构建所承受的最大应力;ζ b,ζs 分别为材料的强度极限和屈服强度,K 1与K 2分别为按强度极限与按屈服强度取用的安全系数。

安全系数是一个大于1的数,其含义为扣除了材料中对强度有影响的诸因素对强度可能造成的损害作用,应当说这种考虑问题的出发点是合理的,也应当是行之有效的,因而多年来这种设计思想在工程设计中发挥了重要作用,而且还会继续发挥其重要作用。

关于断裂力学的最早理论可以追溯到1920年,为了研究玻璃、陶瓷等脆性材料的实际强度比理论强度低的原因,Griffith 提出了在固体材料中或在材料的运行过程中存在或产生裂纹的设想,计算了当裂纹存在时,板状构件中应变能的变化进而得出了一个十分重要的结果。

ζca =常数 (6- 2)其中,ζc 是断裂扩展的临界应力;a 为断裂半长度。

该理论非常成功地解释了玻璃等脆性材料的开裂现象,但应用于金属材料并不成功,又由于当时金属材料的低应力破坏事故并不突出,所以在很长一段时间内未引起人们的重视。

1949年E.Orowan 在分析了金属构件的断裂现象后对Griffith 公式提出了修正,他认为产生断裂所释放的应变能不仅能转化为表面能,也应转化为裂纹前沿的塑性应变功,而且由于塑性应变功比表面能大得多,以至于可以不考虑表面能的影响,其提出的公式为:ζca =212⎪⎭⎫⎝⎛λEU =常数 (6- 3)Orowan 公式虽然有所进步,但仍未超出经典的Griffith 公式的范围,而且同表面能一样,形变功U 也是难以测量的,因而该式仍难以实现工程上的的应用。

