传热传质外文翻译

合集下载

《传热传质学》主要内容和专业词汇中英文对照

《传热传质学》主要内容和专业词汇中英文对照

《传热传质学》主要内容和专业词汇中英文对照Chapter 1 Thermodynamics and Heat Transfer主要内容1.Concepts:heat (thermal energy)、heat transfer、thermodynamics、total amount of heat transfer、heat transfer rate、heat flux、conduction、convection、radiation2.Equations:1) The first law of thermodynamics (conservation of energy principle)2) Heat balance equation: a) closed system; b) open system (steady-flow)3) Fourier’s law of heat conduction4) Newton’s law of cooling5) Stefan-Boltzmann law主要专业词汇heat transfer 传热、热传递、传热学thermodynamics热力学caloric 热素specific heat 比热mass flow rate 质量流率latent heat 潜热sensible heat 显热heat flux热流密度heat transfer rate热流量total amount of heat transfer总热量conduction导热convection对流radiation辐射thermal conductivity 热导率thermal diffusivity 热扩散率convection/combined heat transfer coefficient 对流/综合换热系数emissivity 发射率absorptivity 吸收率simultaneous heat transfer 复合换热Chapter 2 Heat Conduction Equation主要内容3.Concepts:temperature field、temperature gradient、heat generation、initial condition、boundary condition、steady\transient heat transfer、uniform\nonuniform temperature distribution4.Equations:1) Fourier’s law of heat conduction (§2-1)2) Heat conduction equation (in rectangular\cylindrical\spherical coordinates)(§2-2、§2-3)3) Boundary conditions: (§2-4)a)Specified temperature B. C.b) Specified heat flux B. C. (special case: insulation、thermal symmetry);c) Convection B.C.d) Radiation B.C.e) Interface B.C.4) Average thermal conductivity k ave(§2-7)5) Solution of one-dimensional, steady heat conduction in plane walls、cylinders andspheres (k =const):a) no heat generation, specified temperature B.C.: (§2-5)T(x) or T(r);Q(x) or Q(r), Q=constb) with heat generation, Specified temperature B.C. or Convection B.C. : (§2-6)∆T max=T o-T s= gs2/2nk ; q(x)=gx/n; T s=T + gs/nhcharacteristic length S, shape factor n:plane walls — s = L (half thickness), n = 1cylinders ——s = r o, n = 2spheres ——s = r o, n =35.Methods: Solve a heat transfer problem1) Mathematical formulation (differential equation & B.C.)2) General solution of equation3) Application of B.C.s4) Unique solution of the problemtemperature field\distribution 温度场\分布 temperature gradient 温度梯度 heat generation 热生成(热源) initial\boundary condition 初始\边界条件 transient heat transfer 瞬态(非稳态)传热 isothermal surface 等温面 Heat conduction differential equation 导热微分方程trial and error method 试算法 iterate 迭代 convergence 收敛Chapter 3 Steady Heat Conduction主要内容6. Concepts:multilayer\composite wall overall heat transfer coefficient Uthermal resistance R t thermal contact resistance R ccritical radius of insulation R crfin efficiency fin effectiveness7. Equations:✓ Multiplayer plane wall 、cylinders and spheres: 12totalT T Q UA T R ∞∞-==∆& ✓ Fin: fin equation ——0)()(=--∞T T hp dxdT kA dx d c1) Uniform cross-section:2) Varying cross-section: )(fin fin max fin,fin fin ∞-==T T hA Q Q b ηη&&thermal resistance热阻parallel 并联in series串联thermal contact resistance 接触热阻composite wall 复合壁面thermal grease 热脂cross-section 横截面temperature execess 过余温度hyperbolic 双曲线的exponent 指数fin 肋(翅)片fin base 肋基fin tip 肋端fin efficiency 肋效率fin effectiveness 肋片有效度Chapter 4 Transient Heat Conduction主要内容8.Concepts:lumped system analysis characteristic length (L c=V/A)Biot number (Bi=hL c /k) Fourier number ( τ = at/L)9.Equations:●Bi≤0, lumped system analys is (§4-1)●Bi>0, Heisler/Grober charts OR analytical expressions1-D:a) infinite large plane walls, long cylinders and spheres (§4-2)b) semi-infinite solids (§4-3)multidimensional: product solution (§4-4)主要专业词汇lumped system analysis 集总参数法characteristic length 特征长度(尺寸)dimension 量纲nondimensionalize 无量纲化dimensionless quantity 无量纲量semi-infinite solid 半无限大固体complementary error function 误差余函数series 级数production solution 乘积解Chapter 5 Numerical Methods in Heat Conduction主要内容10.Concepts:control volume (energy balance) method、finite difference method、discretization、node、space step、time step、mesh Biot number、mesh Fourier number、mirror image concept、explicit/implicit method、stability criterion (primary coefficients ≥0)Numerical error: 1) discretization/truncation error; 2) round-off error11.Methods:Numerical solution:1) Discretization in space and time (∆x, ∆t);2) Build all nodes’ finite difference formulations (including interior and bou ndary nodes);i.Finite difference methodii.Energy balance method (i.e. Control V olume method)3) Solution of nodal difference eqs. of heat conduction;a)Direct method: Gaussian Eliminationb)Iterative method: Gauss-Seidel iteration主要专业词汇control volume 控制容积finite difference有限差分Taylor series expression泰勒级数展开式mirror image concept 镜像法Elimination method 消元法direct/iterative method 直接/迭代方法explicit/implicit method 显式/隐式格式stability criterion 稳定性条件primary coefficients 主系数unconditionally 无条件地algebraic eq. 代数方程discretization/truncation error 离散/截断误差round-off error 舍入误差Chapter 6、7 Forced Convection and Natural Convection主要内容12.Concepts:Nu、Re、Gr、PrForce/natural convection、external/internal flow、velocity/thermal boundary layer flow regimes、laminar/turbulent flowhydrodynamic/thermal entry region、fully developed regionCritical Reynolds Number (Re c)、hydraulic diameter (D h)、film temperature (T f)、bulk mean fluid temperature (T b)logarithmic mean temperature difference ( ∆T ln)volume expansion coefficient (β = 1/T)effective thermal conductivity (K eff = K Nu)evaporation、boiling、condensation、nucleation sitepool/flow boiling、subcooled / satuated boilingnatural convection / uncleate / transition /film boilingburn out point13.Equations:Drag force :F D = C f AρV2/2Heat transfer rate:Q = hA(T s-T∞)3.Typical Convection Phenomena:1) Forced convection:external flow——flow over flat plates (§6-4)——flow across cylinders and spheres (§6-5)internal flow——flow in tubes (§6-6)2) Natural convection:flow over surfaces (§7-2)flow inside enclosures (§7-3)3) Boiling Heat Transfer主要专业词汇Force/natural convection 自然/强制对流laminar/turbulent flow 层/湍流boundary layer 边界层laminar sublayer 层流底层buffer layer 缓冲层transition region 过渡区flow regimes 流态inertia/viscous force 惯性/粘性力shear stress 剪切应力friction/drag coefficient 摩擦/阻力系数friction factor 摩擦因子dynamic/kinematic viscous 动力/运动粘度wake 尾流stagnation point 滞止点flow separation 流体分离vortex 漩涡rotational motion 环流velocity fluctuation 速度脉动hydrodynamic 水动力学的hydraulic diameter 水力直径fully developed region 充分发展段volume flow rate 体积流量arithmetic/logarithmic mean temperature difference 算术/对数平均温差volume expansion coefficient 体积膨胀系数interferometer 干涉仪asymptotic渐近线的effective thermal conductivity 有效热导率evaporation 蒸发boiling 沸腾condensation 凝结pool boiling池内(大容器)沸腾flow boiling(管内)强制对流沸腾subcooled / satuated boiling 过冷/饱和沸腾nucleation site 汽化核心uncleate / transition /film boiling 核态/过渡/膜态沸腾burnout point烧毁点surface tension 表面张力vapor bubble 汽泡excess temperature 过热度thermodynamic equilibrium 热力平衡phase change/transformation 相变latent heat of vaporization 汽化潜热analogical method 类比法integral approach 积分近似法order of magnitude analysis 数量级分析法similarity principle 相似原理Chapter 9 Radiation Heat Transfer主要内容14.Concepts:black body、gray body、diffuse surface、emissive power (E)emissivity (ε)、absorptivity (α)、reflectivity (ρ)、transmissivity (τ)irradiation(G)、radiosity(J)、reradiating(adiabatic) surfaceview factor (F ij)、radiation network、space resistance、surface resistance radiation shieldgas radiation、transparent medium to radiation、absorbing and transmitting medium ws:Blackbody:(1) Planck’s distrib ution law(2) Stefan-Boltzmann’s law(3) Wien’s displacement lawGraybody:(4) Kirchhoff’s lawActual body:E (T) = ε E b(T) = ε σT4W/m2Gas:(5) Beer’s law3.Calculation:1) View factor:reciprocity/summation/superposition/symmetry Rulecrossed-strings method2) Radiation heat transfer:Radiation networkOpen system:between two surface (e.g. two large parallel plates)Enclosure:2-surface enclosure;3-surface enclosureRadiation shield主要专业词汇thermal radiation热辐射、quantum theory量子理论、index of refraction 折射系数electromagnetic wave/spectrum 电磁波/波谱、ultraviolet (UV) rays紫外线、infrared (IR) rays 红外线absorptivity 吸收率、reflectivity 反射率、transmissivity 透射率、emissivity (ε) 发射率(黑度)、specular/diffuse reflection 镜反射/漫反射irradiation (incident radiation) 投入辐射、radiosity 有效辐射spectral/directional/total emissive power单色/定向/总辐射力fraction of radiation energy 辐射能量份额(辐射比)、blackbody radiation function 黑体辐射函数view factor 辐射角系数、crossed-strings method交叉线法、reciprocity/summation/superposition/symmetry Rule相互/完整/和分/对称性net radiation heat transfer 净辐射热流量radiation network 辐射网络图、space/surface radiation resistance 空间/表面辐射热阻、reradiating surface重辐射面、adiabatic 绝热的radiation shield遮热板transparent medium to radiation辐射透热体、absorbing and transmitting medium吸收-透过性介质Chapter 10 Heat Exchangers主要内容16.Concepts:heat exchanger type---- double-pipe、compact、shell-and-tube、plate-and-frame、regenerative heat exchangerparallel/counter/cross/multipass flowoverall heat transfer coefficient (U) fouling factor (R f)heat capacity rate capacity rationlog mean temperature difference (ΔT lm)heat transfer effectiveness (ε)number of transfer units (NTU)17.Equations:1) heat balance eq.: Q = C h (T h,in - T h,out)=C c(T c,out - T c,in)2) heat transfer eq.: Q = UAΔT lm( LMTD method)or Q = εQ max = εC min (T h,in –T c,in) ( ε-NTU method) 3.Methods:1) LMTD Method:Select a heat exchangerKnown: C h、C c、3‘T’Predict: 1‘T’、Q、A2) ε-NTU Method:Evaluate the performance of a specified heat exchangerKnown: C h、C c、UA、T h,in、T c,inPredict: Q、T h,out、T c,out主要专业词汇double-pipe/compact/shell-and-tube/plate-and-frame/regenerative heat exchanger套管式/紧凑式/壳管式/板式/蓄热(再生)式换热器parallel/counter/cross/multipass flow 顺流/逆流/叉流/多程流area density 面积密度tube/shell pass 管程/壳程static/dynamic type 静/动态型baffle 挡板header 封头nozzle管嘴guide bar 导向杆porthole 孔口gasket 垫圈lateral 侧面的/横向的fouling factor 污垢因子heat capacity rate 水当量heat transfer effectiveness (ε) 传热有效度number of transfer units (NTU) 传热单元数《传热传质学》知识难点与重点Chapter 1 Thermodynamics and Heat Transfer第一章热力学与传热学1.传热学研究内容(温差=>传热);Heat Transfer Research (Temperature Difference=> Heat Transfer)2.三种基本传热方式的机理和基本公式;The Mechanisms and Basic Formulas of Three Basic Modes of Heat Transfer.3.传热过程、传热方程式;Heat Transfer Process,Heat Transfer Equation4.导热系数、对流换热系数、传热系数的物理涵义、单位、基本数量级、影响因素和变化规律;Physical meanings ,units, fundamental orders,influencing factors and changes in laws of heat conduction coefficient,convection heat transfer coefficient,heat transfer coefficient.5.热阻与热流网络图;Thermal resistance and heat transfer network6,单位与单位制;Unit and system of unitsChapter 2 Heat Conduction Equation第二章导热方程式1.导热问题的求解目标(物体内部的温度场与热流场);Determine Target of Heat Conduction(temperature field and heat field in the internal objects)2.温度场(稳态、非稳态、均匀、一维、二维、三维);Temperature field (steady,transient,uniform,one-dimensional,two-dimensional,three-dimensional)3.等温面、等温线、热流线的性质及相互关系;Properties of isothermal surface, isotherm,heat flow and the relationship among them 4.方向导数、梯度的数学概念及相互关系;Mathematical concept of directional derivative , gradient and the relationship between them5.Fourier 定律;Fourier Law6.推导导热微分方程式的理论基础、简化假设及方程各项(内能、导热、内热源、导温系数、)的物理涵义;Theoretical bases of concluding heat conduction differential equation,simplified assumption and physical meanings of each term in the equation (Internal energy, heat conduction, internal heat source,temperature transfer coefficient, )7.定解条件【几何、物理、时间、边界(Ⅰ、Ⅱ、Ⅲ)】Conditions of determining the solution【geometry,physics,time,boundary(Ⅰ、Ⅱ、Ⅲ )】8.导热问题的求解方法(解析解、数值解)。

