高等数学第四章不定积分课后习题详细讲解

合集下载

高等数学第4章课后习题答案(科学出版社)

高等数学第4章课后习题答案(科学出版社)

第四章 习题解答习 题 4-11.求下列不定积分:(1);(2) 2(23)d x x x +⎰;(3)⎰+)1(d 22x x x;(4) 2cot d x x ⎛⎫+⎪⎭⎰;(6) 21(1)x x -⎰; (7)1d 1cos 2xx +⎰;(9)221d sin cos x x x ⎰;(10){}max ||,1d x x ⎰.2.设某曲线上任意点处的切线的斜率等于该点横坐标的立方,又知该曲线通过原点,求此曲线方程.3.验证函数21sin 2x ,21cos 2x -,1cos 24x -是某同一函数的原函数.解答:1.求下列不定积分: (1)解53225125212d 1()3x x x C x C --+-==+=-++-⎰. (2)解:⎰+x x xd )32(2C xx x +3ln 29+6ln 62+2ln 24=(3)=+-=+⎰⎰⎰22221d d )1(d x x x x x x x C x x+--arctan 1(4) 解:⎰⎰⎰-+-=+-x x x x x x x d )1(csc d 11d )cot 11(2222=C x xx +cot arcsin(5)1131352222222242(2)d 235x x x x x x x x x C -==-+=-++⎰⎰(6) 33571244444214(1)(1)d ()d 47x x x x x x x x x C x ----=-⋅=-=++⎰⎰⎰(7) 解2111d d tan 1cos 22cos 2x x x C x x ==++⎰⎰ (8) 解:⎰x x x x d sin cos 2cos 22⎰⎰-=-=x xx x x x x x d )cos 1sin 1(d sin cos sin cos 222222 C x x +--=tan cot(9) 解:222222221sin cos 11d d d d sin cos sin cos cos sin x x x x x x x x x x x x +==+⎰⎰⎰⎰ 22sec d csc d tan cot x x x x x x C =+=-+⎰⎰(10) 解:},,1max{)(x x f =设⎪⎩⎪⎨⎧>≤≤--<-=1,11,11,)(x x x x x x f 则.上连续在),()(+∞-∞x f ,)(x F 则必存在原函数,1>,+211≤≤1,+1<,+21=)(32212x C x x C x x C x x F 须处处连续,有又)(x F)+21(lim =)+(lim 121→21→+C x C x x x ,,21112C C +-=+-即 )(lim )21(lim 21321C x C x x x +=+-+→→ ,,12123C C +=+即 ,1C C =联立并令.1,2132C C C C +==+可得.1,12111,211,21},1max{22⎪⎪⎪⎩⎪⎪⎪⎨⎧>++≤≤-++-<+-=⎰x C x x C x x C x dx x 故2. 解:设所求曲线方程为)(x f y =,其上任一点),(y x 处切线的斜率为3d d x xy=,从而 ⎰+==C x x x y 4341d .由0)0(=y ,得0=C ,因此所求曲线方程为441x y =. 3.解:x 2sin 21x x cos sin =, x x x sin cos cos 212='⎪⎭⎫ ⎝⎛- x x x x cos sin 2sin 212cos 41=='⎪⎭⎫⎝⎛-所以x 2sin 21、 x 2cos 21-、 x 2cos 41-都是x x cos sin 的原函数.习 题 4-2 1.求下列不定积分: (1) 1d 12x x -⎰; (2) 100(23)d x x -⎰;(3) 12ed xx x ⎰; (4)211sin()d x x x ⎰;(5) ⎰-294d x x;(7) 1d ln lnln x x x x⎰;(8)x e x d 11⎰+;(9)⎰+3xx dx ; (10)x x x x x d )cos 2(sin sin 2cos 2⎰+-; (11)3cos d x x ⎰; (12)⎰+x x d 412;(14)2sin d cos 6cos 12x xx x -+⎰;(15)x ; (16) dx x ⎰5cos(17) ⎰x x x d cos sin 52(18)cos5sin 4d x x x ⎰;(19)⎰+x xx d sin 1sin ; (20)x exd 112⎰+(21) xx ⎰;(22)x x⎰. 2. 求下列积分: (1) sin 2d x x x ⎰;(2)⎰-x e x xd 2;(3)()⎰-x x x d 1ln ;(4)(31)sin 3d x x x +⎰; (5)x x d sin3⎰;(6) e sin 2d x x x -⎰; (7) 2arctan d x x x ⎰;(8) 2cos d x x x ⎰;(9)x ;(10)⎰x x e xd sin ;(11)3csc d x x ⎰;(12)()d xf x x ''⎰.3.已知x x f 22tan )(sin =',求函数)(x f .4. 已知xe xf -=)(,求不定积分⎰'x xx f d )(ln . 5. 求e d n xn I x x =⎰的递推公式,其中n 为自然数,并计算2I 的值.6. 已知)(u f 有二阶连续的导数,求∫d )e (′′e2x f x x;解答:1.求下列不定积分:(1) 解: 令2u x =,有2sin 2d sin 2(2)d sin d cos x x x x x u u u C '===-+⎰⎰⎰,将2u x =回代,得2sin 2d x x ⎰cos 2x C =-+. (2) 解 10010010111(23)d (23)d(23)(23)3303x x x x x C -=---=--+⎰⎰ (3) 解:⎰x xexd 21C e x e x x +=)1-d( =11∫(4) 解:211111sin()d sin d()cos x C x x x x x=-=+⎰⎰ (5) 解:=-⎰294d x xc xx x x x +|323+2|ln 121=d 321+3+2141∫ (6) 解:x x x x d )ln (ln 12⎰+C xx x x x x +-==⎰ln 1)ln d()ln (12(7) 解:x x x x d ln ln ln 1⎰C x x x x x x +===⎰⎰ln ln ln )ln d(ln ln ln 1)d(ln ln ln ln 1(8) 解:x ee x e e e x e xxx x x x d )11(d 11d 11⎰⎰⎰+-=+-+=+=C e x x ++-)1ln( (9) 解 令)0( 6>=t t x ,则⎰⎰+=+23536t t dtt x x dxdt tt t )111(62⎰+-+-=C t t t t ++-+-=))1ln(23(623C x x x x ++-+-=)1ln(6 6 32663(10) 解:)cos 2+(sin d )cos 2+(sin 1 =d )cos 2+(sin sin 2cos∫∫22x x x x x x x x x =C xx ++-cos 2sin 1(11) 解:⎰x x d cos 3⎰=x x x d cos cos 2)d(sin sin 12⎰-=x x C xx +-=3sin sin 3 (12) 解:∫∫2d 2+1121=d +4122x xx x =C x +2arctan 21. (13)解:2x 231arcsin d(arcsin )(arcsin )3x x x C ==+⎰.(14)解:22sin d d(cos 3)cos 6cos 12(cos 3)3x x x C x x x -=-=-+-+⎰⎰ (15) 解:x x x xd )1(arctan ⎰+)d()(1arctan 2d 1arctan 22x x xx x x ⎰⎰+=+=C x x x +==⎰2)(arctan)d(arctan arctan2(16) x x x x x x sin d )sin -1( =sin d cos =d cos ∫∫∫2245=C x x x ++-52sin 51sin 32sin .(17) ⎰⎰⎰+-=-=x x x x x x x x x x sin d )sin sin 2(sin sin d )sin 1(sin d cos sin 64222252c x x x ++-=753sin 71sin 52sin 31 (18) 解:C x x x x x x x x ++-=-=⎰⎰cos 219cos 181d 2sin 9sin d 4sin 5cos (19) 解:∫∫∫d )tan +sec (tan =d sin -1)sin +1(sin =d sin +1sin 22x x x x x xx x x x x ⎰-+=x x x x d )1sec sec (tan 2=C x x x +-+tan sec .(20) 解:令)1ln(212-=t x ,则t t t x d 1d 2-=,于是C t t t t t t t t x ex ++-=-=-⋅=+⎰⎰⎰11ln 21d 11d 11d 11222 =C x e e x x +-++-)212ln(2122(21) 解:设sin (0)2x a t t π=<<,d cos d x a t t =,则22421sin cos cos d sin 2d 4x x a t a t a t t a t t =⋅⋅=⋅⎰⎰⎰ 444111(1cos 4)d sin 48832a t t a t a t C =-=-+⎰ 44211sin cos (12sin )88a t a t t t C =--+42211arcsin 2)88x a a x C a =--+. (22) 解:令sec x a t =,d sec tan d x a t t t =⋅,则22tan sec tan d tan d (sec 1)d sec a t a t t t a t t a t t a t =⋅⋅==-⎰⎰⎰ (tan )a t t C =-+arccos )a a C x=-+.2.求下列不定积分(1)解:⎰x x x d 2sin )2cos d(21⎰-=x x ⎰+-=x x x x d 2cos 212cos 2 C x x x ++-=2sin 412cos 2(2)解:⎰-x e x x d 2⎰⎰---+-=-=x xe e x e x xx x d 2d 22⎰⎰-----+--=--=x e xe e x e x e x xx x x x d 22d 222C e xe ex x x x+---=---222(3)解:()⎰-x x x d 1ln ()⎰⎪⎪⎭⎫⎝⎛-=2d 1ln 2x x()⎰---=x x x x x d 11211ln 222 ()⎰⎪⎭⎫⎝⎛-++--=x x x x x d 111211ln 22()()C x x x x x +-----=1ln 2121411ln 222(4)(31)sin 3d x x x +⎰1(31)d(cos3)3x x =+-⎰ 1(31)cos3cos3d 3x x x x =-++⎰11(31)cos3sin 333x x x C =-+++.(5)解:令t x =3,则3t x =,t t dx d 32=原式⎰⎰-=⋅=t t t t t cos d 3d 3sin 22∫∫sin d 6+cos 3=d 2cos 3+cos 3=22t t t t t t tt t⎰-+-=t t t t t t d sin 6sin 6cos 32C t t t t t +++-=cos 6sin 6cos 32C x x x x x +++-=333332cos 6sin 6cos 3(6)解:因为⎰-x x e x d 2sin ⎰--=x e x d 2sin )2d(sin 2sin ⎰--+-=x e x e xx)d(2cos 22sin ⎰----=x x e x x e )2d(cos 22cos 22sin ⎰---+--=x e x e x e x x x⎰------=x x e x e x e x x x d 2sin 42cos 22sin于是⎰-x x exd 2sin C xe x e x x +--=--52cos 22sin(7)解:⎰x x x d arctan 2⎰⎰-==x x x x x x arctan d 3arctan 33d arctan 333∫d +131arctan 3=233x x x x x ⎰+-+-=x x xx x x x d 131arctan 3233 C x x x x +++-=)1ln(31arctan 3223 (8)解:⎰x x x d cos 2⎰⎰+=+=x x x x x x xd )2cos (21d 22cos 1⎰+=x x x x d 2cos 2142 ⎰+=x x x 2sin d 4142⎰-+=x x x x x d 2sin 412sin 4142 C x x x x +-+=2cos 812sin 4142 (9)解:⎰x x xd arcsin 1⎰⎰-==x x x x x x arcsind 2arcsin2d arcsin2∫d 11arcsin 2=x xxx C x x x +-+=12arcsin 2 (10)解:e sin d sin d e x xx x x =⎰⎰e sin e d sin x x x x =-⎰e sin e cos d x x x x x =-⎰e sin cos d e x x x x =-⎰e sin (e cos e d cos )x x x x x x =--⎰ e sin e cos e sin d x x x x x x x =--⎰.因此得2e sin d e (sin cos )x xx x x x =-⎰.即1e sin d e (sin cos )2xxx x x x C =-+⎰.(11)解:32csc d csc (csc )d csc d(cot )x x x x x x x ==-⎰⎰⎰2csc cot cot csc d x x x x x =--⋅⎰3csc cot csc d csc d x x x x x x =--+⎰⎰ 3csc cot csc d ln csc cot x x x x x x =--+-⎰,从而 31csc d (csc cot ln csc cot )2x x x x x x C =---+⎰(12)解 ⎰''x x f x d )(C x f x f x x x f x f x x f x +-'='-'='=⎰⎰)()(d )()()(d3.已知x x f 22tan )(sin =',求函数)(x f .解 依题求得xx x f -='1)(,因此 C x x x x xx x x x f +---=--=-=⎰⎰⎰|1|ln d d 11d 1)(. 4. 已知xe xf -=)(,求不定积分⎰'x xx f d )(ln . 解=+='='⎰⎰C x f x x f x xx f )(ln ln d )(ln d )(ln C x +1.5. 解 11e d de e e d e n x n x n x n x n xn n I x x x x n x x x nI --===-=-⎰⎰⎰,即1e n x n n I x nI -=-为所求递推公式.而221e 2x I x I =-,11e d de e e d e e x x x x x xI x x x x x x C ===-=-+⎰⎰⎰,故22(22)e x I x x C =-++.(12C C =-)6. 解⎰''x f x xd )e (e2()⎰''=x x x f e d )e (e []⎰'=)e (d e x x f⎰'-'=)e (d )e ()e (e x x xx f f C f f x x x +-'=)e ()e (e习 题 4-31. 求下列积分: (1) sin 2d x x x ⎰;(2)⎰-x e x xd 2;(3)()⎰-x x x d 1ln ;(4)(31)sin 3d x x x +⎰; (5)x x d sin3⎰;(6) e sin 2d x x x -⎰; (7) 2arctan d x x x ⎰;(8) 2cos d x x x ⎰;(9)x ;(10)⎰x x e xd sin ;(11)3csc d x x ⎰;(12)()d xf x x ''⎰.2. 求e d n xn I x x =⎰的递推公式,其中n 为自然数,并计算2I 的值.3. 已知)(u f 有二阶连续的导数,求⎰''x f x xd )e (e2;解答1.求下列不定积分 (1)解:⎰x x x d 2sin )2cos d(21⎰-=x x ⎰+-=x x x x d 2cos 212cos 2 C x x x ++-=2sin 412cos 2(2)解:⎰-x e x x d 2⎰⎰---+-=-=x xe e x e x xx x d 2d 22⎰⎰-----+--=--=x e xe e x e x e x xx x x x d 22d 222C e xe ex x x x+---=---222(3)解:()⎰-x x x d 1ln ()⎰⎪⎪⎭⎫⎝⎛-=2d 1ln 2x x()⎰---=x x x x x d 11211ln 222()⎰⎪⎭⎫⎝⎛-++--=x x x x x d 111211ln 22()()C x x x x x +-----=1ln 2121411ln 222(4)(31)sin 3d x x x +⎰1(31)d(cos3)3x x =+-⎰ 1(31)cos3cos3d 3x x x x =-++⎰11(31)cos3sin 333x x x C =-+++.(5)解:令t x =3,则3t x =,t t dx d 32=原式⎰⎰-=⋅=t t t t t cos d 3d 3sin 22∫∫sin d 6+cos 3=d 2cos 3+cos 3=22t t t t t t tt t⎰-+-=t t t t t t d sin 6sin 6cos 32C t t t t t +++-=cos 6sin 6cos 32C x x x x x +++-=333332cos 6sin 6cos 3(6)解:因为⎰-x x e x d 2sin ⎰--=x e x d 2sin )2d(sin 2sin ⎰--+-=x e x e xx)d(2cos 22sin ⎰----=x x e x x e )2d(cos 22cos 22sin ⎰---+--=x e x e x e x x x ⎰------=x x e x e x e x x x d 2sin 42cos 22sin于是⎰-x x exd 2sin C xe x e x x +--=--52cos 22sin(7)解:⎰x x x d arctan 2⎰⎰-==x x x x x x arctan d 3arctan 33d arctan 333∫d +131arctan 3=233x x x x x ⎰+-+-=x x xx x x x d 131arctan 3233 C x x x x +++-=)1ln(31arctan 3223 (8)解:⎰x x x d cos 2⎰⎰+=+=x x x x x x xd )2cos (21d 22cos 1⎰+=x x x x d 2cos 2142⎰+=x x x 2sin d 4142⎰-+=x x x x x d 2sin 412sin 4142 C x x x x +-+=2cos 812sin 4142 (9)解:⎰x x xd arcsin 1⎰⎰-==x x x x x x arcsind 2arcsin2d arcsin2∫d 11arcsin 2=x xxx C x x x +-+=12arcsin 2 (10)解:e sin d sin d e x xx x x =⎰⎰e sin e d sin x x x x =-⎰e sin e cos d x x x x x =-⎰e sin cos d e x x x x =-⎰e sin (e cos e d cos )x x x x x x =--⎰ e sin e cos e sin d x x x x x x x =--⎰.因此得2e sin d e (sin cos )x xx x x x =-⎰.即1e sin d e (sin cos )2xxx x x x C =-+⎰. (11)解:32csc d csc (csc )d csc d(cot )x x x x x x x ==-⎰⎰⎰2csc cot cot csc d x x x x x =--⋅⎰3csc cot csc d csc d x x x x x x =--+⎰⎰ 3csc cot csc d ln csc cot x x x x x x =--+-⎰,从而 31csc d (csc cot ln csc cot )2x x x x x x C =---+⎰(12)解 ⎰''x x f x d )(C x f x f x x x f x f x x f x +-'='-'='=⎰⎰)()(d )()()(d2. 解 11e d de e e d e n x n x n x n x n xn n I x x x x n x x x nI --===-=-⎰⎰⎰,即1e n x n n I x nI -=-为所求递推公式.而221e 2x I x I =-,11e d de e e d e e x x x x x xI x x x x x x C ===-=-+⎰⎰⎰,故22(22)e x I x x C =-++.(12C C =-)3. 解⎰''x f x x d )e (e 2()⎰''=x x x f e d )e (e []⎰'=)e (d e x x f⎰'-'=)e (d )e ()e (e x x xx f f C f f x x x +-'=)e ()e (e .习题4-4求下列不定积分:(1)23d 56x x x x +-+⎰; (2)21d (1)x x x -⎰;(3)22d (1)(1)xx x x +++⎰; (4)3224d 56x x x x x +++⎰.x x x d )+1(1 5∫28)(; (6)2d 3sin xx+⎰;(7)⎰++311d xx(8)sin d 1cos x xx x ++⎰.解答 (1) 解233(3)(2)56(2)(3)23(2)(3)x x A B A x B x x x x x x x x x ++-+-==+=-+------,即3(3)(2)x A x B x +=-+-,比较系数知1323A B A B +=⎧⎨--=⎩(或者用赋值法:分别在3(3)(2)x A x B x +=-+-中令3x =与2x =,也可解出A 与B ),解之得56A B =-⎧⎨=⎩,于是62356d ()d ln(3)5ln 25623x x x x x C x x x x +-=+=---+-+--⎰⎰65(3)ln 2x C x -=+-.(2) 解 令221(1)1(1)A B Cx x x x x =++---,用待定系数法或者用赋值法可求出1A =,1B =-,1C =,故221111d []d (1)1(1)x x x x x x x =-+---⎰⎰2111d d d 1(1)x x x x x x =-+--⎰⎰⎰1ln ln 11x x C x =---+-. (3) 解 因为222211(1)(1)11x x x x x x x x -+=+++++++,所以 2222d 1()d (1)(1)11x x x x x x x x x x -+=+++++++⎰⎰222221d(1)1d(1)1d 212121x x x x x x x x x +++=-+++++++⎰⎰⎰2221d()1112ln(1)ln(1)13222()24x x x x x +=-+++++++⎰2211ln 21x C x x +=-++++.(4) 解 由于32224615656x x x x x x x x +-=--++++ 98132x x x =--+++,则 322498d (1)d 5632x x x x x x x x x +=--+++++⎰⎰219ln 38ln 22x x x x C =--++++. (5)解 ⎰⎰⎰+=+=+2888288728)1()1()1(1x x dx dx x x x dx x x =C xx +)1+1ln(+118188(6)解⎰+x x 2sin 3d ⎰-=x x 2cos 7d 2x u tan =⎰+243d u u ⎰+=2)32(1d 31u uC x +=3tan 2arctan 321(7)解 ⎰++311d xx31x t +=⎰+t t t 1d 32t t t d )111(3⎰++-=C t t t +++-=1ln 232 (8)解 注意到sin d d(1cos )x x x =-+及211d d d(tan )1cos 22cos2xx x x x ==+,可将原来的积分拆为两项,然后积分,即sin sin d d d 1cos 1cos 1cos x x x x x x x x x x +=++++⎰⎰⎰1d(tan )d(1cos )21cos x x x x=-++⎰⎰tantan d ln(1cos )22x xx x x =--+⎰1tan 2ln cos ln(1cos )22x xx x C =+-++21tan 2ln cos ln(2cos )222x x xx C =+-+1tan (ln 2)2x x CC C =+=-.习题4-5利用积分表计算下列不定积分: (1);(2)3ln d x x ⎰; (3)221d (1)x x +⎰;(4);(5)x x ⎰; (6)(7) 6cos d x x ⎰;(8)2e sin3d x x x -⎰.解答 (1)解:因为⎰+-245d xx x ⎰-+-=2)2(1)2d(x x在积分表中查得公式(73)C a x x a x x +++=+⎰)ln(d 2222现在1=a ,2-=x x ,于是⎰+-245d x x xC x x x +-+-+=)245ln(2(2)⎰x x d ln 3解:在积分表中查得公式(135)⎰⎰--=x x n x x x x n n n d ln )(ln d ln 1 现在3=n ,重复利用此公式三次,得⎰x x d ln3C x x x x x x x +-+-=6ln 6ln 3ln 23.(3)=+⎰x x d )1(122解:在积分表中查得公式(28)⎰⎰+++=+bax xb b ax b x x ax b 2222d 21)(2d )(1 于是现在1=a ,1=b ,于是=+⎰x x d )1(122 C x x xx x x x +++=+++⎰arctan )1(21d 21)1(2222 (4)⎰-1d 2x xx解:在积分表中查得公式(51)C xaa x ax x+=-⎰arccos 1d 12 于是现在1=a ,于是⎰-1d 2x xx C x+=1arccos(5)x x x xd 222-⎰解:令1-=x t ,因为x x x xd 222-⎰x x x d 1)1(22--=⎰t t t t d 1)12(22-++=⎰由积分表中公式(56)、(55)、(54)C a x x a a x a x x x a x x+-+---=-⎰2222222222ln 8)2(8dC a x x a x x +-=-⎰32222)(31dC a x x a a x x x a x +-+--=-⎰2222222ln 22d于是x x x x d 222-⎰2222)1())1(2[81a x a x x -----= C a x a x x a +--+--+--322222])1[(31)1(1ln 85. (6)⎰-12d 2x xx解:在积分表中查得公式(16)、(15)⎰⎰+-+-=+b ax x xb a bx b ax b ax xxd 2d 2C bbax b bax xx +-+-=+⎰arctan2d 于是现在2=a ,1-=b ,于是=-⎰12d 2x x x⎰-+-12d 12x x xx x C x x x +-+-=12arctan 212 (7) ⎰x x d cos 6解:在积分表中查得公式(135)⎰⎰----=x x nn x x n x x n n n d cos 1sin cos 1d cos 21 现在6=n ,重复利用此公式三次,得⎰x x d cos 6C x x x x •x x ++++=)22sin 41(2415sin cos 245sin cos 6135. (8)x x e xd 3sin 2⎰-解:在积分表中查得公式(128)C bx b bx a e ba x bx e axax +-+=⎰)cos sin (1d sin 22 现在2-=a ,3=b ,于是C x x e x x e axx+--=⎰-)3cos 33sin 2(131d 3sin 2 C x x e ax++-=)3cos 33sin 2(131复习题A一、选择题1. 设)(x F 是)(x f 的一个原函数,则等式( )成立。

高数—不定积分讲解和例题-PPT(1)共64页文档

高数—不定积分讲解和例题-PPT(1)共64页文档
—— 积分学的任务
一、原函数与不定积分的概念
定义1:
已知 f (x)是一个定义在区间I上的函数, 如果存在函数F (x), 使在 I 内的任一点都有
F ( x ) f ( x ) 或 d F ( x ) f ( x ) d x , 则称 F (x) 为 f (x) 在 I 上的原函数。
第四章 不定积分
§1. 不定积分的概念与性质
已知物体运动的位置函数 s = s(t), 求时刻 t 的瞬时速度 v = v(t)。
—— 微分学解决的问题
已知物体运动的速度函数 v = v(t) 求运动的位置函数 s = s(t)。
—— 积分学解决的问题
一般,已知函数 f(x), 要找另一 个函数F(x), 使 F ’(x) = f (x)。
例3. (ex3six n )dxex dx3six d n x
ex3co x sC .
例4.
42x 3x 2x dx
423xdx
4x (3 2)x C.
ln(3 2)
axdxax C. lna
sixn dx co x C s,
f ( x ) g ( x ) d f x ( x ) d x g ( x ) d x .
性质2. 被积函数中不为零的常 数因子可提到积分号外。
k f(x )d x k f(x )d x .(k 0 为)常
利用基本积分表和不定积分性质,可计算 一些简单函数的不定积分。注意3点:
定义2:函数 f (x) 的全体原函数就称为
f (x) 的不定积分。 记作 f(x)dx. 其中 — 积分号 f (x) — 被积函数
f (x) d x — 被积表 x — 积分变量 达式

高等数学 第四章不定积分课后习题详解.doc

高等数学 第四章不定积分课后习题详解.doc

第4章不定积分内容概要课后习题全解习题4-11.求下列不定积分:知识点:直接积分法的练习——求不定积分的基本方法。

思路分析:利用不定积分的运算性质和基本积分公式,直接求出不定积分!★(1)思路: 被积函数52x -=,由积分表中的公式(2)可解。

解:532223x dx x C --==-+⎰★(2)dx-⎰ 思路:根据不定积分的线性性质,将被积函数分为两项,分别积分。

解:1141113332223()24dx x x dx x dx x dx x x C --=-=-=-+⎰⎰⎰⎰ ★(3)22x x dx +⎰()思路:根据不定积分的线性性质,将被积函数分为两项,分别积分。

解:2232122ln 23x x x x dx dx x dx x C +=+=++⎰⎰⎰()★(4)3)x dx -思路:根据不定积分的线性性质,将被积函数分为两项,分别积分。

解:3153222223)325x dx x dx x dx x x C -=-=-+⎰⎰⎰ ★★(5)4223311x x dx x +++⎰思路:观察到422223311311x x x x x ++=+++后,根据不定积分的线性性质,将被积函数分项,分别积分。

解:42232233113arctan 11x x dx x dx dx x x C x x ++=+=++++⎰⎰⎰ ★★(6)221x dx x +⎰思路:注意到222221111111x x x x x +-==-+++,根据不定积分的线性性质,将被积函数分项,分别积分。

