矩阵论习题一
矩阵论试题及答案
一.(10分)已知n n C ⨯中的两种范数a ⋅和b ⋅,对于n n C A ⨯∈,证明b a A A A +=是n n C ⨯中的范数. 解:⑴非负性:由于b a ⋅⋅,是两种范数,故当A=0时,0,0==b a A A ,所以000=+=+=b a A A A ; 当A ≠0时,0,0>>b a A A ,所以0>+=b a A A A⑵齐性:()A A A A A A A A b a b a b a ααααααα=+=+=+= ⑶三角不等式:B A B A B A B A B A B A b b a a b a +=+++≤+++=+二.(每小题10分,共20分)已知⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=101121103A ,()⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=002t e t b , 1. 求At e2. 用矩阵函数方法求微分方程()()()()()⎪⎩⎪⎨⎧-=+=T x t b t Ax t x dt d1,0,10的解.解:1. ()1112113det ----=-λλλλA I ()()3211132-=----=λλλλ显然, )det(A I -λ的一阶子式的公因子为1, 容易知道)det(A I -λ 的二阶子式的公因子为2-λ,所以A的最小多项式为()()()23222-=--=λλλλm ,即()()022=-=I A A m ,设()()()b a g m e f t ++==λλλλλ,则()a te f t =='λλ 对于特征值2=λ有()()⎩⎨⎧=='+==a te f b a e f t t 22222,()⎩⎨⎧+-==ttet b te a 2212 所以⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡----+=+=t t t t t t e bI aA e t At1010122. ()()()⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+--+⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=⎥⎦⎤⎢⎣⎡+=⎰⎰--ds e s s s ss s e e ds s b e x e t x s t s At t As At 001010110102020 ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡+⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=t t e t e t At 1001012三.(15分)用Givens 变换求⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=2100421132403100A 的QR 分解. 解:()T01001=β,构造()s c T ,13=,1101sin ,0100cos 22232132223211=+=+===+=+==xx x s x x x c θθ⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡--=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-=210031002340421121421132403100100000010010010013A T⎥⎦⎤⎢⎣⎡--=21312A , 构造),(12s c T , ()21sin ,21111cos 222122222211=+==-=+--=+==x x x s x x x c θθ⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡--⎥⎦⎤⎢⎣⎡---=1052212131111121212A T⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-=⎥⎦⎤⎢⎣⎡=2/1002/12/1002/10010010013122T T I T ,⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡-==2/12/100000100102/12/100TT Q ,⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=2/12/522344211R四.(10分)用Gerschgorin 定理证明⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=8110260110410100A 至少有两个实特征值. 解:A 的4个盖尔圆为:{}1|1≤=z z G ,{}2114|2=+≤-=z z G , {}3216|3=+≤-=z z G , {}2118|4=+≤-=z z G ,它们构成的两个连通部分为11G S =,4322G G G S =.易见,1S ,2S 都关于实轴对称且各含有1个和3个特征值,因为实矩阵的复特征值必成对出现, 故1S ,2S 必各含有一个实特征值,从而A 至少含有2个实特征值.五.(20分)已知⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡------=221221*********A ,⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡---=44111b 1. 求A 的满秩分解.2. 求+A3. 用广义逆矩阵的方法判别方程组b Ax =是否相容.4. 求方程组b Ax =的极小范数解或极小范数最小二乘解并指出所求解的类型.解 1。
11级-矩阵论试题与答案
参考答案一(20分) V 表示实数域上次数不超过2的多项式构成的线性空间。
对2()f x ax bx c V ∀=++∈,在V 上定义变换:2[()]3(223)(4)T f x ax a b c x a b c =++++++(1)验证T 是V 上的线性变换;(2)求V 的基2,,1x x 到基2(1),1,1x x --的过渡矩阵P ; (3)求T 在基2,,1x x 下的表示矩阵A ; (4)在V 中定义内积1(,)()()f g f t g t dt =⎰,求基2,,1x x 的度量矩阵G 。
解:(1)设22111222(),()f x a x b x c g x a x b x c =++=++2121212()()()f g a a x b b x c c +=+++++[]212121212()3()2()2()3()T f g a a x a a b b c c x +=+++++++[]121212()()4()a a b b c c ++++++()()2111111132234a x a b c x a b c =++++++()()2222222232234a x a b c x a b c +++++++()()T f T g =+类似可验证: ()()T kf kT f =或把T 写成:2300[()][,,1]223114a T f x x x b c ⎡⎤⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦(1)再来验证就更方便了。
(2)由22100(1),1,1,,1210111x x x x ⎡⎤⎢⎥⎡⎤⎡⎤--=-⎣⎦⎣⎦⎢⎥⎢⎥-⎣⎦得基2,,1x x 到基2(1),1,1x x --的过渡矩阵为100210111P ⎡⎤⎢⎥=-⎢⎥⎢⎥-⎣⎦(3) 由22()321T x x x =++,()21T x x =+,(1)34T x =+得T 在基1,,2x x 下的表示矩阵为:300223114A ⎛⎫ ⎪= ⎪ ⎪⎝⎭(4) 11431112210011,54g x dx g g x dx =====⎰⎰ 11221331220011,33g x dx g g x dx =====⎰⎰11233233001,12g g xdx g dx =====⎰⎰ 故度量矩阵11154311143211132G ⎛⎫ ⎪ ⎪⎪= ⎪ ⎪ ⎪ ⎪⎝⎭二(20分) 设311121210A -⎛⎫ ⎪=- ⎪ ⎪⎝⎭(1)求A 的行列式因子、不变因子、初等因子; (2)求A 的Jordan 标准形J ; (3)求可逆矩阵P 使1P AP J -=;(4)计算Ate 并求解微分方程组。
矩阵论考试试题含答案
矩阵论试题一、(10分)设函数矩阵 求:()⎰tdt t A 0与(()⎰20t dt t A )'。
解:()⎰t dt t A 0=()⎪⎪⎪⎭⎫⎝⎛-⎰⎰⎰⎰tttt tdt tdt dt t dtt 000sin cos cos sin =⎪⎪⎭⎫⎝⎛---t t t t cos 1sin sin cos 1 二、(15分)在3R 中线性变换σ将基变为基 ⎪⎪⎪⎭⎫ ⎝⎛-=0111β,⎪⎪⎪⎭⎫ ⎝⎛-=1102β,⎪⎪⎪⎭⎫⎝⎛-=2303β(1)求σ在基321,,ααα下的矩阵表示A ;(2)求向量()T 3,2,1=ξ及()ξσ在基321,,ααα下的坐标; (3)求向量()()ξσξ及T 3,2,1=在基321,,βββ下的坐标。
解:(1)不难求得:因此σ在321,,ααα下矩阵表示为(2)设()⎪⎪⎪⎭⎫⎝⎛=321321,,k k k αααξ,即解之得:9,4,10321-=-==k k k 所以ξ在321,,ααα下坐标为()T 9,4,10--。
()ξσ在321,,ααα下坐标可得(3)ξ在基321,,βββ下坐标为()ξσ在基321,,βββ下坐标为三、(20分)设⎪⎪⎪⎭⎫ ⎝⎛-=301010200A ,求At e 。
解:容易算得由于()λm 是2次多项式,且2,121==λλ,故()λg 是1次多项式,设由于()t e f λλ=,且()()11λλg f =,()()22λλg f =,故于是解得:⎩⎨⎧-=-=tt tt ee a e e a 21202 从而:四、(15分)求矩阵⎪⎪⎪⎭⎫ ⎝⎛=000110101A 的奇异值分解。
解:⎪⎪⎪⎭⎫⎝⎛==211110101A A B T的特征值是0,1,3321===λλλ对应的特征向量依次为于是可得 2=rankA ,⎪⎪⎭⎫⎝⎛=∑1003 计算: ⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-=∑=-0021212121111AV U 构造 ⎪⎪⎪⎭⎫⎝⎛=1002U ,则 ()⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛-==100021210212121U U V 则A 的奇异值分解为: 五、(15分)求矩阵的满秩分解: 解: 可求得:于是有 BC A =⎪⎪⎭⎫⎝⎛-⎪⎪⎪⎭⎫ ⎝⎛--=30202101121101或 ()H H H H B AC B C A 1-+=六、(10分)求矩阵⎪⎪⎪⎭⎫⎝⎛--=201034011A 的Jordan 标准形。
矩阵论简明教程习题答案
由此可得 与 故 (sinia)A==sinA 与 5. 对A求得 P= , P=, PAP= 根据p69方法二, e=Pdiag(e,e,e)P= sinA=Pdiag(sin(-1),sin1,sin2)P= 6. D()==, D()=D()=1, A~J=. 现设 r(,t)=b+b+b, 则有 b=1, b=2e-te-2, b=te-e+1. 于是 e=r(A, t)=bI+bA+bA=I+(2e-te-2)+(te-e+1) = 同理,由 b=1, b=tsint+2cost-2, b=1-tsint-cost. 将其代入 cosAt=bI+bA+bA, 求出 cosAt= 7. 设 f(A)=,S=.则 f(A)=并且由于 (S)== 所以, f(A)==f(A). 8, (1) 对A求得 P=, P=P , J= 则有 e=PP= sinAt=PP= (cosia)I==cosA.