断裂 力学

断裂 力学

断裂力学
断裂力学
断裂力学是研究物质在外部应力作用下发生断裂现象的学科。

它涉及到材料力学、材料科学和工程等多个领域,对于了解材料的断裂行为以及相关工程应用具有重要意义。

在断裂力学中,力学行为可以通过弹性、塑性和粘弹性等理论来描述。

当物质承受外部应力超过其强度极限时,断裂现象就会发生。

断裂可以分为静态断裂和疲劳断裂两种形式。

静态断裂是指物质在单次应力作用下破裂,而疲劳断裂是指物质在多次应力循环作用下逐渐破裂。

断裂力学的研究内容包括断裂韧性、断裂强度、断裂机理等。

断裂韧性是材料抵抗断裂的能力,它与材料的韧性和强度有关。

断裂强度是指材料承受外部应力时的抗拆除能力。

断裂机理则是指断裂过程中发生的各种微观和宏观现象。

断裂力学的应用广泛,包括材料设计、结构工程、航空航天、汽车制造等领域。

通过研究断裂力学,可以提高材料和结构的安全性和可靠性,避免由于断裂引起的事故和损失。

总之,断裂力学是研究物质在外部应力作用下发生断裂现象的学科。

它对于了解材料的力学行为以及相关工程应用具有重要意义。

在研究断裂力学时,我们需要注意文章的逻辑清晰,流畅表达,避免包含不适宜展示的敏感词或其他不良信息,确保文章的质量和阅读体验。

断裂力学名词解释-概述说明以及解释

断裂力学名词解释-概述说明以及解释

断裂力学名词解释-概述说明以及解释1.引言1.1 概述在断裂力学领域,断裂现象是材料在承受外力作用下突然失效的过程。

这种突然失效可能导致严重的事故,因此研究断裂力学对于材料工程和结构设计具有重要意义。

本文将从断裂力学的基本概念入手,介绍塑性断裂和断裂韧性的相关理论和应用,并探讨其在工程领域中的实际意义。

通过深入分析断裂力学的相关名词和概念,可以更好地理解材料在断裂过程中的行为,为工程实践提供更可靠的依据。

1.2 文章结构文章结构部分内容:本文共分为引言、正文和结论三部分。

在引言部分中,将对断裂力学的概述进行介绍,解释本文的结构和目的。

正文部分将分为三个小节,分别讨论断裂力学、塑性断裂和断裂韧性的概念和相关内容。

最后在结论部分总结全文的内容并讨论其应用和未来展望。

文章结构清晰明了,有助于读者更好地理解和接受文章内容。

1.3 目的本文旨在通过对断裂力学相关名词的解释,帮助读者更深入地理解断裂力学领域的基本概念和原理。

通过对断裂力学、塑性断裂和断裂韧性等概念的深入讲解,读者可以了解不同类型的断裂行为及其在材料工程和结构设计中的重要性。

同时,通过本文的阅读,读者可以掌握相关名词的定义和内涵,为深入学习断裂力学奠定坚实基础。

通过本文的撰写,我们希望读者能够对断裂力学有一个全面而深入的理解,从而为工程实践中的断裂问题提供更有效的解决方案。

同时,我们也希望可以激发读者对断裂力学领域的兴趣,促进学术交流和探讨,推动该领域的发展和进步。

愿本文能够为读者带来启发和帮助,让我们共同探索断裂力学这一重要领域的奥秘。

2.正文2.1 断裂力学断裂力学是研究材料在外加载荷作用下如何发生裂纹和破坏的一门学科。

在工程学和材料科学领域中,断裂力学被广泛应用于预测材料的疲劳寿命、抗拉强度和韧性等参数。

断裂力学的基本原理是研究材料在受到外力作用下,裂纹会在材料内部扩展,并最终导致材料的破坏。

断裂力学中的一些重要概念包括裂纹尖端应力、裂纹尖端位移、裂纹扩展速率等。

断裂力学

断裂力学

2r0
=
1
π
(KI
σs
)2
• 对于平面应变状态,
R
=
2r0
=
2
1

(KI
σs
)2
四、弹塑性断裂力学
• 1. 弹塑性断裂力学的引出 对于工程上广泛应用的中低强度钢,由 于σs低而KIc高,故塑性区较大。一般的 中小零件,塑性区相对构件尺寸较大, 已不再属于小范围屈服而是大范围屈 服。这时,平面应变条件已不再满足, 线弹性力学已无法适用。为解决这类问 题,必须采用弹塑性断裂力学。
三、线弹性断裂力学
• 1. 应力场强度因子KI和平面应变断裂韧 性KIc
• (1)应力场强度因子KI
裂纹扩展的三种类型:
Β型裂纹(张开型):外应力与裂纹平面垂直 Χ型裂纹(滑开型):在切应力作用下,使裂 纹上下二面产生相对滑移 Δ 型裂纹(撕裂型):在切应力作用下,使裂 纹上下二面错开 上述三种裂纹类型中,以I型裂纹使材料引起 脆性断裂的危险性最大。因此,工程上一般通 过I型裂纹对构件或材料进行安全设计。
物体,因Z轴方向很长,严重限制了
Z轴方向的变形,ε
为最危险状态。
z
=0,但Ρz

0。
(3)应力场强度因子KI和平面应 变断裂韧性KIc的关系
• KI和KIc的关系类似于Ρ和Ρs的关系。 • KIc是材料固有的性质,与试样类
型、截面大小以及外力无关,只与 材料组织、成分有关。
(4)脆性断裂判据
• KI≥KIc,构件在外力作用下裂纹将失稳 扩展,发生脆性断裂。
2. J积分的测试
• (1)多试样法
• 选用一组尺寸相同、裂纹长度有差别的 几个试样进行弯曲实验