解:2221arctan .11x dx dx dx x x C x x =-=-+++⎰⎰⎰ 注:容易看出(5)(6)两题的解题思路是一致的。

一般地,如果被积函数为一个有理的假分式,通常先将其分解为一个整式加上或减去一个真分式的形式,再分项积分。

★(7)x dx x x x⎰34134(-+-)2 思路:分项积分。

高等数学第四章不定积分讲义

高等数学第四章不定积分讲义

第四章 不定积分讲义【考试要求】1.理解原函数与不定积分的概念及其关系,掌握不定积分的性质,了解原函数存在定理. 2.熟练掌握不定积分的基本公式.3.熟练掌握不定积分的第一类换元法,掌握第二类换元法(限于三角代换与简单的根式代换).4.熟练掌握不定积分的分部积分法.【考试内容】一、原函数与不定积分的概念1.原函数的定义如果在区间I上,可导函数()F x 的导函数为()f x ,即对任一x I∈,都有()()F x f x '=或()()dF x f x dx =,那么函数()F x 就称为()f x (或()f x dx )在区间I 上的原函数.例如,因(sin )cos x x '=,故sin x 是cos x 的一个原函数.2.原函数存在定理如果函数()f x 在区间I 上连续,那么在区间I 上存在可导函数()F x ,使对任一x I ∈都有()()F x f x '=.简单地说就是,连续函数一定有原函数.3.不定积分的定义在区间I 上,函数()f x 的带有任意常数项的原函数称为()f x (或()f x dx )在区间I 上的不定积分,记作()f x dx ⎰.其中记号⎰称为积分号,()f x 称为被积函数,()f x dx 称为被积表达式,x 称为积分变量.如果()F x 是()f x 在区间I 上的一个原函数,那么()F x C +就是()f x 的不定积分,即()()f x dx F x C =+⎰,因而不定积分()f x dx ⎰可以表示()f x 的任意一个原函数.函数()f x 的原函数的图形称为()f x 的积分曲线.4.不定积分的性质(1)设函数()f x 及()g x 的原函数存在,则[()()]()()f x g x dx f x dx g x dx ±=±⎰⎰⎰.(2)设函数()f x 的原函数存在,k 为非零常数,则()()k f x d x k f x d x=⎰⎰. 5.不定积分与导数的关系(1)由于()f x dx ⎰是()f x 的原函数,故()()d f x dx f x dx⎡⎤=⎣⎦⎰ 或 ()()d f x dx f x dx ⎡⎤=⎣⎦⎰ . (2)由于()F x 是()F x '的原函数,故()()F x d x F x C '=+⎰ 或()()dF x F x C =+⎰ .二、基本积分公式1.kdx kx C =+⎰ (k 是常数)2.11x x dx C μμμ+=++⎰ (1μ≠-)3.1ln dx x C x =+⎰4.21arctan 1dx x C x =++⎰5.arcsin dx x C =+⎰6.cos sin xdx x C =+⎰ 7.sin cos xdx x C =-+⎰8.221sec tan cos dx xdx x C x ==+⎰⎰9.221csc cot sin dx xdx x C x ==-+⎰⎰10.sec tan sec x xdx x C =+⎰11.csc cot csc x xdx x C =-+⎰ 12.xxe dx e C =+⎰13.ln xxa a dx C a=+⎰ *14.tan ln cos xdx x C =-+⎰ *15.cot ln sin xdx x C =+⎰*16.sec ln sec tan xdx x x C =++⎰ *17.csc ln csc cot xdx x x C =-+⎰*18.2211arctan xdx C a x a a =++⎰*19.2211ln 2x adx C x a a x a-=+-+⎰*20.arcsin xC a =+*21.ln(dx x C =++ *22.ln x C =++说明:带“*”号的公式大家可以不记住,但必须会推导.三、第一类换元法(凑微分法)1.定理若()f u ,()x ϕ及()x ϕ'都是连续函数,且()()f u du F u C =+⎰,则[()]()[()]f x x dx F x C ϕϕϕ'=+⎰.2.常用凑微分公式(1)1()()dx d x b d ax b a=+=+ (a ,b 均为常数且0a ≠)(2)11()1aa xdx d x b a +=++ (a ,b 均为常数且1a ≠-)2211()()22xdx d x d x b ==+2dx d = (3)1(ln )(ln )dx d x d x b x==+ (4)()()xx x e dx d e d e b ==+(5)11()()ln ln xxx a dx d a d a b a a==+(6)sin (cos )(cos )xdx d x d x b =-=-+ (7)cos (sin )(sin )xdx d x d x b ==+(8)2sec(tan )(tan )xdx d x d x b ==+(9)2csc(cot )(cot )xdx d x d x b ==+(10(arcsin )(arcsin )dx d x d x b ==+(11)21(arctan )(arctan )1dx d x d x b x==++ (12)22211[ln(1)][ln(1)]122x dx d x d x b x =+=+++ 四、第二类换元法定理:设()f x 连续,()x t ϕ=及()t ϕ'都是连续函数,()x t ϕ=的反函数1()t x ϕ-=存在且可导,并且[()]()()f t t dt F t C ϕϕ'=+⎰,则1()[()]f x dx F x C ϕ-=+⎰.说明:第二类换元法常见是三角代换,三角代换的目的是化掉根式,一般有如下情形: (1sin x a t =; (2tan xa t =;(3sec x a t =.五、分部积分法1.公式的推导设函数()uu x =及()v v x =具有连续导数,那么两个函数乘积的导数公式为()uv u v uv '''=+,移项,得()uv uv u v '''=-,对这个等式两边求不定积分,得u v d x u v u v d ''=-⎰⎰,为简便起见,上述公式也写为udv uv vdu =-⎰⎰ .2.注意事项(1)如果被积函数是幂函数和正(余)弦函数或幂函数和指数函数的乘积,就可以考虑用分部积分法,并设幂函数为u ,这样用一次分部积分法就可以使幂函数的幂次降低一次(这里假定幂指数是正整数).(2)如果被积函数是幂函数和对数函数或幂函数和反三角函数的乘积,就可以考虑用分部积分法,并设对数函数或反三角函数为u (有时也可利用变量代换). (3)根据范围I 的边界值与()f x '的情况,导出所需要证明的不等式即可.六、简单有理函数的不定积分分子分母均为x 的多项式的分式函数称为有理函数,简单有理函数可通过适当变换如加项、减项等分解为可求不定积分的简单函数.或u ,由于这样的变换具有反函数,且反函数是u 的有理函数,因此原积分即可化为有理函数的积分.【典型例题】 【例4-1】计算下列不定积分. 1.2x xedx ⎰.解:222211()22x x x xe dx e d x e C ==+⎰⎰.2.21xdx x +⎰.解:2222111(1)ln(1)1212x dx d x x C x x =+=++++⎰⎰.3.221(1)x x dx x x +++⎰.解:2222221111(1)(1)(1)1x x x x dx dx dx dx dx x x x x x x x x +++=+=+++++⎰⎰⎰⎰⎰arctan ln x x C =++.4.ln x dx x ⎰.解:2ln 1ln (ln )ln 2x dx xd x x C x ==+⎰⎰.5.1ln dx x x ⎰.解:11(ln )ln ln ln ln dx d x x C x x x ==+⎰⎰.6.sec (sec tan )x x x dx -⎰.解: 2sec (sec tan )secsec tan x x x dx xdx x xdx -=-⎰⎰⎰t a n s e c x x C=-+. 7.2sin xdx ⎰.解:21cos211sin cos2222x xdx dx dx xdx -==-⎰⎰⎰⎰11sin 224x x C =-+. 8.2cos xdx ⎰.解:21cos211cos cos2222x xdx dx dx xdx +==+⎰⎰⎰⎰11sin 224x x C =++. 9.2tan xdx ⎰.解:222tan (sec 1)sec tan xdx x dx xdx dx x x C =-=-=-+⎰⎰⎰⎰. 10.2cot xdx ⎰.解:222cot (csc 1)csc cot xdx x dx xdx dx x x C =-=-=--+⎰⎰⎰⎰.11.11x dx e +⎰.解:11(1)1111x x x xx x x x e e e e dx dx dx dx dx e e e e +-==-=-++++⎰⎰⎰⎰⎰1(1)ln(1)1x xxdx d e x e C e=-+=-+++⎰⎰. 12.21825dx x x -+⎰.解:22211114825(4)99()13dx dx dx x x x x ==--+-++⎰⎰⎰211414()arctan 43333()13x x d C x --==+-+⎰.13.25sin cos x xdx ⎰. 解: 原式2242sincos (sin )sin (1sin )(sin )x xd x x x d x ==-⎰⎰246(sin 2sin sin )(sin )x x x d x =-+⎰357121sin sin sin 357x x x C =-++. 14.cos3cos 2x xdx ⎰.解:111cos3cos2(cos cos5)sin sin52210x xdx x x dx x x C =+=++⎰⎰.【例4-2】计算下列不定积分. 1.cos x xdx ⎰.解:cos (sin )sin sin sin cos x xdx xd x x x xdx x x x C ==-=++⎰⎰⎰.2.x xe dx ⎰.解:()(1)x x x x x x x xe dx xd e xe e dx xe e C x e C ==-=-+=-+⎰⎰⎰. 3.ln x xdx ⎰.解:222221ln ln ()ln (ln )ln 22222x x x x x x xdx xd x d x x dx x==-=-⋅⎰⎰⎰⎰ 222ln ln 2224x x x x x dx x C =-=-+⎰.说明:此题也可用变量代换解,即令ln xt =,则t x e =,t dx e dt =,故原式2222111()222t t t t t t e t e dt te dt td e te e dt =⋅⋅===-⎰⎰⎰⎰ 2222221111ln ln 242424t t x xte e C x x x C x C =-+=⋅-+=-+.4.arctan x xdx ⎰.解:222arctan arctan ()arctan (arctan )222x x x x xdx xd x d x ==-⎰⎰⎰ 22222111arctan arctan (1)221221x x x x dx x dx x x =-⋅=--++⎰⎰ 211arctan arctan 222x x x x C =-++.5.ln xdx ⎰.解:1ln ln (ln )ln ln xdx x x xd x x x x dx x x x C x=-=-⋅=-+⎰⎰⎰.6.arctan xdx ⎰.解:2arctan arctan (arctan )arctan 1x xdx x x xd x x x dx x =-=-+⎰⎰⎰ 2221(1)1a r c t a n a r c t a nl n (1)212d x x x x x x C x+=-=-+++⎰. 7.cos xe xdx ⎰.解:原式(sin )sin sin sin (cos )x x x x xe d x e x x e dx e x e d x ==-⋅=+⎰⎰⎰sin cos cos x x x e x e x x e dx =+-⋅⎰,所以1cos (sin cos )2xxe xdx e x x C =++⎰.8.sin(ln )x dx ⎰.解:1sin(ln )sin(ln )cos(ln )x dx x x x x dx x=-⋅⎰⎰sin(ln )x x =- 1cos(ln )sin(ln )cos(ln )[sin(ln )]x dx x x x x x x dx x =-+-⋅⎰⎰sin(ln )cos(ln )sin(ln )x x x x x dx =--⎰,故1sin(ln )[sin(ln )cos(ln )]2x dx x x x x C =-+⎰.说明:此题也可用变量代换法求解,即令ln t x =,则t x e =,t dx e dt =,则原式sin sin ()sin cos t t t tt e dt td e e t e tdt =⋅==-⎰⎰⎰s i n c o s ()s i n c o s(s i n t t t t te t t d e e t e t e t d t=-=-+-⎰⎰, 故原式11(sin cos )[sin(ln )cos(ln )]22t t e t e t C x x x x C =-+=-+. 【例4-3】计算下列不定积分.1.2156x dx x x +-+⎰.解:被积函数的分母分解成(2)(3)x x --,故可设215632x A Bx x x x +=+-+--, 其中A 、B 为待定系数.上式两端去分母后,得 1(2)(3)x A x B x +=-+-,即1()23x A B x A B +=+--.比较此式两端同次幂的系数,即有 1A B +=,231A B +=-,从而解得4A =,3B =-,于是2143()4ln 33ln 25632x dx dx x x C x x x x +=-=---+-+--⎰⎰.2.22(21)(1)x dx x x x ++++⎰.解:设222(21)(1)211x A Bx Cx x x x x x ++=+++++++, 则 22(1)()(21)x A x x B x C x +=+++++,即22(2)(2)x A B x A B C x A C+=++++++,有 20,21,2,A B A B C A C +=⎧⎪++=⎨⎪+=⎩ 解得 2,1,0.A B C =⎧⎪=-⎨⎪=⎩于是2222()(21)(1)211x xdx dx x x x x x x +=-++++++⎰⎰22221(21)11(1)1ln 21ln 211321212()24x d x x dxx dx x x x x x x +-++=+-=+-+++++++⎰⎰⎰21ln 21ln(1)2x x x C =+-++++.3.dx x⎰.u =,于是21x u =+,2dx udu =,故22221222(1)111u u dx udu du du x u u u=⋅==-+++⎰⎰⎰⎰2(arctan )arctan u u C C =-+=-+.4..解:为了去掉根号,可以设u =,于是32x u =-,23dx u du =,故22313(1)3(ln 1)112u u du u du u u C u u ==-+=-+++++⎰⎰3ln 1C =-+++. 【例4-4】设()arcsin xf x dx x C =+⎰,求1()dx f x ⎰. 解:对等式()arcsin xf x dx x C =+⎰ 两边对 x 求导,可得()xf x =, 则()f x =故211()(1)()2dx x f x ==--⎰⎰⎰ 332222121()(1)(1)233x C x C =-⋅-+=--+.【例4-5】已知sin xx是()f x 的一个原函数,求()xf x dx '⎰.解:因为sin xx是 ()f x 的一个原函数,所以 2sin cos sin ()()x x x x f x x x -'== 且 s i n ()xf x dx C x=+⎰, 故根据不定积分的分部积分法可得2cos sin sin ()()()()x x x xxf x dx xdf x xf x f x dx x C x x-'==-=⋅-+⎰⎰⎰cos sin sin 2sin cos x x x x xC x C x x x-=-+=-+.【历年真题】一、选择题1.(2009年,1分)下列等式中,正确的一个是 (A )()()f x dx f x '⎡⎤=⎣⎦⎰ (B )()()d f x dx f x ⎡⎤=⎣⎦⎰ (C )()()F x dx f x '=⎰ (D )()()d f x dx f x C ⎡⎤=+⎣⎦⎰ 解:选项(A )正确;()()d f x dx f x dx ⎡⎤=⎣⎦⎰,故选项(B )和选项(D )均不正确;()()F x dx F x C '=+⎰,故选项(C )错误.故选(A ). 2.(2007年,3分)设21()f x x'=(0x >),则()f x =(A )2x C + (B )ln x C + (C)C + (DC + 解:令2xt =,因0x >,故x =21()f x x '= 变为()f t '=,该式两边对x取不定积分得,()f t C ==+,即()f x C =+.选(C ). 3.(2006年,2分)若11()xxf x edx e C --=+⎰,则()f x =(A )1x (B )1x - (C )21x (D )21x -解:等式11()xxf x e dx e C--=+⎰两边对x 求导得,1121()xxf x ee x --=⋅,故21()f x x =.选项(C )正确.4.(2005年,3分)ln sin tan xd x =⎰(A )tan lnsin x x x c -+(B )tan lnsin x x x c ++ (C )tan lnsin cos dx x x x -⎰ (D )tan lnsin cos dxx x x +⎰解:ln sin tan tan ln sin tan (ln sin )xd x x x xd x =-⎰⎰cos tan lnsin tan tan lnsin sin xx x x dx x x x C x=-=-+⎰.选项(A )正确.二、填空题1.(2010年,2分)不定积分()df x =⎰.解:根据不定积分与微分的关系可得,()()df x f x C =+⎰.2.(2009年,2分)设()xf x e-=,则(ln )f x dx x'=⎰.解:由题意,()x f x e -=,则()x f x e -'=-,那么ln 1(ln )x f x e x-'=-=-,于是2(ln )11f x dx dx C x x x'==-+⎰⎰. 三、计算题1.(2010年,5分)求不定积分2ln 1x dx x -⎰.解:2ln 11ln 11(ln 1)()()(ln 1)x x dx x d d x x x x x--=--=----⎰⎰⎰21ln 11ln 1ln x x x dx C C x x x x x --=+=-+=-+⎰.2.(2009年,5分)求不定积分.解:ln (ln )xd x x ==-⎰⎰x x C =-=-+⎰. 3.(2006年,4分)若2()f x dx x C =+⎰,求2(1)xf x dx -⎰.解:等式2()f x dx x C =+⎰两边对x 求导,可得 ()2f x x =,则22(1)2(1)f x x -=-,从而223241(1)2(1)(22)2xf x dx x x dx x x dx x x C -=-=-=-+⎰⎰⎰. 4.(2005年,5分)求不定积分12cos dx x +⎰.解:2222sec 2(tan )11222cos 12cos 2sec 3tan222x xd dx dx dx x x x x ===++++⎰⎰⎰⎰令tan 2xt =,则原式22222233[1]]dt dt t t ===+++⎰⎰tan x C C ⎛⎫ ⎪=+=+⎝⎭.四、应用题或综合题 1.(2008年,8分)设()f x 的一个原函数为ln x ,求()()f x f x dx '⎰.解:因ln x 是()f x 的一个原函数,故1()(ln )f x x x '==,211()()f x x x''==-,从而2321111()()()2f x f x dx dx dx C x x x x'=⋅-=-=+⎰⎰⎰.说明:此题也可用分部积分解之,步骤如下. 因2()()()()()()()f x f x dx f x df x f x f x f x dx ''==-⎰⎰⎰,故2221111()()()222f x f x dx f x C C C x x⎛⎫'=+=+=+ ⎪⎝⎭⎰.。

高等数学 不定积分例题、思路和答案(超全)---精品管理资料

高等数学 不定积分例题、思路和答案(超全)---精品管理资料

第4章不定积分内容概要课后习题全解习题4—11。

求下列不定积分:知识点:直接积分法的练习——求不定积分的基本方法.思路分析:利用不定积分的运算性质和基本积分公式,直接求出不定积分!★(1)思路: 被积函数52x-=,由积分表中的公式(2)可解.解:532223x dx x C --==-+⎰★(2)dx⎰思路:根据不定积分的线性性质,将被积函数分为两项,分别积分。

解:1141113332223()24dx x x dx x dx x dx x x C --=-=-=-+⎰⎰⎰⎰★(3)22xx dx +⎰()思路:根据不定积分的线性性质,将被积函数分为两项,分别积分.解:2232122ln 23x xxx dx dx x dx x C +=+=++⎰⎰⎰()★(4)3)x dx -思路:根据不定积分的线性性质,将被积函数分为两项,分别积分.解:3153222223)325x dx x dx x dx x x C -=-=-+⎰⎰★★(5)4223311x x dx x +++⎰思路:观察到422223311311x x x x x ++=+++后,根据不定积分的线性性质,将被积函数分项,分别积分。

解:42232233113arctan 11x x dx x dx dx x x C x x++=+=++++⎰⎰⎰★★(6)221x dx x +⎰思路:注意到222221111111x x x x x +-==-+++,根据不定积分的线性性质,将被积函数分项,分别积分。

解:2221arctan .11x dx dx dx x x C x x=-=-+++⎰⎰⎰ 注:容易看出(5)(6)两题的解题思路是一致的.一般地,如果被积函数为一个有理的假分式,通常先将其分解为一个整式加上或减去一个真分式的形式,再分项积分.★(7)x dx x x x ⎰34134(-+-)2 思路:分项积分。

解:3411342x dx xdx dx x dx x dx x x x x --=-+-⎰⎰⎰⎰⎰34134(-+-)2 223134ln ||.423x x x x C --=--++ ★(8)23(1dx x -+⎰思路:分项积分。

《高等数学》第四章 不定积分(电子讲稿)

《高等数学》第四章 不定积分(电子讲稿)

