高三一轮复习函数专题1---函数的基本性质
高中数学-函数概念及其性质知识总结
数学必修1函数概念及性质(知识点陈述总结)(一)函数的有关概念1.函数的概念:设A、B是非空的数集,如果按照某个确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数.记作:y=f(x),x∈A.其中,x叫做自变量,x的取值范围A叫做函数的定义域;与x的值相对应的y 值叫做函数值,函数值的集合{f(x)|x∈A}叫做函数的值域.注重:○2如果只给出解析式y=f(x),而没有指明它的定义域,则函数的定义域即是指能使这个式子有意义的实数的集合;○3函数的定义域、值域要写成集合或区间的形式.定义域补充能使函数式有意义的实数x的集合称为函数的定义域,求函数的定义域时列不等式组的主要依据是:(1)分式的分母不等于零;(2)偶次方根的被开方数不小于零;(3)对数式的真数必须大于零;(4)指数、对数式的底必须大于零且不等于1.(5)如果函数是由一些基本函数通过四则运算结合而成的.那么,它的定义域是使各部分都有意义的x的值组成的集合.(6)指数为零底不可以等于零(6)实际问题中的函数的定义域还要保证实际问题有意义.(又注重:求出不等式组的解集即为函数的定义域。
)2.构成函数的三要素:定义域、对应关系和值域再注重:(1)构成函数三个要素是定义域、对应关系和值域.由于值域是由定义域和对应关系决定的,所以,如果两个函数的定义域和对应关系完全一致,即称这两个函数相等(或为同一函数)(2)两个函数相等当且仅当它们的定义域和对应关系完全一致,而与表示自变量和函数值的字母无关。
相同函数的判断方法:①表达式相同;②定义域一致(两点必须同时具备)(见课本21页相关例2)值域补充(1)、函数的值域取决于定义域和对应法则,不论采取什么方法求函数的值域都应先考虑其定义域.(2).应熟悉掌握一次函数、二次函数、指数、对数函数及各三角函数的值域,它是求解复杂函数值域的基础.(3).求函数值域的常用方法有:直接法、反函数法、换元法、配方法、均值不等式法、判别式法、单调性法等.3.函数图象知识归纳(1)定义:在平面直角坐标系中,以函数y=f(x),(x∈A)中的x为横坐标,函数值y为纵坐标的点P(x,y)的集合C,叫做函数y=f(x),(x∈A)的图象.C上每一点的坐标(x,y)均满足函数关系y=f(x),反过来,以满足y=f(x)的每一组有序实数对x、y为坐标的点(x,y),均在C上.即记为C={P(x,y)|y= f(x),x∈A}图象C一般的是一条光滑的连续曲线(或直线),也可能是由与任意平行与Y轴的直线最多只有一个交点的若干条曲线或离散点组成.(2)画法A、描点法:根据函数解析式和定义域,求出x,y的一些对应值并列表,以(x,y)为坐标在坐标系内描出相应的点P(x,y),最后用平滑的曲线将这些点连接起来.B、图象变换法(请参考必修4三角函数)常用变换方法有三种,即平移变换、伸缩变换和对称变换(3)作用:1、直观的看出函数的性质;2、利用数形结合的方法分析解题的思路。
2024年高考数学第一轮复习重点总结
2024年高考数学第一轮复习重点总结第一章:函数与方程1. 函数的概念与性质;2. 一次函数与二次函数的基本性质与图像;3. 幂函数、指数函数、对数函数与三角函数的基本性质与图像;4. 常用函数的性质与应用;5. 一次方程、二次方程与方程的根与解法;6. 一元二次方程的解法及其应用。
第二章:图形的性质与变化1. 直线、抛物线、圆的基本性质与方程;2. 图形的平移、翻折、旋转与对称性;3. 图形的相似、全等与尺类定理;4. 平面直角坐标系与空间直角坐标系的基本概念与表示方法;5. 平面图形与解析几何的应用。
第三章:数列与数理统计1. 数列的概念、基本性质与表示方法;2. 等差数列与等比数列的通项公式与性质;3. 数列的求和公式与性质;4. 概率与统计的基本概念与应用。
第四章:平面向量与解析几何1. 平面向量的概念、基本运算与线性运算;2. 平面向量的共线与共面性质;3. 平面向量的数量积与向量积的定义与性质;4. 平面向量的正交与垂直性质;5. 解析几何的基本概念与性质;6. 解析几何的定位与判定问题。
第五章:立体几何1. 空间几何体的基本概念与性质;2. 直线与平面的关系与性质;3. 立体几何体的表面积与体积计算;4. 空间向量与几何关系的应用。
第六章:三角函数与三角方程1. 三角函数的基本性质与图像;2. 三角函数的定义与公式;3. 三角函数的图像变换与性质;4. 三角方程与三角恒等式的解法与应用。
第七章:导数1. 函数的导数的概念与性质;2. 函数的导数的基本运算与求导法则;3. 高阶导数与隐函数求导;4. 函数的极值与最值;5. 函数的单调性与凹凸性;6. 函数的导数与函数的图像。
第八章:微分与应用1. 函数的微分的概念与性质;2. 微分的基本运算与微分法则;3. 高阶微分的计算;4. 函数的近似与应用。
第九章:积分与应用1. 不定积分的定义、性质与基本运算;2. 定积分的定义、性质与基本运算;3. 反常积分的计算;4. 函数的定积分与曲线下面积;5. 积分与微分的关系与应用。
(完整版)高三一轮复习:函数的基本性质(含答案)
高三一轮复习:函数的基天性质一、选择题:1、以下各组函数中,表示同一函数的是()A 、f ( x) 1, g( x) x0B 、f ( x) x 2, g( x)x24x2 C、f ( x)x , g (x)x, x0 D 、f (x) x, g (x) ( x )2x, x0x3, x10,则 f (8) 2、已知函数f ( x)5)], x ()f [ f (x10A 、 2B、 4C、 6D、 73、设函数 f ( x) 和 g( x) 分别是R上的偶函数和奇函数,则以下结论恒建立的是()A 、f ( x)g( x) 是偶函数B 、f (x)g( x) 是奇函数C、f ( x)g ( x) 是偶函数 D 、f ( x)g( x) 是奇函数4、假如奇函数 f (x)在区间[ 3,7]上是增函数且最小值为5,那么 f ( x) 在区间 [ 7,3] 上是()A、增函数且最小值为C、减函数且最小值为55B、增函数且最大值为D、减函数且最大值为555、设f ( x)是R上的奇函数, f ( x 2) f (x) ,当0x 1时,f (x)x ,则 f (7.5)()A、0.5B、0.5C、1.5D、 1.5二、填空题:6、已知函数 f ( x)3x , x 1,若 f (x)2,则 xx, x17、已知函数 f (x), g(x) 分别由下表给出:x123x f ( x)131g(x)123 321则 f [ g(1)] 的值为;知足 f [ g( x)] g[ f (x)] 的 x 的值为8f ( x)为 R上的减函数,则知足f () f (1)的实数 x 的取值范围是、已知1x9 f ( x) 关于随意实数 x 知足条件 f (x 1) f (3x),若 f ( 1)8,则 f (5)、函数、设函数 f ( x)( x 1)( xa)为奇函数,则a10x11、设 f 1 (x) cos x ,定义 f n 1 (x) 为 f n (x) 的导数,即 f n 1( x) f n (x) ,n*,若ABC的内角 A 知足 f 1 ( A) f 2 ( A) f 2013( A) 0,则 sin A 的值是12、在 R 上定义运算: x y x(1 y) ,若对随意 x2 ,不等式 ( x a)x a 2 都建立,则实数 a 的取值范围是三、解答题:13、已知 f x 是二次函数, 不等式 f x0 的解集是 0, 5 ,且 fx 在点 1, f 1处的切线与直线 6x y 1 0 平行 .(1)求 fx 的分析式;(2)能否存在tN *,使得方程f x370 在区间 t, t 1 内有两个不等的实数x根?若存在,求出t 的值;若不存在,说明原因.【参照答案】1、 C2、 D 【分析】f (8) f [ f (85)] f [ f (13)] f (10)73、 C4、 B5、 B 【分析】 f (x2) f ( x) , f ( x4) f ( x2) ,即 f (x4) f ( x)f ( x) 是以周期为 4 的周期函数,f ( 7.5) f (7.58) f ( 0.5) f (0.5)0.56、log32【分析】由x1得, x log 3 2 ;由x 1得, x 无解3x2x27、 1; 2【分析】f [ g (1)] f (3)1;把 x 1,2,3 分别代入 f [ g( x)]g[ f ( x)] 进行考证8、(,0)(1,) 【分析】由11得,x10 ,即x 0或 x 1x x9、810、111、 1【分析】由题意可知, f n ( x) 是一个周期为 4 的周期函数,且f1 (x) f2 (x)f3 (x) f 4 ( x)0 ,所以 f1 ( A) f 2 ( A)f2013 ( A) f 2013( A)f1( A) cos A0,即 A2 sin A112、(,7] 【分析】 ( x a)x( x a)(1x)x2ax x ax2ax x a a 2 对随意x 2 恒建立即 a x2x22 恒建立x2对随意xx2x2( x2)432( x 2)47x22x 3x2当且仅当 x24,即 x4时等号建立xa7213、( 1)解法 1:∵f x是二次函数,不等式 f x0 的解集是0,5 ,∴可 f x ax x5, a0 .⋯⋯⋯⋯⋯ 1分∴ f / ( x)2ax5a .⋯⋯⋯⋯⋯ 2分∵函数 f x在点 1,f1的切与直6x y10平行,∴ f /16.⋯⋯⋯⋯⋯ 3分∴ 2a5a6,解得 a2.⋯⋯⋯⋯⋯ 4分∴ f x2x x52x210x .⋯⋯⋯⋯⋯ 5分解法 2:f x ax2bx c ,∵不等式 f x0的解集是 0, 5 ,∴方程 ax2bx c0的两根0, 5.∴ c0, 25a5b0 .①⋯⋯⋯⋯⋯ 2分∵ f / ( x)2ax b .又函数 f x在点 1,f1的切与直6x y10平行,∴ f /16.∴ 2a b 6 .②⋯⋯⋯⋯⋯ 3分由①② , 解得a 2 ,b10 .⋯⋯⋯⋯⋯ 4分∴ f x2x210x .⋯⋯⋯⋯⋯ 5分( 2)解:由( 1)知,方程f x370 等价于方程 2x310 x2370 .x⋯⋯⋯⋯⋯ 6 分h x2x310 x237 ,h/x6x220x2x3x10 .⋯⋯⋯⋯⋯ 7分当x0,10,/0h x10上减;⋯⋯⋯ 8分h x,函数在33当 x10,, h/x0 ,函数 h x 在10 ,33上增 .⋯9分∵ h 310, h 1010, h450,⋯⋯⋯⋯⋯ 12分327∴方程在区,10,10,内分有独一数根,在区h x0340, 3,334,内没有数根 .⋯⋯⋯⋯⋯ 13分∴存在独一的自然数 t 3 ,使得方程 f x 37t, t 1 内有且只0 在区x有两个不等的数根 .⋯⋯⋯⋯⋯ 14分。
高三数学一轮复习 1.2 函数、基本初等函数的图象与性质学案
专题一:集合、常用逻辑用语、不等式、函数与导数第二讲函数、基本初等函数的图象与性质【最新考纲透析】1.函数(1)了解构成函数的要素,会求一些简单函数的定义域和值域;了解映射的概念。
(2)在实际情境中,会根据不同的需要选择恰当的方法(如图象法、列表法、解析法)表示函数。
(3)了解简单的分段函数,并能简单应用。
(4)理解函数的单调性、最大值、最小值及其几何意义;结合具体函数,了解函数奇偶性的含义。
(5)会运用函数图象理解和研究函数的性质。
2.指数函数(1)了解指数函数模型的实际背景。
(2)理解有理指数幂的含义,了解褛指数幂的意义,掌握幂的运算。
(3)理解指数函数的概念,理解指数函数的单调性,掌握指数函数图象通过的特殊点。
(4)知道指数函数是一类重要的函数模型。
3.对数函数(1)理解对数的概念及其运算性质,知道用换底公式能将一般对数转化成自然对数或常用对数;了解对数在简化运算中的作用。
(2)理解对数函数的概念,理解对数函数的单调性,掌握对数函数图象通过的特殊点。
(3)知道对数函数是一类重要的函数模型。
(4)了解指数函数xy a=与对数函数log ay x=互为反函数(0,1a a>≠且)。
4.幂函数(1)了解幂函数的概念(2)结合函数12321,,,,y x y x y x y y xx=====的图象了解它们的变化情况。
【核心要点突破】要点考向一:基本初等函数问题考情聚焦:1.一元二次函数、指数函数、对数函数和幂函数是最重要的基本初等函数,在每年高考中都有涉及到直接考查它们定义、定义域和值域、图象和性质的问题。
2.常与函数的性质、方程、不等式综合命题,多以选择、填空题的形式出现,属容易题。
考向链接:1.一元二次、二次函数及指数\对数函数和幂函数的定义、定义域、值域、图象和性质是解决此类题目的关键,同时要注意数形结合、化归和分类讨论思想的应用。
2.熟记幂和对数的运算性质并能灵活运用。
例1:(2010·全国高考卷Ⅱ文科·T4)函数y=1+ln(x-1)(x>1)的反函数是(A)y=1xe+-1(x>0) (B) )y=1x e-+1(x>0)(C) y=1x e+-1(x ∈R) (D)y=1x e-+1 (x ∈R)【命题立意】本题考查了反函数的概念及其求法。
高中函数题型汇总及典型例题
高中函数专题
基础知识
1. 函数的基本性质: (1)函数的单调性:① f ' ( x) 0 (或 0 ) f ( x) 单调递增(或单调递减) ; ② f ( x) 单调递增(或单调递减) f ' ( x) 0 (或 0 ) 。 (2)函数的周期性: f ( x T ) f ( x ) ,则称 T 为 f ( x) 的一个为期;若 T0 是所有 周期中一个最小的正周期,则称 f ( x) 的周期是 T0 。 (3)函数的奇偶性:① f ( x) f ( x) f ( x) 是偶函数; ② f ( x ) f ( x) f ( x) 是奇函数。 (注:定义域需关于原点对称) 。 (4)函数的连续性: f ( x) 在 x x0 处连续 lim f ( x) f ( x0 ) (常数) 。
15 函数 y f ( x ) 在区间 (0, ) 内可导,导函数 f ' ( x) 是减函数,且 f ' ( x) 0 。 设 x0 (0, ) , y kx m 是曲线 y f ( x ) 在点 ( x0 , f ( x0 )) 处的切线方程,并设函数
g ( , f ( x0 ) , f ( x0 ) 表示 m ;
(II)证明:当 x (0, ) 时, g ( x ) f ( x ) ;
16 已知 a,b 是实数,函数 f(x)=x3+ax,g(x)=x2+bx,f'(x)和 g'(x)是 f(x),g(x)的导函数,若 f'(x)g'(x)≥0 在区间 I 上恒成 立,则称 f(x)和 g(x)在区间 I 上单调性一致 (1)设 a>0,若函数 f(x)和 g(x)在区间[-1,+∞)上单调性一致,求实数 b 的取值范围; (2)设 a<0,且 a≠b,若函数 f(x)和 g(x)在以 a,b 为端点的开区间上单调性一致,求|a-b|的最大值.