传热传质 英语

传热传质 英语

传热传质英语Heat and mass transfer, also known as transport phenomena, is a discipline that studies the transfer of heat, mass, and momentum in various physical systems. It plays a crucial role in many fields, including engineering, physics, chemistry, and environmental science.Heat transfer focuses on the study of the transfer of thermal energy, including conduction, convection, and radiation. Conduction occurs when heat is transferred through solid materials, while convection involves the movement of fluids and the transfer of heat. Radiation is the transfer of heat through electromagnetic waves. Understanding heat transfer is essential for designing efficient heating and cooling systems, engines, electronics, and energy conversion devices.Mass transfer, on the other hand, deals with the movement and transport of substances or chemicals in different phases. It includes diffusion, convection, and phase change processes. Diffusion occurs when substances move from a region of higher concentration to a region of lower concentration. Convection is also involved in mass transfer when fluids carry substances. Phase change processes, such as evaporation and condensation, play a significant role in mass transfer. Mass transfer is important in areas like chemical engineering, environmental science, and biological systems.Together, heat and mass transfer form the foundation of transport phenomena. They are intricately interconnected and influence each other in many processes. For example, in heat exchangers, both heat and mass transfer occur simultaneously as fluids exchange heat and substances. In chemical reactors, the rates of chemical reactions are often governed by heat and mass transfer.Understanding and predicting heat and mass transfer is crucial for engineers and scientists to optimize processes, design efficient equipment, and develop sustainable technologies. By studying transport phenomena, we can improve energy efficiency, enhance separation processes, and develop novel materials and devices.。

化工专业英语第三篇翻译

化工专业英语第三篇翻译

Heat Transfer 传热Heat, as a form of energy, cannot be created or destroyed. Heat can be transferred from one substance to another.热是能量的一种形式,不能创造也不能消灭。

热可以从一个物体传递到另一个物体。

Heat always tends to pass from warmer objects to cooler ones. When a warm substance comes in contact with a cold substance, the molecules of the warm substance collide (碰撞) whth the molecules of the cold substance, giving some of its energy to the cold molecules. This is only one way to transfer heat.热总是倾向于从较热的物体向较冷的物体传递。

当一个暖的物体与一个冷的物体接触时,暖物体的分子与冷物体的分子碰撞,把他们的部分能量传给冷物体的分子。

这仅仅是传递热的一种方式。

In a chemical plant, for example, in a refinery (炼油厂), transfer of heat is very important , the successful operation of most processes is dependent on correct application of the principles (原理) of heat transfer. Where we are handling (处理;加工;操纵) a hot material, we may insulate(隔离,绝缘) the system to hold the heat in; where the material is cold, we insulate to keep the heat out. Efficient equipment, designed to take full advantage of (充分利用) processing heat, is in use on almost all chemical plants.在化工厂,例如一个精炼厂,传热是非常重要的,大多数过程的成功运行取决于传热原理的正确运用。

传热和传质基本原理--传质理论 ppt课件

传热和传质基本原理--传质理论 ppt课件

ppt课件
35
(5) 温度对扩散系数的影响
ppt课件
36
ppt课件
37
§3-6 流体和多孔介质中的扩散和扩散 系数
ppt课件
38
ppt课件
39
ppt课件
40
ppt课件
41
ppt课件
42
ppt课件
43
多孔介质中的弥散传质 The origin of dispersion(弥散)
Physically, a non-constant advecting velocity
D f x c ~ j x u ~ ij)f jku ~ iu ~jfu ~ kc ~f
(*)
(1 C r)c ~ u ~ jf u x i jf u ~ ju ~ if( c x jfjk u ~ k c ~ f) 0
ppt课件
48
Thus the last equation can be simplified as:
u j 0 x j
u ti xjuju i1 x p i xj
( u i uj) xj xi
c t xj
ujcxj
(Df xcj)
ppt课件
45
Volume-averaged macroscopic GEs
u j f 0 x j
uif t
xj
ujf
uif
1pf
f xi
microscopic equations reads the spatial deviation: u~ j 0 x j
D D u ~i t xj(u ~juif u ~iu ~j)1f x ~ pi xj( x u ~ij u ~ xij)

化工原理英文教材传热传递Heat Transfer

化工原理英文教材传热传递Heat Transfer
Conduction is accompanied with radiation.
Convection take places with conduction and radiation.
Heat transfer by conduction
Conduction is most easily understood by considering heat flow in homogeneous isotropic solids because in these there is no convection and the effect of radiation is negligible.
Basic law of conduction
The basic relation for heat flow by conduction is the proportionality between heat flux and the temperature gradient.
It can be written
Conduction and convection heat transfer rates depend upon temperature difference between two kinds of objects.
Radiation always happens except for temperature T=0 K.
dq k T dA n
(10-1)
The partial derivative calls attention to the fact that the temperature may vary with both location and time.

工程热力学与传热学(英文) 第8章 热量传递的基本方式

工程热力学与传热学(英文) 第8章 热量传递的基本方式
流动方向 u ∞ u tw wall
tf t
Φ
平壁上的对流换热
8-2-2 Newton’s law of cooling(牛顿冷却公式)
Ah(t w t f ) q h(t w t f ) ht
In 1701,by Newton
流动方向 u∞ u tw wall
t
f
t
Φ
平壁上的对流换热
A q A
dt dx
WW / m2源自Why the minus sign?
Where:
负号的含义
Heat is transferred in the direction of decreasing temp.
Φ — Heat- transfer rate(热流量) (单位时间通过给定面积传递的热量)W, kW
8-2 Convection Heat Transfer(热对流)
8-2-1 热对流和对流换热
1. Convection(对流) 是指流体各部分之间发生相对位移时,冷热流体相互 掺混所引起的热量传递现象。 2. Convection heat transfer(对流换热) 流体流过另一个物体表面时, 对流和导热联合起作用的热量 传递现象。 平壁表面的 传热机理
Heat Transfer
--- Chapter 8 Basic Modes of
Heat Transfer ---
Chapter 8 Basic Modes of Heat Transfer
Contents


Conduction heat transfer and Fourier’s law of onedimensional steady state heat-conduction Convection heat transfer and Newton’s law of cooling Radiation heat transfer and Stefan-Boltzmann Law Heat transfer processes