10. 利用定理2.12得 . 11. A= cond(A)=; cond(A)=. 12.设x是对应于的特征向量, 则A.又设 是C上与矩阵范数相容的向量范 数,那么 ≦ 因 >0, 故由上式可得 ≦≦. 习 题 三 1. , 当﹤1时, 根据定理3.3, A为收敛矩阵. 2. 令S=, =S , 则 . 反例: 设 A=, 则因 发散, 故 发散, 但 =O. 3. 设 A=, 则 ≦行和范数=0.9<1, 根据定理3.7, =(I-A)=. 4. 我们用用两种方法求矩阵函数e: 相似对角化法. , 当 ia时, 解方程组 (ia-A)x=0, 得解向量 p=(i, 1). 当 =-ia时, 解方程组 (ia+A)x=0, 得解向量 p=(-i, 1).令 P=, 则P=, 于是 e=PP=. 利用待定系数法. 设e=(+a)q()+r(), 且 r()=b+b, 则由 b=cosa , b=sina .于是 e=bI+bA=cosa+sina=. 后一求法显然比前一种方法更简便, 以后我们多用待定系数法. 设 f()上面的分解变形可得 A= = = 3.对A的第1列向量, 构造Householder矩阵使得 ,
矩阵论(华中科技大学)课后习题问题详解(1)
习题一1.判断下列集合对指定的运算是否构成R 上的线性空间 (1)11{()|0}nij n n iii V A a a⨯====∑,对矩阵加法和数乘运算;(2)2{|,}n n T V A A R A A ⨯=∈=-,对矩阵加法和数乘运算;(3)33V R =;对3R 中向量加法和如下定义的数乘向量:3,,0R k R k αα∀∈∈=; (4)4{()|()0}V f x f x =≥,通常的函数加法与数乘运算。
解: (1)、(2)为R 上线性空间(3)不是,由线性空间定义,对0α∀≠有1α=α,而题(3)中10α= (4)不是,若k<0,则()0kf x ≤,数乘不满足封闭性。
2.求线性空间{|}n nT V A R A A ⨯=∈=的维数和一组基。
解:一组基10001010101010000000100..................0010010⎧⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎪⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎪⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎪⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎬⎪⎪⎪⎪⎪⎪⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎪ ⎪⎪ ⎪⎪⎪ ⎪⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎩L L L ⎪⎪⎪⎪⎭dim W =n (n +1)/23.如果U 1和U 2都是线性空间V 的子空间,若dim U 1=dim U 2,而且12U U ⊆,证明:U 1=U 2。
证明:因为dim U 1=dim U 2,故设{}12,,,r αααL 为空间U 1的一组基,{}12,,,r βββL 为空间U 2的一组基2U γ∀∈,有()12r X γγβββ=L L而()()1212r r C αααβββ=L L ,C 为过渡矩阵,且可逆 于是()()()11212121r r r X C X Y U γγγγβββαααααα-===∈L L L L L L由此,得 21U U ⊆又由题设12U U ⊆,证得U 1=U 2。
矩阵论试题
矩阵论试题一、选择题1.设A是n阶方阵,若|A|=0,则A()。
A. 一定是可逆矩阵B. 一定是不可逆矩阵C. 可能是可逆矩阵,也可能是不可逆矩阵D. 以上说法均不正确答案:B2.若矩阵A与B相似,则A与B具有()。
A. 相同的特征值B. 相同的特征向量C. 相同的秩D. 相同的行列式答案:A、D(相似矩阵具有相同的特征值和行列式,但特征向量不一定相同,秩也一定相同,但此题只问具有什么,故A、D为正确答案)3.下列矩阵中,属于正交矩阵的是()。
A. 单位矩阵B. 对角矩阵C. 上三角矩阵D. 任意方阵答案:A(单位矩阵是正交矩阵的一种特殊情况)二、填空题1.设矩阵A=(1324),则A的行列式|A|=______。
答案:-2(根据行列式的定义和计算方法,有|A|=1×4-2×3=-2)2.若矩阵A与B满足AB=BA,则称A与B为______。
答案:可交换矩阵(或称为可交换的)3.设n阶方阵A的伴随矩阵为A,则|A|=______。
答案:|A|(n-1))三、计算题1.设矩阵A=(2113),求A的逆矩阵A^(-1)。
解答:首先求|A|,有|A|=2×3-1×1=5≠0,所以A可逆。
然后利用逆矩阵的公式A^(-1)=(1/|A|)×A*,其中A*是A的伴随矩阵。
A的伴随矩阵A=(3−1−12)(伴随矩阵的元素是A的每个元素的代数余子式构成的矩阵的转置)。
所以A^(-1)=(1/5)×A=(3/5−1/5−1/52/5)。
2.设矩阵A=147258369,求A的秩R(A)。
解答:对矩阵A进行初等行变换,将其化为行最简形。
通过初等行变换,可以得到A的行最简形为1002−303−60。
所以R(A)=2(非零行的个数)。
四、证明题1.证明:若矩阵A为n阶方阵,且|A|=0,则A不可逆。
证明:根据可逆矩阵的定义,若矩阵A可逆,则存在n阶方阵B,使得AB=BA=E(E为单位矩阵)。
矩阵论(方保镕、周继东、李医民)习题1-3章
6. 解:(1)设 A 的实系数多项式 f A的全体为
f A a0 I a1 A am Am ai R, m正整数
1
显然,它满足两个封闭性和八条公理,故是线性空间. (2)与(3)也都是线性空间.