函数的概念和性质高考真题
函数的概念和性质高考真题1.函数的概念和性质1.1 函数的定义函数是一种特殊的关系,它将一个集合中的每个元素映射到另一个集合中的唯一元素上。
通常用符号f(x)表示函数,其中x是定义域中的元素,f(x)是值域中的元素。
1.2 函数的性质函数有很多性质,其中一些比较重要的包括:1)定义域和值域:函数的定义域是所有可能输入的集合,值域是所有可能输出的集合。
2)奇偶性:如果对于函数f(x),有f(-x)=-f(x),则称f(x)是奇函数;如果有f(-x)=f(x),则称f(x)是偶函数。
3)单调性:如果对于函数f(x),当x1f(x2),则称f(x)在区间(x1,x2)上单调递减。
4)零点和极值:函数的零点是函数图像与x轴的交点,极值是函数在某一区间内的最大值或最小值。
2.例题解答2.1(2019江苏4)函数y=7+6x-x^2的定义域是所有实数。
函数f(x)是奇函数,且当x<0时,f(x)=-eax。
若f(ln2)=8,则a=ln(1/4)。
2.2(2019全国Ⅱ理14)已知。
2.3(2019全国Ⅲ理11)设f(x)是定义域为R的偶函数,且在(0,+∞)上单调递减,则正确的不等式是B。
2.4(2019北京理13)设函数f(x)=ex+ae-x(a为常数),若f(x)为奇函数,则a=0;若f(x)是R上的增函数,则a的取值范围是(-∞,0)。
2.5(2019全国Ⅰ理11)关于函数f(x)=sin|x|+|sinx|有下述四个结论:①f(x)是偶函数;②f(x)在区间(π/2,π)单调递增;③f(x)在[-π,π]有4个零点;④f(x)的最大值为2.其中所有正确结论的编号是B。
2.6(2019全国Ⅰ理5)函数f(x)=sinx+x/cosx+x^2在[-π,π]的图像大致为D。
2.7(2019全国Ⅲ理7)函数y=2x+2-x在[-6,6]的图像大致为A。
2.8(2019浙江6)在同一直角坐标系中,函数y=11/x^2,y=loga(x+2)(a>0且a≠1)的图像可能是B。
高三数学一轮总结复习目录
高三数学一轮总结复习目录理科数学 -模拟试题分类目录1第一章会合与常用逻辑用语1.1 会合的观点与运算专题 1 会合的含义与表示、会合间的基本关系专题 2 会合的基本运算专题 3 与会合有关的新观点问题1.2 命题及其关系、充要条件专题 1 四种命题及其关系、命题真假的判断专题 2 充足条件和必需条件专题 3 充足、必需条件的应用与研究(利用关系或条件求解参数范围问题)1.3 简单的逻辑联络词、全称量词与存在量词专题 1 含有简单逻辑联络词的命题的真假专题 2 全称命题、特称命题的真假判断专题 3 含有一个量词的命题的否认专题 4 利用逻辑联络词求参数范围第二章函数2.1 函数及其表示专题 1 函数的定义域专题 2 函数的值域专题 3 函数的分析式专题 4 分段函数2.2 函数的单一性与最值专题 1 确立函数的单一性(或单一区间)专题 2 函数的最值专题 3 单一性的应用2.3 函数的奇偶性与周期性专题 1 奇偶性的判断专题 2 奇偶性的应用专题 3 周期性及其应用2.4 指数与指数函数专题 1 指数幂的运算专题 2 指数函数的图象及应用专题 3 指数函数的性质及应用2.5 对数与对数函数专题 1 对数的运算专题 2 对数函数的图象及应用专题 3 对数函数的性质及应用2.6 幂函数与二次函数专题 1 幂函数的图象与性质专题 2 二次函数的图象与性质2.7 函数的图像专题 1 函数图象的辨别专题 2 函数图象的变换专题 3 函数图象的应用2.8 函数与方程专题 1 函数零点所在区间的判断专题 2 函数零点、方程根的个数专题 3 函数零点的综合应用2.9 函数的应用专题 1 一次函数与二次函数模型专题 2 分段函数模型2专题 3 指数型、对数型函数模型第三章导数及其应用3.1 导数的观点及运算专题 1 导数的观点与几何意义专题 2 导数的运算3.2 导数与函数的单一性、极值、最值专题 1 导数与函数的单一性专题 2 导数与函数的极值专题 3 导数与函数的最值3.3 导数的综合应用专题 1 利用导数解决生活中的优化问题专题 2 利用导数研究函数的零点或方程的根专题 3 利用导数解决不等式的有关问题3.4 定积分与微积分基本定理专题 1 定积分的计算专题 2 利用定积分求平面图形的面积专题 4 定积分在物理中的应用第四章三角函数、解三角形4.1 三角函数的观点、同角三角函数的基本关系及引诱公式专题 1 三角函数的观点专题 2 同角三角函数的基本关系专题 3 引诱公式4.2 三角函数的图像与性质专题 1 三角函数的定义域、值域、最值专题 2 三角函数的单一性专题 3 三角函数的奇偶性、周期性和对称性4.3 函数 y = A sin(wx +j ) 的图像及应用专题 1 三角函数的图象与变换专题 2 函数 y=Asin( ωx+φ ) 图象及性质的应用4.4 两角和与差的正弦、余弦与正切公式专题 1 非特别角的三角函数式的化简、求值专题 2 含条件的求值、求角问题专题 3 两角和与差公式的应用4.5 三角恒等变换专题 1 三角函数式的化简、求值专题 2 给角求值与给值求角专题 3 三角变换的综合问题4.6 解三角形专题 1 利用正弦定理、余弦定理解三角形专题 2 判断三角形的形状专题 3 丈量距离、高度及角度问题专题 4 与平面向量、不等式等综合的三角形问题第五章平面向量5.1 平面向量的观点及线性运算专题 1 平面向量的线性运算及几何意义专题 2 向量共线定理及应用专题 3 平面向量基本定理的应用5.2 平面向量基本定理及向量的坐标表示专题 1 平面向量基本定理的应用3专题 2 平面向量的坐标运算专题 3 平面向量共线的坐标表示5.3 平面向量的数目积专题 1 平面向量数目积的运算专题 2 平面向量数目积的性质专题 3 平面向量数目积的应用5.4 平面向量的应用专题 1 平面向量在几何中的应用专题 2 平面向量在物理中的应用专题 3 平面向量在三角函数中的应用专题 4 平面向量在分析几何中的应用第六章数列6.1 数列的观点与表示专题 1 数列的观点专题 2 数列的通项公式6.2 等差数列及其前 n 项和专题 1 等差数列的观点与运算专题 2 等差数列的性质专题 3 等差数列前 n 项和公式与最值6.3 等比数列及其前 n 项和专题 1 等比数列的观点与运算专题 2 等比数列的性质专题 3 等比数列前 n 项和公式6.4 数列乞降专题 1 分组乞降与并项乞降专题 2 错位相减乞降专题 3 裂项相消乞降6.5 数列的综合应用专题 1 数列与不等式相联合问题专题 2 数列与函数相联合问题专题 3 数列中的研究性问题第七章不等式推理与证明7.1 不等关系与一元二次不等式专题 1 不等式的性质及应用专题 2 一元二次不等式的解法专题 3 一元二次不等式恒建立问题7.2 二元一次不等式(组)与简单的线性规划问题专题 1 二元一次不等式(组)表示的平面地区问题专题 2 与目标函数有关的最值问题专题 3 线性规划的实质应用7.3 基本不等式及其应用专题 1 利用基本不等式求最值专题 2 利用基本不等式证明不等式专题 3 基本不等式的实质应用7.4 合情推理与演绎推理专题 1 概括推理专题 2 类比推理专题 3 演绎推理7.5 直接证明与间接证明专题 1 综合法4专题 2 剖析法专题 3 反证法7.6 数学概括法专题 1 用数学概括法证明等式专题 2 用数学概括法证明不等式专题 3 概括-猜想-证明第八章立体几何8.1 空间几何体的构造及其三视图和直观图专题 1 空间几何体的构造专题 2 三视图与直观图8.2 空间几何体的表面积与体积专题 1 空间几何体的表面积专题 2 空间几何体的体积专题 3 组合体的“接”“切”综合问题8.3 空间点、直线、平面之间的地点关系专题 1 平面的基天性质及应用专题 2 空间两条直线的地点关系专题 3 异面直线所成的角8.4 直线、平面平行的判断与性质专题 1 线面平行、面面平行基本问题专题 2 直线与平面平行的判断与性质专题 3 平面与平面平行的判断与性质8.5 直线、平面垂直的判断与性质专题 1 垂直关系的基本问题专题 2 直线与平面垂直的判断与性质专题 3 平面与平面垂直的判断与性质专题 4 空间中的距离问题专题 5 平行与垂直的综合问题(折叠、研究类)8.6 空间向量及其运算专题 1 空间向量的线性运算专题 2 共线定理、共面定理的应用专题 3 空间向量的数目积及其应用8.7 空间几何中的向量方法专题 1 利用空间向量证明平行、垂直专题 2 利用空间向量解决研究性问题专题 3 利用空间向量求空间角第九章分析几何9.1 直线的倾斜角、斜率与直线的方程专题 1 直线的倾斜角与斜率专题 2 直线的方程9.2 点与直线、两条直线的地点关系专题 1 两条直线的平行与垂直专题 2 直线的交点问题专题 3 距离公式专题 4 对称问题9.3 圆的方程专题 1 求圆的方程专题 2 与圆有关的轨迹问题专题 3 与圆有关的最值问题59.4 直线与圆、圆与圆的地点关系专题 1 直线与圆的地点关系专题 2 圆与圆的地点关系专题 3 圆的切线与弦长问题专题 4 空间直角坐标系9.5 椭圆专题 1 椭圆的定义及标准方程专题 2 椭圆的几何性质专题 3 直线与椭圆的地点关系9.6 双曲线专题 1 双曲线的定义与标准方程专题 2 双曲线的几何性质9.7 抛物线专题 1 抛物线的定义与标准方程专题 2 抛物线的几何性质专题 3 直线与抛物线的地点关系9.8 直线与圆锥曲线专题 1 轨迹与轨迹方程专题 2 圆锥曲线中的范围、最值问题专题 3 圆锥曲线中的定值、定点问题专题 4 圆锥曲线中的存在、研究性问题第十章统计与统计事例10.1 随机抽样专题 1 简单随机抽样专题 2 系统抽样专题 3 分层抽样10.2 用样本预计整体专题 1 频次散布直方图专题 2 茎叶图专题 3 样本的数字特点专题 4 用样本预计整体10.3 变量间的有关关系、统计事例专题 1 有关关系的判断专题 2 回归方程的求法及回归剖析专题 3 独立性查验第十一章计数原理11.1 分类加法计数原理与分步乘法计数原理专题 1 分类加法计数原理专题 2 分步乘法计数原理专题 3 两个计数原理的综合应用11.2 摆列与组合专题 1 摆列问题专题 2 组合问题专题 3 摆列、组合的综合应用11.3 二项式定理专题 1 通项及其应用专题 2 二项式系数的性质与各项系数和专题 3 二项式定理的应用第十二章概率与统计612.1 随机事件的概率专题 1 事件的关系专题 2 随机事件的频次与概率专题 3 互斥事件、对峙事件12.2 古典概型与几何概型专题 1 古典概型的概率专题 2 古典概型与其余知识的交汇(平面向量、直线、圆、函数等)专题 3 几何概型在不一样测度中的概率专题 4 生活中的几何概型问题12.3 失散型随机变量及其散布列专题 1 失散型随机变量的散布列的性质专题 2 求失散型随机变量的散布列专题 3 超几何散布12.4 失散型随机变量的均值与方差专题 1 简单的均值、方差问题专题 2 失散型随机变量的均值与方差专题 3 均值与方差在决议中的应用12.5 二项散布与正态散布专题 1 条件概率专题 2 互相独立事件同时发生的概率专题 3 独立重复试验与二项散布专题 4 正态散布下的概率第十三章算法初步、复数13.1 算法与程序框图专题 1 次序构造专题 2 条件构造专题 3 循环构造13.2 基本算法语句专题 1 输入、输出和赋值语句专题 2 条件语句专题 3 循环语句13.3 复数专题 1 复数的有关观点专题 2 复数的几何意义专题 3 复数的代数运算第十四章选修模块14.1 几何证明选讲专题 1 平行线分线段成比率定理专题 2 相像三角形的判断与性质专题 3 直角三角形的射影定理专题 4 圆周角、弦切角及圆的切线专题 5 圆内接四边形的判断及性质专题 6 圆的切线的性质与判断专题 7 与圆有关的比率线段14.2 坐标系与参数方程专题 1 极坐标与直角坐标的互化专题 2 直角坐标方程与极坐标方程的互化专题 3 曲线的极坐标方程的求解专题 4 曲线的参数方程的求解专题 5 参数方程与一般方程的互化7专题 6 极坐标方程与参数方程的应用14.3 不等式选讲专题 1 含绝对值不等式的解法专题 2 绝对值三角不等式的应用专题 3 含绝对值不等式的问题专题 4 不等式的证明8。
第05节-函数的基本性质-备战2023年高考数学一轮复习考点帮(全国通用)(原卷版)
第5节函数的基本性质(本卷满分150分,考试时间120分钟)一、单选题1.若函数2()48,[1,]f x x x x a =-+∈,它的最大值为()f a ,则实数a 的取值范围是()A .(1,2]B .(1,3)C .(3,)+∞D .[3,)+∞2.定义在R 上的函数()f x 满足:(2)(2)f x f x +=-,当2x ≥时,0,2()lg(2),2x f x x x =⎧=⎨->⎩,则不等式()0f x >的解集为()A .(,1)-∞B .(,0)(3,)-∞⋃+∞C .(,1)(3,)-∞+∞ D .(3,)+∞3.对x R ∀∈,不等式()()222240a x a x -+--<恒成立,则a 的取值范围是()A .22a -<≤B .22a -≤≤C .2a <-或2a ≥D .2a ≤-或2a ≥4.定义在R 上的偶函数()f x 在[0,)+∞上单调递增,且(2)0f =,则不等式()0x f x ⋅>的解集为()A .(,2)(2,)-∞-+∞B .(2,0)(0,2)-C .(2,0)(2,)-+∞ D .(,2)(0,2)-∞-⋃5.设定义在R 上的奇函数()y f x =,满足对任意的t R ∈都有()()1f t f t =-,且当10,2x ⎡⎤∈⎢⎥⎣⎦时,()2f x x =-,则()332f f ⎛⎫+- ⎪⎝⎭的值等于()A .12-B .13-C .14-D .15-6.已知函数()321132a f x x x x =+++在(),0∞-,()3,+∞上单调递增,在()1,2上单调递减,则实数a 的取值范围为()A .105,32⎡⎤--⎢⎥⎣⎦B .(],2-∞-C .10,23⎛⎤-- ⎥⎝⎦D .105,32⎛⎫-- ⎪⎝⎭7.已知函数()f x ,()g x 都是R 上的奇函数,不等式()0f x >与()0g x >的解集分别为(),m n ,,22m n ⎛⎫⎪⎝⎭02n m ⎛⎫<< ⎪⎝⎭,则不等式()()0f x g x ⋅>的解集是()A .,22m n ⎛⎫⎪⎝⎭B .(),n m --C .,,22n n m m ⎛⎫⎛⎫--⋃ ⎪ ⎪⎝⎭⎝⎭D .(),,22m n n m ⎛⎫--⋃ ⎪⎝⎭8.已知函数()f x 满足()()f x f x -=-,且对任意的[)1212,0,,x x x x ∈+∞≠,都有()()2121f x f x x x --()2,12020f >=,则满足不等式()()202021011f x x ->-的x 的取值范围是()A .()2021,+∞B .()2020,+∞C .()1011,∞+D .()1010,+∞9.已知函数()f x 的定义域为R ,()2f x +为偶函数,()21f x +为奇函数,则()A .102f ⎛⎫-= ⎪⎝⎭B .()10f -=C .()20f =D .()40f =10.已知定义在R 上的函数()y f x =满足下列三个条件:①当10x -≤≤时,()12e e x xf x x =-+;②()1y f x =+的图象关于y 轴对称;③R x ∀∈,都有()()22f x f x +=-.则23f ⎛⎫⎪⎝⎭、52f ⎛⎫ ⎪⎝⎭、113f ⎛⎫⎪⎝⎭的大小关系是()A .2511323f f f ⎛⎫⎛⎫⎛⎫>> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭B .2115332f f f ⎛⎫⎛⎫⎛⎫>> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭C .5211233f f f ⎛⎫⎛⎫⎛⎫>> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭D .5112233f f f ⎛⎫⎛⎫⎛⎫>> ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭11.已知函数()e e 2sin x xf x x -=--,则关于x 的不等式()()2320f x f x -+<的解集为()A .()3,1-B .()1,3-C .()(),31,-∞-⋃+∞D .[]1,3-12.函数211())1x ax f x a R x ++=∈+,若对于任意的*N x ∈,()3f x ≥恒成立,则a 的取值范围是()A .8,3⎡⎫-+∞⎪⎢⎣⎭B .2,3⎡⎫-+∞⎪⎢⎣⎭C .1,3⎡⎫-+∞⎪⎢⎣⎭D .