140 第四章 不定积分一般来说,在数学中一种运算的出现都伴随着它的逆运算.在第二章中,我们学习了导数与微分,导数与微分运算是否有逆运算?即已知函数()f x 的导数或微分,能否求出()f x ?这是我们这一章要讨论的问题.第一节 不定积分的概念与性质一、原函数与不定积分的概念如果在区间I 上,可导函数()F x 的导数为()f x ,即对任意x I ∈,都有()()F x f x '= 或 d ()()d F x f x x =,则称()F x 为()f x 在区间I 上的原函数.例如,因为,x R ∀∈(sin )cosx x '=,所以sin x 是cos x 的一个原函数;(1,1)x ∀∈-,(arcsin )x '=arcsin x(1,1)-内的一个原函数.由此可见,微分学的逆问题是:已知导函数()F x ',求原函数()F x .事实上,研究原函数需要解决下面两个问题:(1)满足何种条件的函数存在原函数?(2)如果原函数存在,它是否唯一?关于第一个问题,我们用原函数存在定理回答.(原函数存在定理) 如果函数()f x 在区间I 上连续,则()f x 在区间I 上一定有原函数,即存在区间I 上的可导函数()F x ,使得对任一x ∈I ,有()()F x f x '=.将在第五章给出此定理的证明.这个定理简单地说就是:连续函数一定有原函数. 关于第二个问题的答案是如果原函数存在则不唯一.设()F x 是函数()f x 的一个原函数,即()()F x f x '=,则[()]()F x C f x '+=,其中C 是任意常数.这就是说,原函数存在的话,则有无穷多个.不妨假设()F x 与()G x 是函数()f x 的任意两个原函数, 则有()()F x f x '=,()()G x f x '=.从而有(()())0F x G x '-=,即()()F x G x C -=.因此,()f x 的任意两个原函数之间只相差一个常数.换句话说()f x 的原函数的全体可表示为()F x C +,其中C 为任意常数.据此,我们给出下述定义.在区间I 上,()f x 的带有任意常数项的原函数,称为()f x 在区间I 上的不定积分,记作()d f x x ⎰.其中记号⎰称为积分号,()f x 称为被积函数,()d f x x 称为被积表达式,x 称为积分变量.由不定积分的定义,如果()F x 为()f x 的一个原函数,则()d ()f x x F x C =+⎰ (C 为任意常数).●●例1 因为 32()3x x '=,所以233d x x x C =+⎰.141●●例2 因为当0x >时,1(ln )x x '=;当0x <时,11[ln()]()x x x x ''-=-=-,所以1(ln ||)x x'=,因此有1d ln ||x x C x=+⎰.●●例3 设曲线过点2(e ,3),且其上任一点处的斜率等于该点横坐标的倒数,求此曲线 的方程.解 设所求曲线方程为()y f x =,其上任一点(,)x y 处切线的斜率为d 1d y x x=,从而 1d ln ||y x x C x==+⎰,由2(e )3f =,得1C =,因此所求曲线方程为ln ||1y x =+.在直角坐标系中,()f x 的任意一个原函数()F x 的图形我们称为()f x 的一条积分曲线,不定积分()d f x x ⎰在几何上表示一簇积分曲线,这些积分曲线可由某一条积分曲线沿y 轴方向平移得到,它们在横坐标相同点处的切线有相同的斜率,因而切线相互平行.●●例4 一物体由静止开始作直线运动,t 秒末的速度是23t (m /s ),问:(1)在3s 末,物体与出发点之间的距离是多少?(2)物体走完216m 需多少时间?解 设物体的位置函数为()s s t =,则d ()d s v t t =,即2d 3d st t=,从而23d s t t =⎰=3t C +,由(0)0s =,得0C =,于是有3s t =.当3t =时,物体与出发点之间的距离3(3)27s t ==(m); 当216s =时,6t =(s).由原函数与不定积分的概念可得:d()d ()d f x x f x x =⎰或 d ()d ()d f x x f x x =⎰; ()d ()F x x F x C '=+⎰ 或 d ()()F x F x C =+⎰.由此可见,微分运算与不定积分运算互为逆运算,对函数()f x 先积分再微分,作用互相抵消;对函数()F x 先微分再积分,其结果只差一个常数.二、基本积分表因为不定积分运算是导数运算的逆运算,所以不难从导数公式得到相应的积分公式.现将一些基本积分公式罗列如下,通常称之为基本积分公式表.(1) d k x kx C =+⎰ (k 为常数),(2) 1d 1x x x C μμμ+=++⎰ (1μ≠-), (3) d ln ||xx C x =+⎰, (4) 2d arctan 1xx C x =++⎰,(5) arcsin x C =+, (6) cos d sin x x x C =+⎰, (7) sin d cos x x x C =-+⎰, (8) 22d sec d tan cos x x x x C x ==+⎰⎰, (9) 22d csc d cot sin xx x x C x==-+⎰⎰, (10)sec tan d sec x x x x C =+⎰,142 (11) csc cot d csc x x x x C =-+⎰, (12)e d e x x x C =+⎰, (13) d ln xxa a x C a=+⎰,(14)sh d ch x x x C =+⎰,(15) ch d sh x x x C =+⎰.以上公式可以联系求导公式记忆,且要求能够灵活运用.三、不定积分的性质根据不定积分的定义,可以得到下列性质. 性质1 设函数()f x 及()g x 的原函数存在,则[()()]d ()d ()d f x g x x f x x g x x ±=±⎰⎰⎰.证 因为([()()]d )()()f x g x x f x g x '±=±⎰,[()d ()d ]f x x g x x '±=⎰⎰[()d ][()d ]f x x g x x ''±⎰⎰=()()f x g x ±.由不定积分及原函数的定义,性质1得证.性质1可以推广到有限个函数的情形.性质2 设函数()f x 的原函数存在,k 为非零常数,则()d ()d kf x x k f x x =⎰⎰. 证 与性质1的证明类似,从略.利用基本积分表和不定积分的两个性质,通过对被积函数作恒等变形,可以求出一些简单的不定积分,这种求积分的方法通常叫直接积分法.●●例5求解4133d 3x x xC C --=-+=+⎰.●●例6求5)d x x .解3225)d (5)d x x x x x =-⎰322d 5d x x x x =-⎰⎰532123x x C =-+3123x x C =-. 检验积分结果是否正确,只要对结果求导,看它的导数是否等于被积函数,相等时结果是正确的,否则结果是错误的.●●例7 求32(1)d x x x +⎰. 解 33222(1)331d d x x x x x x x x ++++=⎰⎰2313d x x x x ⎛⎫=+++ ⎪⎝⎭⎰ 211d 3d 3d d x x x x x x x=+++⎰⎰⎰⎰21133ln ||2x x x C x =++-+. ●●例8 求221d (1)x x x x x -++⎰.143解 22221(1)d d (1)(1)x x x x x x x x x x -++-=++⎰⎰211d d 1x x x x =-+⎰⎰ln||arctan x x C =-+. ●●例9 求23e d x x x ⎰.解 23e d xxx =⎰9e d xxx ⎰(9e)d xx =⎰(9e)ln(9e)x C =+23e 12ln3x xC =++. ●●例10 求2cot d x x ⎰.解 22cot d (csc 1)d x x x x =-⎰⎰2csc d d x x x =-⎰⎰cot x x C =--+.●●例11 求2cos d 2xx ⎰.解 2cos d 2x x ⎰1cos d 2x x +=⎰11d cos d 22x x x =+⎰⎰1(sin )2x x C =++.●●例12 设 1,1,()1,2,x x f x x x +≤⎧=⎨>⎩求()d f x x ⎰.解 因为当1x ≤时,()1f x x =+,即21()d ;2x f x x x C =++⎰当1x >时,()2f x x =,此时22()d f x x x C =+⎰.又因为()f x 的原函数在(,)-∞+∞上每一点都连续,所以211lim 2x x x C -→⎛⎫++= ⎪⎝⎭221lim()x x C +→+ 从而有121112C C ++=+,即1212C C +=.记1C C =,则 22,1,2()d 1, 1.2x x C x f x x x C x ⎧++≤⎪⎪=⎨⎪++>⎪⎩⎰由例12可知,当被积函数是一个分段连续函数时,它的原函数必定为连续函数,可以先分别求出各区间段上的不定积分,再由原函数的连续性确定各积分常数之间的关系,注意不定积分中只含有一个任意的常数.习 题 4-11.求下列不定积分:(1) 5d x -⎰; (2) 2(23)d x x x +⎰;(3) 221d (1)x x x x x +++⎰;(4) 2cot d x x ⎛⎫⎪⎭⎰;(5) 3102d x x x ⎰;(6) 2sin d 2xx ⎰;144 (7) cos2d cos sin xx x x+⎰;(8) 22cos2d cos sin xx x x⎰;(9) sec (sec tan )d x x x x -⎰; (10){}max ||,1d x x ⎰. 2.设某曲线上任意点处的切线的斜率等于该点横坐标的立方,又知该曲线通过原点,求此曲线方程.3.验证函数21sin 2x ,21cos 2x -,1cos 24x -是某同一函数的原函数.第二节 换元积分法应用不定积分的性质和基本积分公式只能计算出一些简单的函数的不定积分,对计算较复杂的函数的不定积分,根据函数的不同形式,需要一定的计算技巧.本节与下节所讲的换元积分法和分部积分法是计算不定积分最基本、最常用的两种方法.一、第一类换元积分法设函数()F u 为函数()f u 的原函数,即()()F u f u '=或()d ()f u u F u C =+⎰.如果()u x ϕ=,且()x ϕ可微,则d[()]()()()()[()]()d F x F u x f u x f x x xϕϕϕϕϕ''''===. 即[()]F x ϕ为[()]()f x x ϕϕ'的原函数,从而()()[()]()d [()][()][()d ]u x u x f x x x F x C F u C f u u ϕϕϕϕϕ=='=+=+=⎰⎰.因此有如下定理:设()f u 存在原函数,()u x ϕ=可微,则()[()]()d [()d ]u x f x x x f u u ϕϕϕ='=⎰⎰ (1) 公式(1)称为第一类换元积分公式.由此定理可见,被积表达式中的d x 也可以当作变量x 的微分来看待.如何应用公式(1)来求不定积分呢?为了求不定积分()d g x x ⎰,把它凑成如下的形式[()]()d f x x x ϕϕ'⎰,作代换()u x ϕ=,于是得()d f u u ⎰,若()d f u u ⎰=()F u C +,再代回原来的变量x ,就求得积分()d [()]g x x F x C ϕ=+⎰.由于在积分过程中,将()x ϕ'与d x 凑成d ()x ϕ,所以第一类换元积分法也叫凑微分法.●●例1 求2sin 2d x x ⎰. 解 令2u x =,有2sin 2d sin 2(2)d sin d cos x x x x x u u u C '===-+⎰⎰⎰,将2u x =回代,得2sin 2d x x ⎰cos 2x C =-+.●●例2 求1d 12x x-⎰.145解 11111d (2)d (12)d 12212212x x x x x x x '=--=-----⎰⎰⎰11d(12)212x x=---⎰, 令12u x =-,得1d 12x x =-⎰111d ln ||22u u C u -=-+⎰1ln |12|2x C --+=. ●●例3求x . 解x =2)d x x '--2)x =-- 令21u x =-,则xu =-1122d 2u u u C -=-=-+=-⎰1222(1)x C -+. 对换元法熟练后,可直接凑微分,省去换元、还原中间变量步骤. ●●例4 求22e d x x x ⎰.解 22e d x x x ⎰=22e ()d x x x '⎰222e d()e x x x C ==+⎰. ●●例5 求tan d x x ⎰.解 tan d x x ⎰=sin 1d d(cos )ln |cos |cos cos x x x x C x x=-=-+⎰⎰. 类似可求得cot d x x =⎰ln |sin |x C +. ●●例6 求221d (0)x a a x ≠+⎰.解 22222111111d d d arctan 11x x x x C a x a a a aa x x a a ⎛⎫===+ ⎪+⎝⎭⎛⎫⎛⎫++ ⎪ ⎪⎝⎭⎝⎭⎰⎰⎰.类似地可求得arcsin xC a =+ (0)a >. ●●例7 求221d (0)x a x a ≠-⎰. 解 221111d d 2x x x a a x a x a ⎛⎫=- ⎪--+⎝⎭⎰⎰111[d()d()]2x a x a a x a x a=--+-+⎰⎰ 1[ln ||ln ||]2x a x a C a =--++ 1ln ||x a C x a -=++. ●●例8求x . 解xx =⎰2=⎰C =-.●●例9 求x .146 解xarcsin x x =⎰21arcsin d(arcsin )(arcsin )2x x x C ==+⎰.●●例10求x .解x1221d (arctan )d(arctan )1x x x x ==+⎰322(arctan )3x C =+. ●●例11 求2ed 1e x xx +⎰. 解 2e d 1exx x +⎰21e d 1e xx x =⋅+⎰21d(e )1(e )x x =+⎰arctan(e )x C =+. ●●例12 求1d ln x x x ⎰.解 1d ln x x x ⎰111d d(ln )ln |ln |ln ln x x x C x x x=⋅==+⎰⎰.下面积分的过程中,往往要用到一些三角恒等式.●●例13 求csc d x x ⎰.解 11csc d d d sin 2sin cos 22x x x x x x x ==⎰⎰⎰=21d 2tan cos 22x x x ⎰1d tan 2tan 2x x ⎛⎫= ⎪⎝⎭⎰=ln |tan |2x C +,因为tan 2x =2sin 2sin 1cos 22csc cot sin sin cos 2x x x x x x x -===-,所以 csc d x x =⎰ln |csc cot |x x C -+.●●例14 求sec d x x ⎰.解 sec d x x ⎰ππcsc()d()22x x =++⎰ππln csc()cot()22x x C =+-++ln |sec tan |x x C =++.●●例15 求5cos d x x ⎰.解 5cos d x x ⎰=4cos cos d x x x ⋅=⎰4cos d(sin )x x =⎰22(1sin )d(sin )x x -⎰=24(12sin sin )d(sin )x x x -+⎰=3521sin sin sin 35x x x C -++.●●例16 求33tan sec d x x x ⎰.解 33tan sec d x x x ⎰22tan sec tan sec d x x x x x =⋅⎰22tan sec d(sec )x x x =⎰22(sec 1)sec d(sec )x x x =-⎰42(sec sec )d(sec )x x x =-⎰5311sec sec 53x x C =-+.147●●例17 求2cos d x x ⎰.解 21cos21cos d d [d cos2d ]22x x x x x x x +==+⎰⎰⎰⎰ 11cos2d(2)sin 22424x x x x x C =+=++⎰. ●●例18 求4sec d x x ⎰. 解 4sec d x x ⎰=2222sec sec d sec d(tan )(tan 1)d(tan )x x x x x x x ⋅==+⎰⎰⎰31tan tan 3x x C =++. ●●例19 求24tan sec d x x x ⎰.解 24tan sec d x x x ⎰=222tan sec sec d x x x x ⋅⎰22tan sec d(tan )x x x =⎰22tan (tan 1)d(tan )x x x =+⎰42(tan tan )d(tan )x x x =+⎰5311tan tan 53x x C =++. ●●例20 求sin sin3d x x x ⎰.解 利用积化和差公式:1sin sin [cos()cos()]2αβαβαβ=-+--,sin sin3d x x x ⎰1[cos4cos(2)]d 2x x x =---⎰11cos4d cos2d 22x x x x =-+⎰⎰ 11cos4d(4)cos2d(2)84x x x x =-+⎰⎰ 11sin 4sin 284x x C =-++. 二、第二类换元积分法有些积分采用前面所学的积分方法来计算很困难甚至无法计算,而要采用下面将要介绍的所谓第二类换元积分法来求积分.设()x t ϕ=是单调的可导函数,且()0t ϕ'≠.又设[()]()f t t ϕϕ'具有原函数,则有换元公式()d f x x ⎰1()[[()]()d ]t x f t t t ϕϕϕ-='=⎰, (2) 其中1()t x ϕ-=为()x t ϕ=的反函数.证 设[()]()f t t ϕϕ'的原函数为()t Φ,记1[()]()x F x ϕ-Φ=,利用复合函数及反函数的求导法则,得d d ()d d tF x t xΦ'=⋅=1[()]()()f t t t ϕϕϕ'⋅'[()]()f t f x ϕ==, 即()F x 是()f x 的一个原函数.所以有()d ()f x x F x C =+=⎰1[()]x C ϕ-Φ+1()[[()]()d ]t x f t t t ϕϕϕ-='=⎰公式(2)称为第二类换元积分公式. ●●例21求x (0)a >.148 解 令sin x a t =,ππ()22t -<<cos a t =,d cos d x a t t =,因此有cos cos d x a t a t t =⎰22cos d a t t =⎰21cos2d 2t a t +=⎰22sin 224a a t t C =++22sin cos 22a a t t t C =++ . 因为sin x a t =,ππ()22t -<<,所以sin x t a=,arcsin ,xt a =cos t =于是x21arcsin 22a x C a =+.●●例22求 (0)a >.解 令tan x a t =,ππ22t -<<sec a t =,2d sec d x a t t =,因此有2111sec d sec d sec ln |sec tan |a t t t t a txt t C C a===++=+⎰⎰ln |x C =+其中1ln C C a =-.为了把新变量t 还原为x 的函数,可以根据tan xt a=作辅助三角形,俗称小三角形还原法,如图4-1所示.●●例23求(0a >).解 被积函数的定义域为x a >和x a <-两个区间,故在两个区间分别求不定积分.(1) 当x a >时,设πsec (0)2x a t t =<<,则tan a t ,且d sec tan d x a t t t =.故sec tan d sec d tan a t tt t ta t==⎰⎰ln(sec tan ).t t C =++为了把sec t 及tan t 换成x 的函数,依据sec xt a=作辅助三角形(图4-2),得tan t =,所以,1ln x C a ⎛=+ ⎝⎭ln(,x C =+其中1ln .C C a =- (2)当x a <-时,令x u =-,那么u a >,由以上分析有(1ln u C=-=-++1ln(x C=--+1C=+(ln x C=-+,其中12ln.C C a=-综合以上(1)与(2)两种分析情况,把以上两个结果合起来,可写成ln|x C=+.sinx a t=去根号;当被积时,作代换secx a t=换tanx a t=去根号.时,为了去根号,还可用公式22ch sh1t t-=,采用双曲代换sh,chx a t x a t==来去根号.如例22中,可设shx a t=,==cha t,即可去根号.有些积分的计算可采用所谓的倒代换.●●例24求.解设1,xt=那么21d dx tt=-,于是21d t-==-(arcsin)t C=-±+1arcsin||Cx=-+.在本节的几个例题中,有几个积分是以后经常会遇到的,所以它们也常被当作公式来使用,现罗列如下:(16)tan d ln|cos|x x x C=-+⎰, (17)cot d ln|sin|x x x C=+⎰, (18)sec d ln|sec tan|x x x x C=++⎰, (19)csc d ln|csc cot|x x x x C=-+⎰,(20)22d1arctanx xCa x a a=++⎰, (21)22d1ln2x x aCx a a x a-=+-+⎰, (22)arcsinxCa=+, (23)ln(x C=++, (24)ln x C=+.●●例25 求2d23xx x++⎰.解22d1d23212xxx x x x=+++++⎰⎰1)x=+,利用公式(20)便得2d23xCx x=++⎰.149150 ●●例26求解==利用公式(23)便得ln(1x C =+++ln(1x C =++.●●例27求解1d x ⎛⎫- ⎪=利用公式(22)便得21arcsin 3x C -=+. 习 题 4-21.填空:(1) 21d d()x x=;(2) 1d d()x x=;(3) e d d()x x =; (4) 2sec d d()x x =; (5) sin d d()x x =;(6) cos d d()x x =;d()x =;d()x =; (9) tan sec d d()x x x =;(10) 21d d()1x x =+;d()x =;(12) d d()x x =.2.求下列不定积分:(1) x ; (2)4ln d x x x⎰;(3) 12ed xx x ⎰;(4)23(e 2e 2)e d x x x x ++⎰;(5) ;(6)21ln d (ln )xx x x +⎰;(7) 1d ln lnln x x x x ⎰;(8)1d e ex xx -+⎰;(9) x ; (10) 32d 3x x x+⎰;151(11) x ;(12) 21d 2x x x --⎰;(13) 2sin ()d t t ωϕ+⎰;(14) x ;(15) ln cot d sin 2xx x⎰;(16) x ;(17) 4cos d x x ⎰;(18)x ; (19)3cos d x x ⎰(20)arccos xx ;(21)x(22)x ; (23)35sin cos d x x x ⎰ (24)35tan sec d x x x ⎰; (25)cos5sin 4d x x x ⎰; (26)34tan sec d x x x ⎰;(27)x; (28)x(29);(30)x ;(31)2x ; (32)21d 323x x x ++⎰(33)x ;(34)x第三节 分部积分法前面一节我们利用复合函数的求导法则得到了换元积分法,利用它可以求出一些函数的积分,但是对于形如e d x x x ⎰、ln d x x x ⎰、sin d x x x ⎰等的积分,用直接积分法或换元积分法都无法计算. 这些积分的被积函数都有共同的特点,即都是两种不同类型函数的乘积,这就启发我们把两个函数乘积的微分法则反过来用于求这类不定积分,这就是另一个基本的积分方法:分部积分法.设函数()u u x =、()v v x =具有连续导数,则有[()()]()()()()u x v x u x v x u x v x '''=+, 两端求不定积分,得()()()()d ()()d u x v x u x v x x u x v x x ''=+⎰⎰,移项得 ()()d ()()()()d u x v x x u x v x u x v x x ''=-⎰⎰, 或()d ()()()()d ()u x v x u x v x v x u x =-⎰⎰,152 为方便起见,简记为d d u v x u v vu x ''=-⎰⎰ (1) 或d d u v u v v u =-⎰⎰ (2) 公式(1)或(2)称为不定积分的分部积分公式.当()()d u x v x x '⎰不容易积分,但()()d u x v x x '⎰容易积分时,我们就可以用分部积分把不容易积分的()()d u x v x x '⎰计算出来. ●●例1 求sin d x x x ⎰.解 令u x =,sin (cos )v x x ''==-,代入分部积分公式得sin d d(cos )x x x x x =-⎰⎰cos cos d x x x x =---⎰cos sin x x x C =-++.值得注意,如在例1中,若是令sin u x =,22x v x '⎛⎫'== ⎪⎝⎭,代入分部积分公式得2sin d sin d()2x x x x x =⎰⎰22sin d(sin )22x x x x =-⎰22sin cos d 22x x x x x =-⎰.上式最后一个积分比原来的积分还复杂,由此可知,若u v 、的选取不当,可能使积分计算很复杂甚至计算不出来. ●●例2 求2e d x x x ⎰.解 22222e d d(e )e e d()e 2e d x x x x x x x x x x x x x x ==-=-⎰⎰⎰⎰22e 2de e 2(e e d )x x x x x x x x x x =-=--⎰⎰2e 2e 2e .x x x x x C =-++从例1和例2可以看出,当被积函数是幂函数与正弦(余弦)函数乘积或是幂函数与指数函数乘积,分部积分时,取幂函数为u ,其余部分凑为d v . ●●例3 求ln d x x x ⎰.解 22211ln d ln d()ln d(ln )22x x x x x x x x x ⎡⎤==-⎣⎦⎰⎰⎰()22222111ln d ln 22211ln .24x x x x x x x C x x x C ⎛⎫=-=-+ ⎪⎝⎭=-+⎰ ●●例4 求arctan d x x x ⎰.解 22211arctan d arctan d()arctan d(arctan )22x x x x x x x x x ⎡⎤==-⎣⎦⎰⎰⎰ 222221arctan d 2111arctan 1d 21x x x x x x x x x ⎛⎫=- ⎪+⎝⎭⎡⎤⎛⎫=-- ⎪⎢⎥+⎝⎭⎣⎦⎰⎰153()21arctan arctan 2x x x x C =-++. 从例3和例4可以看出,当被积函数是幂函数与对数函数乘积或是幂函数与反三角函数函数乘积,分部积分时,取对数函数或反三角函数为u ,其余部分凑为d v . ●●例5 求arcsin d x x ⎰.解 arcsin d x x ⎰arcsin d(arcsin )x x x x =-⎰arcsin x x x =-21arcsin )2x x x =+-arcsin x x C =.●●例6 求ln d x x ⎰.解 ln d x x ⎰ln d(ln )x x x x =-⎰1ln d x x x x x=-⋅⎰ln d x x x =-⎰ln x x x C =-+.从例5和例6可以看出,当某些被积函数(如对数函数、反三角函数)是单个函数时,可选v x =直接用分部积分法求积分. ●●例7 求e sin d x x x ⎰.解 e sin d sin de e sin e d(sin )x x x x x x x x x ==-⎰⎰⎰e sin e cos d e sin cos d(e )e sin [e cos e d(cos )]e sin e cos e sin d ,x x x x xxxx x x x x x x x x x x x x x x =-=-=--=--⎰⎰⎰⎰因此得 1e sin d e (sin cos )2x x x x x x C =-+⎰.●●例8 求3sec d x x ⎰.解 3sec d sec d tan sec tan tan d(sec )x x x x x x x x ==-⎰⎰⎰2233s e c t a n t a n s e c d s e c t a n (s e c 1)s e c d s e c t a n s e c ds e c ds e c t a n l n |s e ct a n |s e cd ,x x x x x x x x x x x x x x x x x x x x x x =-=--=-+=++-⎰⎰⎰⎰⎰因此得()31sec d sec tan ln |sec tan |2x x x x x x C =+++⎰ ●●例9 求22d ()n nxI x a =+⎰(n 为正整数).解 用分部积分法,当1n >时,有154 222122122d 2(1)d ()()()n n n x x x n x x a x a x a --=+-+++⎰⎰22212212212(1)d ()()()n n n x a n x x a x a x a --⎛⎫=+-- ⎪+++⎝⎭⎰, 即2112212(1)()()n n n n xI n I a I x a ---=+--+, 于是122211(23)2(1)()n n n xI n I a n x a --⎡⎤=+-⎢⎥-+⎣⎦. 以此作递推公式,并由11arctan xI C a a=+,即可得n I .在积分过程中,有时分部积分法与其他方法结合使用,会更加容易积分. ●●例10求x ⎰.解 令t =,则 2x t =,d 2d x t t =,因此e 2d 2e d 2de 2(e e )t t t t t x t t t t t t C ====-+⎰⎰⎰⎰1)C =+.习 题 4-3求下列积分: (1) sin 2d x x x ⎰; (2) e d x x x -⎰; (3) 2ln d x x x ⎰; (4) arccos d x x ⎰; (5) 2cos d x x x ⎰; (6) e sin 2d x x x -⎰; (7) 2arctan d x x x ⎰;(8) 2cos d x x x ⎰; (9)x ;(10)23e d x x x ⎰; (11)cosln d x x ⎰;(12)()d xf x x ''⎰.第四节 几种特殊类型函数的积分我们已知道,任何一个初等函数的导数仍为初等函数,而相当多的初等函数虽然也存在原函数,但它们的原函数却不是初等函数,也就是通常说的“这个不定积分积不出来”.例如,sin d x x x ⎰, 2sin d x x ⎰,2e d x x -⎰.这些不定积分都积不出来.下面再举几个著名的积不出来的不定积分:x ,2d (1sin )x k x +⎰(01)k <<.155分别称为第一、二、三种椭圆积分.它们是在计算椭圆弧长时碰到的,故由此而得名.法国数学家刘维尔(Liouville)曾证明了它们的积分不能用初等函数表示,故积不出来.下面介绍几类特殊类型函数的不定积分.一、有理函数的积分形如10111011()()n n n nm m m ma x a x a x a P x Q xb x b x b x b ----++++=++++ (1)的函数称为有理函数.其中012,,,,n a a a a 及012,,,,m b b b b 为常数,且00a ≠,00b ≠.如果(1)式中多项式()P x 的次数n 小于多项式()Q x 的次数m ,则称此分式为真分式;如果多项式()P x 的次数n 大于或等于多项式()Q x 的次数m ,称分式为假分式.利用综合除法(带余除法)可得,任意一个假分式可转化为多项式与真分式之和.例如:422212111x x x x x x +++=-+++, 因此,我们只需研究真分式的积分.根据多项式理论,任一多项式()Q x 在实数范围内能分解为一次质因式和二次质因式的乘积,即220()()()()()Q x b x a x b x px q x rx s αβλμ=--++++(2)其中2240,,40p q r s -<-<.如果(1)的分母多项式分解为(2)式,则(1)式可分解为如下部分分式之和:121211()()()()()()()()B A A A B B P x Q x x a x a x a x b x b x b βαααββ--=+++++++++------11222212()()()M x N M x N M x N x p x q x p x q x p x qλλλλ-++++++++++++++ 11222212()()()R x S R x S R x S x rx s x rx s x rx s μμμμ-+++++++++++++(3)其中,,,,,i i i i i A B M N ,R 及i S 均为常数.例如 22221(1)(1)(1)x x x x x ++++1A x =+21A x +32(1)A x +++1121M x N x ++2221M x N x x ++++3322(1)M x N x x ++++. 把真分式写成部分分式的代数和时,每个k 重因子(一次或二次)一定要有k 项;每个一次因子所对应的部分分式分子是常数,每个二次质因式所对应的分式的分子是一次因式,含两个常数,分式中的常数可以用“待定系数法”或“赋值法”来确定.我们用具体例子来说明.●●例1 将真分式232(1)(2)x x x ++-分解为最简分式.解 设 231213232(1)(2)1(1)(1)2A A AB x x x x x x x +=++++-+++-,通分整理后,有156 ********(2)(1)(2)(1)(2)(1)x A x A x x A x x B x +=-++-++-++(4)3211213211()(3)(33)A B x A B x A A A B x =++++--+3211(222)A A A B +---+比较两端同类项系数,得方程组1121321132110313302222A B A B A A A B A A A B +=⎧⎪+=⎪⎨--+=⎪⎪---+=⎩解得 129A =-, 213A =, 31A =-, 129B =.或者在(4)式中应用赋值法,更简单些. 令1x =-,得 333A =-,31A =-.令2x =, 得 1627B =,129B =.令0x =, 得 32112222A A A B =---+.(5) 令1x =, 得 32113248A A A B =---+.(6)联立(5)与(6)式, 得129A =-,213A =,于是232322112(1)(2)9(1)3(1)(1)9(2)x x x x x x x +=-+-++-+++-.●●例2 求22d 23x x x x -++⎰.解 由于分母已为二次质因式,而且分子可写为12(22)32x x -=+-21(23)32x x '=++-,于是22222221(22)322d d 23231(23)d d 3223231d(23) 3223x x x xx x x x x x xx x x x x x x x x +--=++++'++=-++++++=-++⎰⎰⎰⎰⎰21ln(23)2x x C =+++. ●●例3 求44d 1x x -⎰.解 因为4241121111x x x x =----++,所以 424112d d 1111x x x x x x =----++⎰⎰2112d d d 111x x x x x x=---++⎰⎰⎰1572112d(1)d(1)d 111x x x x x x=--+--++⎰⎰⎰1ln 2arctan 1x x C x -=-++. 由上面的例子可知,把真分式分解为部分分式的代数和,并用待定系数法或赋值法求出分解式中的常数后,求有理函数的不定积分,可归结为求下列部分分式的不定积分A x a -,()kA x a -,2()k Mx N x px q +++ 前两类函数的不定积分我们都能求.关键是第三类函数的不定积分,下面讨论它的计算.把分母中的二次质因式配方,得22224p p x px q x q ⎛⎫++=++- ⎪⎝⎭,令2p x t +=,则d d x t =,并记222x px q t a ++=+,Mx N Mt b +=+,其中224p a q =-,2Mpb N =-,于是有 22222d d d ()()()n n n Mx N Mt t b tx x px q t a t a +=+++++⎰⎰⎰,当1n =时,有222222d d d 2ln()arctan .2Mx N Mt t b tx xpx q t a t a px M bx px q C aa +=++++++=++++⎰⎰⎰ 当1n >时,有222122d d ()2(1)()()n n n Mx N M tx b x px q n t a t a -+=-+++-++⎰⎰, 上式最后一个积分的求法见本章第三节例9.总之,有理函数的积分,理论上总可以积出来,它的原函数是初等函数,即有理函数的积分是初等函数.●●例4 求2221d (22)x x x x +-+⎰. 解 在本题中,由于被积函数的分母只有单一因式,因此,部分分式分解能被简化为2222221(22)(21)(22)(22)x x x x x x x x +-++-=-+-+222121.22(22)x x x x x -=+-+-+ 现分别计算部分分式的不定积分如下:122d d(1)arctan(1).22(1)1x x x C x x x -==-+-+-+⎰⎰158222221(22)1d d (22)(22)x x x x x x x x --+=-+-+⎰⎰222d(22)(22)x x x x -+=+-+⎰22d(1)(1)1x x -⎡⎤-+⎣⎦⎰2221d(1)22(1)1x x x x --=+-+⎡⎤-+⎣⎦⎰, 令1x t -=, 由递推公式,求得22d(1)(1)1x x -=⎡⎤-+⎣⎦⎰2222d 1d (1)2(1)21t t t t t t =++++⎰⎰ 2211arctan(1).2(22)2x x C x x -=+-+-+ 于是得到2222133d arctan(1)(22)2(22)2x x x x C x x x x +-=+-+-+-+⎰,其中12C C C =+. 二、可化为有理函数的积分举例由函数()u x 、()v x 及常数经过有限次四则运算所得的函数称为关于()u x 、()v x 的有理式,并用((),())R u x v x 来表示. 例如,(sin ,cos )d R x x x ⎰是关于sin x 、cos x 的有理式的不定积分.通过代换tan 2xu =(ππx -<<),可把这种类型的积分化为以u 为变量的有理函数的积分,因为22222sin cos 2tan2222sin 2sin cos ,221sin cos 1tan 222x x x x x u x x x x u ====+++ 2222222222cos sin 1tan 1222cos cos sin ,221sin cos 1tan 222x x x x x u x u ---=-===+++22d d(2arctan )d 1x u u u==+. 所以 2222212d (sin ,cos )d (,)111u u uR x x x R u u u -=+++⎰⎰. ●●例5 求1sin d sin (1cos )xx x x ++⎰. 解 作变量代换 tan 2xu =,可得22sin 1u x u =+,221cos 1u x u -=+,22d d 1x u u =+,159因此得22222211sin 2111d d (2)d sin (1cos )1221111ux u x u u u x x uu u u u u +++=⋅=++++⎛⎫-+ ⎪++⎝⎭⎰⎰⎰ 21(2ln ||)22u u u C =+++211tan tan ln |tan |42222x x xC =+++.●●例6 求cot d sin cos 1xx x x ++⎰.解 作变量代换 tan 2xu =,可得22sin 1u x u =+,221cos 1u x u -=+,22d d 1x u u =+, 因此得2221cot 22d d 21sin cos 11111u x u x u u u x x u u u -=⋅-+++++++⎰⎰1111d (d d )(ln ||)222u u u u u u C u u -==-=-+⎰⎰⎰1(ln tan tan )222x xC =-+. 一些简单的无理函数的积分可以通过变量代换化为有理函数的积分. ●●例7求解u =,得 32x u =-,2d 3d x u u =,代入得2223111d 3d 31d 111 3(ln |1|)2u u u u u u u u u uu u C-+⎛⎫===-+ ⎪+++⎝⎭=-+++⎰⎰⎰3ln |1C =+. ●●例8 求.解令16t x =,得5d 6d x t t =,代入得2563226d 1116d 6d ()1t t t t t tt t t t t t ⋅⎛⎫===-⎪+++⎝⎭⎰⎰⎰6[ln ln(1)]ln 1)t t C x C =-++=-+.●●例9 求x .解 t =,则2211t x t-=+,224d d (1)t x t t -=+;代入得160 x 2224d (1)(1)t t t t -=-+⎰2222d 11t t t ⎛⎫=+ ⎪-+⎝⎭⎰1ln2arctan 1t t C t -=+++C =+.例8、例9式为u ,这样的变换具有反函数,且反函数为有理函数,从而可将原积分化为有理函数的积分.习 题 4-4求下列不定积分:(1)3d 1x x x -⎰;(2)5438d x x x x x +--⎰; (3)2222213d (2)(1)x x x x x ++-+⎰; (4)226114d (1)x x x x x -+-⎰; (5)32d 1xx x x x -+-⎰; (6)2dx⎰;(7)x ; (8)x . 第五节 积分表的使用通过前面的讨论可以看出,积分的计算要比导数的计算显得更加灵活、复杂,我们会遇到更多不同类型的不定积分的计算问题,为了应用上的方便,把常用的积分公式汇集成表,这种表叫做积分表.积分表是按照被积函数的类型来排列的,求积分时,可根据被积函数的类型直接或经过简单的变形后,在表内查得所需的结果. 本书末附录4是一份简单的积分表,可供查阅.●●例1 求2d (1)xx x +⎰. 解 被积函数含有a bx +,在积分表(二)中查得公式(4)()221d ln x a x a bx C b a bxa bx ⎛⎫=+++ ⎪+⎝⎭+⎰, 现在1a =,1b =,于是21d ln 1(1)1x x x C x x =+++++⎰.●●例2求.解这个积分不能在表中直接查到,需要先进行变量代换.令2x u=2ux=,dd2ux=,于是1d2u==⎰34)1Ca=-+,现在2a=,x相当于u,于是有12C=-,再把2u x=代入,最后得到12C=.●●例3 求4sin d x x⎰.解在积分表(八)中查到公式(50)12sin cos1sin d sin dnn nx x nx x x xn n---=-+⎰⎰,现在4n=,于是有342sin cos3sin d sin d44x xx x x x=-+⎰⎰,对积分2sin d x x⎰,利用公式(48),得21sin d sin224xx x x C=-+⎰,从而所求积分为34sin cos31sin d sin24424x x xx x x C⎛⎫=-+-+⎪⎝⎭⎰.一般说来,查积分表可以节省计算积分的时间,但只有掌握了前面学习过的基本积分公式才能灵活地使用积分表,而且对一些比较简单的积分,应用基本积分法来计算比查表更快些,例如23sin cos dx x x⎰,用变换sinu x=很快就可得到结果,所以求积分时,究竟是直接计算,还是查表,或两者结合使用,应该具体问题具体分析,从而选择一个更快捷的方式.习题4-5利用积分表计算下列不定积分:(1);(2)3ln d x x⎰;(3)221d(1)xx+⎰;(4);161162 (5)x x ⎰; (6)(7) 6cos d x x ⎰;(8)2e sin3d x x x -⎰.第六节 数学模型●●例 (石油的消耗量)近年来,世界范围内每年的石油消耗率呈指数增长,增长指数大约为0.07. 1970年初,消耗率大约为每年161亿桶.设()R t 表示从1970年起第t 年的石油消耗率,则0.07()161e t R t =(亿桶).试用此式估算从1970年到1990年间石油消耗的总量.解 设()T t 表示从1970年起(0t =)直到第t 年的石油消耗总量.我们要求从1970年到1990间石油消耗的总量,即求(20)T .由于()T t 是石油消耗的总量,所以()T t '就是石油消耗率()R t ,即()()T t R t '=,那么()T t 就是()R t 的一个原函数.0.070.070.07161()()d 161e d e 2 300e 0.07t tt T t R t t t C C ===+=+⎰⎰. 因为 (0)0T =,所以, 2 300C =-,得 0.07() 2 300(e 1)t T t =-.从1970年到1990年间石油的消耗总量为:0.0720(20) 2 300(e 1)7 027T ⨯=-≈(亿桶).第七节 数学实验利用Matlab 软件中的函数int 可以对不定积分进行符号计算,其调用格式和功能如下说明:在初等函数范围内,不定积分有时是不存在的,也就是说,即使()f x 是初等函数,但是不定积分()d f x x ⎰却不一定是初等函数.例如,2e x -,sin xx ,e x x,1log a x 是初等函数,而2ed x x -⎰,sin d x x x ⎰,e d xx x⎰,1d log a x x ⎰却不能用初等函数表示出来.比如,输入程序: >> syms x>> F=int(sin(x)/x) 运行后屏幕显示:F =sinint(x)其中sinint(x)是非初等函数,称作积分正弦函数.在使用int 函数求不定积分时,读者要注意这种情况.●●例1 求2sin dx x x⎰.解用符号积分命令int计算此积分,Matlab程序为>> syms x;>> int(x^2*sin(x))结果为ans =-x^2*cos(x)+2*cos(x)+2*x*sin(x) 如果用微分命令diff验证积分正确性,Matlab程序为>> diff(-x^2*cos(x)+2*cos(x)+2*x*sin(x))结果为ans =x^2*sin(x)●●例2 求下列函数的一个原函数:(1);(2)sec(sec tan)x x x-;(3)11cos2x+;(4(5)2arctanx x;(6)223310xx x++-解(1)相应的Matlab程序为>> clear all;>> syms x;>> f=x*sqrt(x);>> int(f,x)结果为ans =2/5*x^(5/2);(2)相应的Matlab程序为>> clear all>> syms x;>> f=sec(x)*(sec(x)-tan(x));>> int(f,x)结果为ans =sin(x)/cos(x)-1/cos(x);(3)相应的Matlab程序为>> clear all>> syms x;>> f=1/(1+cos(2*x));>> int(f,x)结果为ans =1/2*tan(x);(4)相应的Matlab程序为>> clear all>> syms x;>> f=log(x+1)/sqrt(x+1);>> int(f,x)结果为ans =2*log(x+1)*(x+1)^(1/2)-4*(x+1)^(1/2);(5)相应的Matlab程序为163164 >> clear all >> syms x ;>> f=x^2*atan(x); >> int(f,x)结果为ans =1/3*x^3*atan(x)-1/6*x^2+1/6*log(x^2+1);(6)相应的Matlab 程序为 >> clear all >> syms x ;>> f=(2*x+3)/(x^2+3*x-10); >> int(f,x)结果为ans =log(x^2+3*x-10).●●例3 设曲线通过点(1,2),且其切线的斜率为2329x x +-,求此曲线的方程并绘制其图像.解 设所求的曲线方程为()y f x =,根据题意,2329y x x '=+-,所以2d (329)d y y x x x x '==+-⎰⎰相应的Matlab 程序为 >> syms x C ;>> f=3*x^2+2*x-9; >> F=int(f)+C ; >> y=simple(F)结果为y =x^3+x^2-9*x+C.即斜率为2329x x +-的曲线方程为329y x x x C =+-+.又因为曲线通过点(1,2),代入曲线方程,得9C =.于是,所求曲线方程为3299y x x x =+-+. 作曲线图,输入程序 >> clear>> x=-5:0.1:5; f=3*x.^2+2*x-9;y=x.^2+x.^3-9*x+9; >> x0=1;y0=2;>> plot(x0,y0,'ro',x,f,'g*',x,y,'b-') >> grid>> legend('点(1,2)','函数f=3x^2+2x-9的曲线','函数f=3x^2+2x-9过点(1,2)的积分曲线')运行结果如图4-3.函数2329f x x =+-过点(1,2)的积分曲线图4-3165本章复习题A一、填空1. 已知()F x 是sin xx的一个原函数,则2d[()]F x = . 2. 已知函数()y f x =的导数为2y x '=,且1x =时2y =,则此函数为 . 3. 如果()d ln f x x x x C =+⎰,则()f x = .4.已知()d sin f x x x x C =++⎰,则e (e 1)d xxf x +⎰= . 5.如果 2(sin )cos d sin f x x x x C =+⎰,则()f x = .二、求下列不定积分1. 21cos d 1cos2x x x ++⎰;2.d 1e xx+⎰; 3.2352d 4x xx x ⋅-⋅⎰;4.2(arcsin )d x x ⎰;5.;6.322d (1)x x x +⎰;7.8.x ; 9.54tan sec d x x x ⎰;10.;11.23e d x x x ⎰;12.ln ln d x x x⎰.三、设 1,0,()1,01,1,2,x f x x x x x <⎧⎪=+≤≤⎨⎪>⎩求()d f x x ⎰.四、若I tan d ,n n x x =⎰,,3,2 =n 证明121I tan I 1n n n x n --=--. 本章复习题B一、填空1.已知()F x 是2e x -= . 2.若22(sin )cos f x x '=,则()f x = .3.设()f x '=,则(1)d f x x -⎰= .4.已知()f x 的一个原函数是2e x -,则()d xf x x '⎰= . 二、求下列不定积分1.2arctan e d e xxx ⎰;2.d sin 22sin xx x+⎰;。

《高等数学》不定积分课后习题详解

《高等数学》不定积分课后习题详解

《高等数学》不定积分课后习题详解 篇一:高等数学第四章不定积分习题 第四章不 定 积 分 4 – 1 不定积分的概念与性质 一.填空题 1.若在区间上 F?(x)?f(x),则 F(x)叫做 f(x)在该区间上的一个 f(x)的 所有原函数叫做 f(x) 在该区间上的__________。

2.F(x)是 f(x)的一个原函数,则 y=F(x)的图形为?(x)的一条_________. 3.因为 d(arcsinx)? 1?x2 dx ,所以 arcsinx 是______的一个原函数。

4.若曲线 y=?(x)上点(x,y)的切线斜率与 x 成正比例,并且通过点 A(1,6)和 B(2,-9),则该曲线 方程为__________ 。

二.是非判断题 1. 若 f?x?的某个原函数为常数,则 f?x??0.[ ] 2. 一切初等函数在其定义区间上都有原 函数.[ ] 3. 3 ??f?x?dx???f??x?dx.[ ] ? 4. 若 f?x?在某一区间内不连续,则在这个区间内 f?x?必无原函数. [ ] 5.y?ln?ax?与 y?lnx 是同一函数的原函数.[ ] 三.单项选择题 1.c 为任意常数,且 F'(x)=f(x),下式成立的有 。

(A)?F'(x)dx?f(x)+c;(B)?f(x)dx=F(x)+c; (C)?F(x)dx?F'(x)+c;(D) ?f'(x)dx=F(x)+c. 2. F(x)和 G(x)是函数 f(x)的任意两个原函数,f(x)?0,则下式成立的有 。

(A)F(x)=cG(x); (B)F(x)= G(x)+c;(C)F(x)+G(x)=c;(D) F(x)?G(x)=c.3.下列各式中是 f(x)?sin|x|的原函数。

(A) y??cos|x| ;(B) y=-|cosx|;(c)y=? ?cosx,x?0,cosx?2,x?0; (D) y=? ?cosx?c1,x?0,cosx?c2,x?0. c1、c2 任意常数。

高等数学第四章不定积分课后习题详细讲解

高等数学第四章不定积分课后习题详细讲解

第4章不定积分习题4-11.求下列不定积分:知识点:直接积分法的练习——求不定积分的基本方法。

思路分析:利用不定积分的运算性质和基本积分公式,直接求出不定积分!★(1)⎰思路: 被积函数52x-=,由积分表中的公式(2)可解。

解:532223x dx x C --==-+⎰★(2)dx-⎰思路:根据不定积分的线性性质,将被积函数分为两项,分别积分。

解:1141113332223()24dx x x dx x dx x dx x x C --=-=-=-+⎰⎰⎰⎰★(3)22xx dx +⎰()思路:根据不定积分的线性性质,将被积函数分为两项,分别积分。