(ai bi ) ai bi 2
i1
i1
i1
于是可知 L,因此 L 不是 V 的子空间.
18.
解:
Span(
' 1
,
' 2
,
' 3
)
的基为
1'
,
' 2
,
' 3
的一个最大无关组,
' 1
,
' 2
,
' 3
在基1
,
2
,
3
下的坐标依次为
(1, -2, 3) T , (2 , 3 , 2) T , (4, 13, 0 ) T
故 C =(1 , 2 , 3 , 4 ) 1 ( 1 , 2 , 3 , 4 )
1 0 0 0 1 2 0 5 6
= 0100
0010
1 336 1 1 2 1
0001
1 013
2 056 1 336
= 1 1 2 1 .
1 013
⑵ 显然,向量α在基1 , 2 , 3 , 4 下的坐标为 X =(1 ,2 ,3,4 ) T ,
7
(2)取
A
1 0
0 0
,B
矩阵论(华中科技大学)课后习题问题详解(1)
习题一1.判断下列集合对指定的运算是否构成R 上的线性空间 (1)11{()|0}nij n n iii V A a a⨯====∑,对矩阵加法和数乘运算;(2)2{|,}n n T V A A R A A ⨯=∈=-,对矩阵加法和数乘运算;(3)33V R =;对3R 中向量加法和如下定义的数乘向量:3,,0R k R k αα∀∈∈=; (4)4{()|()0}V f x f x =≥,通常的函数加法与数乘运算。
解: (1)、(2)为R 上线性空间(3)不是,由线性空间定义,对0α∀≠有1α=α,而题(3)中10α= (4)不是,若k<0,则()0kf x ≤,数乘不满足封闭性。
2.求线性空间{|}n nT V A R A A ⨯=∈=的维数和一组基。
解:一组基10001010101010000000100..................0010010⎧⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎪⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎪⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎪⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎬⎪⎪⎪⎪⎪⎪⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎪ ⎪⎪ ⎪⎪⎪ ⎪⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎩⎪⎪⎪⎪⎭dim W =n (n +1)/23.如果U 1和U 2都是线性空间V 的子空间,若dim U 1=dim U 2,而且12U U ⊆,证明:U 1=U 2。
证明:因为dim U 1=dim U 2,故设{}12,,,r ααα为空间U 1的一组基,{}12,,,r βββ为空间U 2的一组基2U γ∀∈,有()12r X γγβββ=而()()1212r r C αααβββ=,C 为过渡矩阵,且可逆于是()()()11212121r r r X C X Y U γγγγβββαααααα-===∈由此,得 21U U ⊆又由题设12U U ⊆,证得U 1=U 2。
矩阵论练习题
练习一一﹑选择题1、对于()212,x x R ∀∈,下列变换是2R 上的线性变换的是 ( D ).(A) ()()21212,,T x x x x =; (B) ()()21212,,T x x x x =;(C) ()()1212,,0T x x x x =; (D) ()()1212,,T x x x x =-. 2、设()(),A B λλ为两个n 阶λ-矩阵,则 ( D ).(A) 若()A λ满秩,则()A λ必可逆; (B) ()A λ可逆当且仅当()0A λ≠;(C) 若()A λ与()B λ秩相等,则()A λ与()B λ等价;(D) 若()A λ与()B λ等价,则()A λ与()B λ具有相同的不变因子. 3、设()n n ij A a C ⨯=∈,则下列不能构成矩阵范数的是( A ).(A) ,max ij i ja ; (B) ,max ij i jn a ⋅; (C) 1max nij ij a =∑; (D) 1max nij j i a =∑.4、设n n A C ⨯∈,H A 为A 的共轭转置矩阵,()A ρ为A 的谱半径,A 为A 的范数,则下列说法不正确的是( C ).(A)()[]()kk A A ρρ=; (B) ()()H H A A AA ρρ=;(C) 若()1A ρ<,必有E A -可逆; (D) 若A 为收敛矩阵,必有()1A ρ<. 5、设V 为酉空间,C λ∈,,V αβ∈且(),αβ为α与β的內积,则下列说法不正确的是( B ).(A) ()(),,λαβλαβ=; (B) ()(),,αλβλαβ=; (C) ()()(),,,αβγαβαγ+=+; (D) ()()(),,,βγαβαγα+=+.二﹑填空题1、已知100231120012233002A -⎛⎫⎛⎫ ⎪⎪=- ⎪⎪ ⎪⎪⎝⎭⎝⎭,则A 的LDU 分解为 .2、设sin ()2cost t t te A t t ⎛⎫= ⎪⎝⎭,则0()x A t dt ⎰=21cos 1sin x x x xe e xx ⎛⎫--+ ⎪⎝⎭.3、设矩阵2242t tt At tt t e te te e te e te ⎡⎤-=⎢⎥-+⎣⎦ ,则矩阵A =1143-⎛⎫⎪-⎝⎭.4、矩阵100110111A ⎛⎫⎪= ⎪ ⎪⎝⎭ 相对于矩阵范数∞ 的条件数为 6 .5、设11122122⎛⎫=⎪⎝⎭x x X x x ,(),A a b =,则()d AX dX =0000a a b b ⎛⎫⎪⎝⎭. 6、已知101112003A ⎛⎫ ⎪= ⎪ ⎪⎝⎭,则543258884A A A A A E -+-+- =001102002⎛⎫⎪⎪ ⎪⎝⎭.7、已知⎪⎪⎪⎭⎫⎝⎛=987654321A ,则A 的正奇异值的个数为 2 .三、计算题已知 1(1,3,2,1)T α=-,2(1,0,0,2)T α=,1(0,1,1,3)T β=,2(3,2,1,6)T β=--, 且112{,}V span αα=,212{,}V span ββ=,求12V V +与12V V 的基和维数. 解:因为1212{,}V V span αα+=+12{,}span ββ=1212{,,,}span ααββ而12121103100130120102(,,,)2011001112360000ααββ--⎛⎫⎛⎫⎪ ⎪-⎪ ⎪= ⎪ ⎪- ⎪ ⎪-⎝⎭⎝⎭初等行变换 由于121,,ααβ是向量组1212,,,ααββ的一个极大线性无关组,所以和空间的维数是3,基为121,,ααβ且21212βααβ=--. 由行最简形知12dim()2,dim()2,V V ==又121212dim()dim dim dim()V V V V V V +=+- 故12dim()1V V =311100222110201236001212A ⎛⎫⎛⎫- ⎪ ⎪⎛⎫ ⎪ ⎪ ⎪=--⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭ ⎪ ⎪⎝⎭⎝⎭由21212βααβ=--得()12121223,3,2,3TV V ξααββ=-=+=--∈所以()3,3,2,3T--为12V V 的一组基。
矩阵论试题(2011)精选全文完整版
可编辑修改精选全文完整版矩阵论试题(2011)一.(18分)填空:设.1111,0910⎪⎭⎫⎝⎛=⎪⎭⎫ ⎝⎛=B A 1. A -B 的Jordan 标准形为J =2. 是否可将A 看作线性空间V 2中某两个基之间的过渡矩阵( )。
3. 是否可将B 看作欧式空间V 2中某个基的度量矩阵。
( )4. ()p vec B =( ),其中+∞<≤p 1。