弹性力学中的断裂韧度和断裂力学

弹性力学中的断裂韧度和断裂力学

弹性力学中的断裂韧度和断裂力学弹性力学是研究物体在外力作用下的形变和应力分布规律的学科。

而断裂力学则是研究物体在外力作用下发生破裂的过程和规律的学科。

这两个学科在材料科学和工程领域中扮演着重要的角色。

本文将从断裂韧度和断裂力学两个方面来探讨弹性力学中的断裂现象。

一、断裂韧度断裂韧度是衡量材料抵抗断裂的能力的一个重要指标。

它反映了材料在承受外力时能够延展变形的程度。

一般来说,断裂韧度越高,材料的抗断裂能力就越强。

断裂韧度的计算通常是通过测量材料的断裂应力和断裂应变来实现的。

断裂应力是指材料在断裂前所承受的最大应力,而断裂应变则是指材料在断裂前所发生的最大应变。

通过测量这两个参数,可以得到材料的断裂韧度。

断裂韧度的大小与材料的结构和组成有关。

一般来说,具有高断裂韧度的材料往往具有较高的延展性和韧性,能够在受到外力时发生较大的塑性变形,从而减缓断裂的发生。

而具有低断裂韧度的材料则容易发生脆性断裂,即在受到外力时发生突然断裂,而没有明显的延展变形。

二、断裂力学断裂力学研究的是材料在外力作用下发生破裂的过程和规律。

在断裂力学中,常常使用断裂韧度、断裂强度和断裂韧性等参数来描述材料的断裂性能。

断裂力学的研究对象包括裂纹的生成、扩展和联合等。

裂纹是材料中的缺陷,它会导致材料的强度和韧性降低,并最终导致材料的破裂。

因此,研究裂纹的行为和影响对于了解材料的断裂行为具有重要意义。

断裂力学中的一个重要概念是应力强度因子,它是描述裂纹尖端应力场分布的一个参数。

应力强度因子的大小与裂纹的尺寸、形状和材料的性质有关。

通过研究应力强度因子,可以预测裂纹的扩展速率和破裂的临界条件。

断裂力学还涉及到断裂机制的研究。

不同材料在断裂时会表现出不同的断裂模式,如拉伸断裂、剪切断裂和韧性断裂等。

研究不同材料的断裂模式可以帮助我们了解材料的断裂行为和性能。

总结弹性力学中的断裂韧度和断裂力学是研究材料断裂行为的重要方面。

断裂韧度是衡量材料抗断裂能力的指标,而断裂力学则研究材料在外力作用下发生破裂的过程和规律。

材料力学中的断裂力学分析方法研究

材料力学中的断裂力学分析方法研究

材料力学中的断裂力学分析方法研究引言:断裂力学是材料力学中的一个重要分支,研究材料在受力作用下的破裂行为和断裂过程。

在工程实践和科学研究中,了解材料的断裂行为对于设计和改进工程结构具有重要意义。

本文将介绍材料力学中的断裂力学分析方法,包括线弹性断裂力学、弹塑性断裂力学和断裂力学的数值模拟方法。

一、线弹性断裂力学线弹性断裂力学是材料力学中最基本的断裂理论,适用于强度高、韧性差的材料。

线弹性断裂力学的基本原理是根据材料的线弹性性质,通过应力和应变的关系,计算出材料在受力作用下的应力强度因子。

应力强度因子是描述断裂过程中应力场的一种参数,可用于预测材料的断裂行为。

线弹性断裂力学的主要分析方法包括拉伸试验、根据裂纹尖端应力场求解应力强度因子、确定裂纹扩展方向的K-R曲线等。

二、弹塑性断裂力学当材料的强度和韧性较高时,线弹性断裂力学不能很好地描述材料的断裂行为。

此时,需要采用弹塑性断裂力学进行分析。

弹塑性断裂力学将材料的弹性和塑性行为结合起来,考虑材料在加载过程中的变形和断裂。

在弹塑性断裂力学中,应力强度因子的计算需要考虑材料的塑性缺口效应。

常见的弹塑性断裂力学分析方法包括J-积分法、能量法和应力强度因子法等。

三、断裂力学的数值模拟方法随着计算机技术的发展,断裂力学的数值模拟方法得到了广泛应用。

数值模拟方法能够更准确地描述材料的断裂行为,包括裂纹的扩展路径、失效载荷和断裂过程等。

常用的数值模拟方法有有限元法和离散元法。

有限元法以其广泛的适用性和高精度的计算结果而受到广泛关注。

在有限元法中,利用离散化的网格模型和连续介质力学理论,对材料的断裂过程进行模拟和分析。

离散元法则更适用于颗粒状材料或颗粒之间存在断裂的材料。

四、断裂力学在工程中的应用断裂力学在工程中有着广泛的应用。

通过对材料的断裂行为进行准确的分析和预测,可以为工程结构的设计和改进提供重要的依据。

例如,在航空航天工程中,断裂力学能够用于预测飞机机体的疲劳破坏和碰撞破坏情况;在汽车工程中,断裂力学可以帮助改进车辆的安全性能和减少事故发生的风险;在材料工程中,断裂力学可以用于评估材料的强度和韧性,优化材料生产工艺。