解:2232122ln 23x xxx dx dx x dx x C +=+=++⎰⎰⎰()★(4)3)x dx -思路:根据不定积分的线性性质,将被积函数分为两项,分别积分。

解:3153222223)325x dx x dx x dx x x C -=-=-+⎰⎰⎰★★(5)4223311x x dx x +++⎰思路:观察到422223311311x x x x x ++=+++后,根据不定积分的线性性质,将被积函数分项,分别积分。

解:42232233113arctan 11x x dx x dx dx x x C x x++=+=++++⎰⎰⎰ ★★(6)221x dx x +⎰思路:注意到222221111111x x x x x +-==-+++,根据不定积分的线性性质,将被积函数分项,分别积分。

解:2221arctan .11x dx dx dx x x C x x =-=-+++⎰⎰⎰注:容易看出(5)(6)两题的解题思路是一致的。

一般地,如果被积函数为一个有理的假分式,通常先将其分解为一个整式加上或减去一个真分式的形式,再分项积分。

★(7)x dx x x x ⎰34134(-+-)2 思路:分项积分。

解:3411342x dx xdx dx x dx x dx x x x x --=-+-⎰⎰⎰⎰⎰34134(-+-)2 223134ln ||.423x x x x C --=--++ ★(8)23(1dx x -+⎰思路:分项积分。

高等数学第四章不定积分习题课

高等数学第四章不定积分习题课

xdx
de x
或 exdx d(ex 1) ,然后进行计算。 另外,由于
f
(x)

1 1 ex
中含有
1
e x,不能直接计算,可以考虑
换元 t ex 或 t 1 ex,然后再进行计算。
解法1:因为
1
ex
1 e x e x (1 e x )
所以
1
ex
二、基本计算方法
1.直接积分法 首先要对被积函数进行恒等变形,然后利用不定
积分的基本性质和基本积分表求出不定积分。
2.第一类换元法(凑微分法): 设 F(u) f (u) ,则
f ((x))(x)dx f ((x))d(x) F((x)) C
3.第二类换元法(变量置换法):
2
2
注意 运算中综合使用不同方法往往更有效.]。
【例12】 求不定积分
I
arcsin
x dx
x
分析:由于被积函数中含有根式 x ,所以首先要令
t x 把根式去掉,然后选择合适的方法计算。
另外,观察被积表达式的特点,由于
arcsin xdx arcsin x( dx ) 2arcsin xd( x )
2 dx 1 u2 du
2u sin x 1 u2
1 u2 cos x 1 u2
从而
2u 1 u2 2
R(sin x,cos x)dx
R( 1

u2
,
1

u2
)
1

u2
du
☆ 在具体计算不定积分的过程中,不是一种方法就可
以解决,要熟练掌握几种积分法并融会贯通,综合应用。

高等数学课后习题答案--第四章不定积分

高等数学课后习题答案--第四章不定积分

第四章不定积分典型例题解析例1 求下列不定积分.(1)2dxx x ⎰. (2)3(1)(1)x x dx +-⎰.分析利用幂函数的积分公式111n n x dx x C n +=++⎰求积分时,应当先将被积函数中幂函数写成负指数幂或分数指数幂的形式.解(1)5322512252121()3dx x dx x C x C x x--+-==+=-++-⎰⎰. (2)35312222323122(1)(1)(1)353x x dx x x x dx x x x x C +-=+--=+--+⎰⎰.例2求21()x dx x+⎰. 分析 将被积函数的平方展开,可化为幂函数的和.解 122211()(2)x dx x x dx x x+=++⎰⎰12212x dx x dx dx x =++⎰⎰⎰ 32314ln 33x x x C =+++. 例3求下列不定积分.(1)2523x xxe dx ⋅-⋅⎰.(2)4223311x x dx x +++⎰.分析 (1)将被积函数拆开,用指数函数的积分公式;(2)分子分母都含有偶数次幂,将其化成一个多项式和一个真分式的和,然后即可用公式.解(1)22()5()2522332()5()3331ln 3ln 2ln 3x xxxx x x e e e dx dx dx C ⋅⋅⋅-⋅=-=-+--⎰⎰⎰. (2)42232233113arctan 11x x dx x dx dx x x C x x ++=+=++++⎰⎰⎰. 例4求下列不定积分.(1)24221(1)x x dx x x +++⎰. (2)421x dx x+⎰. (3)221(1)dx x x +⎰. 分析根据被积函数分子、分母的特点,利用常用的恒等变形,例如:分解因式、直接拆项、“加零”拆项、指数公式和三角公式等等,将被积函数分解成几项之和即可求解.解 (1)242222111(1)(1)1x x dx dx x x x x ++=+-++⎰⎰ 22111dx dx dx x x =+-+⎰⎰⎰1arctan x x C x=--+. (2)4422(1)111x x dx dx x x-+=++⎰⎰ 222(1)(1)11x x dx x -++=+⎰221(1)1x dx dx x =-++⎰⎰C x x x ++-=arctan 313. (3)22222211(1)(1)x x dx dx x x x x +-=++⎰⎰22111dx dx x x =-+⎰⎰1arctan x C x=--+.例5 求下列不定积分. (1)11cos2dx x +⎰. (2)cos2cos sin xdx x x-⎰.(3)2cot xdx ⎰. (4)22cos2sin cos xdx x x⎰.分析 当被积函数是三角函数时,常利用一些三角恒等式,将其向基本积分公式表中有的形式转化,这就要求读者要牢记基本积分公式表.解 (1)2111tan 1cos22cos 2dx dx x C x x ==++⎰⎰.(2)22cos2cos sin cos sin cos sin x x xdx dx x x x x-=--⎰⎰(cos sin )sin cos x x dx x x C =+=-+⎰.(3)22cot (csc 1)cot xdx x dx x x C =-=--+⎰⎰. (4)222222cos2cos sin sin cos sin cos x x xdx dx x x x x-=⎰⎰ 2211sin cos dx dx x x=-⎰⎰ 22csc sec xdx xdx =-⎰⎰cot tan x x C =--+.例6 求下列不定积分.(1)99(79)x dx -⎰. (2)12()nx ax b dx +⎰.(0a ≠) (3)232(cos )x dx x ⎰. (4)(1)x x +.(5)1sin(ln )x dx x ⎰. (6)211cos()dx x x⎰.(7)2cos sin 6sin 12xdx x x -+⎰. (8).(9). (10)2. (11)322(arctan )1x x dx x ++⎰.分析 这些积分都没有现成的公式可套用,需要用第一类换元积分法. 解 (1)999910011(79)(79)(79)(79)7700x dx x d x x C -=--=-+⎰⎰. (2)112221()()()2n nx ax b dx ax b d ax b a+=++⎰⎰12()2(1)n n n ax b C a n +=+++. (3)232(cos )x dx x ⎰333211tan 3(cos )3dx x C x ==+⎰.(4)2C ==.(5)1sin(ln )x dx x⎰sin(ln )(ln )cos(ln )x d x x C ==-+⎰.(6)211cos dx x x ⎰111cos ()sin d C x x x=-=-+⎰. (7)2cos sin 6sin 12xdxx x -+⎰2(sin 3)(sin 3)3d x C x -==+-+⎰. (8)(tan )arcsin(tan )x x C ==+.(9)12[1(cot )](cot )x d x =-+⎰12cot (cot )cot d x x d x =--⎰⎰ 322cot (cot )3x x C =--+.(10)2231arcsin (arcsin )(arcsin )3xd x x C ==+⎰.(11)322(arctan )1x x dx x ++⎰3222(arctan )11x x dx dx x x =+++⎰⎰ 32221(1)(arctan )(arctan )21d x x d x x +=++⎰⎰ 52212ln(1)(arctan )25x x C =+++.注 用第一类换元积分法(凑微分法)求不定积分,一般并无规律可循,主要依靠经验的积累.而任何一个微分运算公式都可以作为凑微分的运算途径.因此需要牢记基本积分公式,这样凑微分才会有目标.下面给出常见的12种凑微分的积分类型.(1)11()()()(0)n n n n f ax b x dx f ax b d ax b a na-+=++≠⎰⎰; (2)1()()ln x x x xf a a dx f a daa =⎰⎰; (3)(sin )cos (sin )(sin )f x xdx f x d x =⎰⎰;适用于求形如21sin cos m n x xdx +⎰的积分,(,m n 是自然数).(4)(cos )sin (cos )(cos )f x xdx f x d x =-⎰⎰;适用于求形如21sin cos m n x xdx -⎰的积分,(,m n 是自然数).(5)2(tan )sec (tan )(tan )f x xdx f x d x =⎰⎰; 适用于求形如2tan sec m n x xdx ⎰的积分,(,m n 是自然数).(6)2(cot )csc (cot )(cot )f x xdx f x d x =-⎰⎰;适用于求形如是2cot csc m n x xdx ⎰的积分,(,m n 是自然数).(7)1(ln )(ln )ln f x dx f x d x x=⎰⎰;(8)21(arcsin )(arcsin )(arcsin )1f x dx f x d x x =-⎰⎰;(9)21(arccos )(arccos )(arccos )1f x dx f x d x x =--⎰⎰;(10)2(arctan )(arctan )(arctan )1f x dx f x d x x =+⎰⎰;(11)2(cot )(cot )(cot )1f arc x dx f arc x d arc x x =-+⎰⎰; (12)()1(())()()f x dx d f x f x f x '=⎰⎰; 例7 求下列函数的不定积分: (1)3cos xdx ⎰.(2)4sin xdx ⎰. (3)sin7cos(3)4x x dx π-⎰.(4)6csc xdx ⎰. (5)34sin cos x xdx ⎰.(6)35sec tan x xdx ⎰.分析 在运用第一类换元法求以三角函数为被积函数的积分时,主要思路就是利用三角恒等式把被积函数化为熟知的积分,通常会用到同角的三角恒等式、倍角、半角公式、积化和差公式等.解(1)被积函数是奇次幂,从被积函数中分离出cos x ,并与dx 凑成微分(sin )d x ,再利用三角恒等式22sin cos 1x x +=,然后即可积分.322coscos (sin )(1sin )(sin )xdx xd x x d x ==-⎰⎰⎰2sin sin sin d x xd x =-⎰⎰31sin sin 3x x C =-+.(2)被积函数是偶次幂,基本方法是利用三角恒等式21cos2sin 2xx -=,降低被积函数的幂次.421cos2sin ()2x xdx dx -=⎰⎰311(cos2cos4)828x x dx =-+⎰311sin 2sin 48432x x x C =-++. (3)利用积化和差公式将被积函数化为代数和的形式.1sin7cos(3)[sin(4)sin(10)]4244x x dx x x dx πππ-=++-⎰⎰ 11sin(4)(4)sin(10)(10)8442044x d x x d x ππππ=+++--⎰⎰ 11cos(4)cos(10)84204x x C ππ=-+--+. (4)利用三角恒等式22csc 1cot x x =+及2csc (cot )xdx d x =-.622222csc (csc )csc (1cot )(cot )xdx x xdx x d x ==-+⎰⎰⎰24(12cot cot )cot x x d x =-++⎰3521cot cot cot 35x x x C =---+.(5)因为322sin sin (sin )sin (cos )xdx x xdx xd x ==-,所以3424sincos sin cos (cos )x xdx x xd x =-⎰⎰24(1cos )cos (cos )x xd x =--⎰46cos (cos )cos (cos )xd x xd x =-+⎰⎰5711cos cos 57x x C =-++. (6)由于sec tan (sec )x xdx d x =,所以3524sectan sec tan (sec )x xdx x xd x =⎰⎰222sec (sec 1)(sec )x x d x =-⎰642(sec 2sec sec )(sec )x x x d x =-+⎰ 753121sec sec sec 753x x x C =-++.注利用上述方法类似可求下列积分3sinxdx ⎰、2cos xdx ⎰、cos3cos2x xdx ⎰、6sec xdx ⎰、25sin cos x xdx ⎰,请读者自行完成.例8求下列不定积分:(1)x xdx e e -+⎰.(2)x x dx e e --⎰.(3)11x dx e +⎰. 分析 可充分利用凑微分公式:x x e dx de =;或者换元,令x u e =.解(1)x x dx e e-+⎰221arctan ()1()1x x x x x e dx de e C e e ===+++⎰⎰. (2)解法1 x x dx e e--⎰221()1()1x x x x e dx de e e ==--⎰⎰, 然后用公式2211ln 2x adx C x a a x a-=+-+⎰,则x x dx e e --⎰11ln 21x x e C e -=++.解法2x x dx e e --⎰21111()()1211x xx x x de de e e e ==---+⎰⎰ 1(1)(1)()211x x x x d e d e e e -+=--+⎰⎰ 11ln 21x x e C e -=++. (3)解法1 11x dx e+⎰1(1)11x x xx xe e e dx dx e e +-==-++⎰⎰ 1(1)1xxdx d e e =-++⎰⎰ln(1)x x e C =-++.解法211xdx e+⎰(1)ln(1)11x x x x x e d e dx e C e e -----+==-=-++++⎰⎰. 解法3 令x u e =,x du e dx =,则有11x dx e +⎰1111()ln()111udu du C u u u u u=⋅=-=++++⎰⎰ ln()ln(1)1xx xe C e C e-=+=-+++. 注在计算不定积分时,用不同的方法计算的结果形式可能不一样,但本质相同.验证积分结果是否正确,只要对积分的结果求导数,若其导数等于被积函数则积分的结果是正确的.例9求下列不定积分:(1)ln tan sin cos xdx x x⎰.(2)arctan (1)x x x +.分析 在这类复杂的不定积分的求解过程中需要逐步凑微分. 解 (1)2ln tan ln tan sin cos tan cos x xdx dx x x x x=⎰⎰ln tan (tan )ln tan (ln tan )tan x d x xd x x ==⎰⎰21ln (tan )2x C =+. (2)2arctan arctan 2(1)1()x x dx d x x x x =++⎰⎰22arctan (arctan )(arctan )xd x x C ==+⎰. 例10 求21arctan1x dx x +⎰.分析 若将积分变形为1arctan (arctan )d x x ⎰,则无法积分,但如果考虑到凑出1x,将被积函数变形为221arctan 111()x x x⋅+,再将21x 与dx 结合凑成1()d x -,则问题即可解决. 解2222111arctanarctan arctan11()1111()1()x x x dx dx d x x x x x=⋅=-+++⎰⎰⎰11arctan (arctan )d x x =-⎰211(arctan )2C x=-+.例11求21ln (ln )xdx x x +⎰. 分析 仔细观察被积函数的分子与分母的形式,可知(ln )1ln x x x '=+.解221ln 11(ln )(ln )(ln )ln x dx d x x C x x x x x x+==-+⎰⎰. 例12(04研) 已知()x x f e xe -'=,且(1)0f =,则()_________f x =. 分析 先求()f x ',再求()f x . 解令x e t =,即ln x t =,从而ln ()tf t t'=.故 2ln 1()ln (ln )ln 2x f x dx xd x x C x ===+⎰⎰, 由(1)0f =,得0C =,所以21()ln 2f x x =.例13求sin 22sin dxx x+⎰.分析 被积函数为三角函数,可考虑用三角恒等式,也可利用万能公式代换.解法1sin 22sin dx x x +⎰3122sin (cos 1)4sin cos 22x d dx x x x x ⎛⎫ ⎪⎝⎭==+⎰⎰22tan 1tan 1122tan 442tan cos tan222x x d x d x x x ⎛⎫+ ⎪⎛⎫⎝⎭== ⎪⎝⎭⎰⎰ 211tan ln tan 8242x xC =++. 解法2令cos t x =,则 sin 22sin dxx x +⎰2sin 2sin (cos 1)2sin (1cos )dx xdx x x x x ==++⎰⎰212(1)(1)dt t t =--+⎰21112811(1)dt t t t ⎛⎫=-++ ⎪-++⎝⎭⎰12(ln |1|ln |1|)81t t C t =--++++ 111ln(1cos )ln(1cos )884(1cos )x x C x =--++++. 解法3令tan 2x t =,则22sin 1t x t =+,221cos 1t x t -=+,221dx dt t =+,则 sin 22sin dx x x +⎰21111ln ||484t dt t t C t ⎛⎫=+=++ ⎪⎝⎭⎰ 211tan ln |tan |8242x xC =++.例14 求11dx x ++⎰.分析 被积函数含有根式,一般先设法去掉根号,这是第二类换元法最常用的手段之一. 解 设1x t +=,即21x t =-,2dx tdt =,则212(1)1111t dt dt t t x ==-++++⎰⎰⎰22ln 1t t C =-++212ln(11)x x C =+-+++例15 求455x x-+-⎰.分析 被积函数中有开不同次的根式,为了同时去掉根号,选取根指数的最小公倍数.解45x t -=,34dx t dt =-,则24414(1)1155dxt dt t dt t t x x-==--+++-+-⎰⎰⎰ 214(ln 1)2t t t C =--+++4414[55ln(15)]2x x x C =----++-+. 例16 243(1)(1)dxx x +-⎰解 令311x t x -=+,即3211x t =--,2326(1)t dx dt t =-,则 243(1)(1)dxx x +-⎰23322332164(1)1(1)(1)1dx t dt t t x tx t x ==⋅--⋅--+⎰⎰132313131()2221x dt C C t t x +==-⋅+=-+-⎰. 例17求224x x dx -⎰.分析被积函数中含有根式24x -,可用三角代换2sin x t =消去根式. 解 设242cos (0)2x t t π-=<<,2cos dx tdt =,则222244sin 2cos 2cos 4sin 2x x dx t t tdt t dt -=⋅⋅=⋅⎰⎰⎰12(1cos4)2sin 42t dt t t C =-=-+⎰222sin cos (12sin )t t t t C =--+2212arcsin 4(1)222x x x x C =---+.注1 对于三角代换,在结果化为原积分变量的函数时,常常借助于直角三角形.注2 在不定积分计算中,为了简便起见,一般遇到平方根时总取算术根,而省略负平方根情况的讨论.对三角代换,只要把角限制在0到2π,则不论什么三角函数都取正值,避免了正负号的讨论.例18 求221(1)dx x +⎰. 分析虽然被积函数中没有根式,但不能分解因式,而且分母中含有平方和,因此可以考虑利用三角代换,将原积分转换为三角函数的积分.解 设tan x t =,2sec dx tdt =,()2241sec x t +=,则222241sec cos (1)sec t dx dt tdt x t ==+⎰⎰⎰111(1cos2)sin 2224t dt t t C =+=++⎰ 21arctan 22(1)xx C x =+++. 例19求22x a dx x-⎰. 分析 被积函数中含有二次根式22x a -,但不能用凑微分法, 故作代换sec x a t =, 将被积函数化成三角有理式.解 令sec x a t =,sec tan dx a t tdt =⋅,则22x a dx x -⎰22tan sec tan tan (sec 1)sec a t a t tdt a tdt a t dt a t=⋅⋅==-⎰⎰⎰ (tan )a t t C =-+22(arccos )x a aa C a x-=-+.例20求248x dx x x ++⎰.解 由于2248(2)4x x x ++=++,故可设22tan x t +=,22sec dx tdt =,22(2tan 2)2sec 2sec tan 2sec 2sec 48xt t dx dt t tdt tdt t x x -⋅==-++⎰⎰⎰⎰12sec 2ln sec tan t t t C =-++22482ln(248)x x x x x C =+++++++.()12ln 2C C =+注 2ax bx c ++ 由 22222224()0244()024b ac b a x a a a ax bx c b b ac a x a a a ⎧-++>⎪⎪++⎨-⎪--++<⎪⎩可作适当的三角代换, 使其有理化.例21 求23(24)x x -+.解23(24)x x -+322[3(1)]dx x =+-⎰,令13x t -=,则322321sec 11cos sin 3sec 33[3(1)]dxt dt tdt t C t x ===++-⎰⎰⎰21324x C x x -=+-+. 故 23(24)dx x x -+⎰21324x C x x -=+-+.例22求421(1)dx x x +⎰.分析当有理函数的分母中的多项式的次数大于分子多项式的次数时,可尝试用倒代换.解 令1x t=,21dx dt t =-,于是421(1)dx x x +⎰44221111t t dt dt t t --+==-++⎰⎰221(1)1t dt dt t =---+⎰⎰31arctan 3t t t C =--+3111arctan 3C x x x=--+. 注有时无理函数的不定积分当分母次数较高时,也可尝试采用倒代换,请看下例. 例23 求22a x dx -. 解 设1x t=,2dtdx t =-,则2222241()dt a a xt t t -⋅--=1222(1)a t t dt =--⎰.当0x >时,1222222221(1)(1)2a x dx a t d a t a-=---⎰ 32222(1)3a t C a -=-+322223()3a x C a x -=-+.当0x <时,有相同的结果.故22a xdx-322223()3a x C a x -=-+.注1第二类换元法是通过恰当的变换,将原积分化为关于新变量的函数的积分,从而达到化难为易的效果,与第一类换元法的区别在于视新变量为自变量,而不是中间变量.使用第二类换元法的关键是根据被积函数的特点寻找一个适当的变量代换.注2 用第二类换元积分法求不定积分,应注意三个问题: (1)用于代换的表达式在对应的区间内单调可导,且导数不为零. (2)换元后的被积函数的原函数存在. (3)求出原函数后一定要将变量回代.注3 常用的代换有:根式代换、三角代换与倒代换.根式代换和三角代换常用于消去被积函数中的根号,使其有理化,这种代换使用广泛.而倒代换的目的是消去或降低被积函数分母中的因子的幂.注4 常用第二类换元法积分的类型: (1)(,),n n f x ax b dx t ax b +=+⎰令. (2)(,),nnax b ax bf x dx t cx d cx d++=++⎰令. (3)222(,)f x a b x dx -⎰,可令sin a x t b =或cos ax t b =. (4)222(,)f x a b x dx +⎰,可令tan a x t b =或ax sht b =.(5)222(,)f x b x a dx -⎰,可令sec a x t b =或ax cht b=.(6)当被积函数含有22(40)px qx r q pr ++-<时,利用配方与代换可化为以上(3),(4),(5)三种情形之一.(7)当被积函数分母中含有x 的高次幂时,可用倒代换1x t=.例24求下列不定积分:(1)3x xe dx -⎰.(2)2sin 4x xdx ⎰.(3)2ln x xdx ⎰.(4)arcsin xdx ⎰. (5)arctan x xdx ⎰.(6)sin ax e bxdx ⎰22(0)a b +≠.分析上述积分中的被积函数是反三角函数、对数函数、幂函数、指数函数、三角函数中的某两类函数的乘积,适合用分部积分法.解(1)3x xe dx -⎰33333111()33339xx x x x x x xd e e e dx e e C -----=-=-+=--+⎰⎰. (2)2sin 4x xdx ⎰2211(cos4)cos4cos4442x x d x x x xdx =-=-+⎰⎰22111cos4(sin 4)cos4sin 4sin 448488x x x xd x x x x xdx =-+=-+-⎰⎰211cos4sin 4cos44832x x x x x C =-+++.(3)2ln x xdx ⎰3333211ln ()ln ln 33339x x x xd x x x dx x C ==-=-+⎰⎰.(4)解法1 arcsin xdx ⎰22arcsin arcsin 11x x dx x x x C x =-=+-+-⎰.解法2 令arcsin t x =,即sin x t =,则arcsin (sin )sin sin sin cos xdx td t t t tdt t t t C ==-=++⎰⎰⎰2arcsin 1x x x C =+-+(5)解法1 arctan x xdx ⎰222211arctan arctan 2221x x xdx x dx x ==-+⎰⎰2211arctan (1)221x x dx x =--+⎰ 21arctan arctan 222x x x x C =-++. 解法221arctan arctan (1)2x xdx xd x =+⎰⎰ 22111arctan arctan 2222x x xx dx x C ++=-=-+⎰.(6)解法1sin axe bxdx ⎰11sin ()sin cos axax ax b bxd e e bx e bxdx a a a ==-⎰⎰ 21sin cos ()ax ax be bx bxd e a a=-⎰2221sin cos sin ax ax axb b e bx e xbx e bxdx a a a=--⎰ 从而21221(1)sin sin cos ax ax ax b be bxdx e bx e bx C a a a+=-+⎰,则221sin (sin cos )ax axe bxdx e a bx b bx C a b =-++⎰.解法21sin cos axaxe bxdx e d bx b =-⎰⎰,然后用分部积分,余下的解答请读者自行完成. 注在用分部积分法求()f x dx ⎰时关键是将被积表达式()f x dx 适当分成u 和dv 两部分.根据分部积分公式udv uv vdu =-⎰⎰,只有当等式右端的vdu 比左端的udv 更容易积出时才有意义,即选取u 和dv 要注意如下原则:(1)v 要容易求;(2)vdu ⎰要比udv ⎰容易积出. 例25求cos ln(cot )x x dx ⎰.分析 被积函数为三角函数与对数函数的乘积, 可采用分部积分法. 解cos ln(cot )ln(cot )(sin )x x dx x d x =⎰⎰21sin ln(cot )sin (csc )cot x x x x dx x=⋅-⋅⋅-⎰ sin ln(cot )sec x x xdx =⋅+⎰ sin ln(cot )ln sec tan x x x x C =+++例26求2ln(1)x x dx ++⎰.分析 被积函数可以看成是多项式函数与对数函数的乘积,可采用分部积分法.解 2222112ln(1)ln(1)(1)211xx x dx x x x x dx x x x++=++-⋅⋅+⋅+++⎰⎰22ln(1)1x x x x dx x=++-+⎰122221ln(1)(1)(1)2x x x x d x -=++-++⎰22ln(1)1x x x x C =++-++.例27求1x xxe dx e -⎰.分析 可利用凑微分公式x x e dx de =,然后用分部积分;另外考虑到被积函数中含有根式,也可用根式代换.解法11x x dx e -⎰2(1)1x x x xd e e ==--⎰⎰211x x x e e dx ⎡⎤=---⎣⎦⎰, 令1x t e =-,则2ln(1)x t =+,221tdtdx t=+,则 212122(arctan )1xt dte dx t t C t -==-++⎰⎰,故1x x dx e -⎰()21212arctan 1x x x x e e e Cz =---+-+21414arctan 1x x x x e e e C =---+-+.解法21x e tz -=,则1xx xe dx e -⎰22222ln(1)2ln(1)41t t dt t t dt t =+=+-+⎰⎰ 22ln(1)44arctan t t t t C =+-++21414arctan 1x x x x e e e C =---+-+.注求不定积分时,有时往往需要几种方法结合使用,才能得到结果. 例28(01研) 求2arctan xxe dx e⎰. 分析 被积函数是指数函数和反三角函数的乘积,可考虑用分部积分法. 解法12arctan x xe dx e ⎰222211arctan ()arctan 22(1)x x x x xx x de e d e e e e e --⎡⎤=-=--⎢⎥+⎣⎦⎰⎰ 21arctan arctan 2x x x xe e e e C --⎡⎤=-+++⎣⎦. 解法2 先换元,令x e t =,再用分部积分法,请读者自行完成余下的解答.例29 求3csc xdx ⎰.分析 被积函数含有三角函数的奇次幂,往往可分解成奇次幂和偶次幂的乘积,然后凑微分,再用分部积分法.解32csc csc (csc )csc (cot )xdx x x dx xd x ==-⎰⎰⎰ 2csc cot cot csc x x x xdx =--⋅⎰ 3csc cot csc csc x x xdx xdx =--+⎰⎰ 3csc cot csc ln csc cot x x xdx x x =--+-⎰,从而31csc (csc cot ln csc cot )2xdx x x x x C =---+⎰. 注用分部积分法求不定积分时,有时会出现与原来相同的积分,即出现循环的情况,这时只需要移项即可得到结果. 例30求下列不定积分:(1)22221(1)x x x e dx x ---⎰. (2)2ln 1(ln )x dx x -⎰. 解(1)2222222112(1)1(1)xx xx x xdx e dx e dx e x x x --=----⎰⎰⎰ 221()11x x e dx e d x x =+--⎰⎰ 22221111x x x x e e e e dx dx C x x x x =+-=+----⎰⎰.(2)22ln 111(ln )ln (ln )x dx dx dx x x x -=-⎰⎰⎰ 221ln (ln )(ln )x x dx dx x x x x =+-⎰⎰ ln xC x=+. 注将原积分拆项后,对其中一项分部积分以抵消另一项,或对拆开的两项各自分部积分后以抵消未积出的部分,这也是求不定积分常用的技巧之一.例31 求sin(ln )x dx ⎰.分析 这是适合用分部积分法的积分类型,连续分部积分,直到出现循环为止. 解法1 利用分部积分公式,则有1sin(ln )sin(ln )cos(ln )x dx x x x x dx x=-⋅⎰⎰ sin(ln )cos(ln )x x x dx =-⎰sin(ln )cos(ln )sin(ln )x x x x x dx =--⎰,所以1sin(ln )[sin(ln )cos(ln )]2x dx x x x C =-+⎰. 解法2 令 ln x t =,t dx e dt =,则sin(ln )x dx ⎰=sin sin sin sin cos sin t t t t t te tdt e t e tdt e t e t e tdt =-=--⎰⎰⎰,所以11sin(ln )(sin cos )[sin(ln )cos(ln )]22t tx dx e t e t C x x x C =-+=-+⎰. 例32 求ln n n I xdx =⎰,其中n 为自然数. 分析 这是适合用分部积分法的积分类型. 解11ln ln ln ln n n n n n n I xdx x x n xdx x x nI --==-=-⎰⎰,即1ln n n n I x x nI -=-为所求递推公式.而1ln ln ln I xdx x x dx x x x C ==-=-+⎰⎰.注1 在反复使用分部积分法的过程中,不要对调u 和v 两个函数的“地位”,否则不仅不会产生循环,反而会一来一往,恢复原状,毫无所得.注2 分部积分法常见的三种作用: (1)逐步化简积分形式; (2)产生循环;(3)建立递推公式.例33求积分24411(21)(23)(25)x x dx x x x +--+-⎰.分析 计算有理函数的积分可分为两步进行,第一步:用待定系数法或赋值法将有理分式化为部分分式之和;第二步:对各部分分式分别进行积分.解 用待定系数法将24411(21)(23)(25)x x x x x +--+-化为部分分式之和.设24411(21)(23)(25)212325x x A B Cx x x x x x +-=++-+--+-, 用(21)(23)(25)x x x -+-乘上式的两端得24411(23)(25)(21)(25)(21)(23)x x A x x B x x C x x +-=+-+--+-+,两端都是二次多项式,它们同次幂的系数相等,即131155311A B C A B C A B C ++=⎧⎪--+=⎨⎪-+-=-⎩, 这是关于A ,B ,C 的线性方程组,解之得12A =,14B =-,34C =.由于用待定系数法求A ,B ,C 的值计算量大,且易出错,下面用赋值法求A ,B ,C .因为等式24411(23)(25)(21)(25)(21)(23)x x A x x B x x C x x +-=+-+--+-+是恒等式,故可赋予x 为任何值.令 12x =,可得12A =.同样,令32x =-得14B =-,令52x =,得34C =,于是 24411(21)(23)(25)x x dx x x x +--+-⎰111131221423425dx dx dx x x x =-+-+-⎰⎰⎰ 113ln 21ln 23ln 25488x x x C =--++-+ 231(21)(25)ln 823x x C x --=++. 例34 求321452dx x x x +++⎰.解 32452x x x +++是三次多项式,分解因式 32322452()3()2(1)x x x x x x x x +++=+++++22(1)(32)(1)(2)x x x x x =+++=++设221(1)(2)21(1)A B Cx x x x x =+++++++,即2()(23)(22)1A B x A B C x A B C +++++++=,从而0230221A B A B C A B C +=⎧⎪++=⎨⎪++=⎩, 解得1A =,1B =-,1C =,因此3221111()45221(1)dx dx x x x x x x -=++++++++⎰⎰ 211121(1)dx dx dx x x x =-++++⎰⎰⎰ 1ln 2ln 11x x C x =+-+-++. 例35求22(1)(1)dxx x x +++⎰.解因为222211(1)(1)11x x x x x x x x -+=+++++++,所以22221()(1)(1)11dx x x dx x x x x x x -+=+++++++⎰⎰222221(1)1(1)1212121d x d x x dxx x x x x +++=-+++++++⎰⎰⎰ 2221()1112ln(1)ln(1)13222()24d x x x x x +=-+++++++⎰ 2211321ln arctan 2133x x C x x ++=-++++.例36求2425454x x dx x x ++++⎰.解设24222545414x x Ax B Cx D x x x x ++++=+++++,则有 23254()()(4)4x x A C x B D x A C x B D ++=+++++++,比较两边同次幂的系数,解得53A =,1B =,53C =-,0D =,从而 24222541535543134x x x xdx dx dx x x x x +++=-++++⎰⎰⎰2222255151ln arctan 3134164x x x dx dx dx x C x x x x +=-+=++++++⎰⎰⎰. 例37 求322456x x dx x x +++⎰.分析 322456x x x x +++是假分式,先化为多项式与真分式之和,再将真分式分解成部分分式之和.解 由于32224615656x x x x x x x x +-=--++++ 98132x x x =--+++,则 322498(1)5632x x dx x dx x x x x +=--+++++⎰⎰219ln 38ln 22x x x x C =--++++. 例38 求5632x dxx x --⎰.解 令3u x =,23du x dx =,则533636321()123232x dx x d x udux x x x u u ==------⎰⎰⎰ 1112()3(1)(2)912u du du u u u u ==++-+-⎰⎰332121ln 1ln 2ln (1)(2)999u u C x x C =++-+=+-+. 例39 求2100(1)x dx x -⎰. 分析 被积函数2100(1)x x -是有理真分式,若按有理函数的积分法来处理,那么要确定1A ,2A ,…,100A ,比较麻烦.根据被积函数的特点:分母是x 的一次因式,但幂次较高,而分子是x 的二次幂,可以考虑用下列几种方法求解.解法1 令1x t -=,dx dt =-,则222100100100(1)21(1)x t t t dx dt dt x t t --+=-=--⎰⎰⎰98991002t dt t dt t dt ---=-+-⎰⎰⎰9798991112979899t t t C ---=-⋅++ 979899111(1)(1)(1)974999x x x C ---=---+-+. 解法222100100(1)1(1)(1)x x dx dx x x -+=--⎰⎰9910011(1)(1)x dx dx x x +=-+--⎰⎰ 99100(1)21(1)(1)x dx dx x x --=+--⎰⎰ 98991001112(1)(1)(1)dx dx dx x x x =-+---⎰⎰⎰ 979899111(1)(1)(1)974999x x x C ---=---+-+. 解法3 用分部积分法.22991001[(1)](1)99x dx x d x x -=--⎰⎰29999299(1)99(1)x x dx x x =---⎰2989921[(1)]99(1)9998x xd x x -=---⎰ 299989821[]99(1)9998(1)98(1)x x dx x x x =-----⎰ 299989712199(1)9949(1)999897(1)x x C x x x =-⋅-⋅+--⋅-. 注 形如()()P x Q x 的(()P x 与()Q x 均为多项式)有理函数的积分关键是将有理真分式分解成部分分式之和,而部分分式都有具体的积分方法,对于假分式则要化为真分式与多项式之和.例40 求13221dx x x ++-⎰. 分析 这是无理函数的积分,先要去掉根号化为有理函数的积分,分子分母有理化是常用去根号的方法之一.解132213221(3221)(3221)x x dx dx x x x x x x +--=++-++-+--⎰⎰112211(32)(21)44x dx x dx =+--⎰⎰ 332211(32)(21)1212x x C =+--+. 例41 求a xdx a x+-⎰. 解法12222221a x a x xdx dx a dx dx a x a x a x a x++==+----⎰⎰⎰⎰ 1222222211()()2a dx a x d a x a x -=----⎰⎰ 22arcsin xa a x C a=--+.解法2 令 a xt a x+=-,余下的请读者自行完成. 例42求154sin 2dx x+⎰.分析被积函数是三角有理函数,可用万能公式将它化为有理函数. 解令tan t x =,211dx dt t=+,则 21154sin 2585dx dt x t t =+++⎰⎰54332543311()3()1d t t =+++⎰154arctan()333t C =++154arctan(tan )333x C =++. 注虽然万能代换公式总能求出积分,但对于具体的三角有理函数的积分不一定是最简便的方法.通常要根据被积函数的特点,采用三角公式简化积分.例43求1sin cos dxx x++⎰.解法1令tan 2xu =,则2222211211sin cos 1111dx u du du u u x x u u u +==-+++++++⎰⎰⎰ln 1tan 2x C =++.解法21sin cos dxx x ++⎰22122sin cos 2cos cos (1tan )22222dx dx x x x x x ==++⎰⎰ 2()(tan )22cos (1tan )1tan222x x d d x x x==++⎰⎰ ln 1tan2xC =++. 注 可化为有理函数的积分主要要求熟练掌握如下两类: 第一类是三角有理函数的积分,即可用万能代换tan2xu =将其化为u 的有理函数的积分. 第二类是被积函数的分子或分母中带有根式而不易积出的不定积分.对于这类不定积分,可采用适当的变量代换去掉根号,将被积函数化为有理函数的积分.常用的变量代换及适用题型可参考前面介绍过的第二类换元法.例44 求2max{,1}x dx ⎰.分析 被积函数2max{,1}x 实际上是一个分段连续函数,它的原函数()F x 必定为连续函数,可先分别求出各区间段上的不定积分, 再由原函数的连续性确定各积分常数之间的关系.解 由于221,()max{,1}1,1x x f x x x >⎧==⎨≤⎩,设()F x 为()f x 的原函数,则312331,13(),11,13x C x F x x C x x x C ⎧+⎪<-⎪=+≤⎨⎪>⎪+⎩,其中1C ,2C ,3C 均为常数,由于()F x 连续,所以121(1)(1)13F C F C -+-=-+=-=-,231(1)1(1)3F C F C -+=+==+,于是1223C C =-+,3223C C =+,记 2C C =,则32312,133max{,1},112,133x C x x dx x C x x x C⎧-+⎪<-⎪=+≤⎨⎪>⎪++⎩⎰. 注对于一些被积函数中含有绝对值符号的不定积分问题,也可以仿照上述方法处理. 例45 求x e dx -⎰. 解 当0x ≥时,1xx xe dx e dx e C ---==-+⎰⎰. 当0x <时,2xx x edx e dx e C -==+⎰⎰.因为函数x e -的原函数在(,)-∞+∞上每一点都连续,所以120lim()lim()x xx x e C e C +--→→-+=+, 即1211C C -+=+,122C C =+,记 2C C =,则2,0,0xxxe C x e dx x e C --⎧-++≥⎪=⎨<+⎪⎩⎰. 错误解答 当0x ≥时,1xx x edx e dx e C ---==-+⎰⎰.当0x <时,2xx x edx e dx e C -==+⎰⎰.故12,0,0xxxe C x e dx e C x --⎧-+≥⎪=⎨+<⎪⎩⎰. 错解分析 函数的不定积分中只能含有一个任意常数,这里出现了两个,所以是错误的.事实上,被积函数x e -在(,)-∞+∞上连续,故在(,)-∞+∞上有原函数,且原函数在(,)-∞+∞上每一点可导,从而连续.可据此求出任意常数1C 与2C 的关系,使x e -的不定积分中只含有一个任意常数.注 分段函数的原函数的求法:第一步,判断分段函数是否有原函数.如果分段函数的分界点是函数的第一类间断点, 那么在包含该点的区间内,原函数不存在.如果分界点是函数的连续点,那么在包含该点的区间内原函数存在.第二步,若分段函数有原函数,先求出函数在各分段相应区间内的原函数,再根据原函数连续的要求,确定各段上的积分常数,以及各段上积分常数之间的关系.例46 求下列不定积分:(1)sin 1cos x x dx x ++⎰.(2)3sin 2cos sin cos xx x xe dx x-⎰.(3)cot 1sin xdx x+⎰.(4)3sin cos dxx x⎰. 解(1)注意到sin (1cos )xdx d x =-+及2211(tan )1cos 2cos 2xxdx dx d x ==+,可将原来的积分拆为两项,然后积分,即sin sin 1cos 1cos 1cos x x x xdx dx dx x x x +=++++⎰⎰⎰1(tan )(1cos )21cos x xd d x x =-++⎰⎰tan tan ln(1cos )22x xx dx x =--+⎰1tan 2ln cos ln(1cos )22x xx x C =+-++21tan2ln cos ln(2cos )222x x xx C =+-+ 1tan (ln 2)2x x CC C =+=-.(2)被积函数较为复杂,直接凑微分或分部积分都比较困难,不妨将其拆为两项后再观察.3sin sin sin 2cos sin cos tan sec cos xx x x x xedx e x xdx e x xdx x-=-⎰⎰⎰ sin sin ()(sec )x x xd e e d x =-⎰⎰sin sin sin sin sec x x x x xe e dx e x e dx =--+⎰⎰ sin (sec )x e x x C =-+.(3)cot cos 1(sin )1sin sin (1sin )sin (1sin )x x dx dx d x x x x x x ==+++⎰⎰⎰11(sin )(sin )sin 1sin d x d x x x =-+⎰⎰ sin ln 1sin x C x=++.(4)当分母是sin cos m n x x 的形式时,常将分子的1改写成22sin cos x x +,然后拆项,使分母中sin x 和cos x 的幂次逐步降低直到可利用基本积分公式为止.33cos sin cos sin cos sin dx dx xdx x x x x x =+⎰⎰⎰3sin 2csc2sin d xxdx x =+⎰⎰21ln csc2cot 22sin x x C x=--+.注将被积函数拆项,把积分变为几个较简单的积分,是求不定积分常用的技巧之一.例47 求223(1)x dx x -⎰.解 考虑第二类换元积分法与分部积分法,令sin x t =,则222353235sin tan sec (sec sec )(1)cos x t dx dt t tdt t t dt x t ===--⎰⎰⎰⎰, 而53323secsec (tan )sec tan 3tan sec tdt td t t t t tdt ==-⎰⎰⎰ 353sec tan 3(sec sec )t t t t dt =--⎰.故53313sec sec tan sec 44tdt t t tdt =+⎰⎰. 又32secsec (tan )sec tan tan sec tdt td t t t t tdt ==-⎰⎰⎰ 3sec tan (sec sec )t t t t dt =--⎰,从而3111sec sec tan ln sec tan 22tdt t t t t C =+++⎰, 所以223(1)x dx x -⎰3311sec tan sec 44t t tdt =-⎰3111sec tan sec tan ln sec tan 488t t t t t t C =--++ 32211ln 8(1)161x x xC x x++=-+--.例48 求7cos 3sin 5cos 2sin x xdx x x-+⎰.解因为(5cos 2sin )2cos 5sin x x x x '+=-,所以可设7cos 3sin (5cos 2sin )(5cos 2sin )x x A x x B x x '-=+++,即7cos 3sin (5cos 2sin )(2cos 5sin )x x A x x B x x -=++-,比较系数得527253A B A B +=⎧⎨-=-⎩, 解之得1A =,1B =,故7cos 3sin 5cos 2sin x x dx x x -+⎰(5cos 2sin )(5cos 2sin )5cos 2sin x x x x dx x x'+++=+⎰ (5cos 2sin )5cos 2sin d x x dx x x+=++⎰⎰ln 5cos 2sin x x x C =+++.例49 设()F x 是()f x 的原函数,且当0x ≥时有2()()sin 2f x F x x ⋅=,又(0)1F =,()0F x ≥,求()f x .分析 利用原函数的定义,结合已知条件先求出()F x ,然后求其导数即为所求.解 因为()()F x f x '=,所以2()()sin 2F x F x x '=,两边积分得2()()sin2F x F x dx xdx '=⎰⎰,即211()sin 4228x F x x C =-+, 由(0)1F =得12C =,所以 1()sin 414F x x x =-+从而()()12sin 414f x F x x x '==-+21sin 414x x =-+.。