5 .若常数k 使得kA 为收敛矩阵,则k 应满足的条件是( )。
6. A ⊗B 的全体特征值是( )。
7. =⊗2BA ( )。
8. B 的两个不同秩的{1}-逆为⎪⎭⎫⎝⎛=⎪⎭⎫ ⎝⎛=)1()1(,B B 。
二.(10分)设n m C A ⨯∈,对于矩阵的2-范数2A 和F -范数F A ,定义实数222F A A A +=,(任意n m C A ⨯∈) 验证A 是n m C ⨯中的矩阵范数,且与向量的2-范数相容。
三.(15分)已知⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛--=011)0(,0)(,11120211133x e e t b A t t 。
1. 求At e ;2. 用矩阵函数方法求微分方程)()()(t b t Ax t x dtd+=满足初始条件x (0) 的解。
四.(10分)用Householder 变换求矩阵⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=4021030143010021A 的QR 分解。
五.(10分)用Gerschgorin 定理隔离矩阵⎪⎪⎪⎭⎫⎝⎛=i A 116864120的特征值。
(要求画图表示)六. (15分)已知⎪⎪⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎪⎪⎭⎫⎝⎛=3131,1212010121211010b A 。
1. 求A 的满秩分解;2. 求A +;3. 用广义逆矩阵方法判断线性方程组 Ax =b 是否有解;4. 求线性方程组Ax =b 的极小范数解,或者极小范数最小二乘解x 0。
(要求指出所求的是哪种解)七.(15分)已知欧式空间R 2⨯2 的子空间,0032414321⎭⎬⎫⎩⎨⎧=-=-⎪⎪⎭⎫ ⎝⎛==x x x x x x x x X V R 2⨯2中的内积为,,),(222112112121⎪⎪⎭⎫ ⎝⎛==∑∑==a a a a A b a B A ij i j ij ,22211211⎪⎪⎭⎫ ⎝⎛=b b b b B V 中的线性变换为T (X )=XP +XT , 任意X ∈V ,.0110⎪⎭⎫⎝⎛=P 1. 给出子空间V 的一个标准正交基; 2. 验证T 是V 中的对称变换;3. 求V 的一个标准正交基,使T 在该基下的矩阵为对角矩阵.八. (7分) 设线性空间V n 的线性变换T 在基n x x x ,,,21 下的矩阵为A ,T e 表示V n 的单位变换,证明:存在x 0≠0,使得T (x 0)=(T e -T )(x 0)的充要条件是21=λ为A 的特征值.矩阵论试题(07,12)一.(18分)填空:1. 矩阵⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-----=2101120100102201A 的Jordan 标准形为J =2. 设,4321,1001021001201001⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫⎝⎛--=x A 则⎪⎩⎪⎨⎧===∞Ax A A F 2 3. 若A 是正交矩阵,则cos(πA )=4. 设n m C A ⨯∈,A +是A 的Moore -Penrose 逆,则(-2A , A )+=5. 设⎪⎪⎪⎭⎫ ⎝⎛=⎪⎭⎫⎝⎛--=300220111,4221B A ,则A ⊗B +I 2⊗I 3的全体特征值是( )。
矩阵论判断题
(一)一、判断题(40分)(对者打∨,错者打⨯)1、设,n n A B C ⨯∈的奇异值分别为120n σσσ≥≥≥> ,'''120n σσσ≥≥≥> ,如果'(1,2,,)i i i n σσ>= ,则22||||||||A B ++>. ( ⨯ ) 2、设n n A C ⨯∈为正规矩阵,则矩阵的谱半径2()||||r A A =. ( ∨ ) 3、设n n C A ⨯∈可逆,n n C B ⨯∈,若对算子范数有1||||||||1A B -⋅<,则B A +可逆.( ∨ )4、设32312100a a A a a aa -⎛⎫⎪=- ⎪ ⎪-⎝⎭为一非零实矩阵,则2221123()a a a A --++为A 的一个广义逆矩阵 ( ∨ )5、设A 为m n ⨯矩阵,P 为m 阶酉矩阵, 则PA 与A 有相同的奇异值. ( ∨ )6、设n n A C ⨯∈,且A 的所有列和都相等,则()r A A∞=. ( ⨯ )7、如果12(,,,) T nn x x x x C =∈,则1||||m in i i nx x ≤≤=是向量范数. ( ⨯ )8、0010140110620118A ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦至少有2个实特征值. ( ∨ ) 9、设,n nA C ⨯∈则矩阵范数m A ∞与向量的1-范数相容. ( ∨ )10、设n n A C ⨯∈是不可逆矩阵,则对任一自相容矩阵范数 有1I A -≥, 其中I 为单位矩阵. ( ∨ )(二)1、设m nA R⨯∈的奇异值为12n σσσ≥≥≥ ,则2221||||ni i A σ==∑. ( ⨯ )2、设n n A C ⨯∈,且有某种算子范数||||⋅,使得||||1A <,则11||()||1||||E A A -->-,其中E 为n 阶单位矩阵. ( ⨯ )111()()()()E E A E A E A A E A ---=--=---⇒11()()E A E A E A ---=+-⇒11||()||||()||E A E A E A ---=+-1||||||||||()||E A E A -≤+-⇒1||||1||()||1||||1||||E E A A A --≤=--3、设2H A E uu =-(其中,E 为n 阶单位矩阵,2||||1n u C u ∈=且),则2||||m A =( ∨ )(2)H H H A E u u =- (2)H H E uu =-2HE uu =-A =(2)(2)H H H A A E u u E u u =--224H H H H E u u u u u u u u E=--+=2||||mA n∴4、设12342468111A ⎛⎫⎪= ⎪ ⎪⎝⎭,则A 的M -P 广义逆A +的秩()1rank A +=. ( ⨯ ) 5、设矩阵n n A C ⨯∈,0A ≠且,2||()||1H HA A A A +=则.( ∨ )()H HB A A A A+=⇒HBB =⇒2||||()B B ρ=则;2B B =⇒01B ⇒的特征值为或者0A ≠⇒1B ⇒是的特征值()1H r B B =6、若A 为列满秩矩阵,则H H A A A 1)(-既是A 的左逆又是A 的M -P 广义逆A +.