理论与应用断裂力学

理论与应用断裂力学

理论与应用断裂力学断裂力学是指研究材料在机械外载作用下,如何发生破坏及其形成和扩展的科学。

断裂力学研究的对象是材料在断裂前、中、后的力学行为和损伤演变。

它是现代材料科学研究中重要的分支之一,具有广泛的理论应用价值。

本文将从理论与应用两个方面,介绍断裂力学的基本概念和发展现状。

一、理论1. 断裂力学的基本概念在强度学中,本质上我们研究的是材料最终破坏的强度,以及在材料破坏之前的稳定裂纹扩展行为。

由此,我们可以定义断裂强度和裂纹扩展强度。

并且,材料的断裂过程是在应力场下进行的,我们可以通过应力强度因子来描述应力状态下的断裂行为。

2. 断裂力学的发展现状近年来,随着计算机技术和数值模拟方法的不断发展,断裂力学从实验方法转为计算方法逐渐成为了主流。

借助高性能计算机,人们可以更准确地模拟复杂的物理过程,如图像处理、数值计算、信息处理等。

同时,人们也在从材料、构件、结构等不同层面建立对应的断裂力学体系,刻画材料的破坏机理和裂纹扩展行为,为现实应用提供可靠的理论依据。

二、应用1. 机械结构破坏分析在机械结构设计过程中,断裂力学可以帮助工程师更好地设计和优化结构,以便在使用寿命内实现最多的性能和安全。

这一流程包括确定材料强度参数、建立机械模型、检测和分析应力场、计算应力强度因子和模拟生命周期行为等。

2. 材料疲劳性能研究由于疲劳损伤在结构材料中的特殊作用,断裂力学能够有效地帮助人们更好地了解疲劳行为和裂纹扩展过程。

通过对复杂的疲劳裂纹扩展行为的数值模拟,可以确保结构的疲劳寿命至少与其设计寿命相当。

同时,材料型号和测试数据可以为工程师提供更好的信息,以更好地预测疲劳性能和生命周期。

3. 建筑结构安全评估断裂力学可以帮助我们更好地评估各种建筑结构的安全性。

结构元件的破坏状态和完整性可以通过计算应力强度因子、应力/应变超前。

实验强度和疲劳性能在结构纵向和横向上的分布。

基于断裂力学的这些分析方法,结构工程师可以更好地了解管道、桥梁、平台等建筑结构受力状态下的行为,预测结构的生命周期和维护需求,保证结构的安全性和性能。

第五章断裂力学概述

第五章断裂力学概述

Y c a K IC
式中, c 为断裂应力; a 是裂纹深度;Y 是裂纹现状系数,与试件几何现状、载荷条件和 裂纹位置有关; 常数 K IC 是材料的断裂韧性, 表示材料抵抗裂纹失稳扩展能力的一个物理量。 已知裂纹深度 a ,上式可写成
c K IC Y a
或已知工作应力 ,则有
一、 张开型裂纹尖端应力场和应力强度因子
设一无限大板,中心有一裂纹,长为 2a,受双轴拉应力作用,如图 5-3 所示。按弹性力 学平面问题求解,其裂纹尖端的应力场为
x KI
y KI
xy K I
2r cos 21 sin 2 sin 3 2
图 5-2
§ 5-2 能量释放率与 G 准则
一、脆性断裂的能量理论
大量的研究表明,固体材料的实际断裂强度只有它理论断裂强度的 1 10 ~ 1 1000 。葛 里菲斯认为,在如何固体材料中存在一定数量和一定大小的裂纹和缺陷。 设在无限大平板上出现了一条垂直于拉应力 方向长度为 2a 的贯穿裂纹, 切开裂纹后, 平板内储存的弹性应变能将有一部分被释放出来, 其释放量为 U; 由于裂纹出现后有新的表 面形成,要吸收能量,其值为 W,则其能量的总改变量 E 为 E=-U+W 裂纹释放的能量为
da dN 是材料的一个指标,表示材料抵抗裂纹扩展的能力。
初始裂纹深度 a i ,临界裂纹深度 a c 和裂纹扩展速率 da dN 已知,则剩余寿命可由以下 积分求得
N p da da aN
ac ai
其中
da dN C K
m
C 与 m 是材料常数, K K max K min 是循环载荷的最大和最小应力强度因子之差, 称为应力强度因子幅度。在断裂力学中,与疲劳极限相当的是循环载荷的门槛值 K th ,当 应力强度因子幅度小于门槛值时,裂纹不扩展。