不定积分例题及标准答案

不定积分例题及标准答案

第4章不定积分
习题4-1
1.求下列不定积分:
知识点:直接积分法的练习——求不定积分的基本方法。

思路分析:利用不定积分的运算性质和基本积分公式,直接求出不定积分!
★(1)
思路: 被积函数5
2
x -=,由积分表中的公式(2)可解。

解:53
22
23x dx x C --==-+⎰
★(2)dx

思路:根据不定积分的线性性质,将被积函数分为两项,分别积分。

解:1
14111
3332223()2
4dx x x dx x dx x dx x x C ---=-=-=-+⎰⎰⎰⎰ ★(3)22x x dx +⎰()
思路:根据不定积分的线性性质,将被积函数分为两项,分别积分。

解:22
32122ln 23x x x x dx dx x dx x C +=+=++⎰⎰⎰()
★(4)3)x dx - 思路:根据不定积分的线性性质,将被积函数分为两项,分别积分。

解:3153
222223)325x dx x dx x dx x x C -=-=-+⎰⎰⎰ ★★(5)4223311x x dx x +++⎰
思路:观察到422223311311
x x x x x ++=+++后,根据不定积分的线性性质,将被积函数分项,分别积分。

解:42232233113arctan 11x x dx x dx dx x x C x x
++=+=++++⎰⎰⎰ ★★(6)2
21x dx x +⎰
思路:注意到222221111111x x x x x +-==-+++,根据不定积分的线性性质,将被积函数分项,分别积分。

《高等数学》不定积分课后习题详解

《高等数学》不定积分课后习题详解

《高等数学》不定积分课后习题详解各位读友大家好,此文档由网络收集而来,欢迎您下载,谢谢篇一:高等数学第四章不定积分习题第四章不定积分4 – 1不定积分的概念与性质一.填空题1.若在区间上F?(x)?f(x),则F(x)叫做f(x)在该区间上的一个f(x)的所有原函数叫做f(x)在该区间上的__________。

2.F(x)是f(x)的一个原函数,则y=F(x)的图形为?(x)的一条_________. 3.因为d(arcsinx)?1?x2dx,所以arcsinx是______的一个原函数。

4.若曲线y=?(x)上点(x,y)的切线斜率与x成正比例,并且通过点A(1,6)和B(2,-9),则该曲线方程为__________ 。

二.是非判断题1.若f?x?的某个原函数为常数,则f?x??0. [ ] 2.一切初等函数在其定义区间上都有原函数. [ ] 3.3??f?x?dx???f??x?dx. [ ]?4.若f?x?在某一区间内不连续,则在这个区间内f?x?必无原函数. [ ] ?ln?ax?与y?lnx是同一函数的原函数. [ ] 三.单项选择题1.c为任意常数,且F’(x)=f(x),下式成立的有。

(A)?F’(x)dx?f(x)+c;(B)?f(x)dx=F(x)+c;(C)?F(x)dx?F’(x)+c;(D) ?f’(x)dx=F(x) +c.2. F(x)和G(x)是函数f(x)的任意两个原函数,f(x)?0,则下式成立的有。

(A)F(x)=cG(x); (B)F(x)= G(x)+c;(C)F(x)+G(x)=c; (D) F(x)?G(x)=c. 3.下列各式中是f(x)?sin|x|的原函数。

(A) y??cos|x| ; (B) y=-|cosx|;(c)y=??cosx,x?0,cosx?2,x?0;(D) y=??cosx?c1,x?0,cosx?c2,x?0.c1、c2任意常数。

《高等数学》 第四章 不定积分的概念和性质1—2节 课堂笔记及练习题

《高等数学》 第四章 不定积分的概念和性质1—2节 课堂笔记及练习题

高等数学 第四章 不定积分的概念和性质1—2节 课堂笔记及练习题主 题:第四章 不定积分的概念和性质1—2节 学习时间:2015年11月30日—12月6日内 容:这周我们将学习第四章不定积分的概念和性质(1—2节)。

积分运算与微分运算互为逆运算,它们同是高等数学的重点,需要充分重视。

其学习要求及需要掌握的重点内容如下:1、理解原函数与不定积分的概念2、非常熟练地掌握求不定积分的基本方法:基本积分公式、不定积分的性质、换元法。

基本概念:原函数和不定积分的概念知识点:基本积分公式、不定积分的性质、换元法知识结构图一元函数积分学原函数不定积分定义运算法则计算方法直接积分法换元法第一类换元法全体个体第二类换元法第一节、不定积分的概念和性质一、原函数与不定积分的概念(要求理解各概念) 定义1:设)(x f 为某区间I 上的函数,如果存在函数)(x F ,使在该区间上有)()(x f x F ='或,)()(dx x f x dF =则称)(x F 为)(x f 在区间I 上的一个原函数。

原函数存在定理:如果)(x f 在区间I 上连续,则在区间I 上)(x f 的原函数一定存在。

说明:如果)(x F 是)(x f 在区间I 上的一个原函数,显然c c x F ()(+为任意常数)也是)(x f 的原函数,这说明)(x f 如果存在原函数,应有无穷多个,)(x f 的全体原函数是一个函数族。

c x F +)(为)(x f 全体原函数的一般表达式。

定义2:设)(x F 是)(x f 在区间I 的一个原函数,则)(x f 的全体原函数c x F +)(称为)(x f 在区间I 的不定积分,记⎰+=c x F dx x f )()(其中⎰叫积分号,)(x f 叫被积函数,dx x f )(叫被积表达式,x 叫积分变量,c 为任意常数叫积分常数。

范例解析:1、单选题:设)(x f 的一个原函数为x1,则=')(x f ( ) A 、||ln xB 、x1 C 、21x - D 、32x解题思路:因为x 1为)(x f 的原函数,所以21)1()(xx x f -='=,从而32)(xx f ='。

同济大学数学系《高等数学》(第7版)(上册)笔记和课后习题(含考研真题)详解-第四章 不定积分【圣才

同济大学数学系《高等数学》(第7版)(上册)笔记和课后习题(含考研真题)详解-第四章 不定积分【圣才

第四章 不定积分4.1 复习笔记一、不定积分的概念与性质1.原函数与不定积分的概念(1)原函数①定义如果在区间I 上,可导函数的导函数为,即对任意一,都有,则函数就称为在区间I 上的一个原函数.②原函数存在定理如果函数在区间I 上连续,则在区间I 上存在可导函数使对任一都有即连续函数一定有原函数.③注意两点a .如果有一个原函数,则就有无限多个原函数.b .若和都是的原函数,则()Fx ()x φ()f x(C 0为某个常数)(2)不定积分在区间I 上,函数的带有任意常数项的原函数称为(或)在区间I上的不定积分,记作,其中称为积分号,称为被积函数,称为被积表达式,x称为积分变量.2.基本积分表3.不定积分的性质(1)性质1设函数的原函数存在,则注:性质1对于有限个函数都是成立的.(2)性质2设函数的原函数存在,k为非零常数,则二、换元积分法1.第一类换元法设具有原函数,可导,则有换元公式()[()]()[()]u x f x x dx f u du ϕϕϕ='=⎰⎰2.第二类换元法设是单调的可导函数,并且又设具有原函数,则有换元公式1()()[[()]()]t x f x dx f t t dtψψψ-='=⎰⎰其中的反函数.三、分部积分法1.分部积分法设函数具有连续导数,则两个函数乘积的导数公式为移项,得对这个等式两边求不定积分,得称为分部积分公式.注:2.运用分部积分法需注意(1)v 要容易求得;(2)要比容易积出;(3)遵循“反对幂指三”原则.①“反对幂指三”定义“反对幂指三”分别指反三角函数、对数函数、幂函数、指数函数和三角函数.②“反对幂指三”原则“反对幂指三”原则是指在用分部积分法计算积分时,若出现上面相关函数,把被积表达式按照“反对幂指三”的积分次序,排在前面的看成“u”,排在后面的看成“dv”.【例】3.常见函数的不定积分四、有理函数的积分1.有理函数的积分(1)相关概念①有理函数 两个多项式的商称为有理函数.②有理分式 有理函数又称有理分式.③真分式 当P(x)的次数小于Q(x)的次数时,称这有理函数为真分式.④假分式 当P(x)的次数大于Q(x)的次数时,称这有理函数为假分式.(2)真分式的分解对于真分式,如果分母可分解为两个多项式的乘积且Q 1(x)与Q 2(x)没有公因式,则它可分拆成两个真分式之和。

高数课件PPT-第四章 不定积分选择填空详解

高数课件PPT-第四章 不定积分选择填空详解

2
2
2
2
4
3. 选 C
f ′(sin x) = cos2 x, f ′(t) = 1 − t 2 , f ′(x) = 1 − x2 , f (x) = x − 1 x3 + c 3
f (0) = 0 ⇒ C = 0,∴ f (x) = x − 1 x3 。 3
4. 选 D
∫ ∫ ∫ ex
ex
−1 +1
dx
=
e
x+ ex
1− +1
2
dx
=
1

e
2 x+
1
dx
∫ ∫ = x − 2
(e x
ex + 1)ex
dx
=
x

2
e
x
1 (e x
+
1)
de
x
∫ = x − 2 ( 1 − 1 )de x = x − 2x + 2 ln | e x + 1 | + c
ex ex +1
= −x + 2 ln | e x + 1 | +c 。
∫ ∫ ∫ f (x)dx = [(x + 1)9 − (x + 1)8 ]dx = [(x + 1)9 − (x + 1)8 ]dx
∫= [(x +1)9 − (x +1)8 ]d (x +1) = 1 (x + 1)10 − 1 (x + 1)9 + c 。
10
9
二、选择题
1. 选 C
由不定积分的定义,c 是任意正数, ln c 为实数 R 上取值的任意常数。