传热英文讲义-热对流 heat transfer-convection

传热英文讲义-热对流 heat transfer-convection

ConvectionAs mentioned earlier, there are threemechanisms of heat transfer:conduction, convection, and radiation.Conduction and convection are similar inthat both mechanisms require materialmedium, but the difference is thatconvection requires the presence offluid motion. And heat transfer througha liquid or gas can be by convection orconduction, depending on if there ispresence of bulk fluid motion. In otherwords, if there exists bulk fluid motion,it is convection; if there is none, then itis conduction.Convection is complicated because itinvolves fluid motion and heatconduction. Thus, rate of heat transferby convection is higher than conduction.And the higher the fluid velocity, thehigher the heat transfer rate.Further reading about convection is available atAlthough, convection is complex, the rate of convection heat transfer is observed to be proportional to the temperature difference and can be conveniently expressed by Newton’s law of cooling asq conv=ℎ(T s−T∞) (W/m2) (x.1)orQ conv=ℎA s(T s−T∞) (W)(x.2)Whereh = convection heat transfer coefficient, W/m2·o CA s = heat transfer surface area, m2Ts = temperature of the surface, ˚CT∞= temperature of the fluid sufficiently far from the surface, ˚CConvection heat transfer coefficient h can be defined as the rate of heat transfer between a solid surface and a fluid per surface area per unit temperature difference. The convection coefficient is decided by variables influencing convection such assurface geometry, the nature of fluid motion, the properties of the fluid, and the bulk fluid velocity.Typical values of h are given in Table x.1.Table x.1Nusselt NumberIn convection studies, to nondimensionalise the governing equations, dimensionless numbers are introduced to reduce the number of total variables. Nusselt number, viewed as the dimensionless convection heat transfer coefficient is defined as:Nu=ℎL c kWhere k is the thermal conductivity of the fluid and Lc is the characteristic length. The physical significance means the heat transfer ratio of convection to conduction. For Nu=1, the heat transfer is pure conduction.Fluid flowsHeat transfer between moving fluid and solid surface or between moving fluid and interface (to/from air to falling drop).It is commonly assumed that all resistance to heat/momentum transfer occurs in boundary layer defined as part of fluid adjacent to the surface where velocity/temperature changes. Outside boundary layer velocity/temperature is constant.(a)Velocity boundary layerThe fluid flow is characterised by two regions:- Thin fluid layer (boundary layer) in which velocity gradients and shear stresses are large- Free stream (region outside boundary layer) where velocity gradients and stresses are negligible(b) Thermal (temperature) boundary layer- Thin fluid layer of fluid in which temperature gradients are large-exists only when there is a difference between surface temperature and bulk temperature Thickness of boundary layer δt is the value of y for which: Ts−TTs−T∞=0.99If the temperature distribution in boundary layer is known local heat flux from/to the surface can be calcul ated from Fourier’s law in the fluid (there is no fluid motion on the surface)q s′′=−k f∙ðTðy y=0 and q′′=ℎ∙(T s−T∞)In such case convective heat transfer coefficient can also be calculated (no need for experimental data or Buckingham theorem).Local heat transfer coefficientIntegrating local heat transfer coefficient over the entire surface the average value can be calculated:This method of calculation of heat flux to or from the surface is used in CFD packages (numerical solution of momentum and energy balance). In engineering calculations fully developed flows are usually considered therefore average heat transfer coefficients are commonly used (but not always).Structures of boundary layers, local/average heat transfer coefficients1.External flow(a). Flow parallel to flat plateLaminar part:-Local convective heat transfer coefficient:-average heat transfer coefficient ( integrate above from 0 to x):Turbulent part:-Local heat transfer coefficient:-Mixed boundary layer conditions (part of the plate laminar, part turbulent):(b). Flow around cylinderLocal heat transfer coefficient:Average:m and n are constants that can be found from literature.(c). Flow around sphere (similar to flow around cylinder)Internal flow:The extent of boundary layer can be estimated from Re numberD –Tube diameter [m], μ - dynamic viscosity [Pa s], m& - mass flow rate [kg/s],u m - mean fluid velocity [m/s]Thermal entrance regions:(a). Laminar flow:(b). Turbulent flow:Nu number for different types of flow:Fully developed laminar flow:(a). Constant temperature at the wall Nu D=3.66(b). constant heat flux at the wall Nu D=4.36Laminar flow including entry region:Fully developed turbulent flow (properties at T m)(a). Chilton-Colburn equation:(b). Dittus-Boelter equation:(c). Sieder-Tate equation:For noncircular tubes-hydraulic diameter D h=4A c/P, A c– flow crosssectionalarea, P –wetted perimeter (both in Re and Nu numbers)SummaryYou should:A) know/understand that convective heat transfer coefficients depends on:1. Type of flow: internal or external2. Geometry: flat plate, around cylinder/sphere, inside the pipe, etc3. Flow regime - Re number,B) be able to select appropriate correlation (from literature) for given flowconditions,C) be able to distinguish between local or average heat transfer coefficient.。

Chap 传热传质4.1 4.3

Chap 传热传质4.1 4.3

q q* ss kAs T 1 T2 / Lc
where the object’s characteristic length Lc is
Lc As / 4
1/ 2
(4.23)
(4.22)
• Exact and approximate results for common systems are provided in Table 4.1 (b). For example,
华中科技大学 力学系 传热传质学 2014 Spring

Flux Plots
Flux Plots
• Utility: Requires delineation of isotherms and heat flow lines. Provides a quick means of estimating the rate of heat flow. • Procedure: Systematic construction of nearly perpendicular isotherms and heat flow lines to achieve a network of curvilinear squares. • Rules: – On a schematic of the two-dimensional conduction domain, identify all lines of symmetry, which are equivalent to adiabats and hence heat flow lines. – Sketch approximately uniformly spaced isotherms on the schematic, choosing a small to moderate number in accordance with the desired fineness of the network and rendering them approximately perpendicular to all adiabats at points of intersection. – Draw heat flow lines in accordance with requirements for a network of curvilinear squares. • See Supplemental Section 4 S.1.

Unit Four Heat Transfer_石油化工专业英语

Unit Four   Heat Transfer_石油化工专业英语

4. The rate at which heat flows depends on the amount of temperature difference as well as on the properties of the material through which it has to flow.
radiation n. 辐射 absorption n. 吸收 convert v. (可)转变为,(into)变换,兑换 alter v. 改变 immerse v. 沉浸 coaxial a. 同心的 encounter v. 遇到 concentrically ad. 同心地,同轴地 parallel a. 平行的,并行的,同一方向(目的) 的 cylindrical n.圆柱形的 constrain v. 约束,限制,抑制 zig-zag n. 之字形,Z字形
句中两个 “which” 都引导了定语从句, 介词前置。 译文:热量流动的速率取决于温度差的 大小以及要通过热量的物料的性质5. Βιβλιοθήκη isturbance n. 干扰,扰动
disturb v. 打扰,扰乱,妨害 disturb the peace 扰乱治安
6. by means of 依靠,凭借,通过
9. In radiation, thermal energy is transformed into radiant energy, similar in nature to light.
“in nature” 实际上,本质上 译文:辐射时,热能变为与光的性质相 类似的辐射能。
10. Very commonly in a chemical process, the temperature of a stream of fluid must be altered.

化工原理英文教材传热原理Principles of heat flow in fluids

化工原理英文教材传热原理Principles of heat  flow in fluids
化工原理 Principles of Chemical Industry
Principles of heat flow in fluids
Typical heat-exchange equipment
Single-pass shell-and-tube condenser
Expansion joint
It is clear from Fig.11-4 that Δt can vary considerably from point to point along the tube, and, therefore, the flux also varies with tube length.
The local flux dq/dA is related to the local value of Δt by the equation
because, as inspection of Figs11-4a and b will show, it is
not possible with this method of flow to bring the exit temperature of one fluid nearly to the entrance temperature of the other and the heat that can be transferred is less than that possible in countercurrent flow.
The temperatures plotted Fig11-4 are average stream temperatures.
The temperature so defined is called the average or mixing-cup stream temperature.

国际传热传质交流的英语

国际传热传质交流的英语

国际传热传质交流的英语International Heat and Mass Transfer ExchangeThe field of international heat and mass transfer exchange is a critical area of study that has far-reaching implications across a wide range of industries and applications. As the world becomes increasingly interconnected, the need for effective and efficient heat and mass transfer processes has become more important than ever before.At its core, heat and mass transfer is the study of how energy and matter move from one location to another. This can involve the transfer of heat through conduction, convection, or radiation, as well as the movement of molecules or particles through diffusion or advection. These processes are fundamental to a wide range of applications, from energy production and distribution to chemical processing and manufacturing.In the context of international exchange, heat and mass transfer plays a crucial role in facilitating the global flow of goods, services, and information. For example, the transportation of goods across borders often requires the careful management of temperature and humidity to ensure the integrity and quality of the products beingshipped. Similarly, the design and operation of international communication networks rely heavily on the principles of heat and mass transfer to ensure the efficient and reliable transmission of data.Another important aspect of international heat and mass transfer exchange is its role in the development of sustainable energy solutions. As the world grapples with the challenges of climate change and the need to reduce greenhouse gas emissions, the efficient transfer of heat and mass has become increasingly important in the design and operation of renewable energy systems, such as solar thermal power plants and geothermal heating and cooling systems.In the field of industrial processing, international heat and mass transfer exchange is critical for the optimization of production processes and the reduction of energy consumption. For instance, the design of heat exchangers used in chemical plants or refineries can have a significant impact on the overall efficiency and environmental impact of the operation. By leveraging the principles of heat and mass transfer, engineers can develop more efficient and environmentally-friendly processes that can be deployed in a global context.Beyond the industrial and technological applications, international heat and mass transfer exchange also plays a role in the field ofenvironmental science and policy. The movement of heat and mass through the Earth's atmosphere, oceans, and ecosystems is a fundamental driver of global climate patterns and weather systems. Understanding these processes is crucial for developing accurate models of climate change and for designing effective strategies to mitigate its impacts.In the realm of public health, international heat and mass transfer exchange is also relevant. The spread of airborne diseases, for example, is heavily influenced by the movement of heat and mass through the environment, and the design of ventilation systems and other building technologies can have a significant impact on the transmission of these diseases.Overall, the field of international heat and mass transfer exchange is a complex and multifaceted discipline that touches on a wide range of industries, technologies, and societal challenges. As the world becomes increasingly interconnected, the importance of this field will only continue to grow, and the need for innovative solutions and collaborative efforts will become ever more critical.。

冶金英语词汇(最全)

冶金英语词汇(最全)