[)1,-+∞二、填空题13.若函数f (x )=(m -1)x 2+(m -2)x +(m 2-7m +12)为偶函数,则m 的值是________.14.已知函数()f x 的图象为如图所示的两条线段组成,则下列关于函数()f x的说法:①((1))3f f =;②(2)(0)f f >;③()211,[0,4]f x x x x =--+∈;④0a ∃>,不等式()f x a ≤的解集为123⎡⎤⎢⎥⎣⎦.其中正确的说法有_________.(写出所有正确说法的序号)15.若函数2y x a =+在区间[)3,+∞上是严格增函数,则实数a 的取值范围是_________.16.写出一个同时满足①②的函数()f x =___________.①()f x 是偶函数,②()()2f x f x +=-.三、解答题17.函数()()22R x xf x a a -=⋅-∈是定义域为R 的奇函数.(1)求a 的值,并判断()f x 的单调性(不要求证明);(2)若关于x 的不等式()22xf x k ≥⋅-有解,求实数k 的取值范围;(3)若()()()()33sin cos cos sin 00,πf f θθθθθ-+->∈,求角θ的取值范围.18.已知()4f x x x=+.(Ⅰ)证明:()f x 在[2,+∞)单调递增;(Ⅱ)解不等式:2(24)(7)f x x f -+≤.19.若函数3()426x x f x +=--(1)求()f x 的最小值及()f x x 值;(2)若对于任意0[0,3]x ∈使0()0f x a -≤恒成立,求实数a 的范围.20.已知定义在R 上的函数()f x ,()g x 满足:①()01f =;②()g x 为奇函数;③()0,x ∀∈+∞,()0>g x ;④任意的x ,R y ∈,()()()()()f x y f x f y g x g y -=-.(1)判断并证明函数()f x 的奇偶性;(2)判断并证明函数()f x 在()0,+¥上的单调性.21.对于定义域为D 的函数()y f x =,如果存在区间[,]m n D ⊆,同时满足:①()f x 在[m ,n ]内是单调函数;②当定义域是[m ,n ]时,()f x 的值域也是[m ,]n ;则称[m ,n ]是该函数的“美好区间”.(1)判断函数()13(0)f x x x=->是否存在“美好区间”,若存在,则求出m ,n 的值,若不存在,请说明理由;(2)已知函数()()2246(,0)a a x h x a R a a x+-=∈≠有“美好区间”[m ,n ],当a 变化时,求出n m -的最大值.22.已知函数()()2f x x x a =+,2()1x ag x x +=+,[]2,2a ∈-.(1)当1a =-时,求函数()f x 的单调递增区间;(2)若[]11,1x ∀∈-,∃唯一的[]20,2x ∈,使得()()12f x g x =,求实数a 的取值范围.。
2014年高考数学一轮复习精品学案(人教版A版)---函数基本性质
2010年高考数学一轮复习精品学案(人教版A 版)---函数基本性质一.【课标要求】1.通过已学过的函数特别是二次函数,理解函数的单调性、最大(小)值及其几何意义;2.结合具体函数,了解奇偶性的含义;二.【命题走向】从近几年来看,函数性质是高考命题的主线索,不论是何种函数,必须与函数性质相关联,因此在复习中,针对不同的函数类别及综合情况,归纳出一定的复习线索预测2010年高考的出题思路是:通过研究函数的定义域、值域,进而研究函数的单调性、奇偶性以及最值预测明年的对本讲的考察是:(1)考察函数性质的选择题1个或1个填空题,还可能结合导数出研究函数性质的大题;(2)以中等难度、题型新颖的试题综合考察函数的性质,以组合形式、一题多角度考察函数性质预计成为新的热点 三.【要点精讲】1.奇偶性(1)定义:如果对于函数f (x )定义域内的任意x 都有f (-x )=-f (x ),则称f (x )为奇函数;如果对于函数f (x )定义域内的任意x 都有f (-x )=f (x ),则称f (x )为偶函数。
如果函数f (x )不具有上述性质,则f (x )不具有奇偶性.如果函数同时具有上述两条性质,则f (x )既是奇函数,又是偶函数。
注意:○1 函数是奇函数或是偶函数称为函数的奇偶性,函数的奇偶性是函数的整体性质; ○2 由函数的奇偶性定义可知,函数具有奇偶性的一个必要条件是,对于定义域内的任意一个x ,则-x 也一定是定义域内的一个自变量(即定义域关于原点对称)。
(2)利用定义判断函数奇偶性的格式步骤:○1 首先确定函数的定义域,并判断其定义域是否关于原点对称; ○2 确定f (-x )与f (x )的关系; ○3 作出相应结论: 若f (-x ) = f (x ) 或 f (-x )-f (x ) = 0,则f (x )是偶函数; 若f (-x ) =-f (x ) 或 f (-x )+f (x ) = 0,则f (x )是奇函数 (3)简单性质:①图象的对称性质:一个函数是奇函数的充要条件是它的图象关于原点对称;一个函数是偶函数的充要条件是它的图象关于y 轴对称;②设()f x ,()g x 的定义域分别是12,D D ,那么在它们的公共定义域上:奇+奇=奇,奇⨯奇=偶,偶+偶=偶,偶⨯偶=偶,奇⨯偶=奇 2.单调性(1)定义:一般地,设函数y =f (x )的定义域为I , 如果对于定义域I 内的某个区间D 内的任意两个自变量x 1,x 2,当x 1<x 2时,都有f (x 1)<f (x 2)(f (x 1)>f (x 2)),那么就说f (x )在区间D 上是增函数(减函数);注意:○1 函数的单调性是在定义域内的某个区间上的性质,是函数的局部性质;○2 必须是对于区间D 内的任意两个自变量x 1,x 2;当x 1<x 2时,总有f (x 1)<f (x 2) (2)如果函数y =f (x )在某个区间上是增函数或是减函数,那么就说函数y =f (x )在这一区间具有(严格的)单调性,区间D 叫做y =f (x )的单调区间。
2025届高考数学一轮复习第2章函数概念与基本初等函数Ⅰ第2讲函数的基本性质作业试题2含解析新人教版
其次讲 函数的基本性质1.[2024江西红色七校第一次联考]下列函数中,既是偶函数又在区间(0,+∞)上单调递减的是 ( )A.y=cos xB.y=x 2C.y=ln|x|D.y=e-|x|2.[2024湖北省四地七校联考]若函数f(x)=sin x·ln(mx+√1+4x 2)的图象关于y 轴对称,则m= ( )A.2B.4C.±2D.±43.[2024郑州三模]若函数f(x)={e x -x +2a,x >0,(a -1)x +3a -2,x ≤0在(-∞,+∞)上是单调函数,则a 的取值范围是( )A.[1,+∞)B.(1,3]C.[12,1) D.(1,2]4.[2024广州市阶段模拟]已知f(x),g(x)分别是定义在R 上的偶函数和奇函数,且 f(x)-g(x)=x 3+x 2+a,则g(2)=( ) A.-4B.4C.-8D.85.[2024长春市第一次质量监测]定义在R 上的函数f(x)满意f(x)=f(x+5),当x∈[-2,0)时,f(x)=-(x+2)2,当x∈[0,3)时,f(x)=x,则f(1)+f(2)+…+f(2 021)= ( )A.809B.811C.1 011D.1 0136.[2024陕西省部分学校摸底检测]已知函数f(x)=2x cosx 4x +a是偶函数,则函数f(x)的最大值为 ( )A.1B.2C.12 D.37.[2024济南名校联考]已知定义在R 上的函数f(x)满意f(x+6)=f(x),y=f(x+3)为偶函数,若f(x)在(0,3)上单调递减,则下面结论正确的是 ( )A.f(192)<f(e 12)<f(ln 2)B.f(e 12)<f(ln 2)<f(192)C.f(ln 2)<f(192)<f(e 12) D.f(ln 2)<f(e 12)<f(192)8.[2024江苏苏州初调]若y=f(x)是定义在R 上的偶函数,当x∈[0,+∞)时,f(x)={sinx,x ∈[0,1),f(x -1),x ∈[1,+∞),则f(-π6-5)= .9.函数f(x)=x 3-3x 2+5x-1图象的对称中心为 .10.[2024蓉城名校联考]已知函数f(x)=x+cosx,x∈R,设a= f(0.3-1), b= f(2-0.3),c= f(log 20.2),则 ( )A.b<c<aB.c<a<bC.b<a<cD.c<b<a11.[2024辽宁葫芦岛其次次测试]已知y=f(x-1)是定义在R 上的偶函数,且y=f(x)在[-1,+∞)上单调递增,则不等式f(-2x-1-1)<f(3)的解集为 ( )A.(2,+∞)B.(3,+∞)C.(-∞,2)D.(-∞,3)12.已知f(x)是定义在(1,+∞)上的增函数,若对于随意x,y∈(1,+∞),均有f(x)+f(y)=f(2x+y),f(2)=1,则不等式f(x)+f(x-1)-2≥0的解集为 ( )A.[52,+∞)B.(52,+∞)C.[1,52]D.(2,52]13.[2024广东七校联考]已知定义在R 上的偶函数y=f(x+2),其图象是连续的,当x>2时,函数y=f(x)是单调函数,则满意f(x)=f(1-1x+4)的全部x 之积为 ( )A.3B.-3C.-39D.3914.[原创题]设增函数f(x)={lnx,x >1,-1+ax x ,0<x ≤1的值域为R,若不等式f(x)≥x+b 的解集为{x|c≤x≤e},则实数c 的值为 ( )A.e -√e 2-42B.e+√e 2-42C.e±√e 2-42D.1215.[多选题]已知奇函数f(x)在(-∞,+∞)上单调递增,f(1)=2,若0<f(m)<2,则 ( )A.log m (1+m)<log m (1+m 2) B.log m (1-m)<0 C.(1-m)2>(1+m)2D.(1-m )13>(1-m )1216.[2024湖南六校联考][多选题]已知f(x)是定义在R 上的奇函数,且f(1+x)=f(1-x),当0≤x≤1时,f(x)=x,则关于函数g(x)=|f(x)|+f(|x|),下列说法正确的是( ) A.g(x)为偶函数B.g(x)在(1,2)上单调递增C.g(x)在[2 016,2 020]上恰有三个零点D.g(x)的最大值为2答 案其次讲 函数的基本性质1.D 函数y=cos x 是偶函数且是周期为2π的周期函数,所以y=cos x 在(0,+∞)上不具有单调性,所以A 选项不符合题意;函数y=x 2为偶函数,但在(0,+∞)上单调递增,所以B 选项不符合题意;函数y=ln|x|={lnx,x >0,ln(-x),x <0为偶函数,但在(0,+∞)上单调递增,所以C 选项不符合题意;函数y=e -|x|={e -x ,x ≥0,e x ,x <0为偶函数,在(0,+∞)上单调递减,所以D 选项符合题意.故选D.2.C ∵f(x)的图象关于y 轴对称,∴f(x)为偶函数,又y=sin x 为奇函数,∴y=ln(mx+√1+4x 2)为奇函数,即ln[-mx+√1+4·(-x)2]+ln(mx+√1+4x 2)=0,即ln(1+4x 2-m 2x 2)=0,1+4x 2-m 2x 2=1,解得m=±2.故选C.3.B 当x>0时,f(x)=e x -x+2a,则f '(x)=e x-1>0,所以函数f(x)在(0,+∞)上单调递增.因为函数f(x)在(-∞,+∞)上是单调函数,所以函数f(x)在(-∞,+∞)上是单调递增函数.当x≤0时,f(x)=(a-1)x+3a-2是单调递增函数,所以a-1>0,得a>1.e 0-0+2a≥(a -1)×0+3a -2,解得a≤3.所以1<a≤3,故选B.4.C 依题意f(x)是偶函数,g(x)是奇函数,且f(x)-g(x)=x 3+x 2+a ①,所以f(-x)-g(-x)=-x 3+x 2+a,即f(x)+g(x)=-x 3+x 2+a ②,②-①得2g(x)=-2x 3,g(x)=-x 3,所以g(2)=-23=-8.故选C. 5.A 由f(x)=f(x+5)可知f(x)的周期为5,又f(0)=0,f(1)=1,f(2)=2,f(-1)=-1,f(-2)=0,∴f(3)=f(-2)=0,f(4)=f(-1)=-1,f(5)=f(0)=0,∴f(1)+f(2)+f(3)+f(4)+f(5)=2,∴f(1)+f(2)+…+f(2 021)=f(1)+2×404=809.故选A. 6.C 解法一 因为函数f(x)=2x cosx 4x +a 是偶函数,所以f(-x)=f(x),即2-x cos(-x)4-x +a=2x cosx 4x +a ,化简可得a(4x -1)=4x-1,得a=1,所以f(x)=2x cosx4x +1=cosx2x +2-x .又cos x≤1,2x+2-x≥2,当且仅当x=0时两个“=”同时成立,所以f(x)≤12.故选C. 解法二 因为函数f(x)为偶函数,所以f(-1)=f(1),即2-1cos(-1)4-1+a=21cos14+a ,解得a=1,所以f(x)=2x cosx4x +1=cosx2x +2-x .因为cosx≤1,2x+2-x≥2,当且仅当x=0时两个“=”同时成立,所以f(x)max =12,故选C.7.A 由f(x+6)=f(x)知函数f(x)是周期为6的函数.因为y=f(x+3)为偶函数,所以f(x+3)=f(-x+3),所以f(192)=f(72)=f(12+3)=f(-12+3)=f(52).(题眼)(难点:利用函数的性质把自变量的取值化到同一个单调区间内) 因为1<e 12<2,0<ln 2<1,所以0<ln 2<e 12<52<3.因为f(x)在(0,3)上单调递减,所以f(52)<f(e 12)<f(ln 2),即f(192)<f(e 12)<f(ln 2),故选A.8.12 因为y=f(x)是定义在R 上的偶函数,所以f(-π6-5)=f(π6+5).因为x≥1时,f(x)=f(x-1),所以f(π6+5)=f(π6+4)=…=f(π6).又0<π6<1,所以f(π6)=sin π6=12.故f(-π6-5)=12.9.(1,2) 解法一 由题意设图象的对称中心为(a,b),则2b=f(a+x)+f(a-x)对随意x 均成立,代入函数解析式得,2b=(a+x)3-3(a+x)2+5(a+x)-1+(a-x)3-3(a-x)2+5(a-x)-1=2a 3+6ax 2-6a 2-6x 2+10a-2=2a 3-6a 2+10a-2+(6a-6)x 2对随意x 均成立,所以6a-6=0,且2a 3-6a 2+10a-2=2b,即a=1,b=2,即f(x)的图象的对称中心为(1,2).解法二 由三次函数对称中心公式可得,f(x)的图象的对称中心为(1,2).10.D f(x)=x+cos x,则f '(x)=1-sin x≥0,所以f(x)在R 上单调递增,又log 20.2<2-0.3<1<0.3-1=103,所以f(log 20.2)<f(2-0.3)<f(103),即c<b<a.11.D 由题可知y=f(x-1)的图象关于y 轴对称.因为y=f(x)的图象向右平移1个单位长度得到y=f(x-1)的图象,所以y=f(x)的图象关于直线x=-1对称.因为y=f(x)在[-1,+∞)上单调递增,所以f(x)在(-∞,-1)上单调递减.所以|-2x-1-1-(-1)|<|3-(-1)|,即0<2x-1<4,解得x<3,所以原不等式的解集为(-∞,3),故选D.12.A 依据f(x)+f(y)=f(2x+y),f(2)=1,可得2=1+1=f(2)+f(2)=f(24),所以f(x)+f(x-1)-2≥0得f(22x-1)≥f(24).又f(x)是定义在(1,+∞)上的增函数,所以{22x -1≥24,x >1,x -1>1, 解得x≥52.所以不等式f(x)+f(x-1)-2≥0的解集为[52,+∞).13.D 因为函数y=f(x+2)是偶函数,所以函数y=f(x)图象关于x=2对称,因为f(x)在(2,+∞)上单调,所以f(x)在(-∞,2)上也单调,所以要使f(x)=f(1-1x+4),则x=1-1x+4或4-x=1-1x+4.由x=1-1x+4,得x 2+3x-3=0,Δ1>0,设方程的两根分别为x 1,x 2,则x 1x 2=-3;由4-x=1-1x+4,得x 2+x-13=0,Δ2>0,设方程的两根分别为x 3,x 4,则x 3x 4=-13.所以x 1x 2x 3x 4=39.故选D.14.A 当x>1时,f(x)为增函数,且f(x)∈(0,+∞), 当0<x≤1时,-1+ax x=a-1x≤a -1,即f(x)∈(-∞,a -1].因为f(x)为增函数,所以a-1≤0,则a≤1,又函数f(x)的值域为R,所以a-1≥0,即a≥1,从而a=1,函数f(x)={lnx,x >1,-1+x x,0<x ≤1.因为不等式f(x)≥x+b 的解集为{x|c≤x≤e},易知ln x=x+b 的解为x=e,所以b=1-e,当x=1时,x+b=1+1-e=2-e<0=f(1),故0<c<1.令-1+x x=x+1-e,得x 2-ex+1=0,从而x=e -√e 2-42,则c=e -√e 2-42,故选A.15.AD ∵f(x)为奇函数,0<f(m)<2,f(1)=2,f(0)=0,∴f(0)<f(m)<f(1).又f(x)在R 上单调递增,∴0<m<1,∴1+m>1,0<1-m<1,∴log m (1-m)>0,B 错误.∵1+m>1+m 2,∴log m (1+m)<log m (1+m 2),A 正确.∵y=x 2在(0,+∞)上单调递增,1-m<1+m,∴(1-m)2<(1+m)2,C 错误.∵y=(1-m)x在(0,+∞)上单调递减,∴(1-m )13>(1-m )12,D 正确.故选AD. 16.AD 易知函数g(x)的定义域为R,且g(-x)=|f(-x)|+f(|-x|)=|-f(x)|+f(|x|)=|f(x)|+f(|x|)=g(x),所以g(x)为偶函数,故A 正确.因为f(1+x)=f(1-x),所以f(x)的图象关于直线x=1对称,又f(x)是奇函数,所以f(x)是周期为4的函数,其部分图象如图D 2-2-1所示,图D 2-2-1所以当x≥0时,g(x)={2f(x),x∈[4k,2+4k]0,x∈(2+4k,4+4k],k∈N,当x∈(1,2)时,g(x)=2f(x),g(x)单调递减,故B错误.g(x)在[2 016,2 020]上零点的个数等价于g(x)在[0,4]上零点的个数,而g(x)在[0,4]上有多数个零点,故C错误. 当x≥0时,易知g(x)的最大值为2,由偶函数图象的对称性可知,当x<0时,g(x)的最大值也为2,所以g(x)在整个定义域上的最大值为2,故D正确.综上可知,选AD.。