(完整word版)高等数学课后习题及参考答案第四章

(完整word版)高等数学课后习题及参考答案第四章

高等数学课后习题及参考答案(第四章)习题4-11. 求下列不定积分:(1)⎰dx x 21;解 C x C x dx x dx x +-=++-==+--⎰⎰112111222.(2)⎰dx x x ; 解 C x x C x dx x dx x x +=++==+⎰⎰212323521231.(3)⎰dx x1;解C x C x dx xdx x+=++-==+--⎰⎰21211112121. (4)⎰dx x x 32; 解 C x x C x dx x dx x x+=++==+⎰⎰3313737321031371. (5)⎰dx x x 21; 解C x x C x dx xdx xx +⋅-=++-==+--⎰⎰12312511125252. (6)dx x m n ⎰; 解C x mn mC x mn dx x dx x mn m m n m nmn++=++==++⎰⎰111.(7)⎰dx x 35;解 C x dx x dx x +==⎰⎰4334555.(8)⎰+-dx x x )23(2;解 C x x x dx dx x dx x dx x x ++-=+-=+-⎰⎰⎰⎰2233123)23(2322.(9)⎰ghdh 2(g 是常数);解C ghC h gdh hgghdh +=+⋅==⎰⎰-22212122121. (10)⎰-dx x 2)2(;解 C x x x dx dx x dx x dx x x dx x ++-=+-=+-=-⎰⎰⎰⎰⎰423144)44()2(23222.(11)⎰+dx x 22)1(;解 C x x x dx dx x dx x dx x x dx x +++=++=++=+⎰⎰⎰⎰⎰3524242232512)12()1(.(12)dx x x ⎰-+)1)(1(3;解 ⎰⎰⎰⎰⎰⎰-+-=-+-=-+dx dx x dx x dx x dx x x x dx x x 23212323)1()1)(1(C x x x x +-+-=25233523231.(13)⎰-dx x x 2)1(;解C x x x dx x x xdx xx x dx xx ++-=+-=+-=-⎰⎰⎰-2523212321212252342)2(21)1(. (14)⎰+++dx x x x 1133224; 解 C x x dx x x dx x x x ++=++=+++⎰⎰arctan )113(1133322224. (15)⎰+dx x x 221;解⎰⎰⎰+-=+-=+-+=+C x x dx xdx xx dx x x arctan )111(111122222.(16)⎰+dx xe x )32(;解 C x e dx xdx e dx x e x x x ++=+=+⎰⎰⎰||ln 32132)32(.(17)⎰--+dx xx )1213(22;解 ⎰⎰⎰+-=--+=--+C x x dx xdx x dx xx arcsin 2arctan 3112113)1213(2222.(18)dx x e e x x⎰--)1(;解 C x edx xe dx xe e xxx x+-=-=-⎰⎰--21212)()1(.(19)⎰dx e x x 3;解 C e C e e dx e dx e xx x xxx++=+==⎰⎰13ln 3)3ln()3()3(3.(20)⎰⋅-⋅dx xxx 32532;解 C x C x dx dx x xx xxx+--=+-=-=⋅-⋅⎰⎰)32(3ln 2ln 5232ln )32(52])32(52[32532. (21)⎰-dx x x x )tan (sec sec ;解 ⎰⎰+-=-=-C x x dx x x x dx x x x sec tan )tan sec (sec )tan (sec sec 2.(22)⎰dx x2cos 2;解 C x x dx x dx x dx x ++=+=+=⎰⎰⎰)sin (21)cos 1(212cos 12cos 2.(23)⎰+dx x 2cos 11;解 ⎰⎰+==+C x dx xdx x tan 21cos 212cos 112.(24)⎰-dx xx xsin cos 2cos ;解 ⎰⎰⎰+-=+=--=-C x x dx x x dx xx xx dx x x x cos sin )sin (cos sin cos sin cos sin cos 2cos 22.(25)⎰dx x x x22sin cos 2cos ; 解 ⎰⎰⎰+--=-=-=C x x dx xx dx x x x x dx x x x tan cot )cos 1sin 1(sin cos sin cos sin cos 2cos 22222222.(26)⎰-dx x x x)11(2;解 ⎰⎪⎭⎫ ⎝⎛-dx x x x 211⎰++=-=--C x x dx x x 41474543474)(.2. 一曲线通过点(e 2, 3), 且在任一点处的切线的斜率等于该点横坐标的倒数, 求该曲线的方程.解 设该曲线的方程为y =f (x ), 则由题意得xx f y 1)(='=',所以 C x dx xy +==⎰||ln 1.又因为曲线通过点(e 2, 3), 所以有=3-2=1 3=f (e 2)=ln|e 2|+C =2+C , C =3-2=1. 于是所求曲线的方程为y =ln|x |+1.3. 一物体由静止开始运动, 经t 秒后的速度是3t 2(m/s ), 问 (1)在3秒后物体离开出发点的距离是多少? (2)物体走完360m 需要多少时间?解 设位移函数为s =s (t ), 则s '=v =3 t 2, C t dt t s +==⎰323. 因为当t =0时, s =0, 所以C =0. 因此位移函数为s =t 3. (1)在3秒后物体离开出发点的距离是s =s (3)=33=27.(2)由t 3=360, 得物体走完360m 所需的时间11.73603≈=t s. 4. 证明函数x e 221, e x sh x 和e xch x 都是x x e x sh ch -的原函数.证明 x x xx x x x x x e ee e e e e e x x e 222sh ch ==--+=----. 因为x x e e 22)21(=', 所以x e 221是x x e xsh ch -的原函数.因为(e x sh x )'=e x sh x +e x ch x =e x (sh x +ch x )x x x x x x e e e e e e 2)22(=++-=--, 所以e x sh x 是xx e xsh ch -的原函数.因为(e x ch x )'=e x ch x +e x sh x =e x (ch x +sh x )x x x x x x e e e e e e 2)22(=-++=--, 所以e xch x 是xx e x sh ch -的原函数.习题4-21. 在下列各式等号右端的空白处填入适当的系数, 使等式成立(例如: )74(41+=x d dx :(1) dx = d (ax );解dx = a 1d (ax ).(2) dx = d (7x -3);解dx = 71d (7x -3).(3) xdx = d (x 2); 解xdx = 21 d (x 2).(4) x d x = d (5x 2);解x d x = 101d (5x 2).(5))1( 2x d xdx -=;解 )1( 212x d xdx --=.(6)x 3dx = d (3x 4-2);解x 3dx = 121d (3x 4-2).(7)e 2x dx = d (e 2x ); 解e 2x dx = 21 d (e 2x ).(8))1( 22x x ed dxe --+=;解 )1( 2 22x x e d dx e --+-=.(9))23(cos 23sin x d xdx =;解 )23(cos 32 23sin x d xdx -=.(10)|)|ln 5( x d xdx=; 解 |)|ln 5( 51x d x dx =. (11)|)|ln 53( x d xdx-=; 解|)|ln 53( 51x d x dx --=. (12))3(arctan 912x d x dx=+; 解 )3(arctan 31912x d x dx =+. (13))arctan 1( 12x d xdx -=-;解)arctan 1( )1( 12x d xdx --=-.(14))1( 122x d x xdx -=-.解)1( )1( 122x d x xdx --=-.2. 求下列不定积分(其中a , b , ω, ϕ均为常数): (1)⎰dt e t 5; 解 C e x d e dt e xx t +==⎰⎰55551551. (2)⎰-dx x 3)23(; 解 C x x d x dx x +--=---=-⎰⎰433)23(81)23()23(21)23(. (3)⎰-dx x 211; 解C x x d x dx x +--=---=-⎰⎰|21|ln 21)21(21121211.(4)⎰-332x dx ;解C x C x x d x xdx+--=+-⋅-=---=-⎰⎰-3232313)32(21)32(2331)32()32(3132. (5)⎰-dx e ax bx)(sin ;解C be ax ab x d e b ax d ax a dx e ax b xb xbx+--=-=-⎰⎰⎰cos 1)()(sin 1)(sin .(6)⎰dt tt sin ;解⎰⎰+-==C t t d t dt tt cos 2sin 2sin .(7)⎰⋅xdx x 210sec tan ;解 ⎰⋅xdx x 210sec tan C x x xd +==⎰1110tan 111tan tan . (8)⎰xx x dxln ln ln ;解C x x d x x d x x x x x dx +===⎰⎰⎰|ln ln |ln ln ln ln ln 1ln ln ln ln 1ln ln ln .(9)⎰+⋅+dx xx x 2211tan ;解 ⎰+⋅+dx x x x 2211tan 2222211cos 1sin 11tan x d x x x d x +++=++=⎰⎰C x x d x ++-=++-=⎰|1cos |ln 1cos 1cos 1222.(10)⎰xx dxcos sin ;解 C x x d x dx x x x x dx +===⎰⎰⎰|tan |ln tan tan 1tan sec cos sin 2.(11)⎰-+dx ee x x 1;解 ⎰-+dx e e xx 1C e de edx e e x x xx x +=+=+=⎰⎰arctan 11122.(12)⎰-dx xe x 2; 解 .21)(212222C e x d e dx xe x x x +-=--=---⎰⎰ (13)⎰⋅dx x x )cos(2;解 C x x d x dx x x +==⋅⎰⎰)sin(21)()cos(21)cos(2222. (14)⎰-dx xx 232;解C x C x x d x dx x x+--=+--=---=-⎰⎰-2212221223231)32(31)32()32(6132.(15)⎰-dx xx 4313; 解⎰⎰+--=---=-C x x d x dx x x |1|ln 43)1(11431344443.(16)⎰++dt t t ))sin((cos 2ϕωϕω; 解 C t t d t dt t t ++-=++-=++⎰⎰)(cos 31)cos()(cos 1)sin()(cos 322ϕωωϕωϕωωϕωϕω. (17)⎰dx x x3cos sin ; 解 C x C x x xd dx xx +=+=-=--⎰⎰2233sec 21cos 21cos cos cos sin . (18)⎰-+dx x x xx 3cos sin cos sin ;解 )sin cos (cos sin 1cos sin cos sin 33x x d xx dx x x x x +--=-+⎰⎰C x x x x d x x +-=--=⎰-3231)cos (sin 23)cos (sin )cos (sin .(19)⎰--dx xx 2491;解dx xx dx xdx xx ⎰⎰⎰---=--22249491491)49(49181)32()32(1121222x d x x d x --+-=⎰⎰C x x +-+=2494132arcsin 21.(20)⎰+dx x x 239;解 C x x x d xx d x x dx x x ++-=+-=+=+⎰⎰⎰)]9ln(9[21)()991(21)(9219222222223. (21)⎰-dx x 1212;解⎰⎰⎰+--=+-=-dx x x dx x x dx x )121121(21)12)(12(11212 ⎰⎰++---=)12(121221)12(121221x d x x d x C x x C x x ++-=++--=|1212|ln 221|12|ln 221|12|ln 221.(22)⎰-+dx x x )2)(1(1;解C x x C x x dx x x dx x x ++-=++--=+--=-+⎰⎰|12|ln 31|1|ln |2|(ln 31)1121(31)2)(1(1. (23)⎰xdx 3cos ;解 C x x x d x x d x xdx +-=-==⎰⎰⎰3223sin 31sin sin )sin 1(sin cos cos .(24)⎰+dt t )(cos 2ϕω; 解 C t t dt t dt t +++=++=+⎰⎰)(2sin 4121)](2cos 1[21)(cos 2ϕωωϕωϕω. (25)⎰xdx x 3cos 2sin ; 解 ⎰xdx x 3cos 2sin C x x dx x x ++-=-=⎰cos 215cos 101)sin 5(sin 21. (26)⎰dx xx 2cos cos ;解 C x x dx x x dx x x ++=+=⎰⎰21sin 23sin 31)21cos 23(cos 212cos cos .(27)⎰xdx x 7sin 5sin ; 解 C x x dx x x xdx x ++-=--=⎰⎰2sin 4112sin 241)2cos 12(cos 217sin 5sin . (28)⎰xdx x sec tan 3;解 x d x xdx x x xdx x sec tan tan sec tan sec tan 223⎰⎰⎰=⋅=C x x x d x +-=-=⎰sec sec 31sec )1(sec 32.(29)⎰-dx xx2arccos 2110;解C x d x d dx xx xxx+-=-=-=-⎰⎰⎰10ln 210)arccos 2(1021arccos 10110arccos 2arccos 2arccos 22arccos 2.(30)⎰+dx x x x )1(arctan ;解C x x d x x d x xdx x x x +==+=+⎰⎰⎰2)(arctan arctan arctan 2)1(arctan 2)1(arctan .(31)⎰-221)(arcsin xx dx;解C xx d x x x dx+-==-⎰⎰arcsin 1arcsin )(arcsin 11)(arcsin 222.(32)⎰+dx x x x 2)ln (ln 1; 解C xx x x d x x dx x x x+-==+⎰⎰ln 1)ln ()ln (1)ln (ln 122. (33)⎰dx xx xsin cos tan ln ;解⎰⎰⎰=⋅=x d x x xdx x x dx x x x tan tan tan ln sec tan tan ln sin cos tan ln 2C x x d x +==⎰2)tan (ln 21tan ln tan ln .(34)⎰-dx x a x 222(a >0);解⎰⎰⎰⎰-===-dt t a dt t a tdt a t a t a t a x dx xa x 22cos 1sin cos cos sin sin 22222222令, C x a x a x a C t a t a +--=+-=222222arcsin 22sin 421.(35)⎰-12x x dx ;解C x C t dt tdt t t t tx x x dx +=+==⋅⋅=-⎰⎰⎰1arccos tan sec tan sec 1sec 12令.或C x x d x dx xx x x dx +=--=-=-⎰⎰⎰1arccos 111111112222.(36)⎰+32)1(x dx ;解C t tdt t d t tx x dx +==+=+⎰⎰⎰sin cos tan )1(tan 1tan )1(3232令C x x ++=12.(37)⎰-dx xx 92; 解⎰⎰⎰=-=-tdt t d tt t x dx x x 222tan 3)sec 3(sec 39sec 9sec 39令 C x x C t t dt t+--=+-=-=⎰3arccos 393tan 3)1cos 1(322.(38)⎰+x dx 21; 解C x x C t t dt t tdt t tx xdx ++-=++-=+-=+=+⎰⎰⎰)21ln(2)1ln()111(11221令.(39)⎰-+211x dx ;解⎰⎰⎰⎰-=+-=+=-+dt tdt t tdt t tx x dx)2sec211()cos 111(cos cos 11sin 1122令 C xxx C t t t C t t +-+-=++-=+-=211arcsin cos 1sin 2tan .(40)⎰-+21x x dx .解⎰⎰⎰+-++=⋅+=-+dt tt tt t t tdt t t tx x x dx cos sin sin cos sin cos 21cos cos sin 1sin 12令C t t t t t d t t dt +++=+++=⎰⎰|cos sin |ln 2121)cos (sin cos sin 12121 C x x x ++-+=|1|ln 21arcsin 212.习题4-3求下列不定积分: 1. ⎰xdx x sin ; 解C x x x xdx x x x xd xdx x ++-=+-=-=⎰⎰⎰sin cos cos cos cos sin .2. ⎰xdx ln ;解 C x x x dx x x x xd x x xdx +-=-=-=⎰⎰⎰ln ln ln ln ln . 3. ⎰xdx arcsin ;解 ⎰⎰-=x xd x x xdx arcsin arcsin arcsin ⎰--=dx xx x x 21arcsinC x x x +-+=21arcsin . 4. ⎰-dx xe x ;解 ⎰⎰⎰----+-=-=dx e xe xde dx xe x x x x C x e C e xe x x x ++-=+--=---)1(. 5. ⎰xdx x ln 2; 解 ⎰⎰⎰-==x d x x x xdx xdx x ln 31ln 31ln 31ln 3332 C x x x dx x x x +-=-=⎰332391ln 3131ln 31.6. ⎰-xdx e x cos ; 解 因为⎰⎰⎰⎰------+=-==xdx e x e xde x e x d e xdx e x x x x x x sin sin sin sin sin cos ⎰⎰-----+-=-=x x x x x xde x e x e x d e x e cos cos sin cos sin⎰-----=xdx e x e x e x x x cos cos sin ,所以 C x x e C x e x e xdx e x x x x +-=+-=----⎰)cos (sin 21)cos sin (21cos .7. ⎰-dx xe x 2sin 2;解 因为⎰⎰⎰-----==x x x x de xx e x d e dx x e 22222cos 22cos 22cos 22sin⎰⎰----+=+=2sin 82cos 22cos 42cos 22222xd e x e dx x e x e x x x x⎰----+=x x x de xx e x e 2222sin 82sin 82cos 2⎰---++=dx xe x e x e x x x 2sin 162sin 82cos 2222,所以 C xx e dx x e x x ++-=--⎰)2sin 42(cos 1722sin 22.8. ⎰dx xx 2cos ;解 C xx x dx x x x x xd dx x x ++=-==⎰⎰⎰2cos 42sin 22sin 22sin 22sin 22cos .9. ⎰xdx x arctan 2; 解 ⎰⎰⎰+⋅-==dx x x x x xdx xdx x 233321131arctan 31arctan 31arctan ⎰⎰+--=+-=2232223)111(61arctan 31161arctan 31dx xx x dx x x x x C x x x x +++-=)1ln(6161arctan 31223.10. ⎰xdx x 2tan解 ⎰⎰⎰⎰⎰+-=-=-=x xd x xdx xdx x dx x x xdx x tan 21sec )1(sec tan 2222C x x x x xdx x x x +++-=-+-=⎰|cos |ln tan 21tan tan 2122.11. ⎰xdx x cos 2;解 ⎰⎰⎰⎰+=⋅-==x xd x x xdx x x x x d x xdx x cos 2sin 2sin sin sin cos 2222C x x x x x xdx x x x x +-+=-+=⎰sin 2cos 2sin cos 2cos 2sin 22. 12. ⎰-dt te t 2;解 ⎰⎰⎰----+-=-=dt e te tde dt te t t tt 2222212121 C t e C e te t t t ++-=+--=---)21(214121222.13. ⎰xdx 2ln ;解 ⎰⎰⎰-=⋅⋅-=xdx x x dx xx x x x xdx ln 2ln 1ln 2ln ln 222C x x x x x dx x x x x x x ++-=⋅+-=⎰2ln 2ln 12ln 2ln 22.14. ⎰xdx x x cos sin ; 解 ⎰⎰⎰⎰+-=-==xdx x x x xd xdx x xdx x x 2cos 412cos 412cos 412sin 21cos sin C x x x ++-=2sin 812cos 41.15. ⎰dx xx 2cos 22; 解 ⎰⎰⎰⎰-+=+=+=xdx x x x x x d x x dx x x dx x x sin sin 2161sin 2161)cos 1(212cos 2323222⎰⎰-++=++=xdx x x x x x x xd x x x cos cos sin 2161cos sin 21612323C x x x x x x +-++=sin cos sin 216123.16. ⎰-dx x x )1ln(; 解 ⎰⎰⎰-⋅--=-=-dx x x x x dx x dx x x 1121)1ln(21)1ln(21)1ln(222 ⎰-⋅++--=dx x x x x )111(21)1ln(212C x x x x x +-----=)1ln(212141)1ln(2122.17. ⎰-xdx x 2sin )1(2;解 ⎰⎰⎰⋅+--=--=-xdx x x x x d x xdx x 22cos 212cos )1(212cos )1(212sin )1(222 ⎰+--=x xd x x 2sin 212cos )1(212⎰-+--=xdx x x x x 2sin 212sin 212cos )1(212C x x x x x +++--=2cos 412sin 212cos )1(212.18. ⎰dx x x23ln ;解⎰⎰⎰⎰+-=+-=-=xdx xx x x d x x x x xd dx x x22333323ln 13ln 1ln 1ln 11ln ln⎰⎰+--=--=x d x x x x x x xd x x 22323ln 13ln 3ln 11ln 3ln 1⎰⎰---=+--=x xd x x x x dx x xx x x x 1ln 6ln 3ln 1ln 16ln 3ln 123223⎰+---=dx xx x x x x x 22316ln 6ln 3ln 1C x x x x x x x +----=6ln 6ln 3ln 123.19. ⎰dx e x3;解 ⎰⎰⎰==t t xde t dt e t t x dx e223333令⎰⎰-=-=t t t t tde e t dt te e t 636322 ⎰+-=dt e te e t t t t 6632 C e te e t t t t ++-=6632 C x x ex ++-=)22(33323.20. ⎰xdx ln cos ; 解 因为⎰⎰⋅⋅+=dx xx x x x xdx 1ln sin ln cos ln cosdx xx x x x x x xdx x x 1ln cos ln sin ln cos ln sin ln cos ⋅⋅-+=+=⎰⎰⎰-+=xdx x x x x ln cos ln sin ln cos , 所以 C x x xxdx ++=⎰)ln sin ln (cos 2ln cos .21. ⎰dx x 2)(arcsin ;解 ⎰⎰-⋅⋅-=dx xx x x x dx x 22211arcsin 2)(arcsin )(arcsin⎰-+=221arcsin 2)(arcsin x xd x x ⎰--+=dx x x x x 2arcsin 12)(arcsin 22 C x x x x x +--+=2arcsin 12)(arcsin 22. 22. ⎰xdx e x 2sin . 解 ⎰⎰⎰-=-=xdx e e dx x e xdx e xx x x 2cos 2121)2cos 1(21sin 2, 而 dx x e x e xde xdx e x x x x ⎰⎰⎰+==2sin 22cos 2cos 2cos⎰⎰-+=+=xdx e x e x e de x x e x x x x x 2cos 42sin 22cos 2sin 22cos ,C x x e xdx e x x ++=⎰)2sin 22(cos 512cos ,所以 C x x e e xdx e x x x ++-=⎰)2sin 22(cos 10121sin 2.习题4-4求下列不定积分:1. dx x x ⎰+33;解 dx x x x x dx x x dx x x ⎰⎰⎰+-+-+=+-+=+327)93)(3(327273233⎰⎰+-+-=dx x dx x x 3127)93(2C x x x x ++-+-=|3|ln 279233123.2. ⎰-++dx x x x 103322;解 C x x x x d x x dx x x x +-+=-+-+=-++⎰⎰|103|ln )103(1031103322222.3. ⎰--+dx xx x x 3458;解 ⎰⎰⎰--++++=--+dx x x x x dx x x dx x x x x 3223458)1(8⎰⎰⎰--+-+++=dx x dx x dx x x x x 13148213123C x x x x x x +--+-+++=|1|ln 3|1|ln 4||ln 8213123.4. ⎰+dx x 133;解⎰⎰⎰+-⋅++--⋅-+=+-+-++=+dx x x x x x x dx x x x x dx x )11231122111()1211(132223⎰⎰-+-++-+--+=)21()23()21(123)1(1121|1|ln 2222x d x x x d x x xC x x x x +-++-+=312arctan31|1|ln2. 5. ⎰+++)3)(2)(1(x x x xdx;解dx x x x x x x xdx )331124(21)3)(2)(1(+-+-+=+++⎰⎰C x x x ++-+-+=|)1|ln |3|ln 3|2|(ln 21.6. ⎰-++dx x x x )1()1(122;解 ⎰⎰+--⋅++⋅=-++dx x x x dx x x x ])1(111211121[)1()1(1222 C x x x +++-+-=11|1|ln 21|1|ln 21C x x +++-=11|1|ln 212.7. dx x x )1(12+⎰; 解 C x x dx x x x dx x x ++-=+-=+⎰⎰)1ln(21||ln )11()1(1222. 8. ⎰++))(1(22x x x dx;解⎰⎰+⋅-++⋅-=++dx x x x x x x x dx )112111211())(1(222⎰++-+-=dx x x x x 1121|1|ln 21||ln 2⎰⎰+-+-+-=dx x dx x x x x 11211241|1|ln 21||ln 22C x x x x +-+-+-=arctan 21)1ln(41|1|ln 21||ln 2.9. ⎰+++)1)(1(22x x x dx; 解dx x xx x x x x x dx )111()1)(1(2222⎰⎰+-+++=+++)1ln(21112111221222+-++++++=⎰⎰x dx x x x x x ⎰++++-++=dx x x x x x 1121)1ln(21|1|ln 21222C x x x x ++++-++=312arctan 33)1ln(21|1|ln 2122. 10. ⎰+dx x 114;解dx x x x x dx x ⎰⎰+-++=+)12)(12(111224⎰⎰+-+-++++=dx x x x dx x x x 12214212214222⎰⎰+----++++=dx x x x dx x x x 1222)22(21421222)22(214222 )1212(41]12)12(12)12([82222222⎰⎰⎰⎰+-+++++-+--++++=x x dxx x dx x x x x d x x x x d C x x x x x x +-++++-++=)12arctan(42)12arctan(42|1212|ln 8222. 11. ⎰++--dx x x x 222)1(2; 解 ⎰⎰⎰++-++-=++--dx x x dx x x x dx x x x 11)1(1)1(2222222 ⎰⎰⎰++-++-+++=dx x x dx x x dx x x x 11)1(123)1(122122222 ⎰⎰++-++-++⋅-=dx x x dx x x x x 11)1(12311212222, 因为)312arctan(32)312()312(11321122+=+++=++⎰⎰x x d x dx x x , 而⎰⎰++=++dx x dx x x 22222])23()21[(1)1(1由递推公式 ⎰⎰--+-++-=+])()32()([)1(21)(122122222n n n a x dxn a x x n a a x dx ,得⎰⎰++=++dx x dx x x 22222])23()21[(1)1(1312arctan 323211231)1121()23(212222+⋅++++⋅=++++++=⎰x x x x x x dx x x x , 所以 ⎰++--dx x x x 222)1(2C x x x x x x x ++-+-+++-++⋅-=312arctan 32312arctan 3211221112122C x x x x ++-+++-=312arctan34112.12. ⎰+x dx2sin 3;解⎰⎰⎰+=-=+x d x dx x x dx tan 3tan 41cos 41sin 3222C x x d x +=+=⎰3tan 2arctan321tan )23(tan 14122.13.⎰+dx x cos 31;解 ⎰⎰⎰+=+=+)2sec 1(2cos )2(2cos 121cos 31222x x x d x dx dx x ⎰+=+=C x x x d 22tanarctan 212tan 22tan 2. 或⎰⎰+⋅++=+du u u u x u dxx 221212312tancos 31令 C xC u du u +=+=+=⎰22tan arctan212arctan21)2(122. 14.⎰+dx x sin 21;解 ⎰⎰⎰+=+=+)2cot 2(csc 2sin )2(2cos 2sin 22sin 2122x x x x d x x dx dx x⎰⎰+++-=++-=222)23()212(cot )212(cot 12cot 2cot )2(cot x x d x x x dC x ++-=312cot 2arctan 32. 或⎰⎰+⋅++=+du u u u x u dxx 221212212tansin 21令 ⎰⎰++=++=du u du u u 222)23()21(111C xC u ++=++=312tan 2arctan 32312arctan 32. 15.⎰++x x dxcos sin 1;解 ⎰⎰⎰+=+=+=++C x x xd x x dx x x dx |2tan |ln 2tan1)2(tan )2tan 1(2cos 21cos sin 12. 或⎰⎰+⋅+-+++=++du u u u u ux u xx dx2222121112112tancos sin 1令C xC u du u ++=++=+=⎰|12tan |ln |1|ln 11. 16.⎰+-5cos sin 2x x dx; 解⎰⎰⎰++=+⋅++--+=+-du u u du u u u u ux u x x dx2231125111412tan5cos sin 222222令C xC u du u ++=++=++=⎰512tan 3arctan 51513arctan 51)35()31(13122. 或⎰⎰+⋅++--+=+-du uu uu u x u x x dx2222125111412tan5cos sin 2令⎰⎰++=++=du u du u u 222)35()31(1312231C xC u ++=++=512tan 3arctan 51513arctan 51. 17. ⎰++dx x 3111;解⎰⎰⎰++-=⋅+=+=++du uu du uu ux dx x )111(33111111233令 C x x x C u u u +++++-+=+++-=)11ln(313)1(23|1|ln 332333322.18.⎰++dx x x 11)(3;解C x x x dx x x dx x x ++-=+-=++⎰⎰232233221]1)[(11)(.19.⎰++-+dx x x 1111;解 ⎰⎰⎰++-=⋅+-=+++-+du u u udu u u u x dxx x )122(221111111令C u u u +++-=|)1|ln 2221(22C x x x +++++-+=)11ln(414)1(. 20.⎰+4x x dx ;解⎰⎰⋅+=+du uu u u x xx dx 324441令C u u u du uu +++-=++-=⎰|1|ln 442)111(42 C x x x +++-=)1ln(4244.21.⎰+-xdxx x 11;解 令u x x=+-11, 则2211u u x +-=, du u u dx 22)1(4+-=,⎰⎰⎰++-=+-⋅-+⋅=+-du uu du u u u u u x dx x x )1111(2)1(41111222222 C u u u +++-=arctan 2|11|ln C xxx x x x ++-+++-+--=11arctan2|1111|ln . 22.⎰-+342)1()1(x x dx.解 令u x x =-+311, 则1133-+=u u x , 232)1(6--=u u dx , 代入得C x x C u du x x dx +-+-=+-=-=-+⎰⎰334211232323)1()1(.总习题四求下列不定积分(其中a , b 为常数):1. ⎰--x x e e dx;解 C e e de e dx e e e e dxx x xx x xxx ++-=---=-⎰⎰⎰-|11|ln 2111122.2. dx x x ⎰-3)1(; 解C x x dx x dx x dx x x+-⋅+-=----=-⎰⎰⎰2323)1(12111)1(1)1(1)1(. 3. ⎰-dx xa x 662(a >0);解 C ax a x a x d x a dx x a x +-+=-=-⎰⎰||ln 61)()()(1313333332323662. 4. ⎰++dx x x xsin cos 1;解 C x x x x d x x dx x x x ++=++=++⎰⎰|sin |ln )sin (sin 1sin cos 1.5. ⎰dx xxln ln ; 解C x x x dx x x x x x x xd dx x x +-⋅=⋅⋅-⋅==⎰⎰⎰ln ln ln ln 1ln 1ln ln ln ln ln ln ln ln ln . 6. ⎰+dx x xx 4sin 1cos sin ; 解 C x x d x x d xx dx x x x +=+=+=+⎰⎰⎰222244sin arctan 21)(sin )(sin 1121sin sin 1sin sin 1cos sin . 7. ⎰xdx 4tan ; 解 xxd x x d xx xdx tan sin tan tan cos sin tan 22244⎰⎰⎰==⎰⎰++-=+=x d x x x d x x tan )1tan 11(tan tan 1tan tan 2224c x x x c x x x ++-=++-=tan tan 31tan arctan tan tan 3133.8. ⎰xdx x x 3sin 2sin sin ; 解 ⎰⎰--=xdx x x xdx x x 3sin )cos 3(cos 213sin 2sin sin ⎰⎰+-=xdx x xdx x 3sin cos 213sin 3cos 21 ⎰⎰++=dx x x x xd )2sin 4(sin 41)3(cos 3cos 61 C x x x +--=2cos 814cos 1613cos 1212. 9. ⎰+)4(6x x dx;解 C x x dx x x x x x dx++-=+-=+⎰⎰)4ln(241||ln 41)41(41)4(6656.10.)0(>-+⎰a dx xa xa ; 解⎰⎰⎰⎰-+-=-+=-+dx xa xdx x a a du x a x a dx x a x a 2222221C x a a xa +--=22arcsin .11.⎰+)1(x x dx ;解C x x C x x x d x x x dx +++=+++=+=+⎰⎰)1ln(2))(1ln(2)(112)1(22.12. ⎰xdx x 2cos ; 解 ⎰⎰⎰+=+=x xd x dx x x x xdx x 2sin 4141)2cos (21cos 22 C x x x x xdx x x x +++=-+=⎰2cos 812sin 41412sin 412sin 414122.13. ⎰bxdx e ax cos ; 解 因为dx bx e a b bx e a bxde a bxdx e ax axax ax ⎰⎰⎰+==sin cos 1cos 1cos dx bx e ab bx e a b bx e a de bx a b bx e a ax ax axax ax ⎰⎰-+=+=cos sin cos 1sin cos 12222,所以 C bx e ab bx e a b a a bxdx e axax ax+++=⎰)sin cos 1(cos 2222C bx b bx a e b a ax +++=)sin cos (122.14.⎰+xedx 1;解⎰⎰⎰⎰+--=-=-=++du u u du u u d u u e e dxx x)1111(112)1ln(11122令.c e e c u u x x +++-+=++-=1111ln |11|ln .15.⎰-122x xdx ;解C t tdt tdt t t t tx x xdx+==⋅⋅=-⎰⎰⎰sin cos tan sec tan sec 1sec 1222令C xx +-=12. 16.⎰-2/522)(x a dx;解⎰⎰⋅=-tdt a t a ta x x a dx cos )cos (1sin )(52/522令⎰⎰+==t d t adt ta tan )1(tan1cos 112444C t at a ++=tan 1tan 31434C xa x a x a x a+-+-⋅=224322341)(31.17.⎰+241x xdx;解tdt t t tx x xdx2424secsec tan 1tan 1⋅⋅=+⎰⎰令⎰⎰==t d t tdt t tsin sin cos sin cos 4243 C t tt d t t ++-=-=⎰sin 1sin 31sin )sin 1sin 1(324 C xx x x ++++-=233213)1(.18.⎰dx x x sin ;解⎰⎰⎰=⋅=tdt t tdt t t t x dx x x sin 22sin sin 2令⎰⎰⋅+-=-=tdt t t t t d t 2cos 2cos 2cos 222⎰⎰-+-=+-=tdt t t t t t td t t sin 4sin 4cos 2sin 4cos 222 C t t t t t +++-=cos 4sin 4cos 22C x x x x x +++-=cos 4sin 4cos 2. 19. ⎰+dx x )1ln(2;解 ⎰⎰+⋅-+=+dx xx x x x dx x 22212)1ln()1ln(⎰+--+=dx x x x )111(2)1ln(22C x x x x ++-+=arctan 22)1ln(2. 20.⎰dx x x32cos sin ;解 x d x xx x d x x dx x xtan )1tan tan (tan tan cos sin cos sin 2232⎰⎰⎰+-== C x x ++-=)1ln(tan 21tan 2122.21. ⎰dx x arctan ;解 x d xx x x dx x ⎰⎰+⋅-=11arctan arctan x d xx x ⎰+⋅--=)111(arctan C x x x x ++-=arctan arctan C x x x +-+=arctan )1(. 22.dx xx⎰+sin cos 1;解C x x x d x dx x x xdx x x +-===+⎰⎰⎰|2cot 2csc |ln 222csc 22cos2sin 22cos2sin cos 1. 23.⎰+dx x x 283)1(;解 C x x x dx x dx x x +++⋅=+=+⎰⎰]arctan 1[2141)1(141)1(484428283. 提示: 已知递推公式⎰⎰--+-++-=+])()32()([)1(21)(122122222n n n a x dxn a x x n a a x dx .24. ⎰++dx x x x 234811; 解 ⎰⎰⎰++=++=++dt t t t t x dx x x x dx x x x 234123412322444884811令 ⎰⎰+++-=+++-=dt t t dt t t t )11241(41)23231(412 C t t t ++++-=|1|ln 41|2|ln 41C x x x ++++=21ln 414444. 25.⎰-416x dx; 解⎰⎰⎰++-=+-=-dx xx dx x x x dx)4141(81)4)(4(11622224C xx x ++-+=)2arctan 21|22|ln 41(81C x x x ++-+=2arctan 161|22|ln 321. 26.dx x x⎰+sin 1sin ;解 ⎰⎰⎰-=--=+dx xxx dx x x x dx x x 222cos sin sin sin 1)sin 1(sin sin 1sinC x x x dx x x x++-=+-=⎰tan sec )cos 11cos sin (22.27. dx x xx ⎰++cos 1sin ;解⎰⎰⎰⎰+=+=++dx x xdx x x dx x x x dx x x x 2cossin 212cos 212cos 2sin cos 1sin 222 ⎰⎰+=dx xx xd 2tan 2tanC xx dx x dx x x x +=+-=⎰⎰2tan 2tan 2tan 2tan .28. ⎰-dx x x x x ex23sin cos sin cos ;解 ⎰⎰⎰⋅⋅-⋅⋅=-xdx x e xdx e x dx xx x x e x x xsec tan cos cos sin cos sin sin 23sin⎰⎰-=x d e x d xe x x sec sin sin sin ⎰⎰+⋅-=x x x xde e x xde sin sin sin sec sec⎰⎰⋅⋅+⋅--=xdx e x e x dx e xe x x x x cos sec sec sin sin sin sin C e x xe x x +⋅-=sin sin sec .29.⎰+dx x x x x)(33;解dt t t dt t t t t t t x dxx x x x)111(66)()(52362633+-=⋅+=+⎰⎰⎰令C x xC t t ++=++=66)1(ln 1ln6. 30.⎰+2)1(x e dx;解⎰⎰⎰---=-⋅=++dt t t t dt t tt e e dxx x )1111(1111)1(222令 C tt t ++--=1ln )1ln(C e e x xx ++++-=11)1ln(.31. ⎰+-+dx e e e e x x xx 1243;解)()(1111222243x xx x x x xx x x x x e ed e e dx e e e e dx e e e e ------+=+-+=+-+⎰⎰⎰C e e x x +-=-)arctan( C x +=)sh 2arctan(. 32.⎰+dx e xe xx 2)1(;解⎰⎰⎰+-=++=+11)1()1()1(22x x x x xe xde d e x dx e xe⎰⎰+++-=+++-=x x x x x x de e e e x dx e e x )1(11111⎰+-++-=x x xx de e e e x )111(1C e e e x x x x ++-++-=)1ln(ln 1C e e xe x x x ++-+=)1ln(1.33. ⎰++dx x x )1(ln 22;解 dx x x x x x x dx x x ])1([ln )1(ln )1(ln 222222'++⋅-++=++⎰⎰ ⎰+⋅++-++=dx xx x x x x x 22221)1ln(2)1(ln⎰+++-++=22221)1ln(2)1(ln x d x x x x x⎰'++⋅+++++-++=dx x x x x x x x x x ])1[ln(12)1ln(12)1(ln 222222 ⎰++++-++=dx x x x x x x 2)1ln(12)1(ln 2222 C x x x x x x x +++++-++=2)1ln(12)1(ln 2222.34.⎰+dx x x2/32)1(ln ; 解 因为⎰⎰⎰++=+==⋅=+C xx C t tdt tdt t tx dx x 2232/321sin cos secsec 1tan )1(1令,所以⎰⎰⎰⋅+-+=+=+dx xx xx x x x x xd dx x x111ln )1(ln )1(ln 2222/32 C x x x x x +++-+=)1ln(1ln 22.35. ⎰-xdx x arcsin 12;解⎰⎰⎰+=⋅=-dt t t t tdt t t x xdx x )2cos (21cos sin arcsin 122令 ⎰⎰-+=+=tdt t t t t t t 2sin 412sin 41412sin 414122C t t t t +++=2cos 812sin 41412122241arcsin 121)(arcsin 41C x x x x x +--+=.36.⎰-dx xx x 231arccos ;解⎰⎰⎰--=-⋅=-2222231arccos 1arccos 1arccos x xd x dx x x x x dx x x x⎰'⋅-+--=dx x x x x x x )arccos (1arccos 12222 ⎰-⋅-⋅-+--=dx xx x x x x x x )11arccos 2(1arccos 122222⎰⎰-⋅-+--=dx x xdx x x x x x 2222arccos 12arccos 1⎰-----=32322)1(arccos 3231arccos 1x xd x x x x⎰-------=dx x x x x x x x )1(32arccos )1(3231arccos 1232322。