冶金英语词汇(最全),1 总论采矿mining地下采矿underground mining露天采矿open cut mining, open pit mining, surface mining采矿工程mining engineering选矿(学)mineral dressing, ore beneficiation, mineral processing矿物工程mineral engineering冶金(学)metallurgy过程冶金(学)process metallurgy提取冶金(学)extractive metallurgy化学冶金(学)chemical metallurgy物理冶金(学)physical metallurgy金属学Metallkunde冶金过程物理化学physical chemistry of process metallurgy冶金反应工程学metallurgical reaction engineering 冶金工程metallurgical engineering钢铁冶金(学)ferrous metallurgy, metallurgy of iron and steel有色冶金(学)nonferrous metallurgy真空冶金(学)vacuum metallurgy等离子冶金(学)plasma metallurgy微生物冶金(学)microbial metallurgy喷射冶金(学)injection metallurgy钢包冶金(学)ladle metallurgy二次冶金(学)secondary metallurgy机械冶金(学)mechanical metallurgy焊接冶金(学)welding metallurgy粉末冶金(学)powder metallurgy铸造学foundry火法冶金(学)pyrometallurgy湿法冶金(学)hydrometallurgy电冶金(学)electrometallurgy氯冶金(学)chlorine metallurgy矿物资源综合利用engineering of comprehensive utilization of mineralresources中国金属学会The Chinese Society for Metals中国有色金属学会The Nonferrous Metals Society of China2 采矿采矿工艺mining technology有用矿物valuable mineral冶金矿产原料metallurgical mineral raw materials 矿床mineral deposit特殊采矿specialized mining海洋采矿oceanic mining, marine mining矿田mine field矿山mine露天矿山surface mine地下矿山underground mine矿井shaft矿床勘探mineral deposit exploration矿山可行性研究mine feasibility study矿山规模mine capacity矿山生产能力mine production capacity矿山年产量annual mine output矿山服务年限mine life矿山基本建设mine construction矿山建设期限mine construction period矿山达产arrival at mine full capacity开采强度mining intensity矿石回收率ore recovery ratio矿石损失率ore loss ratio工业矿石industrial ore采出矿石extracted ore矿体orebody矿脉vein海洋矿产资源oceanic mineral resources矿石ore矿石品位ore grade岩石力学rock mechanics岩体力学rock mass mechanics3 选矿选矿厂concentrator, mineral processing plant 工艺矿物学process mineralogy开路open circuit闭路closed circuit流程flowsheet方框流程block flowsheet产率yield回收率recovery矿物mineral粒度particle size粗颗粒coarse particle细颗粒fine particle超微颗粒ultrafine particle粗粒级coarse fraction细粒级fine fraction网目mesh原矿run of mine, crude精矿concentrate粗精矿rough concentrate混合精矿bulk concentrate最终精矿final concentrate尾矿tailings粉碎comminution破碎crushing磨碎grinding团聚agglomeration筛分screening, sieving分级classification富集concentration分选separation手选hand sorting重选gravity separation, gravity concentration 磁选magnetic separation电选electrostatic separation浮选flotation化学选矿chemical mineral processing自然铜native copper铝土矿bauxite冰晶石cryolite磁铁矿magnetite赤铁矿hematite假象赤铁矿martite钒钛磁铁矿vanadium titano-magnetite铁燧石taconite褐铁矿limonite菱铁矿siderite镜铁矿specularite硬锰矿psilomelane软锰矿pyrolusite铬铁矿chromite黄铁矿pyrite钛铁矿ilmennite金红石rutile萤石fluorite高岭石kaolinite菱镁矿magnesite重晶石barite石墨graphite石英quartz方解石calcite石灰石limestone白云石dolomite云母mica石膏gypsum 硼砂borax石棉asbestos蛇纹石serpentine阶段破碎stage crushing粗碎primary crushing中碎secondary crushing细碎fine crushing对辊破碎机roll crusher粉磨机pulverizer震动筛vibrating screen筛网screen cloth筛孔screen opening筛上料oversize筛下料undersize粗磨coarse grinding细磨fine grinding球磨机ball mill衬板liner分级机classifier自由沉降free setting沉积sedimentation石灰lime松油pine oil硫化钠sodium sulfide硅酸钠(水玻璃)sodium silicate, water glass过滤filtration过滤机filter给矿,给料feeding给矿机feeder在线分析仪on line analyzer在线粒度分析仪on line size analyzer超声粒度计ultrasonic particle sizer, supersonic particle sizer4 冶金过程物理化学4.1 冶金过程热力学冶金过程热力学thermodynamics of metallurgical processes统计热力学statistical thermodynamics不可逆过程热力学thermodynamics of irreversible processes化学热力学chemical thernodynamics表面热力学surface thermodynamics合金热力学thermodynamics of alloys冶金热力学数据库thermodynamics databank in metallurgy系system单元系single-componentsystem多元系multicomponent system均相系统homogeneous system广度性质extensive property强度性质intensive property过程process等温过程isothermal process等压过程isobaric process等容过程isochoric process绝热过程adiabatic process可逆过程reversible process不可逆过程irreversible process自发过程spontaneous process自理过程physical process化学过程chemical process冶金过程metallurgical process化学反应chemical reaction化合反应combination reaction分解反应decomposition reaction置换反应displacement reaction可逆反应reversible reaction不可逆反应irreversible reaction电化学反应electrochemical reaction多相反应multiphase reaction固态反应solid state reaction气一金(属)反应gas-metal reaction渣一金(属)反应slag-metal reaction 平衡equilibrium化学平衡chemical equilibrium相平衡phase equilibrium热力学平衡thermodynamic equilibrium 亚稳平衡metastable equilibrium热力学函数thermodynamic function偏摩尔量partial molar quantity总摩尔量integral molar quantity标准态standard state焓enthalpy生成焓enthalpy of formation反应焓enthalpy of reaction熵entropy吉布斯能Gibbs energy生成吉布斯能Gibbs energy of formation 反应吉布斯能Gibbs energy of reaction 溶解吉布斯能Gibbs energy of solution 吉布斯能函数Gibbs energy function化学位chemical potential热化学thermochemistry 热效应heat effect热容heat capacity熔化热heat of fusion汽化热heat of vaporization升华热heat of sublimation相变热heat of phase transformation放热反应exothermic reaction吸热反应endothermic reaction赫斯定律Hess’s law相律phase rule相图phase diagram一元相图single-component phase diagram二元相图binary-component phase diagram三元相图ternary-component phase diagram液相线liquidus固相线solidus共晶点eutectic point杠杆规则lever rule溶液solution溶质solute溶剂solvent固溶体solid solution溶液浓度concentration of solution摩尔分数mole fraction冶金熔体metallurgical melt金属熔体metal melt(炉)渣,熔渣slag熔盐molten salt, fused salt理想溶液ideal solution真实溶液real solution正规溶液regular solution活度activity活度系数activity coefficient拉乌尔定律Raoult’s law亨利定律Henry’s law纯物质标准态pure substance standard质量1%溶液标准(态)1 mass% solution standard 无限稀溶液参考态reference state of infinityly dilute solution相互作用系数interaction coefficient化学反应等温式chemical reaction isotherm吉布斯~亥姆霍兹方程Gibbs-Helmholtz equation 质量作用定律law of mass action平衡常数equilibrium constant平衡值equilibrium value直接还原direct reduction间接还原indirect reduction金属热还原metallothermic reduction选择性氧化selective oxidation渣碱度basicity of slag光学破度optical basicity酸性氧化物acid oxide碱性氧化物basicoxide两性氧化物amphoteric泡沫渣foaming slag熔渣的分子理论molecular theory of slag熔渣的离子理论ionization theory of slag脱氧平衡deoxidation equilibrium脱氧常数deoxidation constant熔渣脱硫desulfurization by slag气态脱硫desulfurization in the gaseous state硫分配比sulfur partition ratio硫化物容量sulfide capacity氧化脱磷dephosphorization under oxidizing atmosphere磷分配比碳一氧平衡carbon-oxygen equilibrium真空脱碳vacuum decarburization去气degassing去除非金属夹杂(物)elimination of nonmetallic inclusion非金属夹杂(物)变形form modification of nonmetallic inclusion脱硅desiliconization脱锰demanganization分配平衡distribution law化学气相沉积chemical vapor deposition(CVD) 4.2 冶金过程动力学微观动力学microkinetics化学动力学chemical kinetics反应途径reaction path反应机理reaction mechanism基元反应elementary reaction平行反应parallel链反应chain reaction总反应overall reaction反应速率reaction rate反应速率常数reaction rate constant反应级数reaction order零级反应zero order reaction一级反应first order reaction二级反应second order reactionn级反应nth order reaction碰撞理论collision theory活化能activation energy 表现活化能apparent activation energy阿伦尼乌斯方程Arrhenius equation半衰期half-life宏观动力学macrokinetics冶金过程动力学kinetics of metallurgical process 传输现象transport phenomena传质mass transfer传热heat transfer动量传输momentum transfer层流laminar flow湍流turbulent flow气泡gas bubble鼓泡bubbling射流jet液滴liquid droplet粘度viscosity边界层boundary layer流率flow rate通量flux扩散diffusion菲克第一扩散定律Fick’s 1st law of diffusion菲克第一扩散定律Fick’s 2nd law of diffusion 扩散系数diffusion coefficient传质系数mass transfer coefficient热传导heat conduction热对流heat convection自然对流natural convection强制对流forced convection热辐射heat radiation导热率thermal conductivity传热系数heat transfer coefficient体内浓度bulk concentration未反应核模型unreacted core model扩散控制反应diffusion-controlled reaction化学控制反应chenical-controlled reaction混合控制反应mixed-controlled reaction相似原理priciple of similarity雷诺数Reynolds number固定床fiexed bed填充床packed bed移动床moving bed流态化床fluidized bed混合时间mixing time停留时间residence time, retention time催化catalysis催化剂catalyst表面能surface energy表面张力surface tension界面能interfacial energy界面张力interfacial tension润湿wetting表面活性物质surface-active substance吸收absorption吸附absorption4.3 冶金电化学冶金电化学metallurgical electrochemistry熔盐电化学electrochemistry of fused salts固态离子学solid state ionics电解质溶液electrolyte solution阳离子cation阴离子anion电导conductance电导率conductivity电阻resistance电极electrode阴极cathode阳极anode电镀electroplating固体电解质solid electrolyte稳定的氧化锆stablized zirconia氧传感器oxygen sensor硅传感器silicon sensor定氧测头oxygen probe定硅测头silicon probe4.4 冶金物理化学研究方法冶金物理化学研究方法research methods in metallurgical physicalchemistry热电偶thermocouple量热计calorimeter热太平thermobalance热分析thermal analysis差热分析differential thermal analysis,DTA热重法thermogravimetry分子筛molecular sieve5 