高一数学必修1-函数的概念及基本性质
§1·函数的概念(一)函数的有关概念设A ,B 是非空的数集,如果按某个确定的对应关系f ,使对于集合A 中的任意一个x ,在集合B 中都有唯一确定的数)(x f 和它对应,那么就称B A f →:为从集合A 到集合B 的函数,记作)(x f y =, x ∈A其中x 叫自变量,x 的取值范围A 叫做函数)(x f y =的定义域;与x 的值相对应的y 的值叫做函数值,函数值的集合{}A x x f ∈|)((⊆B )叫做函数y=f(x)的值域.函数符号)(x f y =表示“y 是x 的函数”,有时简记作函数)(x f . (1)函数实际上就是集合A 到集合B 的一个特殊对应 B A f →:这里 A, B 为非空的数集.(2)A :定义域,原象的集合;{}A x x f ∈|)(:值域,象的集合,其中{}A x x f ∈|)( ⊆ B ;f :对应法则 ,x ∈A , y ∈B(3)函数符号:)(x f y = ↔y 是 x 的函数,简记 )(x f (二)已学函数的定义域和值域1.一次函数b ax x f +=)()0(≠a :定义域R, 值域R; 2.反比例函xkx f =)()0(≠k :定义域{}0|≠x x , 值域{}0|≠x x ; 3.二次函数c bx ax x f ++=2)()0(≠a :定义域R值域:当0>a 时,⎭⎬⎫⎩⎨⎧-≥a b ac y y 44|2;当0<a 时,⎭⎬⎫⎩⎨⎧-≤a b ac y y 44|2(三)函数的值:关于函数值 )(a f例:)(x f =2x +3x+1 则 f(2)=22+3×2+1=11注意:1︒在)(x f y =中f 表示对应法则,不同的函数其含义不一样2︒)(x f 不一定是解析式,有时可能是“列表”“图象”3︒)(x f 与)(a f 是不同的,前者为变数,后者为常数(四)函数的三要素: 对应法则f 、定义域A 、值域{}A x x f ∈|)( 只有当这三要素完全相同时,两个函数才能称为同一函数(五)区间的概念和记号:在研究函数时,常常用到区间的概念,它是数学中常用的述语和符号.设a,b ∈R ,且a<b.我们规定:①满足不等式a ≤x ≤b 的实数x 的集合叫做闭区间,表示为[a,b]; ②满足不等式a<x<b 的实数x 的集合叫做开区间,表示为(a,b );③满足不等式a ≤x<b 或a<x ≤b 的实数x 的集合叫做半开半闭区间,分别表示为[a ,b) ,(a ,b]. 这里的实数a 和b 叫做相应区间的端点.这样实数集R 也可用区间表示为(-∞,+∞),“∞”读作“无穷大”,“-∞”读作“负无穷大”,“+∞”读作“正无穷大”.还可把满足x ≥a ,x>a ,x ≤b ,x<b 的实数x 的集合分别表示为[a ,+∞),(a ,+∞),(- ∞,b ],(- ∞,b). 【例题解析】例1 判断下列各式,哪个能确定y 是x 的函数?为什么?(1)x 2+y =1 (2)x +y 2=1 (3)1x x 1y --= (4)y=x -1x +-例2 求下列函数的定义域: (1)()f x = (2)xx x x f -+=0)1()(例3 已知函数)(x f =32x -5x+2,求f(3), f(-2), f(a+1).例4 已知⎪⎩⎪⎨⎧+=10)(x x f π )0()0()0(>=<x x x ,求)1(f ,)1(-f ,)0(f ,)]}1([{-f f f讨论:函数y=x 、y=(x )2、y=23xx 、y=44x 、y=2x 有何关系?例5 下列各组中的两个函数是否为相同的函数? ⑴3)5)(3(1+-+=x x x y 52-=x y ⑵111-+=x x y )1)(1(2-+=x x y练习:下列各组中的两个函数是否为相同的函数? ① ()f x = 0(1)x -;()g x = 1.② ()f x = x ; ()g x ③ ()f x = x 2;()g x = 2(1)x +.④ ()f x = | x | ;()g x 例6 已知函数)(x f =4x+3,g(x)=x 2,求f[f(x)],f[g(x)],g[f(x)],g[g(x)].复合函数:设 f (x )=2x -3,g (x )=x 2+2,则称 f [g (x )] =2(x 2+2)-3=2x 2+1(或g [f (x )] =(2x -3)2+2=4x 2-12x +11)为复合函数例7求下列函数的值域(用区间表示):(1)y =x 2-3x +4; (2)()f x =(3)y =53x -+; (4)2()3x f x x -=+.例8 ※ 动手试试1. 若2(1)21f x x +=+,求()f x .2. 一次函数()f x 满足[()]12f f x x =+,求()f x .练习 已知二次函数f (x )=ax 2+bx (a ,b 为常数,且a ≠0)满足条件f (x -1)=f (3-x )且方程f (x )=2x 有等根,求f (x )的解析式.函数的概念习题:1.如下图可作为函数)(x f =的图像的是( )(D )2.对于函数()y f x =,以下说法正确的有 ( )①y 是x 的函数;②对于不同的,x y 的值也不同;③()f a 表示当x a =时函数()f x 的值,是一个常量;④()f x 一定可以用一个具体的式子表示出来。
高中数学必修一——函数基本性质
高中数学必修一——函数基本性质引言:函数是高中数学中的重要知识点之一,它不仅在高考中占有一定比重,而且在大学数学、物理等学科中也应用广泛。
因此,学好函数是中学数学的重要任务之一。
本文将介绍函数的基本性质,包括定义域、值域、单调性、奇偶性、周期性等,同时提供20道以上的练习题,供读者参考。
一、函数的定义函数是一种特殊的映射关系,它把一个集合中的每个元素都对应到另一个集合中的唯一元素。
函数通常用符号f(x)表示,其中x是自变量,f(x)是因变量。
函数可以表示为f:A\rightarrow B,其中A是定义域,B是值域。
二、函数的基本性质1.定义域:函数的定义域是指所有可以输入函数的自变量的值的集合。
函数的定义域可以是实数集、有理数集、整数集等。
在定义函数时,需要指定函数的定义域。
2.值域:函数的值域是指所有函数可能的输出值的集合。
它是由定义域和函数的性质决定的。
3.单调性:函数的单调性指函数在定义域上的单调变化性质,包括单调递增和单调递减。
如果函数的自变量增大,函数值也增大,则称函数在这个区间内是单调递增的;如果函数的自变量增大,函数值减小,则称函数在这个区间内是单调递减的。
4.奇偶性:函数的奇偶性指函数的性质,可以分为偶函数和奇函数。
如果函数在定义域内满足f(-x)=f(x),则称函数为偶函数;如果函数在定义域内满足f(-x)=-f(x),则称函数为奇函数。
5.周期性:函数的周期性指函数在定义域上存在一个最小正周期T,即f(x+T)=f(x),其中T是正实数。
三、练习题1.设函数f(x)=ax+b,其中a,b是实数,且f(2)=3,f(3)=4,求a,b。
2.求函数f(x)=2x^2-3x+1的定义域和值域。
3.若函数f(x)在区间[a,b]上是单调递增的,且f(a)=f(b)=0,证明f(x)=0在区间[a,b]上有且只有一个实根。
4.设函数f(x)=\sin(x+\alpha),其中0<\alpha<\dfrac{\pi}{2},证明f(x)是奇函数。
高三第一轮复习——函数的基本性质
函数的基本性质之一——单调性【基本概念】1.函数单调性①正向结论:若()y f x =在给定区间上是增函数,则当12x x <时,12()()f x f x <;当12x x >,12()()f x f x >;②逆向结论:若()y f x =在给定区间上是增函数,则当12()()f x f x <时,_________;当12()()f x f x >时,_________。
当()y f x =在给定区间上是减函数时,也有相应的结论。
2.函数最值的求解求函数最值的常用方法有单调性与求导法。
此处重点讲解二次函数的最值。
求二次函数的最值有两种类型:一是函数定义域为R ,可用配方法求出最值;二是函数定义域为某一区间,此时应该考虑对称轴是否在给定的区间内。
3.易混淆点:对单调性和在区间上单调两个概念理解错误【考点一】单调性的判断与证明1.下列函数()f x 中,满足“对任意12,(0,)x x ∈+∞,当12x x <时,都有12()()f x f x >”的是( )A .1()f x x= B. 2()(1)f x x =- C. ()x f x e = D. ln(1)y x =+ 2.给定函数①12y x =;②12log (1)y x =+;③1y x =-;④12x y +=,其中在区间(0,1)上单调递减的函数的序号是()A .①② B.②③ C.③④ D.①④3.证明y x =在[0,)+∞是增函数4.证明4y x x=+在[2,)+∞是增函数。
【学案编号】数学总复习 学案5 【编辑】韩晶飞 【审核】马省珍【主题】 函数的基本性质【考点二】利用单调性求参数与解不等式3.已知函数(2)1,1()log ,1a a x x f x x x --≤⎧=⎨>⎩.若()f x 在(,)-∞+∞上单调递增,则a 的取值范围为________________4.已知()f x 为R 上的减函数,则满足1()(1)f f x>的实数x 的取值范围是( ) .(,1)A -∞ B. (1,)+∞ C. (,0)(0,1)-∞⋃ D. (,0)(1,)-∞⋃+∞5.若函数()f x 的定义域为R,并且在(0,)+∞上是减函数,则下列不等式成立的是( ) A 23()(1)4f f a a >-+ B. 23()(1)4f f a a ≥-+ C. 23()(1)4f f a a <-+ D. 23()(1)4f f a a ≤-+ 6.已知函数224,0()4,0x x x f x x x x ⎧+≥⎪=⎨-<⎪⎩.若2(2)()f a f a ->,则实数a 的取值范围是( ) A. (,1)(2,)-∞-⋃+∞ B.(1,2) C. (2,1)- D. (,2)(1,)-∞-⋃+∞【考点三】区分单调性和在区间上单调这两个概念7.若函数2()2(1)2f x x a x =+-+的单调区间是(,4]-∞,则实数a 的取值范围是_________.8. 若函数2()2(1)2f x x a x =+-+在(,4]-∞上单调递减,则实数a 的取值范围是_______.【考点四】二次函数的单调性与最值(注意:常常需要分情况讨论)9.已知函数2()22,[1,1]f x x ax x =-+∈-,求函数()f x 的最小值。
(完整版)高三一轮复习函数专题1---函数的基本性质
函数专题1、函数的基本性质复习提问:1、如何判断两个函数是否属于同一个函数。
2、如何求一个函数的定义域(特别是抽象函数的定义域问题)3、如何求一个函数的解析式。
(常见方法有哪些)4、如何求函数的值域。
(常见题型对应的常见方法)5、函数单调性的判断,证明和应用(单调性的应用中参数问题)6、函数的对称性(包括奇偶性)、周期性的应用7、利用函数的图像求函数中参数的范围等其他关于图像问题 知识分类一、函数的概念:函数的定义含有三个要素,即定义域A 、值域C 和对应法则f .当函数的定义域及从定义域到值域的对应法则确定之后,函数的值域也就随之确定.因此,定义域和对应法则为函数的两个基本条件,当且仅当两个函数的定义域和对应法则都分别相同时,这两个函数才是同一个函数. 1、试判断以下各组函数是否表示同一函数?(1)f (x )=2x ,g (x )=33x ;(2)f (x )=x x ||,g (x )=⎩⎨⎧<-≥;01,01x x(3)f (x )=1212++n n x ,g (x )=(12-n x )2n -1(n ∈N *);(4)f (x )=x1+x ,g (x )=x x +2;(5)f (x )=x 2-2x -1,g (t )=t 2-2t -1.二、函数的定义域(请牢记:凡是说定义域范围是多少,都是指等式中变量x 的范围) 1、求下列函数的定义域:(1)y=-221x +1(2)y=422--x x (3)x x y +=1 (4)y=241+-+-x x(5)y=3142-+-x x (8)y=3-ax (a为常数)2、(1)已知f (x )的定义域为 [ 1,2 ] ,求f (2x -1)的定义域; (2)已知f (2x -1)的定义域为 [ 1,2 ],求f (x )的定义域;3、若函数)(x f y =的定义域为[ 1,1],求函数)41(+=x f y )41(-⋅x f 的定义域 5、已知函数682-+-=k x kx y 的定义域为R ,求实数k 的取值范围。
高一 (函数复习3----函数的基本性质-单调性、周期性)
高一函数复习五、函数的单调性【知识点1:函数单调性的定义】设函数y =f (x )的定义域为I ,如果对于定义域I 内的某个区间D 内的任意两个自变量x 1,x 2,当x 1<x 2时,都有f (x 1)< f (x 2),那么就说f (x )在区间D 上是增函数. 区间D 称为y =f (x )的单调增区间.如果对于区间D 上的任意两个自变量的值x 1,x 2,当x 1<x 2 时,都有f (x 1)>f (x 2),那么就说f (x )在这个区间上是减函数. 区间D 称为y =f (x )的单调减区间.【知识点2:图象的特点】如果函数f (x )在某个区间D 上是增函数或减函数,就说f (x )在这一区间上具有(严格的)单调性,区间D 叫f(x )的单调区间. 在单调区间上,增函数的图象从左向右是上升的(如右图1),减函数的图象从左向右是下降的(如右图2). 由此,可以直观观察函数图象上升与下降的变化趋势,得到函数的单调区间及单调性.【知识点3:函数单调性的判定方法】(1) 定义法:① 任取x 1,x 2∈D ,且x 1< x 2; ② 作差f (x 1)-f (x 2);③ 变形(通常是因式分解和配方); ④ 定号(即判断差f (x 1)-f (x 2)的正负);⑤ 下结论(指出函数f (x )在给定的区间D 上的单调性). (2) 图象法(从图象上看升降)(3) 复合函数的单调性——“同增异减”设()[]x g f y =是定义在M 上的函数,若f (x )与g (x )的单调性相反,则()[]x g f y =在M 上是减函数;若f (x )与g (x )的单调性相同,则()[]x g f y =在M 上是增函数。
注意:函数的单调区间只能是其定义域的子区间 ,不能把单调性相同的区间合在一起写成其并集. 即函数的单调性是函数的局部性质。
【例1】试用函数单调性的定义判断函数2()1xf x x =-在区间(0,1)上的单调性.【变式练习】判断函数)()(3R x x x f ∈-=的单调性。