第四章不定积分习题课-带解答

第四章不定积分习题课-带解答

. 1 .第四章 不定积分 习题课1.原函数 若)()(x f x F =',则称)(x F 为)(x f 的一个原函数. 若)(x F 是)(x f 的一个原函数,则)(x f 的所有原函数都可表示为C x F +)(.2.不定积分 )(x f 的带有任意常数项的原函数叫做)(x f 的不定积分,记作⎰dx x f )(.若)(x F 是)(x f 的一个原函数,则C x F dx x f +=⎰)()(, 3.基本性质1))(])([x f dx x f ='⎰,或dx x f dx x f d )(])([=⎰; 2)C x F x dF +=⎰)()(,或C x F dx x F +='⎰)()(; 3)⎰⎰⎰+=+dx x g dx x f dx x g x f )()()]()([; 4)⎰⎰=dx x f k dx x kf )()(,(0≠k ,常数).4.基本积分公式(20个)原函数与不定积分是本章的两个基本概念,也是积分学中的两个重要概念。

不定积分的运算是积分学中最重要、最基本的运算之一. 5. 例题例1 已知)(x f 的一个原函数是x 2ln ,求)(x f '.解 x x x x f 1ln 2)(ln )(2⋅='=, )ln 1(2ln 2)(2x x x x x f -='⎪⎭⎫ ⎝⎛='.. 2 .例2 设C xdx x f +=⎰2sin 2)(,求)(x f . 解 积分运算与微分运算互为逆运算,所以2cos ]2sin2[])([)(x C x dx x f x f ='+='=⎰.例3 若)(x f 的一个原函数是x 2,求⎰'dx x f )(.解 因为x 2是)(x f 的原函数,故2ln 2)2()(x x x f ='=,所以C C x f dx x f x +=+='⎰2ln 2)()(.例4 求不定积分⎰-dx e x x 3.解 被积函数为两个指数函数的乘积,用指数函数的性质,将其统一化为一个指数函数,然后积分.即⎰⎰--=dx e dx e xxx)3(31C e e x+=--)3()3ln(111C e x x +-=-3ln 13.例5 求不定积分⎰'⎪⎭⎫⎝⎛dx x x 2sin . 解 利用求导运算与积分运算的互逆性,得C x x dx x x +='⎪⎭⎫⎝⎛⎰22sin sin .例6 求不定积分⎰⋅dx xxx 533.解 先用幂函数的性质化简被积函数,然后积分.C x dx x dx xdx xxx +===⋅⎰⎰⎰-+15261511533115332615.. 3 .例7 求不定积分⎰++++dx xx x x x 32313. 解 分子分母都是三次多项式函数,被积函数为假分式,先分解为多项式与真分式的和,再积分,也即⎰⎰+++++=++++dx xx xx x x dx x x x x x 3233232113⎰⎪⎭⎫ ⎝⎛+++=dx x x 12112C x x x +++=arctan 2||ln .例8 求不定积分⎰-dx x2cos 11.解 用三角恒等式x x 2sin 212cos -=将被积函数变形,然后积分.⎰⎰=-dxxdx x 2sin 212cos 11 ⎰=xdx 2csc 21C x +-=cot 21.例9 求不定积分⎰+dx x x )sec (tan 22.解 用三角恒等式1sec t an 22-=x x 将被积函数统一化为x 2sec 的函数,再积分.⎰⎰+-=+dx x x dx x x )sec 1(sec )sec (tan2222⎰-=dx x )1sec 2(2C x x +-=t a n2.例10 求不定积分⎰++dx x x x )1(21222. 解⎰⎰+++=++dx x x x x dx x x x )1(1)1(212222222⎰⎪⎭⎫ ⎝⎛++=dx x x 22111C x x +-=1arctan .. 4 .例11 求不定积分⎰+dx x x )1(124.解 类似于例10,拆项后再积分⎰⎰++--+=+dx x x x x x x dx x x )1(1)1(124442224⎰⎪⎭⎫⎝⎛++-=dx x xx2241111C x xx +++-=arctan 1313.例12 一连续曲线过点)3,(2e ,且在任一点处的切线斜率等于x2,求该曲线的方程.解 设曲线方程为)(x f y =,则xx f 2)(=',积分得 C x dx xx f +==⎰ln 22)(. (曲线连续,过点)3,(2e ,故0>x ) 将3)(2=e f 代入,得C e +=2ln 23,解出1-=C .所以,曲线方程为1ln 2-=x y .例13 判断下列计算结果是否正确1)C x dx xx +=+⎰322)(arctan 311)(arctan ; 2)()C e dx e x x ++=+⎰1ln 11. 解 1)2231)(arctan )(arctan 31x x C x +='⎥⎦⎤⎢⎣⎡+,所以计算结果正确. 2)[]xx x xe e e C e +≠+='++111)1ln(, 计算结果不正确,即()C e dx ex x++≠+⎰1ln 11.. 5 .以下积分都要用到“凑微分”.请仿照示例完成其余等式 1)0≠a 时,⎰⎰++=+)()(1)(b ax d b ax f adx b ax f . 2)⎰⎰=x d x f xdx x f sin )(sin cos )(sin . 3)=⎰xdx x f sin )(cos 4)⎰=dx xx f 1)(ln5)0>a ,1≠a 时,=⎰dx a a f x x )( 6)0≠μ时,1()f x x dx μμ-=⎰ 7)=⎰xdx x f 2sec )(tan 8)=⎰xdx x f 2csc )(cot 9)=-⎰dx xx f 211)(arcsin10)=+⎰dx xx f 211)(arctan 11)='⎰dx x f x f )()( 例14 求⎰dx xx xcos sin tan ln .解⎰⎰⋅=xdx x x dx x x x 2sec tan tan ln cos sin tan ln ⎰=x d xxtan tan tan ln⎰=)tan (ln tan ln x d x ()C x +=2tan ln 21.. 6 .注 由于被积函数中含有x t a n ln ,表明0t a n >x ,故x d x d xt a nln tan tan 1=. 例15 求下列不定积分 1)⎰+dx xx x ln 1ln ; 2)⎰+dx x x 100)1(.解 1)⎰⎰⋅+-+=+dx xx x dx xx x 1ln 111ln ln 1ln (请注意加1、减1的技巧) ⎰+⎪⎪⎭⎫⎝⎛+-+=)ln 1(ln 11ln 1x d x x C x x ++-+=2123)ln 1(2)ln 1(32.2)dx x x dx x x 100100)1()11()1(+-+=+⎰⎰)1()1()1()1(100101++-++=⎰⎰x d x x d x C x x ++-+=101102)1(1011)1(1021. 例16 设C x dx x f +=⎰2)(,不求出)(x f ,试计算不定积分⎰-dx x xf )1(2. 解 2221(1)(1)(1)2xf x dx f x d x -=---⎰⎰ (将21x -看作变量u ) C x +--=22)1(21.例17 设x e x f -=)(,求⎰'dx xx f )(ln . 解 先凑微分,然后利用C u f u d u f +='⎰)()(写出计算结果.即⎰⎰'='x d x f dx x x f ln )(ln )(ln C x f +=)(ln C e x +=-ln C x+=1.. 7 .例18 计算不定积分⎰+dx x x )1(124.【提示】 分母中有k x 时,考虑用“倒代换”tx 1=.解 设t x 1=,则dt tdx 21-=, 4224211111(1)1dx dt x x t t t ⎛⎫=- ⎪+⎛⎫⎝⎭+ ⎪⎝⎭⎰⎰⎰+-=dt t t 241⎰++--=dt t t 24111 ⎰⎪⎭⎫ ⎝⎛++--=dt t t 221113arctan 3t t t C =-+-+ 3111a r c t a n 3C x x x=-+-+. 例19 求不定积分⎰+dx x x )4(16.解⎰⎰+=+dx x x x dx x x )4()4(16656⎰+=)()4(161666x d x x()⎰+=dt t t tx41616⎰⎪⎪⎭⎫ ⎝⎛+-=dt t t 411241 1ln 244tC t =++ 661ln 244x C x =++. 分部积分⎰⎰⎰⎰'-=-'vdx u uv vduuv udvdxv u vu 、交换凑微分.目的,使公式右边的积分u vdx '⎰要比左边的积分⎰'dx v u 容易计算,关键在于正确地选取u 和凑出. 例 20 求不定积分⎰dx xxarcsin .解一 这是一道综合题,先作变量代换,再分部积分.令x t =,. 8 .则2t x =,tdt dx 2=,⎰⎰=tdt t tdx xx2arcsin arcsin ⎰=v ut d t arcsin 2()⎰-=t d t t t arcsin arcsin 2⎰--=dttt t t 212arcsin 222arcsin (1)t t t =+-Ct t t +-+=212arcsin 2C x x x +-+=12arcsin 2.解二 先凑微分,再代换,最后分部积分,即⎰⎰=xd x dx xxarcsin 2arcsin ⎰=dt t tx arcsin 2⎰--=dt tt t t 212arcsin 2C t t t +-+=212a r c s i n 2C x xx +-+=12a r c s i n 2.例 21 已知)(x f 的一个原函数是2x e-,求⎰'dx x f x )(.【提 示】 不必求出)(x f ',直接运用分部积分公式. 解 由已知条件,)(x f ()'=-2x e,且⎰dx x f )(C ex +=-2,故⎰⎰=')()(x xdf dx x f x ⎰-=dx x f x xf )()(()C ee x x x+-'=--22C e e x x x +--=--2222.. 9 .例 22 设x x x f ln )1()(ln +=',求)(x f .解 先求出)(x f '的表达式.设t x =ln ,则t e x =,)1()(+='t e t t f .⎰+=dt e t t f t )1()(⎰⎰+=tdt tde t22t dt e te tt+-=⎰C t e te tt ++-=22,所以 C x e xe x f xx++-=2)(2.例23 求不定积分5432x x dx x x+--⎰. 解 将分子凑成23332()()2x x x x x x x x x x -+-+-++-,把分式化为多项式与真分式的和542233221x x x x x x x x x x+-+-=+++--; 再将真分式232x x x x+--化为最简分式的和,232(2)(1)22(1)21(1)(1)(1)(1)1x x x x x x x x x x x x x x x x x x +-+-++-====--+-+++, 于是5423221(1)1x x dx x x dx x x x x +-=+++--+⎰⎰ 322ln ln 132x x x x x C =+++-++.. 10 .例24 求不定积分⎰+-dx x x x )1(188.解=+-⎰dx x x x )1(188⎰+-dx x x x x 7888)1(1⎰+-=)()1(1818888x d x x x ⎰+-=du u u u )1(181 (换元,令8x u =) ⎰⎪⎭⎫⎝⎛+-=du u u 12181 C u u ++-=)1ln(41ln 81()C x x ++-=881ln 41ln 81 ()C x x ++-=81ln 41||ln . 例25 求不定积分⎰+dx xsin 11. 解⎰⎰--=+dx x x dx x 2sin 1sin 1sin 11⎰-=dx x x2cos sin 1⎰-=dx x x x )sec tan (sec 2C x x +-=sec tan . 例26 求不定积分⎰+++++dx x x x)11()1(11365.解 为同时去掉三个根式,设t x =+61,则16-=t x ,dt t dx 56=,dt t t t t dx x x x52533656)1(1)11()1(11++=+++++⎰⎰32161t t t dt t+-+=+⎰ ⎰⎪⎭⎫ ⎝⎛+++-=dt t t t t 221116 ()Ct t t +++-=arctan 61ln 3322()3311ln 313x x ++-+=C x +++61arctan 6.。

高等数学课后习题及参考答案(第四章)

高等数学课后习题及参考答案(第四章)

高等数学课后习题及参考答案(第四章)习题4-11. 求下列不定积分:(1)⎰dx x 21;解 C x C x dx x dx x +-=++-==+--⎰⎰112111222.(2)⎰dx x x ; 解 C x x C x dx x dx x x +=++==+⎰⎰212323521231. (3)⎰dx x1;解C x C x dx xdx x+=++-==+--⎰⎰21211112121. (4)⎰dx x x 32; 解 C x x C x dx x dx x x+=++==+⎰⎰3313737321031371. (5)⎰dx xx 21;解C x x C x dx xdx xx +⋅-=++-==+--⎰⎰12312511125252. (6)dx x m n ⎰; 解C x m n m C x mn dx x dx x mn m m nm nmn++=++==++⎰⎰111.(7)⎰dx x 35;解 C x dx x dx x +==⎰⎰4334555.(8)⎰+-dx x x )23(2;解 C x x x dx dx x dx x dx x x ++-=+-=+-⎰⎰⎰⎰2233123)23(2322.(9)⎰ghdh 2(g 是常数);解C ghC h gdh hgghdh +=+⋅==⎰⎰-22212122121. (10)⎰-dx x 2)2(;解 C x x x dx dx x dx x dx x x dx x ++-=+-=+-=-⎰⎰⎰⎰⎰423144)44()2(23222.(11)⎰+dx x 22)1(;解 C x x x dx dx x dx x dx x x dx x +++=++=++=+⎰⎰⎰⎰⎰3524242232512)12()1(.(12)dx x x ⎰-+)1)(1(3;解 ⎰⎰⎰⎰⎰⎰-+-=-+-=-+dx dx x dx x dx x dx x x x dx x x 23212323)1()1)(1(C x x x x +-+-=25233523231.(13)⎰-dx xx 2)1(;解C x x x dx x x xdx xx x dx xx ++-=+-=+-=-⎰⎰⎰-2523212321212252342)2(21)1(. (14)⎰+++dx x x x 1133224; 解C x x dx x x dx x x x ++=++=+++⎰⎰arctan )113(1133322224.(15)⎰+dx x x 221;解⎰⎰⎰+-=+-=+-+=+C x x dx xdx xx dx x x arctan )111(111122222.(16)⎰+dx xe x )32(;解 C x e dx xdx e dx x e x x x ++=+=+⎰⎰⎰||ln 32132)32(.(17)⎰--+dx xx )1213(22;解 ⎰⎰⎰+-=--+=--+C x x dx xdx x dx xx arcsin 2arctan 3112113)1213(2222.(18)dx xe e x x⎰--)1(;解 C x edx xe dx xe e xxx x+-=-=-⎰⎰--21212)()1(.(19)⎰dx e x x 3;解 C e C e e dx e dx e xx x xxx++=+==⎰⎰13ln 3)3ln()3()3(3.(20)⎰⋅-⋅dx xxx 32532; 解 C x C x dx dx x xx xxx+--=+-=-=⋅-⋅⎰⎰)32(3ln 2ln 5232ln )32(52])32(52[32532. (21)⎰-dx x x x )tan (sec sec ;解 ⎰⎰+-=-=-C x x dx x x x dx x x x sec tan )tan sec (sec )tan (sec sec 2.(22)⎰dx x2cos 2;解 C x x dx x dx x dx x ++=+=+=⎰⎰⎰)sin (21)cos 1(212cos 12cos 2.(23)⎰+dx x 2cos 11;解 ⎰⎰+==+C x dx xdx x tan 21cos 212cos 112.(24)⎰-dx xx xsin cos 2cos ;解 ⎰⎰⎰+-=+=--=-C x x dx x x dx xx xx dx x x x cos sin )sin (cos sin cos sin cos sin cos 2cos 22.(25)⎰dx x x x22sin cos 2cos ;解 ⎰⎰⎰+--=-=-=C x x dx xx dx x x x x dx x x x tan cot )cos 1sin 1(sin cos sin cos sin cos 2cos 22222222.(26)⎰-dx x x x)11(2;解 ⎰⎪⎭⎫ ⎝⎛-dx x x x 211⎰++=-=--C x x dx x x 41474543474)(.2. 一曲线通过点(e 2, 3), 且在任一点处的切线的斜率等于该点横坐标的倒数, 求该曲线的方程.解 设该曲线的方程为y =f (x ), 则由题意得xx f y 1)(='=',所以 C x dx xy +==⎰||ln 1.又因为曲线通过点(e 2, 3), 所以有=3-2=1 3=f (e 2)=ln|e 2|C =2C ,C =3-2=1. 于是所求曲线的方程为 y =ln|x | 1.3. 一物体由静止开始运动, 经t 秒后的速度是3t 2(m/s ), 问 (1)在3秒后物体离开出发点的距离是多少? (2)物体走完360m 需要多少时间?解 设位移函数为s =s (t ), 则s '=v =3 t 2, C t dt t s +==⎰323. 因为当t =0时, s =0, 所以C =0. 因此位移函数为s =t 3. (1)在3秒后物体离开出发点的距离是s =s (3)=33=27.(2)由t 3=360, 得物体走完360m 所需的时间11.73603≈=t s. 4. 证明函数x e 221, e x sh x 和e x ch x 都是x x e xsh ch -的原函数.证明 x x xx x x x x x e ee e e e e e x x e 222sh ch ==--+=----. 因为x x e e 22)21(=', 所以x e 221是x x e xsh ch -的原函数.因为(e x sh x )'=e x sh x e x ch x =e x (sh x ch x )x xx x x x e e e e e e 2)22(=++-=--, 所以e x sh x 是xx e xsh ch -的原函数.因为(e x ch x )'=e x ch x e x sh x =e x (ch x sh x )x xx x x x e e e e e e 2)22(=-++=--, 所以e xch x 是xx e x sh ch -的原函数.习题4-21. 在下列各式等号右端的空白处填入适当的系数, 使等式成立(例如: )74(41+=x d dx :(1) dx = d (ax );解dx = a 1d (ax ).(2) dx = d (7x -3);解dx = 71d (7x -3).(3) xdx = d (x 2); 解xdx = 21 d (x 2).(4) x d x = d (5x 2);解x d x = 101d (5x 2).(5))1( 2x d xdx -=;解 )1( 212x d xdx --=.(6)x 3dx = d (3x 4-2);解x 3dx = 121d (3x 4-2).(7)e 2x dx = d (e 2x ); 解e 2x dx = 21 d (e 2x ).(8))1( 22x x ed dxe --+=;解 )1( 2 22x xe d dx e --+-=.(9))23(cos 23sin x d xdx =;解 )23(cos 32 23sin x d xdx -=.(10)|)|ln 5( x d xdx=; 解 |)|ln 5( 51x d x dx =. (11)|)|ln 53( x d xdx-=; 解|)|ln 53( 51x d x dx --=. (12))3(arctan 912x d x dx=+; 解 )3(arctan 31912x d x dx =+. (13))arctan 1( 12x d xdx -=-;解)arctan 1( )1( 12x d xdx --=-.(14))1( 122x d x xdx -=-.解)1( )1( 122x d x xdx --=-.2. 求下列不定积分(其中a , b , ω, ϕ均为常数): (1)⎰dt e t 5; 解 C e x d e dt e xx t +==⎰⎰55551551. (2)⎰-dx x 3)23(; 解 C x x d x dx x +--=---=-⎰⎰433)23(81)23()23(21)23(. (3)⎰-dx x 211; 解C x x d x dx x +--=---=-⎰⎰|21|ln 21)21(21121211.(4)⎰-332xdx ;解C x C x x d x xdx+--=+-⋅-=---=-⎰⎰-3232313)32(21)32(2331)32()32(3132. (5)⎰-dx e ax bx)(sin ;解C be ax ab x d e b ax d ax a dx e ax b xb xbx+--=-=-⎰⎰⎰cos 1)()(sin 1)(sin .(6)⎰dt tt sin ;解⎰⎰+-==C t t d t dt tt cos 2sin 2sin .(7)⎰⋅xdx x 210sec tan ;解 ⎰⋅xdx x 210sec tan C x x xd +==⎰1110tan 111tan tan . (8)⎰xx x dxln ln ln ;解C x x d x x d x x x x x dx +===⎰⎰⎰|ln ln |ln ln ln ln ln 1ln ln ln ln 1ln ln ln .(9)⎰+⋅+dx xx x 2211tan ;解 ⎰+⋅+dx x x x 2211tan 2222211cos 1sin 11tan x d x x x d x +++=++=⎰⎰C x x d x ++-=++-=⎰|1cos |ln 1cos 1cos 1222.(10)⎰xx dxcos sin ;解 C x x d xdx x x x x dx +===⎰⎰⎰|tan |ln tan tan 1tan sec cos sin 2. (11)⎰-+dx e e xx 1;解 ⎰-+dx e e xx 1C e de edx e e x x xx x +=+=+=⎰⎰arctan 11122.(12)⎰-dx xe x 2; 解 .21)(212222C e x d e dx xe x x x +-=--=---⎰⎰ (13)⎰⋅dx x x )cos(2;解 C x x d x dx x x +==⋅⎰⎰)sin(21)()cos(21)cos(2222. (14)⎰-dx xx 232;解C x C x x d x dx x x+--=+--=---=-⎰⎰-2212221223231)32(31)32()32(6132.(15)⎰-dx xx 4313; 解⎰⎰+--=---=-C x x d x dx x x |1|ln 43)1(11431344443.(16)⎰++dt t t ))sin((cos 2ϕωϕω; 解 C t t d t dt t t ++-=++-=++⎰⎰)(cos 31)cos()(cos 1)sin()(cos 322ϕωωϕωϕωωϕωϕω. (17)⎰dx x x3cos sin ; 解 C x C x x xd dx xx +=+=-=--⎰⎰2233sec 21cos 21cos cos cos sin . (18)⎰-+dx x x xx 3cos sin cos sin ; 解 )sin cos (cos sin 1cos sin cos sin 33x x d x x dx x x x x +--=-+⎰⎰ C x x x x d x x +-=--=⎰-3231)cos (sin 23)cos (sin )cos (sin .(19)⎰--dx xx 2491;解dx xx dx xdx xx ⎰⎰⎰---=--22249491491)49(49181)32()32(1121222x d x x d x --+-=⎰⎰C x x +-+=2494132arcsin 21.(20)⎰+dx xx 239; 解 C x x x d xx d x x dx x x ++-=+-=+=+⎰⎰⎰)]9ln(9[21)()991(21)(9219222222223. (21)⎰-dx x 1212;解⎰⎰⎰+--=+-=-dx x x dx x x dx x )121121(21)12)(12(11212 ⎰⎰++---=)12(121221)12(121221x d x x d x C x x C x x ++-=++--=|1212|ln 221|12|ln 221|12|ln 221.(22)⎰-+dx x x )2)(1(1;解C x x C x x dx x x dx x x ++-=++--=+--=-+⎰⎰|12|ln 31|1|ln |2|(ln 31)1121(31)2)(1(1.(23)⎰xdx 3cos ;解 C x x x d x x d x xdx +-=-==⎰⎰⎰3223sin 31sin sin )sin 1(sin cos cos .(24)⎰+dt t )(cos 2ϕω; 解 C t t dt t dt t +++=++=+⎰⎰)(2sin 4121)](2cos 1[21)(cos 2ϕωωϕωϕω. (25)⎰xdx x 3cos 2sin ; 解 ⎰xdx x 3cos 2sin C x x dx x x ++-=-=⎰cos 215cos 101)sin 5(sin 21. (26)⎰dx xx 2cos cos ;解 C x x dx x x dx x x ++=+=⎰⎰21sin 23sin 31)21cos 23(cos 212cos cos .(27)⎰xdx x 7sin 5sin ; 解 C x x dx x x xdx x ++-=--=⎰⎰2sin 4112sin 241)2cos 12(cos 217sin 5sin . (28)⎰xdx x sec tan 3;解 x d x xdx x x xdx x sec tan tan sec tan sec tan 223⎰⎰⎰=⋅=C x x x d x +-=-=⎰sec sec 31sec )1(sec 32.(29)⎰-dx xx2arccos 2110;解C x d x d dx xx xxx+-=-=-=-⎰⎰⎰10ln 210)arccos 2(1021arccos 10110arccos 2arccos 2arccos 22arccos 2.(30)⎰+dx x x x )1(arctan ;解C x x d x x d x xdx x x x +==+=+⎰⎰⎰2)(arctan arctan arctan 2)1(arctan 2)1(arctan .(31)⎰-221)(arcsin xx dx;解C xx d x x x dx+-==-⎰⎰arcsin 1arcsin )(arcsin 11)(arcsin 222.(32)⎰+dx x x x 2)ln (ln 1; 解C xx x x d x x dx x x x+-==+⎰⎰ln 1)ln ()ln (1)ln (ln 122. (33)⎰dx xx xsin cos tan ln ;解⎰⎰⎰=⋅=x d x x xdx x x dx x x x tan tan tan ln sec tan tan ln sin cos tan ln 2C x x d x +==⎰2)tan (ln 21tan ln tan ln .(34)⎰-dx x a x 222(a >0);解⎰⎰⎰⎰-===-dt t a dt t a tdt a t a t a t a x dx xa x 22cos 1sin cos cos sin sin 22222222令, C x a xa x a C t a t a +--=+-=222222arcsin 22sin 421. (35)⎰-12x x dx ;解C x C t dt tdt t t t tx x x dx +=+==⋅⋅=-⎰⎰⎰1arccos tan sec tan sec 1sec 12令.或C x x d x dx xx x x dx +=--=-=-⎰⎰⎰1arccos 111111112222.(36)⎰+32)1(x dx ;解C t tdt t d t tx x dx +==+=+⎰⎰⎰sin cos tan )1(tan 1tan )1(3232令C x x ++=12.(37)⎰-dx xx 92; 解⎰⎰⎰=-=-tdt t d tt t x dx x x 222tan 3)sec 3(sec 39sec 9sec 39令 C x x C t t dt t+--=+-=-=⎰3arccos 393tan 3)1cos 1(322.(38)⎰+xdx 21;解C x x C t t dt t tdt t t x xdx ++-=++-=+-=+=+⎰⎰⎰)21ln(2)1ln()111(11221令.(39)⎰-+211x dx ;解⎰⎰⎰⎰-=+-=+=-+dt tdt t tdt t tx x dx)2sec211()cos 111(cos cos 11sin 1122令 C xxx C t t t C t t +-+-=++-=+-=211arcsin cos 1sin 2tan . (40)⎰-+21x x dx .解⎰⎰⎰+-++=⋅+=-+dt tt tt t t tdt t t tx x x dx cos sin sin cos sin cos 21cos cos sin 1sin 12令C t t t t t d t t dt +++=+++=⎰⎰|cos sin |ln 2121)cos (sin cos sin 12121 C x x x ++-+=|1|ln 21arcsin 212.习题4-3求下列不定积分: 1. ⎰xdx x sin ; 解C x x x xdx x x x xd xdx x ++-=+-=-=⎰⎰⎰sin cos cos cos cos sin .2. ⎰xdx ln ;解 C x x x dx x x x xd x x xdx +-=-=-=⎰⎰⎰ln ln ln ln ln . 3. ⎰xdx arcsin ;解 ⎰⎰-=x xd x x xdx arcsin arcsin arcsin ⎰--=dx xx x x 21arcsinC x x x +-+=21arcsin . 4. ⎰-dx xe x ;解 ⎰⎰⎰----+-=-=dx e xe xde dx xe x x x x C x e C e xe x x x ++-=+--=---)1(. 5. ⎰xdx x ln 2; 解 ⎰⎰⎰-==x d x x x xdx xdx x ln 31ln 31ln 31ln 3332 C x x x dx x x x +-=-=⎰332391ln 3131ln 31.6. ⎰-xdx e x cos ; 解 因为⎰⎰⎰⎰------+=-==xdx e x e xde x e x d e xdx e x x x x x x sin sin sin sin sin cos ⎰⎰-----+-=-=x x x x x xde x e x e x d e x e cos cos sin cos sin⎰-----=xdx e x e x e x x x cos cos sin ,所以 C x x e C x e x e xdx e x x x x +-=+-=----⎰)cos (sin 21)cos sin (21cos .7. ⎰-dx xe x 2sin 2;解 因为⎰⎰⎰-----==x x x x de xx e x d e dx x e 22222cos 22cos 22cos 22sin⎰⎰----+=+=2sin 82cos 22cos 42cos 22222xd e x e dx x e x e x x x x⎰----+=x x x de xx e x e 2222sin 82sin 82cos 2⎰---++=dx xe x e x e x x x 2sin 162sin 82cos 2222,所以 C xx e dx x e x x ++-=--⎰)2sin 42(cos 1722sin 22.8. ⎰dx xx 2cos ;解 C xx x dx x x x x xd dx x x ++=-==⎰⎰⎰2cos 42sin 22sin 22sin 22sin 22cos .9. ⎰xdx x arctan 2; 解 ⎰⎰⎰+⋅-==dx x x x x xdx xdx x 233321131arctan 31arctan 31arctan ⎰⎰+--=+-=2232223)111(61arctan 31161arctan 31dx xx x dx x x x x C x x x x +++-=)1ln(6161arctan 31223.10. ⎰xdx x 2tan解 ⎰⎰⎰⎰⎰+-=-=-=x xd x xdx xdx x dx x x xdx x tan 21sec )1(sec tan 2222C x x x x xdx x x x +++-=-+-=⎰|cos |ln tan 21tan tan 2122.11. ⎰xdx x cos 2;解 ⎰⎰⎰⎰+=⋅-==x xd x x xdx x x x x d x xdx x cos 2sin 2sin sin sin cos 2222C x x x x x xdx x x x x +-+=-+=⎰sin 2cos 2sin cos 2cos 2sin 22. 12. ⎰-dt te t 2;解 ⎰⎰⎰----+-=-=dt e te tde dt te t t tt 2222212121 C t e C e te t t t ++-=+--=---)21(214121222.13. ⎰xdx 2ln ;解 ⎰⎰⎰-=⋅⋅-=xdx x x dx xx x x x xdx ln 2ln 1ln 2ln ln 222C x x x x x dx x x x x x x ++-=⋅+-=⎰2ln 2ln 12ln 2ln 22.14. ⎰xdx x x cos sin ; 解 ⎰⎰⎰⎰+-=-==xdx x x x xd xdx x xdx x x 2cos 412cos 412cos 412sin 21cos sin C x x x ++-=2sin 812cos 41.15. ⎰dx xx 2cos 22; 解 ⎰⎰⎰⎰-+=+=+=xdx x x x x x d x x dx x x dx x x sin sin 2161sin 2161)cos 1(212cos 2323222⎰⎰-++=++=xdx x x x x x x xd x x x cos cos sin 2161cos sin 21612323C x x x x x x +-++=sin cos sin 216123.16. ⎰-dx x x )1ln(; 解 ⎰⎰⎰-⋅--=-=-dx x x x x dx x dx x x 1121)1ln(21)1ln(21)1ln(222 ⎰-⋅++--=dx x x x x )111(21)1ln(212C x x x x x +-----=)1ln(212141)1ln(2122.17. ⎰-xdx x 2sin )1(2;解 ⎰⎰⎰⋅+--=--=-xdx x x x x d x xdx x 22cos 212cos )1(212cos )1(212sin )1(222 ⎰+--=x xd x x 2sin 212cos )1(212⎰-+--=xdx x x x x 2sin 212sin 212cos )1(212C x x x x x +++--=2cos 412sin 212cos )1(212.18. ⎰dx x x 23ln ;解⎰⎰⎰⎰+-=+-=-=xdx xx x x d x x x x xd dx x x22333323ln 13ln 1ln 1ln 11ln ln⎰⎰+--=--=x d xx x x x x xd x x 22323ln 13ln 3ln 11ln 3ln 1⎰⎰---=+--=x xd x x x x dx x x x x x x 1ln 6ln 3ln 1ln 16ln 3ln 123223⎰+---=dx xx x x x x x 22316ln 6ln 3ln 1C x x x x x x x +----=6ln 6ln 3ln 123.19. ⎰dx e x3;解 ⎰⎰⎰==t t xde t dt e t t x dx e223333令⎰⎰-=-=t t t t tde e t dt te e t 636322 ⎰+-=dt e te e t t t t 6632 C e te e t t t t ++-=6632 C x x ex ++-=)22(33323.20. ⎰xdx ln cos ; 解 因为⎰⎰⋅⋅+=dx xx x x x xdx 1ln sin ln cos ln cosdx xx x x x x x xdx x x 1ln cos ln sin ln cos ln sin ln cos ⋅⋅-+=+=⎰⎰⎰-+=xdx x x x x ln cos ln sin ln cos , 所以 C x x xxdx ++=⎰)ln sin ln (cos 2ln cos .21. ⎰dx x 2)(arcsin ;解 ⎰⎰-⋅⋅-=dx xx x x x dx x 22211arcsin 2)(arcsin )(arcsin⎰-+=221arcsin 2)(arcsin x xd x x ⎰--+=dx x x x x 2arcsin 12)(arcsin 22 C x x x x x +--+=2arcsin 12)(arcsin 22. 22. ⎰xdx e x 2sin . 解 ⎰⎰⎰-=-=xdx e e dx x e xdx e xx x x 2cos 2121)2cos 1(21sin 2, 而 dx x e x e xde xdx e x x x x ⎰⎰⎰+==2sin 22cos 2cos 2cos⎰⎰-+=+=xdx e x e x e de x x e x x x x x 2cos 42sin 22cos 2sin 22cos ,C x x e xdx e x x ++=⎰)2sin 22(cos 512cos ,所以 C x x e e xdx e x x x ++-=⎰)2sin 22(cos 10121sin 2.习题4-4求下列不定积分:1. dx x x ⎰+33;解 dx x x x x dx x x dx x x ⎰⎰⎰+-+-+=+-+=+327)93)(3(327273233 ⎰⎰+-+-=dx x dx x x 3127)93(2 C x x x x ++-+-=|3|ln 279233123.2. ⎰-++dx x x x 103322;解 C x x x x d x x dx x x x +-+=-+-+=-++⎰⎰|103|ln )103(1031103322222.3. ⎰--+dx xx x x 3458; 解 ⎰⎰⎰--++++=--+dx xx x x dx x x dx x x x x 3223458)1(8 ⎰⎰⎰--+-+++=dx x dx x dx x x x x 13148213123C x x x x x x +--+-+++=|1|ln 3|1|ln 4||ln 8213123.4. ⎰+dx x 133;解 ⎰⎰⎰+-⋅++--⋅-+=+-+-++=+dx x x x x x x dx x x x x dx x )11231122111()1211(132223⎰⎰-+-++-+--+=)21()23()21(123)1(1121|1|ln 2222x d x x x d x x xC x x x x +-++-+=312arctan31|1|ln2. 5. ⎰+++)3)(2)(1(x x x xdx;解dx x x x x x x xdx )331124(21)3)(2)(1(+-+-+=+++⎰⎰C x x x ++-+-+=|)1|ln |3|ln 3|2|(ln 21.6. ⎰-++dx x x x )1()1(122;解 ⎰⎰+--⋅++⋅=-++dx x x x dx x x x ])1(111211121[)1()1(1222 C x x x +++-+-=11|1|ln 21|1|ln 21C x x +++-=11|1|ln 212.7. dx x x )1(12+⎰; 解 C xx dx x x x dx x x ++-=+-=+⎰⎰)1ln(21||ln )11()1(1222.8. ⎰++))(1(22x x x dx;解⎰⎰+⋅-++⋅-=++dx x x x x x x x dx )112111211())(1(222⎰++-+-=dx x x x x 1121|1|ln 21||ln 2⎰⎰+-+-+-=dx x dx x x x x 11211241|1|ln 21||ln 22C x x x x +-+-+-=arctan 21)1ln(41|1|ln 21||ln 2.9. ⎰+++)1)(1(22x x x dx; 解dx x xx x x x x x dx )111()1)(1(2222⎰⎰+-+++=+++)1ln(21112111221222+-++++++=⎰⎰x dx x x x x x ⎰++++-++=dx x x x x x 1121)1ln(21|1|ln 21222C x x x x ++++-++=312arctan 33)1ln(21|1|ln 2122. 10. ⎰+dx x 114;解dx x x x x dx x ⎰⎰+-++=+)12)(12(111224⎰⎰+-+-++++=dx x x x dx x x x 12214212214222⎰⎰+----++++=dx x x x dx x x x 1222)22(21421222)22(214222 )1212(41]12)12(12)12([82222222⎰⎰⎰⎰+-+++++-+--++++=x x dxx x dx x x x x d x x x x d C x x x x x x +-++++-++=)12arctan(42)12arctan(42|1212|ln 8222. 11. ⎰++--dx x x x 222)1(2; 解 ⎰⎰⎰++-++-=++--dx x x dx x x x dx x x x 11)1(1)1(2222222 ⎰⎰⎰++-++-+++=dx x x dx x x dx x x x 11)1(123)1(122122222 ⎰⎰++-++-++⋅-=dx x x dx x x x x 11)1(12311212222, 因为)312arctan(32)312()312(11321122+=+++=++⎰⎰x x d x dx x x , 而⎰⎰++=++dx x dx x x 22222])23()21[(1)1(1由递推公式 ⎰⎰--+-++-=+])()32()([)1(21)(122122222n n n a x dxn a x x n a a x dx ,得⎰⎰++=++dx x dx x x 22222])23()21[(1)1(1312arctan 323211231)1121()23(212222+⋅++++⋅=++++++=⎰x x x x x x dx x x x , 所以 ⎰++--dx x x x 222)1(2C x x x x x x x ++-+-+++-++⋅-=312arctan 32312arctan 3211221112122C x x x x ++-+++-=312arctan34112.12. ⎰+x dx2sin 3;解⎰⎰⎰+=-=+x d x dx x x dx tan 3tan 41cos 41sin 3222C x x d x +=+=⎰3tan 2arctan321tan )23(tan 14122.13.⎰+dx x cos 31;解 ⎰⎰⎰+=+=+)2sec 1(2cos )2(2cos 121cos 31222x x x d x dx dx x ⎰+=+=C x x x d 22tanarctan 212tan 22tan 2. 或⎰⎰+⋅++=+du u u u xu dx x221212312tancos 31令 C xC u du u +=+=+=⎰22tan arctan212arctan21)2(122. 14.⎰+dx x sin 21;解 ⎰⎰⎰+=+=+)2cot 2(csc 2sin )2(2cos 2sin 22sin 2122x x x x d x x dx dx x⎰⎰+++-=++-=222)23()212(cot )212(cot 12cot 2cot )2(cot x x d x x x dC x ++-=312cot 2arctan 32. 或⎰⎰+⋅++=+du u u u xu dx x221212212tansin 21令 ⎰⎰++=++=du u du u u 222)23()21(111C xC u ++=++=312tan 2arctan 32312arctan 32. 15.⎰++x x dxcos sin 1;解 ⎰⎰⎰+=+=+=++C x x xd x x dx x x dx |2tan |ln 2tan1)2(tan )2tan 1(2cos 21cos sin 12. 或⎰⎰+⋅+-+++=++du u u u u ux u xx dx2222121112112tancos sin 1令C xC u du u ++=++=+=⎰|12tan |ln |1|ln 11. 16.⎰+-5cos sin 2x x dx; 解⎰⎰⎰++=+⋅++--+=+-du u u du u u u u ux u x x dx2231125111412tan5cos sin 222222令C xC u du u ++=++=++=⎰512tan 3arctan 51513arctan 51)35()31(13122. 或⎰⎰+⋅++--+=+-du uu uu u x u x x dx2222125111412tan5cos sin 2令⎰⎰++=++=du u du u u 222)35()31(1312231C xC u ++=++=512tan 3arctan 51513arctan 51. 17.⎰++dx x 3111;解⎰⎰⎰++-=⋅+=+=++du uu du uu ux dx x )111(33111111233令 C x x x C u u u +++++-+=+++-=)11ln(313)1(23|1|ln 332333322.18.⎰++dx x x 11)(3;解C x x x dx x x dx x x ++-=+-=++⎰⎰232233221]1)[(11)(.19.⎰++-+dx x x 1111;解⎰⎰⎰++-=⋅+-=+++-+du u u udu u u u x dx x x )122(221111111令 C u u u +++-=|)1|ln 2221(22C x x x +++++-+=)11ln(414)1(. 20.⎰+4xx dx ;解⎰⎰⋅+=+du uu u u x xx dx 324441令C u u u du uu +++-=++-=⎰|1|ln 442)111(42 C x x x +++-=)1ln(4244.21.⎰+-xdxx x 11;解 令u x x=+-11, 则2211u u x +-=, du u u dx 22)1(4+-=,⎰⎰⎰++-=+-⋅-+⋅=+-du uu du u u u u u x dx x x )1111(2)1(41111222222 C u u u +++-=arctan 2|11|ln C xxxx x x ++-+++-+--=11arctan2|1111|ln . 22.⎰-+342)1()1(x x dx .解 令u x x =-+311, 则1133-+=u u x , 232)1(6--=u udx , 代入得C x x C u du x x dx +-+-=+-=-=-+⎰⎰334211232323)1()1(.总习题四求下列不定积分(其中a , b 为常数):1. ⎰--x x e e dx;解 C e e de e dx e e e e dxx x xx x xxx ++-=---=-⎰⎰⎰-|11|ln 2111122.2. dx x x ⎰-3)1(; 解C x x dx x dx x dx x x+-⋅+-=----=-⎰⎰⎰2323)1(12111)1(1)1(1)1(. 3. ⎰-dx xa x 662(a >0);解 C ax a x a x d x a dx x a x +-+=-=-⎰⎰||ln 61)()()(1313333332323662.4. ⎰++dx x x xsin cos 1;解 C x x x x d x x dx x x x ++=++=++⎰⎰|sin |ln )sin (sin 1sin cos 1.5. ⎰dx xxln ln ; 解 C x x x dx x x x x x x xd dx x x +-⋅=⋅⋅-⋅==⎰⎰⎰ln ln ln ln 1ln 1ln ln ln ln ln ln ln ln ln .6.⎰+dx x xx 4sin 1cos sin ; 解 C x x d x x d xx dx x x x +=+=+=+⎰⎰⎰222244sin arctan 21)(sin )(sin 1121sin sin 1sin sin 1cos sin . 7. ⎰xdx 4tan ; 解 xxd x x d xx xdx tan sin tan tan cos sin tan 22244⎰⎰⎰==⎰⎰++-=+=x d x x x d x x tan )1tan 11(tan tan 1tan tan 2224c x x x c x x x ++-=++-=tan tan 31tan arctan tan tan 3133.8. ⎰xdx x x 3sin 2sin sin ; 解 ⎰⎰--=xdx x x xdx x x 3sin )cos 3(cos 213sin 2sin sin ⎰⎰+-=xdx x xdx x 3sin cos 213sin 3cos 21 ⎰⎰++=dx x x x xd )2sin 4(sin 41)3(cos 3cos 61 C x x x +--=2cos 814cos 1613cos 1212. 9.⎰+)4(6x x dx;解 C x x dx x x x x x dx++-=+-=+⎰⎰)4ln(241||ln 41)41(41)4(6656.10.)0(>-+⎰a dx xa xa ; 解⎰⎰⎰⎰-+-=-+=-+dx xa xdx x a a du x a x a dx x a x a 2222221C x a a xa +--=22arcsin .11.⎰+)1(x x dx ;解C x x C x x x d x x x dx +++=+++=+=+⎰⎰)1ln(2))(1ln(2)(112)1(22.12. ⎰xdx x 2cos ; 解 ⎰⎰⎰+=+=x xd x dx x x x xdx x 2sin 4141)2cos (21cos 22 C x x x x xdx x x x +++=-+=⎰2cos 812sin 41412sin 412sin 414122.13. ⎰bxdx e ax cos ; 解 因为dx bx e a b bx e a bxde a bxdx e ax axax ax ⎰⎰⎰+==sin cos 1cos 1cos dx bx e ab bx e a b bx e a de bx a b bx e a ax ax ax axax ⎰⎰-+=+=cos sin cos 1sin cos 12222,所以 C bx e ab bx e a b a a bxdx e axax ax+++=⎰)sin cos 1(cos 2222C bx b bx a e ba ax +++=)sin cos (122.14.⎰+xedx 1;解⎰⎰⎰⎰+--=-=-=++du u u du u u d u u e edx xx)1111(112)1ln(11122令.c e e c u u x x +++-+=++-=1111ln |11|ln .15.⎰-122x xdx ;解C t tdt tdt t t t tx x x dx+==⋅⋅=-⎰⎰⎰sin cos tan sec tan sec 1sec 1222令C xx +-=12.16.⎰-2/522)(x a dx;解⎰⎰⋅=-tdt a t a ta x x a dx cos )cos (1sin )(52/522令⎰⎰+==t d t adt ta tan )1(tan1cos 112444C t at a++=tan 1tan 31434C xa x ax a x a+-+-⋅=224322341)(31.17.⎰+241xxdx;解tdt t t tx x xdx 2424secsec tan 1tan 1⋅⋅=+⎰⎰令⎰⎰==t d t tdt t tsin sin cos sin cos 4243 C t tt d t t ++-=-=⎰sin 1sin 31sin )sin 1sin 1(324 C xx x x ++++-=233213)1(.18.⎰dx x x sin ;解⎰⎰⎰=⋅=tdt t tdt t t t x dx x x sin 22sin sin 2令⎰⎰⋅+-=-=tdt t t t t d t 2cos 2cos 2cos 222⎰⎰-+-=+-=tdt t t t t t td t t sin 4sin 4cos 2sin 4cos 222 C t t t t t +++-=cos 4sin 4cos 22C x x x x x +++-=cos 4sin 4cos 2. 19. ⎰+dx x )1ln(2;解 ⎰⎰+⋅-+=+dx xx x x x dx x 22212)1ln()1ln(⎰+--+=dx x x x )111(2)1ln(22C x x x x ++-+=arctan 22)1ln(2. 20.⎰dx x x32cos sin ;解 x d x xx x d x x dx x xtan )1tan tan (tan tan cos sin cos sin 2232⎰⎰⎰+-== C x x ++-=)1ln(tan 21tan 2122.21. ⎰dx x arctan ;解 x d xx x x dx x ⎰⎰+⋅-=11arctan arctan x d xx x ⎰+⋅--=)111(arctan C x x x x ++-=arctan arctan C x x x +-+=arctan )1(. 22.dx xx⎰+sin cos 1;解C x x x d x dx x x xdx x x +-===+⎰⎰⎰|2cot 2csc |ln 222csc 22cos2sin 22cos2sin cos 1. 23.⎰+dx x x 283)1(;解 C x x x dx x dx x x +++⋅=+=+⎰⎰]arctan 1[2141)1(141)1(484428283. 提示: 已知递推公式⎰⎰--+-++-=+])()32()([)1(21)(122122222n n n a x dxn a x x n a a x dx . 24. ⎰++dx x x x 234811; 解 ⎰⎰⎰++=++=++dt t t t t x dx x x x dx x x x 234123412322444884811令 ⎰⎰+++-=+++-=dt t t dt t t t )11241(41)23231(412 C t t t ++++-=|1|ln 41|2|ln 41C x x x ++++=21ln 414444.25.⎰-416x dx;解⎰⎰⎰++-=+-=-dx x x dx x x x dx)4141(81)4)(4(11622224C xx x ++-+=)2arctan 21|22|ln 41(81C x x x ++-+=2arctan 161|22|ln 321. 26.dx x x⎰+sin 1sin ;解 ⎰⎰⎰-=--=+dx xxx dx x x x dx x x 222cos sin sin sin 1)sin 1(sin sin 1sinC x x x dx x x x++-=+-=⎰tan sec )cos 11cos sin (22.27. dx xxx ⎰++cos 1sin ;解⎰⎰⎰⎰+=+=++dx x xdx x x dx x x x dx x x x 2cossin 212cos 212cos 2sin cos 1sin 222 ⎰⎰+=dx xx xd 2tan 2tanC xx dx x dx x x x +=+-=⎰⎰2tan 2tan 2tan 2tan .28. ⎰-dx x x x x e x23sin cos sin cos ;解 ⎰⎰⎰⋅⋅-⋅⋅=-xdx x e xdx e x dx xx x x ex x xsec tan cos cos sin cos sin sin 23sin⎰⎰-=x d e x d xe x x sec sin sin sin ⎰⎰+⋅-=x x x xde e x xde sin sin sin sec sec⎰⎰⋅⋅+⋅--=xdx e x e x dx e xe x x x x cos sec sec sin sin sin sin C e x xe x x +⋅-=sin sin sec .29.⎰+dx x x x x)(33;解dt t t dt t t t t t t x dx x x x x)111(66)()(52362633+-=⋅+=+⎰⎰⎰令C x x C t t ++=++=66)1(ln 1ln6. 30.⎰+2)1(x e dx;解⎰⎰⎰---=-⋅=++dt t t t dt t tt e e dxx x )1111(1111)1(222令 C tt t ++--=1ln )1ln(C ee x xx ++++-=11)1ln(.31. ⎰+-+dx e e e e x x xx 1243;解)()(1111222243x xx x x x xx x x x x e ed e e dx e e e e dx e e e e ------+=+-+=+-+⎰⎰⎰C e e x x +-=-)arctan( C x +=)sh 2arctan(. 32.⎰+dx e xe xx 2)1(;解⎰⎰⎰+-=++=+11)1()1()1(22x x x x xe xd e d e x dx e xe⎰⎰+++-=+++-=x x x x x x de e e e x dx e e x )1(11111⎰+-++-=x xxxde e ee x )111(1 C e e e xx x x ++-++-=)1ln(ln 1C e e xe x x x++-+=)1ln(1.33. ⎰++dx x x )1(ln 22;解 dx x x x x x x dx x x ])1([ln )1(ln )1(ln 222222'++⋅-++=++⎰⎰ ⎰+⋅++-++=dx xx x x x x x 22221)1ln(2)1(ln⎰+++-++=22221)1ln(2)1(ln x d x x x x x⎰'++⋅+++++-++=dx x x x x x x x x x ])1[ln(12)1ln(12)1(ln 222222 ⎰++++-++=dx x x x x x x 2)1ln(12)1(ln 2222 C x x x x x x x +++++-++=2)1ln(12)1(ln 2222.34.⎰+dx x x2/32)1(ln ;解 因为⎰⎰⎰++=+==⋅=+C xx C t tdt tdt t t x dx x 2232/321sin cos sec sec 1tan )1(1令,所以⎰⎰⎰⋅+-+=+=+dx x x xx x x x x xd dx x x111ln )1(ln )1(ln 2222/32 C x x x x x +++-+=)1ln(1ln 22.35. ⎰-xdx x arcsin 12;解⎰⎰⎰+=⋅=-dt t t t tdt t t x xdx x )2cos (21cos sin arcsin 122令⎰⎰-+=+=tdt t t t t t t 2sin 412sin 41412sin 414122C t t t t +++=2cos 812sin 41412122241arcsin 121)(arcsin 41C x x x x x +--+=.36.⎰-dx xx x 231arccos ;解⎰⎰⎰--=-⋅=-2222231arccos 1arccos 1arccos x xd x dx x x x x dx x x x⎰'⋅-+--=dx x x x x x x )arccos (1arccos 12222 ⎰-⋅-⋅-+--=dx xx x x x x x x )11arccos 2(1arccos 122222⎰⎰-⋅-+--=dx x xdx x x x x x 2222arccos 12arccos 1⎰-----=32322)1(arccos 3231arccos 1x xd x x x x⎰-------=dx x x x x x x x )1(32arccos )1(3231arccos 1232322。