( ∨ )7、设n εεε,,,21 线性空间n V 的一组基,n n n V x x x x ∈++=εεε 2211,则. )0(||||||||||2222211≥++=i n n k x k x k x k x 是n V 上向量x 的范数. ( ⨯ )8、设⎪⎪⎪⎭⎫⎝⎛=01821022330A ,则A 有三个实特征值. ( ∨ ) 9、设G 为矩阵()m n r A C r n ⨯∈<的广义逆A -,A BD =为A 的最大秩分解,则r DGB =2||||. ( ⨯ )10、设)1()(>∈=⨯n C a A n n ij 为严格对角占优矩阵,),,,(22nn ii a a a diag D =,A DE B 1--=(E 为n 阶单位矩阵),则B 的谱半径1)(≥B r . ( ⨯ )(三)一、判断题(40分)(对者打∨,错者打⨯)1、设n x C ,U ∈为n阶酉矩阵,则22||||||||Ux x =. ( )()2222H H H ||Ux ||UxUx x U Ux x x ||x ||====2、设,n nA C⨯∈则2221||||||nm ii A λ=≥∑. ( )n nA C⨯∈→HA URU =→22222222||||||||||||||||Hm m m m A URUR R ==≥21||nii λ==∑3、如果12(,,,) T n n x x x x C =∈,则21||||||x x =为向量范数. ( )例如(0,1,0,,0)0 x =≠,但||||0x =4、1||||||||||||x x n x ∞∞≤≤. ( )11||||m a x ||||||||m a x ||||||ni ii iii x x xx n x n x ∞∞==≤=≤=∑5、设A 为n 阶酉矩阵,则.AA A A E ++== ( )因为H A A +=,故结论成立6、若m r r A C ⨯∈,则11()H HL A AA A --=. ( )11()H HL A A A A --=,故结论不成立7、若||||⋅为算子范数,则11||||||||A A --≥. ( )111||||||||||||AA A A --=≤,故结论不成立8、111i i i ii⎡⎤⎡⎤⎢⎥⎢⎥⎣⎦⎣⎦和都是复对称矩阵()T A A =,故均为正规矩阵. ( )111i ii i i ⎡⎤⎡⎤⎢⎥⎢⎥⎣⎦⎣⎦为正规矩阵而非正规,因为1111ii ii ii i i i iii----⎡⎤⎡⎤⎡⎤⎡⎤≠⎢⎥⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦⎣⎦⎣⎦9、设()A ρ为矩阵A 的谱半径,则()||||m A A ρ∞≤. ( )01,||||1,() 1.61811m A A A ρ∞⎡⎤===⎢⎥⎣⎦则而10、设||||||||||||||||H m m m x xa ⋅=⋅为自相容矩阵范数,则是与相容的向量范数 ( )(四)一、判断题(40分)(对者打∨,错者打⨯)1、设矩阵n n A C ⨯∈,0A ≠且,2||()||1H H A A A A+=则.( )()H HB A A A A+=⇒HBB =⇒2||||()B B ρ=则;2B B =⇒01B ⇒的特征值为或者0A ≠⇒()1B ρ=2、设m nA R⨯∈的奇异值为12n σσσ≥≥≥ ,则2221||||ni i A σ==∑. ( )3、设n n A C ⨯∈,且有某种算子范数||||⋅,使得||||1A <,则11||()||1||||E A A -->-,其中E 为n 阶单位矩阵. ( )111()()()()E E A E A E A A E A ---=--=---⇒11()()E A E A E A ---=+-⇒11||()||||()||E A E A E A ---=+-1||||||||||()||E A E A -≤+-⇒1||||1||()||1||||1||||E E A A A --≤=--4、设2H A E uu =-(其中,E 为n 阶单位矩阵,2||||1n u C u ∈=且),则2||||m A =( )(2)H H H A E u u =- (2)H H E uu =-2HE uu =-A =(2)(2)H H H A A E u u Eu u =--224H H H HE u u u u u u u u E=--+=2||||mA n∴5、设12342468111A ⎛⎫⎪= ⎪ ⎪⎝⎭,则A 的M -P 广义逆A +的秩()1rank A +=. ( ) 6、若A 为列满秩矩阵,则H H A A A 1)(-既是A 的左逆又是A 的M -P 广义逆A +. ( )7、设n εεε,,,21 线性空间n V 的一组基,n n n V x x x x ∈++=εεε 2211,则.)0(||||||||||2222211≥++=i n n k x k x k x k x 是n V 上向量x 的范数. ( )8、设⎪⎪⎪⎭⎫⎝⎛=01821022330A ,则A 有三个实特征值. ( ) 9、设G 为矩阵()m n r A C r n ⨯∈<的广义逆A -,A BD =为A 的最大秩分解,则r DGB =2||||. ( )10、设)1()(>∈=⨯n C a A n n ij 为严格对角占优矩阵,),,,(22nn ii a a a diag D =,A DE B 1--=(E 为n 阶单位矩阵),则B 的谱半径1)(≥B r . ( ) (五)1、A n 为阶实对称矩阵,nR x 对中的列向量,||x |Ax =定义, ||x ||x 则为向量 的范数. ( )因为非负性不成立,故结论错误。
矩阵论课后习题答案
第一章 线性空间与线性映射 习题一 (43-45)1、(1)对于V y x ∈∀,,x y x y x y x y y x y x y x y x +=⎪⎪⎭⎫⎝⎛+++=⎪⎪⎭⎫ ⎝⎛+++=+112211112211;(2)对于V z y x ∈∀,,,⎪⎪⎭⎫ ⎝⎛+++++++=⎪⎪⎭⎫⎝⎛+++++++=⎪⎪⎭⎫ ⎝⎛+⎪⎪⎭⎫ ⎝⎛+++=++))()(1111112221111112112211121112211z y z x y x z y x z y x y x z z y x y x z y x z z y x y x y x z y x ,⎪⎪⎭⎫ ⎝⎛+++++++=⎪⎪⎭⎫⎝⎛+++++++=⎪⎪⎭⎫ ⎝⎛++++⎪⎪⎭⎫ ⎝⎛=++))()(1111112221111111122211111221121z y z x y x z y x z y x z y x z y z y x z y x z y z y z y x x z y x ,即)()(z y x z y x ++=++。
(3)对于⎪⎪⎭⎫⎝⎛=00θ和V x ∈∀,显然x x x x x x x =⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫⎝⎛+++=+21121000θ; (4)对于V x ∈∀,令⎪⎪⎭⎫⎝⎛--=2211x x x y , 则θ=⎪⎪⎭⎫⎝⎛=⎪⎪⎭⎫ ⎝⎛--+-=⎪⎪⎭⎫ ⎝⎛--+⎪⎪⎭⎫ ⎝⎛=+0021221211221121x x x x x x x x x x x y x ,即x y -=。
(5)对于R ∈∀μλ,和V x ∈∀,有x x x x x x x x x x x x x x x x x x x x x x x )()()]()[(21)()()2(21)()()]1()1([21)1(21)1(2121212212122212121221121212121μλμλμλμλμλμλμλμλμλμλμλλμμμλλμλμλμμμμλλλλμλ+=⎪⎪⎭⎫ ⎝⎛+=⎪⎪⎪⎭⎫⎝⎛+-++++=⎪⎪⎪⎭⎫ ⎝⎛--+++++=⎪⎪⎪⎭⎫ ⎝⎛+-+-+++=⎪⎪⎪⎭⎫⎝⎛-++⎪⎪⎪⎭⎫ ⎝⎛-+=+(6)对于R ∈∀λ和V y x ∈∀,,有⎪⎪⎪⎭⎫⎝⎛+-++++=⎪⎪⎭⎫ ⎝⎛+++=+211112211112211))(1(21)()()(y x y x y x y x y x y x y x y x λλλλλλ, ⎪⎪⎪⎭⎫ ⎝⎛+-++++=⎪⎪⎪⎭⎫ ⎝⎛-+-++-++++=⎪⎪⎪⎭⎫ ⎝⎛+-++-++=⎪⎪⎪⎭⎫⎝⎛-++⎪⎪⎪⎭⎫ ⎝⎛-+=+211112211112212211122111122122121121212121))(1(21)()()1(21)1(21)()1(21)1(21)1(21)1(21y x y x y x y x y x y y x y x y x y x y x y y x x y x y y y x x x y x λλλλλλλλλλλλλλλλλλλλλλλλλλλλλλλλλλ,即y x y x λλλ+=+)(。
矩阵论复习题 带答案1
矩阵论复习题1设A 、B 均为n 阶正规矩阵,试证A 与B 酉相似的充分必要条件是A 与B 的特征值相同。