函数基本性质1-函数单调性(高三复习)
函数基本性质1------------函数单调性(孟祥林三维目标1.知识与技能:理解函数的单调性和单调函数的意义,会判断和证明简单函数的单调性;2.过程与方法:通过具体函数,比如一次二次函数,体会单调函数的含义,数形结合是主要手段3.情感、态度与价值观:培养探索意识、逻辑思维的严密性,提高数学素养。
教学重难点1.重点:单调性定义及应用2.难点:单调性的应用,综合题的应用。
教学方法讲授、讨论互动教学过程一、知识梳理1.如果对于函数y=f(x)定义域I 内某个区间D 上的任意两个自变量的值21,x x ,,当21x x >时,都有)()(21x f x f >,那么就说函数在区间D 上是增函数,如图1。
同时称D 是)(x f 单调增区间。
2.如果对于函数y=f(x)定义域I 内某个区间D 上的任意两个自变量的值21,x x ,,当21x x >时,都有12()()f x f x <,那么就说函数在区间D 上是减函数,如图2。
同时称D 是)(x f 单调减区间。
3.如果一个函数在某个区间上是增函数或是减函数,就说这个函数在这个区间具有单调性,或者说函数在该区间上是单调的。
注:(1)函数的增减性是相对某个区间而言的,例如2y x =、1y x =(2)由定义可知,若是增函数,当)()(21x f x f >时,有21x x >(3)等价定义:设()12,x x a b ∈、,[]12121212()()()()()00f x f x x x f x f x x x --->⇔>- ⇔函数f(x)在区间(a,b )上是增函数的等价定义(4)证明或判断单调性的方法。
定义法:取值、作差、化简、定号、下结论;直接法:就是对于熟悉的函数,如一次、二次、反比例、指数、对数函数等图像法:由图像可以形象直观的看出函数的单调性;导数法:根据导数的性质;(5)复合函数的单调性:同名为增,异名为减;二、典例分析例1 下列说法正确的有 ________个①若存在12x x A ∈、,当21x x >时,都有12()()f x f x >,则在上是增函数②函数2y x =在R 上是增函数③函数1y x =-在定义域内是增函数 ④1y x=的单调递减区间是()(),00,-∞+∞ 。
高三函数一轮复习(史上最全)
函 数一、函数及其表示自主梳理1.函数的基本概念 (1)函数定义设A ,B 是非空的 ,如果按照某种确定的对应关系f ,使对于集合A 中的 ,在集合B 中 ,称f :A →B 为从集合A 到集合B 的一个函数,x 的取值范围A 叫做函数的__________,__________________叫做函数的值域.(2)函数的三要素__________、________和____________. (3)函数的表示法表示函数的常用方法有:________、________、________. (4)函数相等如果两个函数的定义域和__________完全一致,则这两个函数相等,这是判定两函数相等的依据. (5)分段函数:在函数的________内,对于自变量x 的不同取值区间,有着不同的____________,这样的函数通常叫做分段函数.分段函数是一个函数,它的定义域是各段取值区间的________,值域是各段值域的________. 2.映射的概念 (1)映射的定义设A 、B 是两个非空的集合,如果按某一个确定的对应关系f ,使对于集合A 中的任意一个元素x ,在集合B中 确定的元素y 与之对应,那么就称对应f :A →B 为从集合A 到集合B 的 .(2)由映射的定义可以看出,映射是 概念的推广,函数是一种特殊的映射,要注意构成函数的两个集合,A 、B 必须是 数集.自我检测1.(2011·佛山模拟)设集合M ={x |0≤x ≤2},N ={y |0≤y ≤2},给出下列4个图形,其中能表示集合M 到N 的函数关系的有( )A .0个B .1个C .2个D .3个2.(2010·湖北)函数y =1log 0.5x -的定义域为( )A .(34,1)B .(34,+∞)C .(1,+∞)D .(34,1)∪(1,+∞)3.(2010·湖北)已知函数f(x)=⎩⎪⎨⎪⎧log 3x ,x >02x, x ≤0,则f(f (19))等于( )A .4 B.14C .-4D .-144.下列函数中,与函数y =x 相同的函数是( )A .y =x 2xB .y =(x )2C .y =lg 10xD .y =2log 2x5.(2011·衡水月考)函数y =lg(ax 2-ax +1)的定义域是R ,求a 的取值范围.探究点一 函数与映射的概念例1 (教材改编)下列对应关系是集合P 上的函数的是________.(1)P =Z ,Q =N *,对应关系f :对集合P 中的元素取绝对值与集合Q 中的元素相对应; y =x 2,x ∈P ,y ∈Q ;(2)P ={-1,1,-2,2},Q ={1,4},对应关系:f :x →y =x 2,x ∈P ,y ∈Q ;(3)P ={三角形},Q ={x |x >0},对应关系f :对P 中三角形求面积与集合Q 中元素对应.变式迁移1 已知映射f :A →B .其中B .其中A =B =R ,对应关系f :x →y =-x 2+2x ,对于实数k ∈B ,在集合A 中不存在元素与之对应,则k 的取值范围是 ( )A .k >1B .k ≥1C .k <1D .k ≤1 探究点二 求函数的定义域例2 (1)求函数y =x +1+x -0-x的定义域;(2)已知函数f (2x +1)的定义域为(0,1),求f (x )的定义域.变式迁移2 已知函数y =f (x )的定义域是[0,2],那么g (x )=f x 21+x +的定义域是________________________________________________________________________.探究点三 求函数的解析式例3 (1)已知f (2x+1)=lg x ,求f (x );(2)已知f (x )是一次函数,且满足3f (x +1)-2f (x -1)=2x +17,求f (x );(3)已知f (x )满足2f (x )+f (1x)=3x ,求f (x ).变式迁移3 (2011·武汉模拟)给出下列两个条件: (1)f (x +1)=x +2x ;(2)f (x )为二次函数且f (0)=3,f (x +2)-f (x )=4x +2.试分别求出f (x )的解析式.探究点四 分段函数的应用例4 设函数f (x )=⎩⎪⎨⎪⎧x 2+bx +c , x ≤0,2, x >0.若f (-4)=f (0),f (-2)=-2,则关于x 的方程f (x )=x 的解的个数为( )A .1B .2C .3D .4变式迁移4 (2010·江苏)已知函数f (x )=⎩⎪⎨⎪⎧x 2+1,x ≥0,1, x <0,则满足不等式f (1-x 2)>f (2x )的x 的范围是________________.1.与定义域有关的几类问题第一类是给出函数的解析式,这时函数的定义域是使解析式有意义的自变量的取值范围;第二类是实际问题或几何问题,此时除要考虑解析式有意义外,还应考虑使实际问题或几何问题有意义; 第三类是不给出函数的解析式,而由f (x )的定义域确定函数f [g (x )]的定义域或由f [g (x )]的定义域确定函数f (x )的定义域.第四类是已知函数的定义域,求参数范围问题,常转化为恒成立问题来解决. 2.解析式的求法求函数解析式的一般方法是待定系数法和换元法,除此还有代入法、拼凑法和方程组法.(满分:75分)一、选择题(每小题5分,共25分)1.下列各组中的两个函数是同一函数的为 ( )(1)y 1=x +3x -5x +3,y 2=x -5;(2)y 1=x +1x -1,y 2=x +1x -1;(3)f (x )=x ,g (x )=x 2;(4)f (x )=3x 4-x 3,F (x )=x 3x -1;(5)f 1(x )=(2x -5)2,f 2(x )=2x -5.A .(1)(2)B .(2)(3)C .(4)D .(3)(5)2.函数y =f (x )的图象与直线x =1的公共点数目是 ( ) A .1 B .0 C .0或1 D .1或23.(2011·洛阳模拟)已知f (x )=⎩⎪⎨⎪⎧x +x ≤-,x 2-1<x,2x x,若f (x )=3,则x 的值是 ( )A .1B .1或32C .1,32或± 3D. 34.(2009·江西)函数y =x +-x 2-3x +4的定义域为 ( ) A .(-4,-1) B .(-4,1) C .(-1,1) D .(-1,1]5.(2011·台州模拟)设f :x →x 2是从集合A 到集合B 的映射,如果B ={1,2},则A ∩B 为 ( )A .∅B .{1} C6.下列四个命题:(1)f (x )=x -2+1-x 有意义;(2)函数是其定义域到值域的映射;(3)函数y =2x (x∈N )的图象是一条直线;(4)函数y =⎩⎪⎨⎪⎧x 2, x ≥0,-x 2,x <0的图象是抛物线.其中正确的命题个数是________.7.设f (x )=⎩⎪⎨⎪⎧3x +1 xx 2x,g (x )=⎩⎪⎨⎪⎧2-x 2x x,则f [g (3)]=________,g [f (-12)]=________.8.(2010·陕西)已知函数f (x )=⎩⎪⎨⎪⎧3x +2,x <1,x 2+ax ,x ≥1,若f (f (0))=4a ,则实数a =______.三、解答题(共38分)9.(12分)(1)若f (x +1)=2x 2+1,求f (x )的表达式; (2)若2f (x )-f (-x )=x +1,求f (x )的表达式; (3)若函数f (x )=xax +b,f (2)=1,又方程f (x )=x 有唯一解,求f (x )的表达式.10.(12分)已知f (x )=x 2+2x -3,用图象法表示函数g (x )=f x +|f x2,并写出g (x )的解析式.11.(14分)(2011·湛江模拟)某产品生产厂家根据以往的生产销售经验得到下面有关销售的统计规律:每生产产品x (百台),其总成本为G (x )万元,其中固定成本为2万元,并且每生产100台的生产成本为1万元(总成本=固定成本+生产成本),销售收入R (x )(万元)满足R (x )=⎩⎪⎨⎪⎧-0.4x 2+4.2x -0.8, 0≤x ≤5,10.2, x >5.假定该产品产销平衡,那么根据上述统计规律: (1)要使工厂有盈利,产品x 应控制在什么范围?(2)工厂生产多少台产品时盈利最大?此时每台产品的售价为多少?一、函数及其表示答案 自主梳理 1.(1)数集 任意一个数x 都有唯一确定的数f(x)和它对应 定义域 函数值的集合{f(x)|x∈A} (2)定义域 值域 对应关系 (3)解析法 列表法 图象法 (4)对应关系 (5)定义域 对应关系 并集 并集 2.(1)都有唯一 一个映射 (2)函数 非空自我检测1.B [对于题图(1):M 中属于(1,2]的元素,在N 中没有象,不符合定义;对于题图(2):M 中属于(43,2]的元素的象,不属于集合N ,因此它不表示M 到N 的函数关系;对于题图(3):符合M 到N 的函数关系;对于题图(4):其象不唯一,因此也不表示M 到N 的函数关系.]2.A 3.B 4.C5.解 函数y =lg(ax 2-ax +1)的定义域是R ,即ax 2-ax +1>0恒成立. ①当a =0时,1>0恒成立;②当a ≠0时,应有⎩⎪⎨⎪⎧a >0,Δ=a 2-4a <0, ∴0<a <4.综上所述,a 的取值范围为0≤a <4. 课堂活动区例1 解题导引 函数是一种特殊的对应,要检验给定的两个变量之间是否具有函数关系,只需要检验:①定义域和对应关系是否给出;②根据给出的对应关系,自变量在其定义域中的每一个值,是否都有唯一确定的函数值.(2)解析 由于(1)中集合P 中元素0在集合Q 中没有对应元素,并且(3)中集合P 不是数集,所以(1)和(3)都不是集合P 上的函数.由题意知,(2)正确.变式迁移1 A [由题意知,方程-x 2+2x =k 无实数根,即x 2-2x +k =0无实数根.∴Δ=4(1-k )<0,∴k >1时满足题意.]例2 解题导引 在(2)中函数f (2x +1)的定义域为(0,1)是指x 的取值范围还是2x +1的取值范围?f (x )中的x 与f (2x +1)中的2x +1的取值范围有什么关系?解 (1)要使函数有意义,应有⎩⎪⎨⎪⎧x +1≥0,x -1≠0,2-x >0,2-x ≠1,即⎩⎪⎨⎪⎧x ≥-1,x ≠1,x <2,解得⎩⎪⎨⎪⎧-1≤x <2,x ≠1.所以函数的定义域是{x |-1≤x <1或1<x <2}. (2)∵f (2x +1)的定义域为(0,1), ∴1<2x +1<3,所以f (x )的定义域是(1,3).变式迁移2 (-1,-910)∪(-910,2]解析 由⎩⎪⎨⎪⎧0≤x 2≤2x +1>01+x +得-1<x ≤2且x ≠-910. 即定义域为(-1,-910)∪(-910,2].例3 解题导引 函数解析式的类型与求法(1)若已知函数的类型(如一次函数、二次函数),可用待定系数法.(2)已知复合函数f (g (x ))的解析式,可用换元法,此时要注意变量的取值范围.(3)已知f (x )满足某个等式,这个等式除f (x )是未知量外,还出现其他未知量,如f (-x )、f (1x)等,要根据已知等式再构造其他等式组成方程组,通过解方程组求出f (x ).解 (1)令2x +1=t ,则x =2t -1,∴f (t )=lg 2t -1,∴f (x )=lg 2x -1,x ∈(1,+∞).(2)设f (x )=ax +b ,(a ≠0)则3f (x +1)-2f (x -1)=3ax +3a +3b -2ax +2a -2b =ax +b +5a =2x +17,∴⎩⎪⎨⎪⎧a =2,b +5a =17,∴a =2,b =7,故f (x )=2x +7.(3)2f (x )+f (1x)=3x , ①把①中的x 换成1x,得学案5 函数的单调性与最值导学目标: 1.理解函数的单调性、最大值、最小值及其几何意义.2.会用定义判断函数的单调性,会求函数的单调区间及会用单调性求函数的最值.自主梳理 1.单调性(1)定义:一般地,设函数y =f (x )的定义域为I ,如果对于定义域I 内某个区间D 上的任意两个自变量x 1,x 2,当x 1<x 2时,都有f (x 1)<f (x 2)(f (x 1)>f (x 2)),那么就说f (x )在区间D 上是______________.(2)单调性的定义的等价形式:设x 1,x 2∈[a ,b ],那么(x 1-x 2)(f (x 1)-f (x 2))>0⇔f x 1-f x 2x 1-x 2>0⇔f (x )在[a ,b ]上是________;(x 1-x 2)(f (x 1)-f (x 2))<0⇔f x 1-f x 2x 1-x 2<0⇔f (x )在[a ,b ]上是________.(3)单调区间:如果函数y =f (x )在某个区间上是增函数或减函数,那么说函数y =f (x )在这一区间具有(严格的)单调性,区间D 叫做y =f (x )的__________.(4)函数y =x +a x(a >0)在 (-∞,-a ),(a ,+∞)上是单调________;在(-a ,0),(0,a )上是单调______________;函数y =x +a x(a <0)在______________上单调递增.2.最值 一般地,设函数y =f (x )的定义域为I ,如果存在实数M 满足:①对于任意的x ∈I ,都有f (x )≤M (f (x )≥M );②存在x 0∈I ,使得f (x 0)=M .那么,称M 是函数y =f (x )的____________.自我检测1.(2011·杭州模拟)若函数y =ax 与y =-b x在(0,+∞)上都是减函数,则y =ax 2+bx 在(0,+∞)上是 ( )A .增函数B .减函数C .先增后减D .先减后增2.设f (x )是(-∞,+∞)上的增函数,a 为实数,则有 ( )A .f (a )<f (2a )B .f (a 2)<f (a )C .f (a 2+a )<f (a )D .f (a 2+1)>f (a )3.下列函数在(0,1)上是增函数的是 ( ) A .y =1-2x B .y =x -1C .y =-x 2+2x D .y =54.(2011·合肥月考)设(a ,b ),(c ,d )都是函数f (x )的单调增区间,且x 1∈(a ,b ),x 2∈(c ,d ),x 1<x 2,则f (x 1)与f (x 2)的大小关系是 ( )A .f (x 1)<f (x 2)B .f (x 1)>f (x 2)C .f (x 1)=f (x 2)D .