《高等数学》不定积分课后习题详解

《高等数学》不定积分课后习题详解

《高等数学》不定积分课后习题详解篇一:高等数学第四章不定积分习题第四章不定积分4 – 1不定积分的概念与性质一.填空题1.若在区间上F?(x)?f(x),则F(x)叫做f(x)在该区间上的一个f(x)的所有原函数叫做f(x)在该区间上的__________。

2.F(x)是f(x)的一个原函数,则y=F(x)的图形为?(x)的一条_________. 3.因为d(arcsinx)?1?x2dx,所以arcsinx是______的一个原函数。

4.若曲线y=?(x)上点(x,y)的切线斜率与x成正比例,并且通过点A(1,6)和B(2,-9),则该曲线方程为__________ 。

二.是非判断题1.若f?x?的某个原函数为常数,则f?x??0. [ ] 2.一切初等函数在其定义区间上都有原函数. [ ] 3.3??f?x?dxf??x?dx. [ ]?4.若f?x?在某一区间内不连续,则在这个区间内f?x?必无原函数. [ ] ?ln?ax?与y?lnx是同一函数的原函数. [ ] 三.单项选择题1.c为任意常数,且F’(x)=f(x),下式成立的有。

(A)?F’(x)dx?f(x)+c;(B)?f(x)dx=F(x)+c;(C)?F(x)dx?F’(x)+c;(D) ?f’(x)dx=F(x)+c.2. F(x)和G(x)是函数f(x)的任意两个原函数,f(x)?0,则下式成立的有。

(A)F(x)=cG(x); (B)F(x)= G(x)+c;(C)F(x)+G(x)=c;(D) F(x)?G(x)=c. 3.下列各式中是f(x)?sin|x|的原函数。

(A) y??cos|x| ; (B) y=-|cosx|;(c)y=??cosx,x?0,cosx?2,x?0;(D) y=??cosx?c1,x?0,cosx?c2,x?0.c1、c2任意常数。

?(x)?f(x),f(x) 为可导函数,且f(0)=1,又F(x)?xf(x)?x2,则f(x)=______.(A) ?2x?1 (B)?x?1 (C)?2x?1(D)?x?1 5.设f?(sin2x)?cos2x,则f(x)=________.1(A)sinx?sin2x?c; (B)x?1x2?c; (C)sin2x?1sin4x?c;(D)x2?1x4?c;2222226.设a是正数,函数f(x)?ax,?(x)?axlogae,则______.(A)f(x)是?(x)的导数; (B)?(x)是f(x)的导数;(C)f(x)是?(x)的原函数;(D)?(x)是f(x)的不定积分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第4章不定积分习题4-11.求下列不定积分:知识点:直接积分法的练习——求不定积分的基本方法。

思路分析:利用不定积分的运算性质和基本积分公式,直接求出不定积分!★(1)⎰思路: 被积函数52x-=,由积分表中的公式(2)可解。

解:532223x dx x C --==-+⎰★(2)dx-⎰思路:根据不定积分的线性性质,将被积函数分为两项,分别积分。

解:1141113332223()24dx x x dx x dx x dx x x C --=-=-=-+⎰⎰⎰⎰★(3)22xx dx +⎰()思路:根据不定积分的线性性质,将被积函数分为两项,分别积分。

解:2232122ln 23x xxx dx dx x dx x C +=+=++⎰⎰⎰()★(4)3)x dx -思路:根据不定积分的线性性质,将被积函数分为两项,分别积分。

解:3153222223)325x dx x dx x dx x x C -=-=-+⎰⎰⎰★★(5)4223311x x dx x +++⎰思路:观察到422223311311x x x x x ++=+++后,根据不定积分的线性性质,将被积函数分项,分别积分。

解:42232233113arctan 11x x dx x dx dx x x C x x++=+=++++⎰⎰⎰ ★★(6)221x dx x +⎰思路:注意到222221111111x x x x x +-==-+++,根据不定积分的线性性质,将被积函数分项,分别积分。

解:2221arctan .11x dx dx dx x x C x x =-=-+++⎰⎰⎰注:容易看出(5)(6)两题的解题思路是一致的。

一般地,如果被积函数为一个有理的假分式,通常先将其分解为一个整式加上或减去一个真分式的形式,再分项积分。

★(7)x dx x x x ⎰34134(-+-)2 思路:分项积分。

解:3411342x dx xdx dx x dx x dx x x x x --=-+-⎰⎰⎰⎰⎰34134(-+-)2 223134ln ||.423x x x x C --=--++ ★(8)23(1dx x -+⎰思路:分项积分。

解:2231(323arctan 2arcsin .11dx dx x x C x x =-=-+++⎰⎰ ★★(9)思路=?11172488xx++==,直接积分。

解:715888.15x dx x C ==+⎰⎰★★(10)221(1)dx x x +⎰思路:裂项分项积分。

解:222222111111()arctan .(1)11dx dx dx dx x C xx x x x x x =-=-=--++++⎰⎰⎰⎰ ★(11)211x xe dx e --⎰ 解:21(1)(1)(1).11x x x x x xxe e e dx dx e dx e x C e e --+==+=++--⎰⎰⎰ ★★(12)3x xe dx ⎰思路:初中数学中有同底数幂的乘法: 指数不变,底数相乘。

显然33xxxe e =()。

解:333.ln(3)xxxxe e dx e dx C e ==+⎰⎰()() ★★(13)2cot xdx ⎰思路:应用三角恒等式“22cot csc 1x x =-”。

解:22cot (csc 1)cot xdx x dx x x C =-=--+⎰⎰★★(14)23523x xx dx ⋅-⋅⎰思路:被积函数 235222533x x xx⋅-⋅=-(),积分没困难。

解:2()2352232525.33ln 2ln 3xxxx x dx dx x C ⋅-⋅=-=-+-⎰⎰(()) ★★(15)2cos 2x dx ⎰思路:若被积函数为弦函数的偶次方时,一般地先降幂,再积分。

解:21cos 11cossin .2222x x d dx x x C +==++⎰⎰ ★★(16)11cos 2dx x +⎰思路:应用弦函数的升降幂公式,先升幂再积分。

解:221111sec tan .1cos 2222cos dx dx xdx x C x x ===++⎰⎰⎰ ★(17)cos 2cos sin xdx x x -⎰思路:不难,关键知道“22cos 2cos sin (cos sin )(cos sin )x x x x x x x =-=+-”。

解:cos 2(cos sin )sin cos .cos sin xdx x x dx x x C x x =+=-+-⎰⎰★(18)22cos 2cos sin xdx x x ⋅⎰思路:同上题方法,应用“22cos 2cos sin x x x =-”,分项积分。

解:22222222cos 2cos sin 11cos sin cos sin sin cos x x x dx dx dx x x x x x x x-==-⋅⋅⎰⎰⎰⎰ 22csc sec cot tan .xdx xdx x x C =-=--+⎰⎰★★(19)dx +⎰思路:注意到被积函数==(5)即可。

解:22arcsin .dx x C ==+⎰★★(20)21cos 1cos 2xdx x ++⎰思路:注意到被积函数 22221cos 1cos 11sec 1cos 2222cos x x x x x ++==++,则积分易得。

解:221cos 11tan sec .1cos 2222x x x dx xdx dx C x ++=+=++⎰⎰⎰ ★2、设()arccos xf x dx x C =+⎰,求()f x 。

知识点:考查不定积分(原函数)与被积函数的关系。

思路分析:直接利用不定积分的性质1:[()]()df x dx f x dx =⎰即可。

解:等式两边对x 求导数得:()()xf x f x =∴=★3、设()f x 的导函数为sin x ,求()f x 的原函数全体。

知识点:仍为考查不定积分(原函数)与被积函数的关系。

思路分析:连续两次求不定积分即可。

解:由题意可知,1()sin cos f x xdx x C ==-+⎰所以()f x 的原函数全体为:112cos sin x C dx x C x C -+=-++⎰()。

★4、证明函数21,2x x e e shx 和xe chx 都是s x e chx hx -的原函数知识点:考查原函数(不定积分)与被积函数的关系。

思路分析:只需验证即可。

解:2x x e e chx shx =-,而22[][][]x x x x d d de e shx e chx e dx dx dx===1()2★5、一曲线通过点2(,3)e ,且在任意点处的切线的斜率都等于该点的横坐标的倒数,求此曲线的方程。

知识点:属于第12章最简单的一阶线性微分方程的初值问题,实质仍为考查原函数(不定积分)与被积函数的关系。

思路分析:求得曲线方程的一般式,然后将点的坐标带入方程确定具体的方程即可。

解:设曲线方程为()y f x =,由题意可知:1[()]d f x dx x=,()ln ||f x x C ∴=+; 又点2(,3)e在曲线上,适合方程,有23ln(),1e C C =+∴=,所以曲线的方程为()ln || 1.f x x =+★★6、一物体由静止开始运动,经t 秒后的速度是23(/)t m s ,问:(1) 在3秒后物体离开出发点的距离是多少? (2) 物体走完360米需要多少时间?知识点:属于最简单的一阶线性微分方程的初值问题,实质仍为考查原函数(不定积分)与被积函数的关系。

思路分析:求得物体的位移方程的一般式,然后将条件带入方程即可。

解:设物体的位移方程为:()y f t =,则由速度和位移的关系可得:23[()]3()f t t f t t C =⇒=+ddt, 又因为物体是由静止开始运动的,3(0)0,0,()f C f t t ∴=∴=∴=。

(1) 3秒后物体离开出发点的距离为:3(3)327f ==米;(2)令3360tt =⇒=秒。

习题4-2★1、填空是下列等式成立。

知识点:练习简单的凑微分。

思路分析:根据微分运算凑齐系数即可。

解:234111(1)(73);(2)(1);(3)(32);7212dx d x xdx d x x dx d x =-=--=-2222111(4)();(5)(5ln ||);(6)(35ln ||);255112(tan 2);(9)(arctan 3).23cos 219x x dx dx e dx d e d x d x x x dx dx d d x d x x x ===--===+2、求下列不定积分。

知识点:(凑微分)第一换元积分法的练习。

思路分析:审题看看是否需要凑微分。

直白的讲,凑微分其实就是看看积分表达式中,有没有成块的形式作为一个整体变量,这种能够马上观察出来的功夫来自对微积分基本公式的熟练掌握。

此外第二类换元法中的倒代换法对特定的题目也非常有效,这在课外例题中专门介绍!★(1)3t e dt ⎰思路:凑微分。

解:33311(3)33tt te dt e d t e C ==+⎰⎰ ★(2)3(35)x dx -⎰思路:凑微分。

解:33411(35)(35)(35)(35)520x dx x x x C -=---=--+⎰⎰d★(3)132dx x -⎰思路:凑微分。

解:1111(32)ln |32|.322322dx d x x C x x =--=--+--⎰⎰ ★(4)思路:凑微分。

解:1233111(53)(53)(53)(53).332x x d x x C -=--=---=--+⎰⎰⎰ ★(5)(sin )x bax edx -⎰思路:凑微分。

解:11(sin )sin ()()cos xx xbb b x ax e dx axd ax b e d ax be C a b a-=-=--+⎰⎰⎰★★(6)思路:如果你能看到td =,凑出d 易解。

解:2C ==+⎰★(7)102tan sec x xdx ⎰思路:凑微分。

解:10210111tansec tan (tan )tan .11x xdx xd x x C ==+⎰⎰ ★★(8)ln ln ln dxx x x ⎰思路:连续三次应用公式(3)凑微分即可。

解:(ln ||)(ln |ln |)ln |ln ln |ln ln ln ln ln ln ln ln dx d x d x x C x x x x x x ===+⎰⎰⎰★★(9)tan ⎰思路:是什么,是什么呢?就是!这有一定难度!解:tan ln |C ==-+⎰⎰★★(10)sin cos dxx x ⎰思路:凑微分。

相关文档
最新文档