钢铁冶金5.1 炼焦炼焦coking高温炭化high temperature carbonization塑性成焦机理plastic mechanism of coke formation 中间相成焦机理mesophase mechanism of coke formation选煤coal preparation, coal washing 配煤coal blending配煤试验coal blending test炼焦煤coking coal气煤gas coal肥煤fat coal瘦煤lean coal焦炉coke oven焦化室oven chamber焦饼coke cake结焦时间coking time周转时间cycle time装煤coal charging捣固装煤stamp charging推焦coke pushing焦炭熄火coke quenching干法熄焦dry quenching of coke焦台coke wharf装煤车larry car推焦机pushing machine拦焦机coke guide熄焦车quenching car焦炉焖炉banking for coke oven焦炭coke冶金焦metallurgical coke铸造焦foundry coke焦炭工业分析proximate analysis of coke焦炭元素分析ultimate analysis of coke焦炭落下指数shatter index of coke焦炭转鼓指数drum index of coke焦炭热强度hot strength of coke焦炭反应性coke reactivity焦炭反应后强度post-reaction strength of coke 焦炭显微强度microstrength of coke焦炉煤气coke oven gas发热值calorific value煤焦油coal tar粗苯crude benzol苯benzene甲苯toluene二甲苯xylene苯并呋喃-茚树脂coumarone-indene resin精萘refined naphthalene精蒽refined anthracene煤[焦油]沥青coal tar pitch沥青焦pitch coke针状焦needle coke型焦formcoke5.2 耐火材料耐火材料refractory materials耐火粘土fireclay高岭土kaolin硬质粘土flint clay轻质粘土soft clay陶土pot clay蒙脱石montmorillonite叶蜡石pyrophyllite膨润土bentonite鳞石英tridymite方石英cristobalite砂岩sandstone耐火石firestone莫来石mullite氧化铝alumina烧结氧化铝sintered alumina电熔氧化铝fused alumina刚玉corundum红柱石andalusite蓝晶石kyanite,cyanite硅线石sillimanite橄榄石olivine方镁石periclase镁砂magnesia合成镁砂synthetic sintered magnesia电熔镁砂fused magnesia烧结白云石砂sintered dolomite clinker合成镁铬砂synthetic magnesia chromite clinker 尖晶石spinel镁铬尖晶石magnesia chrome spinel,magnesiochromite硅藻土diatomaceous earth, infusorial earth蛭石vermiculite珍珠岩perlite碳化硅silicon carbide氮化硅silicon nitride氮化硼boron nitride粘土熟料chamotte熟料grog轻烧light burning,soft burning死烧dead burning,hard burning成型模注shaping moulding机压成型mechanical pressing等静压成型isostatic pressing摩擦压砖机friction press液压压砖机hydraulic press 捣打成型ramming process熔铸成型fusion cast process砖坯强度green strength,dry strength隧道窑tunnel kiln回转窑rotary kiln倒焰窑down draught kiln耐火砖refractory brick标准型耐火砖standard size refractory brick泡砂石quartzite sandstone酸性耐火材料acid refractory [material]硅质耐火材料siliceous refractory [material]硅砖silica brick,dinas brick熔融石英制品fused quartz product硅酸铝质耐火材料aluminosillicate refractory半硅砖semisilica brick粘土砖fireclay brick,chamotte brick石墨粘土砖graphite clay brick高铝砖high alumina brick硅线石砖sillimanite brick莫来石砖mullite brick刚玉砖corundum brick铝铬砖alumina chrome brick熔铸砖fused cast brick碱性耐火材料basic refractory [material]镁质耐火材料magnesia refractory [material]镁砖magnesia brick镁铝砖magnesia alumina brick镁铬砖magnesia chrome brick镁炭砖magnesia carbon brick中性耐火材料neutral refractory [material]复合砖composite brick铝炭砖alumina carbon brick铝镁炭转alumina magnesia brick锆炭砖zirconia graphite brick镁钙炭砖magnesia clacia carbon brick长水口long nozzle浸入式水口immersion nozzle,submerged nozzle 定径水口metering nozzle氧化铝-碳化硅-炭砖Al2O3-SiC-C brick透气砖gas permeable brick,porous brick滑动水口slide gate nozzle水口砖nozzle brick塞头砖stopper绝热耐火材料insulating refractory轻质耐火材料light weight refractory袖砖sleeve brick格子砖checker brick,chequer brick陶瓷纤维ceramic fiber耐火纤维refractory fiber耐火浇注料refractory castable耐火混凝土refractory concrete荷重耐火性refractoriness under load抗渣性slagging resistance耐磨损性abrasion resistance5.3 碳素材料[含]碳[元]素材料carbon materials无定形碳amorphous carbon金刚石diamond炭相[学]carbon micrography炭黑carbon black石油沥青petroleum pitch石油焦炭petroleum coke石墨化graphitization石墨化电阻炉electric resistance furnace for graphitization石墨纯净化处理purification treatment of graphite 炭砖carbon brick炭块carbon block碳化硅基炭块SiC-based carbon block炭电极carbon electrode连续自焙电极Soderberg electrode石墨电极graphite electrode超高功率石墨电极ultra-high power graphite electrode石墨电极接头graphite electrode nipple石墨电极接头孔graphite electrode socket plug电极糊electrode paste石墨坩埚graphite crucible石墨电阻棒graphite rod resistor炭刷carbon brush高纯石墨high purity graphite5.4 铁合金铁合金ferroalloy硅铁ferrosilicon硅钙calcium silicon金属硅silicon metal锰铁ferromangnanese低碳锰铁low carbon ferromanganese硅锰silicomanganese金属锰manganese metal铬铁ferrochromium低碳铬铁low carbon ferrochromium微碳铬铁extra low carbon ferrochromium硅铬silicochromium 金属铬chromium metal钨铁ferrotunsten钼铁ferromolybdenum钛铁ferrotitanium硼铁ferroboron铌铁ferroniobium磷铁ferrophosphorus镍铁ferronickel锆铁ferrozirconium硅锆silicozirconium稀土硅铁rare earth ferrosilicon稀土镁硅铁rare earth ferrosilicomagnesium成核剂nucleater孕育剂incubater,inoculant球化剂nodulizer蠕化剂vermiculizer中间铁合金master alloy复合铁合金complex ferroalloy电碳热法electro-carbothermic process电硅热法electro-silicothermic process铝热法aluminothermic process,thermit process 电铝热法electro-aluminothermic process开弧炉open arc furnace埋弧炉submerged arc furnace半封闭炉semiclosed furnace封闭炉closed furnace矮烟罩电炉electric furnace with low hood矮炉身电炉low-shaft electric furnace5.5 烧结与球团人造块矿ore agglomerates烧结矿sinter压块矿briquette球团[矿] pellet针铁矿goethite自熔性铁矿self-fluxed iron ore复合铁矿complex iron ore块矿lump ore粉矿ore fines矿石混匀ore blending配矿ore proportioning矿石整粒ore size grading返矿return fines储矿场ore stockyard矿石堆料机ore stocker匀矿取料机ore reclaimer熔剂flux消石灰slaked lime活性石灰quickened lime有机粘结剂organic binder烧结混合料sinter mixture烧结铺底料hearth layer for sinter烧结sintering烧结热前沿heat front in sintering烧结火焰前沿flame front in sintering渣相粘结slag bonding扩散粘结diffusion bonding带式烧结机Dwight-Lloyd sintering machine环式烧结机circular travelling sintering machine烧结梭式布料机shuttle conveyer belt烧结点火料sintering ignition furnace烧结盘sintering pan烧结锅sintering pot烧结冷却机sinter cooler带式冷却机straight-line cooler环式冷却机circular cooler,annular cooler生球green pellet,ball生球长大聚合机理ball growth by coalescence生球长大成层机理ball growth by layering生球长大同化机理ball growth by assimilation精矿成球指数balling index for iron ore concentrates生球转鼓强度drum strength of green pellet生球落下强度shatter strength of green pellet生球抗压强度compression strength of green pellet 生球爆裂温度cracking temperature of green pellet 圆筒造球机balling drum圆盘造球机balling disc竖炉陪烧球团shaft furnace for pellet firing带式机陪烧球团traveling grate for pellet firing链算机-回转窑陪烧球团grate-kiln for pellet firing 环式机陪烧球团circular gates for pellet firing冷固结球团cold bound pellet维式体wustite铁橄榄石fayalite铁尖晶石hercynite铁黄长石ferrogehlenite铁酸半钙calcium diferrite铁酸钙calcium ferrite铁酸二钙dicalcium ferrite锰铁橄榄石knebelite钙铁橄榄石kirschsteinite钙铁辉石hedenbergite 钙铁榴石andradite钙长石anorthite钙镁橄榄石monticellite钙钛矿perovskite硅灰石wollastonite硅酸二钙dicalcium silicate硅酸三钙tricalcium silicate镁橄榄石forsterite镁黄长石akermanite镁蔷薇辉石manganolite钙铝黄长石gehlenite钛辉石titanaugite枪晶石cuspidine预还原球团pre-reduced pellet金属化球团metallized pellet转鼓试验drum test,tumbler test落下试验shatter test5.6 高炉炼铁炼铁iron making高炉炼铁[法] blast furnace process高炉blast furnace鼓风炉blast furnace炉料charge, burden矿料ore charge焦料coke charge炉料提升charge hoisting小车上料charge hoisting by skip吊罐上料charge hoisting by bucket皮带上料charge hoisting by belt conveyer 装料charging装料顺序charging sequence储料漏斗hopper双料钟式装料two-bells system charging 无料钟装料bell-less charging布料器distributor炉内料线stock line in the furnace探料尺gauge rod利用系数utilization coefficient冶炼强度combustion intensity鼓风blast风压blast pressure风温blast temperature鼓风量blast volume鼓风湿度blast humidity全风量操作full blast慢风under blowing休风delay喷吹燃料fuel injection喷煤coal injection喷油oil injection富氧鼓风oxygen enriched blast,oxygen enrichment置换比replacement ratio喷射器injector热补偿thermal compensation焦比coke ratio,coke rate燃料比fuel ratio,fuel rate氧化带oxidizing zone风口循环区raceway蒸汽鼓风humidified blast混合喷吹mixed injection脱湿鼓风dehumidified blast炉内压差pressure drop in furnace煤气分布gas distribution煤气利用率gas utilization rate炉况furnace condition顺行smooth running焦炭负荷coke load,ore to coke ratio软熔带cohesive zone,softening zone渣比slag to iron ratio,slag ratio上部[炉料]调节burden conditioning下部[鼓风]调节blast conditioning高炉作业率operation rate of blast furnace休风率delay ratio高炉寿命blast furnace campaign悬料hanging崩料slip沟流channeling结瘤scaffolding炉缸冻结hearth freeze-up开炉blow on停炉blow off积铁salamander炉型profile,furnace lines炉喉throat炉身shaft,stack炉腰belly炉腹bosh炉缸hearth炉底bottom炉腹角bosh angle炉身角stack angle有效容积effective volume工作容积working bolume 铁口iron notch, slag notch渣口cinder notch, slag notch风口tuyere窥视孔peep hole风口水套tuyere cooler渣口水套slag notch cooler风口弯头tuyere stock热风围管bustle pipe堵渣机stopper泥炮mud gun,clay gun开铁口机iron notch drill铁水hot metal铁[水]罐iron ladle鱼雷车torpedo car主铁沟sow出铁沟casting house铁沟iron runner渣沟slag runner渣罐cinder ladle, slag ladle撇渣器skimmer冷却水箱cooling plate冷却壁cooling stave汽化冷却vaporization cooling热风炉hot blast stove燃烧室combustion chamber燃烧器burner热风阀hot blast valve烟道阀chimney valve冷风阀cold blast valve助燃风机burner blower切断阀burner shut-off valve旁通阀by-pass valve混风阀mixer