不能确定5.当x ∈[0,5]时,函数f (x )=3x 2-4x +c 的值域为 ( )A .[c,55+c ]B .[-43+c ,c ]C .[-43+c,55+c ] D .[c,20+c ]探究点一 函数单调性的判定及证明例1 设函数f (x )=x +ax +b(a >b >0),求f (x )的单调区间,并说明f (x )在其单调区间上的单调性.变式迁移1 已知f (x )是定义在R 上的增函数,对x ∈R 有f (x )>0,且f (5)=1,设F (x )=f (x )+1f x,讨论F (x )的单调性,并证明你的结论.探究点二 函数的单调性与最值例2 (2011·烟台模拟)已知函数f (x )=x 2+2x +ax,x ∈[1,+∞).(1)当a =12时,求函数f (x )的最小值;(2)若对任意x ∈[1,+∞),f (x )>0恒成立,试求实数a 的取值范围.变式迁移2 已知函数f (x )=x -a x +a2在(1,+∞)上是增函数,求实数a 的取值范围.探究点三 抽象函数的单调性例3 (2011·厦门模拟)已知函数f (x )对于任意x ,y ∈R ,总有f (x )+f (y )=f (x +y ),且当x >0时,f (x )<0,f (1)=-23.(1)求证:f (x )在R 上是减函数;(2)求f (x )在[-3,3]上的最大值和最小值.变式迁移3 已知定义在区间(0,+∞)上的函数f (x )满足f (x 1x 2)=f (x 1)-f (x 2),且当x >1时,f (x )<0. (1)求f (1)的值;(2)判断f (x )的单调性;(3)若f (3)=-1,解不等式f (|x |)<-2.分类讨论及数形结合思想例 (12分)求f (x )=x 2-2ax -1在区间[0,2]上的最大值和最小值. 【答题模板】解 f (x )=(x -a )2-1-a 2,对称轴为x =a .(1) 当a <0时,由图①可知,f (x )min =f (0)=-1,f (x )max =f (2)=3-4a .[3分](2)当0≤a <1时,由图②可知,f (x )min =f (a )=-1-a 2,f (x )max =f (2)=3-4a .[6分](3)当1<a ≤2时,由图③可知,f (x )min =f (a )=-1-a 2,f (x )max =f (0)=-1.[9分](4)当a >2时,由图④可知,f (x )min =f (2)=3-4a ,f (x )max =f (0)=-1. 综上,(1)当a <0时,f (x )min =-1,f (x )max =3-4a ;(2)当0≤a <1时,f (x )min =-1-a 2,f (x )max =3-4a ;(3)当1<a ≤2时,f (x )min =-1-a 2,f (x )max =-1; (4)当a >2时,f (x )min =3-4a ,f (x )max =-1.[12分] 【突破思维障碍】(1)二次函数的单调区间是由图象的对称轴确定的.故只需确定对称轴与区间的关系.由于对称轴是x =a ,而a 的取值不定,从而导致了分类讨论.(2)不是应该分a <0,0≤a ≤2,a >2三种情况讨论吗?为什么成了四种情况?这是由于抛物线的对称轴在区间[0,2]所对应的区域时,最小值是在顶点处取得,但最大值却有可能是f (0),也有可能是f (2).1.函数的单调性的判定与单调区间的确定常用方法有:(1)定义法;(2)导数法;(3)图象法;(4)单调性的运算性质.2.若函数f (x ),g (x )在区间D 上具有单调性,则在区间D 上具有以下性质: (1)f (x )与f (x )+C 具有相同的单调性.(2)f (x )与af (x ),当a >0时,具有相同的单调性,当a <0时,具有相反的单调性.(3)当f (x )恒不等于零时,f (x )与1f x具有相反的单调性.(4)当f (x ),g (x )都是增(减)函数时,则f (x )+g (x )是增(减)函数.(5)当f (x ),g (x )都是增(减)函数时,则f (x )·g (x )当两者都恒大于零时,是增(减)函数;当两者都恒小于零时,是减(增)函数.(满分:75分)一、选择题(每小题5分,共25分)1.(2011·泉州模拟)“a =1”是“函数f (x )=x 2-2ax +3在区间[1,+∞)上为增函数”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件2.(2009·天津)已知函数f (x )=⎩⎪⎨⎪⎧x 2+4x , x ≥0,4x -x 2, x <0,若f (2-a 2)>f (a ),则实数a 的取值范围是 ( )A .(-∞,-1)∪(2,+∞)B .(-1,2)C .(-2,1)D .(-∞,-2)∪(1,+∞)3.(2009·宁夏,海南)用min{a ,b ,c }表示a ,b ,c 三个数中的最小值.设f (x )=min{2x,x +2,10-x }(x ≥0),则f (x )的最大值为 ( ) A .4 B .5 C .6 D .74.(2011·丹东月考)若f (x )=-x 2+2ax 与g (x )=ax +1在区间[1,2]上都是减函数,则a 的取值范围是( )A .(-1,0)∪(0,1)B .(-1,0)∪(0,1]C .(0,1)D .(0,1]5.(2011·葫芦岛模拟)已知定义在R 上的增函数f (x ),满足f (-x )+f (x )=0,x 1,x 2,x 3∈R ,且x 1+x 2>0,x 2+x 3>0,x 3+x 1>0,则f (x 1)+f (x 2)+f (x 3)的值 ( ) A .一定大于0 B .一定小于0 C6.函数y =-(x -3)|x |的递增区间是________.7.设f (x )是增函数,则下列结论一定正确的是________(填序号).①y =[f (x )]2是增函数;②y =1f x是减函数;③y =-f (x )是减函数; ④y =|f (x )|是增函数.8.设0<x <1,则函数y =1x +11-x的最小值是________.三、解答题(共38分)9.(12分)(2011·湖州模拟)已知函数f (x )=a -1|x |.(1)求证:函数y =f (x )在(0,+∞)上是增函数;(2)若f (x )<2x 在(1,+∞)上恒成立,求实数a 的取值范围.10.(12分)已知f (x )=x 2+ax +3-a ,若x ∈[-2,2]时,f (x )≥0恒成立,求a 的取值范围.11.(14分)(2011·鞍山模拟)已知f (x )是定义在[-1,1]上的奇函数,且f (1)=1,若a ,b ∈[-1,1],a +b ≠0时,有f a +f ba +b>0成立.(1)判断f (x )在[-1,1]上的单调性,并证明它;(2)解不等式:f (x +12)<f (1x -1);(3)若f (x )≤m 2-2am +1对所有的a ∈[-1,1]恒成立,求实数m 的取值范围.答案 自主梳理1.(1)增函数(减函数) (2)增函数 减函数 (3)单调区间 (4)递增 递减 (-∞,0),(0,+∞) 2.最大(小)值自我检测 1.B [由已知得a <0,b <0.所以二次函数对称轴为直线x =-b2a<0,且图象开口向下.]2.D [∵a 2+1>a ,f (x )在R 上单调递增,∴f (a 2+1)>f (a ).]3.C [常数函数不具有单调性.]4.D [在本题中,x 1,x 2不在同一单调区间内,故无法比较f (x 1)与f (x 2)的大小.]5.C [∵f (x )=3(x -23)2-43+c ,x ∈[0,5],∴当x =23时,f (x )min =-43+c ;当x =5时,f (x )max =55+c .]课堂活动区例1 解题导引 对于给出具体解析式的函数,判断或证明其在某区间上的单调性问题,可以结合定义(基本步骤为:取点,作差或作商,变形,判断)来求解.可导函数则可以利用导数求解.有些函数可以转化为两个或多个基本初等函数,利用其单调性可以方便求解.解 在定义域内任取x 1,x 2,且使x 1<x 2, 则Δx =x 2-x 1>0,Δy =f (x 2)-f (x 1)=x 2+a x 2+b -x 1+ax 1+b=x 2+a x 1+b -x 2+b x 1+a x 1+b x 2+b=b -a x 2-x 1x 1+b x 2+b.∵a >b >0,∴b -a <0,∴(b -a )(x 2-x 1)<0, 又∵x ∈(-∞,-b )∪(-b ,+∞),∴只有当x 1<x 2<-b ,或-b <x 1<x 2时,函数才单调.当x 1<x 2<-b ,或-b <x 1<x 2时,f (x 2)-f (x 1)<0,即Δy <0.∴y =f (x )在(-∞,-b )上是单调减函数,在(-b ,+∞)上也是单调减函数.变式迁移1 解 在R 上任取x 1、x 2,设x 1<x 2,∴f (x 2)>f (x 1),F (x 2)-F (x 1)=[f (x 2)+1f x 2]-[f (x 1)+1f x 1]=[f (x 2)-f (x 1)][1-1f x 1f x 2],∵f (x )是R 上的增函数,且f (5)=1,∴当x <5时,0<f (x )<1,而当x >5时f (x )>1; ①若x 1<x 2<5,则0<f (x 1)<f (x 2)<1,∴0<f (x 1)f (x 2)<1,∴1-1f x 1f x 2<0,∴F (x 2)<F (x 1);②若x 2>x 1>5,则f (x 2)>f (x 1)>1,∴f (x 1)·f (x 2)>1,∴1-1f x 1f x 2>0,∴F (x 2)>F (x 1).综上,F (x )在(-∞,5)为减函数,在(5,+∞)为增函数.例2 解 (1)当a =12时,f (x )=x +12x+2,设x 1,x 2∈[1,+∞)且x 1<x 2,f (x 1)-f (x 2)=x 1+12x 1-x 2-12x 2=(x 1-x 2)(1-12x 1x 2)∵x 1<x 2,∴x 1-x 2<0,又∵1<x 1<x 2,∴1-12x 1x 2>0,∴f (x 1)-f (x 2)<0,∴f (x 1)<f (x 2) ∴f (x )在区间[1,+∞)上为增函数,∴f (x )在区间[1,+∞)上的最小值为f (1)=72.(2)方法一 在区间[1,+∞)上,f (x )=x 2+2x +a x>0恒成立,等价于x 2+2x +a >0恒成立.设y =x 2+2x +a ,x ∈[1,+∞), y =x 2+2x +a =(x +1)2+a -1递增, ∴当x =1时,y min =3+a ,于是当且仅当y min =3+a >0时,函数f (x )恒成立, 故a >-3.方法二 f (x )=x +a x+2,x ∈[1,+∞),当a ≥0时,函数f (x )的值恒为正,满足题意,当a <0时,函数f (x )递增;当x =1时,f (x )min =3+a ,于是当且仅当f (x )min =3+a >0时,函数f (x )>0恒成立, 故a >-3.方法三 在区间[1,+∞)上f (x )=x 2+2x +a x>0恒成立等价于x 2+2x +a >0恒成立.即a >-x 2-2x 恒成立.又∵x ∈[1,+∞),a >-x 2-2x 恒成立,∴a 应大于函数u =-x 2-2x ,x ∈[1,+∞)的最大值.∴a >-x 2-2x =-(x +1)2+1.当x =1时,u 取得最大值-3,∴a >-3. 变式迁移2 解 设1<x 1<x 2.∵函数f (x )在(1,+∞)上是增函数,∴f (x 1)-f (x 2)=x 1-a x 1+a 2-(x 2-a x 2+a2)=(x 1-x 2)(1+ax 1x 2)<0.又∵x 1-x 2<0,∴1+ax 1x 2>0,即a >-x 1x 2恒成立.∵1<x 1<x 2,x 1x 2>1,-x 1x 2<-1.∴a ≥-1,∴a 的取值范围是[-1,+∞).例3 解题导引 (1)对于抽象函数的问题要根据题设及所求的结论来适当取特殊值说明抽象函数的特点.证明f (x )为单调减函数,首选方法是用单调性的定义来证.(2)用函数的单调性求最值.(1)证明 设x 1>x 2, 则f (x 1)-f (x 2)=f (x 1-x 2+x 2)-f (x 2) =f (x 1-x 2)+f (x 2)-f (x 2) =f (x 1-x 2)又∵x >0时,f (x )<0.而x 1-x 2>0,∴f (x 1-x 2)<0,即f (x 1)<f (x 2),∴f (x )在R 上为减函数. (2)解 ∵f (x )在R 上是减函数, ∴f (x )在[-3,3]上也是减函数,∴f (x )在[-3,3]上的最大值和最小值分别为f (-3)与f (3). 又∵f (3)=f (2+1)=f (2)+f (1)=f (1)+f (1)+f (1) ∴f (3)=3f (1)=-2,f (-3)=-f (3)=2.∴f (x )在[-3,3]上的最大值为2,最小值为-2. 变式迁移3 解 (1)令x 1=x 2>0,代入得f (1)=f (x 1)-f (x 1)=0,故f (1)=0.(2)任取x 1,x 2∈(0,+∞),且x 1>x 2,则x 1x 2>1, 由于当x >1时,f (x )<0,∴f (x 1x 2)<0,即f (x 1)-f (x 2)<0,∴f (x 1)<f (x 2), ∴函数f (x )在区间(0,+∞)上是单调递减函数. (3)由f (x 1x 2)=f (x 1)-f (x 2)得f (93)=f (9)-f (3),而f (3)=-1,∴f (9)=-2.由于函数f (x )在区间(0,+∞)上是单调递减函数, ∴当x >0时,由f (|x |)<-2,得f (x )<f (9),∴x >9; 当x <0时,由f (|x |)<-2,得f (-x )<f (9), ∴-x >9,故x <-9,∴不等式的解集为{x |x >9或x <-9}. 课后练习区1.A [f (x )对称轴x =a ,当a ≤1时f (x )在[1,+∞)上单调递增.∴“a =1”为f (x )在[1,+∞)上递增的充分不必要条件.]2.C [由题知f (x )在R 上是增函数,由题得2-a 2>a ,解得-2<a <1.]3.C [由题意知函数f (x )是三个函数y 1=2x,y 2=x +2,y 3=10-x 中的较小者,作出三个函数在同一坐标系之下的图象(如图中实线部分为f (x )的图象)可知A (4,6)为函数f (x )图象的最高点.]4.D [f (x )在[a ,+∞)上是减函数,对于g (x ),只有当a >0时,它有两个减区间为(-∞,-1)和(-1,+∞),故只需区间[1,2]是f (x )和g (x )的减区间的子集即可,则a 的取值范围是0<a ≤1.]5.A [∵f (-x )+f (x )=0,∴f (-x )=-f (x ). 又∵x 1+x 2>0,x 2+x 3>0,x 3+x 1>0, ∴x 1>-x 2,x 2>-x 3,x 3>-x 1. 又∵f (x 1)>f (-x 2)=-f (x 2), f (x 2)>f (-x 3)=-f (x 3), f (x 3)>f (-x 1)=-f (x 1),∴f (x 1)+f (x 2)+f (x 3)>-f (x 2)-f (x 3)-f (x 1). ∴f (x 1)+f (x 2)+f (x 3)>0.]6.[0,32]解析 y =⎩⎪⎨⎪⎧-x -x xx -x x.画图象如图所示:可知递增区间为[0,32].7.③解析 举例:设f (x )=x ,易知①②④均不正确. 8.4解析 y =1x +11-x =1x -x ,当0<x <1时,x (1-x )=-(x -12)2+14≤14.∴y ≥4.9.(1)证明 当x ∈(0,+∞)时,f (x )=a -1x,设0<x 1<x 2,则x 1x 2>0,x 2-x 1>0.f (x 1)-f (x 2)=(a -1x 1)-(a -1x 2)=1x 2-1x 1=x 1-x 2x 1x 2<0.………………………………………………………………………(5分)∴f (x 1)<f (x 2),即f (x )在(0,+∞)上是增函数.……………………………………………………………………………………………(6分)(2)解 由题意a -1x<2x 在(1,+∞)上恒成立,设h (x )=2x +1x,则a <h (x )在(1,+∞)上恒成立.