断裂力学-ansys

断裂力学-ansys
这里W是应变能密度,T是动能密度,σ 表示应力,u 是位移矢量,Γ 是线积分域。 对于线弹性材料的裂纹来说,J-积分表示能量释放率。而对于非线弹性材料,裂纹尖端的应力 位移幅由J-积分来描述。 4.1.2.3 J-积分作为应力强度因子 Hutchinson、 Rice 和Rosengren分别独立地研究发现J-积分描述了非线弹性材料的裂纹尖端区的 特征。他们每个人都假定了塑性应变和应力之间的关系。如果包含弹性应变,它们的单向变形关系
第四章 断裂力学
4.1 断裂力学的定义
裂纹和缺陷会因为某些原因存在于许多结构和零部件中。可能是材料本身具有缺陷。裂纹可能 是制造过程产生的,也可能是后来由于环境因素产生的。裂纹和缺陷的存在能极大地降低构件在载 荷和环境作用中的完整性。
断裂力学使用应用力学的概念发展了对结构中存在裂纹尖端的应力与变形区的思路。对裂纹尖 端的应力与变形区深入的了解有助于发展结构的失效安全设计和安全寿命设计。基于断裂力学设计 的思想是广泛使用的,不是局限于核工业,航空航天,民用,和机械工程等领域。
PLANE182 PLANE183 SOLID185 PLANE186 PLANE187 J-积分计算支持如下材料属性: 线弹性 塑性 4.3.1.4 J-积分计算过程 ANSYS在求解器中通过子步计算J-积分,然后存储在结果文件中。 CINT命令用来计算J-积分,还用来设置运算所需要的不同的参数。 J-积分计算按如下步骤进行:
对于2-D 问题,在热应变不存在时,积分路径依赖于塑性应变、积分面上的体力和裂纹表面的 压力,域积分表示的J-积分公式为:
这里q是所谓的裂纹扩展矢量。q的方向是在裂纹尖端的局部坐标系的x轴 。q矢量在Γ曲线上为零 , 并且在Γ曲线内部除中间节点(如果有,它们直接连接在Γ曲线上)的所有节点为单位矢量。ANSYS 引用这些节点单位矢量q作为虚拟裂纹扩展节点。

断裂力学概念rst

断裂力学概念rst

断裂力学概念rst【原创版】目录1.断裂力学的概念2.断裂力学的应用3.断裂力学的发展前景正文一、断裂力学的概念断裂力学是研究材料在外部载荷作用下,由于裂纹产生、扩展和止裂现象的学科。

它是固体力学的一个重要分支,主要关注材料在断裂过程中的力学行为。

断裂力学的研究对象包括各种材料,如金属、陶瓷、塑料和复合材料等。

在工程领域,断裂力学具有很高的实用价值,可以为结构设计、材料选择、安全评估和故障分析提供理论依据。

二、断裂力学的应用1.结构设计:断裂力学可以为结构设计提供重要参考,帮助工程师确定材料的尺寸、形状和强度,以确保结构在使用过程中的安全性。

2.材料选择:断裂力学可以用于评估不同材料的断裂性能,为材料选型提供依据。

在航空航天、核工业等高强度、高可靠性领域,选择具有优良断裂性能的材料至关重要。

3.安全评估:断裂力学可以用于预测结构的剩余寿命和剩余强度,对在用结构进行安全评估。

这对于核电站、桥梁、隧道等重要工程具有很大的现实意义。

4.故障分析:断裂力学可以用于分析材料断裂的原因,为故障分析提供重要线索。

通过对断裂样品的实验研究和理论分析,可以找出导致材料断裂的原因,为避免类似事故的发生提供参考。

三、断裂力学的发展前景随着科学技术的进步和工程技术的发展,断裂力学在各个领域的应用越来越广泛。

未来,断裂力学的研究将更加注重微观和宏观相结合,发展趋势如下:1.精细化:随着纳米技术的发展,断裂力学将更加关注微观结构对材料断裂性能的影响,实现断裂力学的精细化研究。