证明: 充分性:A 与B 的特征值相同,A 、B 均为n 阶正规矩阵,则有11,A P IP B Q IQ --== 故11111,,A P QIQ P R Q P R P Q -----==令= A 与B 酉相似 必要性:A,B 为n 阶正规矩阵,存在初等变换R,1A RBR -=11,,,I E PQ A P IP B Q EQ --==为对角矩阵,存在初等变换111,I PAP E QRAR Q ---== ,因为I,E 为对角矩阵,故I=E 。
因此A 与B 的特征值相同。
#2 作出下列矩阵的奇异值分解10(1)A 0111⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦011(2)A 200-⎡⎤=⎢⎥⎣⎦ (1)632- 6 3 2101263011,130 2 6 311206333T B AA ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎢⎥⎢⎥⎢⎥-⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦特征值对应,特征值对应,特征值对应 2221 2 2,131222 2 2TC A A ⎡⎤⎡⎤⎢⎥⎢⎥⎡⎤⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎣⎦-⎢⎥⎢⎥⎣⎦⎣⎦特征值对应,特征值对应故263 2 6 32210263 2 203 2 6 3220063 2 20 33HA ⎡⎤-⎢⎥⎡⎤⎢⎥⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-⎢⎥⎣⎦⎢⎥⎣⎦-⎢⎥⎢⎥⎣⎦(2) 2010,240401T B AA ⎡⎤⎡⎤⎡⎤==⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦特征值对应,特征值对应, 0040012201-1,2-400- 2 20-11022- 2 2T C A A ⎡⎤⎡⎤⎢⎥⎢⎥⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦特征值对应,特征值对应,特征值对应 0101022200A 001 2202022022H⎡⎤⎢⎥⎢⎥⎡⎤⎡⎤⎢⎥=-⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎢⎥⎢⎥⎢⎥⎣⎦3.求下列矩阵A 的满秩分解123002111021A ⎛⎫⎪=- ⎪⎪⎝⎭112211001230010,021110102111001230010,021101100001001230=010021-11-11L L A L L L A A ⎡⎤⎡⎤⎢⎥⎢⎥==-⎢⎥⎢⎥⎢⎥⎢⎥---⎣⎦⎣⎦⎡⎤⎡⎤⎢⎥⎢⎥==-⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦⎢⎥⎣⎦故4 设A 、B 均为n 阶Hermite 正定矩阵,证明:若B A ≥且BA AB =,则33B A ≥.证明:由于A 、B 均为n 阶Hermite 正定矩阵,且BA AB =,则AB 与BA 均为n 阶Hermite 正定矩阵。
矩阵理论典型例题
矩阵理论典型例题《矩阵理论》第⼀⼆章典型例题⼀、判断题1.A n 为阶实对称矩阵,n R x 对中的列向量, ||x |Ax =定义, ||x||x 则为向量的范数. ( )2.设A n 为阶Hermite 矩阵,12,,,n λλλ是矩阵A 的特征值,则2221||||nm i i A λ==∑.( )3. 如果m n A C ?∈,且0A ≠,()H AA AA --=, 则2||||AA n -=. ( )4. 若设nx R ∈,则212||||||||||x x x ≤≤. ( ) 5. 设m nA R∈的奇异值为12n σσσ≥≥≥,则2221||||ni i A σ==∑. ( ) 6. 设n n A C ?∈,且有某种算⼦范数||||?,使得||||1A <,则11||()||1||||E A A -->-,其中E 为n 阶单位矩阵. ( )7. 设2H A E uu =-(其中,E 为n 阶单位矩阵,2||||1n u C u ∈=且),则2||||m A =( )8. 设n n A C ?∈为正规矩阵,则矩阵的谱半径2()||||r A A =. ( )9.设nn CA ?∈可逆,nn CB ?∈,若对算⼦范数有1||||||||1A B -?<,则B A +可逆.( )10. 设A 为m n ?矩阵,P 为m 阶⾣矩阵, 则PA 与A 有相同的奇异值. ( ) 11. 设n nA C∈,且A 的所有列和都相等,则()r A A ∞=. ( )12. 如果12(,,,)T n n x x x x C =∈,则1||||min i i nx x ≤≤=是向量范数. ( )13. 设,n n A C ?∈则矩阵范数mA ∞与向量的1-范数相容. ( )14、设n nA C∈是不可逆矩阵,则对任⼀⾃相容矩阵范数有1I A -≥, 其中I 为单位矩阵. ( )⼆、设m nA C∈,,||||||ij i jA a =,证明:(1)||||A 为矩阵范数; (2)||||A 为与向量2-范数相容.三、试证:如果A 为n 阶正规矩阵,且Ax x λ=和Ay y µ=,其中,λµ≠,那么x 与y 正交.四、 (1) 设(1)n n A C n ?∈>为严格对⾓占优矩阵,1122(,,,)nn D diag a a a =,其中(1,2,,)ii a i n =为A 的对⾓元,E 为n 阶单位矩阵,则存在⼀个矩阵范数||||?使得1()1r E D A --<.(2) 设n nA C∈,ε为任意给定的正数,()r A 为矩阵的谱半径。
矩阵论习题一
矩阵论习题一习题一1.判断下列集合对指定的运算是否构成R 上的线性空间(1)11{()|0}nij n n iii V A a a====∑,对矩阵加法和数乘运算;(2)2{|,}n nT V A A RA A ?=∈=-,对矩阵加法和数乘运算;(3)33V R =;对3R 中向量加法和如下定义的数乘向量:3,,0R k R k αα?∈∈=;(4)4{()|()0}V f x f x =≥,通常的函数加法与数乘运算。
2.求线性空间{|}n nT V A R A A ?=∈=的维数和一组基。
3.如果U 1和U 2都是线性空间V 的子空间,若dim U 1=dim U 2,而且12U U ?,证明:U 1=U 2。
4.设111213315A ??= ? ???,讨论向量(2,3,4)T α=是否在R (A )中。
5.讨论线性空间P 4[x ]中向量3211P x x x =+++,32223Px x x =-+,323452P x x x =+++的线性相关性。
6.设m nA R ?∈,证明dim R (A )+dim N (A )=n 。
7.设113021211152A -?? ?=-- ? ?--??,求矩阵A 的列空间R (A )和零空间N (A )。
8.在22R中,已知两组基11000E ??= ,20100E ??= ,30010E ??= ,40001E ?? =10111G ??= ?,21011G ??= ,31101G ??= ,41110G ??=求基{E i }到基{G i }的过渡矩阵,并求矩阵0123??-??在基{G i }下的坐标X 。
9.判别下列集合是否构成子空间。
(1)2221{(,,)|1,,,}W x y z x y z x y z R α==++≤∈;(2)22{|,}n nW A A I A R==∈;(3)3R 中,231231230{(,,)|(}0}tW x x x x x x d ατττ==++=?;(4)411{()|0}m nij m n iji j W A a a=====∑∑。
研究生矩阵论课后习题答案(全)习题一
解
(1)设 Eij 是第 i 行第 j 列的元素为 1 而其余元素全为 0 的 n 阶方阵.