……………………………………………………………………………………………(8分)∵h ′(x )=2-1x 2,x ∈(1,+∞),∴2-1x2>0,∴h (x )在(1,+∞)上单调递增.…………………………………………………………(10分) 故a ≤h (1),即a ≤3.∴a 的取值范围为(-∞,3].…………………………………………………………(12分) 10.解 设f (x )的最小值为g (a ),则只需g (a )≥0, 由题意知,f (x )的对称轴为-a2.(1)当-a2<-2,即a >4时,g (a )=f (-2)=7-3a ≥0,得a ≤73.又a >4,故此时的a 不存在.……………………………………………………………(4分)(2)当-a2∈[-2,2],即-4≤a ≤4时,g (a )=f (-a 2)=3-a -a 24≥0得-6≤a ≤2.又-4≤a ≤4,故-4≤a ≤2.……………………………………………………………(8分) (3)当-a2>2,即a <-4时,g (a )=f (2)=7+a ≥0得a ≥-7. 又a <-4,故-7≤a <-4.综上得所求a 的取值范围是-7≤a ≤2.………………………………………………(12分) 11.解 (1)任取x 1,x 2∈[-1,1],且x 1<x 2, 则-x 2∈[-1,1],∵f (x )为奇函数, ∴f (x 1)-f (x 2)=f (x 1)+f (-x 2) =f x 1+f -x 2x 1+-x 2·(x 1-x 2),由已知得f x 1+f -x 2x 1+-x 2>0,x 1-x 2<0,∴f (x 1)-f (x 2)<0,即f (x 1)<f (x 2).∴f (x )在[-1,1]上单调递增.……………………………………………………………(4分) (2)∵f (x )在[-1,1]上单调递增,∴⎩⎪⎨⎪⎧x +12<1x -1,-1≤x +12≤1,-1≤1x -1分∴-32≤x <-1.……………………………………………………………………………(9分)(3)∵f (1)=1,f (x )在[-1,1]上单调递增.∴在[-1,1]上,f (x )≤1.…………………………………………………………………(10分)问题转化为m 2-2am +1≥1,即m 2-2am ≥0,对a ∈[-1,1]成立. 下面来求m 的取值范围.设g (a )=-2m ·a +m 2≥0.①若m =0,则g (a )=0≥0,自然对a ∈[-1,1]恒成立.②若m ≠0,则g (a )为a 的一次函数,若g (a )≥0,对a ∈[-1,1]恒成立,必须g (-1)≥0,且g (1)≥0, ∴m ≤-2,或m ≥2.∴m 的取值范围是m =0或|m |≥2.……………………………………………………(14分) 2f (1x )+f (x )=3x, ②①×2-②,得3f (x )=6x -3x,∴f (x )=2x -1x.变式迁移3 解 (1)令t =x +1,∴t ≥1,x =(t -1)2.则f (t )=(t -1)2+2(t -1)=t 2-1,即f (x )=x 2-1,x ∈[1,+∞).(2)设f (x )=ax 2+bx +c (a ≠0),∴f (x +2)=a (x +2)2+b (x +2)+c , 则f (x +2)-f (x )=4ax +4a +2b =4x +2.∴⎩⎪⎨⎪⎧4a =4,4a +2b =2. ∴⎩⎪⎨⎪⎧a =1,b =-1.又f (0)=3,∴c =3,∴f (x )=x 2-x +3.例4 解题导引 ①本题可以先确定解析式,然后通过解方程f (x )=x 来确定解的个数;也可利用数形结合,更为简洁.②对于分段函数,一定要明确自变量所属的范围,以便于选择与之相应的对应关系. ③分段函数体现了数学的分类讨论思想,相应的问题处理应分段解决.C [方法一 若x ≤0,则f (x )=x 2+bx +c . ∵f (-4)=f (0),f (-2)=-2,∴⎩⎪⎨⎪⎧-2+b -+c =c ,-2+b -+c =-2, 解得⎩⎪⎨⎪⎧b =4,c =2.∴f (x )=⎩⎪⎨⎪⎧x 2+4x +2, x ≤0,2, x >0.当x ≤0,由f (x )=x ,得x 2+4x +2=x ,解得x =-2,或x =-1;当x >0时,由f (x )=x ,得x =2. ∴方程f (x )=x 有3个解.方法二 由f (-4)=f (0)且f (-2)=-2,可得f (x )=x 2+bx +c 的对称轴是x =-2,且顶点为(-2,-2),于是可得到f (x )的简图(如图所示).方程f (x )=x 的解的个数就是函数图象y =f (x )与y =x 的图象的交点的个数,所以有3个解.]变式迁移4 (-1,2-1)解析 函数f (x )=⎩⎪⎨⎪⎧x 2+1,x ≥0,1, x <0的图象如图所示:f (1-x 2)>f (2x )⇔⎩⎪⎨⎪⎧1-x 2>2x1-x 2>0,解得-1<x <2-1.课后练习区1.C [(1)定义域不同;(2)定义域不同;(3)对应关系不同;(4)定义域相同,且对应关系相同;(5)定义域不同.]2.C [有可能是没有交点的,如果有交点,那么对于x =1仅有一个函数值.]3.D [该分段函数的三段各自的值域为(-∞,1],[0,4),[4,+∞),而3∈[0,4),∴f (x )=x 2=3,x =±3,而-1<x <2,∴x = 3.]4.C5.D [由已知x 2=1或x 2=2,解之得,x =±1或x =±2,若1∈A ,则A ∩B ={1},若1∉A ,则A ∩B =∅,故A ∩B =∅或{1}.] 6.1解析 (1)x ≥2且x ≤1,不存在;(2)函数是特殊的映射;(3)该图象是由离散的点组成的;(4)该图象是两个不同的抛物线的两部分组成的,不是抛物线.故只有(2)正确.7.7 31168.29.解 (1)令t =x +1,则x =t -1,∴f (t )=2(t -1)2+1=2t 2-4t +3,∴f (x )=2x 2-4x +3.………………………………………………………………………………………………(4分)(2)∵2f (x )-f (-x )=x +1,用-x 去替换式子中的x ,得2f (-x )-f (x )=-x +1,……(6分)即有⎩⎪⎨⎪⎧2f x -f -x =x +12f -x -f x =-x +1,解方程组消去f (-x ),得f (x )=x3+1.……………………………………………………(8分)(3)由f (2)=1得22a +b =1,即2a +b =2;由f (x )=x 得x ax +b =x ,变形得x (1ax +b -1)=0,解此方程得x =0或x =1-ba,…(10分)又∵方程有唯一解, ∴1-b a =0,解得b =1,代入2a +b =2得a =12,∴f (x )=2xx +2.……………………………………………………………………………(12分)10.解 函数f (x )的图象如图所示,……………………………………(6分) g (x )=⎩⎪⎨⎪⎧x 2+2x -3 x ≤-3或x 0 -3<x …………………………………………………(12分)11.解 依题意,G (x )=x +2,设利润函数为f (x ),则f (x )=⎩⎪⎨⎪⎧-0.4x 2+3.2x -2.8,0≤x ≤5,8.2-x , x >5.………………………………………………(4分)(1)要使工厂赢利,则有f (x )>0.当0≤x ≤5时,有-0.4x 2+3.2x -2.8>0,得1<x <7,所以1<x ≤5.………………………………………………………………(8分) 当x >5时,有8.2-x >0, 得x <8.2,所以5<x <8.2.综上所述,要使工厂赢利,应满足1<x <8.2,即产品应控制在大于100台小于820台的范围内.……………………………………………………………………………………(10分)(2)当0≤x ≤5时,f (x )=-0.4(x -4)2+3.6.故当x =4时,f (x )有最大值3.6.…………………………………………………………(12分) 而当x >5时,f (x )<8.2-5=3.2.所以当工厂生产400台产品时,赢利最大,x =4时,每台产品售价为R4=2.4(万元/百台)=240(元/台).……………………………………………………………………………(14分)学案6 函数的奇偶性与周期性导学目标: 1.了解函数奇偶性、周期性的含义.2.会判断奇偶性,会求函数的周期.3.会做有关函数单调性、奇偶性、周期性的综合问题.自主梳理1.函数奇偶性的定义如果对于函数f (x )定义域内任意一个x ,都有______________,则称f (x )为奇函数;如果对于函数f (x )定义域内任意一个x ,都有____________,则称f (x )为偶函数.2.奇偶函数的性质(1)f (x )为奇函数⇔f (-x )=-f (x )⇔f (-x )+f (x )=____; f (x )为偶函数⇔f (x )=f (-x )=f (|x |)⇔f (x )-f (-x )=____.(2)f (x )是偶函数⇔f (x )的图象关于____轴对称;f (x )是奇函数⇔f (x )的图象关于_____ ___ 对称.(3)奇函数在对称的单调区间内有相同的单调性;偶函数在对称的单调区间内有________的单调性. 3.函数的周期性(1)定义:如果存在一个非零常数T ,使得对于函数定义域内的任意x ,都有f (x +T )=________,则称f (x )为________函数,其中T 称作f (x )的周期.若T 存在一个最小的正数,则称它为f (x )的________________.(2)性质: ①f (x +T )=f (x )常常写作f (x +T 2)=f (x -T2).②如果T 是函数y =f (x )的周期,则kT (k ∈Z 且k ≠0)也是y =f (x )的周期,即f (x +kT )=f (x ).③若对于函数f (x )的定义域内任一个自变量的值x 都有f (x +a )=-f (x )或f (x +a )=1f x或f (x +a )=-1f x(a 是常数且a ≠0),则f (x )是以______为一个周期的周期函数.自我检测1.已知函数f (x )=(m -1)x 2+(m -2)x +(m 2-7m +12)为偶函数,则m 的值是 ( ) A .1 B .2 C .3 D .42.(2011·茂名月考)如果奇函数f (x )在区间[3,7]上是增函数且最大值为5,那么f (x )在区间[-7,-3]上是 ( )A .增函数且最小值是-5B .增函数且最大值是-5C .减函数且最大值是-5D .减函数且最小值是-53.函数y =x -1x的图象 ( )A .关于原点对称B .关于直线y =-x 对称C .关于y 轴对称D .关于直线y =x 对称4.(2009·江西改编)已知函数f (x )是(-∞,+∞)上的偶函数,若对于x ≥0,都有f (x +2)=f (x ),且当x ∈[0,2)时,f (x )=log 2(x +1),则f (-2 012)+f (2 011)的值为 ( )A .-2B .-1C .1D .25.(2011·开封模拟)设函数f (x )=x +x +ax为奇函数,则a =________.探究点一 函数奇偶性的判定 例1 判断下列函数的奇偶性.(1)f (x )=(x +1)1-x 1+x ;(2)f (x )=x (12x -1+12); (3)f (x )=log 2(x +x 2+1);(4)f (x )=⎩⎪⎨⎪⎧x 2+x , x <0,-x 2+x ,x >0.变式迁移1 判断下列函数的奇偶性.(1)f (x )=x 2-x 3;(2)f (x )=x 2-1+1-x 2;(3)f (x )=4-x2|x +3|-3.探究点二 函数单调性与奇偶性的综合应用例2 函数y =f (x )(x ≠0)是奇函数,且当x ∈(0,+∞)时是增函数,若f (1)=0,求不等式f [x (x -12)]<0的解集.变式迁移2 (2011·承德模拟)已知函数f (x )=x 3+x ,对任意的m ∈[-2,2],f (mx -2)+f (x )<0恒成立,则x 的取值范围为________.探究点三 函数性质的综合应用例3 (2009·山东)已知定义在R 上的奇函数f (x ),满足f (x -4)=-f (x ),且在区间[0,2]上是增函数,若方程f (x )=m (m >0),在区间[-8,8]上有四个不同的根x 1,x 2,x 3,x 4,则x 1+x 2+x 3+x 4=________.变式迁移3 定义在R 上的函数f (x )是偶函数,且f (x )=f (2-x ).若f (x )在区间[1,2]上是减函数,则f (x )( )A .在区间[-2,-1]上是增函数,在区间[3,4]上是增函数B .在区间[-2,-1]上是增函数,在区间[3,4]上是减函数C .在区间[-2,-1]上是减函数,在区间[3,4]上是增函数D .在区间[-2,-1]上是减函数,在区间[3,4]上是减函数转化与化归思想的应用例 (12分)函数f (x )的定义域为D ={x |x ≠0},且满足对于任意x 1,x 2∈D ,有f (x 1·x 2)=f (x 1)+f (x 2). (1)求f (1)的值;(2)判断f (x )的奇偶性并证明你的结论;(3)如果f (4)=1,f (3x +1)+f (2x -6)≤3,且f (x )在(0,+∞)上是增函数,求x 的取值范围. 【答题模板】解 (1)∵对于任意x 1,x 2∈D ,有f (x 1·x 2)=f (x 1)+f (x 2), ∴令x 1=x 2=1,得f (1)=2f (1),∴f (1)=0.[2分] (2)令x 1=x 2=-1,有f (1)=f (-1)+f (-1),∴f (-1)=12f (1)=0.[4分]令x 1=-1,x 2=x 有f (-x )=f (-1)+f (x ), ∴f (-x )=f (x ),∴f (x )为偶函数.[6分] (3)依题设有f (4×4)=f (4)+f (4)=2, f (16×4)=f (16)+f (4)=3,[7分] ∵f (3x +1)+f (2x -6)≤3,即f ((3x +1)(2x -6))≤f (64)[8分] ∵f (x )为偶函数,∴f (|(3x +1)(2x -6|)≤f (64).[10分]又∵f (x )在(0,+∞)上是增函数,f (x )的定义域为D. ∴0<|(3x +1)(2x -6)|≤64.[11分]解上式,得3<x ≤5或-73≤x <-13或-13<x <3.∴x 的取值范围为{x |-73≤x <-13或-13<x <3或3<x ≤5}.[12分]【突破思维障碍】在(3)中,通过变换已知条件,能变形出f (g (x ))≤f (a )的形式,但思维障碍在于f (x )在(0,+∞)上是增函数,g (x )是否大于0不可而知,这样就无法脱掉“f ”,若能结合(2)中f (x )是偶函数的结论,则有f (g (x ))=f (|g (x )|),又若能注意到f (x )的定义域为{x |x ≠0},这才能有|g (x )|>0,从而得出0<|g (x )|≤a ,解之得x 的范围.【易错点剖析】在(3)中,由f (|(3x +1)·(2x -6)|)≤f (64)脱掉“f ”的过程中,如果思维不缜密,不能及时回顾已知条件中函数的定义域中{x |x ≠0},易出现0≤|(3x +1)(2x -6)|≤64,导致结果错误.1.正确理解奇函数和偶函数的定义,必须把握好两个问题:①定义域在数轴上关于原点对称是函数f (x )为奇函数或偶函数的必要非充分条件;②f (-x )=-f (x )或f (-x )=f (x )是定义域上的恒等式.2.奇偶函数的定义是判断函数奇偶性的主要依据.为了便于判断函数的奇偶性,有时需要先将函数进行化简,或应用定义的等价形式:f (-x )=±f (x )⇔f (-x )±f (x )=0⇔f -xf x=±1(f (x )≠0).3.奇函数的图象关于原点对称,偶函数的图象关于y 轴对称,反之也真.利用这一性质可简化一些函数图象的画法,也可以利用它判断函数的奇偶性.4.关于函数周期性常用的结论:对于函数f (x ),若有f (x +a )=-f (x )或f (x +a )=1f x或f (x +a )=-1f x(a 为常数且a ≠0),则f (x )的一个周期为2a(满分:75分)一、选择题(每小题5分,共25分)1.(2011·吉林模拟)已知f (x )=ax 2+bx 是定义在[a -1,2a ]上的偶函数,那么a +b 的值为( )A .