2.多尺度:断裂力学将发展多尺度模拟方法,从宏观到微观全面研究材料的断裂行为,为工程应用提供更为准确的理论依据。

3.智能化:结合人工智能、大数据等技术,断裂力学将实现智能化发展,提高断裂分析的准确性和效率。

总之,断裂力学是一门具有广泛应用价值的学科,未来发展前景十分广阔。

断裂力学概述及其应用

断裂力学概述及其应用

断裂力学概述及应用定义:断裂力学(fracture mechanics) 是为解决机械结构断裂问题而发展起来的力学分支,它将力学、物理学、材料学以及数学、工程科学紧密结合,是一门涉及多学科专业的力学专业课程。

起源:1957年,美国科学家G.R.Irwin提出应力强度因子的概念, 线弹性断裂理论的重大突破,应力强度因子理论作为断裂力学的最初分支——线弹性断裂力学建立起来。

发展:现代断裂理论大约是在1948—1957年间形成,它是在当时生产实践问题的强烈推动下,在经典Griffith理论的基础上发展起来的,上世纪60年代是其大发展时期。

我国断裂力学工作起步至少比国外晚了20年,直到上世纪70年代,断裂力学才广泛引入我国,一些单位和科技工作者逐步开展了断裂力学的研究和应用工作。

从上世纪五十年代中期以来,断裂力学发展很快,目前线性理论部分已比较成熟,在工程方面,已广泛应用于宇航、航空、海洋、兵器、机械、化工和地质等许多领域。

分类:断裂力学的类型分为:线性断裂力学、弹塑性断裂力学、断裂动力学。

研究的内容包括了:裂纹的起裂条件、裂纹在外部载荷和(或)其他因素作用下的扩展过程、裂纹扩展到什么程度物体会发生断裂。

1.线性断裂力学:应用线弹性理论研究物体裂纹扩展规律和断裂准则。

1921年格里菲斯通过分析材料的低应力脆断,提出裂纹失稳扩展准则格里菲斯准则。

1957年G.R.欧文通过分析裂纹尖端附近的应力场,提出应力强度因子的概念,建立了以应力强度因子为参量的裂纹扩展准则。

线弹性断裂力学可用来解决脆性材料的平面应变断裂问题,适用于大型构件(如发电机转子、较大的接头、车轴等)和脆性材料的断裂分析。

实际上,裂纹尖端附近总是存在塑性区,若塑性区很小(如远小于裂纹长度),则可采用线弹性断裂力学方法进行分析。

2.弹塑性断裂力学:应用弹性力学、塑性力学研究物体裂纹扩展规律和断裂准则,适用于裂纹体内裂纹尖端附近有较大范围塑性区的情况。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
[ij ] ;i=1,2,3 ; j=1,2,3 ; 可以证明剪应力互等,即: ij=ji (i≠j); 从而[ij ]是一个二阶对称张量,可用6个独立分量表示。
a
14
单元体上的应力
(σ32) (x3) z
y (x2) (σ13)
(σ12)
(σ21) (σ11)
x (x1) (σ31)
a
15
二维应力( x , y ,xy)状态
因此,不可以说一点的应力多大,只能说某个面上的应力有多大,或一点某个方向 上应力多大(实际还是指与这个方向垂直的面上的应力)。而面上的应力可以分解为 正应力和剪应力。
实际上,过一点可以做无数多个平面,但相对于这个正六面体的任意一个斜面上的 应力,对各向同性材料,在三维空间里都可以用这9个独立分量表示出来。
a
3
考虑一个问题:
下图是4块等厚度的板, A的宽度为 W ,B、C、D 3块的宽度为 W+a 。但在 这增加的宽度a上分别为无缺陷,有直径为d 的孔缺陷和裂纹缺陷,在两端分别 施加均匀拉力 F1、F2、F3、F4 后破坏,请问:所施加力的大小应怎样排列?
答案:
Why?
a
4
材料不是完美无瑕的
绪论
§ 1-7-2 材料单向受力的简化模型
§ 1-8 材料的屈服条件
a
10
§ 1-1 一点的应力与应变
§ 1-1-1Байду номын сангаас一点的应力 • 正应力 • 切应力 • 应力张量
§ 1-1-2 斜截面上的应力 • 斜截面上的应力分量 • Einstein 求和约定 • 斜截面公式
§ 1-1-3 主应力和主平面 • 主应力与主平面的定义 • 求解主应力 • 应力不变量
y
y
x xy
x
y
2
x
y
2
cos2xy
sin2
x
y
2
sin2xy
cos2
Ox
y
x
y
xy
0x
上式平方和相加,得:
x 2y 2 2 x 2y 2x 2y
n
在 坐标系中,与 ,
落在一个圆上
a
19
§ 1-1-3 主应力和主平面
若斜截面上只有正应力,而没有剪应力时,我们把这个平面叫做主
在(x,y,z)坐标系下,对于各向同性的弹性
体,六面体各个面上的应力可以表示为:
x x , x y ,x z, y x ,y y , y z,z x , , z y z z
或表示为 x,x y,x z,y x, y,y z,z x,z y, z