selector valve送风期on blast of stove,on blast燃烧期on gas of stove, on gas换炉stove changing放散阀blow off valve内燃式热风炉Cowper stove外燃式燃烧炉outside combustion stove 顶燃式热风炉top combustion stove炉顶放散阀bleeding valve放散管bleeder上升管gas uptake放风阀snorting valve均压阀equalizing valve高压调节阀septum valve炉顶高压elevated top pressure铸铁机pig-casting machine铸铁模pig mold冲天炉cupola水渣granulating slag水渣池granulating pit渣场slag disposal pit高炉煤气top gas,blast furnace gas高炉煤气回收topgas recovery,TGR非焦炭炼铁non-coke iron making直接还原炼铁[法]direct reduction iron making直接还原铁directly reduced iron,DRI竖炉直接炼铁direct reduction in shaft furnace流态化炼铁fluidized-bed iron making转底炉炼铁rotary hearth iron making米德雷克斯直接炼铁[法]Midrex processHYL直接炼铁[法] HYL process克虏伯回转窑炼铁[法] Krupp rotary kiln iron-making熔态还原smelting reduction铁溶法iron-bath process科雷克斯法COREX process生铁pig iron海绵铁sponge iron镜铁spiegel iron清铁法H-rion process5.7 炼钢钢steel炼钢steelmaking钢水liquid steel,molten steel钢semisteel沸腾钢rimming steel,rimmed steel镇静钢killed steel半镇静钢semikilled steel压盖沸腾钢capped steel坩埚炼钢法crucible steelmaking双联炼钢法duplex steelmaking process连续炼钢法continuous steelmaking process直接炼钢法direct steelmaking process混铁炉hot metal machine装料机charging machine装料期charging machine加热期heating period熔化期melting period造渣期slag forming period精炼期refining period熔清melting down脱氧deoxidation 预脱氧preliminary dexidation还原渣reducing slag酸性渣acid slag碱性渣basic slag脱碳decarburization增碳recarburization脱磷dephosphorization回磷rephosphorization脱硫desulfurization回硫resulfurization脱氮denitrogenation过氧化overoxidation出钢tapping冶炼时间duration of heat出钢样tapping sample浇铸样casting sample不合格炉次off heat熔炼损耗melting loss铁损iron loss废钢scrap废钢打包baling of scrap造渣材料slag making materials添加剂addition reagent脱氧剂deoxidizer脱硫剂desulfurizer冷却剂coolant回炉渣return slag喷枪lance浸入式喷枪submerged lance钢包ladle出钢口top hole出钢槽pouring lining炉顶furnace roof炉衬furnace lining炉衬侵蚀lining erosion渣线slag line炉衬寿命lining life分区砌砖zoned lining补炉fettling热修hot repair喷补gunning火焰喷补flame gunning转炉converter底吹转炉bottom-blown converter酸性空气底吹转炉air bottom-blown acid converter 碱性空气底吹转炉air bottom-blown basic converter侧吹转炉side-blown converter卡尔多转炉Kaldo converter氧气炼铁oxygen steelmaking氧气顶吹转炉top-blown oxygen converter,LI converter氧气底吹转炉bottom-blown oxygen converter quiet basic oxygenfurnace,QBOF顶底复吹转炉top and bottom combined blown converter喷石灰粉顶吹氧气转炉法oxygen lime process底吹煤氧的复合吹炼法Klockner-Maxhutte steelmaking process,KMS住友复合吹炼法Sumitomo top and bottom blowing process,STBLBE复吹法lance bubbling equilibrium process,LBE 顶枪喷煤粉炼钢法Arved lance carbon injection process,ALCI蒂森复合吹炼法Thyssen Blassen Metallurgical process,TBM面吹surface blow软吹soft blow硬吹hard blow补吹reblow过吹overblow后吹after blow目标碳aim carbon终点碳end point carbon高拉碳操作catch carbon practice增碳操作recarburization practice单渣操作single-slag operation双渣操作double-slag operation渣乳化slag emulsion二次燃烧postcombustion吹氧时间oxygen blow duration吹炼终点blow end point倒炉turning down喷渣slopping喷溅spitting静态控制static control动态控制dynamic control氧枪oxygen lance氧枪喷孔nozzle of oxygen lance多孔喷枪multi-nozzle lance转炉炉体converter body炉帽upper cone炉口mouth,lip ring 装料大面impact pad活动炉底removable bottom顶吹氧枪top blow oxygen lance副枪sublance多孔砖nozzle brick单环缝喷嘴single annular tuyere双环缝喷嘴double annular tuyere挡渣器slag stopper挡渣塞floating plug电磁测渣器electromagnetic slag detector废气控制系统off gas control system,OGCS平炉open-hearth furnace平炉炼钢open-hearth steelmaking冷装法cold charge practice热装法hot charge practice碳沸腾carbon boil石灰沸腾lime boil炉底沸腾bottom boil再沸腾reboil有效炉底面积effective hearth area酸性平炉acid open-hearth furnace碱性平炉basic open-hearth furnace固定式平炉stationary open-hearth furnace倾动式平炉tilting open-hearth furnace双床平炉twin-hearth furnace顶吹氧气平炉open-hearth furnace with roof oxygen lance蓄热室regenerator沉渣室slag pocket电炉炼钢electric steelmaking电弧炉electric arc furnace超高功率电弧炉ultra-high power electric arc furnace直流电弧炉direct current electric arc furnace双电极直流电弧炉double electrode direct current arc furnace竖窑式电弧炉shaft arc furnace电阻炉electric resistance furnace工频感应炉line frequency induction furnace中频感应炉medium frequency induction furnace 高频感应炉high frequency induction furnace电渣重熔electroslag remelting,ESR电渣熔铸electroslag casting,ESC电渣浇注Bohler electroslag tapping,BEST真空电弧炉重熔vacuum arc remelting,VAR真空感应炉熔炼vacuum induction melting,VIM电子束炉重熔electron beam remelting,EBR等离子炉重炼plasma-arc remelting,PAR水冷模电弧熔炼cold-mold arc melting等离子感应炉熔炼plasma induction melting,PIM 等离子连续铸锭plasma progressive casting,PPC 等离子凝壳铸造plasma skull casting,PSC能量优化炼钢炉energy optimizing furnace,EOF氧燃喷嘴oxygen-fuel burner氧煤助熔accelerated melting by coal-oxygen burner氧化期oxidation period还原期reduction period长弧泡沫渣操作弧长控制long arc foaming slag operation白渣white slag电石渣carbide slag煤氧喷吹coal-oxygen injection炉壁热点hot spots on the furnace wall偏弧arc bias透气塞porous plug出钢到出钢时间tap-to-tap time虹吸出钢siphon tapping偏心炉底出钢eccentric bottom tapping,EBT中心炉底出钢centric bottom tapping,CBT侧面炉底出钢side bottom tapping,SBT滑动水口出钢slide fate tapping5.8 精炼、浇铸及缺陷铁水预处理hot metal pretreatment机械搅拌铁水脱硫法KR process torpedo desulfurization鱼雷车铁水脱磷torpedo dephosphorization二次精炼secondary refining钢包精炼ladle refining合成渣synthetic slag微合金化microalloying成分微调trimming钢洁净度steel cleanness钢包炉ladle furnace,LF直流钢包炉DC ladle furnace真空钢包炉LF-vacuum真空脱气vacuum degassing真空电弧脱气vacuum arc degassing,VAD真空脱气炉vacuum degassing furnace,VDF真空精炼vacuum refining钢流脱气stream degassing提升式真空脱气法Dortmund Horder vacuum degassing process,DH循环式真空脱气法Ruhstahl-Hausen vacuum degassing process,RH真空浇铸vacuum casting吹氧RH操作RH-oxygen blowing,RH-OB川崎顶吹氧RH操作RH-Kawasaki top blowing,RH-KTB喷粉RH操作RH-poowder blowing,TH-PB喷粉法powder injection process喷粉精炼injection refining蒂森钢包喷粉法Thyssen Niederhein process,TN 瑞典喷粉法Scandinavian Lancer process,SL君津真空喷粉法vacuum Kimitsu injection process 密封吹氩合金成分调整法composition adjustment by sealed argonbubbling,CAS吹氧提温CAS法CAS-OB process脉冲搅拌法pulsating mixing process,PM电弧加热电磁搅拌钢包精炼法ASEA-SKF process 真空吹氧脱碳法vacuum oxygen decarburization process ,VOD氩氧脱碳法argon-oxygen decarburization process,AOD蒸汽氧精炼法Creusot-Loire Uddelholm process,CLU无渣精炼slag free refining摇包法shaking ladle process铝弹脱氧法aluminium bullet shooting,ABS钢锭ingot铸锭ingot casting坑铸pit casting车铸car casting钢锭模ingot mold保温帽hot top下铸bottom casting上铸top casting补浇back pour,back feeding浇注速度pouring speed脱模ingot stripping发热渣exoslag防再氧化操作reoxidation protection连续浇注continuous casting连铸机continuous caster,CC,continuous casting machine,CCM弧形连铸机bow-type continuous caster立弯式连铸机vertical-bending caster立式连铸机vertical caster水平连铸机horizontal caster小方坯连铸机billet caster大方坯连铸机bloom caster板坯连铸机slab caster薄板坯连铸机thin-slab casting薄带连铸机strip caster近终型浇铸near-net-shape casting单辊式连铸机single-roll caster单带式连铸机single-belt caster双带式连铸机twin-belt caster倾斜带式连铸机inclined conveyer type caster [连铸]流strand铸流间距strand distance注流对中控制stream centering control钢包回转台ladle turret中间包tundish回转式中间包swiveling tundish倾动式中间包tiltable tundish中间包挡墙weir and dam in tundish引锭杆dummy bar刚性引锭杆rigid dummy bar挠性引锭杆flexible dummy bar结晶器mold直型结晶器straight mold弧形结晶器curved mold组合式结晶器composite mold多级结晶器multi-stage mold调宽结晶器adjustable mold结晶器振动mold oscillation结晶器内钢液顶面meniscus,steel level钢液面控制技术steel level control technique 保护渣casting powder,mold powder凝壳shell液芯liquid core空气隙air gap一次冷却区peimary cooling zone二次冷却区secondary cooling zone极限冷却速度critical cooling rate浇铸半径casting radius渗漏bleeding拉坯速度casting speed拉漏breaking out振动波纹oscillation mark水口堵塞nozzle clogging气水喷雾冷却air mist spray cooling分离环separating ring拉辊withdrawal roll立式导辊vertical guide roll弯曲辊bending roll 夹辊pinch roll矫直辊straightening roll驱动辊driving roll导向辊装置roller apron切割定尺装置cut-to-length device钢流保护浇注shielded casting practice多点矫直multipoint straightening电磁搅拌electromagnetic stirring,EMS浇注周期casting cycle多炉连浇sequence casting事故溢流槽emergercy launder菜花头cauliflower top钢锭缩头piped top表面缺陷surface defect内部缺陷internal defect缩孔shrinkage cavity中心缩孔center line shrinkage气孔blowhole表面气孔surface blowhole皮下气孔subskin blowhole针孔pinhole铸疤feather冷隔cold shut炼钢缺陷lamination发裂flake,hair crack纵裂longitudinal crack横裂transverse crack角部横向裂纹transverse corner crack角部纵向裂纹longitudinal corner crack收缩裂纹shrinkage crack热裂hot crack冷裂cold crack冷脆cold shortness热脆hot shortness夹渣slag inclusion皮下夹杂subsurface inclusion正偏析positive segregation负偏析negative segregation,inverse seregation V形偏析∨-shaped segregation倒V形偏析∧-shaped segregation中心偏析center segregation中心疏松center porosity鼓肚bulging脱方rhomboidity连铸-直接轧制continuous casting-direct rolling 工艺CC-DR6 钢铁材料。