①令 Fij = ⎨
⎧ Eii , i = j , 则 Fij 是对称矩阵, 易证 F11 ,L , F1n , F22 , L , F2 n , ⎩ Eij + E ji , i ≠ j
L , Fnn 线 性 无 关 , 且 对 任 意 n 阶 对 称 矩 阵 A = (aij ) n×n , 其 中 aij = a ji , 有
1 −1 −1
= aa −1 = 1
⑥ k o (l o a ) = k o a = (a ) = a
l l k
lk
= (lk ) o a
⑦ (k +;l
= a k a l = a k ⊕ a l = (k o a) ⊕ (l o a )
k k k
⑧ k o ( a ⊕ b) = k o ( ab) = ( ab) = a b = ( k o a ) ⊕ (k o b) 所以 R+对这两种运算构成实数域 R 上的线性空间. (5)否.设 V2 = y ( x ) y ′′ + a1 y ′ + a 0 y = f ( x ), f ( x ) ≠ 0 ,则该集合对函数的 加法和数乘均不封闭.例如对任意的 y1 , y 2 ∈ V2 , y1 + y 2 ∉ V2 .故不构成线性空间. (6)是.集合 V 对函数的加法和数乘显然封闭.零函数是 V 的零元素;对任意
矩阵论试题(2011)
矩阵论试题(2011)一.(18分)填空:设.1111,0910⎪⎭⎫⎝⎛=⎪⎭⎫ ⎝⎛=B A 1. A -B 的Jordan 标准形为J =2. 是否可将A 看作线性空间V 2中某两个基之间的过渡矩阵( )。
3. 是否可将B 看作欧式空间V 2中某个基的度量矩阵。
( )4. ()p vec B =( ),其中+∞<≤p 1。
5 .若常数k 使得kA 为收敛矩阵,则k 应满足的条件是( )。
6. A ⊗B 的全体特征值是( )。
7. =⊗2BA ( )。
8. B 的两个不同秩的{1}-逆为⎪⎭⎫⎝⎛=⎪⎭⎫ ⎝⎛=)1()1(,B B 。
二.(10分)设n m C A ⨯∈,对于矩阵的2-范数2A 和F -范数F A ,定义实数222F A A A +=,(任意n m C A ⨯∈) 验证A 是n m C ⨯中的矩阵范数,且与向量的2-范数相容。
三.(15分)已知⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎭⎫ ⎝⎛--=011)0(,0)(,11120211133x e e t b A t t 。
1. 求At e ;2. 用矩阵函数方法求微分方程)()()(t b t Ax t x dtd+=满足初始条件x (0) 的解。
四.(10分)用Householder 变换求矩阵⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=4021030143010021A 的QR 分解。
五.(10分)用Gerschgorin 定理隔离矩阵⎪⎪⎪⎭⎫⎝⎛=i A 116864120的特征值。
(要求画图表示)六. (15分)已知⎪⎪⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=3131,1212010121211010b A 。
1. 求A 的满秩分解; 2. 求A +;3. 用广义逆矩阵方法判断线性方程组 Ax =b 是否有解;4. 求线性方程组Ax =b 的极小范数解,或者极小范数最小二乘解x 0。
(要求指出所求的是哪种解)七.(15分)已知欧式空间R 2⨯2 的子空间,0032414321⎭⎬⎫⎩⎨⎧=-=-⎪⎪⎭⎫ ⎝⎛==x x x x x xx x X V R 2⨯2中的内积为,,),(222112112121⎪⎪⎭⎫ ⎝⎛==∑∑==a a a a A b a B A ij i j ij ,22211211⎪⎪⎭⎫ ⎝⎛=b b b b B V 中的线性变换为T (X )=XP +XT , 任意X ∈V ,.0110⎪⎭⎫⎝⎛=P 1. 给出子空间V 的一个标准正交基; 2. 验证T 是V 中的对称变换;3. 求V 的一个标准正交基,使T 在该基下的矩阵为对角矩阵.八. (7分) 设线性空间V n 的线性变换T 在基n x x x ,,,21 下的矩阵为A ,T e 表示V n 的单位变换,证明:存在x 0≠0,使得T (x 0)=(T e -T )(x 0)的充要条件是21=λ为A 的特征值.矩阵论试题(07,12)一.(18分)填空:1. 矩阵⎪⎪⎪⎪⎪⎭⎫⎝⎛-----=2101120100102201A 的Jordan 标准形为J = 2. 设,4321,1001021001201001⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=⎪⎪⎪⎪⎪⎭⎫⎝⎛--=x A 则⎪⎩⎪⎨⎧===∞Ax A A F 2 3. 若A 是正交矩阵,则cos(πA )=4. 设n m C A ⨯∈,A +是A 的Moore -Penrose 逆,则(-2A , A )+=5. 设⎪⎪⎪⎭⎫ ⎝⎛=⎪⎭⎫⎝⎛--=300220111,4221B A ,则A ⊗B +I 2⊗I 3的全体特征值是( )。
矩阵论习题
Amε + mε m−1A = (m +1) A
即 k = m +1时结论成立.故对一切 k > 1 结论成立. 二、提高题:
1、证明:可逆变换是双射.
6) 在 P3 中, A 定义如下:
⎧ Aη = (−5, 0,3)
⎪ ⎨
1
Aη2
=
(0, −1, 6)
⎧η = (−1,0,2)
其中
⎪ ⎨
1
η2
=
(0,1,1)
⎪ ⎩
Aη3
=
(−5,
−1, 9)
⎪⎩η3 = (3,−1,0)
求 A 在基 ε1 =(1,0,0), ε 2 =(0,1,0), ε 3 =(0,0,1)下的矩阵;
证 用数学归纳法.
当 k = 2 时, A2B − BA2 = ( A2B − ABA) + ( ABA − BA2 ) = A( AB − BA) + ( AB − BA) A = Aε + ε A = 2 A
结论成立.
假设 k = m 时结论成立,即 AmB − BAm = mAm−1 则当 k = m +1时,有
Aε1 = (x +1) − x = ε0
……
Aε n−1
=
(x
−1)x…[x − (n (n −1)!
−
3)]
−
x(x
−1)…[x − (n (n −1)!