1 1 ,1 2 ,1 3 ,2 1 ,2 2 ,2 3 ,3 1 ,3 2 ,3 3
垂直于该面的应力—称为正应力
dF
dA
Fi

平行于该面的应力—称为剪应力
a
12
• 一点的应力
应力是定义在一个面上的,过一点有无数多个
面,这些面上都有应力,但不是互相独立的。通常
物体内部的一点用一个小正六面体来表示,只要知
道这六个面上的应力,其它各面上的应力就可以确
定了。当六面体的各面趋近于零就代表一个点了。
作。虽然因文革延误,但陈篪等科技工作者还是做出了相当突出的工作。
● 近来的发展:
断裂力学在上世纪60-80年代得到长足发展,经历发烧期,建立了许多理论。
a
7
绪论
1989 Irwin指出: “线弹性断裂力学已基本成熟,关键是在应用中 不断完善;弹 塑性断裂力学及动态断裂力学还有很长的路要走”。
1989 ICF大会主席之一Leibowite指出: “尽管多年来断裂力学在解决重大问题上 取得很大进展,但必须明了断裂力学远非一门成熟的学科。今后最迫切的是需要付出极 大的努力发展能预测稳定裂纹启裂或扩展的更完善的断裂理论。其中一个主要方向就是 要深入研究断裂力学与经典力学的区别,并找出能统一裂纹与非裂纹体的统一理论”
应力面或主平面。在主应力面上, = 0; = T = 为主应力。从而,
T1 .n1 , T2 .n2 , T3 .n3
即:
Ti .ni
代入方程 Ti ij.nj , 有:.ni ij.nj , 或 ij ij nj 0
即: (11 )n1 12n2 13n3 0 21n1 (22 )n2 23n3 0 31n1 32n2 (33 )n3 0
一点的应力可以用上述应力分量表示,它是一
个张量 ,通常简略表示为[σij ] 。
a
x
x x
11 12 13
[ ij ] 21
22
23
31 32 33
13
• 一点的应力
各向同性材料过一点的其它各面上的应力都可以通过平衡关系用这9个量来表示。 这9个量表示了一点的应力状态。张量是一组表示某种性质的量的组合。它不是一个值。
工程材料都有缺陷(先天— 夹杂、夹渣、瑕疵、空洞、裂缝 后天— 冶炼、加工、制造、安装、使用)
材料中的宏观尺寸缺陷—这里通称为裂纹(尖裂纹或钝裂纹)。 由于材料有缺陷,材料的自身强度是理论强度的1/10-1/100; 由于材料有缺陷,材料在受力后会在缺陷处产生严重的应力集中; 由于材料有缺陷,材料会在某种应力作用下产生亚临界裂纹扩展,材料对 外界的抗力不仅与外力有关还与裂纹的长度有关。
工程断裂力学
Engineering Fracture Mechanics
( 40 学 时 )
臧启山
2010 年5月-6月
a
1
主要章节
第一章:与断裂力学有关的工程力学基础(复习) (7)
第二章:线弹性断裂力学初步
(15)
第三章:弹塑性断裂力学简要
(8)
第四章:断裂力学在疲劳裂纹扩展中的应用
(6)
复习 考试
σ2 ,σ3 ;主应力所在的面称为主平面。 他们对应三组 n1,n2 ,n3 ,分别是
它们法线的方向数。这里,I1,I2,I3 称为应力不变量。
I1112233123 I21 2[(112222332)2(122232312)I12]1 22 33 1 I3det[ij]
a
21
应力不变量亦可写成:
重要方向)。因此断裂研究有重大的经济和a社会意义 。