传热学课程英语词汇小集

传热学课程英语词汇小集

《传热学》课程专业英语词汇1. heat transfer 传热学2. heat conduction 导热3. convection heat transfer 对流换热4. thermal radiation 热辐射5. condensation heat transfer 凝结换热6. boiling heat transfer 沸腾换热7. number of heat transfer unit 传热单元数8. heat exchanger 换热器9. temperature field 温度场10. Fourier’s law 傅里叶定律11. Isothermal surface 等温面12. temperature gradient 温度梯度13. unsteady heat conduction 非稳态导热14. Isotherms 等温线15. lumped method 集总参数法16. thermal conductivity 导热系数17. heat flux 热流密度18. thermal resistance 热阻19. Newton’s law of cooling 牛顿冷却公式20. boundary layer 边界层21. thermal boundary layer 热边界层22. continuity equation 连续性方程23. laminar flow in tube 管内层流24. turbulent flow in tube 管内湍流25. in-tube boiling 管内沸腾26. dimensional analysis 量纲分析27. flow boundary layer 流动边界层28. fin 肋片29. fin efficiency 热效率30. Reynolds number 雷诺数31. Nusselt number 努谢尔数32. Prandtl number 普朗克数33. Planck’slaw 普朗克定律34. boundary layer integral equation 边界层积分方程35.boundary layer differential equation 边界层微分方程36.boundary condition 边界条件37.finite difference 差分38.initial condition 初始条件39.transmissivity 穿透比40.mass transfer process 传质过程41.natural convection in infinite space 大空间自然对流42.poor boiling 大容器沸腾43.partial differential equation of heat conduction 导热微分方程44.numerical solution of heat conduction 导热问题数值解45.directional radiation intensity 定向辐射强度46.log-mean temperature difference 对数平均温差47.multidimensional steady state heat conduction 多维稳态导热48.emissivity 发射率49.analytical solution of transient heat conduction 非稳态导热问题分析解50.Fourier number 傅里叶数work method of radiation heat exchange 辐射换热的网络法52.emissive power 辐射力53.Grashof number 格拉晓夫数54.insulating material 隔热材料(保温材料,绝热材料)55.spectral emissive power 光谱辐射力56.excess temperature 过余温度57.nucleate boiling 核态沸腾58.black body 黑体(绝对黑体)59.flow across single tube 横掠单管60.flow across non-circular cylinder 横掠非圆形截面柱体61.flow across tube bundles 横掠管束62.gray body 灰体63.effectiveness of heat exchanger 换热器的效能64.mixed convection 混合对流65.Kirchhoff’s law 基尔霍夫定律66.cross strings method 交叉线法67.view factor ,angle factor 角系数68.heat conduction with internal heat source 具有内热源的导热erning equation 控制方程place equation 拉普拉斯方程mbert’s law 兰贝特定律72.discretized equation 离散方程73.critical insulation radius 临界绝缘直径74 diffuse surface 漫射表面75.film-wise condensation 膜状凝结76.internal flow 内部流动77.counter-flow 逆流78.gaseous radiation 气体辐射79.enhancement of heat transfer 强化传热80.forced convection 强制对流81.heat pipe 热管82.heat transfer rate 热流量83.time constant 时间常数84.numerical solution 数值解85.Stefan-Boltzmann’s law 斯特潘-波耳兹曼定律86.velocity boundary layer 速度边界层87.solar radiation 太阳辐射88.characteristic length 特征长度89.characteristic number 特征数(准则数)90.irradiation 投入辐射91.turbulent flow 湍流92.external flow 外部流动93.flow along a flat plate 外掠平板94.Wien’s displacement law 维恩位移定律95.green house effect 温室效应96.steady –state heat conduction 稳态导热97.thermal resistance of fouling 污垢热阻98.absorptivity 吸收比99.back difference 向后差分100.forward difference 向前差分101.similarity principle 相似原理102.shape factor 形状因子103.1-dimensional steady state heat conduction 一维稳态导热。

化学工程与工艺专业外语课文翻译(unit12.14.17.21)

化学工程与工艺专业外语课文翻译(unit12.14.17.21)

化学工程与工艺专业外语课文翻译(unit12.14.17.21)Unit 12what do we mean by transport phenomena ?Transport phenomena is the collective name given to the systematic and integrated study of three classical areas of engineering science : (i) energy or heat transport ,(ii) mass transport or diffusion ,and (iii) momentum transport or fluid dynamics . 传递现象是工程科学三个典型领域系统性和综合性研究的总称:能量或热量传递,质量传递或扩散,以及动量传递或流体力学。

Of course , heat and mass transport occur frequently in fluids , and for this reason some engineering educators prefer to includes these processes in their treatment of fluid mechanics . 当然,热量和质量传递在流体中经常发生,正因如此一些工程教育家喜欢把这些过程包含在流体力学的范畴内。

Since transport phenomena also includes heat conduction and diffusion in solids , however , the subject is actually of wider scope than fluid mechanics. 由于传递现象也包括固体中的热传导和扩散,因此,传递现象实际上比流体力学的领域更广。

chap1-introduction传热传质

chap1-introduction传热传质

Conduction When a temperature gradient exists in a stationary medium, which may be a solid or a fluid, we use the term conduction to refer to the heat transfer that will occur across the medium. Convection In contrast, the term convection refers to heat transfer that will occur between a surface and a moving fluid when they are at different temperatures. Thermal radiation All surfaces of finite temperature emit energy in the form of electromagnetic waves. Hence, in the absence of an intervening medium, there is net heat transfer by radiation between two surfaces at different temperatures.
Chapter 1 Introduction
The objectives of this chapter: (1)to develop an appreciation for the fundamental concepts and principles that underlie heat transfer process; (2)to illustrate the manner in which a knowledge of heat transfer may be used with the first law of thermodynamics (conservation of energy) to solve problems relevant to technologiation of conduction heat transfer with diffusion due to molecular activity

传热学英文版Chap5

传热学英文版Chap5
∂x ∂y 1 dp ∂u ∂u ∂ 2u u =− +ν 2 +v ρ dx ∂y ∂y ∂x
Momentum equation:
Analytical solutions to the laminar flow above a flat plate was obtained first by Blasius (Appendix B, p655), from which the thickness of the boundary layer is:
region xc u∝ y x Transition Turbulent u∝
δ
(层流底层)
Laminar sublayer
5-3 Inviscid (无粘) Flow Although no real fluid is inviscid, in some cases the flow may be treated as such. For example, in the flat plate problem discussed above, the flow above the boundary layer will behave as a nonviscous flow system. This is because the shear stress is τ = µ du and above the boundary layer, there is no velocity gradient, which yields τ=0 For inviscid flow, there is u∝ the Bernoulli equation for flow along a streamline:
The net viscous work done on element can be computed as a product of the viscous-shear force and the distance it moves. The viscous-shear force is the product of the stress and ∂u y the area dx: µ dx ∂y The distance should be the difference u of the velocity of the up and bottom v face by unit time: ∂u dy x ∂y So the net viscous work done on the element is: 2 ∂u µ dxdy ∂y According to the quantities, after neglecting the second order differentials, the energy balance will be:

化工原理名词翻译期末整理

化工原理名词翻译期末整理

第一章流体流动fluid flow动量传递momentum transfer 热量传递heat transfer质量传递mass transfer连续介质continuum流体动力学fluid dynamics流体静力学fluid static粘度viscosity粘性力viscous force动力粘度dynamics viscosity运动粘度kinematic viscosity牛顿型流体newtonian fluid非牛顿型流体non - newtonian fluid塑性流体plastics fluid假塑性流体pseudo - plastics fluid涨塑性流体ditatant fluid非稳态unstable state稳态stable state定态steady state非定态unsteady state连续过程continuous process 间歇过程batch process半连续过程semi-continuous process质量流量mass flow质量流速mass velocity体积流量volumetric flow机械能方程mechanical energy equation柏努利方程Bernoulli equation雷诺实验Reynolds experiment流型flow pattern层流(滞流)streamline flow湍流turbulent flow边界层boundary layer层流底层laminar sub-layer摩擦损失friction loss动压头kinetic head静压头static head速度分布velocity distribution粗糙度roughness压降pressure drop阻力损失drag loss突然缩小sudden contraction突然扩大sudden expansion缩脉(流颈)vena contract管件pipe fitting 弯头elbow三通T-piece截止阀(球心阀)globe value闸阀gate value 哈根-泊谡叶方程Hagen-poiseuille equation 液柱压力计manometer文丘里管Venturi tube文丘里流量计Venturi meter孔板流量计orifice meter转子流量计rotameter流量系数discharge coefficient 气缚airbound特性曲线characteristic curve扬程height,head,lift 扬量capacity汽蚀cavitation汽蚀余量net positive suction head,NPSH第四章传热heat transfer热传导heat conduction热对流heat convection自然对流natural convection强制对流forced convection辐射radiation传热速率heat transfer rate热流量heat flow热通量heat flux总传热系数overall heat transfer coefficient传热膜系数film heat transfer coefficient并流co-current flow逆流countercurrent flow换热heat exchange换热器heat exchanger管壳换热器shell—and—tube heat exchanger套管换热器double—pipe heat exchanger板式换热器plate heat exchanger第五章吸收absorption物理吸收physical absorption化学吸收chemical absorption吸收等温线absorption isotherm吸收速率absorption rate溶解度solubility溶液solution溶质solute溶剂solvent解吸desorption,stripping吸附adsorption变压吸附pressure swing adsorption (PSA)脱附desorption非等温吸收non-isothermal absorption吸收因子absorption factor气液传质设备gas—liquid mass transfer equipment填料塔packed co1umn板式塔tray column气液相平衡gas liquid equilibrium第六章液体精馏连续蒸馏continuous distillation 间歇蒸馏batch distillation精馏rectification馏出液distillate残液residue再沸器reboiler冷凝器condenser道尔顿定律Dalton’s 1aw相对挥发度relative volatility平衡蒸馏equilibrium distillation提馏stripping塔板plate,tray理论级theoretical stage 理论[塔]板theoretical plate实际[塔]板actual plate分凝器partial condenser 操作线operating line回流比reflux ratio全回流total reflux最小回流比minimum reflux ratio 芬斯克方程Fenske’s equation二元混合物binary mixture多元混合物multicomponent mixture精馏段rectification section提馏段stripping section馏出液distillate残液residue回收率recovery。

化工原理英文教材-传热 无相变传热Heat transfer to fluids without phase change

化工原理英文教材-传热 无相变传热Heat transfer to fluids without phase change

A recognized empirical correlation, for long tubes with sharp-edged entrances, is the Dittus-Boelter equation
Nu hid 0.023Re0.8 Prn k
Where n is 0.4 when the fluid is being heated and 0.3 when it is being cooled.
A better relationship for turbulent flow is known as the Sieder-Tate equation
Nu 0.023 Re0.8 P(r112/-33(2) )0.14 w
Equation(12-32) should not be used for Reynolds numbers below 6000 or for molten metals, which have abnormally low Prandtl number.
Estimation of wall temperature tw
The estimation of tw requires an iterative calculation based on the resistance equation
tm To tw ti 1 1 b do 1 do U o h o k dm hi di
At ordinary velocities the heat generated from fluid friction is negligible in comparison with the heat transferred between the fluids.