-13 B.13C.12 D .-122.(2010·银川一中高三年级第四次月考)已知定义域为{x |x ≠0}的函数f (x )为偶函数,且f (x )在区间(-∞,0)上是增函数,若f (-3)=0,则f xx<0的解集为 ( ) A .(-3,0)∪(0,3) B .(-∞,-3)∪(0,3) C .(-∞,-3)∪(3,+∞) D .(-3,0)∪(3,+∞)3.(2011·鞍山月考)已知f (x )是定义在R 上的偶函数,并满足f (x +2)=-1f x,当1≤x ≤2时,f (x )=x -2,则f (6.5)等于 ( )A .4.5B .-4.5C .0.5D .-0.54.(2010·山东)设f (x )为定义在R 上的奇函数.当x ≥0时,f (x )=2x+2x +b (b 为常数),则f (-1)等于 ( )A .3B .1C .-1D .-35.设函数f (x )满足:①y =f (x +1)是偶函数;②在[1,+∞)上为增函数,则f (-1)与f (2)大小关系是 ( )A .f (-1)>f (2)B .f (-1)<f (2)C6.(2010·辽宁部分重点中学5月联考)若函数f (x )=⎩⎪⎨⎪⎧x -1,x >0,a , x =0,x +b ,x <0是奇函数,则a +b =________.7.(2011·咸阳月考)设函数f (x )是定义在R 上的奇函数,若f (x )满足f (x +3)=f (x ),且f (1)>1,f (2)=2m -3m +1,则m 的取值范围是________. 8.已知函数f (x )是R 上的偶函数,g (x )是R 上的奇函数,且g (x )=f (x -1),若f (2)=2,则f (2 010)的值为________.三、解答题(共38分)9.(12分)(2011·汕头模拟)已知f (x )是定义在[-6,6]上的奇函数,且f (x )在[0,3]上是x 的一次式,在[3,6]上是x 的二次式,且当3≤x ≤6时,f (x )≤f (5)=3,f (6)=2,求f (x )的表达式.10.(12分)设函数f (x )=x 2-2|x |-1(-3≤x ≤3) (1)证明f (x )是偶函数; (2)画出这个函数的图象;(3)指出函数f (x )的单调区间,并说明在各个单调区间上f (x )是增函数还是减函数; (4)求函数的值域.11.(14分)(2011·舟山调研)已知函数f (x )=x 2+a x(x ≠0,常数a ∈R ).(1)讨论函数f (x )的奇偶性,并说明理由;(2)若函数f (x )在[2,+∞)上为增函数,求实数a 的取值范围.答案 自主梳理1.f (-x )=-f (x ) f (-x )=f(x ) 2.(1)0 0 (2)y 原点 (3)相反3.(1)f(x ) 周期 最小正周期 (2)③2a 自我检测1.B [因为f(x )为偶函数,所以奇次项系数为0,即m -2=0,m =2.] 2.A [奇函数的图象关于原点对称,对称区间上有相同的单调性.] 3.A [由f(-x)=-f(x),故函数为奇函数,图象关于原点对称.]4.C [f (-2 012)+f (2 011)=f (2 012)+f (2 011)=f (0)+f (1)=log 21+log 2(1+1)=1.] 5.-1解析 ∵f (-1)=0,∴f (1)=2(a +1)=0,∴a =-1.代入检验f(x)=xx 12-是奇函数,故a =-1.课堂活动区例1 解题导引 判断函数奇偶性的方法.(1)定义法:用函数奇偶性的定义判断.(先看定义域是否关于原点对称).(2)图象法:f(x)的图象关于原点对称,则f(x)为奇函数;f(x)的图象关于y 轴对称,则f(x )为偶函数. (3)基本函数法:把f(x)变形为g(x)与h(x)的和、差、积、商的形式,通过g(x)与h(x)的奇偶性判定出f(x)的奇偶性.解 (1)定义域要求xx+-11≥0且x ≠-1, ∴-1<x ≤1,∴f(x)定义域不关于原点对称,∴f(x )是非奇非偶函数.(2)函数定义域为(-∞,0)∪(0,+∞).∵f(-x )=-x )21121(+--x=-x )21212(+-x x =)21122(--x x x =)21121(+-xx =f(x). ∴f(x )是偶函数. (3)函数定义域为R .∵f (-x )=log 2(-x +x 2+1)=log 21x +x 2+1=-log 2(x +x 2+1) =-f (x ),∴f (x )是奇函数.(4)函数的定义域为(-∞,0)∪(0,+∞). 当x <0时,-x >0,则f (-x )=-(-x )2-x =-(x 2+x )=-f (x ); 当x >0时,-x <0,则f (-x )=(-x )2-x =x 2-x =-(-x 2+x )=-f (x ).∴对任意x ∈(-∞,0)∪(0,+∞)都有f (-x )=-f (x ). 故f (x )为奇函数.变式迁移1 解 (1)由于f (-1)=2,f (1)=0,f (-1)≠f (1),f (-1)≠-f (1),从而函数f (x )既不是奇函数也不是偶函数.(2)f (x )的定义域为{-1,1},关于原点对称,又f (-1)=f (1)=0,f (-1)=-f (1)=0,∴f (x )既是奇函数又是偶函数.(3)由⎩⎪⎨⎪⎧4-x 2≥0|x +3|≠3得,f (x )定义域为[-2,0)∪(0,2].∴定义域关于原点对称,又f (x )=4-x 2x,f (-x )=-4-x2x∴f (-x )=-f (x ) ∴f (x )为奇函数.例2 解题导引 本题考查利用函数的单调性和奇偶性解不等式.解题的关键是利用函数的单调性、奇偶性化“抽象的不等式”为“具体的代数不等式”.在关于原点对称的两个区间上,奇函数的单调性相同,偶函数的单调性相反. 解 ∵y =f (x )为奇函数,且在(0,+∞)上为增函数, ∴y =f (x )在(-∞,0)上单调递增, 且由f (1)=0得f (-1)=0.若f [x (x -12)]<0=f (1),则⎩⎪⎨⎪⎧x x -12xx -12即0<x (x -12)<1,解得12<x <1+174或1-174<x <0.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
函数专题1、函数的基本性质复习提问:1、如何判断两个函数是否属于同一个函数。
2、如何求一个函数的定义域(特别是抽象函数的定义域问题)3、如何求一个函数的解析式。
(常见方法有哪些)4、如何求函数的值域。
(常见题型对应的常见方法)5、函数单调性的判断,证明和应用(单调性的应用中参数问题)6、函数的对称性(包括奇偶性)、周期性的应用7、利用函数的图像求函数中参数的范围等其他关于图像问题 知识分类一、函数的概念:函数的定义含有三个要素,即定义域A 、值域C 和对应法则f .当函数的定义域及从定义域到值域的对应法则确定之后,函数的值域也就随之确定.因此,定义域和对应法则为函数的两个基本条件,当且仅当两个函数的定义域和对应法则都分别相同时,这两个函数才是同一个函数. 1、试判断以下各组函数是否表示同一函数?(1)f (x )=2x ,g (x )=33x ;(2)f (x )=x x ||,g (x )=⎩⎨⎧<-≥;01,01x x(3)f (x )=1212++n n x ,g (x )=(12-n x )2n -1(n ∈N *);(4)f (x )=x1+x ,g (x )=x x +2;(5)f (x )=x 2-2x -1,g (t )=t 2-2t -1.二、函数的定义域(请牢记:凡是说定义域范围是多少,都是指等式中变量x 的范围) 1、求下列函数的定义域:(1)y=-221x +1(2)y=422--x x (3)x x y +=1 (4)y=241+-+-x x(5)y=3142-+-x x (8)y=3-ax (a为常数)2、(1)已知f (x )的定义域为 [ 1,2 ] ,求f (2x -1)的定义域; (2)已知f (2x -1)的定义域为 [ 1,2 ],求f (x )的定义域;3、若函数)(x f y =的定义域为[ 1,1],求函数)41(+=x f y )41(-⋅x f 的定义域 5、已知函数682-+-=k x kx y 的定义域为R ,求实数k 的取值范围。
三、函数的解析式求函数解析式常用的几种方法:待定系数法、换元法(代换法)、解方程法、 1、换元(或代换)法:1、已知,11)1(22x x x x x f ++=+求)(x f .2、已知f(x +1)=x+2x ,求f(x)的解析式3、已知函数2(1)4f x x x -=-,求函数()f x ,(21)f x +的解析式。
2、待定系数法1、已知函数f(x)是一次函数,且满足关系式3f(x+1)-2f(x-1)=2x+17,求f(x)的解析式2、已知()f x 是二次函数,且2(1)(1)24f x f x x x ++-=-,求()f x 的解析式。
3、解方程法(1)、已知函数)(x f 满足x xf x f 3)1(2)(=+,求)(x f(2)、已知函数)(x f 为偶函数,)(x g 为奇函数,且)(x f +)(x g =11-x 求)(x f 、)(x g3、已知函数()f x 满足2()()34f x f x x +-=+,则()f x = 。
4、设()f x 是R 上的奇函数,且当[0,)x ∈+∞时, ()(1f x x =+,则当(,0)x ∈-∞时()f x =____ _()f x 在R 上的解析式为5、设()f x 与()g x 的定义域是{|,1}x x R x ∈≠±且,()f x 是偶函数,()g x 是奇函数,且1()()1f xg x x +=-,求()f x 与()g x 的解析式四、函数值域的求法1、配方法:对于求二次函数2(0)y ax bx c a =++≠或可转化为形如[]2()()()(0)f x a g x bg x c a =++≠的函数的值域(最值)一类问题,我们常常可以通过配方法来进行求解. 例1:求二次函数242y x x =-+-([]1,4x ∈)的值域.例2:求函数342-+-=x x ey 的值域.例3:求函数421,[3,2]xxy x --=-+∈-的最大值与最小值。
2、换元法:通过引入一个或多个新变量或代数式代替原来的变量或代数式或超越式,通过换元,我们常常可以化高次为低次、化分式为整式、化无理式为有理式、化超越式为代数式等,这样我们就能将比较复杂的函数转化成易于求值域的函数进行求解.例6:(整体换元) 已知[]0,2x ∈,求函数12()4325x x f x -=-⋅+的值域.3、不等式法:例11:求函数()()52()1x x f x x ++=+(1x ≠-)的值域.例14:求函数1222+++=x x x y 的值域.7、数形结合法:例29:求函数13y x x =-+-的值域.例30:求函数31y x x =--+的值域。
(答案:[]4,4-题型补充:五、函数的单调性1.函数单调性的定义:2. 证明函数单调性的一般方法:①定义法:设2121,x x A x x <∈且;作差)()(21x f x f -(一般结果要分解为若干个因式的乘积,且每一个因式的正或负号能清楚地判断出);判断正负号。
②用导数证明: 若)(x f 在某个区间A 内有导数,则()0f x ≥’,)x A ∈(⇔)(x f 在A 内为增函数;⇔∈≤)0)(A x x f ,(’)(x f 在A 内为减函数。
3. 求单调区间的方法:定义法、导数法、图象法。
4.复合函数[])(x g f y =在公共定义域上的单调性: ①若f 与g 的单调性相同,则[])(x g f 为增函数; ②若f 与g 的单调性相反,则[])(x g f 为减函数。
注意:先求定义域,单调区间是定义域的子集。
5.一些有用的结论:①奇函数在其对称区间上的单调性相同; ②偶函数在其对称区间上的单调性相反; ③在公共定义域内:增函数+)(x f 增函数)(x g 是增函数; 减函数+)(x f 减函数)(x g 是减函数; 增函数-)(x f 减函数)(x g 是增函数; 减函数-)(x f 增函数)(x g 是减函数。
④函数)0,0(>>+=b a x b ax y 在,⎛⎫-∞+∞ ⎪ ⎪⎝⎭或上单调递增;在0⎡⎫⎛⎪ ⎢⎪ ⎣⎭⎝或上是单调递减。
1、函数24)(2++=ax x x f 在区间)6,(-∞为减函数,则实数a 的取值范围是( ) A .3≥a B .3≤a C .3-≥a D .3-≤a 2、函数ax x x f 2)(2+-=与函数1)(+=x ax f 在区间[1,2]上都是减函数,则实数a 的取值范围是( ) A .)1,0()0,1( - B .]1,0()0,1( - C .)1,0( D . ]1,0(3.已知函数⎩⎨⎧≥<+-=1..................log 1.......)12()(x x x a x a x f a 是R 上的减函数,则实数a 的取值范围是( )A .)21,0( B . )1,21( C .)21,31[ D . )1,31[6、写出函数()212log 23y x x =--的单调区间,并指出在相应区间上函数的单调性.9、11、已知函数()f x =x +xa有如下性质:如果常数a >0,那么该函数在(0,a ]上是减函数,在[a ,+∞)上是增函数.(1)如果函数()f x =x +x b2(x >0)的值域为[6,+∞),求b 的值;(2)求函数()f x =x +cx (c >0)在区间[1,2]上的最小值;(3)研究函数()f x =2x +2x c (常数c >0)在定义域内的单调性,并说明理由;(4)对函数()f x =x +x a 和()f x =2x +2xa (常数a >0)作出推广,使它们都是你所推广的函数的特例.研究推广后的函数的单调性(只须写出结论,不必证明).12、.已知c x x f +=2)(,且)1()]([2+=x f x f f 。
(1)设g (x )=f[f (x )],求g (x )的解析式;(2)设)()()(x f x g x λϕ-=,试问是否存在实数λ,使)(x ϕ在(-∞,-1)递减,且在(-1,0)上递增?六、对称性和周期性函数的对称性(1).函数)(x f 关于直线x=a 成轴对称的充要条件是:()()())-(2x a f x a f x a f x f =+-=或(与函数的周期性区分开).(2)..函数)(x f 关于点(a,b)对称的充要条件是:b x a f x f 2)2()(=-+或b x a f x a f 2)()(=-++ (3)..与函数)(x f y =关于直线a x =对称的函数解析式为:)2(x a f y -=. (4). 与函数)(x f y =关于点(a,b )对称的函数解析式为:)2(2x a f b y --=. 函数周期性1.周期函数的定义:对于函数))((D x x f ∈,若存在一个不为零的常数T,使得D x ∈的每一个 值都有)()(x f T x f =+成立,则称)(x f 为周期函数,常数T 叫做)(x f 的最小正周期.若所有的周期中存在一个最小的周期,则这个最小的正数称为这个函数的最小正周期.2.根据函数的对称性判断函数的周期1.若))(()(b a b cx f a cx f ≠+=+,则函数)(x f 是周期函数,b-a 是它的一个周期。
2.若)()(x f a x f -=+,则函数)(x f 是周期函数,2a 是它的一个周期。
一、对称性练习 1. 已知是奇函数,当时,,求的解析式.2. 已知是偶函数,当时,,求的解析式.3. 已知函数的图象与函数的图象关于原点成中心对称, 求的解析式。
4. 设函数y =f (x )的图象关于直线x =1对称,若当x <1时,y =x 2+1,求当x >1时, ,f (x )的解析式. 5. 设, 求关于直线对称的曲线的解析式.6. 已知函数是偶函数,且x ∈(0,+∞)时有f (x )=x1, 求当x ∈(-∞,-2)时, 求 的解析式.7. 已知函数是偶函数,当时,又的图象关于直线对称,求在的解析式. 定义在上的偶函数满足且当时,.(1)求的单调区间;(2)求的值.二、周期性练习1、已知函数()x f y =对任意实数x ,都有()()x f a x f -=+,则()x f y =是以 为周期的函数; 4、已知函数()x f y =对任意实数x ,都有()()b x f x a f =++,则()x f y =是以 为周期的函数 5、已知函数()x f y =对任意实数x ,都有f(x +m)=f(x -m),则 是()x f y =的一个周期.8.设是定义在(-∞,+∞)上的函数,对一切∈R 均有,当<1时,求当时,函数的解析式。