5
绪论
尽管社会不断发展,断裂问题仍层出不穷
多少世纪来,人们积累了大量有关断裂的现象和经验,但一般的解决方法就 是替换,换新的或找更强的材料代替,对断裂的认识停留在现象上。18世纪以来随 着工业的发展,对构件需求和要求更高,开始探索断裂理论,以材料力学为代表的理
zxzy0; z 0(xy)平 平 面 面 应 应 变 力
a
16
§ 1-1-2 斜截面上的应力
假设任意斜截面与正六面体坐标轴的夹角的余弦,也就是斜截面法线的方向数 为 n1,n2,n3,这个斜截面(ABC)上的应力T 在三个坐标轴上的投影为 T1,T2,T3 ,
T 还可以分解为垂直于斜截面(ABC)上的应力 和平行于该平面的应力
什么是断裂力学?
断裂力学是一门研究含裂纹物体,裂纹的启裂、扩展到断裂的宏观过程及断裂
条件的科学。
a
6
绪论
● 代表人物
谈到断裂力学发展,它归功很多人,有三个人值得我们特别提出,他们是:
Inglis, Griffith, Irwin.
Inglis 把缺陷看成材料内部的小孔, 1913年理论计算了无限大板中心椭圆孔
§ 1-4-1 相容方程
§ 1-4-2 求解平面问题的基本方程
§ 1-4-3 应力函数
§ 1-4-4 极坐标求解平面问题方程
§ 1-5 应变能密度
§ 1-6 应力函数的复变函数表示
§ 1-6-1 复变量复习:
§ 1-6-2 用复变函数表示的应力函数
§ 1-7 材料的变形模型
§ 1-7-1 简单拉伸的试验结果
目前断裂力学研究已经过了发烧期,处于向动态断裂力学等方向深度发展阶段。 ● 主要学习内容
线弹性断裂力学为主, 注重应用 ● 材料科学与工程和该课程的关系
结构材料包括功能材料工程应用必须正视或解决的问题。
要求:重视概念、学以致用、适当记笔记。
a
8
第一章:与断裂力学有关的工程力学基础
§ 1-1 一点的应力与应变 § 1-1-1 一点的应力 § 1-1-2 斜截面上的应力 § 1-1-3主应力和主平面 § 1-1-4 一点的应变
例如:可a 简ib i写a 为1 b 1:a2b 2a3b 3 (i=1,3);
aij X j Ki (i=1,n;j=1,n)表示一个线性方程组。
斜截面上的正应力与剪应力:
T
T . T1n1 T2n2 T3n3 Ti ni
T T 2 2
a
18
二维平面斜截面上的应力
§ 1-2 平衡微分方程 § 1-2-1 微单元的平衡方程 § 1-2-2 边界条件 § 1-2-3 应力应变关系(各项同性、小变形、弹性连续体)
§ 1-3 平面应力与平面应变 § 1-3-1 平面应力 § 1-3-2 平面应变
a
9
第一章:与断裂力学有关的工程力学基础
§ 1-4 相容方程和应力函数
I1 11 22 33
I2
11 21
12 22 22 32
23 33 33 13
论、 模型等随后提出几十个。但随着新材料(如高强度钢)新工艺(如焊接)的发 展,断裂问题仍层出不穷。Why ? 这一方面说明断裂问题的复杂性,另一方面说明, 已有的断裂理论还解决不了全部问题。 上世纪中,在现代工业发展和战争的的推动 下,人们对断裂现象认识的进一步深化,对材料强度、缺陷、位错、应力集中等理论 研究不断深入,断裂力学终于在1957年应运而生,成为学科,且已经在生产和设计 中发挥重大作用,并继续承受检验。
相关文档
最新文档