化工原理英文教材传热相变传热过程Heat transfer to fluids with phase change

化工原理英文教材传热相变传热过程Heat transfer to fluids  with phase change

In dropwise condensation
the condensate begins to form at microscopic nucleation sites. Typical sites are tiny pits, scratches, and dust specks.
The drops grow and coalesce with their neighbors to form visible fine drops.
It is the layer of liquid interposed between the vapor and the wall of the tube which provides the resistance to heat flow and therefore which fixes the value of the heattransfer coefficient.
化工原理 Principles of Chemical Industry
Heat transfer to fluids with phase change
Processes of heat transfer accompanied by phase are more complex than simple heat exchange between fluids since it concerns about thermodynamic and hydrodynamic.
friction losses in a condenser are normally small, so that condensation is essentially a constantpressure process.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

传热传质(2011) 47:1077–1087DOI 10.1007/s00231-011-0772-1原文水泥砂浆的导热系数为空气相对湿度的函数´斯卡区思俊收到:2009.11.28 接受:2011.2.16 发表于:2011.3.4施普林格出版社2011 摘要本文是关于三水泥基砂浆的试验和研究结果。

起初,水分吸附被测量在20 c和六个相对湿度的空气水平上。

测试被完成吸附等温线得到的数学描述。

然后,热导系数k是测量与固定和不稳定的技术样本不同程度的水分。

一个线性关系之间系数k和材料水分测定。

组件的结果这两个阶段的研究帮助确定一个数学依赖的热电导系数上的相对湿度测试材料。

符号列表厘米水泥砂浆CLM水泥石灰砂浆MM改性砂浆米水含量样品(%)p蒸汽压(N /平方米)ps饱和蒸汽压(N /平方米)T温度(摄氏度)t时间(小时)w吸附水分(%)希腊符号你的空气相对湿度(%)k的热导系数(W /可)a . Siwin´斯卡·h·Garbalin´ska(&)部门的道路、桥梁和建筑材料,西波美拉尼亚的科技大学在什切青市,艾尔。

Piasto´w 50,70 - 311年,波兰什切青市电子邮件:Halina.Garbalinska@.pl1介绍一般来说,这里提供的方法对形式的导热系数之间的依赖在建筑材料和相对湿度结果作者提出的不是由其他研究人员。

研究适用于吸附在建筑材料进行了研究,以及那些关于热这两个电导率分裂成单独的问题。

一般而言,建筑材料吸附试验在于确定吸附物质量基于精确测量样品:前、中、后完成的测试。

通常的方式确定吸附品质是描述的标准[1]。

它的缺陷和实施一个新的方法(APM Augenblicksprofilmethode 或IPM瞬时剖面法)缩短了测量时间了Plagge,Funk,格林瓦尔德会战,Ha¨Scheffler推[2 - 5]。

在另一方面,Sparr和Wadso Markova,¨[6、7]显示一个创新技术的所谓微热量计,促进热力学特性的吸附过程。

一个通用方程的吸附等温线能描述令人满意的特性曲线所有的建筑材料在整个相对湿度范围是不可用的。

因此,所有的分析都下来了验证的方程可以在日益增长文学的主题[8 - 18]。

迫击炮的吸附的文中讨论的是主题进行研究这样的科学家如。

Janz[19],[20],埃斯皮诺萨Johannesson或卖[21]。

相当频繁的主题的研究和分析建筑材料的导热系数和影响各种因素,尤其是潮湿,在这个参数一些科学家把耦合传递热量andmoisture考虑在内,例如。

(22、23)。

然而,大多数的研究工作集中在负面影响的物质水分在导热系数。

这个导热系数之间的关系和材料水分是描述,尤其,得益于由吗分钟seok李[24],Salonvaara,Karagiozis,霍姆[25]或Ku¨nzel[26]。

通过Bobocin丩滑雪[27],指吸附和热导电率与含水量、进行在砂和灰细胞结合。

结果的研究证明,在吸附的依赖k水分可以近似作为一个折线组成的两个部分。

第一部分(吸附水分获得最高相对湿度为50%)特点是一个艾卡特角向x轴比第二部分(吸附水分获得在一个相对湿度超过50%)。

Osanyintola,Talukdar我西蒙森[13,28]分析了有效导热系数对杉木胶合板在不同的水分含量,使用HFMA(热流计设备)根据ASTM标准C518(2003)。

这个keff之间的依赖和相对湿度系数你确定他们的表单:keff =一个吗?布鲁里溃疡?的忍耐力?du3,a,b,c,d是确定的系数在个人的测量。

导热系数与含水量也检查C。

丩erny,Zuda,Drchalova丩,托曼,Rovnan。

丩-丩皮,拜耳(29岁)在宽光谱的吸湿与设备ISOMET2104水分。

用相同的装置进行了测试丩米列克,Jir.ic。

丩皮,Pavl。

丩k、C。

丩erny展示了他们结果在他们的工作[30]。

在文献[31],Jir.ic。

丩皮和C。

丩erny提供他们的研究成果在热,水分相关参数的矿棉的基础材料。

对于这种材料,他们确定一个等温吸附线在20 c为八层的吸附水分。

测试热电导率,展开了ISOMET2104进行了25摄氏度在干燥、湿润(相对湿度95%)和被水浸透的材料。

至于吸附水分的样品(从u = 0%,u = 95%)而言,科学家没有观察到任何不同的依赖之间k和水分。

一个显著高于中k值是观察到被水浸透的材料。

评估和水分相关品质。

热绝缘材料的麻木房子是进行工作[32]。

在他们的研究中,Valovirta和Vinha专注于麻松散的形式和三种类型绝缘垫。

对于这些材料,吸附等温线在五个不同的吸附水分的水平,k系数在四个温度(-10、0、10、20 c)和三个水分水平(u = 33,65,86%)的方式确定HFMA(热流计装置),以及热传输指数,建立了使用calibratedheating箱。

试验结果证实了规则中k值一起成长成长的水分和温度。

热、湿度相关素质的许多(37)受欢迎的建筑和绝缘材料也被评估由达山•库玛在他的论文[33]。

在许多参数实验确定确定达山•库玛吸附等温线和k系数。

测量热导,他使用一个面板装置与一个屏蔽加热板和HFMA(热流计装置)。

这个作者提出了示范试验结果为加气混凝土。

测试了在加热板温度31.51 c和冷却板温度9.75 c。

对于测量吸附,样品是大小40 9 40 9 20毫米(8个人电脑进行测量u = 100%,T = 22 c)和40 9 40 9 6毫米(3个人电脑以u = 88.1;71.5;0.6%,T = 23 c)。

当测试混凝土、水泥砂浆、水泥灌浆,[34]的作者把很多因素考虑。

他们专注于年龄、w / c比值,类型的外加剂,总分数大小、细骨料分数、温度和水分的材料。

作者应用以下研究方法:TLPP(two-linear-parallelprobe方法),小灵通(平面热源法),计(热看守板法)。

试验结果表明,混凝土的导热系数基本上取决于在它的总分数大小和水分。

与此同时,热导率的水泥砂浆和灌浆转身更依赖于w / c比值和类型的掺合料。

研究人员检查了也影响年龄的硬化水泥浆、砂浆和混凝土的k系数,进行他们的测试后3、7、14和28天的养护。

这是观察到,固化时间并没有改变电导率多除了非常早期的阶段。

一个评估的影响玻璃纤维掺合料来水泥砂浆在它的热量和水分的相关参数是提供工作[35]。

对于他们的测试,radska 颇得吗?托曼,Drchalova吗?Totova吗?和C ? erny ?使用ISOMET104。

水/水泥比在他们的迫击炮是0.3。

三个不同内容的迫击炮,大量的玻璃纤维和其他外加剂检测。

一个重要的外加剂的影响在减少k是观察。

上面的介绍研究工作开展的不同的中心,提供证据的一个广泛的分析导热问题相关的建筑材料。

基本上,他们参考评估的影响个人因素对导热系数的值系数为各种建筑材料。

此外,他们也呈现出多样性的应用研究方法。

轴承上述和呈现在文学实验和分析想法,作者决定做一个实验,结合前两个讨论研究模块,即:测试水分的sorptionand测量导热系数,这是由应用程序的固定吗和不稳定的技术。

水泥基砂浆是作为材料进行测试。

结果和最终确定导热之间的依赖和相对湿度如下为每个测试材料。

之间的依赖导热的建筑材料及其水分有或多或少的线性字符。

然而,应用程序的这个简单的线性关系带来特定的困难在实践中,特别是,如果我们处理一个多层分区。

自然地,如果我们有一个计校准精确(取决于温度、湿度、水化程度等)对于一个给定的材料在一方面,我们能够确定材料水分的样本。

在实验室条件下,它不造成严重的问题,当我们可以测试所有的材料另外。

它将成为麻烦,但是,如果我们必须达到所有个人材料层,形成一个吗多层建筑分区。

此外,在实际工程计算,我们不依赖的价值观材料健康,但在参数来描述要么蒸汽压力或所谓的绝对湿度(包括指水蒸气的毛孔中包含的材料)。

蒸汽压力之间的关系在一个给定的温度和含水量是表达的吸附等温线与课程具体(最频繁、强烈非线性)为每种材料。

考虑到这一点,它被认为是必要的尝试重建一个功能依赖之间的热电导系数k的多孔材料,其水内容w、相关与等温吸附线对环境热和水分条件。

下面是一个解决方案的提出所以制定的问题,作为一个例子,三个水泥基砂浆。

2测量2.1吸附测量这个命题的功能依赖k(u)要求一个三级的解决问题的办法。

首先,关系在参数定义空气湿度和水含量材料w(u)检查和描述。

然后,通过实验,热导率系数在不同水分的材料确定和数学描述的与水有关的可变性的这个参数k(w)的建议。

最后,两个函数依赖被合并成一个数学符号k(u)。

进行了测量三个水泥基砂浆用下面的内容在1 dm3:吗?水泥砂浆厘米:水泥490克,水270克,砂1519克,吗?改性砂浆MM:水泥490克,水270克,砂1519克,聚丙烯纤维长约3毫米,0.9克,吗?水泥石灰灰浆CLM:水泥、石灰194克194克,水336克,砂1164 g。

测量了两个独立的实验模块。

首批的测量水吸附[1]20 c和六水平的相对湿度的空气(u & 11,33岁,54岁,75年,85年,98%)。

温度维持在所需的水平,一室吗恒温器,而稳定的相对湿度是由于饱和水解决方案获得的吗适当的盐:LiCl(u & 11%),MgCl2(u & 33%),Mg(硝态氮)2(u & 54%)、氯化钠(u & 75%)、氯化钾(u和85%),K2SO4(u & 98%)。

样品,绝缘在侧表面和干到固体,被放置在紧容器与一个预定义的空气相对湿度(图1),和这容器放入气候室用稳定的温度(图1 b)。

在恒温箱,在每个紧容器,有三个样品给灰浆,大小10 9 6 9 1厘米。

平均体积密度,决定指定用于吸附测试样品,如下:对于水泥砂浆?。

066克/立方厘米,对修改后的砂浆?。

020克/立方厘米,和水泥石灰灰浆吗?1.737克/立方厘米。

的吸附测量包括在记录每个样品的质量变化,而在每一个时间,54样品重[36]。

间隔称重吗?梕初非常6、8、12 h梬随着时间延长到7天。

测量进行了直到达到水分平衡在所有样本存储在鉴于热水分条件。

达到平衡状态花了9个月。

水分含量的变化[%]Dm图1安排吸附测量:一个紧容器电网控股在hygrostatic样品溶液,乙一个气候室的测试材料的containerssamples对时间t[h] 课程的测试图的图表(无花果。

2、3、4)。

最强烈的吸附作用进行的初始阶段,或大约在第一个7天。

后来,只轻微的,但对许多个月伸出,增加的吸附相关的水分被观察到。

相关文档
最新文档