矩阵论答案
V = Rn[ x] − Rn−1[ x] ,任取 f ( x ) ∈ V ,均有 0 ⋅ f ( x ) = 0 ∉ V ,所以, V 对数乘运算不封闭,故 V 不
构成实数域 R 上的线性空间。 (4)全体实数对 {( a, b) | a, b ∈ R} ,对于如下定义的加法 ⊕ 和数量乘 a = a k ,
其中 a, b ∈ R , k ∈ R . 因为该加法 ⊕ 和数量乘法 � 运算满足线性运算的全部性质: i) a1 ⊕ a2 = a1a2 = a2 a1 ) = a2 ⊕ a1 ; ii) (a1 ⊕ a2 ) ⊕ a3 = (a1a2) ⊕ a3 = (a1a2) a3 = a ( = a1 ⊕ ( a2 ⊕ a3) ; 1 a2 a3) iii ) a1 ⊕ 1 = a1 ⋅ 1 = a1 ; iv) a1 ⊕
A(kx) = k ( Ax) = k (λx) = λ (kx) ,所以 kx ∈ Eλ ,即 Eλ 对数乘运算封闭;故 Eλ 是 C n 的子空间。
6.设有 R 3 的两个子空间,
V1 = {( x1 , x 2 , x 3 ) | 2 x1 + x 2 − x3 = 0} , V 2 = {( x1 , x 2 , x3 ) | x1 + x 2 = 0,3x1 + 2 x 2 − x3 = 0} .
因为,
3 −2 1 −1
2 0 −1 4
1 −2 3 −5 =
2 0 −1 3
3 −2 1 −1
2 0 −1 4
−2 0 2 −4
0 −1 3
2 3
2 4
−2 2 = 4 ≠ 0, −4
= ( −2) − 1 − 1
所以, 线性方程组只有零解, 即向量组 α 1,α 2,α 3,α 4 线性无关, 故 α 1,α 2,α 3,α 4 构成 R 2× 2 的 基. 3.求线性空间 P4 [ x ] 的向量 f ( x ) = 6 − 5 x − x 在基 1, ( x − 1), ( x − 1) , ( x − 1) 下的坐标. 因为 f ( x ) = 6 − 5 x − x 2 = 6 − 5( x − 1) − 5 − ( x − 1) 2 − 2( x − 1) − 1 = −7( x − 1) − ( x − 1) 2 , 所以,
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
习题一
1.判断下列集合对指定的运算是否构成R 上的线性空间 (1)11
{()|0}n
ij n n ii
i V A a a
⨯====∑,对矩阵加法和数乘运算;
(2)2{|,}n n
T V A A R
A A ⨯=∈=-,对矩阵加法和数乘运算;
(3)33V R =;对3R 中向量加法和如下定义的数乘向量:3,,0R k R k αα∀∈∈=; (4)4{()|()0}V f x f x =≥,通常的函数加法与数乘运算。
2.求线性空间{|}n n
T V A R A A ⨯=∈=的维数和一组基。
3.如果U 1和U 2都是线性空间V 的子空间,若dim U 1=dim U 2,而且12U U ⊆,证明:U 1=U 2。
4.设111213315A ⎛⎫
⎪
= ⎪ ⎪⎝⎭
,讨论向量(2,3,4)T α=是否在R (A )中。
5.讨论线性空间
P 4[x ]中向量3
2
11P x x x =+++,3
2
223P
x x x =-+,323452P x x x =+++的线性相关性。
6.设m n
A R ⨯∈,证明dim R (A )+dim N (A )=n 。
7.设113021211152A -⎛⎫ ⎪
=-- ⎪ ⎪--⎝⎭
,求矩阵A 的列空间R (A )和零空间N (A )。
8.在22
R
⨯中,已知两组基
11000E ⎛⎫= ⎪⎝⎭,20100E ⎛⎫= ⎪⎝⎭,30010E ⎛⎫= ⎪⎝⎭,40001E ⎛⎫
= ⎪⎝⎭
10111G ⎛⎫
= ⎪
⎝⎭
,21011G ⎛⎫= ⎪⎝⎭,31101G ⎛⎫= ⎪⎝⎭,41110G ⎛⎫= ⎪⎝⎭
求基{E i }到基{G i }的过渡矩阵,并求矩阵0123⎛⎫
⎪-⎝⎭
在基{G i }下的坐标X 。
9.判别下列集合是否构成子空间。
(1)222
1{(,,)|1,,,}W x y z x y z x y z R α==++≤∈; (2)2
2{|,}n n
W A A I A R
⨯==∈;
(3)3
R 中,2
31231
230
{(,,)|(}0}t
W x x x x x x d ατ
ττ==++=⎰;
(4)411
{()|
0}m n
ij m n ij
i j W A a a
⨯=====∑∑。
10.设1(1,2,1,0)T
α=,2(1,1,1,1)T
α=-,1(2,1,0,1)
T
β=-,2(1,1,3,7)
T
β=-,
112{,}W span αα=,212{,}W span ββ=,求12W W ⋂和12W W +。
11.在矩阵空间22R ⨯中,子空间
1
21123434{|}x
x V A x x x x x x ⎛⎫==-+- ⎪⎝⎭,212{,}V L B B =,其中11023B ⎛⎫
= ⎪⎝⎭
, 20201B -⎛⎫
= ⎪⎝⎭
,求
(1)V 1的基和维数;
(2)12V V +和12V V ⋂的维数。
12.设1W 和2W 为n V 的子空间,1121
{(,,,)|
0}n
T
n i
i W x x x x
α====∑ ,
21212{(,,,)|}T n n W x x x x x x α===== ,证明12n V W W =⊕。
13.n
R 中,12(,,,)T
n αααα= ,12(,,,)T
n ββββ= ,判别下面定义的实数(,)αβ是否
为内积。
(1)1
(,)n
i
i
i αβαβ
==
∑;
(2)1
(,)n
i
i
i i αβαβ
==
∑;
(3)(,)T A αβαβ=,其中A 为正定矩阵。
13.设125{,,,}εεε 是V 5的标准正交基,又115αεε=+,2134αεεε=-+,
31232αεεε=++,求123{,,}W L ααα=的标准正交基。
14.在欧氏空间R 4中,求子空间{(1,1,1,1),(1,1,1,1)}T T W L =---的正交补子空间W ⊥。
15.判断下列变换哪些是线性变换 (1)R 2中,21212(,)(1,)T T
T x x x x =+;
(2)R 3中,12312123(,,)(,,2)T
T
T x x x x x x x x =+-;
(3)n n R ⨯中,A 为给定n 阶方阵,n n X R ⨯∀∈,()T X AX A =+; (4)22R ⨯中,()T A A *=,A *为A 的伴随矩阵。
16.设R 3中,线性变换T 为:i i T αβ=,i =1,2,3,其中1(1,0,1)T
α=-,2(2,1,1)T
α=,
3(1,1,1)T α=,1(0,1,1)T β=,2(1,1,0)T β=-,3(1,2,1)T β=,求
(1)T 在基123{,,}ααα下的矩阵; (2)T 在标准正交基下的矩阵。
17.设线性变换4
3
R R →,有
123412341241234(,,,)(,2,3)T T T x x x x x x x x x x x x x x x =-+++-++-,求N (T )和R (T )。
18.在欧氏空间Rn 中,设有两组基12,,,n ααα 与12,,,n βββ ,满足关系式
1212(,,,)(,,,)n n P βββααα= ,n n P R ⨯∈
证明:(1)若12,,,n ααα 与12,,,n βββ 都是标准正交基,则P 是正交阵;
(2)若12,,,n ααα 是标准正交组,P 是正交阵,则12,,,n βββ 是标准正交组。